WorldWideScience

Sample records for bimetallic auag colloids

  1. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Directory of Open Access Journals (Sweden)

    M. Vinod

    2014-12-01

    Full Text Available Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  2. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Institute of Scientific and Technical Information of China (English)

    M. Vinod; K.G.Gopchandran

    2014-01-01

    Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  3. Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate.

    Science.gov (United States)

    Tan, Chee Leong; Lee, Soo Kyung; Lee, Yong Tak

    2015-03-01

    We have demonstrated Au-Ag bimetallic non-alloy nanoparticles (BNNPs) on thin a-Si film and c-Si substrate for high SERS enhancement, low cost, high sensitivity and reproducible SERS substrate with bi-SERS sensing properties where two different SERS peak for Au NPs and Ag NPs are observed on single SERS substrate. The isolated Au-Ag bimetallic NPs, with uniform size and spacing distribution, are suitable for uniform high density hotspot SERS enhancement. The SERS enhancement factor of Au-Ag BNNPs is 2.9 times higher compared to Ag NPs on similar substrates due to the increase of the localized surface plasmon resonance effect. However there is a decrement of SERS peak intensity at specific wavenumbers when the surrounding refractive index increases due to out-phase hybridization of Au NPs. The distinct changes of the two different SERS peaks on single Au-Ag BNNPs SERS substrate due to Au and Ag NPs independently show possible application for bi-molecular sensing. PMID:25836846

  4. Photochemical synthesis of bimetallic Au-Ag nanoparticles with "core-shell" type structure by seed mediated catalytic growth

    Institute of Scientific and Technical Information of China (English)

    DONG Shou-an; TANG Chun

    2005-01-01

    The colloidal Au core/Ag shell structure composite nanoparticles were synthesized in PEG-acetone solution by photochemical route. The monodispersed Au nanoparticles with average diameter of 3.9 nm were used as growth seeds. The optical property of colloids and the sizes of composite nanoparticles were characterized when the molar ratio of Au to Ag ranges from 4 : 1 to 1 : 4. The results show that a composite nanoparticle structure similar to strawberry shape is formed at the molar ratio of Au to Ag from 4 : 1 to 1 : 1; the composite nanoparticles consisting of a core of Au and shell of Ag were generated at the 1: 4 molar ratio, having a striking feature of forming interconnected network structure.

  5. SYNTHESIS OF POLYMER-STABILIZED PLATINUM/RUTHENIUM BIMETALLIC COLLOIDS AND THEIR CATALYTIC PROPERTIES FOR SELECTIVE HYDROGENATION OF CROTONALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    Wei-xia Tu; Han-fan Liu

    2005-01-01

    Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.

  6. Plasmonic emission enhancement of colloidal quantum dots in the presence of bimetallic nanoparticles

    International Nuclear Information System (INIS)

    We studied plasmonic features of bimetallic nanostructures consisting of gold nanoisland cores semi-coated with a chromium layer and explored how they influence emission of CdSe/ZnS quantum dots. We showed that, compared with chromium-covered glass substrates without the gold cores, the bimetallic nanostructures could significantly enhance the emission of the quantum dots. We studied the impact of the excitation intensity and thickness of the chromium layer on this process and utilized numerical means to identify the mechanisms behind it. Our results suggest that when the chromium layer is thin, the enhancement process is the result of the bimetallic plasmonic features of the nanostructures. As the chromium layer becomes thick, the impact of the gold cores is screened and the enhancement mostly happens mostly via the field enhancement of chromium nanoparticles in the absence of significant energy transfer from the quantum dots to these nanoparticles

  7. Preparation and Characterization of Polymer-Stabilized Ruthenium-Platinum and Ruthenium-Palladium Bimetallic Colloids and Their Catalytic Properties for Hydrogenation of o-Chloronitrobenzene.

    Science.gov (United States)

    Liu; Yu; Liu; Zheng

    1999-06-15

    Colloidal dispersions of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium-platinum and ruthenium-palladium bimetallic colloids were prepared by NaBH4 reduction of the corresponding mixed-metal salts at room temperature and characterized by TEM, XPS, and XRD. The resulting bimetallic colloids were used as catalysts for the selective hydrogenation of o-chloronitrobenzene (o-CNB) in methanol at 303 K under 0.1 MPa of hydrogen. It was observed that the catalytic performance of PVP-stabilized ruthenium-platinum colloids (PVP-Ru/Pt) and ruthenium-palladium colloids (PVP-Ru/Pd) was dependent on their compositions and could be remarkably affected by some added metal cations. In the presence of cobalt ion, nearly 100% selectivity to o-chloroaniline (o-CAN) was achieved over PVP-Ru/Pt colloids at 100% conversion of o-CNB, with an activity two orders of magnitude higher than that of monometallic PVP-Ru colloid. Copyright 1999 Academic Press. PMID:10339363

  8. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances

    KAUST Repository

    Huang, Jianfeng

    2015-08-13

    Colloidal metal nanocrystals with strong, stable, and tunable localized surface plasmon resonances (SPRs) can be useful in a corrosive environment for many applications including field-enhanced spectroscopies, plasmon-mediated catalysis, etc. Here, a new synthetic strategy is reported that enables the epitaxial growth of a homogeneously alloyed AuAg shell on Au nanorod seeds, circumventing the phase segregation of Au and Ag encountered in conventional synthesis. The resulting core–shell structured bimetallic nanorods (AuNR@AuAg) have well-mixed Au and Ag atoms in their shell without discernible domains. This degree of mixing allows AuNR@AuAg to combine the high stability of Au with the superior plasmonic activity of Ag, thus outperforming seemingly similar nanostructures with monometallic shells (e.g., Ag-coated Au NRs (AuNR@Ag) and Au-coated Au NRs (AuNR@Au)). AuNR@AuAg is comparable to AuNR@Ag in plasmonic activity, but that it is markedly more stable toward oxidative treatment. Specifically, AuNR@AuAg and AuNR@Ag exhibit similarly strong signals in surface-enhanced Raman spectroscopy that are some 30-fold higher than that of AuNR@Au. When incubated with a H2O2 solution (0.5 m), the plasmonic activity of AuNR@Ag immediately and severely decayed, whereas AuNR@AuAg retained its activity intact. Moreover, the longitudinal SPR frequency of AuNR@AuAg can be tuned throughout the red wavelengths (≈620–690 nm) by controlling the thickness of the AuAg alloy shell. The synthetic strategy is versatile to fabricate AuAg alloyed shells on different shaped Au, with prospects for new possibilities in the synthesis and application of plasmonic nanocrystals.

  9. Synthesis and Optical Properties of Au-Ag Alloy Nanoclusters with Controlled Composition

    Directory of Open Access Journals (Sweden)

    J. F. Sánchez-Ramírez

    2008-01-01

    Full Text Available Colloidal solid-solution-like Au-Ag alloy nanoclusters of different compositions were synthesized through citrate reduction of mixed metal ions of low concentrations, without using any other protective or capping agents. Optical absorption of the alloy nanoclusters was studied both theoretically and experimentally. The position of the surface plasmon resonance (SPR absorption band of the nanoclusters could be tuned from 419 nm to 521 nm through the variation of their composition. Considering effective dielectric constant of the alloy, optical absorption spectra for the nanoclusters were calculated using Mie theory, and compared with the experimentally obtained spectra. Theoretically obtained optical spectra well resembled the experimental spectra when the true size distribution of the nanoparticles was considered. High-resolution transmission electron microscopy (HREM, high-angle annular dark field (HAADF imaging, and energy dispersive spectroscopy (EDS revealed the true alloy nature of the nanoparticles with nominal composition being preserved. The synthesis technique can be extended to other bimetallic alloy nanoclusters containing Ag.

  10. Core-shell Au/Ag nanoparticles embedded in silicate sol-gel network for sensor application towards hydrogen peroxide

    Indian Academy of Sciences (India)

    Shanmugam Manivannan; Ramasamy Ramaraj

    2009-09-01

    The electrocatalytic activity of core-shell Au100-Ag ( = 15, 27, 46, and 60) bimetallic nanoparticles embedded in methyl functionalized silicate MTMOS network towards the reduction of hydrogen peroxide was investigated by using cyclic voltammetry and chronoamperometric techniques. Core-shell Au/Ag bimetallic nanoparticles were characterized by absorption spectra and HRTEM. The MTMOS silicate sol-gel embedded Au73Ag27 core-shell nanoparticles modified electrode showed better synergistic electrocatalytic effect towards the reduction of hydrogen peroxide when compared to monometal MTMOS-Aunps and MTMOS-Agnps modified electrodes. These modified electrodes were studied without immobilizing any enzyme in the MTMOS sol-gel matrix. The present study highlights the influence of molar composition of Ag nanoparticles in the Au/Ag bimetallic composition towards the electrocatalytic reduction and sensing of hydrogen peroxide in comparison to monometal Au and Ag nanoparticles.

  11. Synthesis of bimetallic gold-silver alloy nanoclusters by simple mortar grinding.

    Science.gov (United States)

    Murugadoss, Arumugam; Kai, Noriko; Sakurai, Hidehiro

    2012-02-21

    A macroscale quantity of bimetallic Au-Ag alloy nanoclusters was achieved through sequential reduction by simple mortar grinding. The chitosan biopolymer was used as both a stabilizing and reducing agent. These nanoclusters exhibit excellent catalytic activity toward the reduction of 4-nitrophenol.

  12. Bimetallic Catalysts.

    Science.gov (United States)

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  13. Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys.

    Science.gov (United States)

    Heiles, Sven; Logsdail, Andrew J; Schäfer, Rolf; Johnston, Roy L

    2012-02-21

    A genetic algorithm (GA) coupled with density functional theory (DFT) calculations is used to perform global optimisations for all compositions of 8-atom Au-Ag bimetallic clusters. The performance of this novel GA-DFT approach for bimetallic nanoparticles is tested for structures reported in the literature. New global minimum structures for various compositions are predicted and the 2D-3D transition is located. Results are explained with the aid of an analysis of the electronic density of states. The chemical ordering of the predicted lowest energy isomers are explained via a detailed analysis of the charge separation and mixing energies of the bimetallic clusters. Finally, dielectric properties are computed and the composition and dimensionality dependence of the electronic polarizability and dipole moment is discussed, enabling predictions to be made for future electric beam deflection experiments.

  14. Optimized core-shell Au@Ag nanoparticles for label-free Raman determination of trace Rhodamine B with cancer risk in food product.

    Science.gov (United States)

    Wang, Hui; Guo, Xiaoyu; Fu, Shuyue; Yang, Tianxi; Wen, Ying; Yang, Haifeng

    2015-12-01

    A simple and reliable method based on surface-enhanced Raman scattering (SERS) with a portable Raman system is described for sensitive determination of trace levels of Rhodamine B (RB) in hot sauce samples. The sodium salt of phytic acid (IP6) stabilized Au@Ag core-shell bimetallic nanoparticles are constructed and used as SERS substrate, yielding high Raman enhancement of RB. The limit of detection for RB in water is 5 nM (2 ppb), which is below China Exit and Entry Inspection and Quarantine Bureau's tolerance level of 5 ppb. Also, the proposed easy assay of IP6-Au@Ag NPs combining with portable Raman system could be applied for on-site monitoring RB in hot sauce. PMID:26041175

  15. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    Science.gov (United States)

    Gutierrez Fuentes, R.; Pescador Rojas, J. A.; Jiménez-Pérez, J. L.; Sanchez Ramirez, J. F.; Cruz-Orea, A.; Mendoza-Alvarez, J. G.

    2008-11-01

    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles.

  16. Study of thermal diffusivity of nanofluids with bimetallic nanoparticles with Au(core)/Ag(shell) structure

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez Fuentes, R.; Pescador Rojas, J.A. [CICATA-IPN, Legaria 694, Mexico 11500, D.F. (Mexico); Jimenez-Perez, J.L. [CICATA-IPN, Legaria 694, Mexico 11500, D.F. (Mexico)], E-mail: jimenezp@fis.cinvestav.mx; Sanchez Ramirez, J.F. [CICATA-IPN, Legaria 694, Mexico 11500, D.F. (Mexico); Departamento de Fisica, CINVESTAV-IPN, A.P. 14-740, Mexico 07360, D.F. (Mexico); Cruz-Orea, A.; Mendoza-Alvarez, J.G. [Departamento de Fisica, CINVESTAV-IPN, A.P. 14-740, Mexico 07360, D.F. (Mexico)

    2008-11-30

    The thermal diffusivity of Au/Ag nanoparticles with core/shell structure, at different compositions (Au/Ag = 3/1, 1/1, 1/3, 1/6), was measured by using the mismatched mode of the dual-beam thermal lens (TL) technique. This study determines the effect of the bimetallic composition on the thermal diffusivity of the nanofluids. In these results we find a lineal increment of the nanofluid it thermal diffusivity when the Ag shell thickness is increased. Our results show that the nanoparticle structure is an important parameter to improve the heat transport in composites and nanofluids. These results could have importance for applications in therapies and photothermal deliberation of drugs. Complementary measurements with UV-vis spectroscopy and TEM, were used to characterize the Au(core)/Ag(shell) nanoparticles.

  17. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity.

    Science.gov (United States)

    Zhou, Qian; Lin, Youxiu; Xu, Mingdi; Gao, Zhuangqiang; Yang, Huanghao; Tang, Dianping

    2016-09-01

    Herein, gold-silver bimetallic nanoclusters (Au-Ag NCs) with the high fluorescent intensity were first synthesized successfully and utilized for the fabrication of sensitive and specific sensing probes toward inorganic pyrophosphatase (PPase) activity with the help of copper ion (Cu(2+)) and inorganic pyrophosphate ion (PPi). Cu(2+) was used as the quencher of fluorescent Au-Ag NC, while PPi was employed as the hydrolytic substrate of PPase. The system consisted of PPi, Cu(2+) ion, and bovine serum albumin (BSA)-stabilized Au-Ag NC. The detection was carried out by enzyme-induced hydrolysis of PPi to liberate copper ion from the Cu(2+)-PPi complex. In the absence of target PPase, free copper ions were initially chelated with inorganic pyrophosphate ions to form the Cu(2+)-PPi complexes via the coordination chemistry, thus preserving the natural fluorescent intensity of the Au-Ag NCs. Upon addition of target PPase into the detection system, the analyte hydrolyzed PPi into phosphate ions and released Cu(2+) ion from the Cu(2+)-PPi complex. The dissociated copper ions readily quenched the fluorescent signal of Au-Ag NCs, thereby resulting in the decrease of fluorescent intensity. Under optimal conditions, the detectable fluorescent intensity of the as-prepared Au-Ag NCs was linearly dependent on the activity of PPase within a dynamic linear range of 0.1-30 mU/mL and allowed the detection at a concentration as low as 0.03 mU/mL at the 3sblank criterion. Good reproducibility (CV fluorescent Au-Ag NCs offer promise for simple and cost-effective screening of target PPase activity without the needs of sample separation and multiple washing steps. PMID:27476555

  18. Biosensors Incorporating Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    John Rick

    2015-12-01

    Full Text Available This article presents a review of electrochemical bio-sensing for target analytes based on the use of electrocatalytic bimetallic nanoparticles (NPs, which can improve both the sensitivity and selectivity of biosensors. The review moves quickly from an introduction to the field of bio-sensing, to the importance of biosensors in today’s society, the nature of the electrochemical methods employed and the attendant problems encountered. The role of electrocatalysts is introduced with reference to the three generations of biosensors. The contributions made by previous workers using bimetallic constructs, grouped by target analyte, are then examined in detail; following which, the synthesis and characterization of the catalytic particles is examined prior to a summary of the current state of endeavor. Finally, some perspectives for the future of bimetallic NPs in biosensors are given.

  19. Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA

    Science.gov (United States)

    Saunders, J. A.; Unger, D. L.; Kamenov, G. D.; Fayek, M.; Hames, W. E.; Utterback, W. C.

    2008-09-01

    Epithermal deposits with bonanza Au-Ag veins in the northern Great Basin (NGB) are spatially and temporally associated with Middle Miocene bimodal volcanism that was related to a mantle plume that has now migrated to the Yellowstone National Park area. The Au-Ag deposits formed between 16.5 and 14 Ma, but exhibit different mineralogical compositions, the latter due to the nature of the country rocks hosting the deposits. Where host rocks were primarily of meta-sedimentary or granitic origin, adularia-rich gold mineralization formed. Where glassy rhyolitic country rocks host veins, colloidal silica textures and precious metal-colloid aggregation textures resulted. Where basalts are the country rocks, clay-rich mineralization (with silica minerals, adularia, and carbonate) developed. Oxygen isotope data from quartz (originally amorphous silica and gels) from super-high-grade banded ores from the Sleeper deposit show that ore-forming solutions had δ 18O values up to 10‰ heavier than mid-Miocene meteoric water. The geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the “epithermal suite” elements. A mantle source for the gold in the deposits is further supported by the Pb isotopic signature of the gold ores. Apparently the host rocks control the mineralization style and gangue mineralogy of ores. However, all deposits are considered to have derived precious metals and metalloids from mafic magmas related to the initial emergence of the Yellowstone hotspot. Basalt-derived volatiles and metal(loid)s are inferred to have been absorbed by meteoric-water-dominated geothermal systems heated by shallow rhyolitic magma chambers. Episodic discharge of volatiles and metal(loid)s from deep basaltic magmas mixed with

  20. Tailor-made Au-Ag core–shell nanoparticle 2D arrays on protein-coated graphene oxide with assembly enhanced antibacterial activity

    International Nuclear Information System (INIS)

    Water-dispersible two-dimensional (2D) assemblies of Au-Ag core–shell nanoparticles are obtained through a highly selective electroless silver deposition on pre-assembled gold nanoparticles on bovine serum albumin (BSA)-coated graphene oxide (BSA-GO). While neither BSA-GO nor AuNP-decorated BSA-GO shows any antibacterial ability, the silver-coated GO-Au nanosheets (namely GO-Au-Ag) exhibit an enhanced antibacterial activity against Gram-negative Escherichia coli (E. coli) bacteria, superior to unassembled Au-Ag nanoparticles and even ionic Ag. Such an improvement may be attributed to the increased local concentration of silver nanoparticles around a bacterium and a polyvalent interaction with the bacterial surface. In addition, the colloidal stability of this novel nano-antimicrobial against the formation of random nanoparticle aggregates guarantees a minimized activity loss of the Au-Ag nanoparticles. The antibacterial efficacy of GO-Au-Ag is less sensitive to the existence of Cl−, in comparison with silver ions, providing another advantage for wound dressing applications. Our research unambiguously reveals a strong and very specific interaction between the GO-Au-Ag nanoassembly and E. coli, which could be an important clue toward a rational design, synthesis and assembly of innovative and highly active antibacterial nanomaterials. (paper)

  1. Kinetics of Oxidation of L-Leucine by Mono-and Bimetallic Gold and Silver Nanoparticles in Hydrogen Peroxide Solution

    Institute of Scientific and Technical Information of China (English)

    P.VENKATESAN; J.SANTHANALAKSHMI

    2012-01-01

    The catalytic activity of surfactant stabilized mono- and bimetallic Au and Ag nanoparticles for the oxidation of an amino acid,L-leucine,was studied using hydrogen peroxide as the oxidant.The Au and Ag nanoparticle catalysts exhibited very good catalytic activity and the kinetics of the reaction were found to be pseudo-first order with respect to the amino acid.The effects of several factors,such as oxidant concentration,ionic strength,pH,and catalyst concentration on the reaction,were also investigated.In particular,optimal oxidant and catalyst concentrations were determined.Very high concentrations of the metal nano-catalysts or the oxidant led to a dramatic increase in reaction rate.Moreover,bimetallic Au-Ag catalysts provided higher selectivity than pure Au or Ag.

  2. Colloidal organization

    CERN Document Server

    Okubo, Tsuneo

    2015-01-01

    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  3. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Jasmine; Mukherjee, Tulsi; Kapoor, Sudhir, E-mail: sudhirk@barc.gov.in

    2012-10-01

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: Black-Right-Pointing-Pointer First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. Black-Right-Pointing-Pointer Red cabbage extract has better reducing properties than green cabbage extract. Black-Right-Pointing-Pointer Red cabbage extract can reduce metal ions at any pH. Black-Right-Pointing-Pointer Reduction of metal ions can have important consequences in the study of soil chemistry.

  4. A simple approach for facile synthesis of Ag, anisotropic Au and bimetallic (Ag/Au) nanoparticles using cruciferous vegetable extracts

    International Nuclear Information System (INIS)

    We present a simple and straightforward approach for the synthesis and stabilization of relatively monodisperse Ag, Au and bimetallic (Ag/Au) nanoparticles by using cruciferous vegetable (green/red) extracts by simply adjusting the pH environment in the aqueous medium. The vegetable extracts act both as reducing and capping agents. The monometallic and bimetallic nanoparticles of Ag and Au so obtained were characterized by UV–visible spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It is shown that red cabbage extract can be used for the preparation of anisotropic Au nanoparticles. The formation of Au anisotropic nanoparticles was found to depend on a number of environmental factors, such as the pH of the reaction medium, reaction time, and initial reactant concentrations. Additionally, it is shown that these extract-stabilized Au and Ag nanoparticles can be used as a seed for preparation of bimetallic Au/Ag nanoparticles. For bimetallic alloy nanoparticles the absorption peak was observed between the two maxima of the corresponding metallic particles. The surface plasmon absorption maxima for bimetallic nanoparticles changed linearly with increasing Au mole ratio content in various alloy compositions. It has been shown that the formation of hollow Au spheres depends on the experimental conditions. - Graphical abstract: TEM image of gold nanoparticles at pH 3.27 formed by red cabbage extract. Highlights: ► First report on the reactivity of the extracts toward metal ions using a spectrophotometric technique. ► Red cabbage extract has better reducing properties than green cabbage extract. ► Red cabbage extract can reduce metal ions at any pH. ► Reduction of metal ions can have important consequences in the study of soil chemistry.

  5. Thermal diffusivity of nanofluids containing Au/Pd bimetallic nanoparticles of different compositions.

    Science.gov (United States)

    Sánchez-Ramírez, J F; Jiménez Pérez, J L; Cruz Orea, A; Gutierrez Fuentes, R; Bautista-Hernández, A; Pal, U

    2006-03-01

    Colloidal suspensions of bimetallic Au/Pd nanoparticles were prepared by simultaneous reduction of the metal ions from their corresponding chloride salts with polymer (PVP) stabilizer. Thermal properties of water containing bimetallic nanoparticles with different nominal compositions (Au/Pd = 12/1, 5/1, 1/1, 1/5) were measured using the mode mismatched dual-beam thermal lens technique to determine the effect of particle composition on the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was estimated by fitting the experimental data to the theoretical expression for transient thermal lens. The thermal diffusivity of the nanofluids (water, containing Au/Pd bimetallic nanoparticles) is seen to be strongly dependent on the composition of the particles. The maximum diffusivity was achieved for the nanoparticles with highest Au/Pd molar ratio. A possible mechanism for such high thermal diffusivity of the nanofluids with bimetallic particles is given. UV-Vis spectroscopy, TEM and high-resolution electron microscopy (HREM) techniques were used to characterize the Au/Pd bimetallic nanoparticles. PMID:16573121

  6. Fungal biomolecules assisted biosynthesis of Au-Ag alloy nanoparticles and evaluation of their catalytic property.

    Science.gov (United States)

    Tripathi, Ravi Mani; Gupta, Rohit Kumar; Bhadwal, Akhshay Singh; Singh, Priti; Shrivastav, Archana; Shrivastav, B R

    2015-08-01

    The catalytic reduction of methylene blue was studied using biosynthesised gold-silver (Au-Ag) alloy nanoparticles (NPs). The fungal biomass of Trichoderma harzianum was used as a reducing and stabilising agent in the synthesis of Au-Ag alloy NPs. The synthesised NPs were well characterised by UV-vis spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. The plausible synthesis mechanism involved in the formation of Au-Ag alloy NPs was also discussed with diagrammatic representation. A series of experiments was performed to investigate the catalytic activity of the as-prepared Au-Ag alloy NPs and found that the alloy NPs show excellent catalytic activity. PMID:26224346

  7. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials

    Science.gov (United States)

    Yallappa, S.; Manjanna, J.; Dhananjaya, B. L.

    2015-02-01

    A green chemistry approach for the synthesis of Au, Ag and Au-Ag alloy nanoparticles (NPs) using the corresponding metal precursors and Jasminum sambac leaves extract as both reducing and capping media, under microwave irradiation, is reported. During the formation, as expected, the reaction mixture shows marginal decrease in pH and an increase in solution potential. The formation of NPs is evident from their surface plasmon resonance (SPR) peak observed at ∼555 nm for Au, ∼435 nm for Ag and ∼510 nm for Au-Ag alloy. The XRD pattern shows fcc structure while the FTIR spectra indicate the presence of plant residues adsorbed on these NPs. Such a bio-capping of NPs is characterized by their weight loss, ∼35% due to thermal degradation of biomass, as observed in TG analysis. The colloidal dispersion of NPs is stable for about 6 weeks. The near spherical shape of NPs (ϕ20-50 nm) is observed by FE-SEM/TEM images and EDAX gives the expected elemental composition. Furthermore, these NPs showed enhanced antimicrobial activity (∼1-4-fold increase in zone of inhibition) in combination with antimicrobials against test strains. Thus, the phytosynthesized NPs could be used as effective growth inhibitors for various microorganisms.

  8. Growth of various Au-Ag nanocomposites from gold seeds in amino acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y-F [Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan (China); Lin, Y-W [Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan (China); Chang, H-T [Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan (China)

    2006-10-14

    In this paper, we describe an easy procedure for the preparation of differently shaped and sized Au-Ag nanocomposites from gold nanorod (AuNR) seeds in various amino acid solutions-arginine (Arg), cysteine (Cys), glycine (Gly), glutamate (Glu), glutamine (Gln), histidine (His), lysine (Lys), and methionine (Met), respectively-at values of pH ranging from 8.0 to 11.5. Our results suggest that the pH, the nature of the amino acid, and its concentration all have significant impact on the preparation of Au-Ag nanocomposites; these factors exhibit their effects mainly through control over the reducing ability of ascorbate and/or its recognition capability, as well as through control over the surface charges of the amino acids on the AuNRs. Depending on the value of pH, we were able to prepare I-shaped, dumbbell-shaped, and/or sphere-shaped Au-Ag nanocomposites in 0.1 M solutions of Arg, Gly, Glu, Gln, Lys, and Met. In His solutions at pH 8.0 and 9.0, we obtained peanut-shaped Au-Ag nanocomposites. Corn-shaped Au-Ag nanocomposites were prepared in 0.1 M Met solutions (pH 9.0 and 10.0). By controlling the Lys concentration at pH 10.0, we synthesized pearl-necklace-shaped Au-Ag nanoparticles and Au-Ag wires. Based on the TEM images, we conclude that this simple and reproducible synthetic approach allows preparation of high-quality (>87%, beside>77% in His solutions) Au-Ag nanocomposites with various shapes and sizes under different conditions.

  9. Characterization and Preparation of Bimetallic Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Bing; Joe; Hwang; Ching; Hsiang; Chen; Loka; Subramanyam; Sarma; Din-gao; Liu; Jyh; Fu; Lee

    2007-01-01

    1 Results Bimetallic particles in the nanometer size range are of substantial interest due to their vast applications in catalysis[1].The synthesis of bimetallic nanoparticles with definite size with a well-control over their nanostructure remains a challenging problem.Thus there exists a great demand for both synthesis and atomic level characterization of nanostructure of bimetallic nanoparticles (NPs).With the recent advent of high-intensity tunable sources of X-rays,now available at synchrotron radia...

  10. Strain distributions of confined Au/Ag and Ag/Au nanoparticles

    Institute of Scientific and Technical Information of China (English)

    黄红华; 章英; 刘晓山; 骆兴芳; 袁彩雷; 叶双莉

    2015-01-01

    The strain distributions of Au/Ag and Ag/Au nanoparticles confined in the Al2O3 matrix with different core sizes are investigated by using the finite element method, respectively. The simulation results clearly indicate that the compressive strains exerted on the Au/Ag and Ag/Au nanoparticles can be induced by the Al2O3 matrix. Moreover, it can be found that the strain gradient existing in a Au/Ag nanoparticle is much larger than that in a Ag/Au nanoparticle, which could be due to the larger Young’s modulus of Au than that of Ag. With the core size increasing, the strain gradient existing in the Au/Ag nanoparticle becomes larger, while the strain gradient existing in the Ag/Au nanoparticle keeps constant. These different strain distributions may have significant infl uences on the structures and morphologies of the Au/Ag and Ag/Au nanoparticles, leading to the different physical properties for potential applications.

  11. Development of Au-Ag nanowire mesh fabrication by UV-induced approach

    Energy Technology Data Exchange (ETDEWEB)

    Saggar, Siddhartha [Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology, Calicut, Kerala, India and School of Nanoscience and Technology, National Institute of Technology, Calicut, Kerala (India); Predeep, Padmanabhan, E-mail: predeep@nitc.ac.in

    2014-10-15

    In an attempt to overcome the limitations of the presently prevailing transparent conducting electrode (TCE) - indium tin oxide (ITO) - many materials have been considered for replacing ITO. Recently, a novel method has been reported for the synthesis of Au-Ag nanowire (NW) mesh, and tested successfully for organic-light-emitting-diodes (OLEDs). It employs UV-induced reduction of gold- and silver- precursors to form Au-Ag NW mesh. In this report, Au-Ag NW mesh thin films are synthesized on glass substrates with an objective for use as facing-electrode for Organic Photovoltaics. Various issues and factors affecting the fabrication-process have been improved, and are also discussed here. The electrode showed good transmitivity, of around 95% (excluding that of glass substrate). The advantage of the technique is its simple processing method and cost-effectiveness.

  12. Bimetallic nanoparticles for arsenic detection.

    Science.gov (United States)

    Moghimi, Nafiseh; Mohapatra, Mamata; Leung, Kam Tong

    2015-06-01

    Effective and sensitive monitoring of heavy metal ions, particularly arsenic, in drinking water is very important to risk management of public health. Arsenic is one of the most serious natural pollutants in soil and water in more than 70 countries in the world. The need for very sensitive sensors to detect ultralow amounts of arsenic has attracted great research interest. Here, bimetallic FePt, FeAu, FePd, and AuPt nanoparticles (NPs) are electrochemically deposited on the Si(100) substrate, and their electrochemical properties are studied for As(III) detection. We show that trace amounts of As(III) in neutral pH could be determined by using anodic stripping voltammetry. The synergistic effect of alloying with Fe leads to better performance for Fe-noble metal NPs (Au, Pt, and Pd) than pristine noble metal NPs (without Fe alloying). Limit of detection and linear range are obtained for FePt, FeAu, and FePd NPs. The best performance is found for FePt NPs with a limit of detection of 0.8 ppb and a sensitivity of 0.42 μA ppb(-1). The selectivity of the sensor has also been tested in the presence of a large amount of Cu(II), as the most detrimental interferer ion for As detection. The bimetallic NPs therefore promise to be an effective, high-performance electrochemical sensor for the detection of ultratrace quantities of arsenic. PMID:25938763

  13. Colloidal superballs

    OpenAIRE

    Rossi, L.

    2012-01-01

    This thesis is organized in four parts as follows. Part 1 focuses on the synthetic aspects of the colloidal model systems that will be used throughout the work described in this thesis. In Chapter 2 we describe synthetic procedures for the preparation of polycrystalline hematite superballs and superellipsoids. The internal structure of the particles is also investigated and will be used later to understand the magnetic properties of colloidal hematite. The same hematite particles are used as ...

  14. Onset of Intense Surface Enhanced Raman Scattering and Aggregation in the Au@Ag System

    Directory of Open Access Journals (Sweden)

    Priya Bhatia

    2015-01-01

    Full Text Available Gold core/silver shell (Au@Ag nanoparticles of ~37 ± 5 nm diameter generate intense SERS (λEX=785 nm responses in solution when they interact with the SERS labels rhodamine 6G (R6G, 4-mercaptopyridine (MPY, and 4-mercaptobenzoic acid (MBA. Herein the relationship between SERS intensity, aggregation, and adsorption phenomenon isobserved by titrating Au@Ag with the above labels. As the labels adsorb to the Au@Ag, they drive aggregation as evidenced by the creation of NIR extinction peaks, and the magnitude of this NIR extinction (measured at 830 nm correlates very closely to magnitude of the intense SERS signals. The label MBA is an exception since it does not trigger aggregation nor does it result in intense SERS; rather intense SERS is recovered only after MBA coated Au@Ag is aggregated with KCl. An “inner filter” model is introduced and applied to compensate for solution extinction when the exciting laser radiation is significantly attenuated. This model permits a summary of the SERS responses in the form of plots of SERS intensity versus the aggregate absorption at 830 nm, which shows the excellent correlation between intense SERS and LSPR bands extinction.

  15. Bimetallic materials for large diameter pipelines

    International Nuclear Information System (INIS)

    The results are presented of the investigation of bimetallic pipes made of Ni-Mn-Mo-V + Cb08Kh19N10G2B steel and of 19MN5 (type 22K) + SB 08Kh19N10G2B steels, manufactured in Japan for piping nuclear power stations for service under corrosion attack by coolants at high both pressure and temperature and under heavy cyclic loads. The procedures are described for manufacturing elements of piping from bimetallic seamless large-diameter pipes. A study has been made of the variation in bimetallic microstructure of the short-time mechanical properties, of the impact strength, of the critical brittleness point in initial and aged states of the cyclic strength and of the strength of the bimetallic joint

  16. Topological colloids.

    Science.gov (United States)

    Senyuk, Bohdan; Liu, Qingkun; He, Sailing; Kamien, Randall D; Kusner, Robert B; Lubensky, Tom C; Smalyukh, Ivan I

    2013-01-10

    Smoke, fog, jelly, paints, milk and shaving cream are common everyday examples of colloids, a type of soft matter consisting of tiny particles dispersed in chemically distinct host media. Being abundant in nature, colloids also find increasingly important applications in science and technology, ranging from direct probing of kinetics in crystals and glasses to fabrication of third-generation quantum-dot solar cells. Because naturally occurring colloids have a shape that is typically determined by minimization of interfacial tension (for example, during phase separation) or faceted crystal growth, their surfaces tend to have minimum-area spherical or topologically equivalent shapes such as prisms and irregular grains (all continuously deformable--homeomorphic--to spheres). Although toroidal DNA condensates and vesicles with different numbers of handles can exist and soft matter defects can be shaped as rings and knots, the role of particle topology in colloidal systems remains unexplored. Here we fabricate and study colloidal particles with different numbers of handles and genus g ranging from 1 to 5. When introduced into a nematic liquid crystal--a fluid made of rod-like molecules that spontaneously align along the so-called 'director'--these particles induce three-dimensional director fields and topological defects dictated by colloidal topology. Whereas electric fields, photothermal melting and laser tweezing cause transformations between configurations of particle-induced structures, three-dimensional nonlinear optical imaging reveals that topological charge is conserved and that the total charge of particle-induced defects always obeys predictions of the Gauss-Bonnet and Poincaré-Hopf index theorems. This allows us to establish and experimentally test the procedure for assignment and summation of topological charges in three-dimensional director fields. Our findings lay the groundwork for new applications of colloids and liquid crystals that range from

  17. Radioactive colloids

    International Nuclear Information System (INIS)

    Different techniques for the characterization of radioactive colloids, used in nuclear medicine, have been evaluated and compared. Several radioactive colloids have been characterized in vitro and in vivo and tested experimentally. Colloid biokinetics following interstitial or intravenous injection were evaluated with a scintillation camera technique. Lymphoscintigraphy with a Tc-99-labelled antimony sulphur colloid was performed in 32 patients with malignant melanoma in order to evaluate the technique. Based on the biokinetic results, absorbed doses in tissues and organs were calculated. The function of the reticuloendothelial system has been evaluated in rats after inoculation with tumour cells. Microfiltration and photon correlation spectroscopy were found to be suitable in determining activity-size and particle size distributions, respectively. Maximal lymph node uptake following subcutaneous injection was found to correspond to a colloid particle size between 10 and 50 nm. Lymphoscintigraphy was found to be useful in the study of lymphatic drainage from the primary tumour site in patients with malignant melanoma on the trunk. Quantitative analysis of ilio-inguinal lymph node uptake in patients with malignant melanoma on the lower extremities was, however, found to be of no value for the detection of metastatic disease in lymph nodes. High absorbed doses may be received in lymph nodes (up to 1 mGy/MBq) and at the injection site (about 10 mGy/MBq). In an experimental study it was found that the relative colloid uptake in bone marrow and spleen depended on the total number of intravenously injected particles. This may considerably affect the absorbed dose in these organs. (author)

  18. Colloidal nematostatics

    Directory of Open Access Journals (Sweden)

    V.M. Pergamenshchik

    2010-01-01

    Full Text Available We give a review of the theory of large distance colloidal interaction via the nematic director field. The new area of nematic colloidal systems (or nematic emulsions has been guided by the analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the colloidal nematostatics [V.M. Pergamenshchik, V.O. Uzunova, Eur. Phys. J. E, 2007, 23, 161; Phys. Rev. E, 2007, 76, 011707] develops this analogy at the level of charge density and Coulomb interaction. The analogy is shown to lie in common mathematics based on the solutions of Laplace equation. However, the 3d colloidal nematostatics substantially differs from electrostatics both in its mathematical structure and physical implications. The elastic charge is a vector fully determined by the torque exerted upon colloid, the role of Gauss' theorem is played by conservation of the torque components. Elastic multipoles consist of two tensors (dyads. Formulas for the elastic multipoles, the Coulomb-like, dipole-dipole, and quadrupole-quadrupole pair interaction potentials are derived and illustrated by particular examples. Based on the tensorial structure, we list possible types of elastic dipoles and quadrupoles. An elastic dipole is characterized by its isotropic strength, anisotropy, chirality, and its longitudinal component. An elastic quadrupole can be uniaxial and biaxial. Relation between the multipole type and its symmetry is discussed, sketches of some types of multipoles are given. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method in nematostatics for arbitrary director tilt at the wall. The method is applied to the charge-wall and dipole-wall interaction.

  19. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    OpenAIRE

    Jing Liu; Yushan Chen; Haoyuan Cai; Xiaoyi Chen; Changwei Li; Cheng-Fu Yang

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. S...

  20. Colloidal superballs

    NARCIS (Netherlands)

    Rossi, L.

    2012-01-01

    This thesis is organized in four parts as follows. Part 1 focuses on the synthetic aspects of the colloidal model systems that will be used throughout the work described in this thesis. In Chapter 2 we describe synthetic procedures for the preparation of polycrystalline hematite superballs and super

  1. Magneto-optical response in bimetallic metamaterials

    CERN Document Server

    Atmatzakis, Evangelos; Fedotov, Vassili; Vienne, Guillaume; Zheludev, Nikolay I

    2016-01-01

    We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano-ring resonators consisting of Au and Ni sections. This metamaterial design allows to optimize the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Although Ni sections correspond to as little as ~6% of the total surface of the metamaterial, the resulting magneto-optically induced polarization rotation is equal to that of a continuous film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components and integrated photonic circuits.

  2. Structural Characterization of Bimetallic Nanocrystal Electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, David A [ORNL

    2016-01-01

    Late transition metal nanocrystals find applications in heterogeneous catalysis such as plasmon-enhanced catalysis and as electrode materials for fuel cells, a zero-emission and sustainable energy technology. Their commercial viability for automotive transportation has steadily increased in recent years, almost exclusively due to the discovery of more efficient bimetallic nanocatalysts for the oxygen reduction reaction (ORR) at the cathode. Despite improvements to catalyst design, achieving high activity while maintaining durability is essential to further enhance their performance for this and other important applications in catalysis. Electronic effects arising from the generation of metal-metal interfaces, from plasmonic metals, and from lattice distortions, can vastly improve sorption properties at catalytic surfaces, while increasing durability.[1] Multimetallic lattice-strained nanoparticles are thus an interesting opportunity for fundamental research.[2,3] A colloidal synthesis approach is demonstrated to produce AuPd alloy and Pd@Au core-shell nanoicosahedra as catalysts for electro-oxidations. The nanoparticles are characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and large solid angle energy dispersive X-ray spectroscopy (EDS) on an FEI Talos 4-detector STEM/EDS system. Figure 1 shows bright-field (BF) and high-angle annular dark-field (HAADF) ac-STEM images of the alloy and core-shell nanoicosahedra together with EDS line-scans and elemental maps. These structures are unique in that the presence of twin boundaries, alloying, and core-shell morphology could create highly strained surfaces and interfaces. The shell thickness of the core-shell structures observed in HAADF-STEM images is tuned by adjusting the ratio between metal precursors (Figure 2a-f) to produce shells ranging from a few to several monolayers. Specific activity was measured in ethanol electro-oxidation to examine the effect of shell thickness on

  3. Cu-Ag sulfides as indicators of pre-porphyritic epithermal Au-Ag deposits in Northeastern Russia

    Science.gov (United States)

    Savva, N. E.; Sidorov, A. A.; Volkov, A. V.

    2016-08-01

    Au-Ag mineralization of the Olcha and Teploe epithermal deposits underwent thermal metamorphism due to porphyritic intrusions. The presence of Bi-bearing galena and matildite in the ores (Teploe), Cu-Te-bearing naumannite (Olcha), the occurrence of middle- and high-temperature facies of metasomatic rocks (epidote and actinolite), and temperature formation conditions are related, firstly, to the influence of granitoids on the ore process, which supplied not only Cu and Mo, but also Bi, Te, and, secondly, to the heating of host rocks containing pre-porphyritic epithermal Au-Ag mineralization. The abundance of Cu-Ag sulfides and Cu-acanthite resulted from the enrichment of later mineral phases in Cu and Ag under the substance redistribution with the formation of Ag-acanthite ores. The data considered in the paper are of practical importance for regional forecasting of metallogenic constructions, exploration, and evaluation of the epithermal Au-Ag deposits.

  4. Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle

    International Nuclear Information System (INIS)

    Bimetallic Gold–silver core–shell nanoparticles (Au@Ag NPs) were synthesized at room temperature, where gold nanoparticles (AuNPs) served as seeds for continuous deposition of silver atoms on its surface. The core–shell structure was examined by UV–vis spectroscopy, transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis. The catalytic activity of these nanoparticles toward biodiesel production from Sunflower oil through transesterification was studied. The confirmation for biofuel synthesis was performed using Fourier Transform Infra-Red (FTIR) spectroscopy. Fuel properties are determined by standard ASTM (American society for Testing and Materials) protocols. Our observations show that at certain catalyst concentration, temperature and reaction time, highest yield of biodiesel (86.9%) is attained. The fuel properties of the synthesized biofuel are at par with standard biofuel. Further, the catalyst showed sustained activity for 3 cycles of transesterification. - Highlights: • Gold–silver core–shell NPs were used for biofuel synthesis from sunflower oil. • At the optimized condition, biodiesel yield of 86.9% was achieved. • Fuel properties of the biofuel synthesized are at par with standard biofuel. • The catalyst showed sustained activity for 3 cycles of transesterification

  5. Towards Directional Colloidal Interactions

    NARCIS (Netherlands)

    Kamp, M.

    2015-01-01

    Colloids are particles with a size on the scale of microns in at least one dimension. The central theme of this thesis is the synthesis of model colloids with anisotropic interactions - often called `patchy' colloids, as well as the search for new ways to assemble such colloids. Methods to build non

  6. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  7. Stainless Steel to Titanium Bimetallic Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kaluzny, J. A. [Fermilab; Grimm, C. [Fermilab; Passarelli, D. [Fermilab

    2015-01-01

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels and is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.

  8. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes

    Science.gov (United States)

    Saunders, James A.; Mathur, Ryan; Kamenov, George D.; Shimizu, Toru; Brueseke, Matthew E.

    2016-01-01

    New Cu, S, and Pb isotope data provide evidence for a magmatic source of metal(loid)s and sulfur in epithermal Au-Ag deposits even though their ore-forming solutions are composed primarily of heated meteoric (ground) waters. The apparent isotopic discrepancy between ore metals and ore-forming solutions, and even between the ore and associated gangue minerals, indicates two different sources of epithermal ore-forming constituents: (1) a shallow geothermal system that not only provides the bulk of water for the ore-forming solutions but also major chemical constituents leached from host rocks (silica, aluminum, potassium, sodium, calcium) to make gangue minerals and (2) metals and metalloids (As, Te, Sb, etc.) and sulfur (±Se) derived from deeper magma bodies. Isotopic data are consistent with either vapor-phase transport of metal(loids) and sulfur and their subsequent absorption by shallow geothermal waters or formation of metallic (Au, Ag, Cu phases) nanoparticles at depth from magmatic fluids prior to encountering the geothermal system. The latter is most consistent with ore textures that indicate physical transport and aggregation of nanoparticles were significant ore-forming processes. The recognition that epithermal Au-Ag ores form in tectonic settings that produce magmas capable of releasing metal-rich fluids necessary to form these deposits can refine exploration strategies that previously often have focused on locating fossil geothermal systems.

  9. Characterizing the economic value of an epithermal Au-Ag ore with Laser Induced Breakdown Spectroscopy (LIBS)

    NARCIS (Netherlands)

    Dalm, M.; Buxton, M.W.N.

    2016-01-01

    LIBS was applied to 19 Au-Ag ore samples to investigate if this technique can be used to distinguish between economic and sub-economic ore either by direct detection of these elements or by using other elements as indicators. However, the Au and Ag grades of the samples are below the detection limit

  10. Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au-Ag nanoshell and its application for chemo-thermotherapy.

    Science.gov (United States)

    Jang, Hongje; Kim, Young-Kwan; Huh, Hyun; Min, Dal-Hee

    2014-01-28

    Galvanic replacement reaction is a useful method to prepare various hollow nanostructures. We developed fast and facile preparation of biocompatible and structurally robust hollow Au-Ag nanostructures by using dextran-coated Ag nanoparticles. Oxidation of the surface dextran alcohols was enabled by catalytic activity of the core Au-Ag nanostructure, introducing carbonyl groups that are useful for further bioconjugation. Subsequent doxorubicin (Dox) conjugation via Schiff base formation was achieved, giving high payload of approximately 35 000 Dox per particle. Near-infrared-mediated photothermal conversion showed high efficacy of the Dox-loaded Au-Ag nanoshell as a combinational chemo-thermotherapy to treat cancer cells.

  11. Synthesis and Characterization of Monometallic (Ag, Cu and Bimetallic Ag-Cu Particles for Antibacterial and Antifungal Applications

    Directory of Open Access Journals (Sweden)

    Marta Paszkiewicz

    2016-01-01

    Full Text Available In this paper, the experimental studies are concerned with the effect of the synthesis parameters on the formation of monometallic Ag and Cu nanoparticles (NPs. We consider the synthesis strategies verification for the bimetallic core-shell and alloy particles preparation. It was successfully obtained by chemical reduction method. The obtained colloidal solution is characterized by the transmission electron microscopy (TEM with energy-dispersive X-ray spectroscopy (EDX data, UV-Vis spectra, particle size distribution, and zeta potential. This work presents a comprehensive overview of experimental studies of the most stable colloidal solutions to impregnate fabrics that will exhibit a bactericidal and fungicidal activity against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  12. Bimetallic redox synergy in oxidative palladium catalysis.

    Science.gov (United States)

    Powers, David C; Ritter, Tobias

    2012-06-19

    Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd

  13. Colloid Transport and Retention

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2012-01-01

    different colloidal materials and their applications in chemistry, physics, biological, medical sciences and environment. Graduate students, academic and industrial researchers and medical professionals will discover recently developed colloidal materials and their applications in many areas of human...

  14. Analysis of Manufacturing Bimetallic Tubes by the Cold Drawing Process

    Directory of Open Access Journals (Sweden)

    Halaczek D.

    2016-03-01

    Full Text Available Drawing processes apply to obtain the bimetallic tubes from the different metals and alloys, combined in the solid state, which significantly affects the specificity of this process. The manufacturing of bimetallic tubes by drawing process depends on many factors which include: preparation of the surface of materials joined in the solid state, the geometric parameters of the working tool, technological parameters of the drawing process (drawing speed, type of lubricant, the use of back pull etc.. Generally, the cold drawing process of producing the bimetallic tubes refers to metals which have high ductility (copper, aluminum, etc.. The tube sinking (tube drawing without a mandrel of bimetallic tubes together with joining them at the interface of the two metal in the solid-state is applied for tubes of the diameter range between 6 to 20 mm and based on of the reducing the diameter of the tube. However, a slight increase of wall thickness ca. 0.05 ÷ 0.10 mm can appear, which is not dangerous phenomenon in case of producing the bimetallic tubes by joining in the solid-state. The aim of the research was to investigate the technology of tubes drawing process from non-ferrous metal, drawing process of bimetallic tubes and the production of bimetallic tubes in layers composition: cooper Cu-ETP - brass CuZn37 and CuZn37 brass - copper Cu-ETP in the tube sinking process. The research program included: production of bimetallic tubes with a different composition (Cu- ETP-CuZn37 and CuZn37-Cu-ETP and a different percentage of the cross-section components; analysis of changes of tube wall thickness and the layer composition of the bimetallic tube, based on measurements on the workshop microscope; analysis of the material flow in the process of the bimetallic tubes production based on the measurements results of a profilograph CP-200.

  15. Colloidal Plasmas : Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    C B Dwivedi

    2000-11-01

    Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic composition. The distinction lies in the phase distribution of the impurity-ion species. The ability to tailor the electrostatic interactions between these colloidal particles provides a fertile ground for scientists to investigate the fundamental aspects of the Coulomb phase transition behavior. The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various acoustic modes, which are likely to exist in colloidal plasmas as well as in normal multi-ion species plasmas. Introductory ideas about the proposed physical models for the Coulomb phase transition in colloidal plasma will also be discussed.

  16. InSitu Plane-View and Cross-Sectional Transmission Electron Microscopy of Fractal Formation in Au/a-Ge Bilayer Films

    Institute of Scientific and Technical Information of China (English)

    张庶元; 潘登余; 吴自勤

    2002-01-01

    Fractal crystallization in Au/a-Ge bilayer films has been studied by in situ plane-view and cross-sectional transmission electron microscopy. The experimental evidence suggests that the fractal crystallization is controlled by both diffusion and reaction processes. The growth kinetics analysis indicates that both diffusion-limited aggregation and random successive nucleation mechanisms play an important role in fractal crystallization in Au/a-Ge bilayer films.

  17. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    OpenAIRE

    Fei Wang; Pei Liu; Lin Sun; Cuncheng Li; Valery. A. Petrenko; Aihua Liu

    2014-01-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stab...

  18. Tunable Au-Ag nanobowl arrays for size-selective plasmonic biosensing.

    Science.gov (United States)

    Jana, Debrina; Lehnhoff, Emily; Bruzas, Ian; Robinson, Jendai; Lum, William; Sagle, Laura

    2016-08-01

    Selectivity is often a major obstacle for localized surface plasmon resonance-based biosensing in complex biological solutions. An additional degree of selectivity can be achieved through the incorporation of shape complementarity on the nanoparticle surface. Here, we report the versatile fabrication of substrate-bound Au-Ag nanobowl arrays through the galvanic ion replacement of silver nanodisk arrays. Both localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) were carried out to detect the binding of analytes of varying size to the nanobowl arrays. Large increases in the LSPR and SERS response were measured for analytes that were small enough to enter the nanobowls, compared to those too large to come into contact with the interior of the nanobowls. This size-selective sensing should prove useful in both size determination and differentiation of large analytes in biological solutions, such as viruses, fungi, and bacterial cells.

  19. Microfluidic colloid filtration

    Science.gov (United States)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” - often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  20. BIMETALLIC LITHIUM BOROHYDRIDES TOWARD REVERSIBLE HYDROGEN STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Au, M.

    2010-10-21

    Borohydrides such as LiBH{sub 4} have been studied as candidates for hydrogen storage because of their high hydrogen contents (18.4 wt% for LiBH{sub 4}). Limited success has been made in reducing the dehydrogenation temperature by adding reactants such as metals, metal oxides and metal halides. However, full rehydrogenation has not been realized because of multi-step decomposition processes and the stable intermediate species produced. It is suggested that adding second cation in LiBH{sub 4} may reduce the binding energy of B-H. The second cation may also provide the pathway for full rehydrogenation. In this work, several bimetallic borohydrides were synthesized using wet chemistry, high pressure reactive ball milling and sintering processes. The investigation found that the thermodynamic stability was reduced, but the full rehydrogenation is still a challenge. Although our experiments show the partial reversibility of the bimetallic borohydrides, it was not sustainable during dehydriding-rehydriding cycles because of the accumulation of hydrogen inert species.

  1. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    Science.gov (United States)

    Xu, Qi; Liu, Fang; Liu, Yuxiang; Cui, Kaiyu; Feng, Xue; Zhang, Wei; Huang, Yidong

    2013-07-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The power conversion efficiency (PCE) of DSCs is enhanced by 16% from 5.26% to 6.09% by incorporating 2.38 wt% Au-Ag alloy popcorn NPs. Moreover, by adding a scattering layer on the exterior of the counter electrode, the popcorn NPs demonstrate an even stronger ability to increase the PCE by 32% from 5.94% to 7.85%, which results from the more efficient excitation of the LSP mode on the popcorn NPs.

  2. Fluid inclusion chemistry of adularia-sericite epithermal Au-Ag deposits of the southern Hauraki Goldfield, New Zealand

    Science.gov (United States)

    Simpson, Mark P.; Strmic Palinkas, Sabina; Mauk, Jeffrey L.; Bodnar, Robert J.

    2015-01-01

    Microthermometry, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and Raman spectroscopy have been used to determine the temperature, apparent salinity, and composition of individual fluid inclusions in adularia-sericite Au-Ag epithermal veins from the Karangahake, Martha, Favona, and Waitekauri deposits, southern Hauraki goldfield, New Zealand. Quartz veins contain colloform to crustiform bands that alternate with coarse-grained quartz and amethyst. The ore mineralization occurs only in colloform to crustiform bands.

  3. Broadband light absorption enhancement in dye-sensitized solar cells with Au-Ag alloy popcorn nanoparticles

    OpenAIRE

    Qi Xu; Fang Liu; Yuxiang Liu; Kaiyu Cui; Xue Feng; , Wei Zhang; Yidong Huang

    2013-01-01

    In this paper, we present an investigation on the use of Au-Ag alloy popcorn-shaped nanoparticles (NPs) to realise the broadband optical absorption enhancement of dye-sensitized solar cells (DSCs). Both simulation and experimental results indicate that compared with regular plasmonic NPs, such as nano-spheres, irregular popcorn-shaped alloy NPs exhibit absorption enhancement over a broad wavelength range due to the excitation of localized surface plasmons (LSPs) at different wavelengths. The ...

  4. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-05-01

    Full Text Available In this study, the nanosphere lithography (NSL method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz and 1.68 (SF5 glass, the nanoparticle arrays would have better refractive index sensitivity (RIS and figure of merit (FOM. Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  5. Modeling the melting temperature of nanoscaled bimetallic alloys.

    Science.gov (United States)

    Li, Ming; Zhu, Tian-Shu

    2016-06-22

    The effect of size, composition and dimension on the melting temperature of nanoscaled bimetallic alloys was investigated by considering the interatomic interaction. The established thermodynamics model without any arbitrarily adjustable parameters can be used to predict the melting temperature of nanoscaled bimetallic alloys. It is found that, the melting temperature and interatomic interaction of nanoscaled bimetallic alloys decrease with the decrease in size and the increasing composition of the lower surface energy metal. Moreover, for the nanoscaled bimetallic alloys with the same size and composition, the dependence of the melting temperature on the dimension can be sequenced as follows: nanoparticles > nanowires > thin films. The accuracy of the developed model is verified by the recent experimental and computer simulation results.

  6. A photoactive bimetallic framework for direct aminoformylation of nitroarenes

    Data.gov (United States)

    U.S. Environmental Protection Agency — A bimetallic catalyst, AgPd@g-C3N4, synthesized by reducing silver and palladium salts over graphitic carbon nitride (g-C3N4), enables the concerted reductive...

  7. Catalytic activity of nanostructured Au: Scale effects versus bimetallic/bifunctional effects in low-temperature CO oxidation on nanoporous Au

    Directory of Open Access Journals (Sweden)

    Lu-Cun Wang

    2013-02-01

    Full Text Available The catalytic properties of nanostructured Au and their physical origin were investigated by using the low-temperature CO oxidation as a test reaction. In order to distinguish between structural effects (structure–activity correlations and bimetallic/bifunctional effects, unsupported nanoporous gold (NPG samples prepared from different Au alloys (AuAg, AuCu by selective leaching of a less noble metal (Ag, Cu were employed, whose structure (surface area, ligament size as well as their residual amount of the second metal were systematically varied by applying different potentials for dealloying. The structural and chemical properties before and after 1000 min reaction were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS. The catalytic behavior was evaluated by kinetic measurements in a conventional microreactor and by dynamic measurements in a temporal analysis of products (TAP reactor. The data reveal a clear influence of the surface contents of residual Ag and Cu species on both O2 activation and catalytic activity, while correlations between activity and structural parameters such as surface area or ligament/crystallite size are less evident. Consequences for the mechanistic understanding and the role of the nanostructure in these NPG catalysts are discussed.

  8. UZ Colloid Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  9. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  10. Theoretical and experimental aspects of the bimetallic reinforcement bars steel - steel resistant to corrosion rolling process

    Directory of Open Access Journals (Sweden)

    S. Sawicki

    2010-11-01

    Full Text Available Purpose: Bimetallic bars which possess higher corrosion resistance and mechanical properties, it is the new kind of bimetallic bars, which are better than standard bars. The bimetallic bars are more often applied in concrete construction.Design/methodology/approach: The simulations of the bar rolling were carried out using the Forge2007® commercial program.Findings: The use of non-corrosive steel on plating layer assures receipt on a high durability and esthetics bimetallic bars.Practical implications: Bimetallic bars are chiefly used in the building industry at production of concrete constructions, and as working elements in bridge building in aggressive environment.Originality/value: Production of bimetallic bars is very difficult. One from many problems during production bimetallic bars is assurance good strength of bimetallic layer bond.

  11. Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction.

    Science.gov (United States)

    Lim, Jinkyu; Yang, Sungeun; Kim, Chanyeon; Roh, Chi-Woo; Kwon, Yongwoo; Kim, Yong-Tae; Lee, Hyunjoo

    2016-04-25

    Shaped Ir-Ni bimetallic nanoparticles were synthesized and used for electrocatalytic oxygen evolution reaction (OER). The obtained bimetallic nanoparticles showed significantly enhanced Ir mass activity and durability compared with Ir nanoparticles. PMID:27034092

  12. Interface colloidal robotic manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  13. Ammonia Decomposition over Bimetallic Nitrides Supported on γ-Al2O3

    Institute of Scientific and Technical Information of China (English)

    Chun Shan LU; Xiao Nian LI; Yi Feng ZHU; Hua Zhang LIU; Chun Hui ZHOU

    2004-01-01

    A series of monometallic nitrides and bimetallic nitrides were prepared by temperature-programmed reaction with NH3. The effects of Co, Ni and Fe additives and the synergic action between Fe, Co, Ni and Mo on the ammonia decomposition activity were investigated. TPR-MS, XRD were also carried out to obtain better insight into the structure of the bimetallic nitride. The results of ammonia decomposition activity show that bimetallic nitrides are more active than monometallic nitrides or bimetallic oxides.

  14. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    Mott Derrick

    2006-01-01

    Full Text Available AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  15. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    Science.gov (United States)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  16. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  17. Lock and key colloids.

    Science.gov (United States)

    Sacanna, S; Irvine, W T M; Chaikin, P M; Pine, D J

    2010-03-25

    New functional materials can in principle be created using colloids that self-assemble into a desired structure by means of a programmable recognition and binding scheme. This idea has been explored by attaching 'programmed' DNA strands to nanometre- and micrometre- sized particles and then using DNA hybridization to direct the placement of the particles in the final assembly. Here we demonstrate an alternative recognition mechanism for directing the assembly of composite structures, based on particles with complementary shapes. Our system, which uses Fischer's lock-and-key principle, employs colloidal spheres as keys and monodisperse colloidal particles with a spherical cavity as locks that bind spontaneously and reversibly via the depletion interaction. The lock-and-key binding is specific because it is controlled by how closely the size of a spherical colloidal key particle matches the radius of the spherical cavity of the lock particle. The strength of the binding can be further tuned by adjusting the solution composition or temperature. The composite assemblies have the unique feature of having flexible bonds, allowing us to produce flexible dimeric, trimeric and tetrameric colloidal molecules as well as more complex colloidal polymers. We expect that this lock-and-key recognition mechanism will find wider use as a means of programming and directing colloidal self-assembly. PMID:20336142

  18. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  19. Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications

    Science.gov (United States)

    Xu, Yong; Chen, Lei; Wang, Xuchun; Yao, Weitang; Zhang, Qiao

    2015-06-01

    This Review article provides a report on progress in the synthesis, properties and catalytic applications of noble metal based composite nanomaterials. We begin with a brief discussion on the categories of various composite materials. We then present some important colloidal synthetic approaches to the composite nanostructures; here, major attention has been paid to bimetallic nanoparticles. We also introduce some important physiochemical properties that are beneficial from composite nanomaterials. Finally, we highlight the catalytic applications of such composite nanoparticles and conclude with remarks on prospective future directions.

  20. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.

  1. Bimetallic layered castings alloy steel – carbon cast steel

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2011-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast processso-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic carbon cast steel, whereas working part (layer is plate of austenitic alloy steel sort X10CrNi 18-8. The ratio of thickness between bearing and working part is 8:1. The quality of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  2. Examples of material solutions in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    S. Tenerowicz

    2011-07-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. pearlitic grey cast iron, whereas working part (layer is depending on accepted variant plates of alloy steels sort X6Cr13, X12Cr13, X10CrNi18-8 and X2CrNiMoN22-5-3. The ratio of thickness between bearing and working part is 8:1. The verification of the bimetallic layered castings was evaluated on the basis of ultrasonic NDT (non-destructive testing, structure and macro- and microhardness researches.

  3. Spin waves in antiferromagnetically coupled bimetallic oxalates.

    Science.gov (United States)

    Reis, Peter L; Fishman, Randy S

    2009-01-01

    Bimetallic oxalates are molecule-based magnets with transition-metal ions M(II) and M(')(III) arranged on an open honeycomb lattice. Performing a Holstein-Primakoff expansion, we obtain the spin-wave spectrum of antiferromagnetically coupled bimetallic oxalates as a function of the crystal-field angular momentum L(2) and L(3) on the M(II) and M(')(III) sites. Our results are applied to the Fe(II)Mn(III), Ni(II)Mn(III) and V(II)V(III) bimetallic oxalates, where the spin-wave gap varies from 0 meV for quenched angular momentum to as high as 15 meV. The presence or absence of magnetic compensation appears to have no effect on the spin-wave gap. PMID:21817242

  4. Confocal microscopy of colloids

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, V; Semwogerere, D; Weeks, Eric R [Department of Physics, Emory University, Atlanta, GA 30322 (United States)

    2007-03-21

    Colloids have increasingly been used to characterize or mimic many aspects of atomic and molecular systems. With confocal microscopy these colloidal particles can be tracked spatially in three dimensions with great precision over large time scales. This review discusses equilibrium phases such as crystals and liquids, and non-equilibrium phases such as glasses and gels. The phases that form depend strongly on the type of particle interaction that dominates. Hard-sphere-like colloids are the simplest, and interactions such as the attractive depletion force and electrostatic repulsion result in more non-trivial phases which can better model molecular materials. Furthermore, shearing or otherwise externally forcing these colloids while under microscopic observation helps connect the microscopic particle dynamics to the macroscopic flow behaviour. Finally, directions of future research in this field are discussed. (topical review)

  5. Characterization measurements of Ti-SS bimetallic transition joint samples

    International Nuclear Information System (INIS)

    A small set of bimetallic tubes has been investigated for the purpose to determine characteristics of samples at different conditions of tests for more statistics. Nine bimetallic samples have been manufactured at the Russian Federal Nuclear Center - VNIIEF (Sarov, Russia) using explosion technology for welding titanium and stainless steel tubes. During the tests eight samples have shown an excellent behaviour. This result is very good and we believe that these samples can be used for the construction of the cavity vessels. A preliminary measurement on the residual magnetic moment around junction line between the two materials has been carried out

  6. Localized surface plasmon resonance-based hybrid Au-Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B

    Science.gov (United States)

    Zhu, Shaoli; Du, ChunLei; Fu, Yongqi

    2009-09-01

    A triangular hybrid Au-Ag nanoparticles array was proposed for the purpose of biosensing in this paper. Constructing the hybrid nanoparticles, an Au thin film is capped on the Ag nanoparticles which are attached on glass substrate. The hybrid nanoparticles array was designed by means of finite-difference and time-domain (FDTD) algorithm-based computational numerical calculation and optimization. Sensitivity of refractive index of the hybrid nanoparticles array was obtained by the computational calculation and experimental detection. Moreover, the hybrid nanoparticles array can prevent oxidation of the pure Ag nanoparticles from atmosphere environment because the Au protective layer was deposited on top of the Ag nanoparticles so as to isolate the Ag particles from the atmosphere. We presented a novel surface covalent link method between the localized surface plasmon resonance (LSPR) effect-based biosensors with hybrid nanoparticles array and the detected target molecules. The generated surface plasmon wave from the array carries the biological interaction message into the corresponding spectra. Staphylococcus aureus enterotoxin B (SEB), a small protein toxin was directly detected at nanogramme per milliliter level using the triangular hybrid Au-Ag nanoparticles. Hence one more option for the SEB detection is provided by this way.

  7. Hydroquinone-assisted synthesis of branched au-ag nanoparticles with polydopamine coating as highly efficient photothermal agents.

    Science.gov (United States)

    Li, Jing; Wang, Wenjing; Zhao, Liang; Rong, Li; Lan, Shijie; Sun, Hongchen; Zhang, Hao; Yang, Bai

    2015-06-01

    Despite the success of galvanic replacement in preparing hollow nanostructures with diversified morphologies via the replacement reaction between sacrificial metal nanoparticles (NPs) seeds and less active metal ions, limited advances are made for producing branched alloy nanostructures. In this paper, we report an extended galvanic replacement for preparing branched Au-Ag NPs with Au-rich core and Ag branches using hydroquinone (HQ) as the reductant. In the presence of HQ, the preformed Ag seeds are replaceable by Au and, in turn, supply the growth of Ag branches. By altering the feed ratio of Ag seeds, HAuCl4, and HQ, the size and morphology of the NPs are tunable. Accordingly, the surface plasmon resonance absorption is tuned to near-infrared (NIR) region, making the branched NPs as potential materials in photothermal therapy. The branched NPs are further coated with polydopamine (PDA) shell via dopamine polymerization at room temperature. In comparison with bare NPs, PDA-coated branched Au-Ag (Au-Ag@PDA) NPs exhibit improved stability, biocompatibility, and photothermal performance. In vitro experiments indicate that the branched Au-Ag@PDA NPs are competitive agents for photothermal ablation of cancer cells.

  8. Applicability of near-infrared hyperspectral imagery (NIR-HI) for sensor based sorting of an epithermal Au-Ag ore

    NARCIS (Netherlands)

    Dalm, M.; Buxton, M.W.N.; Van Ruitenbeek, F.J.A.

    2015-01-01

    In the presented study test work was performed with near-infrared hyperspectral imagery (NIR-HI) on 36 ore samples from a South-American epithermal Au-Ag mine. The aim of the test work was to investigate if NIR-HI provides information about the alteration mineralogy of samples that can be used to pr

  9. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...

  10. New bimetallic EMF cell shows promise in direct energy conversion

    Science.gov (United States)

    Hesson, J. C.; Shimotake, H.

    1968-01-01

    Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.

  11. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    Science.gov (United States)

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  12. Anisotropic Model Colloids

    Science.gov (United States)

    van Kats, C. M.

    2008-10-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with

  13. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    OpenAIRE

    Zhen Yin; Yining Zhang; Kai Chen; Jing Li; Wenjing Li; Pei Tang; Huabo Zhao; Qingjun Zhu; Xinhe Bao; Ding Ma

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the s...

  14. Viscosity of colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.G.D. [Rockefeller Univ., New York, NY (United States); Schepper, I.M. de [Delft Univ. of Technology (Netherlands)

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  15. Liquid crystal colloids

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available This special issue of "Condensed Matter Physics" focuses on the most recent developments in the study of a fascinating soft matter system, representing colloidal particles in a liquid crystalline environment. Furthermore, some articles address pioneering steps in the discovery of liquid crystals going back to 1861 paper by Julius Planer.

  16. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    Science.gov (United States)

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  17. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-04-28

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  18. Bimetallic Wiregauze Supported Pt-Ru Nanocatalysts for Hydrogen Mitigation.

    Science.gov (United States)

    Sanap, Kiran K; Varma, S; Waghmode, S B; Sharma, P; Manoj, N; Vatsa, R K; Bharadwaj, S R

    2015-05-01

    Passive autocatalytic recombiner (PAR) is one of the most suitable devices for mitigation of hydrogen, generated in nuclear power plant under accidental conditions. For this purpose we report development of stainless steel wire gauze supported Pt-Ru nanoparticles as catalysts. Simultaneous electroless deposition has been employed for the synthesis of the catalysts. Pt-Ru based bimetallic catalysts were characterized for their rate of coating kinetics, noble metal loading, phase purity by XRD and surface morphology by SEM, TEM and elemental analysis by SIMS. Developed catalysts were found to be active for efficient recombination of hydrogen and oxygen in air as well as in presence of various prospective poisons like CO2, CH4, CO and relative humidity. Pt-Ru based bimetallic catalyst with 0.9% loading was found to be active for CO poisoning up to 400 ppm of CO. PMID:26504972

  19. Nanosegregated bimetallic oxide anode catalyst for proton exchange membrane electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Danilovic, Nemanja; Kang, Yijin; Markovic, Nenad; Stamenkovic, Vojislav; Myers, Deborah J.; Subbaraman, Ram

    2016-08-23

    A surface segregated bimetallic composition of the formula Ru.sub.1-xIr.sub.x wherein 0.1.ltoreq.x.ltoreq.0.75, wherein a surface of the material has an Ir concentration that is greater than an Ir concentration of the material as a whole is provided. The surface segregated material may be produced by a method including heating a bimetallic composition of the formula Ru.sub.1-xIr.sub.x, wherein 0.1.ltoreq.x.ltoreq.0.75, at a first temperature in a reducing environment, and heating the composition at a second temperature in an oxidizing environment. The surface segregated material may be utilized in electrochemical devices.

  20. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  1. Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation

    OpenAIRE

    Di Vece, M; Bals, S.; Verbeeck, J.; Lievens, P.; van Tendeloo, G.

    2009-01-01

    Changes in the size distribution and composition of bimetallic Pd-Au nanoclusters have been observed after hydrogen exposure. This effect is caused by hydrogen-induced Ostwald ripening whereby the hydrogen reduces the binding energy of the cluster atoms leading to their detachment from the cluster. The composition changes due to a difference in mobility of the detached palladium and gold atoms on the surface. Fast palladium atoms contribute to the formation of larger nanoclusters, while the s...

  2. Thermoelastic stability of bimetallic shallow shells of revolution

    OpenAIRE

    Batista, Milan; Kosel, Franc

    2015-01-01

    This article considers the thermoelastic stability of bimetallic shallow shells of revolution. Basic equations are derived from Reissner's non-linear theory of shells by assuming that deformations and rotations are small and that materials are linear elastic. The equations are further specialized for the case of a closed spherical cup. For this case the perturbated initial state is considered and it is shown that only in the cases when the cup edge is free or simply supported buckling under h...

  3. Colloidal Double Quantum Dots.

    Science.gov (United States)

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  4. Bimetallic catalysts for upgrading of biomass to fuels and chemicals.

    Science.gov (United States)

    Alonso, David Martin; Wettstein, Stephanie G; Dumesic, James A

    2012-12-21

    Research interest in biomass conversion to fuels and chemicals has increased significantly in the last decade as the necessity for a renewable source of carbon has become more evident. Accordingly, many different reactions and processes to convert biomass into high-value products and fuels have been proposed in the literature. Special attention has been given to the conversion of lignocellulosic biomass, which does not compete with food sources and is widely available as a low cost feedstock. In this review, we start with a brief introduction on lignocellulose and the different chemical structures of its components: cellulose, hemicellulose, and lignin. These three components allow for the production of different chemicals after fractionation. After a brief overview of the main reactions involved in biomass conversion, we focus on those where bimetallic catalysts are playing an important role. Although the reactions are similar for cellulose and hemicellulose, which contain C(6) and C(5) sugars, respectively, different products are obtained, and therefore, they have been reviewed separately. The third major fraction of lignocellulose that we address is lignin, which has significant challenges to overcome, as its structure makes catalytic processing more challenging. Bimetallic catalysts offer the possibility of enabling lignocellulosic processing to become a larger part of the biofuels and renewable chemical industry. This review summarizes recent results published in the literature for biomass upgrading reactions using bimetallic catalysts. PMID:22872312

  5. Improvements in NOx reduction by carbon using bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Illan-Gomez, M.J.; Brandan, S.; Salinas-Martinez de Lecea, C.; Linares-Solano, A. [Universidad de Alicante, Alicante (Spain). Departamento de Quimica Inorganica

    2001-11-30

    A catalysis of the C-NOx reaction has been studied to optimize the composition of the catalysts in order to decrease the carbon consumption by oxygen. Both the metal content and the composition of the catalysts have been investigated. The activity of bimetallic (KNi, NiCo and NiCu) catalysts for NOx reduction by carbon has been studied using both isothermal reactions at 300{sup o}C and temperature programmed reaction up to 500{sup o}C. It has been found that the experimental variables (i.e. amount of catalysts and nature of the bimetallic catalysts) determine the selectivity against carbon combustion by oxygen. Thus, it has been observed that the amount of catalyst greatly affects the C-O{sub 2} reaction but only lightly the C-NOx reaction and, consequently, modifies the selectivity of the catalyst for NOx reduction. Among the bimetallic catalysts tested, NiCu catalyst presents the best performance, at a temperature as low as 250{sup o}C, a high de-NOx activity and a high NOx selectivity due to a low carbon burn-off, with the additional advantage of the absence of N{sub 2}O and CO in the reaction products. Thus, the results obtained in this study show, in comparison with our previous results, that better selectivities are achieved. 20 refs., 3 figs., 2 tabs.

  6. Synthesis by Microwaves of Bimetallic Nano-Rhodium-Palladium

    Directory of Open Access Journals (Sweden)

    M. Ugalde

    2013-01-01

    Full Text Available An improved acrylamide sol-gel technique using a microwave oven in order to synthesize bimetallic Rh-Pd particles is reported and discussed. The synthesis of Pd and Rh nanoparticles was carried out separately. The polymerization to form the gel of both Rh and Pd was carried out at 80°C under constant agitations. The method chosen to prepare the Rh and Pd xerogels involved the decomposition of both gels. The process begins by steadily increasing the temperature of the gel inside a microwave oven (from 80°C to 170°C. In order to eliminate the by-products generated during the sol-gel reaction, a heat treatment at a temperature of 1000°C for 2 h in inert atmosphere was carried out. After the heat treatment, the particle size increased from 50 nm to 200 nm, producing the bimetallic Rh-Pd clusters. It can be concluded that the reported microwave-assisted, sol-gel method was able to obtain nano-bimetallic Rh-Pd particles with an average size of 75 nm.

  7. Exploring the benefits of electron tomography to characterize the precise morphology of core-shell Au@Ag nanoparticles and its implications on their plasmonic properties.

    Science.gov (United States)

    Hernández-Garrido, J C; Moreno, M S; Ducati, C; Pérez, L A; Midgley, P A; Coronado, E A

    2014-11-01

    In the design and engineering of functional core-shell nanostructures, material characterization at small length scales remains one of the major challenges. Here we show how electron tomography in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) mode can be applied successfully to perform nano-metrological characterization of Au@Ag core-shell nanostructures. This work stresses the benefits of HAADF-STEM tomography and its use as a novel and rigorous tool for understanding the physical-chemical properties of complex 3D core-shell nanostructures. The reconstructed Au@Ag core-shell architecture was used as an input for discrete dipole approximation (DDA)-based electrodynamics simulations of the optical properties of the nanostructures. The implications of localized surface plasmon spectroscopy as well as Raman-enhanced spectroscopy are analysed.

  8. Using Geomodelling and Geophysical Inversion to Evaluate the Geological Controls on Low-Sulphidation Epithermal Au-Ag mineralisation in the Drummond and Bowen Basins, Australia

    Science.gov (United States)

    Feltrin, Leonardo; Baker, Timothy; Oliver, Nick; Scott, Margaretha; Wilkinson, Kate; Fitzell, Melanie; Dixon, Owen; Bertelli, Martina

    2008-05-01

    We present a 3D geological model that integrates different datasets and incorporates geophysical inversion of airborne gravimetric and magnetic surveys of the northern part of the Drummond and Bowen basins. These basins are known for their endowment of low-sulphidation, epithermal Au-Ag mineralisation. The objective of this computer based reconstruction is to empirically evaluate the key controlling variables that contributed to the spatial localization of 147 Palaeozoic and Mesozoic shallow hydrothermal gold systems, found predominantly in veins and breccia hosted in basal volcanics and volcaniclastic intervals developed in a back-arc rift environment. The model provides a three-dimensional, regional scale (100,000 km2) perspective on the spatial associations between geology, structure, magmatism and known mineral occurrences, representing a 3D framework for precious-metals exploration. Results of 3D visualisation of geological and geophysical data suggest that magmatic intrusions, and correlative volcanic centres localized most of the major deposits and also controlled the arrangement of clusters of uneconomic Au-Ag occurrences. The empirical modelling supports a model for the genesis of low-sulphidation epithermal Au-Ag mineralisation that favours a strong spatial association with shallow felsic to intermediate magmatic intrusions, similarly to that proposed for high-sulphidation systems. Geophysical inversion estimates for the depth of magmatic bodies suggest also that they may have controlled the efficiency of the hydrothermal, mineralising systems-shallow intrusions tend to be associated with greater tonnages of Au-Ag and are spatially associated with the larger clusters of occurrences. However, the composition of magmatic intrusions (mafic, intermediate, felsic) may have been important in regulating the amount of available bisulphide in the volatile phase, exerting a control on Au grade/tonnage independent of the depth of emplacement of intrusions.

  9. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles

    Science.gov (United States)

    Kang, Fei; Hou, Xiangshu; Xu, Kun

    2015-10-01

    Glucose is a key energy substance in diverse biology and closely related to the life activities of the organism. To develop a simple and sensitive method for glucose detection is extremely urgent but still remains a key challenge. Herein, we report a colorimetric glucose sensor in a homogeneous system based on DNA-embedded core-shell Au@Ag nanoparticles. In this assay, a glucose substrate was first catalytically oxidized by glucose oxidase to produce H2O2 which would further oxidize and gradually etch the outer silver shell of Au@Ag nanoparticles. Afterwards, the solution color changed from yellow to red and the surface plasmon resonance (SPR) band of Au@Ag nanoparticles declined and red-shifted from 430 to 516 nm. Compared with previous silver-based glucose colorimetric detection strategies, the distinctive SPR band change is superior to the color variation, which is critical to the high sensitivity of this assay. Benefiting from the outstanding optical property, robust stability and well-dispersion of the core-shell Au@AgNPs hybrid, this colorimetric assay obtained a detection limit of glucose as low as 10 nM, which is at least a 10-fold improvement over other AgNPs-based procedures. Moreover, this optical biosensor was successfully employed to the determination of glucose in fetal bovine serum.

  10. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  11. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  12. Copper Based Bi-metallic Core Pin Using DMD: Industrial Evaluation

    Directory of Open Access Journals (Sweden)

    M. Khalid Imran

    2012-01-01

    Full Text Available Bi-metallic core pins were prepared and the performance was evaluated in a specially designed die that had the provision to investigate core pins under semi-industrial HPDC conditions. A comparison between bi-metallic core pin with that of tool steel revealed that bi-metallic core pin performed better in terms of soldering under HPDC environment. Due to slow cooling, die holding time needed to be increased in tool steel core pin to allow sufficient solidification of the casting part. The bi-metallic core pins also operated without any catastrophic failure in the clad which particularly substantiated the applicability of DMD deposited tool steel clad on copper alloy substrate to manufacture bi-metallic tooling.

  13. Formation of bimetallic nanoalloys by Au coating of size-selected Cu clusters

    International Nuclear Information System (INIS)

    Bimetallic clusters display new characteristics that could not be obtained by varying either the size of pure metallic systems or the composition of bulk bimetals alone. Coating of pre-deposited clusters by vapour deposition is a typical synthesis process of bimetallic clusters. Here, we have demonstrated that hierarchical, gold cluster-decorated copper clusters as well as both heterogeneous and homogeneous Cu–Au bimetallic clusters (4.6 to 10.7 nm) can be prepared by coating pre-deposited, size-selected Cu5000 (4.6 ± 0.2 nm) with Au evaporation at various temperatures. These bimetallic clusters were analyzed by aberration-corrected scanning transmission electron microscopy and associated electron energy loss spectroscopy. The results indicate that the growth of bimetallic clusters is controlled by a competition between nucleation and diffusion of the coating Au atoms.

  14. Cleave and capture chemistry illustrated through bimetallic-induced fragmentation of tetrahydrofuran

    Science.gov (United States)

    Mulvey, Robert E.; Blair, Victoria L.; Clegg, William; Kennedy, Alan R.; Klett, Jan; Russo, Luca

    2010-07-01

    The cleavage of ethers is commonly encountered in organometallic chemistry, although rarely studied in the context of new, emerging bimetallic reagents. Recently, it was reported that a bimetallic sodium-zinc base can deprotonate cyclic tetrahydrofuran under mild conditions without opening its heterocyclic (OC4) ring. In marked contrast to this synergic sedation, herein we show that switching to the more reactive sodium-magnesium or sodium-manganese bases promotes cleavage of at least six bonds in tetrahydrofuran, but uniquely the ring fragments are captured in separate crystalline complexes. Oxide fragments occupy guest positions in bimetallic, inverse crown ethers and C4 fragments ultimately appear in bimetallated butadiene molecules. These results demonstrate the special synergic reactivity that can be executed by bimetallic reagents, which include the ability to capture and control, and thereby study, reactive fragments from sensitive substrates.

  15. An in-depth understanding of the bimetallic effects and coked carbon species on an active bimetallic Ni(Co)/Al2O3 dry reforming catalyst.

    Science.gov (United States)

    Liao, Xin; Gerdts, Rihards; Parker, Stewart F; Chi, Lina; Zhao, Yongxiang; Hill, Martyn; Guo, Junqiu; Jones, Martin O; Jiang, Zheng

    2016-06-29

    Ni/Al2O3, Co/Al2O3 and bimetallic Ni(Co)/Al2O3 catalysts were prepared using an impregnation method and employed in CO2 dry reforming of methane under coking-favored conditions. The spent catalysts were carefully characterized using typical characterization technologies and inelastic neutron scattering spectroscopy. The bimetallic catalyst exhibited a superior activity and anti-coking performance compared to Ni/Al2O3, while the most resistant to coking behavior was Co/Al2O3. The enhanced activity of the Ni(Co)/Al2O3 bimetallic catalyst is attributed to the reduced particle size of metallic species and resistance to forming stable filamentous carbon. The overall carbon deposition on the spent bimetallic catalyst is comparable to that of the spent Ni/Al2O3 catalyst, whereas the carbon deposited on the bimetallic catalyst is mainly less-stable carbonaceous species as confirmed by SEM, TPO, Raman and INS characterization. This study provides an in depth understanding of alloy effects in catalysts, the chemical nature of coked carbon on spent Ni-based catalysts and, hopefully, inspires the creative design of a new bimetallic catalyst for dry reforming reactions.

  16. Study of Pd-Sn/Al{sub 2}O{sub 3} catalysts prepared by an oxide colloidal route; Etude de catalyseurs Pd-Sn/Al{sub 2}O{sub 3} prepares par voie colloidale oxyde

    Energy Technology Data Exchange (ETDEWEB)

    Verdier, St.

    2001-09-01

    The oxide colloidal route, developed in the laboratory for mono-metallic catalysts, consists in preparing a metallic oxide hydro-sol which leads to the supported catalyst after deposition onto a support and an activation stage. In this work, this method has been adapted to the preparation of alumina supported bimetallic Pd-Sn catalysts to determine its interest for the control of the properties of the bimetallic phase (size, composition and structure). In the preliminary study concerning tin oxide sols, SnO{sub 2} (size=2,3 nm) and Sn{sub 6}O{sub 4}(OH){sub 4} (size = 25 nm) nano-particles were synthesized by neutralization respectively for tin(IV) and tin(H). The control through the pH of the aggregation of the PdO and SnO{sub 2} particles revealed that increasing oxide solubility promotes integral re-dispersion of the oxide particles. To synthesize oxide bimetallic sols, three strategies were defined. Copolymerization (formation of a mixed oxide nano-sol by cross condensation of both metals) does not lead to a mixed oxide Pd-Sn phase. Surface precipitation (neutralization of the second metal in the presence of the first oxide sol) yields nano-particles of both oxides in close interaction. Adsorption (adsorption of the second metal onto the first oxide sol) significantly occurs when contacting tin with a basic PdO sol (hydrolytic adsorption). The characterization and the assessment of the catalytic properties (selective hydrogenation of buta-1,3-diene) of the catalysts prepared by deposition of oxide bimetallic sols showed that the oxide colloidal route allows the control of the properties of the supported bimetallic phase. Moreover, our results display that both Pd-Sn alloy formation and,aggregation of the metallic particles contribute to increase the selectivity for this reaction. (author)

  17. Polymers and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Schurtenberger, P. [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)

    1996-11-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  18. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles

    KAUST Repository

    Ding, Yong

    2010-09-08

    Using a two-step seed-mediated growth method, we synthesized bimetallic nanoparticles (NPs) having a gold octahedron core and a palladium epitaxial shell with controlled Pd-shell thickness. The mismatch-release mechanism between the Au core and Pd shell of the NPs was systematically investigated by high-resolution transmission electron microscopy. In the NPs coated with a single atomic layer of Pd, the strain between the surface Pd layer and the Au core is released by Shockley partial dislocations (SPDs) accompanied by the formation of stacking faults. For NPs coated with more Pd (>2 nm), the stacking faults still exist, but no SPDs are found. This may be due to the diffusion of Au atoms into the Pd shell layers to eliminate the SPDs. At the same time, a long-range ordered L11 AuPd alloy phase has been identified in the interface area, supporting the assumption of the diffusion of Au into Pd to release the interface mismatch. With increasing numbers of Pd shell layers, the shape of the Au-Pd NP changes, step by step, from truncated-octahedral to cubic. After the bimetallic NPs were annealed at 523 K for 10 min, the SPDs at the surface of the NPs coated with a single atomic layer of Pd disappeared due to diffusion of the Au atoms into the surface layer, while the stacking faults and the L11 Au-Pd alloyed structure remained. When the annealing temperature was increased to 800 K, electron diffraction patterns and diffraction contrast images revealed that the NPs became a uniform Au-Pd alloy, and most of the stacking faults disappeared as a result of the annealing. Even so, some clues still support the existence of the L11 phase, which suggests that the L11 phase is a stable, long-range ordered structure in Au-Pd bimetallic NPs. © 2010 American Chemical Society.

  19. Exploration of Nanotube Structure Selectivity Using Bimetallic Catalysts

    Science.gov (United States)

    Pfefferle, Lisa

    2007-10-01

    Achieving selectivity for nanotube chirality is one of the holy grails for single-walled carbon nanotube research. One approach we are following is based on the ability to engineer the size and state of the initiating metal particle to constrain the type of cap formed. The chirality/structure of a nanotube is controlled by carbon cap formation on the metal particle during the nucleation step. It has been proposed that varying the carbon-metal catalyst binding energy could help lead to structure selectivity. One reason theoretically proposed for the favoring of armchair nanotubes, for example, is the proximity of low energy binding locations for two carbon atoms. Thus blocking sites or perturbing the binding energy on adjacent sites could in theory affect the structure of the carbon cap formed in the nucleation step. Our goal is to demonstrate structure selectivity in the growth of single wall carbon nanotubes (SWNT) using a bimetallic catalyst. The catalyst used was a bimetallic CoCr-MCM 41 and the effect of different molecular ratios between the two metals on the SWNT diameter distribution was studied. We have found that by adding Cr to the Co-MCM 41 monometallic catalyst the diameter distribution shifted in a systematic manner correlated to the development of a bimetallic phase as characterized by X-Ray absorption spectroscopy (XAS). We have also found that the shift is accompanied by suppression of metallic SWNT, particularly those with diameter over 0.9 nm. We are also currently exploring the possibility of a further narrowing of the distribution by lowering the reaction temperatures.

  20. International workshop on colloids and colloid-facilitated transport of contaminants in soils and sediments

    International Nuclear Information System (INIS)

    The workshop was organized to review the present knowledge of colloid behavior and transport in porous media systems and the possibility of colloid-bound transport of contaminants, pesticide and nutrients in soil and groundwater. The four main topics at the workshop were 1) colloidal behavior and properties, 2) colloid mobilization and transport, 3) sorption onto colloids and facilitated transport of contaminants, and 4) modeling of colloidal and colloid-facilitated transport

  1. Controllable Catalysis with Nanoparticles: Bimetallic Alloy Systems and Surface Adsorbates

    KAUST Repository

    Chen, Tianyou

    2016-05-16

    Transition metal nanoparticles are privileged materials in catalysis due to their high specific surface areas and abundance of active catalytic sites. While many of these catalysts are quite useful, we are only beginning to understand the underlying catalytic mechanisms. Opening the “black box” of nanoparticle catalysis is essential to achieve the ultimate goal of catalysis by design. In this Perspective we highlight recent work addressing the topic of controlled catalysis with bimetallic alloy and “designer” adsorbate-stabilized metal nanoparticles.

  2. Enhanced plasmonic behavior of bimetallic (Ag-Au multilayered spheres

    Directory of Open Access Journals (Sweden)

    Pal Umapada

    2011-01-01

    Full Text Available Abstract In this article we study the plasmonic behavior of some stable, highly biocompatible bimetallic metal-dielectric-metal (MDM and double concentric nanoshell (DCN structures. By simply switching the material of the inner structure from Au to Ag, the intensity of their surface plasmon resonance could be increased in the optical transparency region of the human tissues up to 20 and 60 percent for the MDM and DCN, respectively, while the biocompatibility is retained. The obtained results indicate that these novel structures could be highly suitable for surface enhanced Raman scattering and photothermal cancer therapy.

  3. High pressure CO hydrogenation over bimetallic Pt-Co catalysts

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Medford, Andrew James; Studt, Felix;

    2014-01-01

    The potential of bimetallic Pt-Co catalysts for production of higher alcohols in high pressure CO hydrogenation has been assessed. Two catalysts (Pt3Co/SiO2 and PtCo/SiO2) were tested, and the existing literature on CO hydrogenation over Pt-Co catalysts was reviewed. It is found that the catalysts...... produce mainly methanol in the Pt-rich composition range andmainly hydrocarbons (and to a modest extent higher alcohols) in the Co-rich composition range. The transition between the two types of behavior occurs in a narrow composition range around a molar Pt:Co ratio of 1:1....

  4. 1D antiferromagnetism in spin‐alternating bimetallic chains

    OpenAIRE

    Coronado Miralles, Eugenio; Sapiña Navarro, Fernando; Drillon, M.; De Jongh, L.J.

    1990-01-01

    The magnetic and thermal properties of the ordered bimetallic chain CoNi(EDTA)⋅6H2O in the very low‐temperature range are reported. The magnetic behavior does not exhibit the characteristic features of 1D ferrimagnets, but a continuous decrease of χmT towards zero at absolute zero. This 1D antiferromagnetic behavior results from an accidental compensation between the moments located at the two sublattices. This behavior, as well as the specific‐heat results, are modeled on the basis of an Isi...

  5. Induced polarization imaging applied to exploration for low-sulfidation epithermal Au-Ag deposits, Seongsan mineralized district, South Korea

    Science.gov (United States)

    Han, Man-Ho; Shin, Seung Wook; Park, Samgyu; Cho, Seong-Jun; Kim, Jung-Ho

    2016-10-01

    The determination of mineralization boundaries during mineral exploration for undiscovered low-sulfidation epithermal Au-Ag deposits is a significant challenge because of the extensive survey areas required. Induced polarization (IP) imaging is an effective geophysical technique for the detection of sulfides or clay. Thus, this method is considered useful to determine the boundaries of subsurface mineralization and hydrothermal alteration associated with epithermal deposits. We used 2D and 3D IP imaging to define the silicification and mineralization boundaries of the Moisan deposit in the Seongsan mineralized district, which is geologically well-known. The boundaries of the silicification zone were defined by high resistivity values of 600 Ω-m, and those of the mineralization zone were defined by high global chargeability values of 3 mV V-1. The continuity of the high resistivity anomaly corresponded well to the silicification (quartz veins) exposed in outcrop. In addition, it is geologically reasonable that the chargeability anomaly, ⩾3 mV V-1, associated with the mineralization/hydrothermal alteration zone was concentrated at near-surface depths, and extensively surrounding the resistivity anomaly, ⩾600 Ω-m, associated with the silicification zone.

  6. An ab-initio study of silicon adsorption on metallic surfaces (Au/Ag): Novel perspective to explore chemical bonding

    Science.gov (United States)

    Chakraborty, S.; Ghaisas, S. V.; Majumder, C.

    2012-07-01

    We report a first-principle investigation of the structure and electronic properties of small Sin (n = 1-6,9) clusters deposited on the Au(111) and Ag(111) surfaces. The calculations were performed using a plane wave based pseudopotential method under the framework of density functional theory. The results reveal the preference of Si atom to be adsorbed on the h.c.p. site of the metal (111) surfaces with strong binding energy. We study monolayer (ML) deposition as well as the cluster deposition on both the surfaces. The clusters introduce interlayer forces in the adsorbate. Based on PDOS (projected density of states) analysis it is found that Si atoms acquire charges from the Au/Ag surface. The binding energies are consistent with the known cohesive energy of Ag and Au silicides. The planar Sin cluster deposition on metal surfaces show that Au provides an adjustable surface with relatively strong Au-Si interaction while Ag-Si relatively weak interaction leading to dimerization of Si. The strong bonding with the surface atoms is a result of p-d hybridization. Some of the 3-D clusters show shape distortions after deposition on metal surfaces. This leads to internal stresses after deposition. A statistical parameter is defined over PDOS. It helps to measure the state delocalization in energy. Implications of the Si-Metal interaction on the initial stages of growth are discussed.

  7. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Wang, Jianlong; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2016-10-01

    Most lateral PbSe quantum dot field effect transistors (QD FETs) show a low on current/off current (I on/I off) ratio in charge transport measurements. A new strategy to provide generally better performance is to design PbSe QD FETs with vertical architecture, in which the structure parameters can be tuned flexibly. Here, we fabricated a novel room-temperature operated vertical quantum dot field effect transistor with a channel of 580 nm, where self-assembled Au/Ag nanowires served as source transparent electrodes and PbSe quantum dots as active channels. Through investigating the electrical characterization, the ambipolar device exhibited excellent characteristics with a high I on/I off current ratio of about 1 × 10(5) and a low sub-threshold slope (0.26 V/decade) in the p-type regime. The all-solution processing vertical architecture provides a convenient way for low cost, large-area integration of the device. PMID:27578613

  8. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Wang, Jianlong; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2016-10-01

    Most lateral PbSe quantum dot field effect transistors (QD FETs) show a low on current/off current (I on/I off) ratio in charge transport measurements. A new strategy to provide generally better performance is to design PbSe QD FETs with vertical architecture, in which the structure parameters can be tuned flexibly. Here, we fabricated a novel room-temperature operated vertical quantum dot field effect transistor with a channel of 580 nm, where self-assembled Au/Ag nanowires served as source transparent electrodes and PbSe quantum dots as active channels. Through investigating the electrical characterization, the ambipolar device exhibited excellent characteristics with a high I on/I off current ratio of about 1 × 105 and a low sub-threshold slope (0.26 V/decade) in the p-type regime. The all-solution processing vertical architecture provides a convenient way for low cost, large-area integration of the device.

  9. Physical and Numerical Analysis of Extrusion Process for Production of Bimetallic Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Misiolek, W.Z.; Sikka, V.K.

    2006-08-10

    Bimetallic tubes are used for very specific applications where one of the two metals provides strength and the other provides specific properties such as aqueous corrosion and carburization, coking resistance, and special electrical and thermal properties. Bimetallic tubes have application in pulp and paper industry for heat-recovery boilers, in the chemical industry for ethylene production, and in the petrochemical industry for deep oil well explorations. Although bimetallic tubes have major applications in energy-intensive industry, they often are not used because of their cost and manufacturing sources in the United States. This project was intended to address both of these issues.

  10. Bimetallic Catalysts Containing Gold and Palladium for Environmentally Important Reactions

    Directory of Open Access Journals (Sweden)

    Ahmad Alshammari

    2016-07-01

    Full Text Available Supported bimetallic nanoparticles (SBN are extensively used as efficient redox catalysts. This kind of catalysis particularly using SBN has attracted immense research interest compared to their parent metals due to their unique physico-chemical properties. The primary objective of this contribution is to provide comprehensive overview about SBN and their application as promising catalysts. The present review contains four sections in total. Section 1 starts with a general introduction, recent progress, and brief summary of the application of SBN as promising catalysts for different applications. Section 2 reviews the preparation and characterization methods of SBN for a wide range of catalytic reactions. Section 3 concentrates on our own results related to the application of SBN in heterogeneous catalysis. In this section, the oxidation of cyclohexane to adipic acid (an eco-friendly and novel approach will be discussed. In addition, the application of bimetallic Pd catalysts for vapor phase toluene acetoxylation in a fixed bed reactor will also be highlighted. Acetoxylation of toluene to benzyl acetate is another green route to synthesize benzyl acetate in one step. Finally, Section 4 describes the summary of the main points and also presents an outlook on the application of SBN as promising catalysts for the production of valuable products.

  11. Liquid crystal boojum-colloids

    International Nuclear Information System (INIS)

    Colloidal particles dispersed in a liquid crystal (LC) lead to distortions of the director field. The distortions are responsible for long-range effective colloidal interactions whose asymptotic behaviour is well understood. The short-distance behaviour depends on the structure and dynamics of the topological defects nucleated near the colloidal particles and a full nonlinear theory is required to describe it. Spherical colloidal particles with strong planar degenerate anchoring nucleate a pair of antipodal surface topological defects, known as boojums. We use the Landau-de Gennes theory to resolve the mesoscopic structure of the boojum cores and to determine the pairwise colloidal interactions. We compare the results in three (3D) and two (2D) spatial dimensions for spherical and disc-like colloidal particles, respectively. The corresponding free energy functionals are minimized numerically using finite elements with adaptive meshes. Boojums are always point-like in 2D, but acquire a rather complex structure in 3D, which depends on the combination of the anchoring potential, the radius of the colloid, the temperature and the LC elastic anisotropy. We identify three types of defect cores in 3D that we call single, double and split-core boojums, and investigate the associated structural transitions. The split-core structure is favoured by low temperatures, strong anchoring and small twist to splay or bend ratios. For sufficiently strong anchoring potentials characterized by a well-defined uniaxial minimum, the split-core boojums are the only stable configuration. In the presence of two colloidal particles, we observe substantial re-arrangements of the inner defects in both 3D and 2D. These re-arrangements lead to qualitative changes in the force-distance profile when compared to the asymptotic quadrupole-quadrupole interaction. In line with the experimental results, the presence of the defects prevents coalescence of the colloidal particles in 2D, but not in 3D

  12. Colloids in Paints Colloids and Interface Science, Volume 6

    CERN Document Server

    Tadros, Tharwat F

    2011-01-01

    The first modern approach to relate fundamental research to the applied science of colloids, this series bridges academic research and practical applications, thus providing the information vital to both. Written by the very best scientists in their respective disciplines, this volume describes the role of colloids in paints, highlighting the importance of fundamental research in industrial applications.For surface, polymer and physicochemists, materials scientists, and chemical engineers.

  13. Are All Colloids Same? How to Select the Right Colloid?

    Directory of Open Access Journals (Sweden)

    Sukanya Mitra

    2009-01-01

    Full Text Available The administration of intravenous fluids is one of the most common and universal interventions in medicine. Colloids are an alternative to the frequently used crystalloids, with highly variable use depending on a myriad of clinical variables. A colloid is defined as a high molecular weight (MW substance that largely remains in the intravas-eular compartment, thereby generating an oncotic pressure. Colloids are considered to have a greater intravaseular persistence when compared to crystalloids. All colloids, however, are clearly not the same. Differences in the physi-cochemical properties, pharmacokinetics and safety profile exist amongst various colloids. This review explores the different types of colloids, with their properties and usefulness as well as adverse effects. While all the available colloids are reviewed briefly (e.g., albumin, gelatin, dextran with respect to their pharmacology, indications, advan-tages and disadvantages, particular emphasis is laid on the hydroxyethyl starches (HES because of their rising prominence. It is shown that HES differ widely in their physicochemical and pharmacokinetic properties, composition, usefulness, and especially in their adverse effect profiles. The third generation HES (tetrastarches, in particular, seem to offer a unique combination of safety and efficacy. Several issues related to this are discussed in detail. This review of the available clinical data demonstrates that HES should not be regarded as one homogenous group, and data for one product should not be automatically extrapolated to another. Thus, among the synthetic colloids, the tetrastarches appear to offer the best currently available compromise between efficacy, safety profile, and cost. They also appear to be the best suited for use in the intensive care setting. Finally, balanced (rather than saline-based HES solutions appear promising as a plasma-adapted volume replacement strategy and may further refine the ongoing quest of

  14. Active colloids in complex fluids

    CERN Document Server

    Patteson, Alison E; Arratia, Paulo E

    2016-01-01

    We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer induces time dependent, three dimensional fluid flows, that can modify the medium (fluid) rheological properties. This two-way, non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension proper...

  15. Resonant phenomena in colloidal crystals

    OpenAIRE

    Palberg, Thomas; Würth, Mathias; König, Peter; Simnacher, Erwin; Leiderer, Paul

    1992-01-01

    Colloidal crystals of completely deionized suspensions of latex speres are subjected to oscillatory and steady shear, as well as to homogeneous and inhomogeneous electric fields. Various resonant phenomena observed in such experiments are reported.

  16. Analysis of Al-Cu Bimetallic Bars Properties After Explosive Welding and Rolling in Modified Passes

    Directory of Open Access Journals (Sweden)

    Mróz S.

    2015-04-01

    Full Text Available The paper presents the results of the experimental tests of Al-Cu bimetallic bars rolling process in multi-radial modified passes. The bimetallic bars consist of aluminium core, grade 1050A and copper outer layer, grade M1E. The stocks were round bars with diameter 22 mm with a copper layer share of 15 and 30%. As a result of rolling in four passes, bars of a diameter of about 16.0 mm were obtained. A bimetallic stock was manufactured using an explosive welding method. The use of the designed arrangement of multi-radial modified stretching passes resulted in obtaining Al-Cu bimetallic bars with the required lateral dimensions, an uniform distribution of the cladding layer over the bar perimeter and high quality of shear strength between individual layers.

  17. Facile synthesis of Cu-Pd bimetallic multipods for application in cyclohexane oxidation

    Science.gov (United States)

    Zhang, Zhuo-Qun; Huang, Jianliu; Zhang, Lan; Sun, Mei; Wang, You-Cheng; Lin, Yue; Zeng, Jie

    2014-10-01

    The synergy between Cu and Pd makes Cu-Pd bimetallic nanocrystals interesting materials for investigation. The scarcity of shapes of Cu-Pd bimetallic nanocrystals motivated us to explore highly branched structures, which may promote a wide range of applications. In this communication, we report a facile synthesis of Cu-Pd bimetallic multipods (19.2 ± 1.2 nm), on branches of which some high-index facets were exposed. Modification of reaction parameters concerning capping agents and reductant led to the formation of other shapes, including sphere-like nanocrystals (SNCs). When loaded onto TiO2, the as-prepared Cu-Pd bimetallic multipods exhibited excellent catalytic activity for the oxidation of cyclohexane by hydrogen peroxide and higher selectivity towards cyclohexanone than monometallic catalysts and SNCs/TiO2.

  18. Microbially supported synthesis of catalytically active bimetallic Pd-Au nanoparticles

    DEFF Research Database (Denmark)

    Hosseinkhani, Baharak; Søbjerg, Lina Sveidal; Rotaru, Amelia-Elena;

    2012-01-01

    Bimetallic nanoparticles are considered the next generation of nanocatalysts with increased stability and catalytic activity. Bio-supported synthesis of monometallic nanoparticles has been proposed as an environmentally friendly alternative to the conventional chemical and physical protocols. In ...

  19. Re-shaping colloidal clusters

    Science.gov (United States)

    Kraft, Daniela

    2015-03-01

    Controlling the geometry and yield of anisotropic colloidal particles remains a challenge for hierarchical self-assembly. I will discuss a synthetic strategy for fabricating colloidal clusters by creating order in randomly aggregated polymer spheres using surface tension and geometrical constraints. The technique can be extended to a variety of charge-stabilized polymer spheres and offers control over the cluster size distribution. VENI grant from The Netherlands Organization for Scientific Research (NWO).

  20. Mechanical Failure in Colloidal Gels

    Science.gov (United States)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  1. Feedback control of colloidal transport

    OpenAIRE

    Gernert, R.; Loos, S. A. M.; Lichtner, K.; Klapp, S. H. L.

    2015-01-01

    We review recent work on feedback control of one-dimensional colloidal systems, both with instantaneous feedback and with time delay. The feedback schemes are based on measurement of the average particle position, a natural control target for an ensemble of colloidal particles, and the systems are investigated via the Fokker-Planck equation for overdamped Brownian particles. Topics include the reversal of current and the emergence of current oscillations, transport in ratchet systems, and the...

  2. Magnetic silica colloids for catalysis

    OpenAIRE

    Claesson, E.M.; Mehendale, N.C.; Klein Gebbink, R. J. M.; van Koten, G; Philipse, A. P.

    2007-01-01

    Monodisperse magnetizable colloidal silica particles in a stable dispersion have been functionalized with a homogeneous catalyst: a PCP–pincer Pd-complex. In a proof-of-principle experiment we demonstrate the catalytic activity of the colloids in a C–C bond formation reaction. Advantages of the magnetic silica carriers are the large surface-to-volume ratio and the easy recovery by magnetic separation. After magnetic separation, the catalyst-loaded particles are readily redispersed for further...

  3. STAR-POLYMER -- COLLOID MIXTURES

    Directory of Open Access Journals (Sweden)

    J.Dzubiella

    2002-01-01

    Full Text Available Recent results in theory and simulation of star-polymer--colloid mixtures are reviewed. We present the effective interaction between hard, colloidal particles and star polymers in a good solvent derived by monomer-resolved Molecular Dynamics simulations and theoretical arguments. The relevant parameters are the size ratio q between the stars and the colloids, as well as the number of polymeric arms f (functionality attached to the common center of the star. By covering a wide range of q's ranging from zero (star against a flat wall up to about 0.5, we establish analytical forms for the star-colloid interaction which are in excellent agreement with simulation results. By employing this cross interaction and the effective interactions between stars and colloids themselves, a demixing transition in the fluid phase is observed and systematically investigated for different arm numbers and size ratios. The demixing binodals are compared with experimental observations and found to be consistent. Furthermore, we map the full two-component system on an effective one-component description for the colloids, by inverting the two-component Ornstein-Zernike equations. Some recent results for the depletion interaction and freezing transitions are shown.

  4. Levelling the playing field: screening for synergistic effects in coalesced bimetallic nanoparticles

    Science.gov (United States)

    Tan, Rachel Lee Siew; Song, Xiaohui; Chen, Bo; Chong, Wen Han; Fang, Yin; Zhang, Hua; Wei, Jun; Chen, Hongyu

    2016-02-01

    Depending on the synthetic methods, bimetallic nanoparticles can have either core-shell, phase segregated, alloy, or partially coalesced structures, presenting different degrees of atomic mixing on their surface. Along with the variations of size and morphology, the structural differences make it difficult to compare the catalytic activity of bimetallic nanoparticles. In this article, we developed a facile screening method that can focus on the synergistic effects rather than structural differences. Prefabricated nanoparticles are mixed together to form linear aggregates and coalesced to form bimetallic junctions. Their hollow silica shells allow materials transport but prevent further aggregation. With a level playing field, this screening platform can identify the best bimetallic combination for a catalytic reaction, before optimizing the synthesis. This approach is more advantageous than the conventional approaches where structural difference may have dominant effects on the catalytic performance.Depending on the synthetic methods, bimetallic nanoparticles can have either core-shell, phase segregated, alloy, or partially coalesced structures, presenting different degrees of atomic mixing on their surface. Along with the variations of size and morphology, the structural differences make it difficult to compare the catalytic activity of bimetallic nanoparticles. In this article, we developed a facile screening method that can focus on the synergistic effects rather than structural differences. Prefabricated nanoparticles are mixed together to form linear aggregates and coalesced to form bimetallic junctions. Their hollow silica shells allow materials transport but prevent further aggregation. With a level playing field, this screening platform can identify the best bimetallic combination for a catalytic reaction, before optimizing the synthesis. This approach is more advantageous than the conventional approaches where structural difference may have dominant

  5. Arsenic and heavy metal contamination and their uptake by rice crops around the Kubong Au-Ag mine, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Joo-Sung; Chon, Hyo-Taek [Seoul National University, Seoul (Korea); Son, Ah-Jeong; Kim, Kyoung-Woong [Kwangju Institute of Science and Technology, Kwangju (Korea)

    1999-04-30

    The concentrations and distributions of As and heavy metals have been investigated in the agricultural area around the abandoned Kubong Au-Ag mine in South-Choongchung Province, Korea. The characteristics of heavy metal uptake by rice crops were also assessed. Paddy soil was moderately contaminated by As, Cd and Pb, and their mean concentrations were 59.4, 1.4 and 67 mg/kg, respectively. The elevated levels of As, Cd, Pb and Zn in sediment by direct input of tailings were found as far as 4 km downstream, and tailings effluent contained up to 1,890 {mu}g/l of As and 25 {mu}g/l of Cd, showing that As and Cd in tailings as well as contaminated sediment can be easily mobilized into stream water and irrigation water. Arsenic, Cd and Pb were also enriched in rice crops and their concentration factors were high in the order of Cd>As>Pb. Translocation of As and Pb in rice stalk and leaves was limited to rice grains, but some of the rice grain samples were unsuitable for human diet, considering 3.1 mg/kg of Cd of a maximum content. Given the geographical distributions of As, Cd and Pb, and the increasing fractions of the exchangeable forms of heavy metals in paddy soils compared with those of tailings and stream sediments, it is suggested that the stream water, continuously affected by tailings and contaminated sediment, can be the most important source of the contamination in the study area. For the reclamation of this area, containment of tailings, dredging the contaminated sediment and mixing paddy soils with unpolluted soil or deep plowing will be needed. (author). 23 refs., 6 tabs., 8 figs.

  6. Gas-Phase Growth of Heterostructures of Carbon Nanotubes and Bimetallic Nanowires

    Directory of Open Access Journals (Sweden)

    Whi Dong Kim

    2011-01-01

    Full Text Available A simple, inexpensive, and viable method for growing multiple heterostructured carbon nanotubes (CNTs over the entire surface of Ni-Al bimetallic nanowires (NWs in the gas phase was developed. Polymer-templated bimetallic nitrate NWs were produced by electrospinning in the first step, and subsequent calcination resulted in the formation of bimetallic oxide NWs by thermal decomposition. In the second step, free-floating bimetallic NWs were produced by spray pyrolysis in an environment containing hydrogen gas as a reducing gas. These NWs were continuously introduced into a thermal CVD reactor in order to grow CNTs in the gas phase. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and Raman spectrometry analyses revealed that the catalytic Ni sites exposed in the non-catalytic Al matrix over the entire surface of the bimetallic NWs were seeded to radially grow highly graphitized CNTs, which resembled “foxtail” structures. The grown CNTs were found to have a relatively uniform diameter of approximately 10±2 nm and 10 to 15 walls with a hollow core. The average length of the gas-phase-grown CNTs can be controlled between 100 and 1000 nm by adjusting the residence time of the free-floating bimetallic NWs in the thermal CVD reactor.

  7. Optoperforation of Intact Plant Cells, Spectral Characterization of Alloy Disorder in InAsP Alloys, and Bimetallic Concentric Surfaces for Metal-Enhanced Fluorescence in Upconverting Nanocrystals

    Science.gov (United States)

    Merritt, Travis R.

    architectures were proposed that retrofit metallic nanoshells to these lanthanide-doped nanocrystals. The typical monometallic construction was rejected in favor of architectures featuring Au-Ag bimetallic concentric surfaces, a decision supported by the considerable overlap of the calculated plasmon modes of the metallic structures with the emission and absorption spectrum of the nanocrystals. Furthermore, precursors of these nanocomposites were synthesized and photoluminescence measurements were carried out, ultimately verifying that these precursors produce the requisite upconversion emissions.

  8. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  9. The selective hydrogenation of crotonaldehyde over bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schoeb, A.M.

    1997-02-01

    The selective hydrogenation of crotonaldehyde has been investigated over a monometallic Pt/SiO{sub 2} catalyst and platinum bimetallic catalysts where the second metal was either silver, copper, or tin. The effects of addition of a second metal to the Pt/SiO{sub 2} system on the selectivity to crotyl alcohol were investigated. The Pt-Sn bimetallic catalysts were characterized by hydrogen chemisorption, {sup 1}H NMR and microcalorimetry. The Pt-Ag/SiO{sub 2} and Pt-Cu/SiO{sub 2} catalysts were characterized by hydrogen chemisorption. Pt-Sn/SiO{sub 2} catalysts selectively hydrogenated crotonaldehyde to crotyl alcohol and the method of preparation of these catalysts affected the selectivity. The most selective Pt-Sn/SiO{sub 2} catalysts for the hydrogenation of crotonaldehyde to crotyl alcohol were those in which the Sn precursor was dissolved in a HCl solution. Sn increased both the rate of formation of butyraldehyde and the rate of formation of crotyl alcohol. The Pt/SiO{sub 2}, Pt-Ag/SiO{sub 2} and Pt-Cu/SiO{sub 2} catalysts produced only butyraldehyde. Initial heats of adsorption ({approximately}90 kJ/mol) measured using microcalorimetry were not affected by the presence of Sn on Pt. We can conclude that there is no through metal electronic interaction between Pt and Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn at least with respect to hydrogen surface bonds since the Pt and Pt-Sn had similar initial heats of adsorption coupled with the invariance of the {sup 1}H NMR Knight shift.

  10. Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy

    Science.gov (United States)

    Wang, Fei; Liu, Pei; Sun, Lin; Li, Cuncheng; Petrenko, Valery A.; Liu, Aihua

    2014-10-01

    Nanomaterials with near-infrared (NIR) absorption have been widely studied in cancer detection and photothermal therapy (PTT), while it remains a great challenge in targeting tumor efficiently with minimal side effects. Herein we report a novel multifunctional phage-mimetic nanostructure, which was prepared by layer-by-layer self-assembly of Au@Ag heterogenous nanorods (NRs) with rhodamine 6G, and specific pVIII fusion proteins. Au@Ag NRs, first being applied for PTT, exhibited excellent stability, cost-effectivity, biocompatibility and tunable NIR absorption. The fusion proteins were isolated from phage DDAGNRQP specifically selected from f8/8 landscape phage library against colorectal cancer cells in a high-throughput way. Considering the definite charge distribution and low molecular weight, phage fusion proteins were assembled on the negatively charged NR core by electrostatic interactions, exposing the N-terminus fused with DDAGNRQP peptide on the surface. The fluorescent images showed that assembled phage fusion proteins can direct the nanostructure into cancer cells. The nanostructure was more efficient than gold nanorods and silver nanotriangle-based photothermal agents and was capable of specifically ablating SW620 cells after 10 min illumination with an 808 nm laser in the light intensity of 4 W/cm2. The prepared nanostructure would become an ideal reagent for simutaneously targeted optical imaging and PTT of tumor.

  11. N2-Ar-He systematics and source of ore-forming fluid in Changkeng Au-Ag deposit, central Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    孙晓明; 孙凯; 陈炳辉; 陈敬德; David; I.Norman

    1999-01-01

    Changkeng Au-Ag deposit is a newly-discovered new type precious metal deposit. N2-Ar-He systematics studies and 3He/4He and δD-δ18O composition analyses show that the ore-forming fluid of the deposit is composed mainly of formation water (sedimentary brine) but not of meteoric water, which was thought to be source of the ore-forming fluid by most previous researchers. The content of mantle-derived magmatic water in the ore-forming fluid is quite low, usually lower than 10%. According to the source of the ore-forming fluid, the Changkeng Au-Ag deposit should belong to sedimentary brine transformed deposits. From the Late Jurassic to the Early Cretaceous Period, with deposition and accumulation of thick sediments in Sanzhou Basin, the formation water in the sedimentary layers was expelled from the basin because of overburden pressure and increasing temperature. The expelled fluid moved laterally along sedimentary layers to the margin of the basin, and finally moved upward along a gently-dipping in

  12. Microwave-assisted synthesis of photoluminescent glutathione-capped Au/Ag nanoclusters: A unique sensor-on-a-nanoparticle for metal ions, anions, and small molecules

    Institute of Scientific and Technical Information of China (English)

    Jia Zhang[1; Yue Yuan[1; Yu Wang[2; Fanfei Sun[2; Gaolin Liang[1; Zheng Jiang[2; Shu-Hong Yu[1,3

    2015-01-01

    Even though great advances have been achieved in the synthesis of luminescent metal nanoclusters, it is still challenging to develop metal nanoclusters with high quantum efficiency as well as multiple sensing functionalities. Here, we demonstrate the rapid preparation of glutathione-capped Au/Ag nanoclusters (GS-Au/Ag NCs) using microwave irradiation and their unique sensing capacities. Compared to bare GS-Au NCs, the doped Au/Ag NCs possess an enhanced quantum yield (7.8% compared to 2.2% for GS-Au NCs). Several characterization techniques were used to elucidate the atomic composition, particulate character, and electronic structure of the fabricated NCs. According to the X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectra, a significant amount of Au exists in the oxidized state as Au(I), and the Ag atoms are positively charged. In contrast to those nanoclusters that detect only one analyte, the GS-Au/Ag NCs can be used as a versatile sensor for metal ions, anions, and small molecules. In this manner, the NCs can be regarded as a unique sensor-on-a-nanoparticle.

  13. Silver-rich telluride mineralization at Mount Charlotte and Au-Ag zonation in the giant Golden Mile deposit, Kalgoorlie, Western Australia

    Science.gov (United States)

    Mueller, Andreas G.; Muhling, Janet R.

    2013-03-01

    The gold deposits at Kalgoorlie in the 2.7-Ga Eastern Goldfields Province of the Yilgarn Craton, Western Australia, occur adjacent to the D2 Golden Mile Fault over a strike of 8 km within a district-scale zone marked by porphyry dykes and chloritic alteration. The late Golden Pike Fault separates the older (D2) shear zone system of the Golden Mile (1,500 t Au) in the southeast from the younger (D4) quartz vein stockworks at Mt Charlotte (126 t Au) in the northwest. Both deposits occur in the Golden Mile Dolerite sill and display inner sericite-ankerite alteration and early-stage gold-pyrite mineralization replacing the wall rocks. Late-stage tellurides account for 20 % of the total gold in the first, but for 30 g/t Au) is characterized by Au/Ag = 2.54 and As/Sb = 2.6-30, the latter ratio caused by arsenical pyrite. Golden Mile-type D2 lodes occur northwest of the Golden Pike Fault, but the Hidden Secret orebody, the only telluride bonanza mined (10,815 t at 44 g/t Au), was unusually rich in silver (Au/Ag = 0.12-0.35) due to abundant hessite. We describe another array of silver-rich D2 shear zones which are part of the Golden Mile Fault exposed on the Mt Charlotte mine 22 level. They are filled with crack-seal and pinch-and-swell quartz-carbonate veins and are surrounded by early-stage pyrite + pyrrhotite disseminated in a sericite-ankerite zone more than 6 m wide. Gold grade (0.5-0.8 g/t) varies little across the zone, but Au/Ag (0.37-2.40) and As/Sb (1.54-13.9) increase away from the veins. Late-stage telluride mineralization (23 g/t Au) sampled in one vein has a much lower Au/Ag (0.13) and As/Sb (0.48) and comprises scheelite, pyrite, native gold (830-854 fine), hessite, and minor pyrrhotite, altaite, bournonite, and boulangerite. Assuming 250-300 °C, gold-hessite compositions indicate a fluid log f Te2 of -11.5 to -10, values well below the stability of calaverite. The absence of calaverite and the dominance of hessite in the D2 lodes of the Mt Charlotte area

  14. Bimetallic Au-decorated Pd catalyst for the liquid phase hydrodechlorination of 2,4-dichlorophenol

    Science.gov (United States)

    Zhou, Juan; Chen, Huan; Chen, Quanyuan; Huang, Zhaolu

    2016-11-01

    Monometallic and bimetallic Pd-Au catalysts supported on multi-walled carbon nanotubes (CNTs) with varied Au cooperation amounts were prepared using the complexing-reduction method in the presence of tetrahydrofuran (THF). The liquid phase catalytic hydrodechlorination (HDC) of 2,4-dichlorophenol (2,4-DCP) was investigated over these bimetallic catalysts. The catalysts were characterized by N2 adsorption-desorption isotherms, X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and H2 chemisorption. Characterization results showed that the co-reduction of Pd and Au mainly formed alloy-like structure. The bimetallic catalysts had smaller metal particles and larger numbers of exposed active site than that of monometallic catalysts. In addition, compared with Pd(1.7)/CNTs and Au(0.4)/CNTs, the binding energies of Pd 3d5/2 shifted to higher positions while that of Au 4f7/2 had negative shifts in the Pd-Au bimetallic catalysts, which can be ascribed to the electrons transferred from metal Pd to Au and the cationization of Pd particles was enhanced. Accordingly, the bimetallic Pd-Au particles with different Au contents in the catalysts exhibited varied synergistic effects for the catalytic HDC of 2,4-DCP, with Pd(1.8)Au(0.4)/CNTs having the highest catalytic activity. For the bimetallic catalysts, a disproportional increase of turnover frequency (TOF) was observed with increasing Au content due to the enhanced cationization of Pd particles. Moreover, the dechlorination of 2,4-DCP over the supported monometallic and bimetallic catalysts proceeded via both the stepwise and concerted pathway, and the concerted pathway became predominant with Au decoration amount in the catalyst.

  15. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-a; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  16. Nodular colloid degeneration over herpes zoster scars

    Directory of Open Access Journals (Sweden)

    Mittal R

    1996-01-01

    Full Text Available A rare case of nodular colloid degeneration is reported which presented clinically as plaques studded with soft yellow papules simulating adult colloid milia superimposed only on herpes zoster scars of right side of the face.

  17. Polymeric stabilization of colloidal asphaltenes

    Science.gov (United States)

    Hashmi, Sara; Firoozabadi, Abbas

    2010-03-01

    Asphaltenes, the heaviest component of crude oil, cause many problems in petroleum extraction and recovery. Operationally defined as insoluble in long chain alkanes but soluble in toluene, asphaltenes have been described by bulk thermodynamic models such as the Flory-Huggins theory. However, bulk models work well only for asphaltenes in good solvents. Characterization of asphaltenes in poor solvents remains elusive: molecular scale asphaltenes readily aggregate to the colloidal scale and become highly unstable in solution. We investigate the ability of polymers to stabilize colloidal asphaltene suspensions in heptane. In the absence of added polymer, sedimentation measurements reveal dynamics reminiscent of collapsing gels. Adding polymers to colloidal asphaltene suspensions can delay the characteristic sedimentation time by orders of magnitude. Light scattering results suggest that the mechanism of stabilization may be related to a decrease in both particle size and polydispersity as a function of added polymer.

  18. Colloid Release from Soil Aggregates

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Schjønning, Per;

    2012-01-01

    content measured using a more classical end-over-end method (r > 0.89, P soil cores (r > 0.89, P ...The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils......, using laser diffraction, by agitating the samples using a wet-dispersion unit. This approach eliminated the need for long sedimentation times required by the more classical end-over-end shaking approach and provided information about the time-dependent release of WDC. The total clay content of the soils...

  19. COLLOID RELEASE FROM DIFFERENT SOIL DEPTH

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2013-01-01

    Full Text Available Naturally occurring clay colloidal particles are heavily involved in sediment processes in the subsurface soil. Due to the import ance of these processes in the subsurface environment, the transport of clay colloidal particles has been studied in several disciplines, including soil sciences, petr ology, hydrology, etc. Specifically, in environmental engineering, clay colloid re lease and transport in the sediments have been extensively investigated, which are motiv ated by environmental concerns such as colloid-facilitated contaminant transport in groundwater and the subsurface soil. Clay colloid release is resulted from physical alteration of subsurface sediments. Despite the potential importance of clay colloid activiti es, the detailed mechanisms of release and transport of clay colloidal particles with in natural sediments are poorly understood. Pore medium structure, properties and flow dynamics, etc. are factors that affect clay colloid generation, mobilization, and subse quent transport. Possible mechanisms of clay colloid generation in the sediments in clude precipitation, erosion and mobilization by changes in pore water chemistry and clay colloid release depends on a balance of applied hydrodynamic and resisting adhesive torques and forces. The coupled role of pore water chemistry and fluid hydrodynamics thus play key roles in controlling clay colloid release and transport in the sediment s. This paper investigated clay colloidal particle release and transport, especially th e colloidal particle release mechanisms as well as the process modeling in the sediments. In this research, colloidal particle release from intact sediment columns with variable length was examined and colloidal particle release curves were simulated using an im plicit, finite-difference scheme. Colloidal particle release rate coefficient was found to be an exponential function of the sediment depth. The simulated results demonstrated that transport parameters were

  20. Impact of Multifunctional Bimetallic Materials on Lithium Battery Electrochemistry.

    Science.gov (United States)

    Durham, Jessica L; Poyraz, Altug S; Takeuchi, Esther S; Marschilok, Amy C; Takeuchi, Kenneth J

    2016-09-20

    Electric energy storage devices such as batteries are complex systems comprised of a variety of materials with each playing separate yet interactive roles, complicated by length scale interactions occurring from the molecular to the mesoscale. Thus, addressing specific battery issues such as functional capacity requires a comprehensive perspective initiating with atomic level concepts. For example, the electroactive materials which contribute to the functional capacity in a battery comprise approximately 30% or less of the total device mass. Thus, the design and implementation of multifunctional materials can conceptually reduce or eliminate the contribution of passive materials to the size and mass of the final system. Material multifunctionality can be achieved through appropriate material design on the atomic level resulting in bimetallic electroactive materials where one metal cation forms mesoscale conductive networks upon discharge while the other metal cations can contribute to atomic level structure and net functional secondary capacity, a device level issue. Specifically, this Account provides insight into the multimechanism electrochemical redox processes of bimetallic cathode materials based on transition metal oxides (MM'O) or phosphorus oxides (MM'PO) where M = Ag and M' = V or Fe. One discharge process can be described as reduction-displacement where Ag(+) is reduced to Ag(0) and displaced from the parent structure. This reduction-displacement reaction in silver-containing bimetallic electrodes allows for the in situ formation of a conductive network, enhancing the electrochemical performance of the electrode and reducing or eliminating the need for conductive additives. A second discharge process occurs through the reduction of the second transition metal, V or Fe, where the oxidation state of the metal center is reduced and lithium cations are inserted into the structure. As both metal centers contribute to the functional capacity, determining the

  1. Direct decomposition of methane over SBA-15 supported Ni, Co and Fe based bimetallic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pudukudy, Manoj, E-mail: manojpudukudy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Yaakob, Zahira, E-mail: zahirayaakob65@gmail.com [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia); Akmal, Zubair Shamsul [Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor (Malaysia)

    2015-03-01

    Graphical abstract: - Highlights: • Synthesis and characterization of Ni, Co and Fe based bimetallic catalysts supported over SBA-15. • Thermocatalytic decomposition of methane over the SBA-15 supported bimetallic catalysts. • Enhanced catalytic efficiency of the bimetallic catalysts for the production of CO{sub x} free hydrogen and nanocarbon. • Production of value added open tip hollow multi-walled carbon nanotubes. • Crystalline characterization of carbon nanotubes by XRD, Raman and thermogravimetric analysis. - Abstract: Thermocatalytic decomposition of methane is an alternative route for the production of CO{sub x}-free hydrogen and carbon nanomaterials. In this work, a set of novel Ni, Co and Fe based bimetallic catalysts supported over mesoporous SBA-15 was synthesized by a facile wet impregnation route, characterized for their structural, textural and reduction properties and were successfully used for the methane decomposition. The fine dispersion of metal oxide particles on the surface of SBA-15, without affecting its mesoporous texture was clearly shown in the low angle X-ray diffraction patterns and the transmission electron microscopy (TEM) images. The nitrogen sorption analysis showed the reduced specific surface area and pore volume of SBA-15, after metal loading due to the partial filling of hexagonal mesopores by metal species. The results of methane decomposition experiments indicated that all of the bimetallic catalysts were highly active and stable for the reaction at 700 °C even after 300 min of time on stream (TOS). However, a maximum hydrogen yield of ∼56% was observed for the NiCo/SBA-15 catalyst within 30 min of TOS. A high catalytic stability was shown by the CoFe/SBA-15 catalyst with 51% of hydrogen yield during the course of reaction. The catalytic stability of the bimetallic catalysts was attributed to the formation of bimetallic alloys. Moreover, the deposited carbons were found to be in the form of a new set of hollow

  2. Characterization of Bimetallic Fe-Ru Oxide Nanoparticles Prepared by Liquid-Phase Plasma Method.

    Science.gov (United States)

    Lee, Sung-Jin; Lee, Heon; Jeon, Ki-Joon; Park, Hyunwoong; Park, Young-Kwon; Jung, Sang-Chul

    2016-12-01

    The bimetallic Fe-Ru oxide nanoparticles were synthesized in the liquid-phase plasma (LPP) method which employed iron chloride and ruthenium chloride as precursors. The active species (OH·, Hα, Hβ, and O(I)) and the iron and ruthenium ions were observed in the plasma field created by the LPP process. The spherical-shaped bimetallic Fe-Ru oxide nanoparticles were synthesized by the LPP reaction, and the size of the particles was growing along with the progression of the LPP reaction. The synthesized bimetallic Fe-Ru oxide nanoparticles were comprised of Fe2O3, Fe3O4, RuO, and RuO2. Ruthenium had a higher reduction potential than iron and resulted in higher ruthenium composition in the synthesized bimetallic nanoparticles. The control of the molar ratio of the precursors in the reactant solution was found to be employed as a means to control the composition of the elements in bimetallic nanoparticles. PMID:27456502

  3. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor

    International Nuclear Information System (INIS)

    The electrochemical reduction of Cr(VI)-Cr(III) in wastewater by iron and copper-iron bimetallic plates was evaluated and optimized. Iron has been used as a reducing agent, but in this work a copper-iron galvanic system in the form of bimetallic plates is applied to reducing hexavalent chromium. The optimal pH (2) and ratio of copper to iron surface areas (3.5:1) were determined in batch studies, achieving a 100% reduction in about 25 min. The Cr(VI) reduction kinetics for the bimetallic system fit a first order mechanism with a correlation of 0.9935. Thermodynamic analysis shows that the Cr(VI) reduction is possible at any pH value. However, at pH values above 3.0 for iron and 5.5 for chromium insoluble species appear, indicating that the reaction will be hindered. Continuous column studies indicate that the bimetallic copper-iron galvanic system has a reduction capacity of 9.5890 mg Cr(VI) cm-2 iron, whereas iron alone only has a capacity of 0.1269 mg Cr(VI) cm-2. The bimetallic copper-iron galvanic system is much more effective in reducing hexavalent chromium than iron alone. The exhausted plates were analyzed by SEM, EDS, and XRD to determine the mechanism and the surface effects, especially surface fouling.

  4. Dendritic Pt-Cu bimetallic nanocrystals with a high electrocatalytic activity toward methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jintao; Ma Jizhen [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore); Wan Yong [Institute of Multifunctional Materials (IMM), Laboratory of New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Jiang Jianwen [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore); Zhao, X.S., E-mail: george.zhao@uq.edu.au [Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576 (Singapore); Institute of Multifunctional Materials (IMM), Laboratory of New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Dendritic Pt-Cu bimetallic nanocrystals were synthesized by one-step aqueous-phase reduction. Black-Right-Pointing-Pointer The formation process of dendritic Pt-Cu bimetallic nanocrystals can be carried out under mild conditions. Black-Right-Pointing-Pointer The dendritic Pt-Cu bimetallic nanocrystals exhibited a higher catalytic activity toward the electro-oxidation of methanol than commercial Pt/C catalysts. Black-Right-Pointing-Pointer The new findings are of fundamental importance to the development of high-performance electrocatalysts for direct methanol fuel cell. - Abstract: Dendritic Pt-Cu bimetallic nanocrystals were synthesized by one-step aqueous-phase reduction of H{sub 2}PtCl{sub 6} and CuCl{sub 2} at a mild temperature (60 Degree-Sign C). The morphology and composition of the dendritic Pt-Cu nanocrystals were characterized by means of high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectrometer. The electrochemical properties were characterized by the cyclic voltammetry technique. It was found that the dendritic Pt-Cu bimetallic nanocrystals exhibited a higher catalytic activity toward the electro-oxidation of methanol than commercial Pt/C catalyst The enhanced catalytic activity would be contributed to the unique dendritic structure and the formation of Pt-Cu alloy nanocrystals.

  5. Colloid properties in groundwaters from crystalline formations

    International Nuclear Information System (INIS)

    Colloids are present in all groundwaters. The role they may play in the migration of safety-relevant radionuclides in the geosphere therefore must be studied. Colloid sampling and characterisation campaigns have been carried out in Switzerland. On the bases of the results from studies in the Grimsel area, Northern Switzerland and the Black Forest, as well as those obtained by other groups concerned with crystalline waters, a consistent picture is emerging. The groundwater colloids in crystalline formations are predominantly comprised of phyllosilicates and silica originating from the aquifer rock. Under constant hydrogeochemical conditions, the colloid concentration is not expected to exceed 100 ng.ml-1 when the calcium concentration is greater than 10-4. However, under transient chemical or physical conditions, such as geothermal or tectonic activity, colloid generation may be enhanced and the colloid concentration may reach 10 μg.ml-1 or more, if both the calcium and sodium concentrations are low. In the Nagra Crystalline Reference Water the expected colloid concentration is -1. This can be compared, for example, to a colloid concentration of about 10 ng.ml-1 found in Zurzach water. The small colloid concentration in the reference water is a consequence of an attachment factor for clay colloids (monmorillonite) close to 1. A model indicates that at pH 8, the nuclide partition coefficients between water and colloid (Kp) must be smaller than 107 ml.g-1 if sorption takes place by surface complexation on colloids, = AIOH active groups forming the dominant sorption sites. This pragmatic model is based on the competition between the formation of nuclide hydroxo complexes in solution and their sorption on colloids. Experimental nuclide sorption data on colloids are compared with those obtained by applying this model. For a low colloid concentration, a sorption capacity of the order of 10-9 M and reversible surface complexation, their presence in the crystalline rock

  6. Microbial effects on colloidal agglomeration

    International Nuclear Information System (INIS)

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs

  7. Supramolecular perspectives in colloid science

    NARCIS (Netherlands)

    Cohen Stuart, M.A.

    2008-01-01

    Supramolecular chemistry puts emphasis on molecular assemblies held together by non-covalent bonds. As such, it is very close in spirit to colloid science which also focuses on objects which are small, but beyond the molecular scale, and for which other forces than covalent bonds are crucial. We dis

  8. Proteolytic stability in colloidal systems.

    NARCIS (Netherlands)

    Maste, M.C.L.

    1996-01-01

    Proteolytic enzymes in liquid detergents suffer from lack of stability in the sense that activity diminishes with time. Although the phenomenon could be attributed to several factors, the influence of colloidal surfaces on the enzymatic stability was investigated. Besides the types of surfaces that

  9. Colloidal aspects of texture perception

    NARCIS (Netherlands)

    Vliet, van T.

    2010-01-01

    The perception of complex textures in food is strongly related to the way food is processed during eating, and is modulated by other basic characteristics, such as taste and aroma. An understanding at the colloidal level of the basic processes in the mouth is essential in order to link the compositi

  10. A short textbook of colloid chemistry

    CERN Document Server

    Jirgensons, B

    1962-01-01

    A Short Textbook of Colloid Chemistry, Second Revised Edition details the factual aspect of colloid chemistry that includes the basic facts, established empirical and mathematical relationships, and practical applications. The chapters of the title are organized into two parts. In the first part, the text discusses the general concepts of colloid chemistry, such as the history and scope, basic terms, and basic methods in experiment with colloids. Part Two covers the technical aspect of colloid chemistry, such as the optical properties, electrical properties, and viscosity. The book will be of

  11. Salt flux synthesis of single and bimetallic carbide nanowires

    Science.gov (United States)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  12. Vibrational spectroscopic studies of adsorbates on bimetallic surfaces. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, W.K.

    1992-12-01

    In this work, well-defined bimetallic surfaces have been studied using carbon monoxide adsorption in conjunction with infrared reflection absorption spectroscopy (IRAS). These studies have indicated that for CO adsorbed on Cu overlayers, the bond between the CO and the Cu adatoms is comprised of both pi-back-donation and polarization interaction components. The sum of the contributions from these effects determines the observed bond strength with the observed CO stretching frequency being determined by the relative contributions of the components. In addition, it was determined that IR spectra of adsorbed CO show a remarkable sensitivity to surface structure. Three-dimensional Cu clusters, well-ordered two dimensional Cu islands and isolated Cu atoms are distinctively characterized by their CO IR peaks. In addition, both disorder-order and order-order transitions are observed for the metal overlayers on the single crystal metal substrates. It was also observed that localized segregation and ordering of mixed Co and S overlayers on a Mo(110) substrate occurs upon annealing.

  13. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  14. Synthesis of supported bimetallic nanoparticles with controlled size and composition distributions for active site elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Hakim, Sikander H.; Sener, Canan; Alba Rubio, Ana C.; Gostanian, Thomas M.; O' neill, Brandon J; Ribeiro, Fabio H.; Miller, Jeffrey T.; Dumesic, James A

    2015-08-01

    Elucidation of active sites in supported bimetallic catalysts is complicated by the high level of dispersity in the nanoparticle size and composition that is inherent in conventional methods of catalyst preparation. We present a synthesis strategy that leads to highly dispersed, bimetallic nanoparticles with uniform particle size and composition by means of controlled surface reactions. We demonstrate the synthesis of three systems, RhMo, PtMo, and RhRe, consisting of a highly reducible metal with an oxophilic promoter. These catalysts are characterized by FTIR, CO chemisorption, STEM/EDS, TPR, and XAS analysis. The catalytic properties of these bimetallic nanoparticles were probed for the selective CO hydrogenolysis of (hydroxymethyl)tetrahydropyran to produce 1,6 hexanediol. Based on the characterization results and reactivity trends, the active sites in the hydrogenolysis reaction are identified to be small ensembles of the more noble metal (Rh, Pt) adjacent to highly reduced moieties of the more oxophilic metal (Mo, Re).

  15. Synthesis and characterization of Ni-Mo bimetallic nitride from the mixture of nitrogen and hydrogen

    International Nuclear Information System (INIS)

    A new method for the synthesis of Ni-Mo bimetallic nitrides was reported in the present paper. The bimetallic nitrides were successfully prepared by a temperature-programmed reaction between bimetallic oxide precursors and the mixed gases of N2 and H2 instead of NH3. By adjusting pH values of the solution in the process of co-precipitation, pure NiMoO4 or NiMoO4 with excess MoO3 was obtained, and then pure Ni3Mo3N or Ni3Mo3N with γ-Mo2N was synthesized by nitriding the precursors. The structural properties of the precursors and their corresponding nitrides were investigated by means of X-ray diffraction (XRD), ultraviolet laser Raman spectroscopy, thermogravimetric (TG) analysis and chemical analysis of total nitrogen content

  16. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons

    Science.gov (United States)

    Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke

    2016-07-01

    Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications.

  17. Design and performance benchmark of various architectures of a piezoelectric bimetallic strip heat engine

    Science.gov (United States)

    Boughaleb, J.; Arnaud, A.; Monfray, S.; Cottinet, P. J.; Quenard, S.; Boeuf, F.; Guyomar, D.; Skotnicki, T.

    2016-06-01

    This paper deals with an investigation of a thermal energy harvester based on the coupling of a piezoelectric membrane and a bimetallic strip heat engine. The general working principle of the device consists of a double conversion mechanism: the thermal energy is first converted into mechanical energy by means of a bimetallic strip, then the mechanical energy is converted into electricity with a piezoelectric membrane. This paper deals with the study and optimization of the harvester's design. First, the piezoelectric membrane configuration is studied to find the most efficient way to convert mechanical energy into electricity. A benchmark of various piezoelectric materials is then presented to point out the most efficient materials. Finally, our study focuses on the bimetallic strip's properties: the effect of its dimensions of its thermal hysteresis on the harvester's performances are studied and compared. Thanks to these different steps, we were able to point out the best configuration to convert efficiently thermal heat flux into electricity.

  18. Melting Behaviour of Core-Shell Structured Ag-Rh Bimetallic Clusters

    Institute of Scientific and Technical Information of China (English)

    PAN Yang; CHENG Dao-Jian; HUANG Shi-Ping; WANG Wen-Chuan

    2007-01-01

    The me/ting behaviour of four typical core-shell structured 309-atom Ag-Rh bimetallic clusters, with decahedral and icosahedral geometric configurations, is investigated by using molecular dynamics simulation, based on the Sutton-Chen potential. The initial atomic configurations are obtained from semi-grand canonical ensemble Monte Carlo simulations. It is found that the melting point temperature Tm increases with the mole fraction of Rh in the bimetallic clusters, and Tm of Ag-Rh icosahedral clusters is higher than those of Ag-Rh decahedral clusters with the same Rh mole fraction. It is also found that the Ag atoms lie on the surface of Ag-Rh bimetallic clusters even after melting.

  19. Description of the performances of a thermo-mechanical energy harvester using bimetallic beams

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2016-06-01

    Many recent researches have been focused on the development of thermal energy harvesters using thermo-mechanical or thermo-electrical coupling phenomena associated to a first-order thermodynamic transition. In the case of the bimetallic strip heat engine, the exploitation of the thermo-mechanical instability of bimetallic membranes placed in a thermal gradient enables to convert heat into kinetic energy. This paper is a contribution to the modeling and the comprehension of these heat engines. By restraining the study to the simply-supported bimetallic beams and using a Ritz approximation of the beam shape, this paper aims to give an analytical solution to the first mode of the composite beams and then to evaluate the efficiency of the harvesters exploiting these kinds of instability.

  20. The quality of the joint between alloy steel and unalloyed cast steel in bimetallic layered castings

    Directory of Open Access Journals (Sweden)

    T. Wróbel

    2012-01-01

    Full Text Available In paper is presented technology of bimetallic layered castings based on founding method of layer coating directly in cast process so-called method of mould cavity preparation. Prepared castings consist two fundamental parts i.e. bearing part and working part (layer. The bearing part of bimetallic layered casting is typical foundry material i.e. ferritic-pearlitic unalloyed cast steel, whereas working part (layer is plate of austenitic alloy steel sort X2CrNi 18-9. The ratio of thickness between bearing and working part is 8:1. The aim of paper was assessed the quality of the joint between bearing and working part in dependence of pouring temperature and carbon concentration in cast steel. The quality of the joint in bimetallic layered castings was evaluated on the basis of ultrasonic non-destructive testing, structure and microhardness researches.

  1. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  2. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  3. INTERACTION OF SULPHUR WITH BIMETALLIC SURFACES: EFFECTS OF STRUCTURAL, ELECTRONIC AND CHEMICAL PROPERTIES.

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ,J.A.; HRBEK,J.

    2001-10-04

    In recent years, several new interesting phenomena have been discovered when studying the interaction of sulphur with bimetallic surfaces using the modern techniques of surface science. Very small amounts of sulphur can induce dramatic changes in the morphology of bimetallic surfaces. The electronic perturbations associated with the formation of a heteronuclear metal-metal bond affect the reactivity of the bonded metals toward sulphur. This can be a very important issue to consider when trying to minimize the negative effects of sulphur poisoning or dealing with the design of desulfurization catalysts.

  4. Structure analysis of bimetallic Co-Au nanoparticles formed by sequential ion implantation

    Science.gov (United States)

    Chen, Hua-jian; Wang, Yu-hua; Zhang, Xiao-jian; Song, Shu-peng; chen, Hong; Zhang, Ke; Xiong, Zu-zhao; Ji, Ling-ling; Dai, Hou-mei; Wang, Deng-jing; Lu, Jian-duo; Wang, Ru-wu; Zheng, Li-rong

    2016-08-01

    Co-Au alloy Metallic nanoparticles (MNPs) are formed by sequential ion implantation of Co and Au into silica glass at room temperature. The ion ranges of Au ions implantation process have been displayed to show the ion distribution. We have used the atomic force microscopy (AFM) and transmission electron microscopy (TEM) to investigate the formation of bimetallic nanoparticles. The extended X-ray absorption fine structure (EXAFS) has been used to study the local structural information of bimetallic nanoparticles. With the increase of Au ion implantation, the local environments of Co ions are changed enormously. Hence, three oscillations, respectively, Co-O, Co-Co and Co-Au coordination are determined.

  5. Resonance parameters based analysis for metallic thickness optimization of a bimetallic plasmonic structure

    Science.gov (United States)

    Bera, Mahua; Banerjee, Jayeta; Ray, Mina

    2014-02-01

    Metallic film thickness optimization in mono- and bimetallic plasmonic structures has been carried out in order to determine the correct device parameters. Different resonance parameters, such as reflectivity, phase, field enhancement, and the complex amplitude reflectance Argand diagram (CARAD), have been investigated for the proposed optimization procedure. Comparison of mono- and bimetallic plasmonic structures has been carried out in the context of these resonance parameters with simultaneous angular and spectral interrogation. Differential phase analysis has also been performed and its application to sensing has been discussed along with a proposed interferometric set-up.

  6. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural

    Science.gov (United States)

    Wang, Guang-Hui; Hilgert, Jakob; Richter, Felix Herrmann; Wang, Feng; Bongard, Hans-Josef; Spliethoff, Bernd; Weidenthaler, Claudia; Schüth, Ferdi

    2014-03-01

    The synthesis of 2,5-dimethylfuran (DMF) from 5-hydroxymethylfurfural (HMF) is a highly attractive route to a renewable fuel. However, achieving high yields in this reaction is a substantial challenge. Here it is described how PtCo bimetallic nanoparticles with diameters of 3.6 ± 0.7 nm can solve this problem. Over PtCo catalysts the conversion of HMF was 100% within 10 min and the yield to DMF reached 98% after 2 h, which substantially exceeds the best results reported in the literature. Moreover, the synthetic method can be generalized to other bimetallic nanoparticles encapsulated in hollow carbon spheres.

  7. Polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets

    CERN Document Server

    Clément, R; Gruselle, M; Train, C

    2003-01-01

    We report major results concerning polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets. As a consequence of their specific organization they are composed of an anionic sub-lattice and a cationic counter-part. These bimetallic polymers can accommodate various counter-cations possessing specific physical properties in addition to the magnetic ones resulting from the interactions between the metallic ions in the anionic sub-lattice. Thus, molecular magnets possessing paramagnetic, conductive and optical properties are presented in this review. Refs. 60 (author)

  8. What happens when pharmaceuticals meet colloids.

    Science.gov (United States)

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems). PMID:26427370

  9. Application of ESEM to environmental colloids

    International Nuclear Information System (INIS)

    Environmental colloids are toxic or radioactive particles suspended in ground or surface water. These hazardous particles can facilitate and accelerate the transport of toxicants and enhance the threat to humans by exposure to pathogenic substances. The chemical and physical properties of hazardous colloids have not been well characterized nor are there standard colloid remediation technologies to prevent their deleterious effects. Colloid characterization requires measurement of their size distribution, zeta potential, chemical composition, adsorption capacity and morphology. The environmental scanning electron microscope (ESEM) by ElectroScan, Inc., analyzes particle sizes, composition, and morphology. It is also used in this study to identify the attachment of colloids onto packing or rock surfaces in the development of a colloid remediation process. The ESEM has confirmed the composition of groundwater colloids in these studies to be generally the same material as the surrounding rock. The morphology studies have generally shown that colloids are simply small pieces of the rock surface that have exfoliated into the surrounding water. However, in general, the source and chemical composition of groundwater colloids is site dependent. The authors have found that an ESEM works best as a valuable analysis tool within a suite of colloid characterization instruments

  10. What happens when pharmaceuticals meet colloids.

    Science.gov (United States)

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).

  11. Chancellor Water Colloids: Characterization and Radionuclide Association

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Amr I. [Los Alamos National Laboratory

    2012-06-18

    Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the

  12. Analytic studies of colloid transport in fractured porous media

    International Nuclear Information System (INIS)

    We analyze the interactive migration of radioactive colloids and solute in fractured rock. Two possible interactions between radionuclides as colloids and as solute are considered: solute sorption on nonradioactive colloids to form pseudocolloids, and dissolution of radioactive colloids. Previous studies have discussed the formation and transport of colloids in porous media, including removal of colloids by filtration and sedimentation. Colloids can migrate faster than solute because of weaker sorption on stationary solids and because of hydrochromatography of colloid particles in flow channels. However, the migration of colloids and pseudocolloids can be retarded by the interaction of colloids with solute, and the migration of solute in local equilibrium with colloids can be more rapid than if colloids were not present. Here we present a new quantative analysis to predict the interactive migration of colloids and solute in porous and fractured media. 4 figs

  13. Biaxial ferromagnetic liquid crystal colloids.

    Science.gov (United States)

    Liu, Qingkun; Ackerman, Paul J; Lubensky, Tom C; Smalyukh, Ivan I

    2016-09-20

    The design and practical realization of composite materials that combine fluidity and different forms of ordering at the mesoscopic scale are among the grand fundamental science challenges. These composites also hold a great potential for technological applications, ranging from information displays to metamaterials. Here we introduce a fluid with coexisting polar and biaxial ordering of organic molecular and magnetic colloidal building blocks exhibiting the lowest symmetry orientational order. Guided by interactions at different length scales, rod-like organic molecules of this fluid spontaneously orient along a direction dubbed "director," whereas magnetic colloidal nanoplates order with their dipole moments parallel to each other but pointing at an angle to the director, yielding macroscopic magnetization at no external fields. Facile magnetic switching of such fluids is consistent with predictions of a model based on competing actions of elastic and magnetic torques, enabling previously inaccessible control of light. PMID:27601668

  14. Fabrication of Cu/Pd bimetallic nanostructures with high gas sorption ability towards development of LPG sensor

    International Nuclear Information System (INIS)

    A one-step synthesis of bimetallic Cu/Pd nanorods with rod's diameter ∼3 nm and their length in the range 10–15 nm is presented. The average size, size distribution, surface morphology and structure of the bimetallic Cu/Pd have been determined by transmission electron microscope (TEM), acoustic particle sizer (APS), scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. Further, thin films of bimetallic Cu/Pd nanostructures have been fabricated via spin-coating method. Fabricated films are, then, investigated for humidity and liquefied petroleum gas (LPG) sensors for the first time. The sensitivity and sensor response of the films towards the LPG are found better in comparison to the humidity. The investigated sensing parameters demonstrate that the fabricated LPG sensor using Cu/Pd bimetallic nanostructures is challenging for the detection of LPG at room temperature. - Highlights: • Fabrication of Cu/Pd meso-porous bimetallic thin film. • Cu/Pd nanostructures were characterized by SEM, TEM, APS and XRD. • Bimetallic nanostructures with smaller sizes and narrower size distributions. • First report on Cu/Pd bimetallic nanostructures as sensors. • Sensitivity of the sensor was simply enhanced by Cu-incorporation

  15. Electronic characterization and reactivity of bimetallic clusters of the Ti(Mg){sub n} type for hydrogen storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Wilber [Institute of Chemistry, University of Antioquia, A.A. 1226, Medellin (Colombia); Truong, Thanh N. [Henry Eyring, Center for Theoretical Chemistry, Department of Chemistry, University of Utah, 315 South 1400 East, Rm 2020, Salt Lake City, UT 84112 (United States); Mondragon, Fanor, E-mail: fmondra@udea.edu.co [Institute of Chemistry, University of Antioquia, A.A. 1226, Medellin (Colombia)

    2011-08-25

    Highlights: > Magnesium-titanium clusters were modeled employing DFT and MP2. > Bimetallic systems have larger stability than monometallic magnesium clusters. > Reactivity of the bimetallic cluster is centered in the transition metal. > Bimetallic clusters are more reactive towards hydrogen to produce more stable hydrides. > Magnesium titanium systems are better for hydrogen storage than pure magnesium systems. - Abstract: This paper describes the variations in the properties, characteristics and hydrogenation energy barriers of magnesium clusters induced by titanium. DFT approach was used to determine the most stable structures at this theory level and then MP2 was used to refine the energy calculations with the basis set 6-311g(d) for magnesium and hydrogen, and pseudopotential lanl2dz for titanium. Bimetallic clusters showed higher stability and reactivity than the corresponding magnesium ones. Titanium induces a change in the magnesium atoms in their electronic configuration reflected in an increase of the population of their orbitals. At the same time titanium electronic populations is modified. These changes cause variations in some reactivity parameters such as the Fukui indexes which modify the hydrogenation of the magnesium clusters and bimetallic clusters. For example, there is a reduction in the energy barrier for dissociation of the H{sub 2} molecule in the bimetallic clusters. In the hydrogenated cluster the hydrogen atoms form bridges between all of the magnesium or magnesium-titanium atoms. These results indicate that, energetically, bimetallic systems can be more promising systems for hydrogen storage.

  16. Electrocoagulation of colloidal biogenic selenium.

    Science.gov (United States)

    Staicu, Lucian C; van Hullebusch, Eric D; Lens, Piet N L; Pilon-Smits, Elizabeth A H; Oturan, Mehmet A

    2015-02-01

    Colloidal elemental selenium (Se(0)) adversely affects membrane separation processes and aquatic ecosystems. As a solution to this problem, we investigated for the first time the removal potential of Se(0) by electrocoagulation process. Colloidal Se(0) was produced by a strain of Pseudomonas fluorescens and showed limited gravitational settling. Therefore, iron (Fe) and aluminum (Al) sacrificial electrodes were used in a batch reactor under galvanostatic conditions. The best Se(0) turbidity removal (97 %) was achieved using iron electrodes at 200 mA. Aluminum electrodes removed 96 % of colloidal Se(0) only at a higher current intensity (300 mA). At the best Se(0) removal efficiency, electrocoagulation using Fe electrode removed 93 % of the Se concentration, whereas with Al electrodes the Se removal efficiency reached only 54 %. Due to the less compact nature of the Al flocs, the Se-Al sediment was three times more voluminous than the Se-Fe sediment. The toxicity characteristic leaching procedure (TCLP) test showed that the Fe-Se sediment released Se below the regulatory level (1 mg L(-1)), whereas the Se concentration leached from the Al-Se sediment exceeded the limit by about 20 times. This might be related to the mineralogical nature of the sediments. Electron scanning micrographs showed Fe-Se sediments with a reticular structure, whereas the Al-Se sediments lacked an organized structure. Overall, the results obtained showed that the use of Fe electrodes as soluble anode in electrocoagulation constitutes a better option than Al electrodes for the electrochemical sedimentation of colloidal Se(0).

  17. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  18. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  19. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author)

  20. Janus Nematic Colloids with Designable Valence

    Directory of Open Access Journals (Sweden)

    Simon Čopar

    2014-05-01

    Full Text Available Generalized Janus nematic colloids based on various morphologies of particle surface patches imposing homeotropic and planar surface anchoring are demonstrated. By using mesoscopic numerical modeling, multiple types of Janus particles are explored, demonstrating a variety of novel complex colloidal structures. We also show binding of Janus particles to a fixed Janus post in the nematic cell, which acts as a seed and a micro-anchor for the colloidal structure. Janus colloidal structures reveal diverse topological defect configurations, which are effectively combinations of surface boojum and bulk defects. Topological analysis is applied to defects, importantly showing that topological charge is not a well determined topological invariant in such patchy nematic Janus colloids. Finally, this work demonstrates colloidal structures with designable valence, which could allow for targeted and valence-conditioned self-assembly at micro- and nano-scale.

  1. Nonequilibrium Forces between Dragged Ultrasoft Colloids

    OpenAIRE

    Singh, S.P.; Winkler, R. G.; Gompper, G.

    2011-01-01

    The dynamical deformation of ultrasoft colloids as well as their dynamic frictional forces are numerically investigated, when one colloid is dragged past another at constant velocity. Hydrodynamic interactions are captured by a particle-based mesoscopic simulation method. At vanishing relative velocity, the equilibrium repulsive force-distance curve is obtained. At large drag velocities, in contrast, we find an apparent attractive force for departing colloids along the dragging direction. The...

  2. COLLOID RELEASE FROM DIFFERENT SOIL DEPTH

    OpenAIRE

    Gang Chen; Yue Niu; Boya Wang; Kamal Tawfiq

    2013-01-01

    Naturally occurring clay colloidal particles are heavily involved in sediment processes in the subsurface soil. Due to the import ance of these processes in the subsurface environment, the transport of clay colloidal particles has been studied in several disciplines, including soil sciences, petr ology, hydrology, etc. Specifically, in environmental engineering, clay colloid re lease and transport in the sediments have been extensively investigated, which are motiv ated by environmental conce...

  3. Oppositely charged colloids out of equilibrium

    OpenAIRE

    Vissers, T.

    2010-01-01

    Colloids are particles with a size in the range of a few nanometers up to several micrometers. Similar to atomic and molecular systems, they can form gases, liquids, solids, gels and glasses. Colloids can be used as model systems because, unlike molecules, they are sufficiently large to be studied directly with light microscopy and move sufficiently slow to study their dynamics. In this thesis, we study binary systems of polymethylmethacrylate (PMMA) colloidal particles suspended in low-polar...

  4. Attractions between charged colloids at water interfaces

    OpenAIRE

    Oettel, M.; Dominguez, A; Dietrich, S.

    2005-01-01

    The effective potential between charged colloids trapped at water interfaces is analyzed. It consists of a repulsive electrostatic and an attractive capillary part which asymptotically both show dipole--like behavior. For sufficiently large colloid charges, the capillary attraction dominates at large separations. The total effective potential exhibits a minimum at intermediate separations if the Debye screening length of water and the colloid radius are of comparable size.

  5. Synergy between metals in bimetallic zeolite supported catalyst for NO-promoted N2O decomposition

    NARCIS (Netherlands)

    Pieterse, J.A.Z.; Mul, G.; Melian-Cabrera, I.; van den Brink, R.W.

    2005-01-01

    The detrimental effect of NO on N2O decomposition over zeolite supported noble metal catalysts can be (partly) eliminated by combining noble metal with iron or cobalt. In the presence of NO, the total conversion of N2O over these bimetallic-zeolites exceeds the sum of conversions over the monometall

  6. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil;

    2007-01-01

    , we report a more detailed catalytic study aimed at optimizing the catalyst performance. For this purpose, two series of mono and bimetallic Ni-Fe catalysts supported on MgAl2O4 and Al2O3, respectively, were prepared. All catalysts were tested in the CO methanation reaction in the temperature interval...

  7. Non-Precious Bimetallic Catalysts for Selective Dehydrogenation of an Organic Chemical Hydride System

    KAUST Repository

    Shaikh Ali, Anaam

    2015-07-06

    Methylcyclohexane (MCH)-Toluene (TOL) chemical hydride cycles as a hydrogen carrier system is successful with the selective dehydrogenation reaction of MCH to TOL, which has been achieved only using precious Pt-based catalysts. Herein, we report improved selectivity using non-precious metal nickel-based bimetallic catalysts, where the second metal occupies the unselective step sites.

  8. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.

    Science.gov (United States)

    Ahmed, Suzanne; Wang, Wei; Bai, Lanjun; Gentekos, Dillon T; Hoyos, Mauricio; Mallouk, Thomas E

    2016-04-26

    Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave end of these rods is inconsistent with a scattering mechanism that we proposed earlier for acoustic propulsion, but is consistent with an acoustic streaming model developed more recently by Nadal and Lauga ( Phys. Fluids 2014 , 26 , 082001 ). Longer rods were slower at constant power, and their speed was proportional to the square of the power density, in agreement with the acoustic streaming model. The streaming model was further supported by a correlation between the disassembly of spinning chains of rods and a sharp decrease in the axial speed of autonomously moving motors within the levitation plane of the cylindrical acoustic cell. However, with bimetallic rods containing metals of different densities, a consistent polarity of motion was observed with the lighter metal end leading. Speed comparisons between single-metal rods of different densities showed that those of lower density are propelled faster. So far, these density effects are not explained in the streaming model. The directionality of bimetallic rods in acoustic fields is intriguing and offers some new possibilities for designing motors in which shape, material, and chemical asymmetry might be combined for enhanced functionality. PMID:26991933

  9. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt-Cu nanocrystals catalysts

    Science.gov (United States)

    Wang, Ying-Xia; Zhou, Hui-Jing; Sun, Ping-Chuan; Chen, Tie-Hong

    2014-01-01

    PtCux (x = 1, 2 and 3) bimetallic nanocrystals with concave surface and dendritic morphology were prepared and used as electrocatalysts in methanol oxidation reaction (MOR) for polymer electrolyte membrane fuel cells. The bimetallic nanocrystals were synthesized via one-pot co-reduction of H2PtCl6 and Cu(acac)2 by oleylamine and polyvinyl pyrrolidone (PVP) in an autoclave at 180 °C. The concave dendritic bimetallic nanostructure consisted of a core rich in Cu and nanodendrites rich in Pt, which was formed via galvanic replacement of Cu by Pt. It was found that PVP played an important role in initiating, facilitating, and directing the replacement reaction. The electrochemical properties of the PtCux were characterized by cyclic voltammetry (CV) and chronoamperometry (CA). The concave dendritic PtCu2/C nanocrystals exhibited exceptionally high activity and strong poisoning resistance in MOR. At 0.75 V (vs. reversible hydrogen electrode, RHE) the mass activity and specific activity of PtCu2/C were 3.3 and 4.1 times higher than those of the commercial Pt/C catalysts, respectively. The enhanced catalytic activity could be attributed to the unique concave dendritic morphology of the bimetallic nanocrystals.

  10. Nonequilibrium forces between dragged ultrasoft colloids.

    Science.gov (United States)

    Singh, Sunil P; Winkler, Roland G; Gompper, Gerhard

    2011-10-01

    The dynamical deformation of ultrasoft colloids as well as their dynamic frictional forces are numerically investigated, when one colloid is dragged past another at constant velocity. Hydrodynamic interactions are captured by a particle-based mesoscopic simulation method. At vanishing relative velocity, the equilibrium repulsive force-distance curve is obtained. At large drag velocities, in contrast, we find an apparent attractive force for departing colloids along the dragging direction. The deformation, in the close encounter of colloids, and the energy dissipation are examined as a function of the drag velocity and their separation. PMID:22107322

  11. Collective motion in populations of colloidal bots

    Science.gov (United States)

    Bartolo, Denis

    One of the origins of active matter physics was the idea that flocks, herds, swarms and shoals could be quantitatively described as emergent ordered phases in self-driven materials. From a somehow dual perspective, I will show how to engineer active materials our of colloidal flocks. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors and how to handle them in microfluidic chips. These populations of colloidal bots display a non-equilibrium transition toward collective motion. A special attention will be paid to the robustness of the resulting colloidal flocks with respect to geometrical frustration and to quenched disorder.

  12. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  13. Analysis of colloid and tracer breakthrough curves

    Science.gov (United States)

    Grindrod, Peter; Edwards, Mark S.; Higgo, Jenny J. W.; Williams, Geoffrey M.

    1996-02-01

    We consider the dispersion and elution of colloids and dissolved nonsorbing tracers within saturated heterogeneous porous media. Since flow path geometry in natural systems is often ill-characterized macroscopic (mean) flow rates and dispersion tensors are utilized in order to account for the sub-model scale microscopic fluctuations in media structure (and the consequent hydrodynamic profile). Even for tracer migration and dispersal this issue is far from settled. Here we consider how colloid and tracer migration phenomena can be treated consistently. Theoretical calculations for model flow geometries yield two quantitative predictions for the transport of free (not yet captured) colloids with reference to a non-sorbing dissolved tracer within the same medium: the average migration velocity of the free colloids is higher than that of the tracer; and that the ratio of the equivalent hydrodynamic dispersion rates of colloids and tracer is dependent only upon properties of the colloids and the porous medium, it is independent of pathlengths and fluid flux, once length scales are large enough. The first of these is well known, since even in simple flow paths free colloids must stay more centre stream. The second, if validated suggests how solute and colloid dispersion may be dealt with consistently in macroscopic migration models. This is crucial since dispersion is usually ill-characterized and unaddressed by the experimental literature. In this paper we present evidence based upon an existing Drigg field injection test for the validity of these predictions. We show that starting from experimental data the fitted dispersion rates of both colloids and non-sorbing tracers increase with the measured elution rates (obeying slightly different rules for tracers and colloids); and that the ratio of colloid and nonsorbing tracer elution rates, and the ratio of colloid and nonsorbing tracer dispersion rates may be dependent upon properties of the colloids and the medium (not

  14. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents

    Science.gov (United States)

    Singh, Richa; Nawale, Laxman; Arkile, Manisha; Wadhwani, Sweety; Shedbalkar, Utkarsha; Chopade, Snehal; Sarkar, Dhiman; Chopade, Balu Ananda

    2016-01-01

    Purpose Multi- and extensively drug-resistant tuberculosis (TB) is a global threat to human health. It requires immediate action to seek new antitubercular compounds and devise alternate strategies. Nanomaterials, in the present scenario, have opened new avenues in medicine, diagnosis, and therapeutics. In view of this, the current study aims to determine the efficacy of phytogenic metal nanoparticles to inhibit mycobacteria. Methods Silver (AgNPs), gold (AuNPs), and gold–silver bimetallic (Au–AgNPs) nanoparticles synthesized from medicinal plants, such as Barleria prionitis, Plumbago zeylanica, and Syzygium cumini, were tested against Mycobacterium tuberculosis and M. bovis BCG. In vitro and ex vivo macrophage infection model assays were designed to determine minimum inhibitory concentration (MIC) and half maximal inhibitory concentration of nanoparticles. Microscopic analyses were carried out to demonstrate intracellular uptake of nanoparticles in macrophages. Besides this, biocompatibility, specificity, and selectivity of nanoparticles were also established with respect to human cell lines. Results Au–AgNPs exhibited highest antitubercular activity, with MIC of <2.56 μg/mL, followed by AgNPs. AuNPs did not show such activity at concentrations of up to 100 μg/mL. In vitro and ex vivo macrophage infection model assays revealed the inhibition of both active and dormant stage mycobacteria on exposure to Au–AgNPs. These nanoparticles were capable of entering macrophage cells and exhibited up to 45% cytotoxicity at 30 μg/mL (ten times MIC concentration) after 48 hours. Among these, Au–AgNPs synthesized from S. cumini were found to be more specific toward mycobacteria, with their selectivity index in the range of 94–108. Conclusion This is the first study to report the antimycobacterial activity of AuNPs, AgNPs, and Au–AgNPs synthesized from medicinal plants. Among these, Au–AgNPs from S. cumini showed profound efficiency, specificity, and

  15. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents

    Directory of Open Access Journals (Sweden)

    Singh R

    2016-05-01

    Full Text Available Richa Singh,1 Laxman Nawale,2 Manisha Arkile,2 Sweety Wadhwani,1 Utkarsha Shedbalkar,1 Snehal Chopade,1 Dhiman Sarkar,2 Balu Ananda Chopade1,3 1Department of Microbiology, Savitribai Phule Pune University, 2Combichem-Bioresource Center, Organic Chemistry Division, National Chemical Laboratory, Pune, 3Dr Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India Purpose: Multi- and extensively drug-resistant tuberculosis (TB is a global threat to human health. It requires immediate action to seek new antitubercular compounds and devise alternate strategies. Nanomaterials, in the present scenario, have opened new avenues in medicine, diagnosis, and therapeutics. In view of this, the current study aims to determine the efficacy of phytogenic metal nanoparticles to inhibit mycobacteria. Methods: Silver (AgNPs, gold (AuNPs, and gold–silver bimetallic (Au–AgNPs nanoparticles synthesized from medicinal plants, such as Barleria prionitis, Plumbago zeylanica, and Syzygium cumini, were tested against Mycobacterium tuberculosis and M. bovis BCG. In vitro and ex vivo macrophage infection model assays were designed to determine minimum inhibitory concentration (MIC and half maximal inhibitory concentration of nanoparticles. Microscopic analyses were carried out to demonstrate intracellular uptake of nanoparticles in macrophages. Besides this, biocompatibility, specificity, and selectivity of nanoparticles were also established with respect to human cell lines. Results: Au–AgNPs exhibited highest antitubercular activity, with MIC of <2.56 µg/mL, followed by AgNPs. AuNPs did not show such activity at concentrations of up to 100 µg/mL. In vitro and ex vivo macrophage infection model assays revealed the inhibition of both active and dormant stage mycobacteria on exposure to Au–AgNPs. These nanoparticles were capable of entering macrophage cells and exhibited up to 45% cytotoxicity at 30 µg/mL (ten times MIC concentration after 48 hours

  16. Fabricating colloidal crystals and construction of ordered nanostructures

    Directory of Open Access Journals (Sweden)

    Sun Zhiqiang

    2006-01-01

    Full Text Available AbstractColloidal crystals of polymeric or inorganic microspheres are of extensive interest due to their potential applications in such as sensing, optics, photonic bandgap and surface patterning. The article highlights a set of approaches developed in our group, which are efficient to prepare colloidal crystals with ordered voids, patterned colloidal crystals on non-planar surfaces, heterogeneous colloidal crystals of different building blocks, colloidal crystals composed of non-spherical polyhedrons, and colloidal crystals of non-close-packed colloidal microspheres in particular. The use of these colloidal crystals as templates for different microstructures range from nanoscale to micron-scale is also summarized.

  17. Structural color from colloidal glasses

    Science.gov (United States)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  18. Highly uniform polyhedral colloids formed by colloidal crystal templating

    Science.gov (United States)

    Wang, Yifan; McGinley, James; Crocker, John; Crocker Research Group Team

    2015-03-01

    We seek to create polyhedral solid particles by trapping oil droplets in a colloidal crystal, and polymerizing them in situ, resulting in polyhedral particles containing spherical dimples in an ordered arrangement. Specifically, highly monodisperse, micron-sized droplets of 3-methacryloxypropyl trimethoxysilane (TPM) were first prepared through a poly condensation reaction, following well established methods. The droplets were mixed with an excess of polystyrene(PS) particles (diameter in 2.58 μm), which formed close packed (FCC or HCP) colloidal crystals by natural sedimentation and compression under partial drying to an extent, with TPM oil droplets trapped into their tetrahedral and octahedral interstitial sites and wet PS particles. Depending on the initial particle volume fraction and extent of drying, a high yield of dimpled particles having different shapes including tetrahedra and cubes were obtained after oil initiated polymerization and dissolution of the host PS particles, as seen under SEM. The effects of TPM to PS particles size ratio, drying time, and other factors in relation to the yield of tetrahedral and cubic dimpled particles will be presented. Finally, fractionation techniques were used to obtain suspensions of uniform polyhedral particles of high purity.

  19. Thermo-mechanical efficiency of the bimetallic strip heat engine at the macro-scale and micro-scale

    International Nuclear Information System (INIS)

    Bimetallic strip heat engines are energy harvesters that exploit the thermo-mechanical properties of bistable bimetallic membranes to convert heat into mechanical energy. They thus represent a solution to transform low-grade heat into electrical energy if the bimetallic membrane is coupled with an electro-mechanical transducer. The simplicity of these devices allows us to consider their miniaturization using MEMS fabrication techniques. In order to design and optimize these devices at the macro-scale and micro-scale, this article proposes an explanation of the origin of the thermal snap-through by giving the expressions of the constitutive equations of composite beams. This allows us to evaluate the capability of bimetallic strips to convert heat into mechanical energy whatever their size is, and to give the theoretical thermo-mechanical efficiencies which can be obtained with these harvesters. (paper)

  20. Evaluation of luminol chemiluminescence based on simultaneous introducing of coumarin derivatives as green fluorophores and chitosan-induced Au/Ag alloy nanoparticle as catalyst for the sensitive determination of glucose.

    Science.gov (United States)

    Chaichi, M J; Alijanpour, S O; Asghari, S; Shadlou, S

    2015-03-01

    We report herein the development of a novel chemiluminescence system based on simultaneous introducing of synthetic coumarin derivatives and chitosan-induced Au/Ag alloy NPs on the luminol CL system and suggest how it may be useful for determination of glucose. Chitosan-induced Au/Ag nanoalloys in the coumarin derivatives intensified-luminol CL system, in addition to catalyze CL reaction can make a change in the process of coumarin derivatives effect as fluorophore on the luminol CL system. This phenomenon is caused by interaction between active functional groups of coumarin derivatives and chitosan. The interaction strength depends on the coumarin derivatives' structure and their substituents. Considering the inevitable trend luminol radical and superoxide anion radical to absorption on the surface of the embedded Au/Ag nanoalloy in the chitosan matrix, it can be concluded that chitosan acts as a platform for all reagents involved in the CL reaction including coumarin derivatives, Au/Ag nanoalloy and luminol, and electron-transfer taking place on it; Placing all chemiluminescent reagents together on the chitosan network can lead to a powerful CL due to increasing rigidity of CL system. The most efficient coumarin derivative on the Au/Ag nanoalloy-fluorophore-luminol-H2O2 CL system, in relation to interaction capability with chitosan' functional groups, was selected and the CL condition in presence of it was optimized. Whereas the glucose oxidase-mediated oxidation of glucose yields gluconic acid and H2O2, under optimum condition the most efficient CL system was applied to detection of glucose due to enzymatically production of hydrogen peroxide. The linear response range of 1.5 × 10(-6)-5.0 × 10(-3) M and the detection limit (defined as the concentration that could be detected at the signal-to-noise ratio of 3) of 7.5 × 10(-7) M was found for the glucose standards. Also, the developed method was successfully applied to determination of glucose in

  1. Fluctuation interactions of colloidal particles

    International Nuclear Information System (INIS)

    For like-charged colloidal particles, two mechanisms of attraction between them survive when the interparticle distance is larger than the Debye screening length. One of them is the conventional van der Waals attraction and the second is the attraction mechanism mediated by thermal fluctuations of particle position. The latter is related to the effective variable mass (Euler mass) of the particles produced by the fluid motion. The strongest attraction potential (up to the value of the temperature T) corresponds to the case of uncharged particles and a relatively large Debye screening length. In this case, the third attraction mechanism is involved. It is mediated by thermal fluctuations of the fluid density.

  2. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  3. Frost Heave in Colloidal Soils

    KAUST Repository

    Peppin, Stephen

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates to accommodate the ice lenses, and a heave regime during which liquid is sucked into the consolidated soil from an external reservoir, and the added volume causes the soil to heave. The ice fraction is found to vary inversely with thefreezing velocity V , while the rate of heave is independent of V , consistent with field and laboratoryobservations. © 2011 Society for Industrial and Applied Mathematics.

  4. Optical cavity modes in gold shell colloids

    NARCIS (Netherlands)

    Penninkhof, J.J.; Sweatlock, L.A.; Moroz, A.; Atwater, H.A.; van Blaaderen, A.; Polman, A.

    2008-01-01

    Core-shell colloids composed of a dielectric core surrounded by a metal shell show geometric cavity resonances with optical properties that are distinctly different than those of the collective plasmon modes of the metal shell. We use finite-difference time domain calculations on silica colloids wit

  5. Dynamics of colloidal crystals in shear flow

    NARCIS (Netherlands)

    Derks, D.; Wu, Y.L.; van Blaaderen, A.; Imhof, A.

    2009-01-01

    We investigate particle dynamics in nearly hard sphere colloidal crystals submitted to a steady shear flow. Both the fluctuations of single colloids and the collective motion of crystalline layers as a whole are studied by using a home-built counter rotating shear cell in combination with confocal m

  6. Colloidal iron(III) pyrophosphate particles

    NARCIS (Netherlands)

    Rossi, L.; Velikov, K. P.; Philipse, A.P.

    2014-01-01

    Ferric pyrophosphate is a widely used material in the area of mineral fortification but its synthesis and properties in colloidal form are largely unknown. In this article, we report on the synthesis and characterisation of colloidal iron(III) pyrophosphate particles with potential for application a

  7. Oppositely charged colloids out of equilibrium

    NARCIS (Netherlands)

    Vissers, T.

    2010-01-01

    Colloids are particles with a size in the range of a few nanometers up to several micrometers. Similar to atomic and molecular systems, they can form gases, liquids, solids, gels and glasses. Colloids can be used as model systems because, unlike molecules, they are sufficiently large to be studied d

  8. Dechlorination of disinfection by-product monochloroacetic acid in drinking water by nanoscale palladized iron bimetallic particle

    Institute of Scientific and Technical Information of China (English)

    CHEN Chao; WANG Xiangyu; CHANG Ying; LIU Huiling

    2008-01-01

    Nanoscale palladized iron (Pd/Fe) bimetallic particles were prepared by reductive deposition method. The particles were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer-Emmett-Teller-nitrogen (BET-N2) method. Data obtained from those methods indicated that nanoscale Pd/Fe bimetallic particles contained α-Fe0. Detected Pd to Fe ratio by weight (PFRW) was close to theoretical PFRW. Spherical granules with diameter of 47±11.5 nm connected with one another to form chains and the chains composed nanoscale Pd/Fe bimetallic particles. Specific surface area of particles was 51 m2/g. Factors, such as species of reductants, PFRW, dose of nanoscale Pd/Fe bimetallic particles added into solutions, solution initial pH, and a variety of solvents were studied. Dechlorination effect of monochloroacetic acid (MCAA) by different reductants followed the trend: nanoscale Pd/Fe bimetallic particles of 0.182% PFRW > nanoscale Fe > reductive Fe. When PFRW was lower than 0.083%, increasing PFRW would increase dechlorination efficiency (DE) of MCAA. But when the PFRW was higher than 0.083%, increasing PFRW caused decrease in DE. Adding more nanoscale Pd/Fe bimetallic particles to solution would enhance DE. The DE of MCAA decreased as initial pH of solution increased.

  9. Controlled Surface Segregation Leads to Efficient Coke-Resistant Nickel/Platinum Bimetallic Catalysts for the Dry Reforming of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lidong [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Zhou, Lu [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Ould-Chikh, Samy [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Anjum, Dalaver H. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Kanoun, Mohammed B. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Scaranto, Jessica [SABIC Corporate Research and Innovation Center, Thuwal (Saudi Arabia); Hedhili, Mohamed N. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Khalid, Syed [Brookhaven National Lab. (BNL), Upton, NY (United States); Laveille, Paco V. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); D' Souza, Lawrence [SABIC Corporate Research and Innovation Center, Thuwal (Saudi Arabia); Clo, Alain [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Basset, Jean-Marie [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia)

    2015-02-03

    The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  10. Surface plasmon resonance sensing of a biomarker of Alzheimer disease in an intensity measurement mode with a bimetallic chip

    Science.gov (United States)

    Kim, Hyung Jin; Sohn, Young-Soo; Kim, Chang-duk; Jang, Dae-ho

    2016-09-01

    A surface plasmon resonance (SPR) sensor system with a bimetallic chip has been utilized to sense the very low concentration of amyloid-beta (A β)(1-42) by measurement of the reflectance variation. The bimetallic chip was comprised of Au (10 nm) and Ag (40 nm) on Cr (2 nm)-coated BK-7 glass substrate. Protein A was used to efficiently immobilize the antibody of A β(1-42) on the surface of the bimetallic chip. The reflectance curve of the bimetallic chip represented a narrower linewidth compared to that of the conventional gold (Au) chip. The SPR sensor using the bimetallic chip in the intensity interrogation mode acquired the response of A β(1-42) at concentrations of 250, 500, 750 and 1,000 pg/ml. The calibration plot showed a linear relationship between the mean reflectance variation and the A β(1-42) concentration. The results proved that the SPR sensor system with the bimetallic chip in the intensity interrogation mode can successfully detect various concentrations of A β(1-42), including critical concentration, to help diagnose Alzheimer's disease.

  11. Cocklebur-shaped colloidal dispersions.

    Science.gov (United States)

    Lestage, David J; Urban, Marek W

    2005-11-01

    Unique cocklebur-shaped colloidal dispersions were prepared using a combination of a nanoextruder applied to the aqueous solution containing methyl methacrylate (MMA) and n-butyl acrylate (n-BA) with azo-bis-isobutyronitrile (AIBN) or potassium persulfate (KPS) initiators and stabilized by a mixture of sodium dioctyl sulfosuccinate (SDOSS) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DCPC) phospholipid. Upon extrusion and heating to 75 degrees C, methyl methacrylate/n-butyl acrylate (MMA/nBA) colloidal particles containing tubules pointing outward were obtained as a result of DCPC phospholipids present at the particle surfaces. The same cocklebur-shaped particles were obtained when classical polymerization was used without a nanoextruder under similar compositional and thermal conditions, giving a particle size of 159 nm. However, when Ca(2+) ions are present during polymerization, cocklebur morphologies are disrupted. Because DCPC tubules undergo a transition at 38 degrees C, such cocklebur morphologies may offer numerous opportunities for devices with stimuli-responsive characteristics. PMID:16262269

  12. Diffusion in active magnetic colloids

    Energy Technology Data Exchange (ETDEWEB)

    Taukulis, R.; Cebers, A., E-mail: aceb@tesla.sal.lv

    2014-11-15

    Properties of active colloids of circle swimmers are reviewed. As a particular example of active magnetic colloids the magnetotactic bacteria under the action of a rotating magnetic field is considered. The relation for a diffusion coefficient due to the random switching of the direction of rotation of their rotary motors is derived on the basis of the master equation. The obtained relation is confirmed by the direct numerical simulation of random trajectory of a magnetotactic bacterium under the action of the Poisson type internal noise due to the random switching of rotary motors. The results obtained are in qualitative and quantitative agreement with the available experimental results and allow one to determine the characteristic time between the switching events of a rotary motor of the bacterium. - Highlights: • Magnetotactic bacteria in a rotating field behaves as circle swimmers. • Diffusion coefficient of these swimmers due to the random switching of rotary motors is calculated. • Results are in good qualitative and quantitative agreement with available experimental results.

  13. Dynamics of the colloidal suspensions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-yan; MA Hong-ru

    2006-01-01

    This article offers a survey on our current knowledge of the dynamics of the colloidal suspension,where each particle experiences the friction force with solvent,hydrodynamic interaction,and potential force from surrounding particles and thermodynamic force.It further contains a summary of the basic concepts about microstructures and equilibrium properties,and of analytical and numerical methods,which are relevant for the theoretical description of the suspensions.The description of the dynamics of colloidal particles,based on the generalized Smoluchowski equation,is justified for the time scale accessible in DLS experiments.The combined influence of hard sphere or electrostatic potential and solvent-mediated hydrodynamic interaction on the short-time dynamics of monodisperse suspensions is investigated in detail.A thorough study of tracer-diffusion in hard sphere and charge-stabilized suspensions is presented.Mean-square displacements and long-time tracer-diffusion coefficients are calculated with two alternative approximations,i.e.,a mode-coupling scheme and a single relaxation time ansatz.

  14. Colloid-Associated Radionuclide Concentration Limits: ANL

    International Nuclear Information System (INIS)

    The purpose and scope of this report is to describe the analysis of available colloidal data from waste form corrosion tests at Argonne National Laboratory (ANL) to extract characteristics of these colloids that can be used in modeling their contribution to the source term for sparingly soluble radioelements (e.g., Pu). Specifically, the focus is on developing a useful description of the following waste form colloid characteristics: (1) composition, (2) size distribution, and (3) quantification of the rate of waste form colloid generation. The composition and size distribution information are intended to support analysis of the potential transport of the sparingly soluble radionuclides associated with the waste form colloids. The rate of colloid generation is intended to support analysis of the waste form colloid-associated radionuclide concentrations. In addressing the above characteristics, available data are interpreted to address mechanisms controlling colloid formation and stability. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M and O 2000). Because the end objective is to support the source term modeling we have organized the conclusions into two categories: (1) data analysis conclusions and (2) recommendations for colloid source term modeling. The second category is included to facilitate use of the conclusions from the data analysis in the abstraction of a colloid source term model. The data analyses and conclusions that are presented in this report are based on small-scale laboratory tests conducted on a limited number of waste glass compositions and spent fuel types

  15. Plutonium and Cesium Colloid Mediated Transport

    Science.gov (United States)

    Boukhalfa, H.; Dittrich, T.; Reimus, P. W.; Ware, D.; Erdmann, B.; Wasserman, N. L.; Abdel-Fattah, A. I.

    2013-12-01

    Plutonium and cesium have been released to the environment at many different locations worldwide and are present in spent fuel at significant levels. Accurate understanding of the mechanisms that control their fate and transport in the environment is important for the management of contaminated sites, for forensic applications, and for the development of robust repositories for the disposal of spent nuclear fuel and nuclear waste. Plutonium, which can be present in the environment in multiple oxidations states and various chemical forms including amorphous oxy(hydr)oxide phases, adsorbs/adheres very strongly to geological materials and is usually immobile in all its chemical forms. However, when associated with natural colloids, it has the potential to migrate significant distances from its point of release. Like plutonium, cesium is not very mobile and tends to remain adhered to geological materials near its release point, although its transport can be enhanced by natural colloids. However, the reactivity of plutonium and cesium are very different, so their colloid-mediated transport might be significantly different in subsurface environments. In this study, we performed controlled experiments in two identically-prepared columns; one dedicated to Pu and natural colloid transport experiments, and the other to Cs and colloid experiments. Multiple flow-through experiments were conducted in each column, with the effluent solutions being collected and re-injected into the same column two times to examine the persistence and scaling behavior of the natural colloids, Pu and Cs. The data show that that a significant fraction of colloids were retained in the first elution through each column, but the eluted colloids collected from the first run transported almost conservatively in subsequent runs. Plutonium transport tracked natural colloids in the first run but deviated from the transport of natural colloids in the second and third runs. Cesium transport tracked natural

  16. Simultaneous enzymatic and SERS properties of bifunctional chitosan-modified popcorn-like Au-Ag nanoparticles for high sensitive detection of melamine in milk powder.

    Science.gov (United States)

    Li, Junrong; Zhang, Guannan; Wang, Lihua; Shen, Aiguo; Hu, Jiming

    2015-08-01

    In this work, we suggest a chitosan-modified popcorn-like Au-Ag nanoparticles (CSPNPs) based assay for high sensitive detection of melamine, in which CSPNPs not only provide with an intrinsic peroxidase-like activity but also act as surface enhanced Raman scattering (SERS) substrates. CSPNPs can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to the charge transfer complex (CTC), which contributes to a tremendous surface-enhanced resonant Raman scattering (SERRS) signals with 632.8 nm laser excitation. The target molecule melamine can generate an additional compound with H2O2, which means the available amount of H2O2 for the oxidation of TMB reduced. Correspondingly, the SERRS intensity of CTC is decreased. The decreased Raman intensity is proportional to the concentration of melamine over a wide range from 10 nM to 50 μM (R(2)=0.989), with a limit of detection (LOD) of 8.51 nM. Moreover, the proposed highly selective method is fully capable of rapid, separation-free detection of melamine in milk powder. PMID:26048843

  17. Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes.

    Science.gov (United States)

    Noh, Mi Suk; Lee, Somin; Kang, Homan; Yang, Jin-Kyoung; Lee, Hyunmi; Hwang, Doyk; Lee, Jong Woo; Jeong, Sinyoung; Jang, Yoonjeong; Jun, Bong-Hyun; Jeong, Dae Hong; Kim, Seong Keun; Lee, Yoon-Sik; Cho, Myung-Haing

    2015-03-01

    Au/Ag hollow nanoshells (AuHNSs) were developed as multifunctional therapeutic agents for effective, targeted, photothermally induced drug delivery under near-infrared (NIR) light. AuHNSs were synthesized by galvanic replacement reaction. We further conjugated antibodies against the epidermal growth factor receptor (EGFR) to the PEGylated AuHNS, followed by loading with the antitumor drug doxorubicin (AuHNS-EGFR-DOX) for lung cancer treatment. AuHNSs showed similar photothermal efficiency to gold nanorods under optimized NIR laser power. The targeting of AuHNS-EGFR-DOX was confirmed by light-scattering images of A549 cells, and doxorubicin release from the AuHNSs was evaluated under low pH and NIR-irradiated conditions. Multifunctional AuHNS-EGFR-DOX induced photothermal ablation of the targeted lung cancer cells and rapid doxorubicin release following irradiation with NIR laser. Furthermore, we evaluated the effectiveness of AuHNS-EGFR-DOX drug delivery by comparing two drug delivery methods: receptor-mediated endocytosis and cell-surface targeting. Accumulation of the AuHNS-EGFR-DOX on the cell surfaces by targeting EGFR turned out to be more effective for lung cancer treatments than uptake of AuHNS-EGFR-DOX. Taken together, our data suggest a new and optimal method of NIR-induced drug release via the accumulation of targeted AuHNS-EGFR-DOX on cancer cell membranes.

  18. Structural evolution of Colloidal Gels under Flow

    Science.gov (United States)

    Boromand, Arman; Maia, Joao; Jamali, Safa

    Colloidal suspensions are ubiquitous in different industrial applications ranging from cosmetic and food industries to soft robotics and aerospace. Owing to the fact that mechanical properties of colloidal gels are controlled by its microstructure and network topology, we trace the particles in the networks formed under different attraction potentials and try to find a universal behavior in yielding of colloidal gels. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation and yielding mechanism in colloidal system with short-ranged attractive force. However, BD neglects multi-body hydrodynamic interactions (HI) which are believed to be responsible for the second yielding of colloidal gels. We envision using dissipative particle dynamics (DPD) with modified depletion potential and hydrodynamic interactions, as a coarse-grain model, can provide a robust simulation package to address the gel formation process and yielding in short ranged-attractive colloidal systems. The behavior of colloidal gels with different attraction potentials under flow is examined and structural fingerprints of yielding in these systems will be discussed.

  19. Synthesis and Analytical Centrifugation of Magnetic Model Colloids

    NARCIS (Netherlands)

    Luigjes, B.

    2012-01-01

    This thesis is a study of the preparation and thermodynamic properties of magnetic colloids. First, two types of magnetic model colloids are investigated: composite colloids and single-domain nanoparticles. Thermodynamics of magnetic colloids is studied using analytical centrifugation, including a s

  20. Uncovering the Stabilization Mechanism in Bimetallic Ruthenium-Iridium Anodes for Proton Exchange Membrane Electrolyzers.

    Science.gov (United States)

    Saveleva, Viktoriia A; Wang, Li; Luo, Wen; Zafeiratos, Spyridon; Ulhaq-Bouillet, Corinne; Gago, Aldo S; Friedrich, K Andreas; Savinova, Elena R

    2016-08-18

    Proton exchange membrane (PEM) electrolyzers are attracting an increasing attention as a promising technology for the renewable electricity storage. In this work, near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) is applied for in situ monitoring of the surface state of membrane electrode assemblies with RuO2 and bimetallic Ir0.7Ru0.3O2 anodes during water splitting. We demonstrate that Ir protects Ru from the formation of an unstable hydrous Ru(IV) oxide thereby rendering bimetallic Ru-Ir oxide electrodes with higher corrosion resistance. We further show that the water splitting occurs through a surface Ru(VIII) intermediate, and, contrary to common opinion, the presence of Ir does not hinder its formation. PMID:27477824

  1. Kinetic Study on the Formation of Bimetallic Core-Shell Nanoparticles via Microemulsions

    Directory of Open Access Journals (Sweden)

    Concha Tojo

    2014-11-01

    Full Text Available Computer calculations were carried out to determine the reaction rates and the mean structure of bimetallic nanoparticles prepared via a microemulsion route. The rates of reaction of each metal were calculated for a particular microemulsion composition (fixed intermicellar exchange rate and varying reduction rate ratios between both metal and metal salt concentration inside the micelles. Model predictions show that, even in the case of a very small difference in reduction potential of both metals, the formation of an external shell in a bimetallic nanoparticle is possible if a large reactant concentration is used. The modification of metal arrangement with concentration was analyzed from a mechanistic point of view, and proved to be due to the different impact of confinement on each metal: the reaction rate of the faster metal is only controlled by the intermicellar exchange rate but the slower metal is also affected by a cage-like effect.

  2. Synthesis, characterization, and growth simulations of Cu–Pt bimetallic nanoclusters

    Directory of Open Access Journals (Sweden)

    Subarna Khanal

    2014-08-01

    Full Text Available Highly monodispersed Cu–Pt bimetallic nanoclusters were synthesized by a facile synthesis approach. Analysis of transmission electron microscopy (TEM and spherical aberration (Cs-corrected scanning transmission electron microscopy (STEM images shows that the average diameter of the Cu–Pt nanoclusters is 3.0 ± 1.0 nm. The high angle annular dark field (HAADF-STEM images, intensity profiles, and energy dispersive X-ray spectroscopy (EDX line scans, allowed us to study the distribution of Cu and Pt with atomistic resolution, finding that Pt is embedded randomly in the Cu lattice. A novel simulation method is applied to study the growth mechanism, which shows the formation of alloy structures in good agreement with the experimental evidence. The findings give insight into the formation mechanism of the nanosized Cu–Pt bimetallic catalysts.

  3. Synergistic Effects in Bimetallic Palladium-Copper Catalysts Improve Selectivity in Oxygenate Coupling Reactions.

    Science.gov (United States)

    Goulas, Konstantinos A; Sreekumar, Sanil; Song, Yuying; Kharidehal, Purnima; Gunbas, Gorkem; Dietrich, Paul J; Johnson, Gregory R; Wang, Y C; Grippo, Adam M; Grabow, Lars C; Gokhale, Amit A; Toste, F Dean

    2016-06-01

    Condensation reactions such as Guerbet and aldol are important since they allow for C-C bond formation and give higher molecular weight oxygenates. An initial study identified Pd-supported on hydrotalcite as an active catalyst for the transformation, although this catalyst showed extensive undesirable decarbonylation. A catalyst containing Pd and Cu in a 3:1 ratio dramatically decreased decarbonylation, while preserving the high catalytic rates seen with Pd-based catalysts. A combination of XRD, EXAFS, TEM, and CO chemisorption and TPD revealed the formation of CuPd bimetallic nanoparticles with a Cu-enriched surface. Finally, density functional theory studies suggest that the surface segregation of Cu atoms in the bimetallic alloy catalyst produces Cu sites with increased reactivity, while the Pd sites responsible for unselective decarbonylation pathways are selectively poisoned by CO. PMID:27195582

  4. Porous Diatomite-Immobilized Cu–Ni Bimetallic Nanocatalysts for Direct Synthesis of Dimethyl Carbonate

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2012-01-01

    Full Text Available A series of diatomite-immobilized Cu–Ni bimetallic nanocatalysts was prepared under ultrasonication and evaluated for the direct synthesis of dimethyl carbonate under various conditions. Upon being fully characterized by TPR, TPD, BET, SEM, XRD, and XPS methodologies, it is found that the bimetallic composite is effectively alloyed and well immobilized inside or outside the pore of diatomite. Under the optimal conditions of 1.2 MPa and 120∘C, the prepared catalyst with loading of 15% exhibited the highest methanol conversion of 6.50% with DMC selectivity of 91.2% as well as more than 10-hour lifetime. The possible reaction mechanism was proposed and discussed in detail. To our knowledge, this is the first report to use diatomite as a catalyst support for direct DMC synthesis from methanol and CO2.

  5. Synthesis and Characterization of Optically Active Fractal Seed Mediated Silver Nickel Bimetallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Joseph Adeyemi Adekoya

    2014-01-01

    Full Text Available The synthesis of new seed mediated AgNi allied bimetallic nanocomposites was successfully carried out by the successive reduction of the metal ions in diethylene glycol, ethylene glycol, glycerol, and pentaerythritol solutions, with concomitant precipitation of Ag/Ni bimetal sols. The optical measurement revealed the existence of distinct band edge with surface plasmon resonance (SPR in the region of 400–425 nm and excitonic emission with maximum peak at 382 nm which were reminiscent of cluster-in-cluster surface enriched bimetallic silver-nickel sols. The morphological characterization by transmission electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction analyses complimented by surface scan using X-ray photoelectron spectroscopy strongly supported the formation of intimately alloyed face-centered silver/nickel nanoclusters.

  6. Interactions between radioactively labeled colloids and natural particles: Evidence for colloidal pumping

    Science.gov (United States)

    Wen, Liang-Saw; Santschi, Peter H.; Tang, Degui

    1997-07-01

    It has been hypothesized that colloidal forms of trace metals can be reactive intermediaries in the scavenging processes leading to the removal of their particulate forms. A series of radiotracer experiments using natural colloidal organic matter from Galveston Bay, USA were carried out in order to test this hypothesis. Suspended particle uptake of originally colloidally bound trace metals occurred in a matter of hours to days in estuarine waters. After ten days, the majority (>50%) of the colloidal trace metals had been transferred into the particulate phase (≥0.45 μm), except for 65Zn. Two distinctively different temporal regions of removal of colloidal trace metals were identified: a faster reaction during the first four hours, followed by a slower reaction after approximately one day. In a separate river water-seawater mixing experiment, the solid/solution partitioning of the radiotracers was investigated in the absence of suspended matter. About 30% of most of the elements, except Ag and Fe (˜60%), were associated with a newly formed particulate phase after eight days. There were two major trends: (1) the particulate fraction of 59Fe and 110Ag increased while the colloidal fraction decreased, suggesting a colloidal pumping mechanism. (2) The particulate fraction of 54Mn, 133Ba, 65Zn, 109Cd, 113Sn, and 60CO increased while the LMW (≤ 1 kDa) fraction decreased, suggesting a direct uptake into the particulate fraction with less involvement of a transitory colloidal phase. The values of the particle-water ( Kd) and colloid-water partitioning ( Kc) coefficients for most trace metals were similar to those observed in Galveston Bay waters, suggesting complementary results to field studies. The results from these experiments suggested two different pathways for colloidal tracer uptake by particles: (1) colloidal pumping of a major component (e.g., biopolymer) of the colloidal pool and (2) coagulation of trace components (e.g., phytochelatins) with varying

  7. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  8. Colloidal QDs-polymer nanocomposites

    Science.gov (United States)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  9. Platinum-ruthenium bimetallic clusters on graphite: a comparison of vapor deposition and electroless deposition methods.

    Science.gov (United States)

    Galhenage, Randima P; Xie, Kangmin; Diao, Weijian; Tengco, John Meynard M; Seuser, Grant S; Monnier, John R; Chen, Donna A

    2015-11-14

    Bimetallic Pt-Ru clusters have been grown on highly ordered pyrolytic graphite (HOPG) surfaces by vapor deposition and by electroless deposition. These studies help to bridge the material gap between well-characterized vapor deposited clusters and electrolessly deposited clusters, which are better suited for industrial catalyst preparation. In the vapor deposition experiments, bimetallic clusters were formed by the sequential deposition of Pt on Ru or Ru on Pt. Seed clusters of the first metal were grown on HOPG surfaces that were sputtered with Ar(+) to introduce defects, which act as nucleation sites for Pt or Ru. On the unmodified HOPG surface, both Pt and Ru clusters preferentially nucleated at the step edges, whereas on the sputtered surface, clusters with relatively uniform sizes and spatial distributions were formed. Low energy ion scattering experiments showed that the surface compositions of the bimetallic clusters are Pt-rich, regardless of the order of deposition, indicating that the interdiffusion of metals within the clusters is facile at room temperature. Bimetallic clusters on sputtered HOPG were prepared by the electroless deposition of Pt on Ru seed clusters from a Pt(+2) solution using dimethylamine borane as the reducing agent at pH 11 and 40 °C. After exposure to the electroless deposition bath, Pt was selectively deposited on Ru, as demonstrated by the detection of Pt on the surface by XPS, and the increase in the average cluster height without an increase in the number of clusters, indicating that Pt atoms are incorporated into the Ru seed clusters. Electroless deposition of Ru on Pt seed clusters was also achieved, but it should be noted that this deposition method is extremely sensitive to the presence of other metal ions in solution that have a higher reduction potential than the metal ion targeted for deposition. PMID:26018140

  10. Bimetallic Pt-Ni catalysts supported on usy zeolite for n-hexane isomerization

    Directory of Open Access Journals (Sweden)

    F. V. Barsi

    2009-06-01

    Full Text Available Isomerization of linear alkanes has had considerable importance for the refining industry because the isomers formed in this reaction have high octane number. Most works reported in the literature studied the use of bifunctional catalysts, i.e., ones that have acid sites and metallic sites. In this study, bifunctional monometallic (Ni or Pt and bimetallic catalysts (Pt-Ni, using HUSY zeolite as the support, were prepared in order to verify the role of the metal content and composition on the catalytic properties for n-hexane isomerization. The method used for metal dispersion in the zeolite was competitive ion exchange using ammine complexes [Ni(NH36]Cl2 and [Pt(NH34]Cl2 as precursors. Four series of catalysts with constant atomic metal content had total metal amounts between 130 and 280 µmol M/g cat. Catalysts were characterized by temperature programmed reduction (TPR and subjected to catalytic evaluation for n-hexane isomerization at 250 ºC and 1 atm using H2/C6 = 9 molar ratio. TPR results show an easier reducibility of Ni+2 cations in the presence of Pt, which was evidenced by the displacement of the reduction peak of those cations towards lower temperatures in bimetallic catalysts. The bimetallic catalysts presented a higher activity in the isomerization of n-hexane when compared to the monometallic ones, as well better stability as the Pt content in the solid increases. The results of the activity as a function of the Pt content in the bimetallic catalysts show a maximum value around 50% of Pt. An addition of Pt above this critical value leads to a small decrease of the catalytic activity.

  11. Stability of the Shallow Axisymmetric Parabolic-Conic Bimetallic Shell by Nonlinear Theory

    OpenAIRE

    M. Jakomin; F. Kosel

    2011-01-01

    In this contribution, we discuss the stress, deformation, and snap-through conditions of thin, axi-symmetric, shallow bimetallic shells of so-called parabolic-conic and plate-parabolic type shells loaded by thermal loading. According to the theory of the third order that takes into account the balance of forces on a deformed body, we present a model with a mathematical description of the system geometry, displacements, stress, and thermoelastic deformations. The equations are based on the lar...

  12. Catalytic Activity of Mono- and Bi-Metallic Nanoparticles Synthesized via Microemulsions

    Directory of Open Access Journals (Sweden)

    Ramona Y.G. König

    2014-07-01

    Full Text Available Water-in-oil (w/o microemulsions were used as a template for the synthesis of mono- and bi-metallic nanoparticles. For that purpose, w/o-microemulsions containing H2PtCl6, H2PtCl6 + Pb(NO32 and H2PtCl6 + Bi(NO3, respectively, were mixed with a w/o-microemulsion containing the reducing agent, NaBH4. The results revealed that it is possible to synthesize Pt, PtPb and PtBi nanoparticles of ~3–8 nm in diameter at temperatures of about 30°C. The catalytic properties of the bimetallic PtBi and PtPb nanoparticles were studied and compared with monometallic platinum nanoparticles. Firstly, the electrochemical oxidation of formic acid to carbon monoxide was investigated, and it was found that the resistance of the PtBi and PtPb nanoparticles against the catalyst-poisoning carbon monoxide was significantly higher compared to the Pt nanoparticles. Secondly, investigating the reduction of 4-nitrophenol to 4-aminophenol,we found that the bimetallic NPs are most active at 23 °C, while the order of the activity changes at higher temperatures, i.e., that the Pt nanoparticles are the most active ones at 36 and 49 °C. Furthermore, we observed a strong influence of the support, which was either a polymer or Al2O3. Thirdly, for the hydrogenation of allylbenzene to propylbenzene, the monometallic Pt NPs turned out to be the most active catalysts, followed by the PtPb and PtBi NPs. Comparing the two bimetallic nanoparticles, one sees that the PtPb NPs are significantly more active than the respective PtBi NPs.

  13. Ultrasonic double-wall shadow control of laminations in bimetallic tubes

    International Nuclear Information System (INIS)

    Nondestructive method of control of laminations in 10, 12KhN3A and 0Kh18N10T steel tube plated with copper, bronze or nickel has been developed. The method is based on the excitation and reception of longitudinal ultrasonic oscillations passing through two walls of the bimetallic tube filled with water. The method sensitivity depends on the damping in the tube wall, difference in wall thickness, ovality and surface roughness

  14. Levulinic acid hydrogenolysis on Al2O3-based Ni-Cu bimetallic catalysts

    Institute of Scientific and Technical Information of China (English)

    Iker Obregón; Eriz Corro; Urko Izquierdo; Jesus Requies; Pedro L. Arias

    2014-01-01

    Inexpensive γ-alumina-based nickel-copper bimetallic catalysts were studied for the hydrogenolysis of levulinic acid, a key platform molecule for biomass conversion to biofuels and other valued chemicals, into γ-valerolactone as a first step towards the production of 2-methyltetrahydrofurane. The activities of both monometallic and bimetallic catalysts were tested. Their textural and chemical characteristics were determined by nitrogen physisorption, elemental analysis, temperature-pro-grammed ammonia desorption, and temperature-programmed reduction. The monometallic nickel catalyst showed high activity but the highest by-product production and significant amounts of carbon deposited on the catalyst surface. The copper monometallic catalyst showed the lowest activity but the lowest carbon deposition. The incorporation of the two metals generated a bimetal-lic catalyst that displayed a similar activity to that of the Ni monometallic catalyst and significantly low by-product and carbon contents, indicating the occurrence of important synergetic effects. The influence of the preparation method was also examined by studying impregnated- and sol-gel-derived bimetallic catalysts. A strong dependency on the preparation procedure and calcina-tion temperature was observed. The highest activity per metal atom was achieved using the sol-gel-derived catalyst that was calcined at 450 °C. High reaction rates were achieved;the total levulinic acid conversion was obtained in less than 2 h of reaction time, yielding up to 96%γ-valerolactone, at operating temperature and pressure of 250 °C and 6.5 MPa hydrogen, respec-tively.

  15. Tuning the porosity of bimetallic nanostructures by a soft templating approach

    OpenAIRE

    Lehoux, Anaïs; Ramos, Laurence; Beaunier, Patricia; Uribe, Daniel Bahena; Dieudonné, Philippe; Audonnet, Fabrice; Etcheberry, Arnaud; José-Yacaman, Miguel; Remita, Hynd

    2012-01-01

    We use hexagonal mesophases made of oil-swollen surfactant-stabilized tubes arranged on a triangular lattice in water and doped with metallic salts as templates for the radiolytic synthesis of nanostructures. The nanostructures formed in this type of soft matrix are bimetallic palladium-platinum porous nanoballs composed of 3D-connected nanowires, of typical thickness 2.5 nm, forming hexagonal cells. We demonstrate using electron microscopy and small-angle X-ray scattering that the pore size ...

  16. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  17. Electrochemical synthesis of fractal bimetallic Cu/Ag nanodendrites for efficient surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Li, Da; Liu, Jingquan; Wang, Hongbin; Barrow, Colin J; Yang, Wenrong

    2016-09-21

    Here, we for the first time synthesized bimetallic Cu/Ag dendrites on graphene paper (Cu/Ag@G) using a facile electrodeposition method to achieve efficient SERS enhancement. Cu/Ag@G combined the electromagnetic enhancement of Cu/Ag dendrites and the chemical enhancement of graphene. SERS was ascribed to the rough metal surface, the synergistic effect of copper and silver nanostructures and the charge transfer between graphene and the molecules. PMID:27522964

  18. Colloid and interface chemistry for nanotechnology

    CERN Document Server

    Kralchevsky, Peter

    2013-01-01

    Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006-2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science an

  19. A colloidal quantum dot spectrometer

    Science.gov (United States)

    Bao, Jie; Bawendi, Moungi G.

    2015-07-01

    Spectroscopy is carried out in almost every field of science, whenever light interacts with matter. Although sophisticated instruments with impressive performance characteristics are available, much effort continues to be invested in the development of miniaturized, cheap and easy-to-use systems. Current microspectrometer designs mostly use interference filters and interferometric optics that limit their photon efficiency, resolution and spectral range. Here we show that many of these limitations can be overcome by replacing interferometric optics with a two-dimensional absorptive filter array composed of colloidal quantum dots. Instead of measuring different bands of a spectrum individually after introducing temporal or spatial separations with gratings or interference-based narrowband filters, a colloidal quantum dot spectrometer measures a light spectrum based on the wavelength multiplexing principle: multiple spectral bands are encoded and detected simultaneously with one filter and one detector, respectively, with the array format allowing the process to be efficiently repeated many times using different filters with different encoding so that sufficient information is obtained to enable computational reconstruction of the target spectrum. We illustrate the performance of such a quantum dot microspectrometer, made from 195 different types of quantum dots with absorption features that cover a spectral range of 300 nanometres, by measuring shifts in spectral peak positions as small as one nanometre. Given this performance, demonstrable avenues for further improvement, the ease with which quantum dots can be processed and integrated, and their numerous finely tuneable bandgaps that cover a broad spectral range, we expect that quantum dot microspectrometers will be useful in applications where minimizing size, weight, cost and complexity of the spectrometer are critical.

  20. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  1. Developments of modeling tools for the ultrasonic propagation in bimetallic welds

    International Nuclear Information System (INIS)

    This study fits into the field of ultrasonic non-destructive evaluation. It consists in the development of a dynamic ray tracing model to simulate the ultrasonic propagation in bimetallic welds. The approach has been organised in three steps. First of all, an image processing technique has been developed and applied on the macro-graphs of the weld in order to obtain a smooth cartography of the crystallographic orientation. These images are used as input data for a dynamic ray tracing model adapted to the study of anisotropic and inhomogeneous media such as bimetallic welds. Based on a kinematic and a dynamic ray tracing model, usually used in geophysics, it allows the evaluation of ray trajectories between a source point and an observation point, and the computation of the ultrasonic amplitude through the geometrical spreading of an elementary ray tube. This model has been validated in 2D by comparison of the results with a hybrid semi-analytical/finite elements code, then in 3D thanks to experimental results made on the mock-ups of the studied bimetallic welds. (author)

  2. Synthesis, Study, and Discrete Dipole Approximation Simulation of Ag-Au Bimetallic Nanostructures.

    Science.gov (United States)

    Hu, Yang; Zhang, An-Qi; Li, Hui-Jun; Qian, Dong-Jin; Chen, Meng

    2016-12-01

    Water-soluble Ag-Au bimetallic nanostructures were prepared via co-reduction and seed-mediated growth routes employing poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as both a reductant and a stabilizer. Ag-Au alloy nanoparticles were obtained by the co-reduction of AgNO3 and HAuCl4, while Ag-Au core-shell nanostructures were prepared through seed-mediated growth using PSSMA-Au nanoparticle seeds in a heated AgNO3 solution. The optical properties of the Ag-Au alloy and core-shell nanostructures were studied, and the growth mechanism of the bimetallic nanoparticles was investigated. Plasmon resonance bands in the range 422 to 517 nm were observed for Ag-Au alloy nanoparticles, while two plasmon resonances were found in the Ag-Au core-shell nanostructures. Furthermore, discrete dipole approximation theoretical simulation was used to assess the optical property differences between the Ag-Au alloy and core-shell nanostructures. Composition and morphology studies confirmed that the synthesized materials were Ag-Au bimetallic nanostructures. PMID:27094823

  3. Microstructure and mechanical properties of carbon steel A210-superalloy Sanicro 28 bimetallic tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, X.; Echeberria, J

    2003-05-15

    The viability by hot co-extrusion of a new bimetallic tube: carbon steel A-210-G deg. A1/iron based superalloy Sanicro 28 (UNS N08028) both by hot torsion tests and by diffusion bonding experiments using hipping has been verified. An excellent metallurgical bond was obtained after the industrial hot co-extrusion process. Both the interdiffusion of the elements across the interface, and the microstructure have been analysed by optical microscopy, SEM, TEM and EBSD (electron backscattered diffraction). On the Sanicro 28 side a profuse precipitation of Cr/Mo carbides was found in the region close to the interface. In the hipped specimens and in the heat-treated bimetallic tubes, as result of the nickel and chromium diffusion from the superalloy to the carbon steel, austenite and martensite sub-bands were observed parallel to the interface on the steel side. The optimum heat treatment performed on the bimetallic tubes consisted of an austenitising-solution treatment at 1100 deg. C, and a stabilisation annealing at 900 deg. C, followed by air cooling.

  4. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    Science.gov (United States)

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-03-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

  5. Characterization of Bimetallic Castings with an Austenitic Working Surface Layer and an Unalloyed Cast Steel Base

    Science.gov (United States)

    Wróbel, Tomasz

    2014-05-01

    The paper presents the technology of bimetallic castings based on the founding method of layer coating directly in the cast process of the so-called method of mold cavity preparation. The prepared castings consist of two fundamental parts, i.e., the base and the working surface layer. The base part of the bimetallic casting is typical foundry material, i.e., unalloyed cast steel, whereas the working layer is a plate of austenitic alloy steel sort X2CrNi 18-9. The quality of the joint between the base part and the working layer was evaluated on the basis of ultrasonic non-destructive testing and structure examinations containing metallographic macro- and microscopic studies with the use of a light microscope (LOM) with microhardness measurements and a scanning electron microscope (SEM) with microanalysis of the chemical composition (energy dispersive spectroscopy—EDS). On the basis of the obtained results it was confirmed that the decisive phenomena needed to create a permanent joint between the two components of the bimetallic casting are carbon and heat transport in the direction from the high-carbon and hot base material which was poured into the mold in the form of liquid metal to the low-carbon and cold material of the working layer which was placed in the mold cavity in the form of a monolithic insert.

  6. Ferrocenyl-cymantrenyl hetero-bimetallic chalcones: Synthesis, structure and biological properties

    Science.gov (United States)

    Mishra, Sasmita; Tirkey, Vijaylakshmi; Ghosh, Avishek; Dash, Hirak R.; Das, Surajit; Shukla, Madhulata; Saha, Satyen; Mobin, Sheikh M.; Chatterjee, Saurav

    2015-04-01

    Two new ferrocenyl-cymantrenyl bimetallic chalcones, [(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)Fe(η5-C5H5)] (1) and [{(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)}2Fe] (2) have been synthesized. Their reactivity study with triphenylphosphine and bis-(diphenylphosphino)ferrocene led to the isolation of phosphine substituted bimetallic chalcones (3-6). Single crystal X-ray structural characterization for 1 and its phosphine analogue (3) reveals their different conformational identity with anti-conformation for 1, while syn-conformation for 3. Investigation of antimalarial and antibacterial activities was carried out for compounds 1 and 2 against two strains of Plasmodium falciparum (3D7, K1) and four bacterial strains. TD-DFT calculation was performed for compound 1 and electrochemical properties were studied for bimetallic chalcone compounds by cyclic voltammetric technique.

  7. Preparation of Ag{sub core}/Au{sub shell} bimetallic nanoparticles from physical mixtures of Au clusters and Ag ions under dark conditions and their catalytic activity for aerobic glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); Toshima, Naoki; Takasaki, Kanako [Department of Applied Chemistry, Tokyo University of Science Yamaguchi, SanyoOnoda-shi, Yamaguchi 756-0884 (Japan); Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

    2014-02-15

    Graphical abstract: The synthesis, characterization and catalytic activities for glucose oxidation of AgAu bimetallic nanoparticles (BNPs) with size of less than 2 nm are reported. The catalytic activity of Ag{sub 10}Au{sub 90} BNPs was about two times higher than that of Au NPs, even the BNPs have a larger particle size than that of Au NPs. -- Highlights: • Ag{sub core}/Au{sub shell} BNPs with size of less than 2.0 nm were prepared. • No any reducing reagents and lights were used for the preparation of the BNPs. • The catalytic activity of the BNPs is about two times higher than that of Au NPs. -- Abstract: AgAu bimetallic nanoparticles (BNPs), one of the most extensively studied bimetallic systems in the literatures, could have various structures and compositions depending on their preparation conditions. In the present work, catalytically highly active PVP-protected Ag{sub core}/Au{sub shell} BNPs of about 2.5 nm in diameter were fabricated from physical mixtures of aqueous dispersions of Au nanoparticles and Ag{sup +} ions under dark conditions without using any reducing agents. The prepared Ag{sub core}/Au{sub shell} BNP colloidal catalysts, which possessed a high activity for aerobic glucose oxidation, were characterized by Ultraviolet–visible spectrophotometry (UV–Vis), Inductive coupled plasma emission spectrometer (ICP), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Energy disperse spectroscopy (EDS) in High-resolution scanning transmission electron microscopy (HR-STEM). The highest activity (11,360 mol-glucose h{sup −1} mol-metal{sup −1}) was observed for the BNPs with the Ag/Au atomic ratio of 1/9, the TOF value of which is about two times higher than that of Au nanoparticles with the particle size of 1.3 nm. The enhanced catalytic activity of the prepared Ag{sub core}/Au{sub shell} BNPs compared to Au NPs can be ascribed to the presence of negatively charged Au atoms resulted from electron donations

  8. Anisotropic Colloids: Synthesis and Phase Behavior of Eccentric, Dimer and String-like Colloids

    OpenAIRE

    Demirors, A.F.

    2010-01-01

    The research described in this thesis focuses on synthesis and phase behavior of anisotropic colloids prepared through different synthetic strategies. Namely, eccentric core-shell particles, dimers, string-like particles and core-shell particles are the systems investigated throughout this work. The synthesis routes are described for these colloidal systems and their physical/chemical properties are extensively characterized. Furthermore, potential applications of these colloidal systems in f...

  9. Grimsel colloid exercise, an international intercomparison exercise on the sampling and characterization of groundwater colloids

    International Nuclear Information System (INIS)

    The Grimsel colloid exercise was an intercomparison exercise which consisted of an in situ sampling phase followed by a colloid characterization step. The goal of this benchmark exercise, which involved 12 laboratories, was to evaluate both sampling and characterization techniques with emphasis on the colloid specific size distribution. The sampling phase took place at the Grimsel test site between 1 and 13 February 1988 and the participating groups produced colloid samples using various methods. This work was carried out within the Community COCO Club, as a component of the Mirage project (second phase)

  10. Dechlorination of chlorophenols using magnesium-palladium bimetallic system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Upendra D. [Centre of Environmental Science and Engineering, Indian Institute of Technology-Bombay, Mumbai 400076 (India)]. E-mail: upendra@iitb.ac.in; Suresh, Sumathi [Centre of Environmental Science and Engineering, Indian Institute of Technology-Bombay, Mumbai 400076 (India)]. E-mail: sumathis@iitb.ac.in

    2007-08-17

    Ninety-four percent removal of 10 mg L{sup -1} of pentachlorophenol (PCP) was achieved by treatment with 154.5 mM Mg{sup 0} and 0.063 mM K{sub 2}PdCl{sub 6} in the presence of 175 mM acetic acid in 1 h reaction time. Dechlorination of PCP was found to be sequential and phenol was identified as the end product along with accumulation of trace concentrations of tetra- and trichlorophenols. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed that palladium in its metallic form (Pd{sup 0}) produced by reduction of Pd{sup 4+}, was spatially separated from magnesium granules when acid was included in the reaction. These colloidal palladium particles generated active reductive species of hydrogen and dechlorinated chlorophenols. In the absence of acid, the efficiency of dechlorination of PCP by Pd/Mg{sup 0} system was very low and chief mechanism of removal of the compound was through sorption onto solid surfaces. Thus, it was important to include acid in the system to: (a) facilitate corrosion of Mg{sup 0} and reduction of Pd{sup 4+} to Pd{sup 0}, (b) provision of protons to produce H{sub 2}, (c) retard formation of insoluble oxides and hydroxides that may deposit on the magnesium granules and sorb PCP and its partially dechlorinated products and. Application of 154.5 mM Mg{sup 0}/0.063 mM K{sub 2}PdCl{sub 6} on PCP, 2,4,5-trichlorophenol (TCP) and 2-chlorophenol (MCP) with organic chloride equivalence showed that the rate and extent of removal increased with decrease in number of chlorine atoms on phenol.

  11. A Course in Colloid and Surface Science.

    Science.gov (United States)

    Scamehorn, John F.

    1984-01-01

    Describes a course for chemical engineers, chemists, and petroleum engineers that focuses on colloid and surface science. Major topic areas in the course include capillarity, surface thermodynamics, adsorption contact angle, micelle formation, solubilization in micelles, emulsions, foams, and applications. (JN)

  12. Polydispersity effects in colloid-polymer mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Liddle, S M; Poon, W C K [SUPA and School of Physics and Astronomy, The University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Narayanan, T, E-mail: S.Liddle@ed.ac.uk, E-mail: narayan@esrf.fr, E-mail: w.poon@ed.ac.uk [European Synchrotron Radiation Facility, F-38043 Grenoble Cedex (France)

    2011-05-18

    We study phase separation and transient gelation experimentally in a mixture consisting of polydisperse colloids (polydispersity: {approx} 6%) and non-adsorbing polymers, where the ratio of the average size of the polymer to that of the colloid is {approx} 0.062. Unlike what has been reported previously for mixtures with somewhat lower colloid polydispersity ({approx} 5%), the addition of polymers does not expand the fluid-solid coexistence region. Instead, we find a region of fluid-solid coexistence which has an approximately constant width but an unexpected re-entrant shape. We detect the presence of a metastable gas-liquid binodal, which gives rise to two-stepped crystallization kinetics that can be rationalized as the effect of fractionation. Finally, we find that the separation into multiple coexisting solid phases at high colloid volume fractions predicted by equilibrium statistical mechanics is kinetically suppressed before the system reaches dynamical arrest.

  13. Mobility of radioactive colloidal particles in groundwater

    International Nuclear Information System (INIS)

    Radiocolloids are a major factor in the rapid migration of radioactive waste in groundwater. For at least two Los Alamos National Laboratory (LANL) sites, researchers have shown that groundwater colloidal particles were responsible for the rapid transport of radioactive waste material in groundwater. On an international scale, a review of reported field observations, laboratory column studies, and carefully collected field samples provides compelling evidence that colloidal particles enhance both radioactive and toxic waste migration. The objective of this project is to understand and predict colloid-contaminant migration through fundamental mathematical models, water sampling, and laboratory experiments and use this information to develop an effective and scientifically based colloid immobilization strategy. The article focuses on solving the suspected radiocolloid transport problems at LANL's Mortandad Canyon site. (author) 6 figs., 5 tabs., 18 refs

  14. Suspensions of colloidal particles and aggregates

    CERN Document Server

    Babick, Frank

    2016-01-01

    This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...

  15. Size determinations of colloidal fat emulsions

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Klaus, Katrin; Steiniger, Frank

    2009-01-01

    Size and size distributions of colloidal dispersions are of crucial importance for their performance and safety. In the present study, commercially available fat emulsions (Lipofundin N, Lipofundin MCT and Lipidem) were analyzed by photon correlation spectroscopy, laser diffraction with adequate...

  16. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  17. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuila, Debasish; Ilias, Shamsuddin

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N2 adsorption, and Transmission electron microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean

  18. Crust formation in drying colloidal suspensions

    OpenAIRE

    Style, R. W.; Peppin, S. S. L.

    2010-01-01

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy’s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the ...

  19. Autonomous colloidal crystallization in a galvanic microreactor

    Science.gov (United States)

    Punckt, Christian; Jan, Linda; Jiang, Peng; Frewen, Thomas A.; Saville, Dudley A.; Kevrekidis, Ioannis G.; Aksay, Ilhan A.

    2012-10-01

    We report on a technique that utilizes an array of galvanic microreactors to guide the assembly of two-dimensional colloidal crystals with spatial and orientational order. Our system is comprised of an array of copper and gold electrodes in a coplanar arrangement, immersed in a dilute hydrochloric acid solution in which colloidal micro-spheres of polystyrene and silica are suspended. Under optimized conditions, two-dimensional colloidal crystals form at the anodic copper with patterns and crystal orientation governed by the electrode geometry. After the aggregation process, the colloidal particles are cemented to the substrate by co-deposition of reaction products. As we vary the electrode geometry, the dissolution rate of the copper electrodes is altered. This way, we control the colloidal motion as well as the degree of reaction product formation. We show that particle motion is governed by a combination of electrokinetic effects acting directly on the colloidal particles and bulk electrolyte flow generated at the copper-gold interface.

  20. Density functional theory of charged colloidal systems

    International Nuclear Information System (INIS)

    The phase behavior of charged colloidal systems has been studied recently by the density functional theory formalism (DFT) [R. van Roij, M. Dijkstra, and J. P. Hansen, Phys. Rev. E >59, 2010 (1999)]. A key feature of this approach is the appearance of a density and temperature-dependent effective Hamiltonian between the charged colloids. Under certain approximations, the effective Hamiltonian is made up only of a sum of position-independent one-body or volume terms and two-body colloid-separation dependent terms. In the limit of low colloidal densities, the DFT results do not reduce to the familiar Debye-Huckel limiting law nor do the results agree with previous work based on an identical approach but were developed using traditional statistical-mechanical methods [B. Beresford-Smith, D. Y. C. Chan, and D. J. Mitchell J. Colloid Interface Sci. >105, 216 (1985)]. This paper provides a reconciliation of these differences and comments on the significance of the one-body volume terms in the effective Hamiltonian of a system of charged colloids in determining thermodynamics and phase behavior

  1. Complex coacervation between colloidal silica and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Kawase, Kaoru; Sakami, Hiroshi; Hayakawa, Kiyoshi

    1989-03-01

    Complex coacervation introduced by gamma-ray induced polymerization of acrylamide in colloidal silica was studied. The complex coaservate was formed by polymerization of acrylamide dissolved in a colloidal silica and methanol mixture. Complex coacervation (two-phase separation of the mixture) was observed only when the concentration of methanol was between 33 and 41 percent by volume, and the concentration of colloidal silica did not affect it. Although two phase separation was not influenced by pH change, the content of polyacrylamide was bigger in the equilibrated solution in acidic regions. It was, however, bigger in the complex coacervate at neutral and in alkaline regions. The content of polyacrylamide was also calculated from the particle diameter of complex coacervate measured by small angle X-ray scattering, and the result was well coincided with the analytical result. The stability of the complex coacervate against the addition of salts was better than that of the untreated colloidal silica. The rate of electrophoretic transport of the complex coacervate was also lower than that of the colloidal silica. From these observation it was concluded that the hydrophobic colloidal silica particles were protected by the surrounding hydrophilic polyacrylamide. (author).

  2. Inventions Utilizing Microfluidics and Colloidal Particles

    Science.gov (United States)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  3. Sterically stabilized colloids with tunable repulsions.

    Science.gov (United States)

    van Gruijthuijsen, Kitty; Obiols-Rabasa, Marc; Heinen, Marco; Nägele, Gerhard; Stradner, Anna

    2013-09-10

    When studying tunable electrostatic repulsions in aqueous suspensions of charged colloids, irreversible colloid aggregation or gelation may occur at high salt concentrations. For many commonly used synthetic colloids, such as polystyrene and silica particles, the reason for coagulation is the presence of unbalanced, strongly attractive, and short-ranged van der Waals (VDW) forces. Here, we present an aqueous polystyrene model colloid that is sterically stabilized against VDW attractions. We show that the synthesis procedure, based on a neutral initiator couple and a nonionic surfactant, introduces surface charges that can be further increased by the addition of charged comonomer methacrylic acid. Thus, the interactions between the polystyrene spheres can be conveniently tuned from hard-sphere-like to charge-stabilized with long-ranged electrostatic repulsions described by a Yukawa-type pair potential. The particle size, grafting density, core-shell structure, and surface charge are characterized by light and neutron scattering. Using X-ray and neutron scattering in combination with an accurate analytic integral equation scheme for the colloidal static structure factor, we deduce effective particle charges for colloid volume fractions ≥0.1 and salt concentrations in the range of 1.5 to 50 mM. PMID:23937718

  4. Colloidal behavior of clay in whiteware suspensions

    Science.gov (United States)

    Rossington, Katherine Rose

    2000-10-01

    This research investigated the colloidal behavior of kaolinitic clay in aqueous suspensions. The foundation of most current clay suspension behavior is based on early studies conducted prior to the application of colloidal concepts in ceramic systems and also when many of the colloidal theories were being developed. Technological advances in colloid science and the application of the theories greatly enhance the interpretation of the clay suspension behavior. Kaolinitic clay is the primary component responsible for the colloidal behavior of in traditional ceramics because the clay accounts for of the total surface area and active charge sites. The impact of cations and anions on colloidal behavior, specifically the dispersion and coagulation, of a whiteware suspension was examined using rheology and electrophoretic mobility measurements. The results indicate the cations are responsible for coagulating the suspension, including sodium, which has been labeled both a dispersant and a coagulant. The anionic species are responsible for dispersing the clay suspension, but zeta potential is an inaccurate measure of suspension stability. The influence of chemistry changes via cation and anion additions observed in suspensions are also detected in plastic bodies. The plasticity measured by the cohesion stress decreases with increasing cation concentration. It is suggested that the magnitude of the cohesion stress directly influences the formability and stress gradients established during drying.

  5. Colloidal oatmeal: history, chemistry and clinical properties.

    Science.gov (United States)

    Kurtz, Ellen S; Wallo, Warren

    2007-02-01

    Oatmeal has been used for centuries as a soothing agent to relieve itch and irritation associated with various xerotic dermatoses. In 1945, a ready to use colloidal oatmeal, produced by finely grinding the oat and boiling it to extract the colloidal material, became available. Today, colloidal oatmeal is available in various dosage forms from powders for the bath to shampoos, shaving gels, and moisturizing creams. Currently, the use of colloidal oatmeal as a skin protectant is regulated by the U.S. Food and Drug Administration (FDA) according to the Over-The-Counter Final Monograph for Skin Protectant Drug Products issued in June 2003. Its preparation is also standardized by the United States Pharmacopeia. The many clinical properties of colloidal oatmeal derive from its chemical polymorphism. The high concentration in starches and beta-glucan is responsible for the protective and water-holding functions of oat. The presence of different types of phenols confers antioxidant and anti-inflammatory activity. Some of the oat phenols are also strong ultraviolet absorbers. The cleansing activity of oat is mostly due to saponins. Its many functional properties make colloidal oatmeal a cleanser, moisturizer, buffer, as well as a soothing and protective anti-inflammatory agent.

  6. Interactions between radioactively labeled colloids and natural particles: Evidence for colloidal pumping

    Energy Technology Data Exchange (ETDEWEB)

    Wen, L.S.; Santschi, P.H.; Tang, D. [Texas A & M Univ., Galveston, TX (United States)

    1997-07-01

    It has been hypothesized that colloidal forms of trace metals can be reactive intermediaries in the scavenging processes leading to the removal of their particulate forms. A series of radiotracer experiments using natural colloidal organic matter from Galveston Bay, USA were carried out in order to test this hypothesis. Suspended particle uptake of originally colloidally bound trace metals occurred in a matter of hours to days in estuarine waters. After ten days, the majority ( >50%) of the colloidal trace metals had been transferred into the particulate phase ({ge} 0.45{mu}m), except for {sup 65}Zn. Two distinctively different temporal regions of removal of colloidal trace metals were identified: a faster reaction during the first four hours, followed by a slower reaction after approximately one day. In a separate river water-seawater mixing experiment, the solid/solution partitioning of the radiotracers was investigated in the absence of suspended matter. About 30% of most of the elements, except Ag and Fe ({approximately}60%), were associated with a newly formed particulate phase after eight days. There were two major trends: (1) the particulate fraction of {sup 59}Fe and {sup 110}Ag increased while the colloidal fraction decreased, suggesting a colloidal pumping mechanism. (2) The particulate fraction of {sup 54}Mn, {sup 133}Ba, {sup 65}Zn, {sup 109}Cd, {sup 113}Sn, and {sup 60}Co increased while the LMW({le}1 kDa) fraction decreased, suggesting a direct uptake into the particulate fraction with less involvement of a transitory colloidal phase. The results from these experiments suggested two different pathways for colloidal tracer uptake by particles: (1) colloidal pumping of a major component (e.g., biopolymer) of the colloidal pool and (2) coagulation of trace components (e.g., phytochelatins) with varying affinities for different trace metals. 39 refs., 8 figs., 3 tabs.

  7. Selective Liquid-Phase Semihydrogenation of Functionalized Acetylenes and Propargylic Alcohols with Silica-Supported Bimetallic Palladium—Copper Catalysts

    NARCIS (Netherlands)

    Koten, G. van; Spee, M.P.R.; Meijer, M.D.; Slagt, M.Q.; Geus, John W.

    2001-01-01

    Silica-supported, bimetallic palladium-copper catalysts were prepared in solution under mild conditions by reacting lithium di(4-tolyl)cuprate with palladium acetate in the presence of silica particles. Small bimetallic palladium-copper particles were deposited on the silica surface as confirmed wit

  8. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei; Repo, Eveliina; Sillanpaeae, Mika [Laboratory of Applied Environmental Chemistry, University of Eastern Finland, Patteristonkatu 1, FI-50100 Mikkeli (Finland); Heikkilae, Mikko; Leskelae, Markku, E-mail: weiliuzk@yahoo.cn, E-mail: mika.sillanpaa@uef.fi [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, PO Box 55 (A.I. Virtasen aukio 1), FI-00014, Helsinki (Finland)

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), {xi}-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH{sub 2}OH{center_dot}HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H{sub 2}PtCl{sub 6} to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  9. Reverse Micelle Synthesis and Characterization of Supported Pt/Ni Bimetallic Catalysts on gamma-Al2O3

    Energy Technology Data Exchange (ETDEWEB)

    B Cheney; J Lauterbach; J Chen

    2011-12-31

    Reverse micelle synthesis was used to improve the nanoparticle size uniformity of bimetallic Pt/Ni nanoparticles supported on {gamma}-Al{sub 2}O{sub 3}. Two impregnation methods were investigated to optimize the use of the micelle method: (1) step-impregnation, where Ni nanoparticles were chemically reduced in microemulsion and then supported, followed by Pt deposition using incipient wetness impregnation, and (2) co-impregnation, where Ni and Pt were chemically reduced simultaneously in microemulsion and then supported. Transmission electron microscopy (TEM) was used to characterize the particle size distribution. Atomic absorption spectroscopy (AAS) was used to perform elemental analysis of bimetallic catalysts. Extended X-ray absorption fine structure (EXAFS) measurements were utilized to confirm the formation of the Pt-Ni bimetallic bond in the step-impregnated catalyst. CO pulse chemisorption and Fourier transform infrared spectroscopy (FTIR) studies of 1,3-butadiene hydrogenation in a batch reactor were performed to determine the catalytic activity. Step-impregnated Pt/Ni catalyst demonstrated enhanced hydrogenation activity over the parent monometallic Pt and Ni catalysts due to bimetallic bond formation. The catalyst synthesized using co-impregnation showed no enhanced activity, behaving similarly to monometallic Ni. Overall, our results indicate that reverse micelle synthesis combined with incipient wetness impregnation produced small, uniform nanoparticles with bimetallic bonds that enhanced hydrogenation activity.

  10. Gas-Phase Synthesis of Bimetallic Oxide Nanoparticles with Designed Elemental Compositions for Controlling the Explosive Reactivity of Nanoenergetic Materials

    Directory of Open Access Journals (Sweden)

    Ji Young Ahn

    2011-01-01

    Full Text Available We demonstrate a simple and viable method for controlling the energy release rate and pressurization rate of nanoenergetic materials by controlling the relative elemental compositions of oxidizers. First, bimetallic oxide nanoparticles (NPs with a homogeneous distribution of two different oxidizer components (CuO and Fe2O3 were generated by a conventional spray pyrolysis method. Next, the Al NPs employed as a fuel were mixed with CuO-Fe2O3 bimetallic oxide NPs by an ultrasonication process in ethanol solution. Finally, after the removal of ethanol by a drying process, the NPs were converted into energetic materials (EMs. The effects of the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs on the explosive reactivity of the resulting EMs were examined by using a differential scanning calorimeter and pressure cell tester (PCT systems. The results clearly indicate that the energy release rate and pressurization rate of EMs increased linearly as the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs increased. This suggests that the precise control of the stoichiometric proportions of the strong oxidizer (CuO and mild oxidizer (Fe2O3 components in the bimetallic oxide NPs is a key factor in tuning the explosive reactivity of EMs.

  11. A colloidal singularity reveals the crucial role of colloidal stability for nanomaterials in-vitro toxicity testing: nZVI-microalgae colloidal system as a case study

    OpenAIRE

    Gonzalo, Soledad; Pulido-Reyes, Gerardo; Fernández-Piñas, Francisca; Bonzongo, Jean Claude; Leganés, Francisco; Rosal, Roberto; García-Calvo, Eloy; Rodea-Palomares, Ismael

    2014-01-01

    Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity ...

  12. Colloid-Facilitated Transport of Radionuclides Through The Vadose Zone

    International Nuclear Information System (INIS)

    The main purpose of this project was to advance the basic scientific understanding of colloid and colloid-facilitated Cs transport of radionuclides in the vadose zone. We focused our research on the hydrological and geochemical conditions beneath the leaking waste tanks at the USDOE Hanford reservation. Specific objectives were (1) to determine the lability and thermodynamic stability of colloidal materials, which form after reacting Hanford sediments with simulated Hanford Tank Waste, (2) to characterize the interactions between colloidal particles and contaminants, i.e., Cs and Eu, (3) to determine the potential of Hanford sediments for in situ mobilization of colloids, (4) to evaluate colloid-facilitated radionuclide transport through sediments under unsaturated flow, (5) to implement colloid-facilitated contaminant transport mechanisms into a transport model, and (6) to improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for clean-up procedures and long-term risk assessment

  13. Colloid's influences on microalgae growth as a potential environmental factor

    Institute of Scientific and Technical Information of China (English)

    赵新淮; 张正斌; 刘莲生

    2003-01-01

    The role of colloid as "colloid pump" in the ocean is well known. The important influence of colloid in seawater on the growth of microalga was found in our 1999-2000 study. Colloid concentrates were obtained by employing a cross-flow filtration systen to ultrafilter seawater (which had been pre-filtrated by 0.45 μm acetate cellulose membrane) successively with different membranes. Ultrafiltration retentions (we called them colloid concentrates ) together with control sample ( seawater without colloid) were then inoculated with two species of microalgae and cultivated in selected conditions. Monitoring of microalgae growth during cultivation showed that all colloid concentrates had obvious influence on the growth of the microalgae studied. Addition of Fe(OH)3 colloid or organic colloid (protein or carbohydrate) to the control sample enhanced the microalgae's growth.

  14. Colloidal Gelation-2 and Colloidal Disorder-Order Transition-2 Investigations Conducted on STS-95

    Science.gov (United States)

    Hoffmann, Monica T.

    2000-01-01

    The Colloidal Gelation-2 (CGEL 2) and Colloidal Disorder-Order Transition-2 (CDOT 2) investigations flew on Space Shuttle Discovery mission STS-95 (also known as the John Glenn Mission). These investigations were part of a series of colloid experiments designed to help scientists answer fundamental science questions and reduce the trial and error involved in developing new and better materials. Industries dealing with semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. The goal of the CGEL 2 investigation was to study the fundamental properties of colloids to help scientists better understand their nature and make them more useful for technology. Colloids consist of very small (submicron) particles suspended in a fluid. They play a critical role in the technology of this country, finding uses in materials ranging from paints and coatings to drugs, cosmetics, food, and drink. Although these products are routinely produced and used, there are still many aspects of their behavior about which scientists know little. Understanding their structures may allow scientists to manipulate the physical properties of colloids (a process called "colloidal engineering") to produce new materials and products. Colloid research may even improve the processing of known products to enhance their desirable properties.

  15. Synthesis of Ag-Au bimetallic film at liquid-liquid interface and its application in vapor sensing

    Energy Technology Data Exchange (ETDEWEB)

    Pasricha, Renu, E-mail: pasrichar@mail.nplindia.ernet.i [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India); Gupta, Shweta [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India); Sastry, M. [Tata Chemical Innovation Center, Anmol Pride, Baner Road, Pune-45 (India); Singh, Nahar; Gupta, Prabhat [Material Characterization Division, National Physical Laboratory, New Delhi-110012 (India)

    2010-11-30

    We demonstrate a novel process for preparing densely packed film of silver nanoparticles at the liquid-liquid interface followed by a transmetallation reaction with gold ion to yield a film of bimetallic nanoparticles. Films of assembled silver as well as Ag-Au bimetallic were characterized by UV-vis-spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analysis. I-V measurement shows linear behavior for both the films with ca. five orders of magnitude drop in resistance for the Ag-Au bimetallic film. Temperature dependent I-V measurement revealed a semiconductor to metal transition after transmetallation reaction. The films where checked for their potential application in chemical vapor sensing to ammonia vapors.

  16. Facile Fabrication of Composition-Tuned Ru-Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying; Gao, Guang; Zhang, Xin; Li, Fuwei [ChinaU - Petroleum; (Chinese Aca. Sci.)

    2016-02-04

    Bimetallic catalysts are of great importance due to their unique catalytic properties. However, their conventional synthesis requires tedious multistep procedures and prolonged synthetic time, and the resulting bimetallics usually disperse unevenly and show poor stability. It is challenging to develop a facile and step-economic synthetic methodology for highly efficient bimetallic catalysts. In this study, we report an elegant metal complex-involved multicomponent assembly route to highly efficient Ru–Ni bimetallics in ordered mesoporous carbons (OMC). The fabrication of composition-tuned Ru–Ni bimetallics in OMC (RuxNi1–x–OMC, x = 0.5–0.9) was facilely realized via in situ construction of CTAB-directed cubic Ia3d chitosan-ruthenium–nickel–silica mesophase before pyrolysis and silica removal. The resulting RuxNi1–x–OMC materials are in-depth characterized with X-ray diffraction, N2 adsorption–desorption, transmission electron microscopy, infrared spectrum, and X-ray absorption fine structure. This facile fabrication method renders homogeneously dispersed Ru–Ni bimetallics embedded in the mesoporous carbonaceous framework and creates a highly active and stable Ru0.9Ni0.1–OMC catalyst for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL), a biomass-derived platform molecule with wide application in the preparation of renewable chemicals and liquid transportation fuels. A high TOF (>2000 h–1) was obtained, and the Ru0.9Ni0.1–OMC catalyst could be used at least 15 times without obvious loss of its catalytic performance.

  17. Saturated Zone Colloid-Facilitated Transport

    Energy Technology Data Exchange (ETDEWEB)

    A. Wolfsberg; P. Reimus

    2001-12-18

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS M&O 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  18. Chitosan-induced Au/Ag nanoalloy dispersed in IL and application in fabricating an ultrasensitive glucose biosensor based on luminol-H₂O₂-Cu²⁺/IL chemiluminescence system.

    Science.gov (United States)

    Chaichi, M J; Alijanpour, S O

    2014-11-01

    A novel glucose biosensor based on the chemiluminescence (CL) detection of enzymatically generated hydrogen peroxide (H₂O₂) was constructed by one covalent immobilization of glucose oxidase (GOD) in glutaraldehyde-functionalized glass cell. In following, chitosan-induced Au/Ag nanoparticles dispersed in ion liquid (IL) were synthesised and immobilized on it. Herein, chitosan molecules acted as both the reducing and stabilizing agent for the preparation of NPs and also, as a coupling agent GOD and Au/Ag alloy NPs. In addition to catalyze luminol CL reaction, these NPs offered excellent catalytic activity toward hydrogen peroxide generation in enzymatic reaction between GOD and glucose. The used IL in fabrication of biosensor increased its stability. Also, IL alongside Cu(2+) accelerated enzymatic and CL reaction kinetic, and decreased luminol CL reaction optimum pH to 7.5 which would enable sensitive and precision determination of glucose. Under optimum condition, linear response range of glucose was found to be 1.0 × 10(-6)-7.5 × 10(-3)M, and detection limit was 4.0 × 10(-7)M. The CL biosensor exhibited good storage stability, i.e., 90% of its initial response was retained after 2 months storage at pH 7.0. The present CL biosensor has been applied satisfactory to analysis of glucose in real serum and urine samples. PMID:25086323

  19. The synergistic effect in the Fe-Co bimetallic catalyst system for the growth of carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Hardeman, D.; Esconjauregui, S., E-mail: cse28@cam.ac.uk; Cartwright, R.; D' Arsié, L.; Robertson, J. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, S.; Cepek, C. [Istituto Officina dei Materiali-CNR, Laboratorio TASC, Trieste I-34149 (Italy); Oakes, D.; Clark, J. [Johnson Matthey Technology Centre, Sonning Common RG4 9NH (United Kingdom); Ducati, C. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2015-01-28

    We report the growth of multi-walled carbon nanotube forests employing an active-active bimetallic Fe-Co catalyst. Using this catalyst system, we observe a synergistic effect by which—in comparison to pure Fe or Co—the height of the forests increases significantly. The homogeneity in the as-grown nanotubes is also improved. By both energy dispersive spectroscopy and in-situ x-ray photoelectron spectroscopy, we show that the catalyst particles consist of Fe and Co, and this dramatically increases the growth rate of the tubes. Bimetallic catalysts are thus potentially useful for synthesising nanotube forests more efficiently.

  20. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  1. Facile synthesis of ultrathin bimetallic PtSn wavy nanowires by nanoparticle attachment as enhanced hydrogenation catalysts.

    Science.gov (United States)

    Ding, Jiabao; Bu, Lingzheng; Zhang, Nan; Yao, Jianlin; Huang, Yu; Huang, Xiaoqing

    2015-03-01

    Ultrathin wavy nanowires represent an emerging class of nanostructures that exhibit unique catalytic, magnetic, and electronic properties, but the controlled production of bimetallic wavy nanowires remains a significant challenge. Ultrathin bimetallic PtSn nanowires have been prepared with high yield and featuring a highly wavy structure. Owing to the ultrathin nature and unique electronic properties of these PtSn wavy nanowires, they exhibit improved catalytic performance for the hydrogenation of nitrobenzene, as well as for the hydrogenation of styrene. These results suggest a new strategy to prepare highly active catalysts through defect engineering and can significantly impact broad practical applications. PMID:25603959

  2. Interparticle interactions and polarization effects in colloids

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1987-01-01

    The physics of simple colloidal systems is usually dominated by three independent length scales: the particle size, the average interparticle distance, and the range of the interparticle potential. The dispersed particles typically have characteristic dimensions in the range 5 to 100 nm, often with spherical or cylindrical symmetry. Dispersion densities vary over volume fractions ranging from 0.5 to 10/sup -4/, with the corresponding mean interparticle distances ranging from about 1 to 10 diameters (in spherical systems). The interaction potential may be very short ranged (hard sphere), very long ranged (Coulomb or dipolar), or anywhere in between (screened Coulomb), and the correlations exhibited in the dispersion may be gas-like, liquid-like or crystalline, depending on the range of the potential relative to the interparticle distance. This rich phase behavior is responsible for the remarkable importance of colloidal studies in many areas of condensed matter physics and biophysics, but it poses often intractable problems in developing the statistical mechanical descriptions necessary for an understanding of scattering data from colloids. This paper will review the considerable recent progress in this field, in the context of SANS experiments on colloids in which the potentials are dominated by either screened Coulomb or magnetic dipolar interactions; in the case of magnetic colloids (ferrofluids), the use of polarization analysis will also be discussed. 32 refs., 4 figs.

  3. RESOURCE-SAVING TECHNOLOGY FOR HIGH-SPEED HOT EXTRUSION OF BIMETALLIC ROD PARTS

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2016-01-01

    Full Text Available Processes of high-speed shaping changes and especially high-speed hot extrusion create efficient conditions for treatment of weakly plastic and poorly deformable materials which are widely used in tool making facilities. Due to the fact that high-speed stamping provides accurate billets with increased mechanical properties, it can be used as a technological process for manufacturing rod parts of die tooling operating under conditions of increased loads and wear. The purpose of the given paper is to carry out experimental investigations on the possibility to obtain a bimetallic rod tool where structural steel is considered as a basis of the tool and a working cavity is made of high-alloyed tool steel with its saving up to 90 %. A scheme of loading and geometry of conjugated surfaces of the composite billet have been developed in the paper. Technology for obtaining bimetallic rod parts of die tooling with deformation at speed of vд = 70–80 m/s and composite billet temperature of Т = (1150±20 ºС has been experimentally tested with formation of a compound due to plastic flow of two billet parts on contact surface with removal of surface oxide films. Microstructures of the bimetallic compounds obtained with the help of high-speed hot extrusion method for compositions of structural and high-alloy steels have been investigated and their high quality has been proved during the investigations. Dependences of micro-hardness distribution have been established outbound two steel contact plane in the zone of connection that are characterized by a minimum micro-hardness value in the connection joint. Availability of more plastic zone in the contact plane contributes to reduction of residual stresses due to their relaxation in this zone and higher joint strength.

  4. STUDY ON POLYMER- Ru- Co BIMETALLIC COMPLEXES CATALYSTS Ⅱ. X-RAY PHOTOELECTRON SPECTROSCOPIC ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    ZONG Huijuan; TANG Qi; CHEN Zonghan; JIANG Yingyan

    1991-01-01

    Polymer-Ru-Co bimetallic complexes have been examined by X-ray photoelectron spectroscopy.The catalyst is highly active only when the mole ratio of Co/Ru is 4:3. The activity of catalysts does not depend on the total Co/Ru ratio, but on the surface stoichiometry of Co and Ru. When the relative intensities of Co2p and Ru3d of XP S peaks are close to each other and both are high, the catalyst exhibits its maximum activity.The mechanism of catalytic hydroformylation has been discussed.

  5. Rapid dechlorination of chlorinated organic compounds by nickel/iron bimetallic system in water

    Institute of Scientific and Technical Information of China (English)

    TONG Shao-ping; WEI Hong; MA Chun-an; LIU Wei-ping

    2005-01-01

    Detoxification of chlorinated organic compounds via reaction with nickel/iron powder was implemented in aqueous solution. Compared to iron, nickel/iron bimetallic powder had higher hydrodechlorination activities for both atrazine (ATR) and p-chlorophenol (pCP); nickel/iron (2.96%, w/w) was shown to have the largest specific surface area and the optimum proportion for the dechlorination of both ATR and pCP. Electrochemical measurements showed that the adsorbed hydrogen atom on the nickel must have been the dominant reductive agent for the dechlorination of both ATR andpCP in this system.

  6. Preparation and catalytic performance of monolayer-dispersed Pd/Ni bimetallic catalysts for hydrogenation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pd/Ni bimetallic catalysts were prepared by replacement reactions,characterized by X-ray diffraction,CO chemisorption and H2 temperature-programmed desorption,and evaluated for hydrogenation of cyclohexene,styrene and acetone.The results show that Pd atoms are monolayer-dispersed on the Ni surface in these Pd/Ni catalysts.Consequently,Pd/Ni catalysts are much more active than Pd/Ni and Pd/γ-Al2O3 with the same Pd loading prepared by the conventional impregnation method.

  7. Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2015-12-01

    This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.

  8. TEM and EELS studies of microwave-irradiation synthesis of bimetallic platinum nanocatalysts

    International Nuclear Information System (INIS)

    Microwave-irradiation (MW) synthesis of nanostructured materials provides for the synthesis of metal nanoparticles, using fast and uniform heating rates. This procedure affords better control of the shape and size of the nanoparticles when compared to conventional methods. In this work, microwave-irradiation was used to produce platinum-cobalt (Pt-Co) and platinum-nickel (Pt-Ni) nanoparticles for use as electrocatalysts in the methanol oxidation reaction. High resolution TEM imaging and EELS studies revealed that these bimetallic nanoparticles form islands or hetero-structures

  9. Bimetallic PtxCoy nanoparticles with curved faces for highly efficient hydrogenation of cinnamaldehyde

    Science.gov (United States)

    Gu, Yan; Zhao, Yonghui; Wu, Panpan; Yang, Bo; Yang, Nating; Zhu, Yan

    2016-05-01

    The control of the curved structure of bimetallic nanocrystals is a challenge, due to the rate differential for atom deposition and surface diffusion of alien atomic species on specific crystallographic planes of seeds. Herein, we report how to tune the degree of concavity of bimetallic PtxCoy concave nanoparticles using carboxylic acids as surfactants with an oleylamine system, leading to the specific crystallographic planes being exposed. The terminal carboxylic acids with a bridge ring or a benzene ring serving as structure regulators could direct the formation of curved faces with exposed high-index facets, and long-chain saturated fatty acids favored the production of curved faces with exposed low-index facets, while long-chain olefin acids alone benefited the formation of a flat surface with exposed low-index planes. Furthermore, these PtxCoy particles with curved faces displayed superior catalytic behaviour to cinnamaldehyde hydrogenation when compared with PtxCoy with flat faces. PtxCoy nanoparticles with curved faces exhibited over 6-fold increase in catalytic activity compared to PtxNiy nanoparticles with curved faces, and near 40-fold activity increase was observed in comparison with PtxFey nanoparticles with curved faces.The control of the curved structure of bimetallic nanocrystals is a challenge, due to the rate differential for atom deposition and surface diffusion of alien atomic species on specific crystallographic planes of seeds. Herein, we report how to tune the degree of concavity of bimetallic PtxCoy concave nanoparticles using carboxylic acids as surfactants with an oleylamine system, leading to the specific crystallographic planes being exposed. The terminal carboxylic acids with a bridge ring or a benzene ring serving as structure regulators could direct the formation of curved faces with exposed high-index facets, and long-chain saturated fatty acids favored the production of curved faces with exposed low-index facets, while long

  10. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  11. Neptunium Colloidal Behaviors in Present of Humic Acids

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The colloidal-borne facilitated transport of actinides is an important part of radionuclide migration investigation in HLW geological disposal. In the present studies, Np colloidal behaviors in present of

  12. Shape-shifting colloids via stimulated dewetting

    Science.gov (United States)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  13. Boundaries Matter for Confined Colloidal Glasses

    Science.gov (United States)

    Hunter, Gary; Edmond, Kazem V.; Weeks, Eric R.

    2012-02-01

    We confine dense colloidal suspensions within emulsion droplets to examine how confinement and properties of the confining medium affect the colloidal glass transition. Samples are imaged via fast confocal microscopy. By observing a wide range of droplet sizes and varying the viscosity of the external continuous phase, we separate finite size and boundary effects on particle motions within the droplet. Suspensions are composed of binary PMMA spheres in organic solvents while the external phases are simple mixtures of water and glycerol. In analogy with molecular super-cooled liquids and thin-film polymers, we find that confinement effects in colloidal systems are not merely functions of the finite size of the system, but are strongly dependent on the viscosity of the confining medium and interactions between particles and the interface of the two phases.

  14. Shape-shifting colloids via stimulated dewetting.

    Science.gov (United States)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-01-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418

  15. Manipulating semiconductor colloidal stability through doping.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  16. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    International Nuclear Information System (INIS)

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes (2H, 3H, 13C, 14C, 18O, 34S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  17. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    N M Silvestre; P Patrício; M M Telo Da Gama

    2005-06-01

    We review theoretical and experimental work on colloidal interactions in two-dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions between colloids and fluid (deformable) interfaces and the shape of fluid colloids in smectic-C films.

  18. Silica Colloidal Crystals with Ethanol Solvent

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-Lin; NI Pei-Gen; CHENG Bing-Ying; JIN Chong-Jun; ZHANG Dao-Zhong; DONG Peng; GUO Xing-Cai

    2000-01-01

    We have prepared a silica colloidal crystal with ethanol, which has a face-centered cubic structure and a corresponding photonic band gap located in the visible region, determined by Kossel ring analysis and the transmission spectra. A special feature is an apparent variation of its lattice constant, as well as the gap frequency, with sample height. The Raman scattering induced by a picosecond laser at different heights of the colloidal crystal has been measured. It is found that the intensity of the Raman scattering is not related sensitively to the photonic gap, even though the Raman-Stokes wavelength is inside the gap.

  19. Binary Colloidal Alloy Test-5: Phase Separation

    Science.gov (United States)

    Lynch, Matthew; Weitz, David A.; Lu, Peter J.

    2008-01-01

    The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.

  20. Collective sliding states for colloidal molecular crystals

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia [Los Alamos National Laboratory

    2008-01-01

    We study the driving of colloidal molecular crystals over periodic substrates such as those created with optical traps. The n-merization that occurs in the colloidal molecular crystal states produces a remarkably rich variety of distinct dynamical behaviors, including polarization effects within the pinned phase and the formation of both ordered and disordered sliding phases. Using computer simulations, we map the dynamic phase diagrams as a function of substrate strength for dimers and trimers on a triangular substrate, and correlate features on the phase diagram with transport signatures.

  1. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa

    2011-01-01

    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  2. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can’t we just use water ?) Why is milk “milky” Why do......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...

  3. Self-assembly of colloidal surfactants

    Science.gov (United States)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  4. Shape recognition of microbial cells by colloidal cell imprints

    NARCIS (Netherlands)

    Borovicka, J.; Stoyanov, S.D.; Paunov, V.N.

    2013-01-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called "colloid antibodies", were fabricated by partial fragmentation of silica shells obtained by templating

  5. A general method to coat colloidal particles with titiana

    NARCIS (Netherlands)

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2010-01-01

    We describe a general one-pot method for coating colloidal particles with amorphous titania. Various colloidal particles such as silica particles, large silver colloids, gibbsite platelets, and polystyrene spheres were successfully coated with a titania shell. Although there are several ways of coat

  6. Interplay between Colloids and Interfaces : Emulsions, Foams and Microtubes

    NARCIS (Netherlands)

    de Folter, J.W.J.

    2013-01-01

    The central theme of this thesis is the interplay between colloids and interfaces. The adsorption of colloids at fluid-fluid interfaces is the main topic and covers Chapters 2-6. Pickering emulsions where colloidal particles act as emulsion stabilizers in the absence of surfactants are studied in a

  7. Dimeric and dipolar ground state orders in colloidal molecular crystals

    OpenAIRE

    Emmanuel Trizac; Samir El Shawish; Jure Dobnikar

    2010-01-01

    A two dimensional colloidal suspension subject to a periodic substrate evolves into a colloidal molecular crystal under situationsofstrongconfinement. Wefocusonthelongrangeorientationalordertherebyemerging, inthegroundstate. We study by simulations the situations where in each trap lies a pair of identical colloids, or alternatively a pair of oppositelychargedmacroions. We consider square or triangular geometries for the periodic confinement, together with less symmetric distorted lattices.Um...

  8. Analytical phase diagram for colloid-polymer mixtures

    NARCIS (Netherlands)

    Fleer, G.J.; Tuinier, R.

    2007-01-01

    We present a theoretical analysis of the phase behavior of colloid-polymer mixtures which applies to all polymer/colloid size ratios q. It accounts for the crossover from a constant length scale R (radius of gyration) in the colloid limit (small q) to the concentration-dependent correlation length x

  9. Organic Gases in Fluid Inclusions of Ore Minerals and Their Constraints on Ore Genesis: A Case Study of the Changkeng Au-Ag Deposit, Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hosted precious metal deposit. Most of the previous researchers believed that the deposit was formed by meteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, nine light hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from the Changkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C1-4 and unsaturated alkenes C2-4 and aromatic hydrocarbons, in which the alkanes are predominant, while the contents of alkenes and aromatic hydrocarbons are very low. The Σalka/Σalke ratio of most samples is higher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens in sedimentary rocks caused by water-rock interactions at medium-low temperatures, and the metallogenic processes might have not been affected by magmatic activity. A thermodynamic calculation shows that the light hydrocarbons have reached chemical equilibrium at temperatures higher than 200?C, and they may have been generated in the deep part of sedimentary basins (e.g., the Sanzhou basin) and then be transported by ore-forming fluids to a shallow position of the basin via a long distance. Most of the organic gases are generated by pyrolysis of the type II kerogens (kukersite) in sedimentary host rocks, only a few by microorganism activity. The compositions and various parameters of light hydrocarbons in gold ores are quite similar to those in silver ores, suggesting that the gold and silver ores may have similar metallogenic processes. Based on the compositions of organic gases in fluid inclusions, the authors infer that the Changkeng deposit may be of a tectonic setting of continental rift. The results of this study support from one aspect the authors' opinion that the Changkeng deposit is not formed by meteoric water convection, and that its genesis has a close relationship with the evolution of the Sanzhou basin, so

  10. Hydrologic models of modern and fossil geothermal systems in the Great Basin: Genetic implications for epithermal Au-Ag and Carlin-type gold deposits

    Science.gov (United States)

    Person, M.; Banerjee, A.; Hofstra, A.; Sweetkind, D.; Gao, Y.

    2008-01-01

    The Great Basin region in the western United States contains active geothermal systems, large epithermal Au-Ag deposits, and world-class Carlin-type gold deposits. Temperature profiles, fluid inclusion studies, and isotopic evidence suggest that modern and fossil hydrothermal systems associated with gold mineralization share many common features, including the absence of a clear magmatic fluid source, discharge areas restricted to fault zones, and remarkably high temperatures (>200 ??C) at shallow depths (200-1500 m). While the plumbing of these systems varies, geochemical and isotopic data collected at the Dixie Valley and Beowawe geothermal systems suggest that fluid circulation along fault zones was relatively deep (>5 km) and comprised of relatively unexchanged Pleistocene meteoric water with small (marine sedimentary rocks at lower water/rock ratios and greater endowments of gold. Enthalpy calculations constrain the duration of Carlin-type gold systems to probably <200 k.y. Shallow heat flow gradients and fluid silica concentrations suggest that the duration of the modern Beowawe system is <5 k.y. However, fluid flow at Beowawe during the Quaternary must have been episodic with a net duration of ???200 k.y. to account for the amount of silica in the sinter deposits. In the Carlin trend, fluid circulation extended down into Paleozoic siliciclastic rocks, which afforded more mixing with isotopically enriched higher enthalpy fluids. Computed fission track ages along the Carlin trend included the convective effects, and ranged between 91.6 and 35.3 Ma. Older fission track ages occurred in zones of groundwater recharge, and the younger ages occurred in discharge areas. This is largely consistent with fission track ages reported in recent studies. We found that either an amagmatic system with more permeable faults (10-11 m2) or a magmatic system with less permeable faults (10-13 m2) could account for the published isotopic and thermal data along the Carlin trend

  11. Study of technetium behaviour in radiopharmaceuticals. Characterization of sup(99m)Tc-pyrophosphate, sup(99m)Tc-dimercaptosuccinate, sup(99m)Tc-diethylenetriaminepentaacetate complexes and sup(99m)Tc-colloidal rhenium sulphide

    International Nuclear Information System (INIS)

    The chemistry of technetium in extremely dilute solution was approached through the study of three complexing agents and a colloid. By the application of high-performance chromatographic techniques to the analysis of (Tc-pyro), (Tc-DTPA), (Tc-DMSA) complexes it was possible to isolate one or more chelates from a single complexing agent. Addition of pertechnetates to a solution of sodium pyrophosphates and stannous chloride at neutral pH leads to the formation of two complexes, both highly osteotropic. By the use of sup(117m)Sn it was shown that tin employed as reducing agent enters into the composition of one of the two complexes, either of which may be obtained preferentially by varying the (Sn)/(pyro) ratio. With technetium at acid pH (2.5) DMSA gives one or more chelates according to the concentration of the reagents present. DTPA with technetium at neutral pH gives a single complex for which a structure is proposed. The addition of calcium, indispensable for DTPA injection, leads to the appearance of a second bimetallic complex in very much smaller proportions than the first. The size distribution of some colloids was studied by ultrafiltration and permeation on gel. The preparation of colloidal rhenium sulphide and the technetium labelling conditions needed to obtain a very fine colloid were developed. The behaviour of technetium in the presence of colloidal rhenium sulphide and tin pyrophosphate was followed by sup(99m)Tc - sup(186)Re and sup(99m)Tc - sup(117m)Sn double-labelling tests. One reduced technetium fraction associates with the hydrolysed tin, the other follows the rhenium sulphide

  12. Methanol-driven structuring of Au-Pt bimetallic nanoclusters on a thin film of Al2O3/NiAl(100)

    Science.gov (United States)

    Ho, Chiun-Yu; Patil, Rahul B.; Wang, Chao-Chuan; Chao, Chen-Sheng; Li, Yu-Da; Hsu, Hsing-Chung; Luo, Meng-Fan; Lin, Yin-Chang; Lai, Yu-Lin; Hsu, Yao-Jane

    2012-08-01

    The adsorption of methanol altered structures of Au-Pt bimetallic nanoclusters on a thin film of Al2O3/NiAl(100). Methanol adsorbed on the Au-Pt intermixed bimetallic clusters, of which the surfaces consist of both Au and Pt, induced a segregation of Au from Pt. This segregation state was unstable, as the clusters returned to the initial Au-Pt intermixed state upon desorption or decomposition of adsorbed methanol. Ethanol and cyclohexene were adsorbed on Au-Pt bimetallic clusters for comparisons, indicating that the interaction of the hydroxyl group of methanol with the clusters accounts for the structural modifications.

  13. Properties of two-dimensional insulators: A DFT study of bimetallic oxide CrW2O9 clusters adsorption on MgO ultrathin films

    Science.gov (United States)

    Zhu, Jia; Zhang, Hui; Zhao, Ling; Xiong, Wei; Huang, Xin; Wang, Bin; Zhang, Yongfan

    2016-08-01

    Periodic density functional theory calculations have been performed to study the electronic properties of bimetallic oxide CrW2O9 clusters adsorbed on MgO/Ag(001) ultrathin films (activities with respect to that of pure W3O9 clusters. As a consequence, present results reveal that the adsorption of bimetallic oxide CrW2O9 clusters on the MgO/Ag(001) ultrathin films provide a new perspective to tune and modify the properties and chemical reactivity of bimetallic oxide adsorbates as a function of the thickness of the oxide films.

  14. Selective hydrogenation of citral over Au-based bimetallic catalysts in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Selective hydrogenation of citral was investigated over Au-based bimetallic catalysts in the environmentally benign supercritical carbon dioxide (scCO2) medium.The catalytic performances were different in citral hydrogenation when Pd or Ru was mixed (physically and chemically) with Au.Compared with the corresponding monometallic catalyst,the total conversion and the selectivity to citronellal (CAL) were significantly enhanced over TiO2 supported Pd and Au bimetallic catalysts (physically and chemically mixed);however,the conversion and selectivity did not change when Ru was physically mixed with Au catalyst compared to the monometallic Ru/TiO2,and the chemically mixed Ru-Au/TiO2 catalyst did not show any activity.The effect of CO2 pressure on the conversion of citral and product selectivity was significantly different over the Au/TiO2,Pd-Au/TiO2,and Pd/TiO2 catalysts.It was assumed to be ascribed to the difference in the interactions between Au,Pd nanoparticles and CO2 under different CO2 pressures.

  15. Catalytically Active Bimetallic Nanoparticles Supported on Porous Carbon Capsules Derived From Metal-Organic Framework Composites.

    Science.gov (United States)

    Yang, Hui; Bradley, Siobhan J; Chan, Andrew; Waterhouse, Geoffrey I N; Nann, Thomas; Kruger, Paul E; Telfer, Shane G

    2016-09-14

    We report a new methodology for producing monometallic or bimetallic nanoparticles confined within hollow nitrogen-doped porous carbon capsules. The capsules are derived from metal-organic framework (MOF) crystals that are coated with a shell of a secondary material comprising either a metal-tannic acid coordination polymer or a resorcinol-formaldehyde polymer. Platinum nanoparticles are optionally sandwiched between the MOF core and the shell. Pyrolysis of the MOF-shell composites produces hollow capsules of porous nitrogen-doped carbon that bear either monometallic (Pt, Co, and Ni) or alloyed (PtCo and PtNi) metal nanoparticles. The Co and Ni components of the bimetallic nanoparticles are derived from the shell surrounding the MOF crystals. The hollow capsules prevent sintering and detachment of the nanoparticles, and their porous walls allow for efficient mass transport. Alloyed PtCo nanoparticles embedded in the capsule walls are highly active, selective, and recyclable catalysts for the hydrogenation of nitroarenes to anilines. PMID:27575666

  16. Ag-Cu Bimetallic Nanoparticles Prepared by Microemulsion Method as Catalyst for Epoxidation of Styrene

    Directory of Open Access Journals (Sweden)

    Hong-Kui Wang

    2012-01-01

    Full Text Available Ag/Cu bimetallic nanocatalysts supported on reticulate-like γ-alumina were prepared by a microemulsion method using N2H4·H2O as the reducing agent. The catalysts were activated by calcination followed with hydrogen reduction at 873K, and the properties were confirmed using various characterization techniques. Compared with metal oxides particles, Ag-Cu particles exhibited smaller sizes (<5 nm after calcination in H2 at 873K. XPS results indicated that the binding energies changed with the Ag/Cu ratios, suggesting that increasing the copper content gave both metals a greater tendency to lose electrons. Furthermore, Ag-Cu bimetallic nanoparticles supported on γ-alumina showed better catalytic activity on the epoxidation of styrene as compared with the corresponding monometallic silver or copper. The styrene oxide selectivity could reach 76.6% at Ag/Cu molar ratio of 3/1, while the maximum conversion (up to 94.6% appeared at Ag/Cu molar ratio of 1/1 because of the maximum interaction between silver and copper.

  17. Agglomerated polymer monoliths with bimetallic nano-particles as flow-through micro-reactors

    International Nuclear Information System (INIS)

    Polymer monoliths in capillary format have been prepared as solid supports for the immobilisation of platinum/palladium bimetallic nano-flowers. Optimum surface coverage of nano-flowers was realised by photografting the monoliths with vinyl azlactone followed by amination with ethylenediamine prior to nano-particle immobilisation. Field emission SEM imaging was used as a characterisation tool for evaluating nano-particle coverage, together with BET surface area analysis to probe the effect of nano-particle immobilisation upon monolith morphology. Ion exchange chromatography was also used to confirm the nature of the covalent attachment of nano-flowers on the monolithic surface. In addition, EDX and ICP analyses were used to quantify platinum and palladium on modified polymer monoliths. Finally the catalytic properties of immobilised bimetallic Pd/Pt nano-flowers were evaluated in flow-through mode, exploiting the porous interconnected flow-paths present in the prepared monoliths (pore diameter ∼ 1-2 μm). Specifically, the reduction of Fe (III) to Fe (II) and the oxidation of NADH to NAD+ were selected as model redox reactions. The use of a porous polymer monolith as an immobilisation substrate (rather than aminated micro-spheres) eliminated the need for a centrifugation step after the reaction. (author)

  18. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  19. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tun-Dong; Fan, Tian-E [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Shao, Gui-Fang, E-mail: gfshao@xmu.edu.cn [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Zheng, Ji-Wen [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Wen, Yu-Hua [Institute of Theoretical Physics and Astrophysics, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2014-08-14

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs.

  20. Bimetallic oxamato complexes synthesized into mesoporous matrix as precursor to tunable nanosized oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kalinke, Lucas H.G. [Instituto de Química, Universidade Federal de Goiás—UFG, Goiânia, GO 74001-970 (Brazil); Instituto Federal de Goiás—IFG, Anápolis, GO (Brazil); Stumpf, Humberto O. [Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais—UFMG, Belo Horizonte, MG (Brazil); Mazali, Italo O. [Instituto de Química, Universidade Estadual de Campinas—UNICAMP, Campinas, SP (Brazil); Cangussu, Danielle, E-mail: danielle_cangussu@ufg.br [Instituto de Química, Universidade Federal de Goiás—UFG, Goiânia, GO 74001-970 (Brazil)

    2015-10-15

    Highlights: • The bimetallic oxamato complexes as single-source precursor. • We prepared into a porous silica glass tunable nanosized oxide powders. • X-ray diffraction shows the formation of CeO{sub 2}/CuO and spinel cobaltite. • The different number of IDC allows control of the nanoparticle size. - Abstract: The bimetallic complexes were employed to prepare into a porous silica glass tunable nanosized oxide powders through the single source precursor (SSP) method. These materials were prepared by first anchoring of [Cu(opba)]{sup 2−} [opba = ortho-phenylenebis(oxamato)], second by reaction in situ with second metal [Co(II) or Ce(III)] and followed by a thermal treatment. The different number of impregnation–decomposition cycles (IDC) allows control of the nanoparticle size. X-ray diffraction shows the formation of mixture CeO{sub 2}–CuO and spinel copper cobaltite. Raman spectroscopy confirmed the formation of such phases. Transmission electron microscopy images revealed that spinel cobaltite particles (8 IDC) present a mean size of about 9 nm, whereas for the CeO{sub 2}–CuO phase the particle diameters are 4 nm (2 IDC) and 8 nm (6 IDC). For CeO{sub 2}–CuO the diffuse reflectance spectroscopy indicates a consistent red shift in band gap from 3.41 to 2.87 eV with increasing of particle size due to quantum confinement effect.

  1. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs

  2. A bimetallic nanocomposite electrode for direct and rapid biosensing of p53 DNA plasmid

    Indian Academy of Sciences (India)

    Ezat Hamidi-Asl; Jahan-Bakhsh Raoof; Nahid Naghizadeh; Simin Sharifi; Mohammad Saeid Hejazi

    2015-09-01

    A new label-free electrochemical DNA biosensor is presented based on carbon paste electrode (CPE) modified with gold (Au) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode. The proposed sensor was made by immobilization of 15-mer single stranded oligonucleotide probe related to p53 gene for detection of DNA plasmid samples. The hybridization detection relied on the alternation in the guanine oxidation signal following hybridization of the probe with complementary genomic DNA.The technique of differential pulse voltammetry (DPV) was used for monitoring guanine oxidation. To optimize the performance of the modified CPE, different electrodes were prepared in various percentages of Au and Pt nanoparticles. The modified electrode containing 15% Au/Pt bimetallic nanoparticles (15% Au/Pt-MCPE) was selected as the best working electrode. The selectivity of the sensor was investigated using plasmid samples containing non-complementary oligonucleotides. The detection limit of the biosensor was studied and calculated to be 53.10 pg L−1.

  3. Partial oxidation of methane over bimetallic copper- and nickel-actinide oxides (Th, U)

    International Nuclear Information System (INIS)

    The study of partial oxidation of methane (POM) over bimetallic nickel- or copper-actinide oxides was undertaken. Binary intermetallic compounds of the type AnNi2 (An = Th, U) and ThCu2 were used as precursors and the products (2NiO.UO3, 2NiO.ThO2 and 2CuO.ThO2) characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and temperature-programmed reduction. The catalysts were active and selective for the conversion of methane to H2 and CO and stable for a period of time of ∼18 h on stream. The nickel catalysts were more active and selective than the copper catalyst and, under the same conditions, show a catalytic behaviour comparable to that of a platinum commercial catalyst, 5 wt% Pt/Al2O3. The catalytic activity increases when uranium replaces thorium and the selectivity of this type of materials is clearly different from that of single metal oxides and/or mechanical mixtures. The good catalytic behaviour of the bimetallic copper- and nickel-actinide oxides was attributed to an unusual interaction between copper or nickel oxide and the actinide oxide phase as showed by H2-TPR, XPS and Raman analysis of the catalysts before and after reaction.

  4. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    Science.gov (United States)

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). PMID:22071516

  5. Final Technical Report: First Principles Investigations for the Ensemble Effects of PdAu and PtAu Bimetallic Nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ruqian Wu

    2012-05-18

    Bimetallic surfaces with tunable chemical properties have attracted broad attention in recent years due to their ample potential for heterogeneous catalysis applications. The local chemical properties of constituents are strongly altered from their parent metals by 'ligand effect', a term encompassing the influences of charge transfer, orbital rehybridization and lattice strain. In comparison to the aforementioned, the 'ensemble effect' associated with particular arrangements of the active constituents have received much less attention, despite their notable importance towards the determination of reactivity and selectivity of bimetallic catalysts. We performed theoretical studies for understanding the ensemble effects on bimetallic catalysis: (i) simulations for the formation of different ensembles on PdAu and PtAu nanoclusters; (ii) studies of the size, shape, and substrate dependence of their electronic properties; and (iii) simulations for model reactions such as CO oxidation, methanol, ethylene and water dehydrogenation on PdAu and PtAu nanoclusters. In close collaboration with leading experimental groups, our theoretical research elucidated the fundamentals of Au based bimetallic nanocatalysts.

  6. Core-shell Rh-Pt nanocubes: A model for studying compressive strain effects in bimetallic nanocatalysts

    Science.gov (United States)

    Harak, Ethan William

    Shape-controlled bimetallic nanocatalysts often have increased activities and stabilities over their monometallic counterparts due to surface strain effects and electron transfer between the two metals. Here, we demonstrate that the degree of surface strain can be manipulated in shape-controlled nanocrystals through a bimetallic core shell architecture. This ability is achieved in a model core shell Rh Pt nanocube system through control of shell thickness. An increase in the Pt shell thickness leads to more compressive strain, which can increase the Pt 4f7/2 binding energy by as much as 0.13 eV. This change in electronic structure is correlated with a weakening of surface-adsorbate interactions, which we exploit to reduce catalyst poisoning by CO during formic acid electrooxidation. In fact, by precisely controlling the Pt shell thickness, the maximum current density achieved with Rh Pt nanocubes was 3.5 times greater than that achieved with similarly sized Pt nanocubes, with decreased CO generation as well. This system serves as a model for how bimetallic architectures can be used to manipulate the electronic structure of nanoparticle surfaces for efficient catalysis. The strategy employed here should enable the performance of bimetallic nanomaterials comprised of more cost-effective metals to be enhanced as well.

  7. Surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection using plasmonic bimetallic nanogap substrate

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Buddharaju, Kavitha Devi;

    2014-01-01

    In this paper, we present surface-enhanced Raman scattering (SERS)-based volatile organic compounds (VOCs) detection with bimetallic nanogap structure substrate. Deep UV photolithography at the wavelength of 250 nm is used to pattern circular shape nanostructures. The nanogap between adjacent cir...

  8. Highly selective bimetallic Pt-Cu/Mg(Al)O catalysts for the aqueous-phase reforming of glycerol

    NARCIS (Netherlands)

    Boga, D.A.; Oord, R.; Beale, A.M.; Chung, Y.M.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    Monometallic Pt and bimetallic Pt-Cu catalysts supported on Mg(Al)O mixed oxides, obtained by calcination of the corresponding layered double hydroxides (LDHs), were prepared and tested in the aqueous-phase reforming (APR) of glycerol. The effect of the Mg/Al ratio and calcination temperature of the

  9. Sampling and analysis of groundwater colloids. A literature review

    International Nuclear Information System (INIS)

    The purpose of this literature study was to give basic information of colloids: their formation, colloid material, sampling and characterisation of groundwater colloids. Colloids are commonly refereed to as particles in the size range of 1 nm to 1000 nm. They are defined as a suspension of solid material in a liquid that does not appear to separate even after a long period of time. Colloids can be formed from a variety of inorganic or organic material. Inorganic colloids in natural groundwaters are formed by physical fragmentation of the host rock or by precipitation. The water chemistry strongly controls the stability of colloids. The amount of colloid particles in a solution tends to decrease with the increasing ionic strength of the solution. Increases in pH and organic material tend to increase the stability of colloids. The mobility of colloids in a porous medium is controlled mainly by groundwater movement, sedimentation, diffusion and interception. Factors controlling sampling artefacts are oxygen diffusion: leads to e.g. calcite precipitation, pumping rates and filtering techniques. Efforts to minimise artefact formation should be taken if the scope of the sampling programme is to study the colloid particles. The colloid phase size distribution can be determined by light scattering systems, laser induced break down or by single particle analysis using SEM micrographs. Elemental compositions can be analysed with EDS spectrometry from single colloid particles. Bulk compositions of the colloid phase can be analysed with e.g. ICP-MS analyser. The results of this study can be used as guidelines for groundwater colloid samplings. Recommendations for future work are listed in the conclusions of this report. (orig.)

  10. Pore water colloid properties in argillaceous sedimentary rocks.

    Science.gov (United States)

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  11. Responsivity improvement in PbS colloidal quantum dot photoconductors using colloidal gold nanoparticles

    OpenAIRE

    Heves, Emre; Öztürk, Cem; Ozturk, Cem; Gürbüz, Yaşar; Gurbuz, Yasar

    2013-01-01

    A study is presented on improving the absorption of the PbS colloidal quantum dot (CQD) films using plasmonic scattering. Unlike previous methods that include high temperature annealing, an integrated circuits (IC) compatible method of introducing colloidal gold nanoparticles to PbS film during the spin deposition process is developed. The devices are composed of eight layers of PbS and gold nanoparticles are spin cast after the fourth layer that places them in the middle, sandwiched between ...

  12. Colloidal models. A bit of history

    NARCIS (Netherlands)

    Lyklema, J.

    2015-01-01

    This paper offers an anthology on developments in colloid and interface science emphasizing themes that may be of direct or indirect interest to Interfaces Against Pollution. Topics include the determination of Avogadro’s number, development in the insight into driving forces for double layer format

  13. Designing Zirconium Coated Polystyrene Colloids and Application

    Directory of Open Access Journals (Sweden)

    Diana Chira

    2009-01-01

    Full Text Available A simple technique has been developed to prepare core colloids that are modified using zirconium oxychloride, based on heating a solution of core colloid composites, consisting of poly (ethylenimine (PEI and zirconium oxychloride. The interaction of zirconium oxychloride with the polystyrene (PS core colloids has been investigated using Fourier transform-infrared spectroscopy (FT-IR, energy dispersive X-ray spectroscopy (EDX, and scanning electron microscopy (SEM data. FT-IR studies confirm the occurrence of amine groups present in PEI which are oxidized to carboxyl groups after the reaction. The EDX data and the SEM images confirm the presence of zirconium particles immobilized on the polystyrene surfaces. Demeton, a highly toxic nerve agent, was used due to its ability to easily bind through its organophosphate group illustrating a practical application of the PS-PEI-Zr particles. Attenuated Total Reflection (ATR Spectroscopy was used to assess the interactions between the toxic nerve agent demeton-S and the PS-PEI-Zr particles. The results show that the presented technique for coating polystyrene core colloids with zirconium was successfully accomplished, and the newly formed particles easily bond with demeton agents through the P=O functional group.

  14. Colloidal crystals by electrospraying polystyrene nanofluids

    Science.gov (United States)

    2013-01-01

    This work introduces the electrospray technique as a suitable option to fabricate large-scale colloidal nanostructures, including colloidal crystals, in just a few minutes. It is shown that by changing the deposition conditions, different metamaterials can be fabricated: from scattered monolayers of polystyrene nanospheres to self-assembled three-dimensional ordered nanolayers having colloidal crystal properties. The electrospray technique overcomes the main problems encountered by top-down fabrication approaches, largely simplifying the experimental setup. Polystyrene nanospheres, with 360-nm diameter, were typically electrosprayed using off-the-shelf nanofluids. Several parameters of the setup and deposition conditions were explored, namely the distance between electrodes, nanofluid conductivity, applied voltage, and deposition rate. Layers thicker than 20 μm and area of 1 cm2 were typically produced, showing several domains of tens of microns wide with dislocations in between, but no cracks. The applied voltage was in the range of 10 kV, and the conductivity of the colloidal solution was in the range of 3 to 4 mS. Besides the morphology of the layers, the quality was also assessed by means of optical reflectance measurements showing an 80% reflectivity peak in the vicinity of 950-nm wavelength. PMID:23311494

  15. Cubic colloids : Synthesis, functionalization and applications

    NARCIS (Netherlands)

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  16. Nucleation in suspensions of anisotropic colloids

    NARCIS (Netherlands)

    Schilling, T.; Frenkel, D.

    2005-01-01

    We report Monte Carlo studies of liquid crystal nucleation in two types of anisotropic colloidal systems: hard rods and hard ellipsoids. In both cases we find that nucleation pathways differ strongly from the pathways in systems of spherical particles. Short hard rods show an effect of self-poisonin

  17. Geochemistry of colloid systems. For earth scientists

    NARCIS (Netherlands)

    Nickel, E.

    1979-01-01

    The second part of the title of this book gives an indication for whom it has been written. It is a real 'synthesizer'. Throughout ten chapters the reader is introduced into the highly complex matter of colloid chemistry and its role in geochemistry, pedology, oceanography, and geology.

  18. Dynamics of Colloids Confined in Microcylinders

    NARCIS (Netherlands)

    Ghosh, S.; Wijnperle, D.; Mugele, F.; Duits, M.H.G.

    2016-01-01

    We studied both global and local effects of cylindrical confinement on the diffusive behavior of hard sphere (HS) colloids. Using confocal scanning laser microscopy (CSLM) and particle tracking, we measured the mean squared displacement (MSD) of 1 micron sized silica particles in water–glycerol. Thi

  19. Metal speciation dynamics in colloidal ligand dispersions

    NARCIS (Netherlands)

    Pinheiro, J.P.; Minor, M.; Leeuwen, van H.P.

    2005-01-01

    In this work we propose a dynamic metal speciation theory for colloidal systems in which the complexing ligands are localized on the surface of the particles; i.e., there is spatial heterogeneity of binding sites within the sample volume. The differences between the complex formation and dissociatio

  20. Synthesis and properties of colloidal heteronanocrystals

    NARCIS (Netherlands)

    de Mello Donegá, C.

    2011-01-01

    Colloidal heteronanocrystals (HNCs) can be regarded as solution-grown inorganic–organic hybrid nanomaterials, since they consist of inorganic nanoparticles that are coated with a layer of organic ligand molecules. The hybrid nature of these nanostructures provides great flexibility in engineering th

  1. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials sh

  2. Repeptization and the theory of electrocratic colloids

    NARCIS (Netherlands)

    Frens, G.; Overbeek, J.Th.G.

    1972-01-01

    The coagulation and the repeptization of electrocratic colloids can be treated in one theory provided that the appropriate boundary conditions are chosen. From this version of the DLVO theory it follows that for each sol there exists a critical value Z∞c of the double layer parameter Z∞, Z∞ = zeδ/kT

  3. Advanced Colloids Experiment (ACE-T1)

    Science.gov (United States)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  4. Dipolar structures in colloidal magnetite dispersions

    NARCIS (Netherlands)

    Klokkenburg, Mark

    2007-01-01

    Dipolar structures in liquid colloidal dispersions comprising well-defined magnetite (Fe3O4) nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). Compared to conventional ferrofluids, these dispersio

  5. Colloid suspension stability and transport through unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.

  6. Colloid suspension stability and transport through unsaturated porous media

    International Nuclear Information System (INIS)

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media

  7. Colloid Bound Transport of Contaminats In The Unsaturated Zone

    Science.gov (United States)

    Hofmann, T.; Christ, A.

    Colloids can play a major role in the relocation of contaminants in the unsaturated zone. The amount of colloid driven transport is defined by soil chemistry, soil water chemistry and water flow velocity as well as colloid composition and formation. In a current research project we investigate the filtration and mobilization of colloids in unsaturated column studies. We use different soil types, chosen by a wide range of mean grain size and heterogeneity. Particle tracers are polystyrene solids with a de- fined negative surface charge and defined size from 50 nm to 10 µm. In addition, we use natural colloids extracted from a wide range of contaminated and uncontaminated land. Experimental conditions are exactly controlled throughout all the time. We alter mainly flow velocity ionic strength in order to study the filtration behaviour of the soils. In addition, Pyrene and Lead are are used as model contaminants. First results show the colloids are not retarded in many coarse structured soil types. Preferential colloid flow shows a major impact in breakthrough behaviour. Colloid bound lead is relocated significant through the unsaturated zone, whereas non colloid bound lead species are strongly retarded. In the presentation we will show results of contami- nant processes and present new results on the filtration behaviour of colloids in the unsaturated zone depending on flow velocity, soil type and colloid size.

  8. Synchrotron radiation based multi-scale structural characterization of CoPt{sub 3} colloidal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan

    2010-08-05

    Bimetallic CoPt{sub 3} nanoparticles represent a category of colloidal nanoparticles with high application potentials in, e.g., heterogeneous catalysis, sensor technology, and magnetic storage media. Deposition of this system on functionalized supports delivers opportunities for controlled immobilization of the nanoparticles. In this work, self-assembled monolayers (SAMs) of n-alkanethiol molecules served as functionalizing material for the Au covered Si substrates. Deposition of the ligand-terminated nanoparticles took place by means of spin and dip coating and has been optimized for each of the mentioned methods so that monolayers of nanoparticles on supports were fabricated with a well-controlled coverage The morphology of the nanoparticle film arranged is addressed by grazing-incidence small angle x-ray scattering (GISAXS). This together with x-ray standing waves in total external reflection (TER-XSW) enables a 3D structural characterization of such nanoparticle films, so that the mean particle size, mean distance of the arranged nanoparticle films to the substrate, as well as the mean particle-particle distance in lateral direction have been determined. TER-XSW, being an element-specific position-sensitive method, also reveals the elemental distribution of the particles which complementary provides a fundamental understanding of their internal structure. The CoPt{sub 3} nanoparticles investigated here exhibit a core-shell-like structure with cores of CoPt{sub 3} and shells mainly comprise Co. The results regarding the internal structure of the nanoparticles were then verified by extended X-ray absorption fine structure (EXAFS) measurements. (orig.)

  9. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  10. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  11. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  12. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    Science.gov (United States)

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  13. Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide.

    Science.gov (United States)

    Edwards, Jennifer K; Freakley, Simon J; Carley, Albert F; Kiely, Christopher J; Hutchings, Graham J

    2014-03-18

    Hydrogen peroxide is a widely used chemical but is not very efficient to make in smaller than industrial scale. It is an important commodity chemical used for bleaching, disinfection, and chemical manufacture. At present, manufacturers use an indirect process in which anthraquinones are sequentially hydrogenated and oxidized in a manner that hydrogen and oxygen are never mixed. However, this process is only economic at a very large scale producing a concentrated product. For many years, the identification of a direct process has been a research goal because it could operate at the point of need, producing hydrogen peroxide at the required concentration for its applications. Research on this topic has been ongoing for about 100 years. Until the last 10 years, catalyst design was solely directed at using supported palladium nanoparticles. These catalysts require the use of bromide and acid to arrest peroxide decomposition, since palladium is a very active catalyst for hydrogen peroxide hydrogenation. Recently, chemists have shown that supported gold nanoparticles are active when gold is alloyed with palladium because this leads to a significant synergistic enhancement in activity and importantly selectivity. Crucially, bimetallic gold-based catalysts do not require the addition of bromide and acids, but with carbon dioxide as a diluent its solubility in the reaction media acts as an in situ acid promoter, which represents a greener approach for peroxide synthesis. The gold catalysts can operate under intrinsically safe conditions using dilute hydrogen and oxygen, yet these catalysts are so active that they can generate peroxide at commercially significant rates. The major problem associated with the direct synthesis of hydrogen peroxide concerns the selectivity of hydrogen usage, since in the indirect process this factor has been finely tuned over decades of operation. In this Account, we discuss how the gold-palladium bimetallic catalysts have active sites for the

  14. Structural, electronic and magnetic properties of pure metallic and bimetallic nanoclusters: Empirical and density functional studies

    Science.gov (United States)

    Hijazi, Iyad Ahmed

    This thesis is aimed at investigating structural, electronic and magnetic properties of metallic/bimetallic nanoclusters. First, a simple empirical embedded-atom potential (EAM) that includes a long range force is developed for FCC metals and alloys. The proposed potential for pure metals does not require modification of the initial function form when being applied to alloy systems. The potential parameters are determined by fitting lattice constant, three elastic constants, cohesive energy, and vacancy formation energies of the pure metals, and the heats of solution of the binary alloys via an optimization technique. Parameters for Ag, Al, Au, Cu, Ni, Pd and Pt have been obtained and used to calculate the bulk modulus, divacancy formation energy, crystal stability, stacking fault energy, vacancy migration energy, and melting point for each pure metal and the heats of formation and lattice constants for binary alloys. The predicted values are in good agreement with experimental results. Structural stabilities and energetics for Cu and Au clusters with up to 56 atoms were also studied using a hierarchical search method. The method employed an effective Monte Carlo (MC) simulated annealing method, utilizing our EAM potential, to identify low-lying structures. In general agreement with previous empirical studies, the lowest-energy copper structures adapt a single icosahedral structural motif. However, contrary to studies that describe gold as less symmetric, this work demonstrates that gold clusters adapt both an icosahedral and icositetrahedral structural motifs with many clusters having symmetric geometries. The structures of the lowest-energy isomers were later optimized using Density Functional Theory (DFT) simulations, and compared to those of available clusters from previous studies. Their lowest-energy structures are mostly found in our pool of isomers, identified by the present method. Our results are in agreement with or lower in energy than existing ab

  15. CATALYSIS SCIENCE INITIATIVE: From First Principles Design to Realization of Bimetallic Catalysts for Enhanced Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    MAVRIKAKIS, MANOS

    2007-05-03

    In this project, we have integrated state-of-the-art Density Functional Theory (DFT) models of heterogeneous catalytic processes with high-throughput screening of bimetallic catalytic candidates for important industrial problems. We have studied a new class of alloys characterized by a surface composition different from the bulk composition, and investigated their stability and activity for the water-gas shift reaction and the oxygen reduction reaction. The former reaction is an essential part of hydrogen production; the latter is the rate-limiting step in low temperature H2 fuel cells. We have identified alloys that have remarkable stability and activity, while having a much lower material cost for both of these reactions. Using this knowledge of bimetallic interactions, we have also made progress in the industrially relevant areas of carbohydrate reforming and conversion of biomass to liquid alkanes. One aspect of this work is the conversion of glycerol (a byproduct of biodiesel production) to synthesis gas. We have developed a bifunctional supported Pt catalyst that can cleave the carbon-carbon bond while also performing the water-gas shift reaction, which allows us to better control the H2:CO ratio. Knowledge gained from the theoretical metal-metal interactions was used to develop bimetallic catalysts that perform this reaction at low temperature, allowing for an efficient coupling of this endothermic reaction with other reactions, such as Fischer-Tropsch or methanol synthesis. In our work on liquid alkane production from biomass, we have studied deactivation and selectivity in these areas as a function of metal-support interactions and reaction conditions, with an emphasis on the bifunctionality of the catalysts studied. We have identified a stable, active catalyst for this process, where the selectivity and yield can be controlled by the reaction conditions. While complete rational design of catalysts is still elusive, this work demonstrates the power of

  16. The effect of lanthanum addition on the catalytic activity of ?-alumina supported bimetallic Co–Mo carbides for dry methane reforming

    OpenAIRE

    France, Liam J; Du, Xian; Almuqati, Naif; Vladimir L. Kuznetsov; Zhao, Yongxiang; Jiang, Zheng; Xiao, Tiancun; Bagabas, Abdulaziz; Almegren, Hamid; Edwards, Peter P.

    2014-01-01

    The effect of lanthanum addition to ?-alumina supported bimetallic carbides has been studied for the reaction of dry methane reforming using four different lanthanum loading levels of 1, 5, 10 and 15 wt% of lanthanum. It has been demonstrated that the addition of lanthanum to supported bimetallic carbides at low loading levels (1 wt%) results in smaller carbide crystallite sizes compared to catalysts containing either no lanthanum or higher lanthanum loading levels (5–15 wt%). Increased lanth...

  17. Advanced Colloids Experiment (ACE) Science Overview

    Science.gov (United States)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; Yunker, Peter; Lohr, Matthew; Gratale, Matthew; Lynch, Matthew; Kodger, Thomas; Piazza, Roberto; Buzzaccaro, Stefano; Cipelletti, Luca; Schall, Peter; Veen, Sandra; Wegdam, Gerhard; Lee, Chand-Soo; Choi, Chang-Hyung; Paul, Anna-Lisa; Ferl, Robert J.; Cohen, Jacob

    2013-01-01

    The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly

  18. Colloids related to low level and intermediate level waste

    International Nuclear Information System (INIS)

    A comprehensive investigation has been undertaken to improve the understanding of the potential role of colloids in the context of disposal and storage of low and intermediate level waste immobilised in cement. Several topics have been investigated using a wide range of advanced physico-chemical and analytical techniques. These include: (a) the study of formation and characteristics of colloids in cement leachates, (b) the effects of the near-field aqueous chemistry on the characteristics of colloids in repository environments, (c) colloid sorption behaviour, (d) interactions of near-field materials with leachates, and (e) preliminary assessment of colloid migration behaviour. It has been shown that the generation of colloids in cement leachates can arise from a process of nucleation and growth leading to an amorphous phase which is predominantly calcium silicate hydrate. Such colloidal material has a capacity for association with polyvalent rare earths and actinides and these may be significant in the source term and processes involving radionuclide retention in the near field. It has also been shown that the near-field aqueous chemistry (pH, Ca2+ concentration) has a marked effect on colloid behaviour (deposition and stability). A mechanistic approach to predict colloid sorption affinity has been developed which highlights the importance of colloid characteristics and the nature of the ionic species. (author)

  19. The Marianas-San Marcos vein system: characteristics of a shallow low sulfidation epithermal Au-Ag deposit in the Cerro Negro district, Deseado Massif, Patagonia, Argentina

    Science.gov (United States)

    Vidal, Conrado Permuy; Guido, Diego M.; Jovic, Sebastián M.; Bodnar, Robert J.; Moncada, Daniel; Melgarejo, Joan Carles; Hames, Willis

    2016-08-01

    The Cerro Negro district, within the Argentinian Deseado Massif province, has become one of the most significant recent epithermal discoveries, with estimated reserves plus resources of ˜6.7 Moz Au equivalent. The Marianas-San Marcos vein system contains about 70 % of the Au-Ag resources in the district. Mineralization consists of Upper Jurassic (155 Ma) epithermal Au- and Ag-rich veins of low to intermediate sulfidation style, hosted in and genetically related to Jurassic intermediate composition volcanic rocks (159-156 Ma). Veins have a complex infill history, represented by ten stages with clear crosscutting relationships that can be summarized in four main episodes: a low volume, metal-rich initial episode (E1), an extended banded quartz episode with minor mineralization (E2), a barren waning stage episode (E3), and a silver-rich late tectonic-hydrothermal episode (E4). The first three episodes are interpreted to have formed at the same time and probably from fluids of similar composition: a 290-230 °C fluid dominated by meteoric and volcanic waters (-3‰ to -0‰ δ18Owater), with <3 % NaCl equivalent salinity and with a magmatic source of sulfur (-1 to -2 ‰ δ34Swater). Metal was mainly precipitated at the beginning of vein formation (episode 1) due to a combination of boiling at ˜600 to 800 m below the paleowater table, and associated mixing/cooling processes, as evidenced by sulfide-rich bands showing crustiform-colloform quartz, adularia, and chlorite-smectite banding. During episodes 2 and 3, metal contents progressively decrease during continuing boiling conditions, and veins were filled by quartz and calcite during waning stages of the hydrothermal system, and the influx of bicarbonate waters (-6 to -8.5 ‰ δ18Owater). Hydrothermal alteration is characterized by proximal illite, adularia, and silica zone with chlorite and minor epidote, intermediate interlayered illite-smectite and a distal chlorite halo. This assemblage is in agreement with

  20. The Marianas-San Marcos vein system: characteristics of a shallow low sulfidation epithermal Au-Ag deposit in the Cerro Negro district, Deseado Massif, Patagonia, Argentina

    Science.gov (United States)

    Vidal, Conrado Permuy; Guido, Diego M.; Jovic, Sebastián M.; Bodnar, Robert J.; Moncada, Daniel; Melgarejo, Joan Carles; Hames, Willis

    2016-01-01

    The Cerro Negro district, within the Argentinian Deseado Massif province, has become one of the most significant recent epithermal discoveries, with estimated reserves plus resources of ˜6.7 Moz Au equivalent. The Marianas-San Marcos vein system contains about 70 % of the Au-Ag resources in the district. Mineralization consists of Upper Jurassic (155 Ma) epithermal Au- and Ag-rich veins of low to intermediate sulfidation style, hosted in and genetically related to Jurassic intermediate composition volcanic rocks (159-156 Ma). Veins have a complex infill history, represented by ten stages with clear crosscutting relationships that can be summarized in four main episodes: a low volume, metal-rich initial episode (E1), an extended banded quartz episode with minor mineralization (E2), a barren waning stage episode (E3), and a silver-rich late tectonic-hydrothermal episode (E4). The first three episodes are interpreted to have formed at the same time and probably from fluids of similar composition: a 290-230 °C fluid dominated by meteoric and volcanic waters (-3‰ to -0‰ δ18Owater), with <3 % NaCl equivalent salinity and with a magmatic source of sulfur (-1 to -2 ‰ δ34Swater). Metal was mainly precipitated at the beginning of vein formation (episode 1) due to a combination of boiling at ˜600 to 800 m below the paleowater table, and associated mixing/cooling processes, as evidenced by sulfide-rich bands showing crustiform-colloform quartz, adularia, and chlorite-smectite banding. During episodes 2 and 3, metal contents progressively decrease during continuing boiling conditions, and veins were filled by quartz and calcite during waning stages of the hydrothermal system, and the influx of bicarbonate waters (-6 to -8.5 ‰ δ18Owater). Hydrothermal alteration is characterized by proximal illite, adularia, and silica zone with chlorite and minor epidote, intermediate interlayered illite-smectite and a distal chlorite halo. This assemblage is in agreement with

  1. Structural, spectral and mechanical studies of bimetallic crystal: cadmium manganese thiocyanate single crystals

    Science.gov (United States)

    Manikandan, M.; Vijaya Prasath, G.; Bhagavannarayan, G.; Vijayan, N.; Mahalingam, T.; Ravi, G.

    2012-09-01

    A nonlinear optical bimetallic thiocyanate complex crystal, cadmium manganese thiocyanate (CMTC) has been successfully synthesized. The growth of single crystals of cadmium manganese thiocyanate has been accomplished from aqueous solution using slow evaporation method. The presence of manganese and cadmium in the synthesized material was confirmed through energy dispersive spectrum (EDS) analysis. Structural analysis was carried out using powder X-ray diffractometer (PXRD) and crystalline perfection of the grown crystals was ascertained by high-resolution X-ray diffraction (HRXRD) analysis. Fourier transform infrared (FTIR) spectrum was taken to confirm the functional groups. The transmittance spectrum of the crystal in the UV-visible region has been recorded and the cutoff wavelength has been determined. The dielectric measurements for the crystals were performed for various frequencies and temperatures. The mechanical properties were evaluated by Vickers microhardness testing, which reveals hardness and stiffness constant of the crystals.

  2. Structural, spectral and mechanical studies of bimetallic crystal: cadmium manganese thiocyanate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, M.; Vijaya Prasath, G.; Mahalingam, T.; Ravi, G. [Alagappa University, Department of Physics, Karaikudi (India); Bhagavannarayan, G.; Vijayan, N. [National Physical Laboratory, Materials Characterization Division, New Delhi (India)

    2012-09-15

    A nonlinear optical bimetallic thiocyanate complex crystal, cadmium manganese thiocyanate (CMTC) has been successfully synthesized. The growth of single crystals of cadmium manganese thiocyanate has been accomplished from aqueous solution using slow evaporation method. The presence of manganese and cadmium in the synthesized material was confirmed through energy dispersive spectrum (EDS) analysis. Structural analysis was carried out using powder X-ray diffractometer (PXRD) and crystalline perfection of the grown crystals was ascertained by high-resolution X-ray diffraction (HRXRD) analysis. Fourier transform infrared (FTIR) spectrum was taken to confirm the functional groups. The transmittance spectrum of the crystal in the UV-visible region has been recorded and the cutoff wavelength has been determined. The dielectric measurements for the crystals were performed for various frequencies and temperatures. The mechanical properties were evaluated by Vickers microhardness testing, which reveals hardness and stiffness constant of the crystals. (orig.)

  3. Bi-Metallic Composite Structures With Designed Internal Residual Stress Field

    Science.gov (United States)

    Brice, Craig A.

    2014-01-01

    Shape memory alloys (SMA) have a unique ability to recover small amounts of plastic strain through a temperature induced phase change. For these materials, mechanical displacement can be accomplished by heating the structure to induce a phase change, through which some of the plastic strain previously introduced to the structure can be reversed. This paper introduces a concept whereby an SMA phase is incorporated into a conventional alloy matrix in a co-continuous reticulated arrangement forming a bi-metallic composite structure. Through memory activation of the mechanically constrained SMA phase, a controlled residual stress field is developed in the interior of the structure. The presented experimental data show that the memory activation of the SMA composite component significantly changes the residual stress distribution in the overall structure. Designing the structural arrangement of the two phases to produce a controlled residual stress field could be used to create structures that have much improved durability and damage tolerance properties.

  4. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Science.gov (United States)

    Huang, Chao; Yang, Xu; Yang, Hui; Huang, Peiyan; Song, Huiyu; Liao, Shijun

    2014-10-01

    A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation-hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  5. SULFUR-RESISTANT BIMETALLIC NOBLE METAL CATALYSTS FOR AROMATIC HYDROGENATION OF DIESEL FUEL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd-M/Y bimetallic catalysts, where M is non-noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd-M/Y catalysts were evaluated under the following conditions: H2 pressure 4.2 MPa, MHSV 4.0 h-1, sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.

  6. Stability of the Shallow Axisymmetric Parabolic-Conic Bimetallic Shell by Nonlinear Theory

    Directory of Open Access Journals (Sweden)

    M. Jakomin

    2011-01-01

    Full Text Available In this contribution, we discuss the stress, deformation, and snap-through conditions of thin, axi-symmetric, shallow bimetallic shells of so-called parabolic-conic and plate-parabolic type shells loaded by thermal loading. According to the theory of the third order that takes into account the balance of forces on a deformed body, we present a model with a mathematical description of the system geometry, displacements, stress, and thermoelastic deformations. The equations are based on the large displacements theory. We numerically calculate the deformation curve and the snap-through temperature using the fourth-order Runge-Kutta method and a nonlinear shooting method. We show how the temperature of both snap-through depends on the point where one type of the rotational curve transforms into another.

  7. Surface Plasmon Resonance from Bimetallic Interface in Au–Ag Core–Shell Structure Nanowires

    Directory of Open Access Journals (Sweden)

    Zhu Jian

    2009-01-01

    Full Text Available Abstract Transverse surface plasmon resonances (SPR in Au–Ag and Ag–Au core–shell structure nanowires have been investigated by means of quasi-static theory. There are two kinds of SPR bands resulting from the outer surface of wall metal and the interface between core and wall metals, respectively. The SPR corresponding to the interface, which is similar to that of alloy particle, decreases and shifts obviously with increasing the wall thickness. However, the SPR corresponding to the outer surface, which is similar to that of pure metal particle, increases and shifts slightly with increasing the wall thickness. A mechanism based on oscillatory surface electrons under coulombic attraction is developed to illuminate the shift fashion of SPR from bimetallic core–shell interface. The net charges and extra coulombic force in metallic wall affect the SPR energy and the shift fashion.

  8. Neutron strain scanning in bimetallic materials. Experimental and Monte Carlo simulation results

    International Nuclear Information System (INIS)

    Complete text of publication follows. Neutron diffraction measurements have been carried out on the REST diffractometer on curved components fabricated by cold working bimetallic tubes. The tubes consist of two layers (an outer one of austenitic steel and an inner one of ferritic steel) with a total wall thickness of 6 mm. Both austenitic and ferritic components have been scanned at different positions, throughout the material thickness and for three orientations of the component axes with respect to the neutron momentum transfer vector. Due to the complicated geometry of the problem, Bragg peak data have been corrected for non-uniform illumination of gauge volume, neutron absorption and instrumental effects by means of a Monte Carlo simulation code which incorporates details of the diffractometer and a realistic model of the specimen. We shall report on estimations of the stress tensor components and on the combined micro-stress and coherence volume effects on the Bragg peak linewidths. (author)

  9. Formation mechanism for the nanoscale amorphous interface in pulse-welded Al/Fe bimetallic systems

    Science.gov (United States)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; Xu, Wei; Sun, Xin

    2016-05-01

    Pulse or impact welding traditionally has been referred to as "solid-state" welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the subsequent recrystallization occurred on the aluminum side of the interface.

  10. PROPERTIES OF POLYMER SUPPORTED Ni-Cu BIMETALLIC CATALYSTS PREPARED BY SOLVATED METAL ATOM IMPREGNATION

    Institute of Scientific and Technical Information of China (English)

    WU Shihua; ZHU Changying; HUANG Wenqiang

    1996-01-01

    D-72 resin supported nickel-copper catalysts prepared by solvated metal atom impregnation (SMAI) were studied by magnetic measurements and X-ray photoelectron spectroscopy (XPS). The Ni particles on the catalysts are very highly dispersed and display superparamagnetic behaviour. Ni-Cu alloy clusters were found to be formed. The surface compositions are different from the bulk concentrations. In contrast with the surface enrichment in copper generally observed on conventional Ni-Cu catalysts, the surfaces of these catalysts are enriched in nickel. The nickel is in both zero and valent states, while copper is mainly in metallic state. Catalytic data show that the formation of Ni-Cu alloy clusters has a profound effect on the catalytic activities of the catalysts in the hydrogenation of furfural. The activity of the Ni:Cu ratio of one bimetallic catalysts is much higher than that of the Ni or Cu monometallic catalyst.

  11. Effects of Irregular Bimetallic Nanostructures on the Optical Properties of Photosystem I from Thermosynechococcus elongatus

    Directory of Open Access Journals (Sweden)

    Imran Ashraf

    2015-07-01

    Full Text Available The fluorescence of photosystem I (PSI trimers in proximity to bimetallic plasmonic nanostructures have been explored by single-molecule spectroscopy (SMS at cryogenic temperature (1.6 K. PSI serves as a model for biological multichromophore-coupled systems with high potential for biotechnological applications. Plasmonic nanostructures are fabricated by thermal annealing of thin metallic films. The fluorescence of PSI has been intensified due to the coupling with plasmonic nanostructures. Enhancement factors up to 22.9 and 5.1 are observed for individual PSI complexes coupled to Au/Au and Ag/Au samples, respectively. Additionally, a wavelength dependence of fluorescence enhancement is observed, which can be explained by the multichromophoric composition of PSI.

  12. FORMATION MECHANISM FOR THE NANOSCALE AMORPHOUS INTERFACE IN PULSE-WELDED AL/FE BIMETALLIC SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingjing; Yu, Qian; Zhang, Zijiao; Xu, Wei; Sun, Xin

    2016-05-20

    Pulse or impact welding traditionally has been referred to as “solid-state” welding. By integrating advanced interface characterizations and diffusion calculations, we report that the nanoscale amorphous interface in the pulse-welded Al/Fe bimetallic system is formed by rapid heating and melting of a thin Al layer at the interface, diffusion of iron atoms in the liquid aluminum, and subsequent rapid quenching with diffused iron atoms in solution. This finding challenges the commonly held belief regarding the solid-state nature of the impact-based welding process for dissimilar metals. Elongated ultra-fine grains with high dislocation density and ultra-fine equiaxed grains also are observed in the weld interface vicinity on the steel and aluminum sides, respectively, which further confirms that melting and the resulted recrystallization occurred on the aluminum side of the interface.

  13. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  14. Surface-Bound Ligands Modulate Chemoselectivity and Activity of a Bimetallic Nanoparticle Catalyst

    KAUST Repository

    Vu, Khanh B.

    2015-04-03

    "Naked" metal nanoparticles (NPs) are thermodynamically and kinetically unstable in solution. Ligands, surfactants, or polymers, which adsorb at a particle\\'s surface, can be used to stabilize NPs; however, such a mode of stabilization is undesirable for catalytic applications because the adsorbates block the surface active sites. The catalytic activity and the stability of NPs are usually inversely correlated. Here, we describe an example of a bimetallic (PtFe) NP catalyst stabilized by carboxylate surface ligands that bind preferentially to one of the metals (Fe). NPs stabilized by fluorous ligands were found to be remarkably competent in catalyzing the hydrogenation of cinnamaldehyde; NPs stabilized by hydrocarbon ligands were significantly less active. The chain length of the fluorous ligands played a key role in determining the chemoselectivity of the FePt NP catalysts. (Chemical Presented). © 2015 American Chemical Society.

  15. Dual Wavelength Laser Writing and Measurement Methodology for High Resolution Bimetallic Grayscale Photomasks

    Science.gov (United States)

    Qarehbaghi, Reza

    Grayscale bimetallic photomasks consist of bi-layer thermal resists (Bismuth-on-Indium or Tin-on-Indium) which become controllably transparent when exposed to a focused laser beam as a function of the absorbed power changing from ~3OD (unexposed) to writing. This thesis investigates using two wavelength beams for mask writing (514.5nm) and OD measurement (457.9nm) separated from a multi-line Argon ion laser source: a Dual Wavelength Writing and Measurement System. The writing laser profile was modified to a top-hat using a beam shaper. Several mask patterns tested the creation of high resolution grayscale masks. Finally, for creation of 3D structures in photoresist, the mask transparency to resist thickness requirements was formulated and linear slope patterns were successfully created.

  16. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    Science.gov (United States)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  17. Colloid-probe AFM studies of the interaction forces of proteins adsorbed on colloidal crystals.

    Science.gov (United States)

    Singh, Gurvinder; Bremmell, Kristen E; Griesser, Hans J; Kingshott, Peter

    2015-04-28

    In recent years, colloid-probe AFM has been used to measure the direct interaction forces between colloidal particles of different size or surface functionality in aqueous media, as one can study different forces in symmerical systems (i.e., sphere-sphere geometry). The present study investigates the interaction between protein coatings on colloid probes and hydrophilic surfaces decorated with hexagonally close packed single particle layers that are either uncoated or coated with proteins. Controlled solvent evaporation from aqueous suspensions of colloidal particles (coated with or without lysozyme and albumin) produces single layers of close-packed colloidal crystals over large areas on a solid support. The measurements have been carried out in an aqueous medium at different salt concentrations and pH values. The results show changes in the interaction forces as the surface charge of the unmodified or modified particles, and ionic strength or pH of the solution is altered. At high ionic strength or pH, electrostatic interactions are screened, and a strong repulsive force at short separation below 5 nm dominates, suggesting structural changes in the absorbed protein layer on the particles. We also study the force of adhesion, which decreases with an increment in the salt concentration, and the interaction between two different proteins indicating a repulsive interaction on approach and adhesion on retraction. PMID:25758979

  18. Colloid Release From Differently Managed Loess Soil

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Schjønning, Per; Møldrup, Per;

    2012-01-01

    of the total clay not associated with organic matter. No significant difference in release rate was found for air-dry aggregates. The low-carbon soils initially had a higher content of WSA but were more susceptible to disaggregation than the high-carbon soils. Furthermore, the application of NPK fertilizer had......The content of water-dispersible colloids (WDC) in a soil can have a major impact on soil functions, such as permeability to water and air, and on soil strength, which can impair soil fertility and workability. In addition, the content of WDC in the soil may increase the risk of nutrient loss...... and of colloid-facilitated transport of strongly sorbing compounds. In the present study, soils from the Bad Lauchstadt long-term static fertilizer experiment with different management histories were investigated to relate basic soil properties to the content of WDC, the content of water-stable aggregates (WSA...

  19. Interaction between colloidal particles. Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)

    2010-02-15

    This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports

  20. Viscoelasticity of colloidal polycrystals doped with impurities

    Science.gov (United States)

    Louhichi, Ameur; Tamborini, Elisa; Oberdisse, Julian; Cipelletti, Luca; Ramos, Laurence

    2015-09-01

    We investigate how the microstructure of a colloidal polycrystal influences its linear visco-elasticity. We use thermosensitive copolymer micelles that arrange in water in a cubic crystalline lattice, yielding a colloidal polycrystal. The polycrystal is doped with a small amount of nanoparticles, of size comparable to that of the micelles, which behave as impurities and thus partially segregate in the grain boundaries. We show that the shear elastic modulus only depends on the packing of the micelles and varies neither with the presence of nanoparticles nor with the crystal microstructure. By contrast, we find that the loss modulus is strongly affected by the presence of nanoparticles. A comparison between rheology data and small-angle neutron-scattering data suggests that the loss modulus is dictated by the total amount of nanoparticles in the grain boundaries, which in turn depends on the sample microstructure.

  1. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.

    2010-06-30

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  2. Structure and hydrodynamics of colloidal systems

    Science.gov (United States)

    Hayter, John B.

    1986-02-01

    Invited paperColloidal phases (for example, micellar solutions, latex suspensions, ferrofluids and microemulsions) provide excellent model systems with which to test structural and hydrodynamic theories of the liquid state. Interparticle potentials may be attractive or repulsive, and the experimentalist is often free to control the strength, range and symmetry of the interactions. Small-angle neutron scattering (SANS) and small-angle neutron spin-echo (SANSE) provide excellent complementary tools for studying the structure and time-dependence of these systems, where correlation lengths typically vary from about one to several tens of nm. Correlation times are usually in the nsec to μsec range, but may be of order minutes in certain systems. This paper will review some of the current theories and their recent experimental tests, using colloidal systems in which the direct interaction potentials may have spherical, dipolar or cylindrical symmetry and the hydrodynamic interactions may be weak or strong.

  3. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  4. Ultrasonic wave interactions with magnetic colloids

    CERN Document Server

    Chapman, J R

    2001-01-01

    fluids have been performed in an effort to determine the relative stability of the fluids. The experimental results have been compared with a combined scattering and hydrodynamic model (Allegra and Hawley 1972) and the ultrasonic anisotropy theory of Skumiel (1997). An on-line quality assurance process is proposed. Originally invented as a method for moving spacecraft fuel in weightless conditions, magnetic colloids or ferrofluids are now used in applications as diverse as the dissipation of heat in the voice coils of a loudspeaker, and for the separation of scrap metal. It has been found that aqueous ferrofluids become unstable after a period of time and with dilution. Therefore, there is a need to characterize the colloidal fluid to study the effects of degradation. Additionally, due to the high cost of ferrofluids and the large volumes required for some applications, the fluid is recycled. It is therefore necessary to develop a system for quality assurance for the fluid reclamation process. Ultrasonic meth...

  5. Slab photonic crystals with dimer colloid bases

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Erin K.; Liddell Watson, Chekesha M., E-mail: cliddell@ccmr.cornell.edu [Department of Materials Science and Engineering, Cornell University, 128 Bard Hall Ithaca, New York 14853 (United States)

    2014-06-14

    The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd, even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.

  6. Collective motion in populations of colloidal robots

    Science.gov (United States)

    Bartolo, Denis; Bricard, Antoine; Caussin, Jean-Baptiste; Dauchot, Olivier; Desreumaux, Nicolas

    2014-03-01

    Could the behavior of bacteria swarms, fish schools, and bird flocks be understood within a unified framework? Can one ignore the very details of the interaction mechanisms at the individual level to elucidate how strikingly similar collective motion emerges at the group level in this broad range of motile systems? These seemingly provocative questions have triggered significant advance in the physics and the biology, communities over the last decade. In the physics language these systems, made of motile individuals, can all be though as different realizations of ``active matter.'' In this talk, I will show how to gain more insight into this vivid field using self-propelled colloids as a proxy for motile organism. I will show how to motorize colloidal particles capable of sensing the orientation of their neighbors. Then, I will demonstrate that these archetypal populations display spontaneous transitions to swarming motion, and to global directed motion with very few density and orientation fluctuations.

  7. Structure and hydrodynamics of colloidal systems

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1985-07-01

    Colloidal phases (for example, micellar solutions, latex suspensions, ferrofluids and microemulsions) provide excellent model systems with which to test structural and hydrodynamic theories of the liquid state. Interparticle potentials may be attractive or repulsive, and the experimentalist is often free to control the strength, range and symmetry of the interactions. Small-angle neutron scattering (SANS) and small-angle neutron spin-echo (SANSE) provide excellent complementary tools for studying the structure and time-dependence of these systems, where correlation lengths typically vary from about one to several tens of nm. Correlation times are usually in the nsec to ..mu..sec range, but may be of order minutes in certain systems. This paper will review some of the current theories and their recent experimental tests, using colloidal systems in which the direct interaction potentials may have spherical, dipolar or cylindrical symmetry and the hydrodynamic interactions may be weak or strong.

  8. A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu-Ag superstructures.

    Science.gov (United States)

    Li, Hua; Guo, Chun-Yan; Xu, Cai-Ling

    2015-01-15

    Bimetallic Cu-Ag superstructures were successfully fabricated for the first time by using the natural leaves as reducing agent through a facile one-step hydrothermal process. Morphology, structure and composition of the Cu-Ag superstructures were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS) and inductively coupled plasma-optical emission spectroscopy (ICP-OES), respectively. The results reveal that the Cu-Ag superstructure is bimetallic nanocomposite constructed by nanoparticles with low Ag content and shows a rough surface and porous flexural algae-like microstructure. By using a three-dimensional nickel foam as the scaffold, a novel non-enzymatic glucose sensor based on Cu-Ag nanocomposites has been fabricated and applied to non-enzymatic glucose detection. The as-prepared Cu-Ag nanocomposites based glucose sensor displays distinctly enhanced electrocatalytic activity compared to those obtained with pure Cu nanomaterials prepared with a similar procedure, revealing a synergistic effect of the matrix Cu and the doped Ag. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy indicate that the Cu-Ag superstructures based glucose sensor displays a fascinating sensitivity up to 7745.7 μA mM(-1) cm(-2), outstanding detection limit of 0.08 μM and fast amperometric response (glucose detection. Furthermore, the sensor also exhibits significant selectivity, excellent stability and reproducibility, as well as attractive feasibility for real sample analysis. Because of its excellent electrochemical performance, low cost and easy preparation, this novel electrode material is a promising candidate in the development of non-enzymatic glucose sensor. PMID:25113052

  9. Cu-Sn Bimetallic Catalyst for Selective Aqueous Electroreduction of CO2 to CO

    KAUST Repository

    Sarfraz, Saad

    2016-03-23

    We report a selective and stable electrocatalyst utilizing non-noble metals consisting of Cu and Sn for the efficient and selective reduction of CO2 to CO over a wide potential range. The bimetallic electrode was prepared through the electrodeposition of Sn species on the surface of oxide-derived copper (OD-Cu). The Cu surface, when decorated with an optimal amount of Sn, resulted in a Faradaic efficiency (FE) for CO greater than 90% and a current density of −1.0 mA cm−2 at −0.6 V vs. RHE, compared to the CO FE of 63% and −2.1 mA cm−2 for OD-Cu. Excess Sn on the surface caused H2 evolution with a decreased current density. X-ray diffraction (XRD) suggests the formation of Cu-Sn alloy. Auger electron spectroscopy of the sample surface exhibits zero-valent Cu and Sn after the electrodeposition step. Density functional theory (DFT) calculations show that replacing a single Cu atom with a Sn atom leaves the d-band orbitals mostly unperturbed, signifying no dramatic shifts in the bulk electronic structure. However, the Sn atom discomposes the multi-fold sites on pure Cu, disfavoring the adsorption of H and leaving the adsorption of CO relatively unperturbed. Our catalytic results along with DFT calculations indicate that the presence of Sn on reduced OD-Cu diminishes the hydrogenation capability—i.e., the selectivity towards H2 and HCOOH—while hardly affecting the CO productivity. While the pristine monometallic surfaces (both Cu and Sn) fail to selectively reduce CO2, the Cu-Sn bimetallic electrocatalyst generates a surface that inhibits adsorbed H*, resulting in improved CO FE. This study presents a strategy to provide a low-cost non-noble metals that can be utilized as a highly selective electrocatalyst for the efficient aqueous reduction of CO2.

  10. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.

    2015-05-12

    The characteristics of bimetallic nanomaterials are dictated by their size, shape and elemental distribution. Solution synthesis is widely utilized to form nanomaterials, such as nanoparticles, with controlled size and shape. However, the effects of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape-controlled synthesis on the final shape of the nanomaterials and the elemental distribution within the alloy. We demonstrate that this strategy can tune the size of monodisperse PtM (M=Ni or Cu) alloy nanocrystals ranging from 3 to 16 nm with an octahedral shape using acetylacetonate or halide precursors of Pt(II), Pt(IV) and Ni or Cu (II). The nanoparticles formed from halide precursors showed an enrichment of platinum on their surfaces, and the bromides could oxidatively etch the nanoparticles during synthesis with the O2/Br- pair. The two nanocrystal precursors can be uti-lized independently and can control the size with a trend of Pt(acac)2

  11. Bimetallic iron and cobalt incorporated MFI/MCM-41 composite and its catalytic properties

    International Nuclear Information System (INIS)

    Graphical abstract: The formation of FeCo-MFI/MCM-41 composite is based on two steps, the first step of synthesizing the MFI-type proto-zeolite unites under hydrothermal conditions. The second step of assembling these zeolite fragment together new silica and heteroatom source on the CTAB surfactant micelle to synthesize the mesoporous product with hexagonal structure. Highlights: ► Bimetallic iron and cobalt incorporated MFI/MCM-41 composite was prepared using templating method. ► FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of meso- and micro-porous structures. ► Iron and cobalt ions incorporated into the silica framework with tetrahedral coordination. -- Abstract: The MFI/MCM-41 composite material with bimetallic Fe and Co incorporation was prepared using templating method via a two-step hydrothermal crystallization procedure. The obtained products were characterized by a series of techniques including powder X-ray diffraction, N2 sorption, transmission electron microscopy, scanning electron microscope, H2 temperature programmed reduction, thermal analyses, and X-ray absorption fine structure spectroscopy of the Fe and Co K-edge. The catalytic properties of the products were investigated by residual oil hydrocracking reactions. Characterization results showed that the FeCo-MFI/MCM-41 composite simultaneously possessed two kinds of stable meso- and micro-porous structures. Iron and cobalt ions were incorporated into the silicon framework, which was confirmed by H2 temperature programmed reduction and X-ray absorption fine structure spectroscopy. This composite presented excellent activities in hydrocracking of residual oil, which was superior to the pure materials of silicate-1/MCM-41.

  12. Low-temperature aqueous-phase reforming of ethanol on bimetallic PdZn catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Haifeng; DelaRiva, Andrew; Wang, Yong; Dayte, Abhaya

    2015-01-01

    Bimetallic PdZn catalysts supported on carbon black (CB) and carbon nanotubes (CNTs) were found to be selective for CO-free H-2 production from ethanol at low temperature (250 degrees C). On Pd, the H-2 yield was low (similar to 0.3 mol H-2/mol ethanol reacted) and the CH4/CO2 ratio was high (similar to 1.7). Addition of Zn to Pd formed the intermetallic PdZn beta phase (atomic ratio of Zn to Pd is 1) with increased H-2 yield (similar to 1.9 mol H-2/mol ethanol reacted) and CH4/CO2 ratio of <1. The higher H-2 yield and low CH4 formation was related to the improved dehydrogenation activity of the L1(0) PdZn beta phase. The TOF increased with particle size and the CNTs provided the most active and selective catalysts, which may be ascribed to pore-confinement effects. Furthermore, no significant changes in either the supports or the PdZn beta particles was found after aqueous-phase reforming (APR) indicating that the metal nanoparticles and the carbon support are hydrothermally stable in the aqueous phase at elevated temperatures and pressures (>200 degrees C, 65 bar). No CO was detected for all the catalysts performed in aqueous-phase reaction, indicating that both monometallic Pd and bimetallic PdZn catalysts have high water-gas shift activity during APR. However, the yield of H-2 is considerably lower than the theoretical value of 6 H-2 per mole ethanol which is due to the presence of oxygenated products and methane on the PdZn catalysts.

  13. Fabrication of electrically conductive nickel-silver bimetallic particles via polydopamine coating.

    Science.gov (United States)

    Kim, Sung Yeop; Kim, Jieun; Choe, Jaehoon; Byun, Young Chang; Seo, Jung Hyun; Kim, Do Hyun

    2013-11-01

    Inspired by adhesive proteins excreted by marine mussels, dopamine can act as a versatile surface modification agent for various organic and inorganic materials. By using adhesive polydopamine (PDA) as an intermediate layer, a simple and novel method for fabricating nickel-PDA-silver (Ni-PDA-Ag) bimetallic composite particles was developed. Ni-PDA-Ag bimetallic particles were fabricated by dispersing Ni particles in an aqueous dopamine solution followed by electroless Ag plating on the prepared Ni-PDA particles. A PDA layer with nano-meter thickness was deposited spontaneously on the surface of the Ni particles by oxidative self-polymerization of dopamine under alkaline conditions. Electroless Ag plating on the prepared Ni-PDA particles was carried out in the presence of a glucose solution as a reducing agent. Ni-PDA particles and Ni-PDA-Ag composite particles with a PDA intermediate layer were characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), field-emission transmission electron microscopy (FE-TEM), and X-ray diffraction (XRD). In addition, the electrical conductivity of as-prepared composite particles was evaluated by a 4-point probe. The PDA layer deposited on the surface of Ni was confirmed by XPS spectra, FT-IR spectroscopy, and FE-TEM. FE-SEM images demonstrated that Ag nanoparticles were successfully plated on the PDA layer-coated Ni particles after the electroless Ag plating process. XRD patterns also confirmed the presence of Ag in a metallic state. In addition, the sheet resistance of as-prepared composite particles showed a tendency to decrease with increasing AgNO3 concentration. PMID:24245300

  14. Thermal Jamming of a Colloidal Glass

    KAUST Repository

    Agarwal, Praveen

    2011-12-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findings can be explained within the soft glassy rheology framework if the noise temperature X of the glass phase is correlated with thermodynamic temperature. © 2011 American Physical Society.

  15. Non-Fickian diffusion in colloidal glasses

    OpenAIRE

    Hagen, M.H.J.; Frenkel, D.; Lowe, C.P.

    1998-01-01

    We have studied numerically the decay of the self-dynamic structure factor (SDSF) for a small particle diffusing in a colloidal glass. We show that, in line with theoretical predictions, the super-Burnett coefficient (characterizing the deviation of the fourth moment of the single particle distribution from its Gaussian value) is finite. However, our results also show that large scale deviations from Fick's law of diffusion should still be easy to detect experimentally. These deviations take ...

  16. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Shear modulus titration in crystalline colloidal suspensions

    OpenAIRE

    Palberg, Thomas; Kottal, Johannes; Bitzer, Franz; Simon, Rolf; Würth, Mathias; Leiderer, Paul

    1995-01-01

    We present the first direct experimental access to the actual surface charge number Z of colloidal particles under conditions of strong electrostatic interaction. We further calculate a renormalized charge number Z *(Z) using the modified DLVO approximation and the dependence of the shear modulus G(Z*) on the concentration of neutral electrolyte ns. The excellent agreement of predicted and measured values provides an experimental verification of the renormalization concept under variation of ...

  18. Colloidal suspensions as model liquids and solids

    OpenAIRE

    Palberg, Thomas; Simon, Rolf; Würth, Mathias; Leiderer, Paul

    1994-01-01

    We here review some of our recent results on fluid-like and crystalline ordered colloidal suspensions. We have investigated the structure and the dynamical properties of strongly interacting charged latex particles. The interaction can be varied experimentally over a wide range and in a precisely controlled way. It gives rise to pronounced correlations between the particles, leading to ordered mesoscopic structures which bear striking similarities with atomic or molecular liquids and solids. ...

  19. Optimal Hydrodynamic Synchronization of Colloidal Rotors

    OpenAIRE

    Kotar, Jurij; Debono, Luke; Bruot, Nicolas; Box, Stuart; Phillips, David; Simpson, Stephen,; Hanna, Simon; Cicuta, Pietro

    2013-01-01

    Synchronization of driven oscillators is a key aspect of flow generation in artificial and biological filaments such as cilia. Previous theoretical and numerical studies have considered the “rotor” model of a cilium in which the filament is coarse grained into a colloidal sphere driven with a given force law along a predefined trajectory to represent the oscillating motion of the cilium. These studies pointed to the importance of two factors in the emergence of synchronization: the modulation...

  20. Repulsive depletion interactions in colloid polymer mixtures

    OpenAIRE

    Rudhardt, Daniel; Bechinger, Clemens; Leiderer, Paul

    1999-01-01

    Depletion forces in colloidal systems are known to be entirely attractive, as long as the background of macromolecules is small enough that an ideal gas approach is valid. At higher densities, however, structural correlation effects of the macromolecules which lead to additional repulsive parts in the depletion interaction, have to be taken into account. We have measured the depletion interaction between a single polystyrene sphere and a wall in the presence of non-ionic polymer coils. Althou...

  1. Photonic Binding in Silicon-Colloid Microcavities

    OpenAIRE

    Xifré-Pérez, E.; García de Abajo, Francisco Javier; Fenollosa Esteve, Roberto; Meseguer, Francisco

    2009-01-01

    Photonic binding between two identical silicon-colloid-based microcavities is studied by using a generalized multipolar expansion. In contrast with previous works, we focus on low-order cavity modes that resemble low-energy electronic orbitals. For conservative light intensities, the interaction between cavity modes with moderate Q factors produces extremely large particle acceleration values. Optical forces dominate over vanderWaals, gravity, and Brownian motion, and they show a binding-anti...

  2. Geometric frustration in small colloidal clusters

    OpenAIRE

    Malins, Alex; Stephen R Williams; Eggers, Jens; Tanaka, Hajime; Royall, C. Patrick

    2009-01-01

    We study the structure of clusters in a model colloidal system with competing interactions using Brownian dynamics simulations. A short-ranged attraction drives clustering, while a weak, long-ranged repulsion is used to model electrostatic charging in experimental systems. The former is treated with a short-ranged Morse attractive interaction, the latter with a repulsive Yukawa interaction. We consider the yield of clusters of specific structure as a function of the strength of the interactio...

  3. Colloidal Electrostatic Interactions Near a Conducting Surface

    OpenAIRE

    Polin, Marco; Grier, David G.; Han, Yilong

    2006-01-01

    Charge-stabilized colloidal spheres dispersed in deionized water are supposed to repel each other. Instead, artifact-corrected video microscopy measurements reveal an anomalous long-ranged like-charge attraction in the interparticle pair potential when the spheres are confined to a layer by even a single charged glass surface. These attractions can be masked by electrostatic repulsions at low ionic strengths. Coating the bounding surfaces with a conducting gold layer suppresses the attraction...

  4. Strong electrostatic interactions in spherical colloidal systems

    OpenAIRE

    Messina, René; Holm, Christian; Kremer, Kurt

    2001-01-01

    We investigate spherical macroions in the strong Coulomb coupling regime within the primitive model in salt-free environment. We first show that the ground state of an isolated colloid is naturally overcharged by simple electrostatic arguments illustrated by the Gillespie rule. We furthermore demonstrate that in the strong Coulomb coupling this mechanism leads to ionized states and thus to long range attractions between like-charged spheres. We use molecular dynamics simulations to study in d...

  5. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Silica colloids and their effect on radionuclide sorption - experimental study

    International Nuclear Information System (INIS)

    Non-cementitious grouts have been tested in ONKALO for the sealing of fractures with the small hydraulic aperture. A non-cementitious inorganic grout material for sealing the fractures of the apertures less than 0.05 mm is colloidal silica called silica sol. In this work, the release of silica colloids from the silica sol gel, the stability of silica sol colloids and sorption of Europium-152 on silica sol colloids were determined in saline OLSO and low salinity Allard groundwater simulates, de-ionized water and NaCl and CaCl2 solutions. The salinity of groundwater had a significant influence on the release and stability of silica colloids. In OLSO, particle size distribution was at first wide from nanometres to thousands of nanometres. According to the disappearance of large particles, aggregation and sedimentation had been occurred after one year. Zeta potential values around zero indicated the instability of colloids. In Allard, particle size distribution was narrow and the particle diameter remained less than 60 nm. High negative zeta potential values were in accordance with the existence of stable silica colloids. Europium sorption on silica sol colloids was significantly dependent on solution pH. The Kd-values were 2-10 m3 kg-1 for OLSO pH 7-8 and Allard pH 8-9 and 100-140 m3 kg-1 for OLSO pH 10-11. In OLSO pH 10-11 samples Eu-152 was rapidly sorbed onto silica sol colloids and measured radioactivity in a liquid phase was at the background level resulting in inaccurate Kd determination. The concentrations of the released silica colloids were some higher than concentrations of natural colloids determined in granitic groundwater. The main uncertainties remain in the quantification of colloid generation under realistic repository conditions and how mobile colloids are. Irreversible sorption on silica colloids may increase radionuclide transport if colloids are sufficiently stable. Under the prevailing medium saline to saline groundwater conditions in Olkiluoto

  7. Equilibrium crystal phases of triblock Janus colloids.

    Science.gov (United States)

    Reinhart, Wesley F; Panagiotopoulos, Athanassios Z

    2016-09-01

    Triblock Janus colloids, which are colloidal spheres decorated with attractive patches at each pole, have recently generated significant interest as potential building blocks for functional materials. Their inherent anisotropy is known to induce self-assembly into open structures at moderate temperatures and pressures, where they are stabilized over close-packed crystals by entropic effects. We present a numerical investigation of the equilibrium phases of triblock Janus particles with many different patch geometries in three dimensions, using Monte Carlo simulations combined with free energy calculations. In all cases, we find that the free energy difference between crystal polymorphs is less than 0.2 kBT per particle. By varying the patch fraction and interaction range, we show that large patches stabilize the formation of structures with four bonds per patch over those with three. This transition occurs abruptly above a patch fraction of 0.30 and has a strong dependence on the interaction range. Furthermore, we find that a short interaction range favors four bonds per patch, with longer range increasingly stabilizing structures with only three bonds per patch. By quantifying the effect of patch geometry on the stability of the equilibrium crystal structures, we provide insights into the fundamental design rules for constructing complex colloidal crystals. PMID:27609002

  8. Equilibrium crystal phases of triblock Janus colloids

    Science.gov (United States)

    Reinhart, Wesley F.; Panagiotopoulos, Athanassios Z.

    2016-09-01

    Triblock Janus colloids, which are colloidal spheres decorated with attractive patches at each pole, have recently generated significant interest as potential building blocks for functional materials. Their inherent anisotropy is known to induce self-assembly into open structures at moderate temperatures and pressures, where they are stabilized over close-packed crystals by entropic effects. We present a numerical investigation of the equilibrium phases of triblock Janus particles with many different patch geometries in three dimensions, using Monte Carlo simulations combined with free energy calculations. In all cases, we find that the free energy difference between crystal polymorphs is less than 0.2 kBT per particle. By varying the patch fraction and interaction range, we show that large patches stabilize the formation of structures with four bonds per patch over those with three. This transition occurs abruptly above a patch fraction of 0.30 and has a strong dependence on the interaction range. Furthermore, we find that a short interaction range favors four bonds per patch, with longer range increasingly stabilizing structures with only three bonds per patch. By quantifying the effect of patch geometry on the stability of the equilibrium crystal structures, we provide insights into the fundamental design rules for constructing complex colloidal crystals.

  9. Potential Distribution Around a Spherical Colloidal Particle

    International Nuclear Information System (INIS)

    When it is immersed into an electrolyte solution, surface of a colloidal particle will be charged. The charge creates repulsion force among particles. This causes that agglomeration among colloidal particles will be difficult to occur. This paper discusses in brief the surface charging process and then followed by calculation to determine the potential distribution, Ψ, around a spherical colloid particle. The particle has radius of a and zeta potential, ζ, at it's surface. The poisson-Boltzmann equation, εε0∇2Ψ= -σkN ezknk, that determines the potential distribution outside the particle will be solved analytically. Its nonlinearity causes that the equation only can be solved for symmetric, 1-1 electrolyte and with approximation that the double layer thickness is much less than the particle radius. Because of this, the area outside the particle can be divided into two regions, i.e. the electroneutral region far from the surface and the ion diffused region closed to the surface. Solutions to the PB equation will be determined for each region and constants in the solutions will be determined by matching. For the neutral region it is found that ψ = eζ/kTr exp (κa(1-r), with correction factor in the order of O (1/κa)

  10. Colloidal forming of metal/ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A.J.; Gutierrez, C.A.; Millan, A.J.; Nieto, M.I.; Moreno, R. [Inst. de Ceramica y Vidrio, Madrid (Spain)

    2002-07-01

    Metal/Ceramic composites have very attractive properties as either structural or electronic materials. For certain applications, complex microstructures and shapes are required. Colloidal processing of ceramics has proved to provide better properties and allows to obtain near net complex shaped parts. However colloidal processing has not received a similar attention in powder metallurgy. This work deals with the colloidal approach to the forming of metallic and metal/ceramic composites in an aqueous medium. Rheological behavior of concentrated pure nickel, nickel/alumina and nickel/zirconia suspensions is studied and optimized for obtaining flat surfaces or near net shaped parts by tape casting and gel casting respectively. In each case the influence of the processing additives (acrylic binders for tape casting and carrageenans for gel casting) on the rheological behavior of the slurries is determined. Pure nickel and nickel/ceramic composites with different compositions have been prepared. Static and dynamic sintering studies were performed at different conditions in order to control the porosity and microstructure of the final bodies, which were characterized by optical microscopy. (orig.)

  11. Improving feed slurry rheology by colloidal techniques

    Energy Technology Data Exchange (ETDEWEB)

    Heath, W.O.; Ternes, R.L.

    1984-06-01

    Pacific Northwest Laboratory (PSN) has investigated three colloidal techniques in the laboratory to improve the sedimentation and flowability of Hanford simulated (nonradioactive) current acid waste (CAW) melter feed slurry: polymer-induced bridging flocculation; manipulating glass former (raw SiO/sub 2/ or frit) particle size; and alteration of nitric acid content. All three methods proved successful in improving the rheology of the simulated CAW feed. This initially had exhibited nearly worst-case flow and clogging properties, but was transformed into a flowable, resuspendable (nonclogging) feed. While each has advantages and disadvantages, the following three specific alternatives proved successful: addition of a polyelectrolyte in 2000 ppM concentration to feed slurry; substitution of a 49 wt % SiO/sub 2/ colloidal suspension (approx. 10-micron particle size) for the -325 mesh (less than or equal to 44-micron particle size) raw-chemical SiO/sub 2/; and increase of nitric acid content from the reference 1.06 M to optimum 1.35 M. The first method, polymer-induced bridging flocculation, results in a high sediment volume, nonclogging CAW feed. The second method, involving the use of colloidal silica particles results in a nonsedimenting feed that when left unagitated forms a gel. The third method, increase in feed acidity, results in a highly resuspendable (nonclogging) melter feed. Further research is therefore required to determine which of the three alternatives is the preferred method of achieving rheological control of CAW melter feeds.

  12. Synthesis of metal colloids in inverse microemulsions

    Science.gov (United States)

    Barnickel, P.; Wokaun, A.

    Colloidal silver and gold particles have been prepared by reduction of aqueous metal salt solutions in inverse microemulsions. The sols are characterized by absorption spectroscopy and electron microscopy. Ultrasound treatment during reduction results in a narrower size distribution of the colloidal particles, as evidenced by a narrower absorption band. Photochemical silver and gold sol formation, without the addition of a reducing agent, has been observed for inverse microemulsions of metal salt solutions in a medium consisting of dodecyl-heptaethyleneglycol-ether and hexane. The particle sizes determined from electron microscopy have been used as input parameters for the simulation of absorption spectra, based on the electromagnetic theory of localized surface plasmon excitation. For the gold sols a quantitative agreement between experimental and simulated spectra is obtained. With the silver colloids, the observed red-shift of the absorption maximum points to the presence of an ionic layer on the surface of the particles. When this layer is included in the theoretical model, good agreement with the experiment is achieved.

  13. Design and elaboration of colloidal molecules: an overview.

    Science.gov (United States)

    Duguet, Etienne; Désert, Anthony; Perro, Adeline; Ravaine, Serge

    2011-02-01

    The concept of colloidal molecules was first evoked by van Blaaderen in 2003 for describing small non-spherical colloids made of the aggregation of a small number of particles. He predicted original properties to the complex assemblies of such colloids, in particular in optics. This critical review deals with the different strategies reported for creating robust clusters of spherical particles which could mimic the space-filling models of simple conventional molecules. These routes concern either the controlled clustering of preformed colloids directed by coalescence, physical routes, chemical routes, or 2-D/3-D geometrical confinement, or strategies starting from a single colloid which is decorated by satellite colloids by taking advantage of controlled phase separation or nucleation and growth phenomena. These routes are compared from the viewpoint of the accessible shapes, their tunability and scalability (146 references). PMID:21212874

  14. A colloidal singularity reveals the crucial role of colloidal stability for nanomaterials in-vitro toxicity testing: nZVI-microalgae colloidal system as a case study.

    Directory of Open Access Journals (Sweden)

    Soledad Gonzalo

    Full Text Available Aggregation raises attention in Nanotoxicology due to its methodological implications. Aggregation is a physical symptom of a more general physicochemical condition of colloidal particles, namely, colloidal stability. Colloidal stability is a global indicator of the tendency of a system to reduce its net surface energy, which may be achieved by homo-aggregation or hetero-aggregation, including location at bio-interfaces. However, the role of colloidal stability as a driver of ENM bioactivity has received little consideration thus far. In the present work, which focuses on the toxicity of nanoscaled Fe° nanoparticles (nZVI towards a model microalga, we demonstrate that colloidal stability is a fundamental driver of ENM bioactivity, comprehensively accounting for otherwise inexplicable differential biological effects. The present work throws light on basic aspects of Nanotoxicology, and reveals a key factor which may reconcile contradictory results on the influence of aggregation in bioactivity of ENMs.

  15. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. 5. progress report

    International Nuclear Information System (INIS)

    The aim of the joint research programme is to determine the significance of groundwater colloids in far field radionuclide migration. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena of radionuclides in selected Gorleben aquifer systems are the main objectives of the present research programme. Gorleben aquifer systems are chosen because they are well characterized in terms of their hydrological and geological properties and because they contain substantial amounts of colloids of different chemical compositions as well as considerable quantities of chemical homologues and natural analogues of radionuclides, e.g. M(III), M(IV), M(VI), and Th and U decay series. The research tasks are investigated jointly by the four laboratories (listed below) in close coordination of experimental capacities of each laboratory. (orig.)

  16. Influence of Nanoscale Surface Roughness on Colloidal Force Measurements.

    Science.gov (United States)

    Zou, Yi; Jayasuriya, Sunil; Manke, Charles W; Mao, Guangzhao

    2015-09-29

    Forces between colloidal particles determine the performances of many industrial processes and products. Colloidal force measurements conducted between a colloidal particle AFM probe and particles immobilized on a flat substrate are valuable in selecting appropriate surfactants for colloidal stabilization. One of the features of inorganic fillers and extenders is the prevalence of rough surfaces-even the polymer latex particles, often used as model colloidal systems including the current study, have rough surfaces albeit at a much smaller scale. Surface roughness is frequently cited as the reason for disparity between experimental observations and theoretical treatment but seldom verified by direct evidence. This work reports the effect of nanoscale surface roughness on colloidal force measurements carried out in the presence of surfactants. We applied a heating method to reduce the mean surface roughness of commercial latex particles from 30 to 1 nm. We conducted force measurements using the two types of particles at various salt and surfactant concentrations. The surfactants used were pentaethylene glycol monododecyl ether, Pluronic F108, and a styrene/acrylic copolymer, Joncryl 60. In the absence of the surfactant, nanometer surface roughness affects colloidal forces only in high salt conditions when the Debye length becomes smaller than the surface roughness. The adhesion is stronger between colloids with higher surface roughness and requires a higher surfactant concentration to be eliminated. The effect of surface roughness on colloidal forces was also investigated as a function of the adsorbed surfactant layer structure characterized by AFM indentation and dynamic light scattering. We found that when the layer thickness exceeds the surface roughness, the colloidal adhesion is less influenced by surfactant concentration variation. This study demonstrates that surface roughness at the nanoscale can influence colloidal forces significantly and should be taken

  17. Colloidal Stability and Thermal Stability of Magnetic Fluids

    OpenAIRE

    I.M. Arefyev; T.A. Arefyeva; Yu.B. Kazakov

    2013-01-01

    Colloidal and thermal stabilities of magnetic fluids define the service life of magneto-liquid equipment. The results of the research into colloidal and thermal stabilities of original synthesized magnetic fluids based on kerosene, siloxane fluid and synthetic hydrocarbon oil are presented. The method of carrying agent substitution was used in the research into colloidal stability. The thermal tests were conducted in the research into thermal stability. The conclusions about the prospects of ...

  18. General elastic interaction in nematic liquid crystals colloids

    OpenAIRE

    Chernyshuk, S. B.; Lev, B. I.

    2009-01-01

    The new free energy functional that describes general elastic interaction between colloidal particles and nematic liquid crystal has been proposed. It generalizes results of the paper \\cite{lupe} on the case of arbitrary orientation of colloidal particles and is valid for arbitrary surface anchoring strength. Formal analogies and differences between electric particles and colloidal particles in LC are found. It is first time shown that spur of the quadrupole moment tensor is different from ze...

  19. Thermal conductivity of concentrated colloids in different states

    OpenAIRE

    Shalkevich, Natallia; Shalkevich, Andrey; Brügi, Thomas

    2010-01-01

    The thermal conductivity of concentrated colloids in fluid, glass, and gel states was analyzed. SiO₂ colloids at 10−31 vol % and Al₂O₃ colloids at 4.8 vol % in the fluid, the gel, and the glassy states were studied by dynamic light scattering, rheology, and transmission electron microscopy. Thermal conductivity of the three states was measured as a function of volume fraction. For the fluid and gel states the thermal conductivity increases almost linearly with concentration, reaching roughly ...

  20. Short-wave infrared colloidal quantum dot photodetectors on silicon

    OpenAIRE

    Hu, Chen; Gassenq, Alban; Justo, Yolanda; Yakunin, Sergii; Heiss, Wolfgang; Hens, Zeger; Roelkens, Gunther

    2013-01-01

    In this paper, two kinds of colloidal quantum dots, PbS and HgTe, are explored for SWIR photodetectors application. The colloidal dots are prepared by hot injection chemical synthesis, with organic ligands around the dots keeping them stable in solution. For the purpose of achieving efficient carrier transport between the dots in a film, these long organic ligands are replaced by shorter, inorganic ligands. We report uniform, ultra-smooth colloidal QD films without cracks realized by dip-coat...

  1. Recent research progress in wettability of colloidal crystals

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The wettability of solid surfaces has attracted extensive interest in both theoretical research and industrial applications. This paper reviews recent research progress in the fabrication and applications of the colloidal crystals with special wettability. Based on the modified equation of Wenzel and Cassie, the colloidal crystals with special wettability have been obtained by either application of the intrinsic rough structure or modification of the surface chemical composition. Some typical applications of colloidal crystals with special wettability have also been demonstrated.

  2. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    Science.gov (United States)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  3. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry. It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.

  4. Partial structure factors in star polymer/colloid mixtures

    CERN Document Server

    Stellbrink, J; Richter, D; Moussaid, A; Schofield, A B; Poon, W C K; Pusey, P N; Lindner, P; Dzubiella, J; Likos, C N; Löwen, H

    2002-01-01

    Addition of polymer to colloidal suspensions induces an attractive part to the colloid pair potential, which is of purely entropic origin (''depletion interaction''). We investigated the influence of polymer branching on depletion forces by studying mixtures of hard sphere colloids and star polymers with increasing arm number f=2-32, but constant R sub g approx 500 A. We found a pronounced effect of branching on the position of the gas/liquid demixing transition. Using small angle neutron scattering (SANS) we were able to measure partial structure factors in star polymer/colloid mixtures. The relative distance to the demixing transition is reflected in our scattering data. (orig.)

  5. Electrochromism with colloidal WO3 and IrO2

    Science.gov (United States)

    Michalak, Franck; Rault, L.; Aldebert, Pierre

    1992-11-01

    Colloidal particles of WO3 and IrO2 are synthesized and dispersed within a gelatinous perfluorinated ionomer matrix. Experimental procedures are established in order to obtain percolation between the electrochromic particles. Colloidal particle sizes are measured by quasi elastic light scattering. Electrochemical properties of the mixed colloid electrodes are determined by cyclic voltammetry and impedance spectroscopy. Preliminary optical tests are performed in order to measure transmission and contrast of electrochromic half cells with a mixed colloid electrode, and also a sputtered oxide electrode.

  6. Buckling of a Shallow Rectangular Bimetallic Shell Subjected to Outer Loads and Temperature and Supported at Four Opposite Points

    OpenAIRE

    Kosel, T.; Kosel, F.; Jakomin, M.

    2009-01-01

    We have formulated a geometric non-linear mathematical-physical model of the snap-through of the system of a thin-walled shallow bimetallic translation shell in a homogenous temperature field according to the theory of large displacements, moderate rotations, and small strains of the shell element. The model enables the calculation of the geometric conditions, of shallow translation shells, due to the influences of temperature and mechanical loads. The results are based on the numeric solutio...

  7. Snap-through of the system of open shallow axi-symmetric bimetallic shell by non-linear theory

    OpenAIRE

    Jakomin, Marko; Kosel, Tadej; Kosel, Franc; Batista, Milan

    2015-01-01

    The paper deals with stresses, strains and buckling conditions in the thin axi-symmetric shallow bimetallic shells with circular opening at the top of the shell. According to the third order theory by the Czech researcher E. Chawalla, which takes into account the equilibrium state of forces and moments acting on the deformed system, the paper presents a model for mathematical description of the system's geometry, stresses, thermo-elastic strains and displacements. The mathematical formulation...

  8. Snap-through of the system for a shallow axially symmetric bimetallic shell using non-linear theory

    OpenAIRE

    Kosel, Tadej; Batista, Milan; Jakomin, Marko; Kosel, Franc

    2015-01-01

    The paper deals with the stresses, strains and buckling conditions in thin, axially symmetric, shallow, bimetallic shells. Based on third-order theory, which takes into account the equilibrium state of the forces and moments that are acting on the deformed system, the paper presents a model with a mathematical description of the geometry of the system, the stresses, the thermoelastic strains and the displacements. The mathematical formulation is based on the theory of large displacements. As ...

  9. Synergetic effects leading to coke-resistant NiCo bimetallic catalysts for dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-01-08

    A new dry reforming of methane catalyst comprised of NiCo bimetallic nanoparticles and a Mgx(Al)O support that exhibits high coke resistance and long-term on-stream stability is reported. The structural characterization by XRD, TEM, temperature-programmed reduction, and BET analysis demonstrates that the excellent performance of this catalyst is ascribed to the synergy of various parameters, including metal-nanoparticle size, metal-support interaction, catalyst structure, ensemble size, and alloy effects.

  10. Heterogenized Bimetallic Pd-Pt-Fe3O4 Nanoflakes as Extremely Robust, Magnetically Recyclable Catalysts for Chemoselective Nitroarene Reduction.

    Science.gov (United States)

    Byun, Sangmoon; Song, Yeami; Kim, B Moon

    2016-06-15

    A very simple synthesis of bimetallic Pd-Pt-Fe3O4 nanoflake-shaped alloy nanoparticles (NPs) for cascade catalytic reactions such as dehydrogenation of ammonia-borane (AB) followed by the reduction of nitro compounds (R-NO2) to anilines or alkylamines (R-NH2) in methanol at ambient temperature is described. The Pd-Pt-Fe3O4 NPs were easily prepared via a solution phase hydrothermal method involving the simple one-pot coreduction of potassium tetrachloroplatinate (II) and palladium chloride (II) in polyvinylpyrrolidone with subsequent deposition on commercially available Fe3O4 NPs. The bimetallic Pd-Pt alloy NPs decorated on Fe3O4 NPs provide a unique synergistic effect for the catalysis of cascade dehydrogenation/reduction. Various nitroarene derivatives were reduced to anilines with very specific chemoselectivity in the presence of other reducible functional groups. The bimetallic Pd-Pt-Fe3O4 NPs provide a unique synergistic effect for the catalysis of cascade dehydrogenation/reduction. The nitro reduction proceeded in 5 min with nearly quantitative conversions and yields. Furthermore, the magnetically recyclable nanocatalysts were readily separated using an external magnet and reused up to 250 times without any loss of catalytic activity. A larger scale (10 mmol) reaction was also successfully performed with >99% yield. This efficient, recyclable Pd-Pt-Fe3O4 NPs system can therefore be repetitively utilized for the reduction of various nitro-containing compounds. PMID:27191706

  11. Bimetallic Au/Pd catalyzed aerobic oxidation of alcohols in the poly(ethylene glycol)/CO2 system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bimetallic Au/Pd nanoparticles were prepared and used to catalyze oxidation of alcohols in the poly(ethylene glycol) (PEG)/CO2 biphasic system using O2 as the oxidant without adding any base.The catalytic activity of Au/Pd bimetal with different mole ratios was studied using benzyl alcohol as the substrate.It was found that bimetallic Au/Pd nanoparticles with Au:Pd=1:3.5 had higher catalytic activity than monometallic Au,Pd and the bimetallic Au/Pd nanoparticles with other molar ratios.The effect of CO2 pressure on the oxidation of benzyl alcohol and 1-phenylethanol in PEG/CO2 was investigated.It was demonstrated that CO2 pressure could be used to tune the conversion and selectivity of the reactions effectively.α,β-Unsaturated alcohols were also studied and found to be more reactive than benzyl alcohol and 1-phenylethanol.Recycling experiments showed that the Au/Pd/PEG/CO2 catalytic system could be recycled at least four times without reducing the activity.In addition,the catalytic system is clean and the products can be separated easily.

  12. Anisotropic Colloids: Synthesis and Phase Behavior of Eccentric, Dimer and String-like Colloids

    NARCIS (Netherlands)

    Demirors, A.F.

    2010-01-01

    The research described in this thesis focuses on synthesis and phase behavior of anisotropic colloids prepared through different synthetic strategies. Namely, eccentric core-shell particles, dimers, string-like particles and core-shell particles are the systems investigated throughout this work. The

  13. Explorative analysis of microbes, colloids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H{sub 2}O/O{sub 2}, NO{sub 3}-/N{sub 2}, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO{sub 4}2-, CH{sub 4}/CO{sub 2}, CH{sub 3}COOH/CO{sub 2}, and H{sub 2}/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 mum are regarded as colloids. Their small size prohibits them from settling, which gives them the

  14. Explorative analysis of microbes, colloids and gases

    International Nuclear Information System (INIS)

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H2O/O2, NO3-/N2, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO42-, CH4/CO2, CH3COOH/CO2, and H2/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 μm are regarded as colloids. Their small size prohibits them from settling, which gives them the potential to transport radionuclides in groundwater. The aim of

  15. Sulfate—Exchange Alkalinity of Ferralsol Colloid

    Institute of Scientific and Technical Information of China (English)

    ZHANGGANGYA; ZHANGXIAONIAN

    1999-01-01

    The amount of OH- replaced by sulfate,i.e.,sulfate-exchange alkalinity,from the electric double layer of ferralsol colloid was measured quantitatively in different conditions with an automatic titration equipment.The amount of OH- release increased with the amount of Na2SO4 added and decreased with raising pH in the suspension of ferralsol colloid.The exchange acidity was displayed as pH was higher than 5.6,If the negative effect of sodium ions was offset,the amount of OH- replaced by sulfate was larger than the original amount of OH- released in the pH range of lower than 5.8.The amount of OH- released decreased rapidly as pH was higher than 6.0 and dropped to zero when pH reached 6.5.In the solution of 2.0molL-1 NaClO4,the amount of OH- repleaced by sulfate from the surface of ferralsol colloid could be considered as the amount of OH- adsorbed by ligand exchange reaction.The amount of OH- released in the solution of NaClO4 concentration below 2.0mol L-1 from which the amount of OH- adsorbed by ligand exchange reaction was subtracted could be conidered as the OH- adsorbed by electrostatic force,The OH- adsorbed by electrostatic force decreased with increases in the concentration of NaClO4 and pH and increased almost linearly with the increasing amount of Na2SON4 added.The percentages of OH- adsorbed by electrostatic force in water and in the electrolyte solutions of 0.05 and 0.5mol L-1 NaClO4 in the total OH- released were calculated,respectively.

  16. Generation, stability and migration of montmorillonite colloids in aqueous systems

    International Nuclear Information System (INIS)

    In Sweden the encapsulated nuclear waste will be surrounded by compacted bentonite in the granitic host rock. In contact with water-bearing fractures the bentonite barrier may release montmorillonite colloids that may be further transported in groundwater. If large amounts of material are eroded from the barrier, the buffer functionality can be compromised. Furthermore, in the scenario of a leaking canister, strongly sorbing radionuclides, can be transported by montmorillonite colloids towards the biosphere. This thesis addresses the effects of groundwater chemistry on the generation, stability, sorption and transport of montmorillonite colloids in water bearing rock fractures. To be able to predict quantities of montmorillonite colloids released from the bentonite barrier in contact with groundwater of varying salinity, generation and sedimentation test were performed. The aim is first to gain understanding on the processes involved in colloid generation from the bentonite barrier. Secondly it is to test if concentration gradients of montmorillonite colloids outside the barrier determined by simple sedimentation experiments are comparable to generation tests. Identical final concentrations and colloid size distributions were achieved in both types of tests. Colloid stability is strongly correlated to the groundwater chemistry. The impact of pH, ionic strength and temperature was studied. Aggregation kinetics experiments revealed that for colloid aggregation rate increased with increasing ionic strength. The aggregation rate decreased with increasing pH. The temperature effect on montmorillonite colloid stability is pH-dependent. At pH≤4, the rate constant for colloid aggregation increased with increasing temperature, regardless of ionic strength. At pH≥10, the aggregation rate constant decreased with increasing temperature. In the intermediate pH interval, the aggregation rate constant decreased with increasing temperature except at the highest ionic strength

  17. Three-dimensional lock and key colloids.

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Yi, Gi-Ra; Sacanna, Stefano; Pine, David J; Weck, Marcus

    2014-05-14

    Colloids with well-defined multicavities are synthesized through the hydrolytic removal of silica cluster templates from organo-silica hybrid patchy particles. The geometry of the cavities stems from the originally assembled cluster templates, displaying well-defined three-dimensional symmetries, ranging from spherical, linear, triangular, tetrahedral, trigonal dipyramidal, octahedral, to pentagonal dipyramidal. The concave surface of the cavities is smooth, and the cavity shallowness and size can be varied. These particles with multicavities can act as "lock" particles with multiple "key holes". Up to n "key" particles can self-assemble into the lock particles via depletion interaction, resulting in multivalent, site-specific, reversible, and flexible bonding. PMID:24785203

  18. Fractal-like structures in colloid science.

    Science.gov (United States)

    Lazzari, S; Nicoud, L; Jaquet, B; Lattuada, M; Morbidelli, M

    2016-09-01

    The present work aims at reviewing our current understanding of fractal structures in the frame of colloid aggregation as well as the possibility they offer to produce novel structured materials. In particular, the existing techniques to measure and compute the fractal dimension df are critically discussed based on the cases of organic/inorganic particles and proteins. Then the aggregation conditions affecting df are thoroughly analyzed, pointing out the most recent literature findings and the limitations of our current understanding. Finally, the importance of the fractal dimension in applications is discussed along with possible directions for the production of new structured materials. PMID:27233526

  19. Colloidal self-assembly at an interface

    Directory of Open Access Journals (Sweden)

    Ryan McGorty

    2010-06-01

    Full Text Available Mix a drop of water into a vial of oil. With some surfactant and a vigorous shake, that one droplet has become thousands, and the total interfacial area has increased by an order of magnitude or more. Like the folded membranes in our mitochondria, the alveoli in our lungs, and the catalytic converters in our cars, oil-water emulsions contain a vast reservoir of interfacial area that can be used to control and transform the things that encounter it. The oil-water interface is especially well-suited to directing the assembly of colloidal particles, which bind to it rapidly and often irreversibly.

  20. Room temperature synthesis of colloidal platinum nanoparticles

    Indian Academy of Sciences (India)

    G Sarala Devi; V J Rao

    2000-12-01

    Efficient preparation of stable dispersions of platinum nanoparticles from platinous chloride (K2PtCl4) was achieved by simultaneous addition of capping polymer material. The size of platinum nanoparticles was controlled by changing the ratio of concentration of capping polymer material to the concentration of platinum cation used. The morphology of colloidal particles were studied by means of UV-visible spectrophotometry and transmission electron microscopy (TEM). Particle size increased with low reagent concentration. The change in absorption spectra with the particle size was observed, i.e. blue shift attributed to decrease in particle size.

  1. Extinction and Scattering of Light by Magnetic Colloidal Nanoparticles

    Directory of Open Access Journals (Sweden)

    C.V. Yerin

    2015-12-01

    Full Text Available The peculiarities of scattering and extinction of light by colloids with different concentrations of magnetite nanoparticles are investigated. The light absorption effect on spectral dependencies of optical density of magnetic colloid are observed. According to dynamic light scattering experiments, particle size distributions for samples with different concentration of nanoparticles are defined.

  2. Reentrant phase transitions from depletion: colloidal crystals to flocculation

    Science.gov (United States)

    Feng, Lang; Laderman, Bezia; Sacanna, Stefano; Chaikin, Paul

    2014-03-01

    Conventional depletion is supposed to be temperature independent. However, we find that many typical colloid-depletion systems show remarkable phenomena as temperature is varied. 1 μm polystyrene spheres in water are known to form colloidal crystals when PEO is added as a depletant. When this system is heated the crystal melts at a first critical temperature T1 ~ 60 C , and then at higher temperature T2 ~ 70 C the colloids flocculate. We argue that a weak temperature-dependent interaction between polymer and colloid is responsible for the observed phenomena: crystals form when the colloid-polymer interaction is repulsive, flocculation occurs when the interaction is attractive, and melting occurs in between when both phases are frustrated. The melted phase occurs due to an unexpected cancelation when combining both entropic and enthalpic attractions. We propose a simple statistical model to map out the observed transitions and fill the theoretical gap between the two established scenarios for colloid-polymer systems, namely depletion and flocculation. We have seen the same temperature dependent phenomena for TPM, PS and silica spheres with PEO and dextran as depletants. Our discovery provides a fundamental understanding of the polymer-colloid system and opens new possibilities for colloidal self-assembly and temperature-controlled viscoelastic materials.

  3. Experiments in which oil, water and colloidal particles meet

    NARCIS (Netherlands)

    Elbers, N.A.

    2015-01-01

    In this thesis, the results are reported of experimental studies in which oil, water and colloidal particles meet. Colloidal particles are particles that have at least one characteristic length scale in the range between a few nanometers (nm) and several micrometers (μm). Mixtures of oil and water,

  4. Formation, characterization, and stability of plutonium (IV) colloid

    International Nuclear Information System (INIS)

    Plutonium is expected to be a major component of the waste element package in any high-level nuclear waste repository. Plutonium(IV) is known to form colloids under chemical conditions similar to those found in typical groundwaters. In the event of a breach of a repository, these colloids represent a source of radionuclide transport to the far-field environment, in parallel with the transport of dissolved waste element species. In addition, the colloids may decompose or disaggregate into soluble ionic species. Thus, colloids represent an additional term in determining waste element solubility limits. A thorough characterization of the physical and chemical properties of these colloids under relevant conditions is essential to assess the concentration limits and transport mechanisms for the waste elements at the proposed Yucca Mountain Repository site. This report is concerned primarily with recent results obtained by the Yucca Mountain Project (YMP) Solubility Determination Task pertaining to the characterization of the structural and chemical properties of Pu(IV) colloid. Important results will be presented which provides further evidence that colloidal plutonium(IV) is structurally similar to plutonium dioxide and that colloidal plutonium(IV) is electrochemically reactive. 13 refs., 7 figs

  5. The influence of colloids on the migration of radionuclides

    International Nuclear Information System (INIS)

    For a concept of deep geological disposal of high level nuclear waste, the repository will be designed as a multiple-barrier system including bentonite as the buffer/backfill material and the host rock formation as the geological barrier. The engineered barrier (compacted bentonite) will be in contact with the host rock formation (e.g. granite). Consequently the bentonite will be saturated over time with formation groundwater, which will induce swelling and gel formation of the bentonite. At the gel-groundwater boundary, colloid detachment might be a possible colloid source and therefore might enhance the mobility of strong sorbing actinides. This work will focus on three aspects of colloidal transport: (a) Colloid stability in the mixing zone between granite groundwater and bentonite pore water, including its description with an extended DLVO model. (b) Colloid generation and erosion of the bentonite at the interface between compacted bentonite and granitic groundwater, as well as formation of new colloids in the mixing zone between the bentonite porewater and the granitic groundwater. (c) Colloid transport and the interaction of U, Th, Hf, Tb, Eu and Cm with bentonite colloids and fracture filling material, as well as their mobility in a natural fracture.

  6. Colloid-Facilitated Plutonium Transport in Saturated Alluvium

    International Nuclear Information System (INIS)

    Natural groundwater colloids have been recognized as possible agents for enhancing the subsurface transport of strongly-sorbing radionuclides. To evaluate this mechanism, packed-bed column experiments were conducted comparing the simultaneous transport of dissolved plutonium (Pu), Pu sorbed onto natural colloids, 190-nm and 500-nm diameter fluorescent CML microspheres, and tritiated water in saturated alluvium. Experiments were conducted in two columns having slightly different porosities at two flow rates, resulting in average linear velocities (vz) of 0.6 to 3.65 cm/hr in one column and 0.57 to 2.85 cm/hr in the other. In all experiments, Pu associated with natural colloids transported through alluvium essentially unretarded, while dissolved Pu was entirely retained. These results were consistent with the strong sorption of Pu to alluvium and the negligible desorption from natural colloids, observed in separate batch experiments, over time scales exceeding those of the column experiments. Breakthroughs of natural colloids preceded tritiated water in all experiments, indicating a slightly smaller effective pore volume for the colloids. The enhancement of colloids transport over tritiated water decreased with vz, implying ∼ 40% enhancement at vz = 0. The 500-nm CML microspheres were significantly attenuated in the column experiments compared to the 190-nm microspheres, which exhibited slightly more attenuation than natural colloids

  7. Optical properties of spherical and oblate spheroidal gold shell colloids

    NARCIS (Netherlands)

    Penninkhof, J.J.; Moroz, A.; van Blaaderen, A.; Polman, A.

    2008-01-01

    The surface plasmon modes of spherical and oblate spheroidal core−shell colloids composed of a 312 nm diameter silica core and a 20 nm thick Au shell are investigated. Large arrays of uniaxially aligned core−shell colloids with size aspect ratios ranging from 1.0 to 1.7 are fabricated using a novel

  8. Avalanches, plasticity, and ordering in colloidal crystals under compression

    Science.gov (United States)

    McDermott, D.; Reichhardt, C. J. Olson; Reichhardt, C.

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  9. Reversible assembly of oppositely charged hairy colloids in water

    NARCIS (Netherlands)

    Spruijt, E.; Bakker, H.E.; Kodger, T.E.; Sprakel, J.H.B.; Stuart, M.A.C.; Gucht, van der J.

    2011-01-01

    We present an experimental study of the fully reversible assembly of oppositely charged colloidal particles in aqueous solutions. Our polystyrene colloids are charged by a grafted polyelectrolyte brush on their surface and stabilized at all salt concentrations by a neutral adsorbed polymer layer. Be

  10. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.

    2011-10-11

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  11. Statistical Mechanics of Superparamegnetic Colloidal Dispersions Under Magnetic Fields

    OpenAIRE

    Andreu, Jordi

    2013-01-01

    Colloidal dispersions, a term coined by the Scottish scientist Thomas Graham in 1861, have been the subject of interest in different scientific areas during more than a century. A colloidal dispersion is characterized by the existence of a dispersed phase uniformly distributed throughout a dispersion medium.

  12. Fluorescent colloidal silica rods - synthesis and phase behavior

    NARCIS (Netherlands)

    Kuijk, A.

    2012-01-01

    Although the experimental study of spherical colloids has been extensive, similar studies on rod-like particles are rare because suitable model systems are scarce. To fulfill this need, we present the synthesis of monodisperse rod-like silica colloids with tunable dimensions. Rods were produced with

  13. Enhanced adhesion of bioinspired nanopatterned elastomets via colloidal surface assembly

    NARCIS (Netherlands)

    Akerboom, S.; Appel, J.; Labonte, D.; Federle, W.; Sprakel, J.H.B.; Kamperman, M.M.G.

    2015-01-01

    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the imme

  14. Direct measurement of thermodynamic properties of colloidal hard spheres

    NARCIS (Netherlands)

    Dullens, R.P.A.; Kegel, W.K.; Aarts, D.G.A.L.

    2008-01-01

    Recently, we have shown how to measure thermodynamic properties of colloidal hard sphere suspensions by microscopy [Dullens et al. (2006) PNAS 103, 529]. Here, we give full experimental details on how to acquire three dimensional snapshots of a colloidal hard sphere suspension over a wide range of d

  15. Fabrication and Characterization of Colloidal Crystal Thin Films

    Science.gov (United States)

    Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.

    2011-01-01

    We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…

  16. Fluctuation forces and wetting layers in colloid-polymer mixtures

    NARCIS (Netherlands)

    Hennequin, Y.; Aarts, D.G.A.L.; Indekeu, J.O.; Lekkerkerker, H.N.W.; Bonn, D.

    2008-01-01

    We present confocal microscopy experiments on the wetting of phase-separated colloid-polymer mixtures. We observe that an unusually thick wetting layer of the colloid-rich phase forms at the walls of the glass container that holds the mixture. Because of the ultralow interfacial tension between the

  17. Bimetallic nickel-iron nanoparticles for groundwater decontamination: effect of groundwater constituents on surface deactivation.

    Science.gov (United States)

    Han, Yanlai; Yan, Weile

    2014-12-01

    The incorporation of catalytic metals on iron nanoparticles to form bimetallic nanoparticles (BNPs) generates a class of highly reactive materials for degrading chlorinated hydrocarbons (e.g., trichloroethylene, TCE) in groundwater. Successful implementation of BNPs to groundwater decontamination relies critically on the stability of surface reactive sites of BNPs in groundwater matrices. This study investigated the effect of common groundwater solutes on TCE reduction with Ni-Fe (with Ni at 2 wt.%) bimetallic nanoparticles (herein denoted as Ni-Fe BNPs). Batch experiments involving pre-exposing the nanoparticles to various groundwater solutions for 24 h followed by reactions with TCE solutions were conducted. The results suggest that the deactivation behavior of Ni-Fe BNPs differs significantly from that of the well-studied Pd-Fe BNPs. Specifically, Ni-Fe BNPs were chemically stable in pure water. Mild reduction in TCE reaction rates were observed for Ni-Fe BNPs pre-exposed to chloride (Cl(-)), bicarbonate (HCO3(-)), sulfite (SO3(2-)) and humic acid solutions. Nitrate (NO3(-)), sulfate (SO4(2-)) and phosphate (HPO4(2-)) may cause moderate to severe deactivation at elevated concentrations (>1 mM). Product analysis and surface chemistry investigations using high-resolution X-ray photoelectron spectroscopy (HR-XPS) reveal that NO3(-) decreased particle reactivity mainly due to progressive formation of passivating oxides, whereas SO4(2-) and phosphate elicited rapid deactivation as a result of specific poisoning of the surface nickel sites. At similar levels, phosphate is the most potent deactivation agent among the solutes examined in this study. While our findings point out the desirable quality of Ni-Fe nanoparticles, particularly their greater electrochemical stability compared to Pd-Fe BNPs, its susceptibility to chemical poisoning at high levels of complexing ligands is also noted. Groundwater chemistry is therefore an important factor to consider when

  18. Temperature-dependent structuring of Au-Pt bimetallic nanoclusters on a thin film of Al2O3/NiAl(100).

    Science.gov (United States)

    Luo, Meng-Fan; Wang, Chao-Chuan; Chao, Chen-Sheng; Ho, Chiun-Yu; Wang, Cheng-Ting; Lin, Won-Ru; Lin, Yin-Chang; Lai, Yu-Lin; Hsu, Yao-Jane

    2011-01-28

    Au-Pt bimetallic nanoclusters on a thin film of Al(2)O(3)/NiAl(100) undergo significant structural evolution on variation of the temperature. Au and Pt deposited sequentially from the vapor onto thin-film Al(2)O(3)/NiAl(100) at 300 K form preferentially bimetallic nanoclusters (diameter ≦ 6.0 nm and height ≦ 0.8 nm) with both Au and Pt coexisting at the cluster surface, despite the order of metal deposition. These bimetallic clusters are structurally ordered, have a fcc phase and grow with their facets either (111) or (001) parallel to the θ-Al(2)O(3)(100) surface. Upon annealing the clusters to 400-500 K, the Au atoms inside the clusters migrate toward the surface, resulting in formation of a structure with a Pt core and an Au shell. Annealing the sample to 500-650 K reorients the bimetallic clusters--all clusters have their (001) facets parallel to the oxide surface--and induces oxidation of Pt. Such annealed bimetallic clusters become encapsulated with the aluminium-oxide materials and a few Au remain on the surface. PMID:21116540

  19. Colloidal layers in magnetic fields and under shear flow

    International Nuclear Information System (INIS)

    The behaviour of colloidal mono- and bilayers in external magnetic fields and under shear is discussed and recent progress is summarized. Superparamagnetic colloidal particles form monolayers when they are confined to a air-water interface in a hanging water droplet. An external magnetic field allows us to tune the strength of the mutual dipole-dipole interaction between the colloids and the anisotropy of the interaction can be controlled by the tilt angle of the magnetic field relative to the surface normal of the air-water interface. For sufficiently large magnetic field strength crystalline monolayers are found. The role of fluctuations in these two-dimensional crystals is discussed. Furthermore, clustering phenomena in binary mixtures of superparamagnetic particles forming fluid monolayers are predicted. Finally, we address sheared colloidal bilayers and find that the orientation of confined colloidal crystals can be tailored by a previously applied shear direction

  20. Colloids related to low level and intermediate level waste

    International Nuclear Information System (INIS)

    A comprehensive research investigation has been undertaken to improve the understanding of the potential role of colloids in the context of disposal and storage of low level and intermediate level waste immobilized in cement. Several topics have been investigated which include: (a) the study of the formation and characteristics of colloids in cement leachates; (b) the effects of the near-field aqueous chemistry on the characteristics of colloids in repository environments; (c) colloid sorption behaviour; (d) interactions of near-field materials with leachates; (e) characteristics of near-field materials in EC repository simulation tests; and (f) colloid migration behaviour. These experimental investigations should provide data and a basis for the development of transport models and leaching mechanisms, and thus relate directly to the part of the Task 3 programme concerned with migration and retention of radionuclides in the near field. 114 Figs.; 39 Tabs.; 12 Refs

  1. The effects of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    This report assesses the possible effects of colloidal corrosion products on the transport of actinides from the near field of radioactive waste repositories. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium was studied under conditions simulating a transition from near-field to far-field environmental conditions. Desorption of actinides occurred slowly from the colloids under far-field conditions. Measurements of particle stability showed all the colloids to be unstable in the near field. Stability increased under far-field conditions or as a result of the evolution of the near field. Migration of colloids from the near field is unlikely except in the presence of organic materials. (Author)

  2. Studies of colloids and their importance for repository performance assessment

    International Nuclear Information System (INIS)

    The processes, parameters and data used to evaluate the potential of nuclide transport by a colloid facilitated mechanism are reviewed and discussed in this report. Both steady-state (present situation) and possible future non-steady-state hydrogeochemistry in the geosphere are covered. In the steady-state scenario, the colloid (clay, silica, iron(III)hydroxide) concentration is around 20-45 micrograms/l which is considered to be a low value. The low colloid concentration is justified by the large attachment factor to the rock which reduces the stability of the colloids in the aquifer. Both reversible and irreversible sorption processes are reviewed. In the non-steady-state scenario, changes of hydrogeochemical properties may induce larger colloid concentrations. The increase of concentration is however limited and relaxation is always observed after any change. Emphasis is placed on the glaciation-deglaciation scenario. 53 refs, 12 figs, 3 tabs

  3. Structure and Frictional Properties of Colloid Gel

    Directory of Open Access Journals (Sweden)

    Masayuki Tokita

    2014-03-01

    Full Text Available Polymer gels are known to be opaque when the preparation conditions, such as the reaction temperature and the composition, are changed. The increase of the opaqueness of the gel suggests strongly the change of network structure. Here, we are going to review the recent studies on the structure and the frictional study of the opaque poly(acrylamide gel. The results indicate that the opaque poly(acrylamide gel consists of the fractal aggregate of the colloidal particles of sub-micrometer in size. The density of the colloid particle is calculated from the structural parameters and is found to be of the order of about 1 g/cm3. The results indicate that the main chain component and the cross-linker is densely cross-linked into the particle. The frictional property of poly(acrylamide gel is analyzed in terms of the structural parameters of the gel. It is found that the frictional property of the opaque gel is well explained in terms of the structural parameters of the opaque gel.

  4. Dynamics and Rheology of Soft Colloidal Glasses

    KAUST Repository

    Wen, Yu Ho

    2015-01-20

    © 2015 American Chemical Society. The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad frequency range 10-13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy nanoparticles leading to increased intercenter distances is demonstrated to enable continuous mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical approaches proposed to extend the rheological map of soft glassy materials, i.e., time-strain superposition (TSS) and strain-rate frequency superposition (SRFS), TCS yields a LVE master curve that satis fies the Kramers-Kronig relations which interrelate the dynamic moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data further support the general validity of the TCS concept for soft glassy materials.

  5. Critical Casimir forces for colloidal assembly

    Science.gov (United States)

    Nguyen, V. D.; Dang, M. T.; Nguyen, T. A.; Schall, P.

    2016-02-01

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium.

  6. Critical Casimir forces for colloidal assembly

    International Nuclear Information System (INIS)

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium. (topical review)

  7. Colloidal Quantum dot photovoltaics: Tuning optoelectronic properties

    International Nuclear Information System (INIS)

    Full text: Colloidal quantum dots combine processing from the solution phase with tunability of the bandgap. Via the size-effect the optical properties can be matched to the solar spectrum for a wide-range photon harvesting. To engineer photovoltaic devices, quantum dots are compressed from their colloidal form into a close-packed nanocrystal matrix, while undergoing a systematic layer-by-layer process. The resulting quantum dot solid is treated as semiconductor medium - one having electron-hole mobilites, free carrier densities and a dielectric constant. While the size-effect determined the band-gap before, it is now the nature of ligand and the treatment route, that influences mentioned electronic parameters. We took the view on the processing steps and found a concept for analysing trap states, moblility and device performance in real quantum dot solids. Our findings emphasize the interplay of mobility and trap-distribution with routes that take special care on the nanocrystal surface and hence conserve optoelectronic qualities of quantum dots for efficient photovoltaic cells. (author)

  8. Critical Casimir forces for colloidal assembly.

    Science.gov (United States)

    Nguyen, V D; Dang, M T; Nguyen, T A; Schall, P

    2016-02-01

    Critical Casimir forces attract increasing interest due to their opportunities for reversible particle assembly in soft matter and nano science. These forces provide a thermodynamic analogue of the celebrated quantum mechanical Casimir force that arises from the confinement of vacuum fluctuations of the electromagnetic field. In its thermodynamic analogue, solvent fluctuations, confined between suspended particles, give rise to an attractive or repulsive force between the particles. Due to its unique temperature dependence, this effect allows in situ control of reversible assembly. Both the force magnitude and range vary with the solvent correlation length in a universal manner, adjusting with temperature from fractions of the thermal energy, k B T, and nanometre range to several ten kT and micrometer length scale. Combined with recent breakthroughs in the synthesis of complex particles, critical Casimir forces promise the design and assembly of complex colloidal structures, for fundamental studies of equilibrium and out-of-equilibrium phase behaviour. This review highlights recent developments in this evolving field, with special emphasis on the dynamic interaction control to assemble colloidal structures, in and out of equilibrium. PMID:26750980

  9. Colloidal Quantum Dot Photovoltaics: A Path Forward

    KAUST Repository

    Kramer, Illan J.

    2011-11-22

    Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun\\'s broad spectrum. CQD materials\\' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. © 2011 American Chemical Society.

  10. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  11. Chemical composition dispersion in bi-metallic nanoparticles: semi-automated analysis using HAADF-STEM

    Energy Technology Data Exchange (ETDEWEB)

    Epicier, T., E-mail: thierry.epicier@insa-lyon.fr [INSA-Lyon, MATEIS CNRS UMR5510, Bat. Blaise Pascal (France); Sato, K. [Institute for Materials Research, Tohoku University, Material Processing and Characterization Division (Japan); Tournus, F. [Universite Lyon 1, LPMCN, UMR 5586 CNRS and Universite de Lyon (France); Konno, T. [Institute for Materials Research, Tohoku University, Material Processing and Characterization Division (Japan)

    2012-09-15

    We present a method using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to determine the chemical composition of bi-metallic nanoparticles. This method, which can be applied in a semi-automated way, allows large scale analysis with a statistical number of particles (several hundreds) in a short time. Once a calibration curve has been obtained, e.g., using energy-dispersive X-ray spectroscopy (EDX) measurements on a few particles, the HAADF integrated intensity of each particle can indeed be directly related to its chemical composition. After a theoretical description, this approach is applied to the case of iron-palladium nanoparticles (expected to be nearly stoichiometric) with a mean size of 8.3 nm. It will be shown that an accurate chemical composition histogram is obtained, i.e., the Fe content has been determined to be 49.0 at.% with a dispersion of 10.4 %. HAADF-STEM analysis represents a powerful alternative to fastidious single particle EDX measurements, for the compositional dispersion in alloy nanoparticles.

  12. thesis of high-purity carbon nanotubes over alumina and silica supported bimetallic catalysts

    Directory of Open Access Journals (Sweden)

    Sanja Ratković

    2009-10-01

    Full Text Available Carbon nanotubes (CNTs were synthesized by a catalytic chemical vapor deposition method (CCVD of ethylene over alumina and silica supported bimetallic catalysts based on Fe, Co and Ni. The catalysts were prepared by a precipitation method, calcined at 600 °C and in situ reduced in hydrogen flow at 700 °C. The CNTs growth was carried out by a flow the mixture of C2H4 and nitrogen over the catalyst powder in a horizontal oven. The structure and morphology of as-synthesized CNTs were characterized using SEM. The as-synthesized nanotubes were purified by acid and basic treatments in order to remove impurities such as amorphous carbon, graphite nanoparticles and metal catalysts. XRD and DTA/TG analyses showed that the amounts of by-products in the purified CNTs samples were reduced significantly. According to the observed results, ethylene is an active carbon source for growing high-density CNTs with high yield but more on alumina-supported catalysts than on their silica- supported counterparts. The last might be explained by SMSI formed in the case of alumina-supported catalysts, resulting in higher active phase dispersion.

  13. [Reduction Kinetics of Cr (VI) in Chromium Contaminated Soil by Nanoscale Zerovalent Iron-copper Bimetallic].

    Science.gov (United States)

    Ma, Shao-yun; Zhu, Fang; Shang, Zhi-feng

    2016-05-15

    Nanoscale zerovalent iron-copper bimetallic (nZVI/Cu) was produced by liquid-phase reduction and characterized by SEM and XRD. The remediation of Cr (VI) contaminated soil was conducted with nZVI/Cu, and the affecting factors and reduction kinetics were investigated. The results indicated that nZVI/Cu was effective in the degradation of Cr(VI) in soil at an initial pH of 7 at 30'C.After 10 min of reaction, Cr(VI) in the soil was completely degraded when the. concentration of nZVI/Cu was 2 g · L⁻' and the concentration of Cr(VI) in contaminated soil was 88 mg · kg⁻¹. nZVI/Cu amount, pH value, reaction temperature, and the concentration of humic acid affected the degradation of Cr(VI). The removal efficiency of Cr(VI)--increased with increasing reaction temperature and decreased with increasing initial pH value. Humic acid had a certain impact on the degradation of Cr(W) in soil. The removal of Cr (VI) followed the pseudo first order reduction kinetics model, and the relationship between the reduction rate and the reaction temperature accorded with Arrhenius law, and the reaction activation energy (Ea) was 104.26 kJ · mol⁻¹. PMID:27506053

  14. Performance enhancement of bimetallic Co-Ru/CNTs nano catalysts using microemulsion technique

    Institute of Scientific and Technical Information of China (English)

    Ahmad; Tavasoli; Somayeh; Taghavi

    2013-01-01

    Bimetallic cobalt-ruthenium nano catalysts supported on carbon nanotubes(CNTs)are prepared using microemultion technique with water-to-surfactant ratios of 0.5—1.5.The nano catalysts were extensively characterized by different methods and their activity and selectivity in Fischer-Tropsch synthesis(FTS)have been assessed in a fixed-bed microreactor.The physicochemical properties and performance of the nanocatalysts were compared with the catalyst prepared by impregnation method.Very narrow particle size distribution has been produced by the microemulsion technique at relatively high loadings of active metals(15 wt%Co and 1 wt%Ru).According to TEM images,small Co particles(2—7 nm)were mostly confined inside the CNTs.Comparing with the catalyst prepared by impregnation,the use of microemulsion technique with water to surfactant ratio of 0.5 decreased the average cobalt oxide particle size to 4.8 nm,the dispersion was almost doubled and the reduction increased by 28%.Activity and selectivity were found to be dependent on the catalyst preparation method and water-to-surfactant ratio(as well as cobalt particle sizes).CO conversion increased from 59.1%to 75.1%and the FTS rate increased from 0.291 to0.372 gHC/(gcath).C5+liquid hydrocarbons selectivity decreased from 92.4%to 87.6%.

  15. Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Goodman, Wayne D.

    2012-12-21

    Pd-Au bimetallic catalysts often display enhanced catalytic activities and selectivities compared with Pd-alone catalysts. This enhancement is often caused by two alloy effects, i.e., ensemble and ligand effects. The ensemble effect is dilution of surface Pd by Au. With increasing surface Au coverages, contiguous Pd ensembles disappear and isolated Pd ensembles form. For certain reactions, for example vinyl acetate synthesis, this effect is responsible for reaction rate enhancement via the formation of highly active surface sites, e.g., isolated Pd pairs. The disappearance of contiguous Pd ensembles also switches off side reactions catalyzed by these sites. This explains selectivity increase of certain reactions, for example direct H2O2 synthesis. The ligand effect is electronic perturbation of Au to Pd. By direct charge transfer or affecting bond length, the ligand effect causes the Pd d band to be more filled and the d-band center away from the Fermi level. Both changes make Pd more "atomic like" therefore binding reactants and products weaker. For certain reactions, this eliminates the so-called "self poisoning" and enhances activity/selectivity.

  16. Preparation and characterization of planar Ni–Au bimetallic model catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan, E-mail: fan.yang@chem.tamu.edu; Yao, Yunxi; Yan, Zhen; Min, Hlaing; Goodman, D. Wayne

    2013-10-15

    Ni–Au bimetallic model catalysts were prepared as thin films on Re(0 0 0 1) or Ru(0 0 0 1) single crystal substrates. Surface compositions and electronic structures of the Ni–Au thin films were characterized by low energy ion scattering spectroscopy and X-ray photoelectron spectroscopy, respectively. Surface alloys were prepared by annealing Ni–Au thin films from 500 to 800 K, resulting in substantial surface enrichment of Au. Annealing a Ni–Au thin film with a 1:1 bulk composition ratio at 700 K for 10 min resulted in a surface alloy with 84% (atomic concentration) of Au in the outermost surface layer. The surface atomic structure was investigated using CO as probe molecules, which exclusively adsorbs on the Ni atoms rather than on the Au atoms at room temperature. Polarization modulation infrared reflection absorption spectroscopy of CO adsorption on Ni–Au surface alloys showed that CO adsorption on two-fold bridge sites decreased and finally disappeared with an increase of Au surface concentration. The absence of Ni bridge site CO adsorption indicated that Ni atoms were isolated by Au atoms on Ni–Au alloyed surface.

  17. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Felix-Navarro, R. M., E-mail: moi6salazar@hotmail.com; Beltran-Gastelum, M.; Salazar-Gastelum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Perez-Sicairos, S.; Lin, S. W. [Centro de Graduados e Investigacion, Instituto Tecnologico de Tijuana (Mexico); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados (Mexico); Alonso-Nunez, G. [Centro de Nanociencias y Nanotecnologia (Mexico)

    2013-08-15

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O{sub 2} to H{sub 2}O{sub 2}. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H{sub 2}SO{sub 4} electrolyte using dissolved O{sub 2}. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H{sub 2}O{sub 2} electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H{sub 2}O{sub 2} alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  18. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Yang, Hui; Huang, Peiyan; Song, Huiyu [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province and The Key Laboratory for New Energy of Guangdong Universities, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China)

    2014-10-01

    Graphical abstract: The addition of Ru could significantly improve the performance of the mesoporous silica nanoparticles supported PdRu/MSN catalyst, which showed over 5 times higher mass activity than the mono-Pd/MSN towards the liquid-phase hydrogenation of phenol. The improved dispersion and the electronic interaction contributed to the enhanced catalytic activity for the catalyst towards phenol hydrogenation. - Highlights: • PdRu bimetal catalyst supported on mesoporous silica nanoparticles was prepared. • The average sizeof PdRu alloy is smaller than that of mono-Pd. • The addition of Ru to Pd modulates the electronic properties between Pd and Ru. • PdRu/MSN catalyst shows superior activity on phenol hydrogenation than Pd/MSN. • PdRu/MSN catalyst shows good selectivity for cyclohexanol to some extent. - Abstract: A high-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles (MSN), PdRu/MSN, was prepared by a facile impregnation–hydrogen reduction method. It was found that PdRu/MSN showed 5 times higher activity than that of Pd/MSN towards the liquid-phase hydrogenation of phenol. The catalysts were characterized comprehensively by multiple techniques, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and hydrogen temperature program reduction (TPR). It was revealed that adding Ru could effectively improve the Pd dispersion and promote the electronic interaction between the Pd and Ru, both of which contribute to enhancing the catalytic activity.

  19. Growth and characterization of bimetallic (Na and K) phthalate single crystals

    Science.gov (United States)

    Amuthambigai, C.; Mahadevan, C. K.; Sahaya Shajan, X.

    2016-10-01

    Bimetallic (Na and K) phthalate single crystals were grown by the solvent evaporation method and characterized. X-ray diffraction (single crystal and powder), Fourier transform infrared spectral and atomic absorption spectral measurements indicate a centrosymmetric trigonal crystal system (space group Pbar{3}1c) with chemical composition as Na0.51K1.49C8O4H4.H2O. UV-Vis-NIR spectral measurement indicates an optical transmittance of 72 % in the wavelength range 300-1200 nm. The crystal is found to be nonlinear optically active due to local non-centrosymmetry. Thermal and mechanical stabilities of the grown crystal were examined by thermogravimetric and microhardness measurements. Electrical (both AC, with various frequencies ranging from 200 Hz to 200 kHz, and DC) measurements were taken at various temperatures ranging from 30 to 60 °C by the parallel plate capacitor method. The electrical parameters considered are found to increase with the increase in temperature. The AC and DC activation energies were also estimated. The observed high dielectric constants and good second harmonic generation efficiency indicate that the crystal is expected to be useful in capacitor technology and photonic devices.

  20. Design of Pd-Based Bimetallic Catalysts for ORR: A DFT Calculation Study

    Directory of Open Access Journals (Sweden)

    Lihui Ou

    2015-01-01

    Full Text Available Developing Pd-lean catalysts for oxygen reduction reaction (ORR is the key for large-scale application of proton exchange membrane fuel cells (PEMFCs. In the present paper, we have proposed a multiple-descriptor strategy for designing efficient and durable ORR Pd-based alloy catalysts. We demonstrated that an ideal Pd-based bimetallic alloy catalyst for ORR should possess simultaneously negative alloy formation energy, negative surface segregation energy of Pd, and a lower oxygen binding ability than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry and electronic properties of Pd-M alloys, Pd-V, Pd-Fe, Pd-Zn, Pd-Nb, and Pd-Ta, are identified theoretically to have stable Pd segregated surface and improved ORR activity. Factors affecting these properties are analyzed. The alloy formation energy of Pd with transition metals M can be mainly determined by their electron interaction. This may be the origin of the negative alloy formation energy for Pd-M alloys. The surface segregation energy of Pd is primarily determined by the surface energy and the atomic radius of M. The metals M which have smaller atomic radius and higher surface energy would tend to favor the surface segregation of Pd in corresponding Pd-M alloys.