WorldWideScience

Sample records for bile salt hydrolase

  1. Bile salt hydrolase of Bifidobacterium longum - Biochemical and genetic characterization

    NARCIS (Netherlands)

    Tanaka, H; Hashiba, Honoo; Kok, Jan; Mierau, Igor

    2000-01-01

    A bile salt hydrolase (BSH) was isolated from Bifidobacterium longum SBT2928, purified, and characterized, Furthermore, we describe for the first time cloning and analysis of the gene encoding BSII (bsh) in a member of the genus Bifidobacterium. The enzyme has a native molecular weight of 125,000 to

  2. Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus

    Directory of Open Access Journals (Sweden)

    Jun Lin

    2014-12-01

    Full Text Available Bile salt hydrolase (BSH, a widely distributed function of the gut microbiota, has a profound impact on host lipid metabolism and energy harvest. Recent studies suggest that BSH inhibitors are promising alternatives to antibiotic growth promoters (AGP for enhanced animal growth performance and food safety. Using a high-purity BSH from Lactobacillus salivarius strain, we have identified a panel of BSH inhibitors. However, it is still unknown if these inhibitors also effectively inhibit the function of the BSH enzymes from other bacterial species with different sequence and substrate spectrum. In this study, we performed bioinformatics analysis and determined the inhibitory effect of identified BSH inhibitors on a BSH from L. acidophilus. Although the L. acidophilus BSH is phylogenetically distant from the L. salivarius BSH, sequence analysis and structure modeling indicated the two BSH enzymes contain conserved, catalytically important amino residues and domain. His-tagged recombinant BSH from L. acidophilus was further purified and used to determine inhibitory effect of specific compounds. Previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. acidophilus BSH. In conclusion, this study demonstrated that the BSH from L. salivarius is an ideal candidate for screening BSH inhibitors, the promising alternatives to AGP for enhanced feed efficiency, growth performance and profitability of food animals.

  3. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels.

    LENUS (Irish Health Repository)

    Fang, Fang

    2009-09-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host.

  4. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536

    OpenAIRE

    Grill, J; Schneider, F.; Crociani, J.; Ballongue, J.

    1995-01-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis...

  5. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.

    Directory of Open Access Journals (Sweden)

    Piotr Jarocki

    Full Text Available This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.

  6. Bile salt hydrolase in Lactobacillus plantarum: functional analysis and delivery to the intestinal tract of the host

    NARCIS (Netherlands)

    Lambert, J.M.

    2008-01-01

    In the liver of mammals, bile salts are synthesised from cholesterol and conjugated to either taurine or glycine. Following release into the intestine, conjugated bile salts can be deconjugated by members of the endogenous microbiota that produce an enzyme called bile salt hydrolase (Bsh). Bsh appea

  7. Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth

    Science.gov (United States)

    Travers, Marie-Agnès; Sow, Cissé; Zirah, Séverine; Deregnaucourt, Christiane; Chaouch, Soraya; Queiroz, Rayner M. L.; Charneau, Sébastien; Allain, Thibault; Florent, Isabelle; Grellier, Philippe

    2016-01-01

    Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present. PMID:27729900

  8. Molecular cloning, characterization and heterologous expression of bile salt hydrolase (Bsh) from Lactobacillus fermentum NCDO394.

    Science.gov (United States)

    Kumar, Rajesh; Rajkumar, Hemalatha; Kumar, Manoj; Varikuti, Sudarshan Reddy; Athimamula, Ramakrishna; Shujauddin, Mohd; Ramagoni, Ramesh; Kondapalli, Narendrababu

    2013-08-01

    Bile salt hydrolase (Bsh) active probiotic strains hydrolyze bile acid amino conjugates in vivo, which triggers cholesterol consumption in liver to synthesize new bile leading to consequential cholesterol lowering. Hence, bile salt hydrolyzing potential was the criterion to select L. fermentum NCDO394 for this study and its gene encoding Bsh was identified and cloned. The resulting nucleotide sequence of bsh gene contained an open reading frame (ORF) of 978 nucleotides encoding a predicted protein of 325 amino acids with a theoretical pI of 6.39. Moreover, deduced Bsh protein had high similarity with the Bshs of L. fermentum only and also exhibited significant similarity to the Pencillin V amidases of other Lactobacillus spp. Five catalytically important amino acids were highly conserved in L. fermentum Bsh while four amino acid motifs around these active sites, were not as consistent as in other Bsh proteins. Furthermore, L. fermentum bsh gene was sub-cloned into pET-28b(+) vector, and its expression was induced with 0.05 mM isopropylthiogalactopyranoside (IPTG) in Escherichia coli BL21(DE3). The recombinant Bsh (rBsh) was purified with homogeneity using Ni+2-NTA column and characterized for substrate specificity, pH and temperature. The rBsh hydrolyzed six major human bile salts with a slight preference towards glycine-conjugated bile salts. The optimum pH of rBsh was six, and its enzymatic activity declined below pH 5 and above pH 7. The enzyme was stable and functional even at 65 °C while showed its maximum activity at 37 °C. In conclusion, L. fermentum NCDO394 may be a promising candidate probiotic which may affect cholesterol metabolism in vivo.

  9. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536.

    Science.gov (United States)

    Grill, J; Schneider, F; Crociani, J; Ballongue, J

    1995-07-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis was ca. 40,000 Da. The intact enzyme had a relative molecular weight of ca. 250,000 as determined by gel filtration chromatography, suggesting that the native BSH of B. longum is probably a hexamer. The purified enzyme is active towards both glycine and taurine conjugates of cholate, deoxycholate, and chenodeoxycholate. The pH optimum is in the range of 5.5 to 6.5. A loss of BSH activity is observed after incubation at temperatures higher than 42(deg)C; at 60(deg)C, 50% of the BSH activity is lost. The importance of free sulfhydryl groups at the enzyme active center is suggested. For B. longum BB536, no significant difference in the initial rate of deconjugation and enzymatic efficiency appears between bile salts. The enzymatic efficiency is higher for B. longum BB536 than for other genera. In this paper, a new method which permits a display of BSH activity directly on polyacrylamide gels is described; this method confirms the molecular weight obtained for B. longum BB536 BSH.

  10. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers

    Science.gov (United States)

    Lin, Jun

    2014-01-01

    The growth-promoting effect of antibiotic growth promoters (AGPs) was correlated with the decreased activity of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization. Consistent with this finding, independent chicken studies have demonstrated that AGP usage significantly reduced population of Lactobacillus species, the major BSH-producers in the intestine. Recent finding also demonstrated that some AGPs, such as tetracycline and roxarsone, display direct inhibitory effect on BSH activity. Therefore, BSH is a promising microbiome target for developing novel alternatives to AGPs. Specifically, dietary supplementation of BSH inhibitor may promote host lipid metabolism and energy harvest, consequently enhancing feed efficiency and body weight gain in food animals. PMID:24575079

  11. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers

    Directory of Open Access Journals (Sweden)

    Jun eLin

    2014-02-01

    Full Text Available The growth-promoting effect of antibiotic growth promoters (AGPs was correlated with the decreased activity of bile salt hydrolase (BSH, an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization. Consistent with this finding, independent chicken studies have demonstrated that AGP usage significantly reduced population of Lactobacillus species, the major BSH-producers in the intestine. Recent finding also demonstrated that some AGPs, such as tetracycline and roxarsone, display direct inhibitory effect on BSH activity. Therefore, BSH is a promising microbiome target for developing novel alternatives to AGPs. Specifically, dietary supplementation of BSH inhibitor may promote host lipid metabolism and energy harvest, consequently enhancing feed efficiency and body weight gain in food animals.

  12. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    Science.gov (United States)

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications.

  13. Immobilization of bile salt hydrolase enzyme on mesoporous SBA-15 for co-precipitation of cholesterol.

    Science.gov (United States)

    Bhange, Pallavi; Sridevi, N; Bhange, Deu S; Prabhune, Asmita; Ramaswamy, Veda

    2014-02-01

    We describe herein a simple and effective strategy for immobilization of bile salt hydrolase enzyme by grafting glutaraldehyde groups inside channels of APTES functionalized SBA-15. The increase in glutaraldehyde concentration prevents leakage of enzyme but showed a steep decrease in enzyme activity in the immobilized matrix. So the degree of cross-linking should be the minimum possible to ensure sufficient stability without loss of activity. Cross-linking carried out with 0.1% glutaraldehyde concentration showed the highest activity, so this was used in all further experiments. Physico-chemical characterizations of the immobilized enzyme were carried out by XRD, N2 adsorption, TEM, FTIR and (29)Si CP-MAS NMR techniques. Immobilized BSH exhibits enhanced stability over a wide pH (3-11) and temperature range (40-80 °C) and retains an activity even after recycling experiments and six months of storage. From our in vivo research experiment toward co-precipitation of cholesterol, we have shown that immobilized BSH enzyme may be the promising catalyst for the reduction of serum cholesterol levels in our preliminary investigation. Enhancement in pH stability at the extreme side of pH may favor the use of immobilized BSH enzyme for drug delivery purpose to with stand extreme pH conditions in the gastrointestinal conditions.

  14. Cloning and Expression of Bile Salt Hydrolase Gene from Lactobacillus plantarum M1-UVS29

    Institute of Scientific and Technical Information of China (English)

    Yu Chang-qing; Li Rong

    2015-01-01

    We cloned and expressed bile salt hydrolase gene ofLactobacillus plantarum M1-UVS29 inLactococcus lactis NZ9000 successfully. Gene-specific primers for amplification ofL. plantarum bsh were designed by using sequence which availabled from GenBank. The production of PCR amplicon was confirmed by sequencing and cloned into pMD18-T vector, and then recombined into expression vector pNZ8148 and yielding vector pNZ8148-BSH. pNZ8148-BSH was transferred intoLactococcus lactis NZ9000. Sequencing indicated that the clonedbsh fragment contained 995 nucleotides, and shared 99.3% sequence homology withbsh gene fromL. plantarum MBUL10. Clonedbsh fragment was successfully transduced into NICE expression system and confirmed by PCR and restriction digest. Recombinant BSH protein was analyzed by SDS-PAGE. The molecular weight of BSH protein was approximately 37 ku. Activity of the expressed protein was 0.77 µmol• min-1. The successfully expressed proteins by genetic engineering technology made the function of lactic acid bacteria be abundant and laid the foundation for further researches into cholesterol-lowering lactic acid bacterium food and probiotics.

  15. Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system.

    Directory of Open Access Journals (Sweden)

    Katie Smith

    Full Text Available The global trend of restricting the use of antibiotic growth promoters (AGP in animal production necessitates the need to develop valid alternatives to maintain productivity and sustainability of food animals. Previous studies suggest inhibition of bile salt hydrolase (BSH, an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization, is a promising approach to promote animal growth performance. To achieve the long term goal of developing novel alternatives to AGPs, in this study, a rapid and convenient high-throughput screening (HTS system was developed and successfully used for identification of BSH inhibitors. With the aid of a high-purity BSH from a chicken Lactobacillus salivarius strain, we optimized various screening conditions (e.g. BSH concentration, reaction buffer pH, incubation temperature and length, substrate type and concentration and establish a precipitation-based screening approach to identify BSH inhibitors using 96-well or 384-well microplates. A pilot HTS was performed using a small compound library comprised of 2,240 biologically active and structurally diverse compounds. Among the 107 hits, several promising and potent BSH inhibitors (e.g. riboflavin and phenethyl caffeate were selected and validated by standard BSH activity assay. Interestingly, the HTS also identified a panel of antibiotics as BSH inhibitor; in particular, various tetracycline antibiotics and roxarsone, the widely used AGP, have been demonstrated to display potent inhibitory effect on BSH. Together, this study developed an efficient HTS system and identified several BSH inhibitors with potential as alternatives to AGP. In addition, the findings from this study also suggest a new mode of action of AGP for promoting animal growth.

  16. Discovery of Bile Salt Hydrolase Inhibitors Using an Efficient High-Throughput Screening System

    Science.gov (United States)

    Smith, Katie; Zeng, Ximin; Lin, Jun

    2014-01-01

    The global trend of restricting the use of antibiotic growth promoters (AGP) in animal production necessitates the need to develop valid alternatives to maintain productivity and sustainability of food animals. Previous studies suggest inhibition of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization, is a promising approach to promote animal growth performance. To achieve the long term goal of developing novel alternatives to AGPs, in this study, a rapid and convenient high-throughput screening (HTS) system was developed and successfully used for identification of BSH inhibitors. With the aid of a high-purity BSH from a chicken Lactobacillus salivarius strain, we optimized various screening conditions (e.g. BSH concentration, reaction buffer pH, incubation temperature and length, substrate type and concentration) and establish a precipitation-based screening approach to identify BSH inhibitors using 96-well or 384-well microplates. A pilot HTS was performed using a small compound library comprised of 2,240 biologically active and structurally diverse compounds. Among the 107 hits, several promising and potent BSH inhibitors (e.g. riboflavin and phenethyl caffeate) were selected and validated by standard BSH activity assay. Interestingly, the HTS also identified a panel of antibiotics as BSH inhibitor; in particular, various tetracycline antibiotics and roxarsone, the widely used AGP, have been demonstrated to display potent inhibitory effect on BSH. Together, this study developed an efficient HTS system and identified several BSH inhibitors with potential as alternatives to AGP. In addition, the findings from this study also suggest a new mode of action of AGP for promoting animal growth. PMID:24454844

  17. Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Lambert, J.M.; Bongers, R.S.; Vos, de W.M.; Kleerebezem, M.

    2008-01-01

    Bile salts play an important role in the digestion of lipids in vertebrates and are synthesized and conjugated to either glycine or taurine in the liver. Following secretion of bile salts into the small intestine, intestinal microbes are capable of deconjugating the glycine or taurine from the bile

  18. Catalytic Interactions and Molecular Docking of Bile Salt Hydrolase (BSH) from L. plantarum RYPR1 and Its Prebiotic Utilization

    Science.gov (United States)

    Yadav, Ruby; Singh, Puneet K.; Puniya, Anil K.; Shukla, Pratyoosh

    2017-01-01

    Prebiotics are the non-digestible carbohydrate, which passes through the small intestine into unmetabolized form, reaches the large intestine and undergoes fermentation by the colonic bacteria thus; prebiotics stimulate the growth of probiotic bacteria. Further, bile salt hydrolase (BSH) is an enzyme that catalyses the deconjugation of bile salt, so it has enormous potential toward utilizing such capability of Lactobacillus plantarum RYPR1 toward detoxifying through BSH enzyme activity. In the present study, six isolates of Lactobacillus were evaluated for the co-aggregation assay and the isolate Lactobacillus plantarum RYPR1 was further selected for studies of prebiotic utilization, catalytic interactions and molecular docking. The prebiotic utilization ability was assessed by using commercially available prebiotics lactulose, inulin, xylitol, raffinose, and oligofructose P95. The results obtained revealed that RYPR1 is able to utilize these probiotics, maximum with lactulose by showing an increase in viable cell count (7.33 ± 0.02 to 8.18 ± 0.08). In addition, the molecular docking of BSH from Lactobacillus plantarum RYPR1 was performed which revealed the binding energy –4.42 and 7.03 KJ/mol. This proves a considerably good interactions among BSH and its substrates like Taurocholic acid (–4.42 KJ/mol) and Glycocholic acid (–7.03 KJ/mol). These results from this study establishes that Lactobacillus plantarum RYPR1 possesses good probiotic effects so it could be used for such applications. Further, molecular dynamics simulations were used to analyze the dynamic stability of the of modeled protein to stabilize it for further protein ligand docking and it was observed that residues Asn12, Ile8, and Leu6 were interacting among BSH and its substrates, i.e., Taurocholic acid and Lys88 and Asp126 were interacting with Glycocholic acid. These residues were interacting when the docking was carried out with stabilized BSH protein structure, thus, these residues may

  19. Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions.

    Science.gov (United States)

    Duary, Raj Kumar; Batish, Virender Kumar; Grover, Sunita

    2012-03-01

    Probiotic bacteria must overcome the toxicity of bile salts secreted in the gut and adhere to the epithelial cells to enable their better colonization with extended transit time. Expression of bile salt hydrolase and other proteins on the surface of probiotic bacteria can help in better survivability and optimal functionality in the gut. Two putative Lactobacillus plantarum isolates i.e., Lp9 and Lp91 along with standard strain CSCC5276 were used. A battery of six housekeeping genes viz. gapB, dnaG, gyrA, ldhD, rpoD and 16S rRNA were evaluated by using geNorm 3.4 excel based application for normalizing the expression of bile salt hydrolase (bsh), mucus-binding protein (mub), mucus adhesion promoting protein (mapA), and elongation factor thermo unstable (EF-Tu) in Lp9 and Lp91. The maximal level of relative bsh gene expression was recorded in Lp91 with 2.89 ± 0.14, 4.57 ± 0.37 and 6.38 ± 0.19 fold increase at 2% bile salt concentration after 1, 2 and 3 h, respectively. Similarly, mub and mapA genes were maximally expressed in Lp9 at the level of 20.07 ± 1.28 and 30.92 ± 1.51 fold, when MRS was supplemented with 0.05% mucin and 1% each of bile and pancreatin (pH 6.5). However, in case of EF-Tu, the maximal expression of 42.84 ± 5.64 fold was recorded in Lp91 in the presence of mucin alone (0.05%). Hence, the expression of bsh, mub, mapA and EF-Tu could be considered as prospective biomarkers for screening of novel probiotic lactobacillus strains for optimal functionality in the gut.

  20. IS30-related transposon mediated insertional inactivation of bile salt hydrolase (bsh1) gene of Lactobacillus plantarum strain Lp20.

    Science.gov (United States)

    Kumar, Rajesh; Grover, Sunita; Kaushik, Jai K; Batish, Virender Kumar

    2014-01-01

    Lactobacillus plantarum is a flexible and versatile microorganism that inhabits a variety of niches, and its genome may express up to four bsh genes to maximize its survival in the mammalian gut. However, the ecological significance of multiple bsh genes in L. plantarum is still not clearly understood. Hence, this study demonstrated the disruption of bile salt hydrolase (bsh1) gene due to the insertion of a transposable element in L. plantarum Lp20 - a wild strain of human fecal origin. Surprisingly, L. plantarum strain Lp20 produced a ∼2.0 kb bsh1 amplicon against the normal size (∼1.0 kb) bsh1 amplicon of Bsh(+)L. plantarum Lp21. Strain Lp20 exhibited minimal Bsh activity in spite of having intact bsh2, bsh3 and bsh4 genes in its genome and hence had a Bsh(-) phenotype. Cloning and sequence characterization of Lp20 bsh1 gene predicted four individual open reading frames (ORFs) within this region. BLAST analysis of ORF1 and ORF2 revealed significant sequence similarity to the L. plantarum bsh1 gene while ORF3 and ORF4 showed high sequence homology to IS30-family transposases. Since, IS30-related transposon element was inserted within Lp20 bsh1 gene in reverse orientation (3'-5'), it introduced several stop codons and disrupted the protein reading frames of both Bsh1 and transposase. Inverted terminal repeats (GGCAGATTG) of transposon, mediated its insertion at 255-263 nt and 1301-1309 nt positions of Lp20 bsh1 gene. In conclusion, insertion of IS30 related-transposon within the bsh1 gene sequence of L. plantarum strain Lp20 demolished the integrity and functionality of Bsh1 enzyme. Additionally, this transposon DNA sequence remains active among various Lactobacillus spp. and hence harbors the potential to be explored in the development of efficient insertion mutagenesis system.

  1. Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria.

    NARCIS (Netherlands)

    Lambert, J.M.; Siezen, R.J.; Vos, W.M. de; Kleerebezem, M.

    2008-01-01

    Most Gram-positive bacteria inhabiting the gastrointestinal tract are capable of hydrolysing bile salts. Bile salt hydrolysis is thought to play an important role in various biological processes in the host. Therefore, correct annotation of bacterial bile salt hydrolases (Bsh) in public databases (E

  2. Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria

    NARCIS (Netherlands)

    Lambert, J.M.; Siezen, R.J.; Vos, de W.M.; Kleerebezem, M.

    2008-01-01

    Most Gram-positive bacteria inhabiting the gastrointestinal tract are capable of hydrolysing bile salts. Bile salt hydrolysis is thought to play an important role in various biological processes in the host. Therefore, correct annotation of bacterial bile salt hydrolases (Bsh) in public databases (E

  3. Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Cheng-Chih Tsai

    2014-01-01

    Full Text Available This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG and apolipoprotein B (apo B secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease.

  4. 直物乳杆菌ST—III胆盐水解酶的表达及其酶活力分析%Expression and Activity Analysis of Bile Salt Hydrolases from LactobaciUus plantarum ST- III

    Institute of Scientific and Technical Information of China (English)

    任婧; 姚晶

    2012-01-01

    以植物乳杆菌(Lactobacillus plantarum)ST-III4种胆盐水解酶(BsHs)的编码序列(bsh1~4),将其克隆至表达载体pET.28b(+)上,在原核系统进行表达,并对其酶活力进行测定,结果发现4种BSHs的酶活力分别为29.00、20.49、24.90、21.13U/mL。同时BSH1比其他3种BSHs表现出更高的水解能力。%In vertebrates, bile salt hydrolysis plays an essential role in fat metabolism. Bile salts are synthesized in the liver. In the small intestine, glycine or taurine are de-conjugated from bile salts by the enzyme bile salt hydrolase (BSH, EC 3.5.1.24) from intestinal microbes, which reduces the serum cholesterol level. In this study, four predicted bile salt hydrolase (bsh) genes from Lactobacillus plantarum ST-III were cloned into pET-28b(+) vector and expressed in Escherichia coli. The hydrolysis activity of these enzymes was 29.00, 20.49, 24.90 U/mL and 21.13 U/mL, respectively.

  5. Current Status of Research on the Structure and Function of Bile Salt Hydrolase Gene%胆盐水解酶基因结构与功能研究现状

    Institute of Scientific and Technical Information of China (English)

    黄艳娜; 任婧

    2015-01-01

    胆盐水解酶是微生物生长、繁殖过程中产生的一种胞内酶,因其可能与降低血胆固醇、预防心血管疾病有关而受到广泛关注。本文从胆盐水解酶的特性出发,综述了胆盐水解酶的生理功能、酶学活性、微生物菌群的来源及特征,以及胆盐水解酶的氨基酸结构等方面的研究进展,以期为进一步深入研究胆盐水解酶的作用机理及相关制品的开发利用提供参考。%Bile salt hydrolase (BSH) is considered to be especially relevant for microbes that reside in the mammalian gastrointestinal tract, which also helps to reduce the blood cholesterol level of the host. This review focuses on the occurrence of bile salt hydrolase among different microorganisms and its physiological characterization, enzyme activity, substrate specificity and genetics involved with recent updates. The current perspective reveals a huge market potential of probiotics with bile salt hydrolase.

  6. 克鲁维酵母菌产胆盐水解酶发酵条件的优化研究%Optimization of fermentation conditions of Kluyveromyces marxianus bile salt hydrolase

    Institute of Scientific and Technical Information of China (English)

    刘慧; 董瑞婷; 潘昌莉; 高秀芝; 张红星

    2010-01-01

    利用从藏灵菇中筛选的产胆盐水解酶(bile salt hydrolase,BSH)的马克斯克鲁维酵母菌K1(Kluyveromyces marxianus K1)研究提高酶活力的环境因素.针对主要影响胆盐水解酶合成的4个因素,采用4因素3水平L9(34)正交试验确定了高产胆盐水解酶优化发酵条件:发酵温度为32℃,发酵时间为24h,培养基的初始pH值为6.0,接种量为2%;在优化发酵条件下,K1菌株产BSH活力比优化前提高了52.4%,为开发研制降胆固醇功能食品及微生态制剂提供了试验基础.

  7. A Role of the Bile Salt Receptor FXR in Atherosclerosis

    NARCIS (Netherlands)

    Hageman, Jurre; Herrema, Hilde; Groen, Albert K.; Kuipers, Folkert

    2010-01-01

    This study reviews current insights into the role of bile salts and bile salt receptors on the progression and regression of atherosclerosis. Bile salts have emerged as important modifiers of lipid and energy metabolism. At the molecular level, bile salts regulate lipid and energy homeostasis mainly

  8. Supramolecular Complexes Formed in Systems Bile Salt-Bilirubin-Silica

    Science.gov (United States)

    Vlasova, N. N.; Severinovskaya, O. V.; Golovkova, L. P.

    The formation of supramolecular complexes between bilirubin and primary micelles of bile salts has been studied. The association constants of bile salts and binding of bilirubin with these associates have been determined. The adsorption of bilirubin and bile salts from individual and mixed aqueous solutions onto hydrophobic silica surfaces has been investigated. The interaction of bilirubin with primary bile salt micelles and the strong retention in mixed micelles, which are supramolecular complexes, result in the adsorption of bilirubin in free state only.

  9. Molecular interactions between bile salts, phospholipids and cholesterol : relevance to bile formation, cholesterol crystallization and bile salt toxicity

    NARCIS (Netherlands)

    Moschetta, Antonio

    2002-01-01

    Cholesterol is a nonpolar lipid dietary constituent, absorbed from the small intestine, transported in blood and taken up by the liver. In bile, the sterol is solubilized in mixed micelles by bile salts and phospholipids. In case of supersaturation, cholesterol is kept in vesicles with phospholipid

  10. Low retinol levels differentially modulate bile salt-induced expression of human and mouse hepatic bile salt transporters

    NARCIS (Netherlands)

    M.O. Hoeke; J.R.M. Plass; J. Heegsma; M. Geuken; D. van Rijsbergen; J.F.W. Baller; F. Kuipers; H. Moshage; P.L.M. Jansen; K.N. Faber

    2009-01-01

    The farnesoid X receptor/retinoid X receptor-alpha (FXR/RXRalpha) complex regulates bile salt homeostasis, in part by modulating transcription of the bile salt export pump (BSEP/ABCB11) and small heterodimer partner (SHP/NR0B2). FXR is activated by bile salts, RXRalpha by the vitamin A derivative 9-

  11. Low Retinol Levels Differentially Modulate Bile Salt-Induced Expression of Human and Mouse Hepatic Bile Salt Transporters

    NARCIS (Netherlands)

    Hoeke, Martijn O.; Plass, Jacqueline R. M.; Heegsma, Janette; Geuken, Mariska; van Rijsbergen, Duncan; Baller, Julius F. W.; Kuipers, Folkert; Moshage, Han; Jansen, Peter L. M.; Faber, Klaas Nico

    2009-01-01

    The farnesoid X receptor/retinoid X receptor-alpha (FXR/RXR alpha) complex regulates bile salt homeostasis, in part by modulating transcription of the bile salt export pump (BSEP/ABCB11 I) and small heterodimer partner (SHP/NR0B2). FXR is activated by bile salts, RXR alpha by the vitamin A derivativ

  12. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    Science.gov (United States)

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed.

  13. Phosphatidylcholine mobility in bile salt depleted rat liver microsomes

    NARCIS (Netherlands)

    Oliveira Filgueiras, O.M. de; Defize, B.; Echteld, C.J.A. van; Bosch, H. van den

    1980-01-01

    Rat liver microsomes prepared by differential centrifugation are known to contain measurable levels of bile salts. More than 90% of these can be removed by passing the microsomal preparation through a Bio-Gel A-150m column. Bile salt depleted microsomes show a high level (> 95%) of mannose-6-phospha

  14. Activation of CFTR by ASBT-mediated bile salt absorption

    NARCIS (Netherlands)

    Bijvelds, MJC; Jorna, H; Verkade, HJ; Bot, AGM; Hofmann, F; Agellon, LB; Sinaasappel, M; de Jonge, HR

    2005-01-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal

  15. Bile salts and their importance for drug absorption

    DEFF Research Database (Denmark)

    Holm, René; Müllertz, Anette; Mu, Huiling

    2013-01-01

    in different animal species and an overview of the literature investigating the influence of bile salts on the in vivo performance of different compounds and drug formulations. Generally, there is a positive effect on bioavailability when bile is present in the gastro-intestinal tract, independent...... of the formulation systems, e.g. suspensions, solutions, cyclodextrin complexes or lipid based formulations, but a few exceptions have also been reported....

  16. Effects of essential fatty acid deficiency on enterohepatic circulation of bile salts in mice.

    NARCIS (Netherlands)

    Lukovac, S.; Los, L.; Stellaard, F.; Rings, E.H.; Verkade, H.J.

    2009-01-01

    Essential fatty acid (EFA) deficiency in mice has been associated with increased bile production, which is mainly determined by the enterohepatic circulation (EHC) of bile salts. To establish the mechanism underlying the increased bile production, we characterized in detail the EHC of bile salts in

  17. Bile salt toxicity aggravates cold ischemic injury of bile ducts after liver transplantation in Mdr2+/- mice

    NARCIS (Netherlands)

    Hoekstra, H; Porte, RJ; Tian, Y; Jochum, W; Stieger, B; Moritz, W; Slooff, MJH; Graf, R; Clavien, PA

    2006-01-01

    Intrahepatic bile duct strictures are a serious complication after orthotopic liver transplantation (OLT). We examined the role of endogenous bile salt toxicity in the pathogenesis of bile duct injury after OLT. Livers from wild-type mice and mice heterozygous for disruption of the multidrug resista

  18. Purification of bile salt hydrolase from Kluyveromyces marxianus M3 isolated from Tibetan kefir%藏灵菇源克鲁维酵母M3菌株胆盐水解酶的分离纯化研究

    Institute of Scientific and Technical Information of China (English)

    潘昌莉; 张红星; 耿新; 贾慧; 刘慧

    2011-01-01

    为获得藏灵菇马克斯克鲁维酵母M3菌株胆盐水解酶(BSH)的纯品,探讨了BSH粗品的分离纯化方法.粗酶液采用硫酸铵分级沉淀,再以DEAE-Sepharose Fast Flow离子交换介质,分别考察缓冲液pH值、流速和洗脱方式等对BSH分离纯化的影响.结果表明,在40%~70%饱和度的硫酸铵条件下BSH提取效率最高.最佳层析条件为采用pH值为6.5、50mmol/L磷酸钠缓冲体系、1.5mL/min的流速,进行分步洗脱(100mmol/L、350mmol/L、500mmol/L~600mmol/L NaCl及50mmol/L磷酸盐缓冲液3步洗脱).在优化纯化条件下BSH的比活力可达479.55AU/mg,是原粗酶液的23.66倍.%In order to obtain the pure bile salt hydrolase (BSH) produced by Kluyveromyces marxianus M3 isolated from Tibetan kefir, the purification methods of crude BSH were studied. The crude BSH was precipitated by ammonium sulfate, and then was purified by DEAE-Sepharose Fast Flow ion exchange chromatography. The effects of buffer pH, flow rate and elution modes of ion exchange chromatography on the purification of BSH were investigated respectively. The results showed that the highest BSH extraction efficiency appeared when the saturation of ammonium sulfate ranged between 40% and 70%. The optimal chromatography conditions were: 50mmol/L sodium phosphate at pH value 6.5 was used as buffer, the flow rate was 1.5ml/min, and three-step elution of 100mmol/L, 350mmol/L and 500mmol/L~600mmol/L NaCl with 50mmol/L sodium phosphate was adopted.The activity of BSH reached 479.55AU/mg after purified under optimal conditions, which was 20 times higher than that of the crude BSH solution.

  19. Effect of bile salts and bile acids on human gastric mucosal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yinxue Song; Jun Gong

    2008-01-01

    Objective:To explore the effect of bile salt and bile acid on cultured eternalized human gastric mucosa epithelium GES-1 cells.Methods:Cultured eternalized human gastric mucosa epithelium GES-1 cells were treated with media containing 6 different kinds of bile salts and 3 different kinds of bile acids and their mixture with different concentrations: GCDC(glycochenodeoxycholate), GDC (glycodeoxycholate), GC(glycocholate), TCDC(taurochenodeoxycholate), TDC(taurodeoxycholate), TC (taurocholate), LCA (lithocholicacid), CA(cholic acid), DCA(deoxycholic acid)(50 μ mol/L,250 μ mol/L,500 μ mol/L, 1000 μ mol/L), DY(mixture of bile salts) and DS(mixture of bile acids)(250 μ mol/L,500 μ mol/L,1000 μ mol/L,1500 μ mol/L, 2000 μ mol/L), in comparison with thecontrol group(in normal media without bile salts and bile acids).Cell proliferation was assessed by MTT(3-[4,5-Dimethylthiaolyl]-2,5- diphenyl-tetrazolium bromide) assay for 72 hours with different concentrations and the apoptotic cells were assayed by flow cytometry (FCM) with Annex V-FITC conjugated with propidium iodide(PI) staining for 24 hours with different concentrations(1500,2000 μ mol/L).Results:There was no significant difference in morphology and cell proliferation in GC group after 24-72 h.Low concentration(50 μ mol/L) of GCDC, GDC, TCDC, TDC and TC accelerated gastric epithelial cell growth in a dosage-time dependent manner.At middle concentration (250-500 μ mol/L), it showed positive effect after 24-48 h, while negative effect after 72 h.At high concentration(1000 μ tool/L), it accelerated gastric epithelial cell growth after 24h and show consistent inhibition even leading to necrosis after 48-72 h.LCA and CA showed a positive effect on the concentration of 50 μ mol/L after 24-72 h, while 250-1000 It mol/L showed a trend towards apoptosis after 24-72 h.At 50-500 μ mol/L, DCA showed proliferation after 24 h and apoptosis after 48-72 h, but showed necrosis after 24-72 h at 1000 μ moiFL.DY and DS

  20. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway.

    Science.gov (United States)

    Hagey, Lee R; Møller, Peter R; Hofmann, Alan F; Krasowski, Matthew D

    2010-01-01

    Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.

  1. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2016-05-01

    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings.

  2. Self-assembly of micelles in organic solutions of lecithin and bile salt: Mesoscale computer simulation

    Science.gov (United States)

    Markina, A.; Ivanov, V.; Komarov, P.; Khokhlov, A.; Tung, S.-H.

    2016-11-01

    We propose a coarse-grained model for studying the effects of adding bile salt to lecithin organosols by means of computer simulation. This model allows us to reveal the mechanisms of experimentally observed increasing of viscosity upon increasing the bile salt concentration. We show that increasing the bile salt to lecithin molar ratio induces the growth of elongated micelles of ellipsoidal and cylindrical shape due to incorporation of disklike bile salt molecules. These wormlike micelles can entangle into transient network displaying perceptible viscoelastic properties.

  3. Differential proteomic analysis of outer membrane enriched extracts of Bacteroides fragilis grown under bile salts stress.

    Science.gov (United States)

    Boente, Renata F; Pauer, Heidi; Silva, Deborah N S; Filho, Joaquim Santos; Sandim, Vanessa; Antunes, Luis Caetano M; Ferreira, Rosana Barreto Rocha; Zingali, Russolina B; Domingues, Regina M C P; Lobo, Leandro A

    2016-06-01

    Bacteroides fragilis is the most commonly isolated anaerobic bacteria from infectious processes. Several virulence traits contribute to the pathogenic nature of this bacterium, including the ability to tolerate the high concentrations of bile found in the gastrointestinal tract (GIT). The activity of bile salts is similar to detergents and may lead to membrane permeabilization and cell death. Modulation of outer membrane proteins (OMPs) is considered a crucial event to bile salts resistance. The primary objective of the current work was to identify B. fragilis proteins associated with the stress induced by high concentration of bile salts. The outer membrane of B. fragilis strain 638R was isolated after growth either in the presence of 2% conjugated bile salts or without bile salts. The membrane fractions were separated on SDS-PAGE and analyzed by ESI-Q/TOF tandem mass spectrometry. A total of 37 proteins were identified; among them nine were found to be expressed exclusively in the absence of bile salts whereas eight proteins were expressed only in the presence of bile salts. These proteins are related to cellular functions such as transport through membrane, nutrient uptake, and protein-protein interactions. This study demonstrates the alteration of OMPs composition in B. fragilis during bile salts stress resistance and adaptation to environmental changes. Proteomics of OMPs was also shown to be a useful approach in the identification of new targets for functional analyses.

  4. Altered intestinal bile salt biotransformation in a cystic fibrosis (Cftr(-/-)) mouse model with hepato-biliary pathology

    NARCIS (Netherlands)

    Bodewes, Frank A. J. A.; van der Wulp, Mariette Y. M.; Beharry, Satti; Doktorova, Marcela; Havinga, Rick; Boverhof, Renze; Phillips, M. James; Durie, Peter R.; Verkade, Henkjan J.

    2015-01-01

    Background: Cftr(-/-tm1UC) mice develop progressive hepato-biliary pathology. We hypothesize that this liver pathology is related to alterations' in biliary bile hydrophobicity and bile salt metabolism in Cftr(-/-tm1Unc) mice. Methods: We determined bile production, biliary and fecal bile salt- and

  5. Review article: the function and regulation of proteins involved in bile salt biosynthesis and transport

    NARCIS (Netherlands)

    Pellicoro, Antonella; Faber, Klaas Nico

    2007-01-01

    Background Bile salts are produced and secreted by the liver and are required for intestinal absorption of fatty food components and excretion of endobiotics and xenobiotics. They are reabsorbed in the terminal ileum and transported back to the liver via the portal tract. Dedicated bile salt transpo

  6. Effects of bile salts on percolation and size of AOT reversed micelles.

    Science.gov (United States)

    Yang, Hui; Erford, Karen; Kiserow, Douglas J; McGown, Linda B

    2003-06-15

    The effects of two trihydroxy bile salts, sodium taurocholate (NaTC) and 3-[(3-cholamidylpropyl)dimethylammonio]-1-propane sulfonate (CHAPS), on the size, shape and percolation temperature of reversed micelles formed by sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane were studied. The percolation temperature of the reversed micelles decreased upon inclusion of bile salts, indicating increased water uptake. Dynamic light scattering (DLS) measurements showed consistent enlargement of reversed micelles upon addition of the bile salts; the hydrodynamic radius increased sixfold in the presence of 10 mM CHAPS and doubled in the presence of 5 mM NaTC. Inclusion of the enzyme yeast alcohol dehydrogenase (YADH) increased the percolation temperature and distorted the spherical structure of the AOT reversed micelles. The spherical structure was restored upon addition of bile salt. These results may help to explain the increase in activity of YADH in AOT reversed micelles upon addition of bile salts.

  7. Submicellar bile salts stimulate phosphatidylcholine transfer activity of sterol carrier protein 2.

    Science.gov (United States)

    Leonard, A N; Cohen, D E

    1998-10-01

    To explore a potential role for sterol carrier protein 2 (SCP2, also known as non-specific lipid transfer protein) in hepatocellular phospholipid trafficking, we examined the influence of submicellar bile salt concentrations on phosphatidylcholine (PC) transfer activity of SCP2. We measured rate constants for first-order transfer of sn-1 palmitoyl, sn-2 parinaroyl PC, a naturally fluorescent self-quenching phospholipid between model membranes. Purified bovine liver SCP2 promoted transfer of PC from donor to acceptor small unilamellar vesicles. Taurine- and glycine-conjugated bile salts (anionic steroid detergent-like molecules), at concentrations well below their critical micellar concentrations, stimulated PC transfer activity of SCP2 80- to 140-fold. Rate constants increased in proportion to bile salt concentration, temperature, and bile salt-membrane binding affinity. Sodium taurofusidate, a conjugated fungal bile salt analog, also activated PC transfer whereas no effect was observed with the anionic and non-ionic straight chain detergents sodium dodecyl sulfate and octylglucoside, respectively. Thermodynamic and kinetic analyses of PC transfer support a mechanism in which bile salts stimulate SCP2 activity by partitioning into donor vesicles and enhancing membrane association of SCP2. These results imply that under physiological conditions, SCP2 may contribute to hepatocellular selection and transport of biliary PCs.

  8. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites

    Directory of Open Access Journals (Sweden)

    Hofmann Alan F

    2010-05-01

    Full Text Available Abstract Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense. Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites

  9. NMR characterization of the interaction of the Salmonella type III secretion system protein SipD and bile salts.

    Science.gov (United States)

    Wang, Yu; Nordhues, Bryce A; Zhong, Dalian; De Guzman, Roberto N

    2010-05-18

    Salmonella and Shigella bacteria require the type III secretion system (T3SS) to inject virulence proteins into their hosts and initiate infections. The tip proteins SipD and IpaD are critical components of the Salmonella and Shigella T3SS, respectively. Recently, SipD and IpaD have been shown to interact with bile salts, which are enriched in the intestines, and are hypothesized to act as environmental sensors for these enteric pathogens. Bile salts activate the Shigella T3SS but repress the Salmonella T3SS, and the mechanism of this differing response to bile salts is poorly understood. Further, how SipD binds to bile salts is currently unknown. Computer modeling predicted that IpaD binds the bile salt deoxycholate in a cleft formed by the N-terminal domain and the long central coiled coil of IpaD. Here, we used NMR methods to determine which SipD residues are affected by the interaction with the bile salts deoxycholate, chenodeoxycholate, and taurodeoxcholate. The bile salts perturbed nearly the same set of SipD residues; however, the largest chemical shift perturbations occurred away from what was predicted for the bile salt binding site in IpaD. Our NMR results indicate that that bile salt interaction of SipD will be different from what was predicted for IpaD, suggesting a possible mechanism for the differing response of Salmonella and Shigella to bile salts.

  10. Liver Receptor Homolog-1 Is Critical for Adequate Up-regulation of Cyp7a1 Gene Transcription and Bile Salt Synthesis During Bile Salt Sequestration

    NARCIS (Netherlands)

    Out, Carolien; Hageman, Jurre; Bloks, Vincent W.; Gerrits, Han; Gelpke, Maarten D. Sollewijn; Bos, Trijnie; Havinga, Rick; Smit, Martin J.; Kuipers, Folkert; Groen, Albert K.

    2011-01-01

    Liver receptor homolog-1 (LRH-1) is a nuclear receptor that controls a variety of metabolic pathways. In cultured cells, LRH-1 induces the expression of CYP7A1 and CYP8B1, key enzymes in bile salt synthesis. However, hepatic Cyp7a1 mRNA levels were not reduced upon hepatocyte-specific Lrh-1 deletion

  11. Bile salts inhibit growth and induce apoptosis of human esophageal cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Ru Zhang; Jun Gong; Hui Wang; Li Wang

    2005-01-01

    AIM: To explore the effect of six bile salts, including glycocholate (GC), glycochenodeoxycholate (GCDC), glycodeoxycholate (GDC), taurocholate (TC), taurochenodeoxycholate (TCDC), taurodeoxycholate (TDC), and two bile acids including cholic acid (CA) and deoxycholic acid (DCA) on esophageal cancer Eca109 cell line.METHODS: Eca109 cells were exposed to six bile salts, two bile acids and the mixed bile salts at different concentrations for 24-72 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the cell proliferation. Apoptotic morphology was observed by phase-contrast video microscopy and deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)assay. Sub-G1 DNA fragmentations and early apoptosis cells were assayed by flow cytometry (FCM) with propidium iodide (PI) staining and annexin V-FITC conjugated with PI staining. Apoptosis DNA ladders on agarose were observed. Activation of caspase-3 was assayed by FCM with FITC-conjugated monoclonal rabbit anti-active caspase3 antibody and expressions of Bcl-2 and Bax proteins were examined immunocytochemically in 500 μmol/L-TC-induced apoptosis cells.RESULTS: Five bile salts except for GC, and two bile acids and the mixed bile salts could initiate growth inhibition of Eca109 cells in a dose- and time-dependent manner.TUNEL, FCM, and DNA ladder assays all demonstrated apoptosis induced by bile salts and bile acids at 500 μmol/L,except for GC. Early apoptosis cell percentages in Eca109 cells treated with GCDC, GDC, TC, TCDC, TDC,CA at 500 μmol/L for 12 h, DCA at 500 μmol/L for 6 h,and mixed bile salts at 1 000 μmol/L for 12 h were 7.5%,8.7%, 14.8%, 8.9%, 7.8%, 9.3%, 22.6% and 12.5%,respectively, all were significantly higher than that in control (1.9%). About 22% of the cell population treated with TC at 500 μmol/L for 24 h had detectable active caspase-3, and were higher than that in the control (1%). Immunocytochemical assay suggested that TC down-regulated Bcl

  12. Bile salt receptor complex activates a pathogenic type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N.; Salomon, Dor; Tomchick, Diana R.; Grishin, Nick V.; Orth, Kim

    2016-07-05

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered thatVibrio parahaemolyticusVtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment.

  13. Bile salts induce expression of the afimbrial LDA adhesin of atypical enteropathogenic Escherichia coli.

    Science.gov (United States)

    Torres, Alfredo G; Tutt, Christopher B; Duval, Lisabeth; Popov, Vsevolod; Nasr, Abdelhakim Ben; Michalski, Jane; Scaletsky, Isabel C A

    2007-04-01

    Atypical enteropathogenic Escherichia coli (aEPEC) strains are frequently implicated in infant diarrhoea in developing countries. Not much is known about the adherence properties of aEPEC; however, it has been shown that these strains can adhere to tissue-cultured cells. A chromosomal region designated the locus for diffuse adherence (LDA) confers aEPEC strain 22 the ability to adhere to culture cells. LDA is an afimbrial adhesin that contains a major subunit, LdaG, whose expression is induced on MacConkey agar at 37 degrees C. We hypothesized that the bile salts found in this culture media induce the expression of LdaG. Strain 22 and the LdaG mutant were grown in Luria-Bertani (LB) media in the presence or absence of bile salts and heat-extracted surface-expressed proteins were separated by SDS-PAGE to determine whether expression of the 25 kDa LdaG protein was induced. Western blot analysis with anti-LdaG confirmed that bile salts enhance LdaG expression at 37 degrees C. Adhesion assays on HeLa cells revealed that adhesion in a diffuse pattern of strain 22 increased in the presence of bile salts. We also confirmed that expression of the localized adherence pattern observed in the ldaG mutant required the presence of a large cryptic plasmid found in strain 22 and that this phenotype was not induced by bile salts. At the transcriptional level, the ldaG-lacZ promoter fusion displayed maximum beta-galactosidase activity when the parent strain was grown in LB supplemented with bile salts. Fluorescence Activated Cell Sorting analysis, immunogold labelling electron microscopy and immunofluorescence using anti-LdaG sera confirmed that LDA is a bile salts-inducible surface-expressed afimbrial adhesin. Finally, LdaG expression was induced in presence of individual bile salts but not by other detergents. We concluded that bile salts increase expression of LDA, conferring a diffuse adherence pattern and having an impact on the adhesion properties of this aEPEC strain.

  14. Metabolism of bile salts in mice influences spore germination in Clostridium difficile.

    Directory of Open Access Journals (Sweden)

    Jennifer L Giel

    Full Text Available Clostridium difficile, a spore-forming bacterium, causes antibiotic-associated diarrhea. In order to produce toxins and cause disease, C. difficile spores must germinate and grow out as vegetative cells in the host. Although a few compounds capable of germinating C. difficile spores in vitro have been identified, the in vivo signal(s to which the spores respond were not previously known. Examination of intestinal and cecal extracts from untreated and antibiotic-treated mice revealed that extracts from the antibiotic-treated mice can stimulate colony formation from spores to greater levels. Treatment of these extracts with cholestyramine, a bile salt binding resin, severely decreased the ability of the extracts to stimulate colony formation from spores. This result, along with the facts that the germination factor is small, heat-stable, and water-soluble, support the idea that bile salts stimulate germination of C. difficile spores in vivo. All extracts able to stimulate high level of colony formation from spores had a higher proportion of primary to secondary bile salts than extracts that could not. In addition, cecal flora from antibiotic-treated mice was less able to modify the germinant taurocholate relative to flora from untreated mice, indicating that the population of bile salt modifying bacteria differed between the two groups. Taken together, these data suggest that an in vivo-produced compound, likely bile salts, stimulates colony formation from C. difficile spores and that levels of this compound are influenced by the commensal gastrointestinal flora.

  15. Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate.

    Science.gov (United States)

    Buchweitz, Maria; Kroon, Paul A; Rich, Gillian T; Wilde, Peter J

    2016-11-15

    To understand the bioaccessibility of the flavonoid quercetin we studied its interaction with bile salt micelles. The environmental sensitivity of quercetin's UV-visible absorption spectrum gave information about quercetin partitioning. Two quercetin absorption peaks gave complementary information: Peak A (240-280nm) on the intermicellar phase and Peak B (340-440nm) on the micellar phase. Thus, by altering pH, we showed that only non-ionised quercetin partitions into micelles. We validated our interpretation by studying quercetin's interaction with SDS micelles. Pyrene fluorescence and the quercetin UV-visible spectra show that the adsorption site for pyrene and quercetin in bile salt micelles is more hydrophobic than that for SDS micelles. Also, both quercetin and pyrene reported a higher critical micelle concentration for bile salts than for SDS. Our method of using a flavonoid as an intrinsic probe, is generally applicable to other lipophilic bioactives, whenever they have observable environmental dependent properties.

  16. Thermodynamics of complexes between nucleobase-modified {beta}-cyclodextrins and bile salts

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yu [Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071 Tianjin (China)], E-mail: yuliu@nankai.edu.cn; Zhang Qian; Guo Dongsheng; Zhuang Ruijie; Wang Lihua [Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071 Tianjin (China)

    2008-04-10

    The binding of three nucleobase-modified {beta}-CDs, (i.e., mono(6-ade-6-deoxy)-{beta}-CD 2, mono(6-thy-6-deoxy)-{beta}-CD 3, and mono(6-ura-6-deoxy)-{beta}-CD 4) with four bile salts (deoxycholate, DCA; cholate, CA; glycocholate, GCA; and taurocholate, TCA) were investigated by means of circular dichroism, 2D NMR spectroscopy and calorimetric titration. The results show the binding of host 2 with bile salts is weaker and different from hosts 3 and 4. Enthalpy changes between hosts 2-4 and bile salts are much more favorable than those of native {beta}-CD 1, whereas the entropy changes are unfavorable.

  17. Direct Measurement of the Thermodynamics of Chiral Recognition in Bile Salt Micelles.

    Science.gov (United States)

    Anderson, Shauna L; Rovnyak, David; Strein, Timothy G

    2016-04-01

    Isothermal titration calorimetry (ITC) is shown to be a sensitive reporter of bile salt micellization and chiral recognition. Detailed ITC characterization of bile micelle formation as well as the chiral recognition capabilities of sodium cholate (NaC), deoxycholate (NaDC), and taurodeoxycholate (NaTDC) micelle systems are reported. The ΔH(demic) of these bile salt micelle systems is directly observable and is strongly temperature-dependent, allowing also for the determination of ΔCp(demic). Using the pseudo-phase separation model, ΔG(demic) and TΔS(demic) were also calculated. Chirally selective guest-host binding of model racemic compounds 1,1'-bi-2-napthol (BN) and 1,1'-binaphthyl-2,2'-diylhydrogenphosphate (BNDHP) to bile salt micelles was then investigated. The S-isomer was shown to bind more tightly to the bile salt micelles in all cases. A model was developed that allows for the quantitative determination of the enthalpic difference in binding affinity that corresponds to chiral selectivity, which is on the order of 1 kJ mol(-1).

  18. Thermodynamics of the interaction of γ-cyclodextrin and tauro- and glyco-conjugated bile salts

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Holm, René;

    2013-01-01

    The structural differences in the interaction between natural γ-cyclodextrin and bile salts common in rat, dog and man was were investigated by 1H-ROESY and 13C NMR and molecular modeling and the thermodynamic parameters of the reaction by isothermal titration calorimetry. The γ-cyclodextrin was ......The structural differences in the interaction between natural γ-cyclodextrin and bile salts common in rat, dog and man was were investigated by 1H-ROESY and 13C NMR and molecular modeling and the thermodynamic parameters of the reaction by isothermal titration calorimetry. The γ...

  19. A study of salt effects on the complexation between beta-cyclodextrins and bile salts based on the Hofmeister series

    DEFF Research Database (Denmark)

    Holm, Rene; Schonbeck, Christian; Somprasirt, Pitchayanun;

    2014-01-01

    bound drug molecules. The influence of Hofmeister ions on the binding constants of complexes between CDs (β-CD and hydroxypropylated β-CD) and bile salts (glycocholate and glycochenodeoxycholate) were examined by isothermal titration calorimetry. The chaotropic anions tended to weaken these inclusion...

  20. Hepatic Farnesoid X-Receptor Isoforms α2 and α4 Differentially Modulate Bile Salt and Lipoprotein Metabolism in Mice

    NARCIS (Netherlands)

    Boesjes, Marije; Bloks, Vincent W.; Hageman, Jurre; Bos, Trijnie; van Dijk, Theo H.; Havinga, Rick; Wolters, Henk; Jonker, Johan W.; Kuipers, Folkert; Groen, Albert K.

    2014-01-01

    The nuclear receptor FXR acts as an intracellular bile salt sensor that regulates synthesis and transport of bile salts within their enterohepatic circulation. In addition, FXR is involved in control of a variety of crucial metabolic pathways. Four FXR splice variants are known, i.e. FXR alpha 1-4.

  1. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    Science.gov (United States)

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles.

  2. Prebiotic oligosaccharides and the enterohepatic circulation of bile salts in rats

    NARCIS (Netherlands)

    H. van Meer (Hester); G. Boehm (Günther); F. Stellaard (Frans); A. Vriesema (Aldwin); J. Knol (Jan); R. Havinga (Rick); P.J.J. Sauer (Pieter); H.J. Verkade (Henkjan)

    2008-01-01

    textabstractHuman milk contains prebiotic oligosaccharides, which stimulate the growth of intestinal bifidobacteria and lactobacilli. It is unclear whether the prebiotic capacity of human milk contributes to the larger bile salt pool size and the more efficient fat absorption in infants fed human mi

  3. Effective Treatment of Unconjugated Hyperbilirubinemia With Oral Bile Salts in Gunn Rats

    NARCIS (Netherlands)

    Cuperus, Frans J. C.; Hafkamp, Anja M.; Havinga, Rick; Vitek, Libor; Zelenka, Jaroslav; Tiribelli, Claudio; Ostrow, J. Donald; Verkade, Henkjan J.

    2009-01-01

    Background & Aims: we tested the hypothesis that oral administration of bile salts, which are known to increase the biliary excretion of unconjugated bilirubin (UCB), decreases unconjugated hyperbilirubinemia in the Gunn rat model. Methods: Adult Gunn rats were fed a standard diet or the same diet s

  4. Effects of essential fatty acid deficiency on enterohepatic circulation of bile salts in mice

    NARCIS (Netherlands)

    Lukovac, S.; Los, E. L.; Stellaard, F.; Rings, E. H. H. M.; Verkade, H. J.

    2009-01-01

    Lukovac S, Los EL, Stellaard F, Rings EH, Verkade HJ. Effects of essential fatty acid deficiency on enterohepatic circulation of bile salts in mice. Am J Physiol Gastrointest Liver Physiol 297: G520-G531, 2009. First published July 16, 2009; doi: 10.1152/ajpgi.00091.2009.-Essential fatty acid (EFA)

  5. Is bile salt-dependent lipase concentration in serum of any help in pancreatic cancer diagnosis?

    Science.gov (United States)

    Lombardo, D; Montalto, G; Roudani, S; Mas, E; Laugier, R; Sbarra, V; Abouakil, N

    1993-09-01

    The diagnostic value of bile salt-dependent lipase for pancreatic diseases was tested in sera of 187 patients. Of these patients, 76 suffered from pancreatic carcinoma, 43 from nonmalignant liver diseases (cirrhosis and chronic hepatitis), 18 from acute pancreatitis, and 20 from chronic pancreatitis. The remaining subjects were controls without pancreatic pathology. Bile salt-dependent lipase was determined by a sandwich enzyme-linked immunosorbent assay using polyclonal antibodies. Amylase and CA 19-9 antigen were also determined. In sera from control patients, the mean level of bile salt-dependent lipase was 1.5 micrograms/L. This level is quite similar to that of patients with benign liver diseases (1.1 micrograms/L) and with chronic pancreatitis (1.4 micrograms/L), but it was raised to 3.5 micrograms/L in patients with acute pancreatitis and decreased to 0.5 microgram/L in subjects with pancreatic adenocarcinoma. Thirty percent of control subjects and 73% of cancer patients had a bile salt-dependent lipase serum level below the cutoff value of 0.5 microgram/L. In acute pancreatitis, 11 of 16 subjects had levels above 1.5 micrograms/L. Amylase level largely increased in acute pancreatitis but was normal in all other groups. Concerning CA 19-9 antigen, 65% of control patients and > 80% of patients with nonmalignant pancreatic or liver diseases had normal levels. In sera from cancer patients, 80% presented with high levels. Accordingly, 36 of 38 patients with pancreatic cancer had either low serum levels of bile salt-dependent lipase ( 37 U/ml; sensitivity 95%).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Structural transition in aqueous lipid/bile salt [DPPC/NaDC] supramolecular aggregates: SANS and DLS study

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.A. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Janich, M.; Hildebrand, A. [Martin-Luther-University, Halle (Saale) (Germany); Strunz, P. [Berlin Neutron Scattering Center, HZB, Berlin (Germany); Neubert, R.H.H. [Martin-Luther-University, Halle (Saale) (Germany); Lombardo, D., E-mail: lombardo@me.cnr.it [CNR–IPCF, Istituto per i Processi Chimico Fisici – (Sez. Messina), I-98158, Messina (Italy)

    2013-10-16

    Highlights: • Self-assembly in model DPPC lipids and NaDC bile salt by SANS and DLS experiments. • Bile salt creates structural interference against cohesive tendency of DPPC bilayers. • NaDC steric interactions cause transition toward different supramolecular structures. - Abstract: Small angle neutron scattering (SANS) and dynamic light scattering (DLS) were used to study different aggregation states in sodium deoxycholate (NaDC)-phosphatidylcholine systems at T = 60 °C. Size and shape of the aggregates investigated as a function of the NaDC bile salt concentration (at the constant DPPC concentration of 6 mM) indicate a strong dependence of the size and morphology of the generated aggregates on the relative amount of NaDC bile salt. More specifically large occupied area of the bile salt induces a steric interaction which promotes the transition toward a variety of supramolecular structures ranging from ellipsoidal vesicles, ribbon-like structures, up to final spherical mixed micelles at the large amount of bile salt of 10 mM NaDC. The findings of the obtained results give important insight for understanding the formation of different topologies in aqueous lipid–bile salt mixtures as well as stimulate new routes for liposome reconstitution–solubilisation processes suitable for technological applications.

  7. Formation of liquid-crystalline structures in the bile salt-chitosan system and triggered release from lamellar phase bile salt-chitosan capsules.

    Science.gov (United States)

    Tangso, Kristian J; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick; Boyd, Ben J

    2014-08-13

    Nanostructured capsules comprised of the anionic bile salt, sodium taurodeoxycholate (STDC), and the biocompatible cationic polymer, chitosan, were prepared to assess their potential as novel tailored release nanomaterials. For comparison, a previously studied system, sodium dodecyl sulfate (SDS), and polydiallyldimethylammonium chloride (polyDADMAC) was also investigated. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified the presence of lamellar and hexagonal phase at the surfactant-polymer interface of the respective systems. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and salt concentration, respectively, and were found to influence the liquid-crystalline nanostructure formed. The hexagonal phase persisted at high temperatures, however the lamellar phase structure was lost above ca. 45 °C. Both mesophases were found to dissociate upon addition of 4% NaCl solution. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from the lamellar phase significantly increased in response to changes in the solution conditions studied, suggesting that modulating the drug release from these bile salt-chitosan capsules is readily achieved. In contrast, release from the hexagonal phase capsules had no appreciable response to the stimuli applied. These findings provide a platform for these oppositely charged surfactant and polymer systems to function as stimuli-responsive or sustained-release drug delivery systems.

  8. Formation of drug-bearing vesicles in mixed colloids of bile salts and phosphatidylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, R.P.; Mang, J. [Los Alamos National Lab., NM (United States); Hofmann, A.F.; Schteingart, C. [Univ. of California, San Diego, CA (United States); Alkan-Onyuksel, H.; Ayd, S. [Univ. of Illinois, Urbana, IL (United States)

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors used small-angle neutron scattering to study drug interactions with mixed colloids of bile salt and phosphatidylcholine. Because the mixed colloids form liposomes spontaneously, this system is a model for drug-bile interactions that are important in understanding the efficacy of oral drug formulations and in advanced applications for liposome drug delivery systems. The authors studied particle formation in incorporation of enzymatic products formed in the gut and the effects of cholesteric drugs and taxol on vesicle formation. The studies show that particle morphology is not affected by inclusion of most cholesteric drugs and taxol, and is not affected by incorporation of the products of enzymatic action. The findings suggest that particle form is important for the physiological function of bile and they are beginning to show which drugs affect liposome formation.

  9. Predicting human intestinal absorption in the presence of bile salt with micellar liquid chromatography.

    Science.gov (United States)

    Waters, Laura J; Shokry, Dina S; Parkes, Gareth M B

    2016-10-01

    Understanding intestinal absorption for pharmaceutical compounds is vital to estimate the bioavailability and therefore the in vivo potential of a drug. This study considers the application of micellar liquid chromatography (MLC) to predict passive intestinal absorption with a selection of model compounds. MLC is already known to aid prediction of absorption using simple surfactant systems; however, with this study the focus was on the presence of a more complex, bile salt surfactant, as would be encountered in the in vivo environment. As a result, MLC using a specific bile salt has been confirmed as an ideal in vitro system to predict the intestinal permeability for a wide range of drugs, through the development of a quantitative partition-absorption relationship. MLC offers many benefits including environmental, economic, time-saving and ethical advantages compared with the traditional techniques employed to obtain passive intestinal absorption values. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  11. The influence of bile salt on the chemotherapeutic response of docetaxel-loaded thermosensitive nanomicelles

    Directory of Open Access Journals (Sweden)

    Kim DW

    2014-08-01

    Full Text Available Dong Wuk Kim,1,* Thiruganesh Ramasamy,2,* Ju Yeon Choi,2 Jeong Hwan Kim,2 Chul Soon Yong,2 Jong Oh Kim,2 Han-Gon Choi1 1College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea; 2College of Pharmacy, Yeungnam University, Gyongsan, South Korea *These two authors contributed equally to this work Abstract: The primary aim of this work was to investigate the potential of bile salt, sodium taurocholate (NaTC, in improving the bioavailability and anti-tumor efficacy of docetaxel (DCT upon rectal administration. Poloxamer-based nanomicelles with thermosensitive and mucoadhesive properties were prepared using the cold method. The optimized nanomicellar formulation was evaluated in terms of physicochemical and viscoelastic parameters. Nanomicelles containing bile salt maintained sufficient gelation strength (234×102 mPa·s and mucoadhesive force (17.3×102 dyne/cm2 to be retained in the upper part of the rectum. They significantly enhanced the DCT internalization across the rectal mucosa and showed a high plasma level during the first 4 hours of the study period, compared to nanomicelles with no bile salt. As a result, a slightly higher rectal bioavailability of ~33% was observed in nanomicelles containing bile salt, compared to ~28% from the latter system. The higher pharmacokinetic parameters for rectally administered DCT/P407/P188/Tween 80/NaTC (0.25%/11%/15%/10%/0.1% by weight, respectively resulted in significant anti-tumor efficacy. However, the tumor regression rate for the NaTC group was not statistically different from that for nanomicelles without NaTC. Therefore, overall results suggest that thermosensitive nanomicelles could be a potential dosage form for improvement of the bioavailability and chemotherapeutic profile of DCT. Keywords: anti-cancer efficiency, bioavailability, docetaxel, liquid suppository, rectal delivery, thermosensitive

  12. Colipase enhances hydrolysis of dietary triglycerides in the absence of bile salts.

    Science.gov (United States)

    Bläckberg, L; Hernell, O; Bengtsson, G; Olivecrona, T

    1979-11-01

    This study explores how dietary lipids are digested when intraduodenal bile salts are low or absent. Long-chain triglycerides emulsified with phosphatidylcholine were found to be hydrolyzed very slowly by pancreatic lipase alone, as if the surface layer of phospholipids enveloping the triglycerides impeded the action of the enzyme. Colipase enhanced triglyceride hydrolysis severalfold, both when added before or after the lipase. Hydrolysis became even more rapid when the emulsion was first incubated with pancreatic phospholipase. Hydrolysis of long-chain triglycerides was also severely impeded when other proteins were added to the system, probably because they adsorbed to the oil-water interface of the emulsion droplets. It was previously known that bile salts can relieve such inhibition, presumably by desorbing the adsorbed proteins. Colipase was found to enhance hydrolysis severalfold in a dose-dependent manner even in the absence of bile salts, i.e., it could partially or completely relieve the inhibition depending upon the amount and the type of inhibitory protein added to the system. Prior exposure of a protein-coated triglyceride emulsion to another lipase also enhanced the rate at which pancreatic lipase could then hydrolyze the lipids. Most dietary triglycerides are probably presented for intestinal digestion in emulsions covered by proteins and/or phospholipids. These emulsions would be hydrolyzed slowly by pancreatic lipase alone. However, through the action of the lipase in stomach contents and of pancreatic phospholipase and through the lipolysis-promoting effects of collipase, these triglycerices can be rather efficiently hydrolyzed, even in the absence of bile salts.

  13. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    Directory of Open Access Journals (Sweden)

    María Inés Marchesini

    Full Text Available Choloylglycine hydrolase (CGH, E.C. 3.5.1.24 is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  14. Hydrolysis of human milk fat globules by pancreatic lipase: role of colipase, phospholipase A2, and bile salts.

    OpenAIRE

    Bläckberg, L; Hernell, O; Olivecrona, T

    1981-01-01

    Human milk fat globules were used to explore how dietary triglycerides are hydrolyzed by pancreatic lipase. These triglycerides were hydrolyzed very slowly by lipase alone as if the surface layer of proteins and phospholipids impeded the action of the enzyme. The inhibition of lipase activity could be overcome by addition either of colipase or of pancreatic phospholipase A2. Colipase enhanced triglyceride hydrolysis in a dose-dependent manner whether bile salts were present or not. Bile salts...

  15. Effect of perfusion of bile salts solutions into the oesophagus of hiatal hernia patients and controls.

    Science.gov (United States)

    Bachir, G S; Collis, J L

    1976-01-01

    Tests of the response to perfusion of the oesophagus were made in 54 patients divided into three groups. Group I consisted of patients with symptomatic hiatal hernia, group II hiatal hernia patients with peptic stricture, and group III normal individuals. Each individual oesophagus was perfused at a rate of 45-65 drops per minute over 25 minutes with six solutions: normal saline, N/10 HCl, taurine conjugates of bile salts in normal saline, taurine conjugates of bile salts in N/10 HCl, glycine conjugates of bile salts in normal saline, and taurine and glycine conjugates in a ratio of 1 to 2 in normal saline. It was found that acidified taurine solutions were more irritating than acid alone. With a 2mM/l solution of taurine in acid, symptoms are produced even in controls. With a 1 mM/l solution of the same conjugates, the majority of normal people feel slight heartburn or nothing, and therefore perfusion into the oesophagus of such a solution could be used as a test for oesophagitis. PMID:941112

  16. Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate

    Directory of Open Access Journals (Sweden)

    Ćirin Dejan M

    2011-12-01

    Full Text Available Abstract Background In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100 or anionic (sodium lauryl ether sulfate surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate. Results The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants. Conclusion It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate.

  17. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    Science.gov (United States)

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent

  18. Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence.

    Science.gov (United States)

    Yang, Menghua; Liu, Zhi; Hughes, Chambers; Stern, Andrew M; Wang, Hui; Zhong, Zengtao; Kan, Biao; Fenical, William; Zhu, Jun

    2013-02-01

    To be successful pathogens, bacteria must often restrict the expression of virulence genes to host environments. This requires a physical or chemical marker of the host environment as well as a cognate bacterial system for sensing the presence of a host to appropriately time the activation of virulence. However, there have been remarkably few such signal-sensor pairs identified, and the molecular mechanisms for host-sensing are virtually unknown. By directly applying a reporter strain of Vibrio cholerae, the causative agent of cholera, to a thin layer chromatography (TLC) plate containing mouse intestinal extracts, we found two host signals that activate virulence gene transcription. One of these was revealed to be the bile salt taurocholate. We then show that a set of bile salts cause dimerization of the transmembrane transcription factor TcpP by inducing intermolecular disulfide bonds between cysteine (C)-207 residues in its periplasmic domain. Various genetic and biochemical analyses led us to propose a model in which the other cysteine in the periplasmic domain, C218, forms an inhibitory intramolecular disulfide bond with C207 that must be isomerized to form the active C207-C207 intermolecular bond. We then found bile salt-dependent effects of these cysteine mutations on survival in vivo, correlating to our in vitro model. Our results are a demonstration of a mechanism for direct activation of the V. cholerae virulence cascade by a host signal molecule. They further provide a paradigm for recognition of the host environment in pathogenic bacteria through periplasmic cysteine oxidation.

  19. Bile salt/phospholipid mixed micelle precursor pellets prepared by fluid-bed coating

    Directory of Open Access Journals (Sweden)

    Dong F

    2013-04-01

    Full Text Available Fuxia Dong,1,2 Yunchang Xie,1 Jianping Qi,1 Fuqiang Hu,3 Yi Lu,1 Sanming Li,2 Wei Wu1 1School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, Shanghai, People’s Republic of China; 2School of Pharmacy, Shenyang Pharmaceutical University, Liaoning, People’s Republic of China; 3School of Pharmacy, Zhejiang University, Hangzhou, People’s Republic of China Abstract: Bile salt/phospholipid mixed micelles (MMs are potent carriers used for oral absorption of drugs that are poorly soluble in water; however, there are many limitations associated with liquid formulations. In the current study, the feasibility of preparing bile salt/phospholipid MM precursor (preMM pellets with high oral bioavailability, using fluid-bed coating technology, was examined. In this study, fenofibrate (FB and sodium deoxycholate (SDC were used as the model drug and the bile salt, respectively. To prepare the MMs and to serve as the micellular carrier, a weight ratio of 4:6 was selected for the sodium deoxycholate/phospholipids based on the ternary phase diagram. Polyethylene glycol (PEG 6000 was selected as the dispersion matrix for precipitation of the MMs onto pellets, since it can enhance the solubilizing ability of the MMs. Coating of the MMs onto the pellets using the fluid-bed coating technology was efficient and the pellets were spherical and intact. MMs could be easily reconstituted from preMM pellets in water. Although they existed in a crystalline state in the preMM pellets, FB could be encapsulated into the reconstituted MMs, and the MMs were redispersed better than solid dispersion pellets (FB:PEG = 1:3 and Lipanthyl®. The redispersibility of the preMM pellets increased with the increase of the FB/PEG/micellar carrier. PreMM pellets with a FB:PEG:micellar carrier ratio of 1:1.5:1.5 showed 284% and 145% bioavailability relative to Lipanthyl® and solid dispersion pellets (FB:PEG = 1:3, respectively. Fluid

  20. The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS produced by yogurt starter bacteria

    Directory of Open Access Journals (Sweden)

    Boke Hatice

    2010-01-01

    Full Text Available The aim of this study was to investigate a possible relation between EPS production and resistance to bile salts and tolerance to low pH. Eight strains which produced the highest and lowest amount of EPS (16- 211mg/l were selected among 54 bacteria isolated from yogurt. Additionally, they were tested for resistance to bile salts (0.15, 0.3 % and tolerance to low pH (2.0-3.0. After treatment with bile salts and acid, viable bacteria (log cfu ml-1 were determined by surface plating. The high EPS producing strains (B3, G12, W22 showed a significant (P<0.05 protective effect against low pH (pH 2.0. All Streptococcus thermophilus strains showed a higher tolerance to bile salts than the Lactobacillus delbrueckii subsp. bulgaricus strains. The high EPS-producing S. thermophilus (W22, T12 and L. bulgaricus (B3, G2 strains showed a significant (P<0.01 protective effect against bile salts (0.3 %.

  1. Membranolytic Activity of Bile Salts: Influence of Biological Membrane Properties and Composition

    Directory of Open Access Journals (Sweden)

    Alfred Blume

    2007-10-01

    Full Text Available The two main steps of the membranolytic activity of detergents: 1 the partitioning of detergent molecules in the membrane and 2 the solubilisation of the membrane are systematically investigated. The interactions of two bile salt molecules, sodium cholate (NaC and sodium deoxycholate (NaDC with biological phospholipid model membranes are considered. The membranolytic activity is analysed as a function of the hydrophobicity of the bile salt, ionic strength, temperature, membrane phase properties, membrane surface charge and composition of the acyl chains of the lipids. The results are derived from calorimetric measurements (ITC, isothermal titration calorimetry. A thermodynamic model is described, taking into consideration electrostatic interactions, which is used for the calculation of the partition coefficient as well as to derive the complete thermodynamic parameters describing the interaction of detergents with biological membranes (change in enthalpy, change in free energy, change in entropy etc. The solubilisation properties are described in a so-called vesicle-to-micelle phase transition diagram. The obtained results are supplemented and confirmed by data obtained from other biophysical techniques (DSC differential scanning calorimetry, DLS dynamic light scattering, SANS small angle neutron scattering.

  2. Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress

    NARCIS (Netherlands)

    Ben Amor, K.; Breeuwer, P.; Verbaarschot, P.; Rombouts, F.M.; Akkermans, A.D.L.; Vos, de W.M.; Abee, T.

    2002-01-01

    Using a flow cytometry-based approach, we assessed the viability of Bifidobacterium lactis DSM 10140 and Bifidobacterium adolescentis DSM 20083 during exposure to bile salt stress. Carboxyfluorescein diacetate (cFDA), propidium iodide (PI), and oxonol [DiBAC4(3)] were used to monitor esterase activi

  3. Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids

    DEFF Research Database (Denmark)

    Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim

    2016-01-01

    Knowledge about colloidal assemblies present in human intestinal fluids (HIFs), such as bile salt micelles and phospholipid vesicles, is regarded of importance for a better understanding of the in vivo dissolution and absorption behavior of poorly soluble drugs (Biopharmaceutics Classification...... distinct size fraction of colloidal assemblies, whereas FeSSIF contained 2 fractions of colloidal species with significantly different sizes. These size fractions likely represent (1) mixed taurocholate-phospholipid-micelles, as indicated by a size range up to 70 nm (in diameter) and a strong UV absorption...... sizes of approximately 50 and 200 nm, respectively (intensity-weighted mean diameter, Dz), likely representing mixed cholate/phospholipid micelles and phospholipid vesicles, respectively. The sizes of the smaller 2 fractions being below the size range of multiangle laser light scattering analysis (

  4. Ultrafast fluorescence resonance energy transfer in a bile salt aggregate: Excitation wavelength dependence

    Indian Academy of Sciences (India)

    Ujjwal Mandal; Subhadip Ghosh; Dibyendu Kumar Das; Aniruddha Adhikari; Shantanu Dey; Kankan Bhattacharyya

    2008-01-01

    Fluorescence resonance energy transfer (FRET) from Coumarin 153 (C153) to Rhodamine 6G (R6G) in a secondary aggregate of a bile salt (sodium deoxycholate, NaDC) is studied by femtosecond up-conversion. The emission spectrum of C153 in NaDC is analysed in terms of two spectra-one with emission maximum at 480 nm which corresponds to a non-polar and hydrophobic site and another with maximum at ∼ 530 nm which arises from a polar hydrophilic site. The time constants of FRET were obtained from the rise time of the emission of the acceptor (R6G). In the NaDC aggregate, FRET occurs in multiple time scales -4 ps and 3700 ps. The 4 ps component is assigned to FRET from a donor (D) to an acceptor (A) held at a close distance (DA ∼ 17 Å) inside the bile salt aggregate. The 3700 ps component corresponds to a donor-acceptor distance ∼ 48 Å. The long (3700 ps) component may involve diffusion of the donor. With increase in the excitation wavelength (ex) from 375 to 435 nm, the relative contribution of the ultrafast component of FRET (∼ 4 ps) increases from 3 to 40% with a concomitant decrease in the contribution of the ultraslow component (∼3700 ps) from 97 to 60%. The ex dependence is attributed to the presence of donors at different locations. At a long ex (435 nm) donors in the highly polar peripheral region are excited. A short ex (375 nm) `selects’ donor at a hydrophobic location.

  5. Gene expression changes associated with Barrett's esophagus and Barrett's-associated adenocarcinoma cell lines after acid or bile salt exposure

    Directory of Open Access Journals (Sweden)

    Sahbaie Peyman

    2007-06-01

    Full Text Available Abstract Background Esophageal reflux and Barrett's esophagus represent two major risk factors for the development of esophageal adenocarcinoma. Previous studies have shown that brief exposure of the Barrett's-associated adenocarcinoma cell line, SEG-1, or primary cultures of Barrett's esophageal tissues to acid or bile results in changes consistent with cell proliferation. In this study, we determined whether similar exposure to acid or bile salts results in gene expression changes that provide insights into malignant transformation. Methods Using previously published methods, Barrett's-associated esophageal adenocarcinoma cell lines and primary cultures of Barrett's esophageal tissue were exposed to short pulses of acid or bile salts followed by incubation in culture media at pH 7.4. A genome-wide assessment of gene expression was then determined for the samples using cDNA microarrays. Subsequent analysis evaluated for statistical differences in gene expression with and without treatment. Results The SEG-1 cell line showed changes in gene expression that was dependent on the length of exposure to pH 3.5. Further analysis using the Gene Ontology, however, showed that representation by genes associated with cell proliferation is not enhanced by acid exposure. The changes in gene expression also did not involve genes known to be differentially expressed in esophageal adenocarcinoma. Similar experiments using short-term primary cultures of Barrett's esophagus also did not result in detectable changes in gene expression with either acid or bile salt exposure. Conclusion Short-term exposure of esophageal adenocarcinoma SEG-1 cells or primary cultures of Barrett's esophagus does not result in gene expression changes that are consistent with enhanced cell proliferation. Thus other model systems are needed that may reflect the impact of acid and bile salt exposure on the esophagus in vivo.

  6. Pathogenesis of salt retention in dogs with chronic bile-duct ligation.

    Science.gov (United States)

    Chaimovitz, C; Alon, U; Better, O S

    1982-01-01

    1. The present study investigates the role of mineralocorticoids in the pathogenesis of salt retention and ascites in dogs with chronic ligation of the common bile duct (CBDL). 2. After CBDL the natriuretic response to an intravenous sodium load [0.9% sodium chloride solution (150 mmol/l): saline; 10% of body weight] was markedly depressed. Urinary sodium excretion was 285 +/- 62 vs 960 +/- 58 mumol/min in the control period before CBDL (P less than 0.001). This antinatriuresis was associated with a significant rise in plasma aldosterone concentration, from 52.5 +/- 5.5 pg/ml before CBDL to 177 +/- 50 pg/ml after CBDL (P less than 0.02). Ascites was present in all salt-retaining CBDL dogs. 3. Bilateral adrenalectomy resulted in disappearance of ascites and in a rise in the natriuretic response to extracellular volume expansion. Urinary sodium excretion was 770 +/- 124 mumol/min, a value significantly higher than in the CBDL dogs with intact adrenals (P less than 0.001). Sodium balance studies in the adrenalectomized CBDL dogs during chronic deoxycorticosterone acetate (DOCA) treatment (25 mg/day) showed that in these animals there was failure to escape from the mineralocorticoid-induced sodium retention. Glomerular filtration rate and renal plasma flow did not change during the studies. 4. The present evidence supports the thesis that sodium retention in the CBDL dog results from a dual mechanism: (a) excess of circulating aldosterone and (b) and extra-adrenal factor which prevents escape from the salt-retaining effect of mineralocorticoids, in the CBDL dogs, thereby perpetuating the antinatriuresis in these animals.

  7. Acidic bile salts modulate the squamous epithelial barrier function by modulating tight junction proteins.

    Science.gov (United States)

    Chen, Xin; Oshima, Tadayuki; Tomita, Toshihiko; Fukui, Hirokazu; Watari, Jiro; Matsumoto, Takayuki; Miwa, Hiroto

    2011-08-01

    Experimental models for esophageal epithelium in vitro either suffer from poor differentiation or complicated culture systems. An air-liquid interface system with normal human bronchial epithelial cells can serve as a model of esophageal-like squamous epithelial cell layers. Here, we explore the influence of bile acids on barrier function and tight junction (TJ) proteins. The cells were treated with taurocholic acid (TCA), glycocholic acid (GCA), or deoxycholic acid (DCA) at different pH values, or with pepsin. Barrier function was measured by transepithelial electrical resistance (TEER) and the diffusion of paracellular tracers (permeability). The expression of TJ proteins, including claudin-1 and claudin-4, was examined by Western blotting of 1% Nonidet P-40-soluble and -insoluble fractions. TCA and GCA dose-dependently decreased TEER and increased paracellular permeability at pH 3 after 1 h. TCA (4 mM) or GCA (4 mM) did not change TEER and permeability at pH 7.4 or pH 4. The combination of TCA and GCA at pH 3 significantly decreased TEER and increased permeability at lower concentrations (2 mM). Pepsin (4 mg/ml, pH 3) did not have any effect on barrier function. DCA significantly decreased the TEER and increased permeability at pH 6, a weakly acidic condition. TCA (4 mM) and GCA (4 mM) significantly decreased the insoluble fractions of claudin-1 and claudin-4 at pH 3. In conclusion, acidic bile salts disrupted the squamous epithelial barrier function partly by modulating the amounts of claudin-1 and claudin-4. These results provide new insights for understanding the role of TJ proteins in esophagitis.

  8. Bile salts inhibit growth and induce apoptosis of culture human normal esophageal mucosal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ru Zhang; Jun Gong; Hui Wang; Li Wang

    2005-01-01

    AIM: To investigate the effect of six bile salts:glycocholate (GC), glycochenodeoxycholate (GCDC),glycodeoxycholate (GDC), taurocholate (TC),taurochenodeoxycholate (TCDC), taurodeoxycholate (TDC), and their mixture on cultured human normal esophageal mucosal epithelial cells.METHODS: Human normal esophageal mucosal epithelial cells were cultured with serum-free keratinocyte medium. 3-[4,5-Dimethylthiaolyl]-2,5-diphenyl-tetrazolium bromide assay was applied to the detection of cell proliferation. Apoptotic morphology was observed by phase-contrast video microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Sub-G1 DNA fragmentations and early apoptotic cells were assayed by flow cytometry (FCM) with propidium iodide (PI) staining and annexin V-FITC conjugated with PI staining.Apoptotic DNA ladders on agarose gel electrophoresis were observed.RESULTS: Except for GC, GCDC, GDC, TC, TCDC, TDC and their mixture could initiate growth inhibition of esophageal mucosal epithelial cells in a dose- and time-dependent manner. TUNEL and FCM assays demonstrated that the bile salts at 500 μmol/L and their mixture at 1 500 μmol/L induced apoptosis except for GC. The percentage of sub-G1 detected by FCM with PI staining was 83.5% in cells treated with 500μmol/L TC for 2 h, and 19.8%, 20.4%, 25.6%, 13.5%, and 75.8% in cells treated with 500 μmol/L GCDC, TCDC, GDC,TDC, and 1 500 μmol/L mixture for 24 h, respectively,which were higher than that of the control (1.5%). The percentage was 1.4% in cells with 500 μmol/L GC for 24 h.DNA ladders on agarose gel electrophoresis were seen in cells treated with 500 μmol/L TC for 2 h and 1 500 μmol/Lmixture for 24 h.CONCLUSION: All GCDC, GDC, TC, TCDC, TDC and their mixture can inhibit growth and induce apoptosis of cultured human normal esophageal mucosal epithelial cells, but GC is well tolerated by the cells.

  9. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge.

    Science.gov (United States)

    Arzani, Gelareh; Haeri, Azadeh; Daeihamed, Marjan; Bakhtiari-Kaboutaraki, Hamid; Dadashzadeh, Simin

    2015-01-01

    Carvedilol (CRV) is an antihypertensive drug with both alpha and beta receptor blocking activity used to preclude angina and cardiac arrhythmias. To overcome the low, variable oral bioavailability of CRV, niosomal formulations were prepared and characterized: plain niosomes (without bile salts), bile salt-enriched niosomes (bilosomes containing various percentages of sodium cholate or sodium taurocholate), and charged niosomes (negative, containing dicetyl phosphate and positive, containing hexadecyl trimethyl ammonium bromide). All formulations were characterized in terms of encapsulation efficiency, size, zeta potential, release profile, stability, and morphology. Various formulations were administered orally to ten groups of Wistar rats (n=6 per group). The plasma levels of CRV were measured by a validated high-performance liquid chromatography (HPLC) method and pharmacokinetic properties of different formulations were characterized. Contribution of lymphatic transport to the oral bioavailability of niosomes was also investigated using a chylomicron flow-blocking approach. Of the bile salt-enriched vesicles examined, bilosomes containing 20% sodium cholate (F2) and 30% sodium taurocholate (F5) appeared to give the greatest enhancement of intestinal absorption. The relative bioavailability of F2 and F5 formulations to the suspension was estimated to be 1.84 and 1.64, respectively. With regard to charged niosomes, the peak plasma concentrations (Cmax) of CRV for positively (F7) and negatively charged formulations (F10) were approximately 2.3- and 1.7-fold higher than after a suspension. Bioavailability studies also revealed a significant increase in extent of drug absorption from charged vesicles. Tissue histology revealed no signs of inflammation or damage. The study proved that the type and concentration of bile salts as well as carrier surface charge had great influences on oral bioavailability of niosomes. Blocking the lymphatic absorption pathway

  10. Multiparametric Flow Cytometry and Cell Sorting for the Assessment of Viable, Injured, and Dead Bifidobacterium Cells during Bile Salt Stress

    OpenAIRE

    2002-01-01

    Using a flow cytometry-based approach, we assessed the viability of Bifidobacterium lactis DSM 10140 and Bifidobacterium adolescentis DSM 20083 during exposure to bile salt stress. Carboxyfluorescein diacetate (cFDA), propidium iodide (PI), and oxonol [DiBAC4(3)] were used to monitor esterase activity, membrane integrity, and membrane potential, respectively, as indicators of bacterial viability. Single staining with these probes rapidly and noticeably reflected the behavior of the two strain...

  11. Bile salt-stimulated lipase of human milk: characterization of the enzyme from preterm and term milk

    Energy Technology Data Exchange (ETDEWEB)

    Freed, L.M.; Hamosh, P.; Hamosh, M.

    1986-03-01

    The bile salt-stimulated lipase (BSSL) of human milk is an important digestive enzyme in the newborn whose pancreatic function is immature. Milk from mothers delivering premature infants (preterm milk) has similar levels of BSSL activity to that of mothers of term infants (term milk). This study has determined whether the BSSL in preterm milk has the same characteristics as that in term milk. Milk samples were collected during the first 12 wk of lactation from seven mothers of infants born at 26-30 wk (very preterm, VPT), 31-37 wk (preterm, PT) and 37-42 wk (term, T) gestation. BSSL activity was measured using /sup 3/H-triolein emulsion as substrate. Time course, bile salt and enzyme concentration, pH and pH stability were studied, as well as inhibition of BSSL by eserine. The characteristics of BSSL from preterm and term milk were identical as were comparisons between colostrum and mature milk BSSL. BSSL from all milk sources had a neutral-to-alkaline pH optimum (pH 7.3-8.9), was stable at low pH for 60 min, and was 95-100% inhibited by eserine (greater than or equal to 0.6 mM). BSSL activity, regardless of enzyme source, was bile-salt dependent and was stimulated only by primary bile salts (taurocholate, glycocholate). The data indicate that the BSSL in milks of mothers delivering as early as 26 wk gestation is identical to that in term milk.

  12. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study.

    Science.gov (United States)

    Niu, Mengmeng; Tan, Ya'nan; Guan, Peipei; Hovgaard, Lars; Lu, Yi; Qi, Jianping; Lian, Ruyue; Li, Xiaoyang; Wu, Wei

    2014-01-01

    Liposomes containing bile salts (BS-liposomes) significantly enhanced the oral bioavailability of insulin (rhINS). However, the underlying absorption mechanisms have not been well understood yet. In this study, the transiting fate of the liposomes was first investigated using fluorescent imaging tools to confirm the effect of enhanced gastrointestinal stability. In order to obtain evidence of enhanced transcellular permeation, the interaction between BS-liposomes and the biomembrane was investigated in Caco-2 cell lines. BS-liposomes were found to be more stable in the gastrointestinal tract by showing prolonged residence time in comparison with conventional liposomes. BS-liposomes were significantly more effective for cellular uptake and transport of rhINS; and this effect was found to be size- and concentration-dependent. A good linear correlation was observed between the concentration of the liposomes and uptake/transport of rhINS. Confocal laser scanning microscopy visualization further validated the transcellular transit of BS-liposomes. The BS-liposomes showed little effect on cytotoxicity and did not induce apoptosis within 24h investigation. It was concluded that BS-liposomes showed improved in vivo residence time and enhanced permeation across the biomemebranes. Mechanisms of trans-enterocytic internalization could be proposed as an interpretation for enhanced absorption of insulin-loaded liposomes.

  13. The Escherichia coli SOS gene dinF protects against oxidative stress and bile salts.

    Directory of Open Access Journals (Sweden)

    Jerónimo Rodríguez-Beltrán

    Full Text Available DNA is constantly damaged by physical and chemical factors, including reactive oxygen species (ROS, such as superoxide radical (O(2(-, hydrogen peroxide (H(2O(2 and hydroxyl radical (•OH. Specific mechanisms to protect and repair DNA lesions produced by ROS have been developed in living beings. In Escherichia coli the SOS system, an inducible response activated to rescue cells from severe DNA damage, is a network that regulates the expression of more than 40 genes in response to this damage, many of them playing important roles in DNA damage tolerance mechanisms. Although the function of most of these genes has been elucidated, the activity of some others, such as dinF, remains unknown. The DinF deduced polypeptide sequence shows a high homology with membrane proteins of the multidrug and toxic compound extrusion (MATE family. We describe here that expression of dinF protects against bile salts, probably by decreasing the effects of ROS, which is consistent with the observed decrease in H(2O(2-killing and protein carbonylation. These results, together with its ability to decrease the level of intracellular ROS, suggests that DinF can detoxify, either direct or indirectly, oxidizing molecules that can damage DNA and proteins from both the bacterial metabolism and the environment. Although the exact mechanism of DinF activity remains to be identified, we describe for the first time a role for dinF.

  14. Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine.

    Science.gov (United States)

    Elnaggar, Yosra S R

    2015-01-01

    The human body has long provided pharmaceutical science with biomaterials of interesting applications. Bile salts (BSs) are biomaterials reminiscent of traditional surfactants with peculiar structure and self-assembled topologies. In the pharmaceutical field, BSs were employed on the basis of two different concepts. The first concept exploited BSs' metabolic and homeostatic functions in disease modulation, whereas the second one utilized BSs' potential to modify drug-delivery characteristics, which recently involved nanotechnology. This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain. Endogenous applications highlighted the role of BS in modulating hypercholesterolemia and cancer therapy in view of enterohepatic circulation. In addition, recent BS-integrated nanomedicines have been surveyed, chiefly size-tunable cholate nanoparticles, BS-lecithin mixed micelles, bilosomes, probilosomes, and surface-engineered bilosomes. A greater emphasis has been laid on nanosystems for vaccine and cancer therapy. The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted. Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined.

  15. Production of recombinant human bile salt-stimulated lipase in Pichia pastoris.

    Science.gov (United States)

    Murasugi, A; Asami, Y; Mera-Kikuchi, Y

    2001-11-01

    Recombinant human bile salt-stimulated lipase (rhBSSL) was efficiently expressed under the control of the AOX1 gene promoter in Pichia pastoris. Human BSSL has 16 successively repeated sequences in the carboxy terminal region. The sequence consists of 11 amino acid residues. The coding sequence for the middle 11 of the 16 repeats was removed from hBSSL cDNA to facilitate efficient secretory expression. The clone used for fermentation was a transformant of GS115 (his4) integrated with four copies of the expression cassette containing the modified hBSSL cDNA. Unique fermentation conditions were required for efficient expressions of rhBSSL in the high cell-density fermentation. A sufficient glycerol feed at 30 degrees C and pH 4 under an adequate concentration of dissolved oxygen in the growth phase make the cells active over a long induction period of approximately 15 days. On methanol induction, the concentration of dissolved oxygen should be maintained very low in the presence of sorbitol and skimmed milk at 20 degrees C and pH 5.7. Under these conditions, 0.8-1 g of rhBSSL was secreted in 1 liter of the medium. By immunoelectron microscopy, rhBSSL-tagged gold particles were located in secretion microbodies after the beginning of methanol induction. The secreted rhBSSL was efficiently captured and purified by expanded bed adsorption chromatography.

  16. In vitro lipid peroxidation of intestinal bile salt-based nanoemulsions: potential role of antioxidants.

    Science.gov (United States)

    Courraud, J; Charnay, C; Cristol, J P; Berger, J; Avallone, S

    2013-12-01

    Over the last decades, oxidative stress has been described as a deleterious phenomenon contributing to numerous noncommunicable diseases such as cardiovascular disease, diabetes, and cancers. As many authors ascribed the healthy effect of fruit and vegetable consumption mainly to their antioxidant contents, it has been hypothesized that their protection could occur from the gut. Therefore, the aim of this study was to develop an original and physiological model of nanoemulsions to study lipid peroxidation within the intestine and to assess the properties of potential antioxidants in this setting. Several nanoemulsions were compared in terms of physical characteristics and reactivity to 2,2'-azobis-(2-amidinopropane) hydrochloride (AAPH)-induced oxidation. Formulations included different types of lipids, a detergent (a conjugated bile salt or sodium dodecyl sulfate) and, finally, lipophilic antioxidants. Hemin and myoglobin were also tested as relevant potential oxidants. Fatty acid (FA) peroxidation was monitored by gas chromatography while malondialdehyde and antioxidant contents were measured by HPLC. Investigated nanoemulsions were composed of spherical or cylindrical mixed micelles, the latter being the least resistant to oxidation. In the experimental conditions, AAPH was the only efficient oxidant. Alpha-tocopherol and lutein significantly slowed FA degradation from 4 to 1 μM, respectively. On the contrary, beta-carotene did not show any protective capacity at 4 μM. In conclusion, the tested nanoemulsions were appropriate to assess antioxidant capacity during the intestinal phase of digestion.

  17. The cell surface protein Ag43 facilitates phage infection of Escherichia coli in the presence of bile salts and carbohydrates.

    Science.gov (United States)

    Gabig, Magdalena; Herman-Antosiewicz, Anna; Kwiatkowska, Marta; Los, Marcin; Thomas, Mark S; Wegrzyn, Grzegorz

    2002-05-01

    It was found that infection of Escherichia coli by bacteriophage lambda is inhibited in the presence of certain bile salts and carbohydrates when cells are in the "OFF" state for production of the phase-variable cell surface protein antigen 43 (Ag43). The inhibition of phage growth was found to be due to a significant impairment in the process of phage adsorption. Expression of the gene encoding Ag43 (agn43) from a plasmid or inactivation of the oxyR gene (encoding an activator of genes important for defence against oxidative stress) suppressed this inhibition. A mutation, rpoA341, in the gene encoding the alpha subunit of RNA polymerase also facilitated phage adsorption in the presence of bile salts and carbohydrates. The rpoA341 mutation promoted efficient production of Ag43 in a genetic background that would otherwise be in the "OFF" phase for expression of the agn43 gene. Analysis of a reporter gene fusion demonstrated that the promoter for the agn43 gene was more active in the rpoA341 mutant than in the otherwise isogenic rpoA(+) strain. The combined inhibitory action of bile salts and carbohydrates on phage adsorption and the abolition of this inhibition by production of Ag43 was not restricted to lambda, as a similar phenomenon was observed for the coliphages P1 and T4.

  18. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate.

    Science.gov (United States)

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-11-17

    Recently [Neubrand, M. W., et al. (2015) Biochemistry 54, 1542-1557], we determined a concentration-dependent monomer-dimer-tetramer equilibrium in aqueous bilirubin ditaurate (BDT) solutions and explored the nature of high-affinity binding of BDT monomers with monomers and micelles of the common taurine-conjugated bile salts (BS). We now investigate, employing complementary physicochemical methods, including fluorescence emission spectrophotometry and quasi-elastic light scattering spectroscopy, the influence of phosphatidylcholine (PC), the predominant phospholipid of bile and calcium, the major divalent biliary cation, on these self-interactions and heterointeractions. We have used short-chain, lyso and long-chain PC species as models and contrasted our results with those of parallel studies employing unconjugated bilirubin (UCB) as the fully charged dianion. Both bile pigments interacted with the zwitterionic headgroup of short-chain lecithins, forming water-soluble (BDT) and insoluble ion-pair complexes (UCB), respectively. Upon micelle formation, BDT monomers apparently remained at the headgroup mantle of short-chain PCs, but the ion pairs with UCB became internalized within the micelle's hydrophobic core. BDT interacted with the headgroups of unilamellar egg yolk (EY) PC vesicles; however, with the simultaneous addition of CaCl2, a reversible aggregation took place, but not vesicle fusion. With mixed EYPC/BS micelles, BDT became bound to the hydrophilic surface (as with simple BS micelles), and in turn, both BDT and BS bound calcium, but not other divalent cations. The calcium complexation of BDT and BS was enhanced strongly with increases in micellar EYPC, suggesting calcium-mediated cross-bridging of hydrophilic headgroups at the micelle's surface. Therefore, the physicochemical binding of BDT to BS in an artificial bile medium is influenced not only by BS species and concentration but also by long-chain PCs and calcium ions that exert a specific rather

  19. Probing interactions between B-glucan and bile salts at atomic detail by 1H-13C NMR assays

    DEFF Research Database (Denmark)

    Mikkelsen, Mette Skau; Cornali, Sofia Bolvig; Jensen, Morten G;

    2014-01-01

    Polysaccharides are prospective hosts for the delivery and sequestration of bioactive guest molecules. Polysaccharides of dietary fiber, specifically cereal (1 → 3)(1 → 4)-β-glucans, play a role in lowering the blood plasma cholesterol level in humans. Direct host-guest interactions between β......-glucans and conjugated bile salts are among the possible molecular mechanisms explaining the hypocholesterolemic effects of β-glucans. The present study shows that 1H-13C NMR assays on a time scale of minutes detect minute signal changes in both bile salts and β-glucans, thus indicating dynamic interactions between bile...

  20. Bile salt inhibition of host cell damage by Clostridium difficile toxins.

    Directory of Open Access Journals (Sweden)

    Charles Darkoh

    Full Text Available Virulent Clostridium difficile strains produce toxin A and/or toxin B that are the etiological agents of diarrhea and pseudomembranous colitis. Treatment of C. difficile infections (CDI has been hampered by resistance to multiple antibiotics, sporulation, emergence of strains with increased virulence, recurrence of the infection, and the lack of drugs that preserve or restore the colonic bacterial flora. As a result, there is new interest in non-antibiotic CDI treatments. The human conjugated bile salt taurocholate was previously shown in our laboratory to inhibit C. difficile toxin A and B activities in an in vitro assay. Here we demonstrate for the first time in an ex vivo assay that taurocholate can protect Caco-2 colonic epithelial cells from the damaging effects of the C. difficile toxins. Using caspase-3 and lactate dehydrogenase assays, we have demonstrated that taurocholate reduced the extent of toxin B-induced apoptosis and cell membrane damage. Confluent Caco-2 cells cultured with toxin B induced elevated caspase-3 activity. Remarkably, addition of 5 mM taurocholate reduced caspase-3 activity in cells treated with 2, 4, 6, and 12 µg/ml of toxin B by 99%, 78%, 64%, and 60%, respectively. Furthermore, spent culture medium from Caco-2 cells incubated with both toxin B and taurocholate exhibited significantly decreased lactate dehydrogenase activity compared to spent culture medium from cells incubated with toxin B only. Our results suggest that the mechanism of taurocholate-mediated inhibition functions at the level of toxin activity since taurocholate did not affect C. difficile growth and toxin production. These findings open up a new avenue for the development of non-antibiotic therapeutics for CDI treatment.

  1. Recombinant Bile Salt-Stimulated Lipase in Preterm Infant Feeding: A Randomized Phase 3 Study.

    Directory of Open Access Journals (Sweden)

    Charlotte Casper

    Full Text Available Feeding strategies are critical for healthy growth in preterm infants. Bile salt-stimulated lipase (BSSL, present in human milk, is important for fat digestion and absorption but is inactivated during pasteurization and absent in formula. This study evaluated if recombinant human BSSL (rhBSSL improves growth in preterm infants when added to formula or pasteurized breast milk.LAIF (Lipase Added to Infant Feeding was a randomized, double-blind, placebo-controlled phase 3 study in infants born before 32 weeks of gestation. The primary efficacy variable was growth velocity (g/kg/day during 4 weeks intervention. Follow-up visits were at 3 and 12 months. The study was performed at 54 centers in 10 European countries.In total 415 patients were randomized (rhBSSL n = 207, placebo n = 208, 410 patients were analyzed (rhBSSL n = 206, placebo n = 204 and 365 patients were followed until 12 months. Overall, there was no significantly improved growth velocity during rhBSSL treatment compared to placebo (16.77 vs. 16.56 g/kg/day, estimated difference 0.21 g/kg/day, 95% CI [-0.40; 0.83], nor were secondary endpoints met. However, in a predefined subgroup, small for gestational age infants, there was a significant effect on growth in favor of rhBSSL during treatment. The incidence of adverse events was higher in the rhBSSL group during treatment.Although this study did not meet its primary endpoint, except in a subgroup of infants small for gestational age, and there was an imbalance in short-term safety, these data provide insights in nutrition, growth and development in preterm infants.ClinicalTrials.gov NCT01413581.

  2. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review.

    Science.gov (United States)

    Cheng, Yaofeng; Woolf, Thomas F; Gan, Jinping; He, Kan

    2016-08-05

    The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross

  3. Breast milk composition and bile salt-stimulated lipase in well-nourished and under-nourished Nigerian mothers.

    Science.gov (United States)

    Gindler, J; Nwankwo, M U; Omene, J A; Roberts, I M; LaRocca, G M; Glew, R H

    1987-03-01

    Breast milk was analysed in 9 under-nourished Nigerian mothers and 23 well-nourished mothers who served as controls. Milk from the under-nourished mothers contained adequate amounts of lactose and total triglycerides, but had significantly lower bile salt-stimulated lipase activity (BSSL); their mean BSSL activity was only about 50% of the activity in milk from the control group. Total milk protein was also significantly lower than for the controls (1.45 vs. 1.09 g/dl, respectively; P less than 0.01). Our findings may have nutritional implications for breast-fed infants of under-nourished nursing mothers.

  4. Photoactive bile salts with critical micellar concentration in the micromolar range.

    Science.gov (United States)

    Gomez-Mendoza, Miguel; Marin, M Luisa; Miranda, Miguel A

    2016-05-14

    The aggregation behavior of bile salts is strongly dependent on the number of hydroxyl groups. Thus, cholic acid (CA), with three hydroxyls, starts forming aggregates at 15 mM, while deoxycholic, chenodeoxycholic or ursodeoxycholic acids, with two hydroxyls, start aggregating at 5-10 mM; for lithocholic acid, with only one hydroxyl group, aggregation is observed at lower concentration (2-3 mM). Here, the singular self-assembling properties of dansyl and naproxen derivatives of CA (3β-Dns-CA and 3β-NPX-CA, respectively) have been demonstrated on the basis of their photoactive properties. Thus, the emission spectra of 3β-Dns-CA registered at increasing concentrations (25-140 μM) showed a remarkable non-linear enhancement in the emission intensity accompanied by a hypsochromic shift of the maximum and up to a three-fold increase in the singlet lifetime. The inflection point at around 50-70 μM pointed to the formation of unprecedented assemblies at such low concentrations. In the case of 3β-NPX-CA, when the NPX relative triplet lifetime was plotted against concentration, a marked increase (up to two-fold) was observed at 40-70 μM, indicating the formation of new 3β-NPX-CA assemblies at ca. 50 μM. Additional evidence supporting the formation of new 3β-Dns-CA or 3β-NPX-CA assemblies at 40-70 μM was obtained from singlet excited state quenching experiments using iodide. Moreover, to address the potential formation of hybrid assemblies, 1 : 1 mixtures of 3β-Dns-CA and 3β-NPX-CA (2-60 μM, total concentration) were subjected to steady-state fluorescence experiments, and their behavior was compared to that of the pure photoactive derivatives. A lower increase in the emission was observed for 3β-NPX-CA in the mixture, while a huge increase was experienced by 3β-Dns-CA in the same concentration range (up to 60 μM total). A partial intermolecular energy transfer from NPX to Dns, consistent with their reported singlet energies, was revealed, pointing to the

  5. Determination of bile salt critical micellization concentration on the road to drug discovery.

    Science.gov (United States)

    Natalini, Benedetto; Sardella, Roccaldo; Gioiello, Antimo; Ianni, Federica; Di Michele, Alessandro; Marinozzi, Maura

    2014-01-01

    With the discovery of the bile acid (BA)-activated nuclear and membrane receptors, the role of BAs as signalling molecules in important paracrine and endocrine networks has been fully documented in the last decade. Besides regulating their own synthesis and transport, BAs have been demonstrated being involved in triggering the adaptive response to cholestasis and other insults to liver. More to the point, their recognized ability to control the general energy-related metabolism and inflammation processes has contributed to justify the renewed interest towards this class of amphiphilic steroidal compounds. All these evidences feed a continuing interest in the BA research aimed at designing and synthesizing new side chain- and body-modified derivatives endowed with improved biological and physico-chemical profiles, as well as with proper ADMET behaviour. In this context, the micellar aggregation of BAs, and the respective critical micellization concentration (CMC) value (determined on the BA sodium salt, BS), is considered a key parameter that needs to be determined in the preliminary phase of compound characterization, being implicated in cytotoxicity issues. An extraordinary variety of different analytical techniques and methods have been proposed along the years with the aim of better identifying the start of the self-aggregation process of BS monomers. The unicity of the physico-chemical nature of such class of compounds can be invoked to explain this unusual interest. Accordingly, a number of both invasive and non-invasive approaches have been developed along with a limited number of indirect chromatographic-based estimation strategies. Worth to be mentioned among the non-invasive determination methods are those based on potentiometry, freezing point depression, surface tension, nuclear magnetic resonance, viscosimetry, turbidimetry, microcalorimetry, refractometry, conductimetry, spectrophotometry, cholesterol solubilization, and monoglucuronide solubilization

  6. Interaction of a dietary fiber (pectin) with gastrointestinal components (bile salts, calcium, and lipase): a calorimetry, electrophoresis, and turbidity study.

    Science.gov (United States)

    Espinal-Ruiz, Mauricio; Parada-Alfonso, Fabián; Restrepo-Sánchez, Luz-Patricia; Narváez-Cuenca, Carlos-Eduardo; McClements, David Julian

    2014-12-31

    An in vitro gastrointestinal model consisting of oral, gastric, and intestinal phases was used to elucidate the impact of pectin on the digestion of emulsified lipids. Pectin reduced the extent of lipid digestion, which was attributed to its binding interactions with specific gastrointestinal components. The interaction of pectin with bile salts, lipase, CaCl2, and NaCl was therefore investigated by turbidity, microstructure, electrophoresis, and isothermal titration calorimetry (ITC) at pH 7.0 and 37 °C. ITC showed that the interaction of pectin was endothermic with bile salts, but exothermic with CaCl2, NaCl, and lipase. Electrophoresis, microstructure, and turbidity measurements showed that anionic pectin formed electrostatic complexes with calcium ions, which may have decreased lipid digestion due to increased lipid flocculation or microgel formation because this would reduce the surface area of lipid exposed to the lipase. This research provides valuable insights into the physicochemical and molecular mechanisms of the interaction of pectin with gastrointestinal components that may affect the rate and extent of lipid digestion.

  7. Multiparametric flow cytometry and cell sorting for the assessment of viable, injured, and dead bifidobacterium cells during bile salt stress.

    Science.gov (United States)

    Amor, Kaouther Ben; Breeuwer, Pieter; Verbaarschot, Patrick; Rombouts, Frank M; Akkermans, Antoon D L; De Vos, Willem M; Abee, Tjakko

    2002-11-01

    Using a flow cytometry-based approach, we assessed the viability of Bifidobacterium lactis DSM 10140 and Bifidobacterium adolescentis DSM 20083 during exposure to bile salt stress. Carboxyfluorescein diacetate (cFDA), propidium iodide (PI), and oxonol [DiBAC4(3)] were used to monitor esterase activity, membrane integrity, and membrane potential, respectively, as indicators of bacterial viability. Single staining with these probes rapidly and noticeably reflected the behavior of the two strains during stress exposure. However, the flow cytometry results tended to overestimate the viability of the two strains compared to plate counts, which appeared to be related to the nonculturability of a fraction of the population as a result of sublethal injury caused by bile salts. When the cells were simultaneously stained with cFDA and PI, flow cytometry and cell sorting revealed a striking physiological heterogeneity within the stressed bifidobacterium population. Three subpopulations could be identified based on their differential uptake of the probes: cF-stained, cF and PI double-stained, and PI-stained subpopulations, representing viable, injured, and dead cells, respectively. Following sorting and recovery, a significant fraction of the double-stained subpopulation (40%) could resume growth on agar plates. Our results show that in situ assessment of the physiological activity of stressed bifidobacteria using multiparameter flow cytometry and cell sorting may provide a powerful and sensitive tool for assessment of the viability and stability of probiotics.

  8. Determination of stability constants of tauro- and glyco-conjugated bile salts with the negatively charged sulfobutylether-β-cyclodextrin: comparison of affinity capillary electrophoresis and isothermal titration calorimetry and thermodynamic analysis of the interaction

    DEFF Research Database (Denmark)

    Holm, René; Østergaard, Jesper; Schönbeck, Jens Christian Sidney;

    2014-01-01

    The aim of the present work was to investigate the interaction between bile salts present in the intestine of man, dog and rat with the negatively charged cyclodextrin (CD), sulfobutylether-β-cyclodextrin (SBEβCD). The interactions between bile salts and CDs are of importance for the release of C...

  9. Transcription of the Human Microsomal Epoxide Hydrolase Gene (EPHX1) Is Regulated by PARP-1 and Histone H1.2. Association with Sodium-Dependent Bile Acid Transport.

    Science.gov (United States)

    Peng, Hui; Zhu, Qin-shi; Zhong, Shuping; Levy, Daniel

    2015-01-01

    Microsomal epoxide hydrolase (mEH) is a bifunctional protein that plays a central role in the metabolism of numerous xenobiotics as well as mediating the sodium-dependent transport of bile acids into hepatocytes. These compounds are involved in cholesterol homeostasis, lipid digestion, excretion of xenobiotics and the regulation of several nuclear receptors and signaling transduction pathways. Previous studies have demonstrated the critical role of GATA-4, a C/EBPα-NF/Y complex and an HNF-4α/CAR/RXR/PSF complex in the transcriptional regulation of the mEH gene (EPHX1). Studies also identified heterozygous mutations in human EPHX1 that resulted in a 95% decrease in mEH expression levels which was associated with a decrease in bile acid transport and severe hypercholanemia. In the present investigation we demonstrate that EPHX1 transcription is significantly inhibited by two heterozygous mutations observed in the Old Order Amish population that present numerous hypercholanemic subjects in the absence of liver damage suggesting a defect in bile acid transport into the hepatocyte. The identity of the regulatory proteins binding to these sites, established using biotinylated oligonucleotides in conjunction with mass spectrometry was shown to be poly(ADP-ribose)polymerase-1 (PARP-1) bound to the EPHX1 proximal promoter and a linker histone complex, H1.2/Aly, bound to a regulatory intron 1 site. These sites exhibited 71% homology and may represent potential nucleosome positioning domains. The high frequency of the H1.2 site polymorphism in the Amish population results in a potential genetic predisposition to hypercholanemia and in conjunction with our previous studies, further supports the critical role of mEH in mediating bile acid transport into hepatocytes.

  10. Adsorption of bile acid by chitosan salts prepared with cinnamic acid and analogue compounds.

    Science.gov (United States)

    Murata, Yoshifumi; Nagaki, Kumiko; Kofuji, Kyouko; Sanae, Fujiko; Kontani, Hitoshi; Kawashima, Susumu

    2006-01-01

    A chitosan (CS) powder treated with cinnamic acid and an analogue compound (CN) was prepared as CS-CN. Using it, bile acid adsorption by CS-CN and the release of CN were investigated in vitro. When CS-CN was soaked in a taurocholate solution, it released CN and simultaneously adsorbed the bile acid. For CS-CN prepared with cinnamic acid, the amount of CN released was 0.286 +/- 0.001 mmol/g CS-CN; the amount of taurocholate adsorbed was 0.284 +/- 0.003 mmol/g CS-CN. These two functions were recognized on alginate or pectin gel beads containing CS-CN. The amount of released CN was altered extensively by the species of CN used for gel-bead preparation. Results suggest that CS-CN is a candidate for complementary medicine to prevent lifestyle-related diseases.

  11. Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae.

    Science.gov (United States)

    Bachmann, Verena; Kostiuk, Benjamin; Unterweger, Daniel; Diaz-Satizabal, Laura; Ogg, Stephen; Pukatzki, Stefan

    2015-01-01

    The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen's arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.

  12. Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Verena Bachmann

    Full Text Available The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen's arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS. This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.

  13. The Vibrio cholerae Mrp system: cation/proton antiport properties and enhancement of bile salt resistance in a heterologous host.

    Science.gov (United States)

    Dzioba-Winogrodzki, Judith; Winogrodzki, Olga; Krulwich, Terry A; Boin, Markus A; Häse, Claudia C; Dibrov, Pavel

    2009-01-01

    The mrp operon from Vibrio cholerae encoding a putative multisubunit Na(+)/H(+) antiporter was cloned and functionally expressed in the antiporter-deficient strain of Escherichia coli EP432. Cells of EP432 expressing Vc-Mrp exhibited resistance to Na(+) and Li(+) as well as to natural bile salts such as sodium cholate and taurocholate. When assayed in everted membrane vesicles of the E. coli EP432 host, Vc-Mrp had sufficiently high antiport activity to facilitate the first extensive analysis of Mrp system from a Gram-negative bacterium encoded by a group 2 mrp operon. Vc-Mrp was found to exchange protons for Li(+), Na(+), and K(+) ions in pH-dependent manner with maximal activity at pH 9.0-9.5. Exchange was electrogenic (more than one H(+) translocated per cation moved in opposite direction). The apparent K(m) at pH 9.0 was 1.08, 1.30, and 68.5 mM for Li(+), Na(+), and K(+), respectively. Kinetic analyses suggested that Vc-Mrp operates in a binding exchange mode with all cations and protons competing for binding to the antiporter. The robust ion antiport activity of Vc-Mrp in sub-bacterial vesicles and its effect on bile resistance of the heterologous host make Vc-Mrp an attractive experimental model for the further studies of biochemistry and physiology of Mrp systems.

  14. The inhibitory effect of carboxymethylcellulose with high viscosity on lipid absorption in broiler chickens coincides with reduced bile salt concentration and raised microbial numbers in the small intestine

    NARCIS (Netherlands)

    Smits, CHM; Veldman, A; Verkade, HJ; Beynen, AC

    1998-01-01

    Two diets, with or without a nonfermentable carboxymethylcellulose (CMC) with high viscosity, were fed to broiler chickens beginning at 2 wk of age to study whether the anti-nutritive effect of gelling fibers on Lipid digestibility maybe associated with reduced intestinal bile salt concentration. Mo

  15. Importance of two Enterococcus faecium loci encoding Gls-like proteins for in vitro bile salts stress response and virulence.

    Science.gov (United States)

    Choudhury, Tina; Singh, Kavindra V; Sillanpää, Jouko; Nallapareddy, Sreedhar R; Murray, Barbara E

    2011-04-15

    General stress proteins, Gls24 and GlsB, were previously shown to be involved in bile salts resistance of Enterococcus faecalis and in virulence. Here, we identified 2 gene clusters in Enterococcus faecium each encoding a homolog of Gls24 (Gls33 and Gls20; designated on the basis of their predicted sizes) and of GlsB (GlsB and GlsB1). The sequences of the gls33 and gls20 gene clusters from available genomes indicate distinct lineages, with those of hospital-associated CC17 isolates differing from non-CC17 by ∼7% and ∼3.5%, respectively. Deletion of an individual locus did not have a significant effect on virulence in a mouse peritonitis model, whereas a double-deletion mutant was highly attenuated (Pimportant for adaptation to the intestinal environment, in addition to being important for virulence functions.

  16. Hydration Differences Explain the Large Variations in the Complexation Thermodynamics of Modified γ-Cyclodextrins with Bile Salts

    DEFF Research Database (Denmark)

    Køhler, Jonatan; Schönbeck, Jens Christian Sidney; Westh, Peter;

    2016-01-01

    The structure and thermodynamics of inclusion complexes of seven different γ-cyclodextrins (γCDs) and three biologically relevant bile salts (BS) were investigated in the present study. Natural γCD and six modified γCDs [two methyl-γCDs, one sulfobutyl ether-γCD (SBEγCD), and three 2-hydroxypropyl...... to those with natural γCD; i.e., the modifications of the γCD had limited structural impact on the formation of complexes. Isothermal titration calorimetry was carried out over in the temperature interval 5–55 °C to enable the calculation of the stability constant (K) and the thermodynamic parameters...... enthalpy (ΔH°), entropy (ΔS°), and heat capacity (ΔCp°). The stability constants decreased with an increased degree of substitution (DS), with methyl substituents having a lower effect on the stability constant than the sulfobutyl ether and hydroxypropyl substituents on the stability constants. Enthalpy...

  17. Effects of Bile Salt Sodium Glycodeoxycholate on the Self-Assembly of PEO-PPO-PEO Triblock Copolymer P123 in Aqueous Solution.

    Science.gov (United States)

    Bayati, Solmaz; Galantini, Luciano; Knudsen, Kenneth D; Schillén, Karin

    2015-12-22

    A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.

  18. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems.

    Science.gov (United States)

    Wang, D Q; Carey, M C

    1996-03-01

    Using complementary physical-chemical techniques we defined five different crystallization pathways as functions of time (30 days) and increasing lecithin (egg yolk) content in pathophysiologically relevant model biles super-saturated (cholesterol saturation indices, 1.2 - 2.7) by dilution of approximately equal to 29 g/dl bile salt-lecithin-cholesterol micellar solutions. As evidenced by quasi-elastic light-scattering spectroscopy, supersaturation was heralded by the appearance of unilamellar vesicles. With the lowest lecithin contents, arc-like crystals with habit and density (d 1.030 g/mL) consistent with anhydrous cholesterol appeared first and evolved via helical and tubular crystals to form plate-like cholesterol monohydrate crystals (d 1.045 g/mL). With higher lecithin fractions, cholesterol monohydrate crystals appeared earlier than arc and other transitional crystals. With typical physiological lecithin contents, early liquid crystals (d 1.020 g/mL) were followed by cholesterol monohydrate crystals and subsequent appearances of arc and other intermediate crystals. With higher lecithin contents, liquid crystals were followed by cholesterol monohydrate crystals only, and at the highest lecithin mole fractions, liquid crystals appeared that did not generate solid crystals. Added calcium increased solid crystal number in proportion to its concentration (5 - 20 mM) but did not influence appearance times, crystallization pathways, or micellar cholesterol solubilities. Decreases in temperature (37 degrees --> 4 degrees C), total lipid concentration (7.3 --> 2.4 g/dL), and bile salt hydrophobicity (3 alpha, 12 alpha --> 3 alpha, 7 alpha, 12 alpha --> 3 alpha, 7 beta hydroxylated taurine conjugates) progressively shifted all crystallization pathways to lower lecithin contents, retarded crystallization, and decreased micellar cholesterol solubilities. The lecithin content of mother biles decreased markedly during crystallization especially where liquid crystals were

  19. New chitosan salt in gastro-resistant oral formulation could interfere with enteric bile salts emulsification of diet fats: preliminary laboratory observations and physiologic rationale.

    Science.gov (United States)

    Fratter, Andrea; Frare, Carmen; Uras, Giovanni; Bonini, Mauro; Casari Bariani, Enrico; Ragazzo, Barbara; Gaballo, Paolo; Longobardi, Pasquale; Codemo, Carlo; Paoli, Antonio

    2014-06-01

    Chitosan (CH) is a polymer of glucosamine that is extracted from the shells of several sea fruits. It is well recognized as a nutritional supplement that is used to reduce body weight and blood lipid levels, but its clinical efficacy has not been clearly demonstrated. The true mechanism of action and physiological processes involved in these properties of CH are not yet understood or explained. The most accepted theories assume that CH reduces dietary fat absorption by trapping the fat in the gastric lumen. The very low pH of the gastric lumen induces CH jellification and, therefore, entrapment of the fats. This article describes the most plausible mechanism by which CH interferes with fat absorption in the first part of the enteric tract while interacting with cholic acids. We emphasize the weak points of the classic CH-containing formulations, which are unable to prove this theory. We also report preliminary experimental data of a new CH salt-containing formulation that is capable of effectively interfering with bile salt emulsification processes and, as a result, reducing dietary fat absorption.

  20. CYP7A1 promoter polymorphism -203A>C affects bile salt synthesis rate in patients after ileal resection.

    Science.gov (United States)

    Lenícek, Martin; Komárek, Viktor; Zimolová, Miluse; Kovár, Jan; Jirsa, Milan; Lukás, Milan; Vítek, Libor

    2008-12-01

    Cholesterol 7alpha-hydroxylase (CYP7A1) plays a crucial role in cholesterol metabolism and has been implicated in genetic susceptibility to atherosclerosis. Thus, an understanding of its transcriptional regulation is of considerable importance. We evaluated the effect of a common -203A>C polymorphism in the CYP7A1 promoter region on the activity of CYP7A1, estimated as the ratios of serum 7alpha-hydroxycholest-4-en-3-one (C4) to either total or non-HDL-cholesterol. The study was performed on patients after resection of the distal ileum, leading to upregulation of CYP7A1 activity (n = 65). Healthy volunteers served as the control group (n = 66). Whereas higher CYP7A1 activity was associated with the -203A allele in the patient group (C4/cholesterol ratio, 29.0 vs. 14.8 microg/mmol, P = 0.032; C4/non-HDL-cholesterol ratio, 53.3 vs. 21.3 microg/mmol in -203AA and -203CC, P = 0.017, respectively), no differences were observed in the healthy controls. We conclude that under physiological conditions, the -203A>C polymorphism in the CYP7A1 gene promoter region does not seem to have any clinically relevant effect. However, in patients with severe bile salt malabsorption, this polymorphism markedly affects CYP7A1 activity.

  1. Determination of thermodynamic potentials and the aggregation number for micelles with the mass-action model by isothermal titration calorimetry: A case study on bile salts.

    Science.gov (United States)

    Olesen, Niels Erik; Westh, Peter; Holm, René

    2015-09-01

    The aggregation number (n), thermodynamic potentials (ΔG, ΔH, ΔS) and critical micelle concentration (CMC) for 6 natural bile salts were determined on the basis of both original and previously published isothermal titration calorimetry (ITC) data. Different procedures to estimate parameters of micelles with ITC were compared to a mass-action model (MAM) of reaction type: n⋅S⇌Mn. This analysis can provide guidelines for future ITC studies of systems behaving in accordance with this model such as micelles and proteins that undergo self-association to oligomers. Micelles with small aggregation numbers, as those of bile salts, are interesting because such small aggregates cannot be characterized as a separate macroscopic phase and the widely applied pseudo-phase model (PPM) is inaccurate. In the present work it was demonstrated that the aggregation number of micelles was constant at low concentrations enabling determination of the thermodynamic potentials by the MAM. A correlation between the aggregation number and the heat capacity was found, which implies that the dehydrated surface area of bile salts increases with the aggregation number. This is in accordance with Tanford's principles of opposing forces where neighbouring molecules in the aggregate are better able to shield from the surrounding hydrophilic environment when the aggregation number increases.

  2. A novel bile salts-lipase polymeric film-infused minitablet system for enhanced oral delivery of cholecalciferol.

    Science.gov (United States)

    Braithwaite, Miles C; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Du Toit, Lisa C; Pillay, Viness

    2016-11-01

    Few researchers have investigated the use of multiple physiological enhancers combined with synthetic carriers to augment delivery of nutraceuticals. The current work describes the development of an oral delivery system termed a bioactive association platform (BAP) capable of delivering nutraceutical actives from a formulation framework specifically for enhancing the in vitro and in vivo performance of model vitamin, cholecalciferol (Vitamin D3). Synthesis of a novel triple vitamin minitablet and an optimized bile salt/lipase alginate-glycerin film provided unique oral components for inclusion in a BAP capsule. Component validation and physicochemical characterizations included comparative ex vivo permeability, chemical structure mapping, thermodynamic analysis and magnetic resonance imaging. In vitro dissolution studies of the BAP produced an area under the dissolution curve (AUC) for cholecalciferol release that was 28% greater than a conventional comparator product. A total of 84.01% of cholecalciferol was released from the BAP within 3 h versus only 59% from a comparator. Ex vivo permeation studies revealed superior cholecalciferol membrane diffusion from the triple vitamin minitablet BAP component. In vivo performance showed a greater mean change from baseline cholecalciferol to peak plasma levels (Cmax) from the BAP compared to the comparator (55.66 versus 46.05 ng/mL). Cholecalciferol bioavailability was improved in vivo with an AUC0-inf from the BAP that was 3.2× greater than the conventional product. The BAP was also superior at improving and maintaining serum levels of the main metabolite, 25-hydroxyvitamin D3, compared to the conventional system. In vitro and in vivo results thus confirmed improvements in cholecalciferol dissolution, membrane permeability and plasma drug levels. The study results position the BAP as an ideal oral vehicle for enhanced delivery of cholecalciferol.

  3. Deconjugation of Bile Acids with Immobilized Genetically Engineered Lactobacillus plantarum 80(pCBH1

    Directory of Open Access Journals (Sweden)

    M. L. Jones

    2005-01-01

    Full Text Available Bile acids are important to normal human physiology. However, bile acids can be toxic when produced in pathologically high concentrations in hepatobileary and other diseases. This study shows that immobilized genetically engineered Lactobacillus plantarum 80 (pCBH1 (LP80 (pCBH1 can efficiently hydrolyze bile acids and establishes a basis for their use. Results show that immobilized LP80 (pCBH1 is able to effectively break down the conjugated bile acids into glycodeoxycholic acid (GDCA and taurodeoxycholic acid (TDCA with bile salt hydrolase (BSH activities of 0.17 and 0.07 μmol DCA/mg CDW/h, respectively. The deconjugation product, deoxycholic acid (DCA, was diminished by LP80 (pCBH1 within 4 h of initial BSH activity. This in-vitro study suggests that immobilized genetically engineered bacterial cells have important potential for deconjugation of bile acids for lowering of high levels of bile acids for therapy.

  4. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo.

    Science.gov (United States)

    Yang, Gang; Zhao, Yaping; Zhang, Yongtai; Dang, Beilei; Liu, Ying; Feng, Nianping

    2015-01-01

    The aim of this investigation was to develop a procedure to improve the dissolution and bioavailability of silymarin (SM) by using bile salt-containing liposomes that were prepared by supercritical fluid technology (ie, solution-enhanced dispersion by supercritical fluids [SEDS]). The process for the preparation of SM-loaded liposomes containing a bile salt (SM-Lip-SEDS) was optimized using a central composite design of response surface methodology with the ratio of SM to phospholipids (w/w), flow rate of solution (mL/min), and pressure (MPa) as independent variables. Particle size, entrapment efficiency (EE), and drug loading (DL) were dependent variables for optimization of the process and formulation variables. The particle size, zeta potential, EE, and DL of the optimized SM-Lip-SEDS were 160.5 nm, -62.3 mV, 91.4%, and 4.73%, respectively. Two other methods to produce SM liposomes were compared to the SEDS method. The liposomes obtained by the SEDS method exhibited the highest EE and DL, smallest particle size, and best stability compared to liposomes produced by the thin-film dispersion and reversed-phase evaporation methods. Compared to the SM powder, SM-Lip-SEDS showed increased in vitro drug release. The in vivo AUC(0-t) of SM-Lip-SEDS was 4.8-fold higher than that of the SM powder. These results illustrate that liposomes containing a bile salt can be used to enhance the oral bioavailability of SM and that supercritical fluid technology is suitable for the preparation of liposomes.

  5. Characterization of N- and O-linked glycosylation of recombinant human bile salt-stimulated lipase secreted by Pichia pastoris.

    Science.gov (United States)

    Trimble, Robert B; Lubowski, Catherine; Hauer, Charles R; Stack, Robert; McNaughton, Lynn; Gemmill, Trent R; Kumar, S Anand

    2004-03-01

    Recombinant human bile salt-stimulated lipase (hBSSL) was expressed in and secreted by Pichia pastoris, an organism exploited for the large-scale production of recombinant (glyco)proteins by bioprocessing technology. The 76.3-kDa glycoprotein was associated with 75-80 Man and a small amount of GlcNAc. hBSSL has one N-glycosylation site at Asn187, which was 38-40% occupied with a Man(10)GlcNAc(2) structure defined previously in Pichia as the oligosaccharide-lipid form of Man(9)GlcNAc(2) trimmed of the middle-arm terminal alpha 1,2-Man and elongated with Man alpha 1,2Man alpha 1,6-disaccharide attached to the lower-arm core alpha 1,3-Man (Trimble et al. [1991], J. Biol. Chem., 266, 22807-22817). The C-terminal 192 residues of hBSSL contain 16 Pro-rich 11-amino-acid repeats, which include 32 Ser/Thr residues as potential O-glycosylation sites. Using hBSSL as a platform to study Pichia's O-glycosylation capabilities, we found that nearly all of these sites were occupied by mannose-containing O-glycans, whose structures, after beta-elimination and purification, were assigned by (1)H NMR and, in some cases, by linkage-specific exoglycosidases and methylation analysis. The most abundant O-glycan was alpha 1,2-mannobiitol (55%), followed by alpha 1,2-mannotriitol (16%) and mannitol (10%) and a lesser amount was alpha 1,2-mannotetraitol. Unexpectedly, Man(5) and Man(6) O-glycans were present, which had the structure Man beta 1,2Man beta 1,2Man alpha 1,2(Man alpha 1,2)(1,2)mannitol. Also a small amount of a phosphorylated Man(6) O-glycan was characterized by MALDI-TOF MS postsource decay analysis as having the reducing-end mannitol disubstituted with a glycosidically linked phosphorylated Man and an unbranched Man(4) polymer elongated from a different mannitol carbon. This is the first report of the synthesis of beta-Man- and phosphate-containing O-linked constituents on glycoproteins synthesized by P. pastoris.

  6. Self-assembly of aqueous bilirubin ditaurate, a natural conjugated bile pigment, to contraposing enantiomeric dimers and M(-) and P(+) tetramers and their selective hydrophilic disaggregation by monomers and micelles of bile salts.

    Science.gov (United States)

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-02-24

    The solution behavior of bilirubin ditaurate (BDT), the first naturally occurring conjugated bile pigment to be physically and chemically characterized, was assessed in aqueous solution and in monomeric and micellar solutions of common taurine-conjugated bile salts (BS). Analytical ultracentrifugation revealed that BDT self-associates in monomer-dimer equilibria between 1 and 500 μM, forming limiting tetramers at low millimolar concentrations. Self-association was enthalpically driven with ΔG values of ≈5 kcal/mol, suggesting strong hydrophobic interactions. Added NaCl and decreases in temperature shifted the oligomerization to lower BDT concentrations. On the basis of circular dichroism spectra and the limiting size of the self-aggregates, we infer that the tetramers are composed of 2P(+) and 2M(-) enantiomeric BDT pairs in "ridge-tile" conformations interacting in a "double-bookend" structure. With added monomeric BS, blue shifts in the UV-vis spectra and tight isosbestic points revealed that BDT/BS heterodimers form, followed by BDT "decorating" BS micelles mostly via hydrophilic interactions. Conformational enantiomerism, fluorescence intensities, and anisotropy, as well as resistance of the hybrid particles to disaggregation in 6 M urea, suggested that two or three hydrogen-bonding sites bound BDT monomers to the hydroxyl groups of BS, possibly via pyrrole-π-orbital-OH interactions. BDT stabilized these interactions by enveloping the BS in its "ridge-tile" pincers with variable strain that maximized van der Waals interactions. Possibly because the BDT molecule becomes highly strained with BS subtending a 7β-hydroxyl group, BDT became totally resistant to oxidation in air. This work predicts that, because of BS dissolution of the BDT self-aggregates, BS/bilirubin hybrid particles, which are stabilized hydrophilically, are likely to be the dominant mode of transport for all conjugated bilirubins in bile.

  7. Novel mouse model of combined hyperlipidemia associated with steatosis and liver injury by a single-dose intragastric administration of schisandrin B/cholesterol/bile salts mixture.

    Science.gov (United States)

    Pan, Si-Yuan; Jia, Zhan-Hong; Zhang, Yi; Yu, Qing; Wang, Xiao-Yan; Sun, Nan; Zhu, Pei-Li; Yu, Zhi-Ling; Ko, Kam-Ming

    2013-01-01

    Hyperlipidemia is referred to as hypercholesterolemia, hypertriglyceridemia, or both in combined hyperlipidemia. Here, a novel mouse model of combined hyperlipidemia is described. Mice were orally given a single dose of a modeling agent (MA) made of a mixture of schisandrin B/cholesterol/bile salts (1/2/0.5 g/kg) suspended in olive oil. MA treatment increased serum triglycerides (TG) and total cholesterol (TC) (up to 422% and 100% at 12 - 96 h post-treatment, respectively) and hepatic TG and TC (up to 220% and 26%, respectively) in a time- and dose-dependent manner, associated with elevation of high-density lipoprotein and low-density lipoprotein levels. Serum alanine/aspartate aminotransferase activities, indicators of liver cell damage, were also elevated (up to 198%) at 48 and 72 h post-MA treatment. Fenofibrate blocks MA-induced hyperlipidemia, lipid accumulation in the liver, as well as liver injury. Oral administration of a mixture of schisandrin B, cholesterol, and bile salt could generate an interesting mouse model of combined hyperlipidemia associated with hepatic steatosis and steatohepatitis.

  8. PENGIKATAN GARAM EMPEDU OLEH SUSU KEDELAI TERFERMENTASI DAN STABILITASNYA TERHADAP PEPSIN DAN PANKREATIN [Binding of Bile Salts by Fermented Soymilk and Its Stability Against Pepsin and Pancreatin

    Directory of Open Access Journals (Sweden)

    Yusmarini1*

    2013-06-01

    Full Text Available Processed soybean products especially the fermented ones have beneficial health effects since they are capable of reducing the level of plasmacholesterol (hypocholesterolemic effect. One of the mechanisms is by increasing the binding of bile salt. This research was aimed to assess the ability of soymilk, fermented soymilk products and fermented soymilk products combined with enzymatic hydrolysis to bind bile salts. The stability of the binding against hydrolysis by digestive enzymes (pepsin and pancreatin was also evaluated. Fermented soybean products inoculated with isolates of L. plantarum 1 R.11.1.2 was be able to bind 1.40 μmol/100 mg protein (62.26% of natrium taurocholate. This binding ability is slightly higher than that of soymilk to natrium taurocholate, i.e.1.33 μmol/100 mg protein (59.04%. Addition of a protease enzyme specific to hydrophobic amino acid (thermolysin on fermented soymilk products was able to enhance the ability of bind natrium taurocholate. Enzymatic hydrolysis products having a molecular weight of <7 kDa could bind 1.51 μmol/100 mg protein natrium taurocholate (67.4%. There was a significant increase in the binding, i.e. 7.9% by the fermented products or an increase of 13.5% from soymilk. Meanwhile peptides measuring ≥7 kDa showed no binding ability against natrium taurocholate.

  9. Effects of encapsulation on the viability of potential probiotic Lactobacillus plantarum exposed to high acidity condition and presence of bile salts.

    Science.gov (United States)

    Tee, W F; Nazaruddin, R; Tan, Y N; Ayob, M K

    2014-09-01

    This study investigated the survival of encapsulated potential probiotic Lactobacillus plantarum which isolated from fermented cocoa beans. κ-Carrageenan was used to encapsulate the probiotic. Encapsulation techniques such as emulsification, freeze-drying or extrusion were adopted to encapsulate the probiotic. Freeze-drying and extrusion methods showed higher (p < 0.05) efficiency (89.48 ± 3.21 and 92.26 ± 1.45%, respectively) in encapsulating the probiotic compared to the emulsification method (82.19 ± 0.71% efficiency). Freeze-dried encapsulated probiotic L. plantarum was selected for further survival analysis as greater amount of beads were produced compared to the extrusion method. Freeze-dried probiotic was found to have significantly (p < 0.05) higher tolerance to acid at pH 2 with higher survival percentage compared to non-encapsulated probiotic. However, freeze-drying encapsulation was proven not to enhance the resistance of the probiotic to bile salt as evidenced by the one log colony reduction as for the non-encapsulated probiotic. Further modification of freeze-drying encapsulation technique is needed to enhance the survival of the encapsulated potential probiotic L. plantarum toward bile salt in the future.

  10. Data for the size of cholesterol-fat micelles as a function of bile salt concentration and the physico-chemical properties of six liquid experimental pine-derived phytosterol formulations in a cholesterol-containing artificial intestine fluid

    Directory of Open Access Journals (Sweden)

    Jinsoo Yi

    2017-02-01

    Full Text Available The data in this paper are additional information to the research article entiltled “Inhibition of cholesterol transport in an intestine cell model by pine-derived phytosterols” (Yi et al.,2016 [1]. The data derived from the measurement on six liquid formulations of commercial pine-derived phytosterol (CPP by dynamic light scattering. The data cover micelle size and the zeta-potential for formulations with cholesterol including monoglyceride, oleic acid, and bile salt. The data demonstrate the critical effect of the bile salt concentration on the size of cholesterol-digested fat micelles.

  11. Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells

    Science.gov (United States)

    Imagawa, Kazuo; Takayama, Kazuo; Isoyama, Shigemi; Tanikawa, Ken; Shinkai, Masato; Harada, Kazuo; Tachibana, Masashi; Sakurai, Fuminori; Noguchi, Emiko; Hirata, Kazumasa; Kage, Masayoshi; Kawabata, Kenji; Sumazaki, Ryo; Mizuguchi, Hiroyuki

    2017-01-01

    Bile salt export pump (BSEP) plays an important role in hepatic secretion of bile acids and its deficiency results in severe cholestasis and liver failure. Mutation of the ABCB11 gene encoding BSEP induces BSEP deficiency and progressive familial intrahepatic cholestasis type 2 (PFIC2). Because liver transplantation remains standard treatment for PFIC2, the development of a novel therapeutic option is desired. However, a well reproducible model, which is essential for the new drug development for PFIC2, has not been established. Therefore, we attempted to establish a PFIC2 model by using iPSC technology. Human iPSCs were generated from patients with BSEP-deficiency (BD-iPSC), and were differentiated into hepatocyte-like cells (HLCs). In the BD-iPSC derived HLCs (BD-HLCs), BSEP was not expressed on the cell surface and the biliary excretion capacity was significantly impaired. We also identified a novel mutation in the 5′-untranslated region of the ABCB11 gene that led to aberrant RNA splicing in BD-HLCs. Furthermore, to evaluate the drug efficacy, BD-HLCs were treated with 4-phenylbutyrate (4PBA). The membrane BSEP expression level and the biliary excretion capacity in BD-HLCs were rescued by 4PBA treatment. In summary, we succeeded in establishing a PFIC2 model, which may be useful for its pathophysiological analysis and drug development. PMID:28150711

  12. Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells.

    Science.gov (United States)

    Imagawa, Kazuo; Takayama, Kazuo; Isoyama, Shigemi; Tanikawa, Ken; Shinkai, Masato; Harada, Kazuo; Tachibana, Masashi; Sakurai, Fuminori; Noguchi, Emiko; Hirata, Kazumasa; Kage, Masayoshi; Kawabata, Kenji; Sumazaki, Ryo; Mizuguchi, Hiroyuki

    2017-02-02

    Bile salt export pump (BSEP) plays an important role in hepatic secretion of bile acids and its deficiency results in severe cholestasis and liver failure. Mutation of the ABCB11 gene encoding BSEP induces BSEP deficiency and progressive familial intrahepatic cholestasis type 2 (PFIC2). Because liver transplantation remains standard treatment for PFIC2, the development of a novel therapeutic option is desired. However, a well reproducible model, which is essential for the new drug development for PFIC2, has not been established. Therefore, we attempted to establish a PFIC2 model by using iPSC technology. Human iPSCs were generated from patients with BSEP-deficiency (BD-iPSC), and were differentiated into hepatocyte-like cells (HLCs). In the BD-iPSC derived HLCs (BD-HLCs), BSEP was not expressed on the cell surface and the biliary excretion capacity was significantly impaired. We also identified a novel mutation in the 5'-untranslated region of the ABCB11 gene that led to aberrant RNA splicing in BD-HLCs. Furthermore, to evaluate the drug efficacy, BD-HLCs were treated with 4-phenylbutyrate (4PBA). The membrane BSEP expression level and the biliary excretion capacity in BD-HLCs were rescued by 4PBA treatment. In summary, we succeeded in establishing a PFIC2 model, which may be useful for its pathophysiological analysis and drug development.

  13. EVALUASI IN VITRO TERHADAP KEMAMPUAN ISOLAT BAKTERI ASAM LAKTAT ASAL AIR SUSU IBU UNTUK MENGASIMILASI KOLESTEROL DAN MENDEKONJUGASI GARAM EMPEDU [In Vitro Evaluation of Cholesterol Assimilation and Bile Salt Deconjugation by Lactic Acid Bacteria Isolated from Breast Milk

    Directory of Open Access Journals (Sweden)

    Lilis Nuraida1,2*

    2011-06-01

    Full Text Available Hypercholesterolemia is a risk factor for cardiovascular disease, the leading cause of death in many countries. Several studies have shown that reduction of excessive levels of cholesterol in the blood decreases the risk of cardiovascular disease. It is therefore important to develop ways of reducing serum cholesterol. Based on in vitro and in vivo studies, some of lactic acid bacteria (LAB having potential probiotic properties can reduce total cholesterol and low-density lipoprotein cholesterol levels. The aim of this study was to evaluate the ability of LAB isolated from breast milk in reducing cholesterol by assimilation and by bile salt deconjugation activity in vitro.Thirteen strains of LABs were evaluated for their acid and bile salt resistance and selected to test their ability to assimilate cholesterol and to deconjugate bile salt (natrium taurocholate in vitro. Cholesterol assimilation activity was determined by measuring the difference between the remaining cholesterol in broth medium inoculated with LAB with cholesterol in control after incubation. Bile salt deconjugation activity was determined by measuring free cholic acid released in broth medium after incubation with LAB. The results shows that most of the isolates was susceptible to low pH and all isolates used were able to survive in the presence of 0.5% bile salt. The LAB were also able to assimilate cholesterol at varying levels ranging from 0.86-14.97 µg/ml, with the highest activity showed by Pediococcus pentosaceus 1-A38, Pediococcus pentosaceus 2-B2 and Pediococcus pentosaceus 2-A16. Taurocholate deconjugation assay showed that the isolates have weak bile salts deconjugation activity as indicated by free cholic acid released ranging from 0.06-0.25 µmol/ml, with the highest release in Pediococcus pentosaceus 1-A38 and Pediococcus pentosaceus 1-A22. The present study suggest that Pediococcus pentosaceus 1-A38 was potential for the development of probiotic products with

  14. Implication of sortase-dependent proteins of Streptococcus thermophilus in adhesion to human intestinal epithelial cell lines and bile salt tolerance.

    Science.gov (United States)

    Kebouchi, Mounira; Galia, Wessam; Genay, Magali; Soligot, Claire; Lecomte, Xavier; Awussi, Ahoefa Ablavi; Perrin, Clarisse; Roux, Emeline; Dary-Mourot, Annie; Le Roux, Yves

    2016-04-01

    Streptococcus thermophilus (ST) is a lactic acid bacterium widely used in dairy industry and displays several properties which could be beneficial for host. The objective of this study was to investigate, in vitro, the implication of sortase A (SrtA) and sortase-dependent proteins (SDPs) in the adhesion of ST LMD-9 strain to intestinal epithelial cells (IECs) and resistance to bile salt mixture (BSM; taurocholoate, deoxycholate, and cholate). The effect of mutations in prtS (protease), mucBP (MUCin-Binding Protein), and srtA genes in ST LMD-9 in these mechanisms were examined. The HT29-MTX, HT29-CL.16E, and Caco-2 TC7 cell lines were used. HT29-MTX and HT29-CL.16E cells express different mucins found in the gastro intestinal tract; whereas, Caco-2 TC7 express cell surface proteins found in the small intestine. All mutants showed different adhesion profiles depending on cell lines. The mutation in genes srtA and mucBP leads to a significant decrease in LMD-9 adhesion capacity to Caco-2 TC7 cells. A mutation in mucBP gene has also shown a significant decrease in LMD-9 adhesion capacity to HT29-CL.16E cells. However, no difference was observed using HT29-MTX cells. Furthermore, ST LMD-9 and srtA mutant were resistant to BSM up to 3 mM. Contrariwise, no viable bacteria were detected for prtS and mucBP mutants at this concentration. Two conclusions could be drawn. First, SDPs could be involved in the LMD-9 adhesion depending on the cell lines indicating the importance of eukaryotic-cell surface components in adherence. Second, SDPs could contribute to resistance to bile salts probably by maintaining the cell membrane integrity.

  15. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose.

    Science.gov (United States)

    Niu, Mengmeng; Lu, Yi; Hovgaard, Lars; Guan, Peipei; Tan, Yanan; Lian, Ruyue; Qi, Jianping; Wu, Wei

    2012-06-01

    Oral delivery of protein or polypeptide drugs remains a challenge due to gastric and enzymatic degradation as well as poor permeation across the intestinal epithelia. In this study, liposomes containing bile salts were developed as a new oral insulin delivery system. The primary goal was to investigate the effect of cholate type, particle size and dosage of the liposomes on the hypoglycemic activity and oral bioavailability. Liposomes containing sodium glycocholate (SGC), sodium taurocholate (STC) or sodium deoxycholate (SDC) were prepared by a reversed-phase evaporation method. After oral administration, all liposomes elicited a certain degree of hypoglycemic effect in parallel with an increase in blood insulin level. The highest oral bioavailability of approximately 8.5% and 11.0% could be observed with subcutaneous insulin as reference for SGC-liposomes in non-diabetic and diabetic rats, respectively. Insulin-loaded liposomes showed slower and sustained action over a period of over 20 h with peak time around 8-12h. SGC-liposomes showed higher oral bioavailability than liposomes containing STC or SDC and conventional liposomes. The hypoglycemic effect was size-dependent with the highest at 150 nm or 400 nm and was proportionally correlated to the administered dose. The results supported the hypothesis of insulin absorption as intact liposomes.

  16. Proliposomes containing a bile salt for oral delivery of Ginkgo biloba extract: Formulation optimization, characterization, oral bioavailability and tissue distribution in rats.

    Science.gov (United States)

    Zheng, Bin; Teng, Lirong; Xing, Gaoyang; Bi, Ye; Yang, Shuang; Hao, Fei; Yan, Guodong; Wang, Xinmei; Lee, Robert J; Teng, Lesheng; Xie, Jing

    2015-09-18

    Proliposomes containing a bile salt were developed to improve the oral bioavailability of Ginkgo biloba extract (GbE). GbE loaded proliposomes (P-GbE) were successfully prepared by spray drying method. The formulation was optimized using the response surface methodology. FE-SEM, DSC, and FT-IR were used to study the surface morphology and molecular state of proliposomes, and demonstrated key interactions between the formulation ingredients. In vitro studies showed delayed release and enhanced dissolution of Ginkgo flavonoids and terpene lactones from GbE proliposomes. Proliposomes significantly enhanced GbE absorption in the gastrointestinal tract and decreased its elimination. The bioavailabilities of quercetin, kaempferol, isorhmnetin, ginkgolide A, ginkgolide B and ginkgolide C from proliposomes relative to the control were 245%, 211%, 264%, 203%, 333%, and 294%, respectively. Proliposomes were shown to selectively deliver GbE to critical target tissues. In conclusion, development of proliposomes formulation for GbE solved the problem of its poor oral bioavailability, prolonged its duration of action, and increased drug distribution in critical tissues, especially in the brain, therefore, warrant further investigation.

  17. Bile Reflux

    Science.gov (United States)

    ... commonly used to soothe inflammation associated with GERD, gastritis, ulcers and other digestive problems. However, licorice contains ... Minn. Dec. 15, 2014. March 04, 2015 Original article: http://www.mayoclinic.org/diseases-conditions/bile-reflux/ ...

  18. Identification of the bile salt binding site on ipad from Shigella flexneri and the influence of ligand binding on IpaD structure

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E.; Patil, Mrinalini; Geisbrecht, Brian V.; Picking, Wendy L.; Picking, William D. (UMKC); (OKLU)

    2012-10-25

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nano-machine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices {alpha}3 and {alpha}7, with concomitant movement in the orientation of helix {alpha}7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC-bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  19. Conformational changes in IpaD from Shigella flexneri upon binding bile salts provide insight into the second step of type III secretion.

    Science.gov (United States)

    Dickenson, Nicholas E; Zhang, Lingling; Epler, Chelsea R; Adam, Philip R; Picking, Wendy L; Picking, William D

    2011-01-18

    Shigella flexneri uses its type III secretion apparatus (TTSA) to inject host-altering proteins into targeted eukaryotic cells. The TTSA is composed of a basal body and an exposed needle with invasion plasmid antigen D (IpaD) forming a tip complex that controls secretion. The bile salt deoxycholate (DOC) stimulates recruitment of the translocator protein IpaB into the maturing TTSA needle tip complex. This process appears to be triggered by a direct interaction between DOC and IpaD. Fluorescence spectroscopy and NMR spectroscopy are used here to confirm the DOC-IpaD interaction and to reveal that IpaD conformational changes upon DOC binding trigger the appearance of IpaB at the needle tip. Förster resonance energy transfer between specific sites on IpaD was used here to identify changes in distances between IpaD domains as a result of DOC binding. To further explore the effects of DOC binding on IpaD structure, NMR chemical shift mapping was employed. The environments of residues within the proposed DOC binding site and additional residues within the "distal" globular domain were perturbed upon DOC binding, further indicating that conformational changes occur within IpaD upon DOC binding. These events are proposed to be responsible for the recruitment of IpaB at the TTSA needle tip. Mutation analyses combined with additional spectroscopic analyses confirm that conformational changes in IpaD induced by DOC binding contribute to the recruitment of IpaB to the S. flexneri TTSA needle tip. These findings lay the foundation for determining how environmental factors promote TTSA needle tip maturation prior to host cell contact.

  20. Identification of the bile salt binding site on IpaD from Shigella flexneri and the influence of ligand binding on IpaD structure.

    Science.gov (United States)

    Barta, Michael L; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E; Patil, Mrinalini; Geisbrecht, Brian V; Picking, Wendy L; Picking, William D

    2012-03-01

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nanomachine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices α3 and α7, with concomitant movement in the orientation of helix α7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  1. Bile resistance mechanisms in Lactobacillus and Bifidobacterium

    Directory of Open Access Journals (Sweden)

    Lorena eRuiz

    2013-12-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonise our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesised in the liver from cholesterol. Host enzymes conjugate the newly synthesised free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilisation of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile.

  2. Study on the ability of bile salt-binding among different tea extracts in vitro%不同茶浸提液对胆酸盐的结合及其降血脂机理的研究

    Institute of Scientific and Technical Information of China (English)

    胡凯; 黄惠华

    2011-01-01

    The binding capacity of the extracts from green tea,Oolong tea,Puer tea,dark tea and black tea to bile salts were compared as well as the correlation between tea polyphenol and the bile salts binding capability in vitro under the conditions of the simulated human digestive environment.The results showed that the rate of bile salts-binding was fast and there was a significant correlation between the bile salts binding capacity and tea polyphenol content.Relative to cholestyrammine,green tea extract showed the 38.4% binding capacity for sodium taurocholate,46.5% for glycocholate and 42.0% for sodium cholate,exhibiting the maximum binding capability,followed by the semi-fermented(e.g.Oolong tea)and fully fermented teas(e.g.Puer tea,black tea and dark tea).%在体外模拟人体消化环境,研究绿茶浸提液对胆酸盐的等温吸附性质,比较不同茶浸提液对胆酸盐的结合能力,同时探讨了茶多酚含量与茶浸提液结合胆酸盐的相关关系。结果表明,茶浸提液对胆酸盐结合速度较快,Freundilich等温式、Langmiur等温式均能良好地反映绿茶浸提液对胆酸盐的结合;绿茶浸提液结合胆酸盐的能力最强,其结合牛磺胆酸钠、甘氨胆酸钠、胆酸钠的量分别是考来烯胺的38.4%、46.5%和42.0%;其次是半发酵茶(铁观音,35.2%、41.7%和42.6%)、发酵茶(普洱茶、滇红茶和六堡茶)。不同茶浸

  3. Application of spray granulation for conversion of mixed phospholipid-bile salt micelles to dry powder form: influence of drug hydrophobicity on nanoparticle reagglomeration

    Directory of Open Access Journals (Sweden)

    Lv QY

    2014-01-01

    in vivo performance of the dried powder obtained after spray granulation.Keywords: cucurbitacin B, glycyrrhizin, mixed phospholipid-bile salt micelles, fluid bed granulation, poorly water soluble drugs

  4. Constitutive expression of CaXTH3, a hot pepper xyloglucan endotransglucosylase/hydrolase, enhanced tolerance to salt and drought stresses without phenotypic defects in tomato plants (Solanum lycopersicum cv. Dotaerang).

    Science.gov (United States)

    Choi, Jun Young; Seo, Young Sam; Kim, Su Jin; Kim, Woo Taek; Shin, Jeong Sheop

    2011-05-01

    The hot pepper xyloglucan endo-trans-gluco-sylase/hydrolase (CaXTH3) gene that was inducible by a broad spectrum of abiotic stresses in hot pepper has been reported to enhance tolerance to drought and high salinity in transgenic Arabidopsis. To assess whether CaXTH3 is a practically useful target gene for improving the stress tolerance of crop plants, we ectopically over-expressed the full-length CaXTH3 cDNA in tomato (Solanum lycopersicum cv. Dotaerang) and found that the 35S:CaXTH3 transgenic tomato plants exhibited a markedly increased tolerance to salt and drought stresses. Transgenic tomato plants exposed to a salt stress of 100 mM NaCl retained the chlorophyll in their leaves and showed normal root elongation. They also remained green and unwithered following exposure to 2 weeks of dehydration. A high proportion of stomatal closures in 35S:CaXTH3 was likely to be conferred by increased cell-wall remodeling activity of CaXTH3 in guard cell, which may reduce transpirational water loss in response to dehydration stress. Despite this increased stress tolerance, the transgenic tomato plants showed no detectable phenotype defects, such as abnormal morphology and growth retardation, under normal growth conditions. These results raise the possibility that CaXTH3 gene is appropriate for application in genetic engineering strategies aimed at improving abiotic stress tolerance in agriculturally and economically valuable crop plants.

  5. Administration of phosphatidylcholine-cholesterol liposomes partially reconstitutes fat absorption in chronically bile-diverted rats

    NARCIS (Netherlands)

    Nishioka, T; Havinga, R; Tazuma, S; Stellaard, F; Kuipers, F; Verkade, HJ

    2004-01-01

    Background and aims: Intestinal bile deficiency in cholestatic patients leads to fat malabsorption. We addressed the potency of model bile, bile salts and phosphatidylcholine (PC)-cholesterol (CH) liposomes to reconstitute fat absorption in permanently bile-diverted (BD) rats. Methods: The plasma ap

  6. Conjugated primary bile salts reduce permeability of endotoxin through bacteria-stimulated intestinal epithelial cells and synergize with lecithin in suppression of inflammatory cytokine production

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schaeckeler, Simone; Moser, Lydia

    2007-01-01

    : The effect of CPBS (0.5 mM and 1.5 mM), phosphatidylcholine(0.38 mM), and human bile (0.5% vol/vol) on the barrier function was assessed by the measurement of transepithelial electrical resistance, by endotoxin permeability through the intestinal epithelial cell layer, and by basolateral cytokine enzyme...

  7. Conjugated primary bile salts reduce permeability of endotoxin through intestinal epithelial cells and synergize with phosphatidylcholine in suppression of inflammatory cytokine production

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schaeckeler, S.; Moser, L.

    2007-01-01

    : The effect of CPBS (0.5 mM and 1.5 mM), phosphatidylcholine (0.38 mM), and human bile (0.5% vol/vol) on the barrier function was assessed by the measurement of transepithelial electrical resistance, by endotoxin permeability through the intestinal epithelial cell layer, and by basolateral cytokine enzyme...

  8. An improved method for specificity annotation shows a distinct evolutionary divergence among the microbial enzymes of the cholylglycine hydrolase family.

    Science.gov (United States)

    Panigrahi, Priyabrata; Sule, Manas; Sharma, Ranu; Ramasamy, Sureshkumar; Suresh, C G

    2014-06-01

    Bile salt hydrolases (BSHs) are gut microbial enzymes that play a significant role in the bile acid modification pathway. Penicillin V acylases (PVAs) are enzymes produced by environmental microbes, having a possible role in pathogenesis or scavenging of phenolic compounds in their microbial habitats. The correct annotation of such physiologically and industrially important enzymes is thus vital. The current methods relying solely on sequence homology do not always provide accurate annotations for these two members of the cholylglycine hydrolase (CGH) family as BSH/PVA enzymes. Here, we present an improved method [binding site similarity (BSS)-based scoring system] for the correct annotation of the CGH family members as BSH/PVA enzymes, which along with the phylogenetic information incorporates the substrate specificity as well as the binding site information. The BSS scoring system was developed through the analysis of the binding sites and binding modes of the available BSH/PVA structures with substrates glycocholic acid and penicillin V. The 198 sequences in the dataset were then annotated accurately using BSS scores as BSH/PVA enzymes. The dataset presented contained sequences from Gram-positive bacteria, Gram-negative bacteria and archaea. The clustering obtained for the dataset using the method described above showed a clear distinction in annotation of Gram-positive bacteria and Gram-negative bacteria. Based on this clustering and a detailed analysis of the sequences of the CGH family in the dataset, we could infer that the CGH genes might have evolved in accordance with the hypothesis stating the evolution of diderms and archaea from the monoderms.

  9. Discovering novel bile protection systems in Bifidobacterium breve UCC2003 through functional genomics.

    NARCIS (Netherlands)

    Ruiz, L.; Zomer, A.L.; O'Connell-Motherway, M.; Sinderen, D. van; Margolles, A.

    2012-01-01

    Tolerance of gut commensals to bile salt exposure is an important feature for their survival in and colonization of the intestinal environment. A transcriptomic approach was employed to study the response of Bifidobacterium breve UCC2003 to bile, allowing the identification of a number of bile-induc

  10. Bacterial bile metabolising gene abundance in Crohn's, ulcerative colitis and type 2 diabetes metagenomes.

    Directory of Open Access Journals (Sweden)

    Alain Labbé

    Full Text Available We performed an analysis to determine the importance of bile acid modification genes in the gut microbiome of inflammatory bowel disease and type 2 diabetic patients. We used publicly available metagenomic datasets from the Human Microbiome Project and the MetaHIT consortium, and determined the abundance of bile salt hydrolase gene (bsh, 7 alpha-dehydroxylase gene (adh and 7-alpha hydroxysteroid dehydrogenase gene (hsdh in fecal bacteria in diseased populations of Crohn's disease (CD, Ulcerative Colitis (UC and Type 2 diabetes mellitus (T2DM. Phylum level abundance analysis showed a significant reduction in Firmicute-derived bsh in UC and T2DM patients but not in CD patients, relative to healthy controls. Reduction of adh and hsdh genes was also seen in UC and T2DM patients, while an increase was observed in the CD population as compared to healthy controls. A further analysis of the bsh genes showed significant differences in the correlations of certain Firmicutes families with disease or healthy populations. From this observation we proceeded to analyse BSH protein sequences and identified BSH proteins clusters representing the most abundant strains in our analysis of Firmicute bsh genes. The abundance of the bsh genes corresponding to one of these protein clusters was significantly reduced in all disease states relative to healthy controls. This cluster includes bsh genes derived from Lachospiraceae, Clostridiaceae, Erysipelotrichaceae and Ruminococcaceae families. This metagenomic analysis provides evidence of the importance of bile acid modifying enzymes in health and disease. It further highlights the importance of identifying gene and protein clusters, as the same gene may be associated with health or disease, depending on the strains expressing the enzyme, and differences in the enzymes themselves.

  11. Different pathways of canalicular secretion of sulfated and non-sulfated fluorescent bile acids : a study in isolated hepatocyte couplets and TR- rats

    NARCIS (Netherlands)

    Mills, CO; Milkiewicz, P; Muller, M; Roma, MG; Havinga, R; Coleman, R; Kuipers, F; Jansen, PLM; Elias, E

    1999-01-01

    Background/Aims: Fluorescent bile acids have proved useful for characterizing bile salt transport mechanisms, The aim of this study was to further validate the use of lysyl-fluorescein conjugated bile acid analogues as surrogate bile acids, Methods: We analyzed biliary excretion kinetics of cholyl l

  12. Characteristics of bile salt hydrolase by Kluyveromyces marxianus K1 from Tibetan kefir%藏灵菇源克鲁维酵母K1菌株胆盐水解酶的特性研究

    Institute of Scientific and Technical Information of China (English)

    刘慧; 何欢; 熊利霞; 张雪娇; 张红星

    2010-01-01

    探讨藏灵菇马克斯克鲁维酵母K1菌株胆盐水解酶作用底物的反应条件与不同化学试剂对酶活性的影响及其发酵动力学类型.采用单因素多水平试验方法,在pH值4~8、温度31℃~43℃、底物浓度4mmol/L~8mmol/L及不同化学试剂(SDS、EDTA、尿素、Cu2+、Mg2+、Ca2+、F3+、Al3+、Mn2+)的条件下,胆盐水解酶与底物反应30min,检测酶活力;平板活菌计数法分析细胞生长与产酶的关系;双倒数作图法求得酶促反应动力学常数Km.结果表明,胆盐水解酶最适反应条件为:pH值为6.0、底物浓度7mmol/L、温度37℃,Fe3+、Ca2+、Mn2+及尿素对酶活性有较大提高作用,Mg2+、Al3+及SDS对酶的激活作用次之,Cu2+及EDTA对酶活性影响不大.K1菌株在18h~21h进入稳定期,于21h对数生长期的末期时酶活性达到最高,表明其胆盐水解酶发酵动力学类型为生长偶联合成型.其酶促反应动力学常数Km为2.10mmol/L,说明该酶与最适底物的亲和力较大.

  13. Early bile duct cancer

    Institute of Scientific and Technical Information of China (English)

    Jae Myung Cha; Myung-Hwan Kim; Se Jin Jang

    2007-01-01

    Bile duct cancers are frequently diagnosed as advanced diseases. Over half of patients with advanced bile duct cancer present with unresectable malignancies and their prognosis has been very poor even after curative resections. Although there has been a need to diagnose bile duct cancer at its early stage, it has been a difficult goal to achieve due to our lack of knowledge regarding this disease entity. Early bile duct cancer may be defined as a carcinoma whose invasion is confined within the fibromuscular layer of the extrahepatic bile duct or intrahepatic large bile duct without distant metastasis irrespective of lymph node involvement. Approximately 3%-10% of resected bile duct cancers have been reported to be early cancers in the literature. The clinicopathological features of patients with early bile duct cancer differ from those of patients with advanced bile duct cancer, with more frequent asymptomatic presentation, characteristic histopathological findings,and excellent prognosis. This manuscript is organized to emphasize the need for convening an international consensus to develop the concept of early bile duct cancer.

  14. Variants of glycoside hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Teter, Sarah (Davis, CA); Ward, Connie (Hamilton, MT); Cherry, Joel (Davis, CA); Jones, Aubrey (Davis, CA); Harris, Paul (Carnation, WA); Yi, Jung (Sacramento, CA)

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  15. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid...... and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption...... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...

  16. Painful Bile Extraction Methods

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    It was only in the past 20 years that countries in Asia began to search for an alternative to protect moon bears from being killed for their bile and other body parts. In the early 1980s, a new method of extracting bile from living bears was developed in North Korea. In 1983, Chinese scientists imported this technique from North Korea. According to the Animals Asia Foundation, the most original method of bile extraction is to embed a latex catheter, a narrow rubber

  17. Physiology of bile secretion

    Institute of Scientific and Technical Information of China (English)

    Alejandro Esteller

    2008-01-01

    The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment,in different situations,results in the syndrome of cholestasis.The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed.Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane.This review summarizes recent data on the molecular determinants of this primary bile formation.The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bileduct epithelial cells (cholangiocytes) as bile passes through bile ducts.The mechanisms of fluid and solute transport in cholangiocytes will also be discussed.In contrast to hepatocytes where secretion is constant and poorly controlled,cholangiocyte secretion is regulated by hormones and nerves.A short section dedicated to these regulatory mechanisms of bile secretion has been included.The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.

  18. Verification of Thiosulfate-Citrate-Bile Salts-Sucrose (TCBS)Agar Medium Industrial Standard%硫代硫酸盐-柠檬酸盐-胆盐-蔗糖琼脂培养基行业标准验证

    Institute of Scientific and Technical Information of China (English)

    孙楠; 黄杰; 于婷; 孙彬裕; 高尚先; 曲守方

    2014-01-01

    Objective To verify the application of professional standard for Thiosulfate-Citrate-Bile Salts-Sucrose (TCBS)agar medium.Methods TCBS agar medium produced by different factories are obtained for pH value and microbiological grow test according to the formulated medium standard.pH value and solution of medium are determined and bacterial cultures of the control strains are inoculated in the medium to detected bacterial growth.Results pH value and solution of medium were within the specified range. The control strains grew well. Conclusion As the recommended industrial standard, TCBS agar medium standard may be applied to evaluate and supervise the TCBS agar medium quality in our country.%目的:按照修订的硫代硫酸盐-柠檬酸盐-胆盐-蔗糖(TCBS)琼脂培养基行业标准中的要求进行试验,验证该行业标准的适用性。方法取不同厂家生产的TCBS琼脂培养基,根据TCBS琼脂培养基行业标准的要求,进行pH值、水分的测定和微生物生长试验。测定了TCBS琼脂培养基的pH值和水分,并将质控菌株的培养物接种到受试的培养基平皿中进行微生物生长试验。结果TCBS琼脂培养基的pH值和水分均符合行业标准的规定,且各质控菌株生长良好。结论作为推荐性的国家行业标准,TCBS琼脂培养基行业标准可以用于我国该培养基的质量评价和监管工作的需要。

  19. Composition and distribution of TCBS bacteria groups from sediments of Jiulong River estuary%九龙江口沉积物TCBS(Thiosulfate Citrate Bile Salts Sucrose)菌群的分布

    Institute of Scientific and Technical Information of China (English)

    陈明霞; 李和阳; 马云飞; 史莹鑫; 傅毅凌; 郑天凌; 郑森林; 陈彬

    2012-01-01

    [Objective]To investigate potential pathogens in waters of Xiamen from Jiulong River, and to provide useful information for the prevention and control of potential pathogen infections. [Methods] All samples were spread on Thiosulfate Citrate Bile Salts Sucrose (TCBS) agar plates, and then incubated at 26 ± 1℃ for 24 ±2 h. In total 158 TCBS strains were isolated from TCBS agar plates and pure-cultivated on 2216E agar plates. All strains were identified using the 16S rRNA gene- Restriction fragment length polymorphism (RFLP) , 16S rRNA sequence analysis, GenBank database Basic Local Alignment Search Tool (BLAST) and phylogenetic analysis. [Results] The results show that 158 TCBS strains from the sediments of Jiulong River estuary were classfied as 7 genus, which were Pseudomonas (28%), Aeromonas (24%) , Pseudoalteromonas (19%) , Shewanella (13%) , Bacillus (11%) , Vibrio (4%) and Psychrobacter (1%). The composition and distribution of TCBS bacteria groups varied with stations. Non-halophilic or haloduric bacteria groups were dominant in the upper area of Jiulong River estuary, and halophilic and haloduric bacteria were dominant in the lower area, which characterized a typical estuary feature. The salinity played a key role in the distribution of TCBS groups. Vibrios did not constitute a significant proportion (6% - 19%) of the total TCBS strains at different stations, and most of the them distributed at the lower region. [Conclusion] There were a lot of potential pathogens in Jiulong River estuary. Aeromonas, a typical genus of halotolerant bacteria, was the potentially terrigenous bacteria contamination to the waters of Xiamen. Most Vibrio specieses were marine aborigines, which was not directly contaminated from the runoff of Jiulong River.%[目的]调查九龙江流域对厦门海域潜在的病原菌“污染”,为相关侵染性病害的预防和控制提供有价值的资料.[方法]通过TCBS(Thiosulfate Citrate Bile Salts Sucrose)培养基从九龙

  20. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.

    Science.gov (United States)

    Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander

    2014-02-15

    Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.

  1. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2007-01-01

    Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness.......Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness....

  2. Digestion of phospholipids after secretion of bile into the duodenum changes the phase behavior of bile components.

    Science.gov (United States)

    Birru, Woldeamanuel A; Warren, Dallas B; Ibrahim, Ahmed; Williams, Hywel D; Benameur, Hassan; Porter, Christopher J H; Chalmers, David K; Pouton, Colin W

    2014-08-04

    Bile components play a significant role in the absorption of dietary fat, by solubilizing the products of fat digestion. The absorption of poorly water-soluble drugs from the gastrointestinal tract is often enhanced by interaction with the pathways of fat digestion and absorption. These processes can enhance drug absorption. Thus, the phase behavior of bile components and digested lipids is of great interest to pharmaceutical scientists who seek to optimize drug solubilization in the gut lumen. This can be achieved by dosing drugs after food or preferably by formulating the drug in a lipid-based delivery system. Phase diagrams of bile salts, lecithin, and water have been available for many years, but here we investigate the association structures that occur in dilute aqueous solution, in concentrations that are present in the gut lumen. More importantly, we have compared these structures with those that would be expected to be present in the intestine soon after secretion of bile. Phosphatidylcholines are rapidly hydrolyzed by pancreatic enzymes to yield equimolar mixtures of their monoacyl equivalents and fatty acids. We constructed phase diagrams that model the association structures formed by the products of digestion of biliary phospholipids. The micelle-vesicle phase boundary was clearly identifiable by dynamic light scattering and nephelometry. These data indicate that a significantly higher molar ratio of lipid to bile salt is required to cause a transition to lamellar phase (i.e., liposomes in dilute solution). Mixed micelles of digested bile have a higher capacity for solubilization of lipids and fat digestion products and can be expected to have a different capacity to solubilize lipophilic drugs. We suggest that mixtures of lysolecithin, fatty acid, and bile salts are a better model of molecular associations in the gut lumen, and such mixtures could be used to better understand the interaction of drugs with the fat digestion and absorption pathway.

  3. [Bile acids in the bile in diabetes mellitus].

    Science.gov (United States)

    Slivka, O Ia; Zelinskiĭ, B A; Zelinskiĭ, S Ts

    1979-01-01

    Hepatic and gall bladder bile of healthy persons (8) and of patients with severe form of diabetes mellitus (17) was studied. Paer chromatography was applied for determination of cholic, chenodeoxycholic, deoxycholic bile acids and their conjugates with glycin and taurine. An absolute content and percentage of glycodeoxycholic and glycochenodeoxycholic bile acids were increased, and glycochenodeoxycholic acid content and taurates proportion were decreased in the gall bladder and hepatic bile of diabetic patients. The data obtained pointed to disturbed hepatic function in severe diabetes mellitus; it was expressed in suppression of bile acids synthesis and conjugation, and also in depression of transformation of deoxycholic into cholic acid.

  4. Bile acid interactions with cholangiocytes

    Institute of Scientific and Technical Information of China (English)

    Xuefeng Xia; Heather Francis; Shannon Glaser; Gianfranco Alpini; Gene LeSage

    2006-01-01

    Cholangiocytes are exposed to high concentrations of bile acids at their apical membrane. A selective transporter for bile acids, the Apical Sodium Bile Acid Cotransporter (ASBT) (also referred to as Ibat; gene name Slc10a2)is localized on the cholangiocyte apical membrane. On the basolateral membrane, four transport systems have been identified (t-ASBT, multidrug resistance (MDR)3,an unidentified anion exchanger system and organic solute transporter (Ost) heteromeric transporter, OstαOstβ. Together, these transporters unidirectionally move bile acids from ductal bile to the circulation. Bile acids absorbed by cholangiocytes recycle via the peribiliaryplexus back to hepatocytes for re-secretion into bile.This recycling of bile acids between hepatocytes and cholangiocytes is referred to as the cholehepatic shunt pathway. Recent studies suggest that the cholehepatic shunt pathway may contribute in overall hepatobiliary transport of bile acids and to the adaptation to chronic cholestasis due to extrahepatic obstruction. ASBT is acutely regulated by an adenosine 3', 5'-monophosphate (cAMP)-dependent translocation to the apical membrane and by phosphorylation-dependent ubiquitination and proteasome degradation. ASBT is chronically regulated by changes in gene expression in response to biliary bile acid concentration and inflammatory cytokines.Another potential function of cholangiocyte ASBT is to allow cholangiocytes to sample biliary bile acids in order to activate intracellular signaling pathways. Bile acids trigger changes in intracellular calcium, protein kinase C (PKC), phosphoinositide 3-kinase (PI3K), mitogenactivated protein (MAP) kinase and extracellular signalregulated protein kinase (ERK) intracellular signals.Bile acids significantly alter cholangiocyte secretion,proliferation and survival. Different bile acids have differential effects on cholangiocyte intracellular signals,and in some instances trigger opposing effects on cholangiocyte secretion

  5. Amylase activity in human bile.

    Science.gov (United States)

    Donaldson, L A; Joffe, S N; McIntosh, W; Brodie, M J

    1979-03-01

    The mean amylase level in 42 human bile samples was 154 IU/l and there was no significant difference in the amylase activity of 32 paired serum and bile samples. Estimation of the amylase thermolability of bile showed it to be similar to that of serum. This suggests that the amylase activity in bile may have filtered through the liver from the hepatic circulation rather than refluxed from the pancreatic duct. The presence of amylase in human bile provides further evidence that the liver might have a role in the regulation of serum amylase.

  6. Low-fat, high-carbohydrate and high-fat, low-carbohydrate diets decrease primary bile acid synthesis in humans

    NARCIS (Netherlands)

    Bisschop, PH; Bandsma, RHJ; Stellaard, F; Meijer, AJ; Sauerwein, HP; Kuipers, F; Romijn, JA

    2004-01-01

    Background: Dietary fat content influences bile salt metabolism, but quantitative data from controlled studies in humans are scarce. Objective: The objective of the study was to establish the effect of dietary fat content on the metabolism of primary bile salts. Design: The effects of eucaloric extr

  7. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4

    Science.gov (United States)

    Out, Carolien; Patankar, Jay V.; Doktorova, Marcela; Boesjes, Marije; Bos, Trijnie; de Boer, Sanna; Havinga, Rick; Wolters, Henk; Boverhof, Renze; van Dijk, Theo H.; Smoczek, Anna; Bleich, André; Sachdev, Vinay; Kratky, Dagmar; Kuipers, Folkert; Verkade, Henkjan J.; Groen, Albert K.

    2017-01-01

    Background & Aims Regulation of bile acid homeostasis in mammals is a complex process regulated via extensive cross-talk between liver, intestine and intestinal microbiota. Here we studied the effects of gut microbiota on bile acid homeostasis in mice. Methods Bile acid homeostasis was assessed in four mouse models. Germfree mice, conventionally-raised mice, Asbt-KO mice and intestinal-specific Gata4-iKO mice were treated with antibiotics (bacitracin, neomycin and vancomycin; 100 mg/kg) for five days and subsequently compared with untreated mice. Results Attenuation of the bacterial flora by antibiotics strongly reduced fecal excretion and synthesis of bile acids, but increased the expression of the bile acid synthesis enzyme CYP7A1. Similar effects were seen in germfree mice. Intestinal bile acid absorption was increased and accompanied by increases in plasma bile acid levels, biliary bile acid secretion and enterohepatic cycling of bile acids. In the absence of microbiota, the expression of the intestinal bile salt transporter Asbt was strongly increased in the ileum and was also expressed in more proximal parts of the small intestine. Most of the effects of antibiotic treatment on bile acid homeostasis could be prevented by genetic inactivation of either Asbt or the transcription factor Gata4. Conclusions Attenuation of gut microbiota alters Gata4-controlled expression of Asbt, increasing absorption and decreasing synthesis of bile acids. Our data support the concept that under physiological conditions microbiota stimulate Gata4, which suppresses Asbt expression, limiting the expression of this transporter to the terminal ileum. Our studies expand current knowledge on the bacterial control of bile acid homeostasis. PMID:26022694

  8. Gallbladder and bile duct

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930559 An experimental study on effective hep-atic blood flow and hepatic energy metabolismfollowing acute obstructive cholangitis and bil-iary obstruction.SUN Wenbing (孙文兵),et al.Hepatobili Surg,Center,Southwest Hosp,Chongqing 630000.Chin J Digest 1992;12(5):261—263.The changes of effective hepatic blood flow(E-HBF)and hepatic energy metabolism were stud-ied following acutc obstructive cholangitis(AOC)and bile duct ligation(BDL)in rats.The resultsshowed that EHBF was significantly decreased at24hs after and further decreased at 48hs afterBDL.And EHBF was significantly decreased at

  9. Surgery for Bile Duct (Cholangiocarcinoma) Cancer

    Science.gov (United States)

    ... Situation Bile Duct Cancer Treating Bile Duct Cancer Surgery for Bile Duct Cancer There are 2 general ... also help plan the operation to remove it. Surgery for resectable cancers For resectable cancers, the type ...

  10. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2003-01-01

    The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness.......The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness....

  11. Intrahepatic Transposition of Bile Ducts

    Science.gov (United States)

    Delić, Jasmin; Savković, Admedina; Isaković, Eldar; Marković, Sergije; Bajtarevic, Alma; Denjalić, Amir

    2012-01-01

    Objective. To describe the intrahepatic bile duct transposition (anatomical variation occurring in intrahepatic ducts) and to determine the frequency of this variation. Material and Methods. The researches were performed randomly on 100 livers of adults, both sexes. Main research methods were anatomical macrodissection. As a criterion for determination of variations in some parts of bile tree, we used the classification of Segmentatio hepatis according to Couinaud (1957) according to Terminologia Anatomica, Thieme Stuugart: Federative Committee on Anatomical Terminology, 1988. Results. Intrahepatic transposition of bile ducts was found in two cases (2%), out of total examined cases (100): right-left transposition (right segmental bile duct, originating from the segment VIII, joins the left liver duct-ductus hepaticus sinister) and left-right intrahepatic transposition (left segmental bile duct originating from the segment IV ends in right liver duct-ductus hepaticus dexter). Conclusion. Safety and success in liver transplantation to great extent depends on knowledge of anatomy and some common embryological anomalies in bile tree. Variations in bile tree were found in 24–43% of cases, out of which 1–22% are the variations of intrahepatic bile ducts. Therefore, good knowledge on ductal anatomy enables good planning, safe performance of therapeutic and operative procedures, and decreases the risk of intraoperative and postoperative complications. PMID:22550601

  12. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Philippe Gérard

    2013-12-01

    Full Text Available The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host’s enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered.

  13. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Ming-liang Chen

    2016-04-01

    Full Text Available The gut microbiota is found to be strongly associated with atherosclerosis (AS. Resveratrol (RSV is a natural phytoalexin with anti-AS effects; however, its mechanisms of action remain unclear. Therefore, we sought to determine whether the anti-AS effects of RSV were related to changes in the gut microbiota. We found that RSV attenuated trimethylamine-N-oxide (TMAO-induced AS in ApoE−/− mice. Meanwhile, RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TMA production via gut microbiota remodeling in mice. Moreover, RSV increased levels of the genera Lactobacillus and Bifidobacterium, which increased the bile salt hydrolase activity, thereby enhancing bile acid (BA deconjugation and fecal excretion in C57BL/6J and ApoE−/− mice. This was associated with a decrease in ileal BA content, repression of the enterohepatic farnesoid X receptor (FXR-fibroblast growth factor 15 (FGF15 axis, and increased cholesterol 7a-hydroxylase (CYP7A1 expression and hepatic BA neosynthesis. An FXR antagonist had the same effect on FGF15 and CYP7A1 expression as RSV, while an FXR agonist abolished RSV-induced alterations in FGF15 and CYP7A1 expression. In mice treated with antibiotics, RSV neither decreased TMAO levels nor increased hepatic BA synthesis. Additionally, RSV-induced inhibition of TMAO-caused AS was also markedly abolished by antibiotics. In conclusion, RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling, and the BA neosynthesis was partially mediated through the enterohepatic FXR-FGF15 axis.

  14. Gallbladder and Bile Duct Disorders

    Science.gov (United States)

    ... Disorders Overview of Gallbladder and Bile Duct Disorders Cholecystitis Gallstones Biliary Pain Without Gallstones Narrowing of the ... ducts are blocked, the gallbladder may become inflamed ( cholecystitis ). Biliary pain without gallstones (acalculous biliary pain) can ...

  15. Bile acid sequestrants for cholesterol

    Science.gov (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  16. Endocrine and paracrine role of bile acids

    Institute of Scientific and Technical Information of China (English)

    Verena Keitel; Ralf Kubitz; Dieter H(a)ussinger

    2008-01-01

    Bile acids are not only important for the absorption of dietary lipids and fat soluble vitamins but are signalling molecules with diverse endocrine and paracrine functions.Bile acids regulate bile acid,lipid and glucose metabolism and modulate temperature and energy homeostasis.Furthermore,bile acids can not only promote cell proliferation and liver regeneration but can also induce programmed cell death.Bile acid functions are mediated through different pathways which comprise the activation of nuclear hormone receptors,of intracellular kinases and of the plasma membranebound,G-protein coupled bile acid receptor TGR5/Gpbar-1.

  17. Bile components and amino acids affect survival of the newly excysted juvenile Clonorchis sinensis in maintaining media.

    Science.gov (United States)

    Li, Shunyu; Kim, Tae Im; Yoo, Won Gi; Cho, Pyo Yun; Kim, Tong-Soo; Hong, Sung-Jong

    2008-10-01

    Clonorchis sinensis thrives on bile juice. The effects of bile and bile acids on newly excysted juvenile C. sinensis (CsNEJ) were studied in terms of survival. Survival of CsNEJs maintained in 1x Locke's solution, Dulbecco's modified Eagle's medium, NCTC 109, Eagle's, RPMI 1640, and 0.1% glucose was high, but dropped rapidly in 2x Locke's, 0.85% NaCl, and phosphate-buffered saline. Most amino acids in the media favored CsNEJ survival; however, aspartic and glutamic acids and adenine reduced survival. Survival was also significantly lower in media containing more than 0.1% bile. CsNEJs preconditioned in low bile media survived longer in higher bile media. All bile acids and conjugated bile salts were found to favor CsNEJ survival, except for lithocholic acid (LCA) which was toxic. NCTC 109 medium was found to be optimal for the in vitro maintenance of CsNEJs and 1x Locke's solution to be suitable for analyzing the biological effects of bioactive compounds and molecules. Based on these results, we propose that bile acids enhance activity of CsNEJs, but LCA deteriorate CsNEJs.

  18. 穿心莲内酯衍生物ISA胆盐/磷脂混合胶束的制备及大鼠体内药动学研究%Preparation of Andrographolide Derivative ISA-Loaded Bile Salt-Phosphatidy-I Choline-Mixed Micelles and Pharmacokinetics Evaluation in Rats

    Institute of Scientific and Technical Information of China (English)

    焦文温; 张生杰; 张瑜; 高兴荣; 韩光

    2012-01-01

    目的 制备ISA胆盐/磷脂混合胶束,并对其体外释放特性和大鼠体内药动学特征进行研究.方法 采用薄膜水化法制备ISA胆盐/磷脂混合胶束,以星点设计-效应面法优化处方,透析法考察其体外释放行为,大鼠灌胃给药考察其体内药动学特征.结果 优化所得ISA胆盐/磷脂混合胶束药物浓度为0.87 mg·mL-1,包封率为86.34%,载药量为4.87%,平均粒径为148.3 nm;经拟合ISA胆盐/磷脂混合胶束释放行为符合Rither-Peppas方程;药动学数据经房室模型拟合,ISA与ISA胆盐/磷脂混合胶束均符合二室模型,与原药组相比,胶束组吸收速度常数增加,达峰时间缩短,消除半衰期延长,分布体积减小,清除率降低,AUC增大,MRT延长.结论 ISA胆盐/磷脂混合胶束可增加药物溶解度,提高生物利用度.%OBJECTIVE To prepare ISA-loaded bile salt-phosphatidylcholine-mixed micelles (ISA-BS/PC-MM) and study the release characteristics in vitro and pharmacokinetics in rats. METHODS ISA-BS/PC-MM were prepared by film dispersion method. The formulation was optimized by the central composite design-response surface method. The release behaviors in vitro of the micelles were studied by dialysis method and its pharmacokinetic characteristics were studied by intrastric administration in rats. RESULTS The drug concentration, entrapment efficiency, drug loading and average diameter of the optimized ISA-BS/PC-MM were 0. 87 mg · mL-1 , 86. 34% , 4. 87% and 148. 3 nm, respectively. The release characteristics of ISA-BS/PC-MM were well fitted with Rither-Pep-pas equation. The pharmacokinetic data of ISA and I-SA-BS/PC-MM were in accord with two-compartment model. Compared with the original drug, micelles increased the absorption rate constant, shortened tmax, prolonged the elimination half-life and MRT, reduced the volume of distribution and clearance rate, and increased AUC. CONCLUSION ISA-loaded bile salt-phosphatidy-lcholine-mixed micelles can

  19. Bile acids for primary sclerosing cholangitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Gluud, C

    2003-01-01

    Bile acids have been used for treating primary sclerosing cholangitis, but their beneficial and harmful effects remain unclear.......Bile acids have been used for treating primary sclerosing cholangitis, but their beneficial and harmful effects remain unclear....

  20. A proteomic analysis of human bile

    DEFF Research Database (Denmark)

    Kristiansen, Troels Zakarias; Bunkenborg, Jakob; Gronborg, Mads

    2004-01-01

    We have carried out a comprehensive characterization of human bile to define the bile proteome. Our approach involved fractionation of bile by one-dimensional gel electrophoresis and lectin affinity chromatography followed by liquid chromatography tandem mass spectrometry. Overall, we identified ...

  1. Effects of bile diversion in rats on intestinal sphingomyelinases and ceramidase

    NARCIS (Netherlands)

    Duan, R. D.; Verkade, H. J.; Cheng, Y.; Havinga, R.; Nilsson, A.

    2007-01-01

    Alkaline sphingomyelinase (Alk-SMase) and neutral ceramidase (N-CDase) in the intestinal microvillar membrane are responsible for dietary sphingomyelin digestion. The activities of the enzymes require the presence of bile salt, and the enzymes can be released into the gut lumen in active forms by bi

  2. Effect of ZVAD-fmk on hepatocyte apoptosis after bile duct ligation in rat

    Institute of Scientific and Technical Information of China (English)

    Shyr-Ming Sheen-Chen; Hsin-Tsung Ho; Wei-Jen Chen; Hock-Liew Eng

    2005-01-01

    AIM: Retention and accumulation of toxic hydrophobic bile salts within hepatocyte may cause hepatocyte toxicity by inducing apoptosis. Apoptosis is a pathway of cell death orchestrated by a family of proteases called caspases. Z-ValAla-Asp (OMe)-fluoromethyl ketone (ZVAD-fmk) is a cellpermeable irreversible inhibitor of caspase. The purpose of this study was to evaluate the possible effect of ZVAD-fmk on hepatocyte apoptosis after bile duct ligation in the rat.METHODS: Male Sprague-Dawley rats, weighing 250-300 g,were randomized to five groups of five rats each. Group 1 underwent common bile duct ligation and simultaneous treatment with ZVAD-fmk (dissolved in dimethylsulfoxide (DMSO)). Group 2 underwent common bile duct ligation and simultaneous treatment with Z-Phe-Ala-fluoromethyl ketone ( ZFA-fmk, dissolved in DMSO). Group 3 underwent sham operation and simultaneous treatment with the same amount of DMSO. Group 4 underwent sham operation and simultaneous treatment with the same amount of normal saline. Group 5 underwent common bile duct ligation without other manipulation. After three days, liver tissue was harvested for histopathologic analysis and measurements of apoptosis.RESULTS: When compared with sham operation, common bile duct ligation significantly increased hepatocyte apoptosis (P= 0.008) and ductular proliferation (P= 0.007).ZVAD-fmk significantly diminished the increased hepatocyte apoptosis and ductular proliferation after common bile duct ligation (P = 0.008 and P = 0.007, respectively). ZFA did not show the same effects.CONCLUSION: Hepatocyte apoptosis and ductular proliferation significantly increased after common bile duct ligation. ZVAD-fmk effectively diminished the increased hepatocyte apoptosis and ductular proliferation after common bile duct ligation, whereas ZFA-fmk did not.

  3. Bile acids in regulation of intestinal physiology.

    LENUS (Irish Health Repository)

    Keating, Niamh

    2009-10-01

    In addition to their roles in facilitating lipid digestion and absorption, bile acids are recognized as important regulators of intestinal function. Exposure to bile acids can dramatically influence intestinal transport and barrier properties; in recent years, they have also become appreciated as important factors in regulating cell growth and survival. Indeed, few cells reside within the intestinal mucosa that are not altered to some degree by exposure to bile acids. The past decade saw great advances in the knowledge of how bile acids exert their actions at the cellular and molecular levels. In this review, we summarize the current understanding of the role of bile acids in regulation of intestinal physiology.

  4. Effects of tegaserod on bile composition and hepatic secretion in Richardson ground squirrels on an enriched cholesterol diet

    Directory of Open Access Journals (Sweden)

    Pfannkuche Hans-Juergen

    2006-06-01

    Full Text Available Abstract Background Tegaserod is effective in treating IBS patients with constipation, and does not alter gallbladder motility in healthy individuals or in patients with IBS. However, it is not known if tegaserod affects the biliary tract in gallstone disease, so to this end the effects of tegaserod on bile composition and hepatic secretion of Richardson ground squirrels maintained on an enriched cholesterol diet were examined. Results Animals were fed either a control (0.03% or enriched (1% cholesterol diet for 28 days, and treated s.c. with tegaserod (0.1 mg/kg BID or vehicle. Bile flow, bile acid, phospholipids and cholesterol secretion were measured with standard methods. Tegaserod treatment or enriched cholesterol diet, alone or combination, did not alter body or liver weights. The enriched cholesterol diet increased cholesterol saturation index (CSI, cholesterol concentrations in gallbladder and hepatic duct bile by ~50% and decreased bile acids in gallbladder bile by 17%. Tegaserod treatment reversed these cholesterol-induced changes. None of the treatments, drug or diet, altered fasting gallbladder volume, bile flow and bile salts or phospholipid secretion in normal diet and cholesterol-fed animals. However, tegaserod treatment prevented the decreases in bile acid pool size and cycling frequency caused by the enriched cholesterol diet, consequent to re-establishing normal bile acid to concentrations in the gall bladder. Tegaserod had no effect on these parameters with normal diet animals. Conclusion Tegaserod treatment results in increased enterohepatic cycling and lowers cholesterol saturation in the bile of cholesterol-fed animals. These effects would decrease conditions favorable to cholesterol gallstone formation.

  5. Investigation of antibacterial, acid and bile tolerance properties of lactobacilli isolated from Koozeh cheese

    Directory of Open Access Journals (Sweden)

    Hassan Hassanzadazar

    2012-09-01

    Full Text Available Lactobacillus strains are a major part of the probiotics, microflora of the intestine and of fermented dairy products, and are found in a variety of environments. The aim of this study was to find out the ability of bile and acid tolerance and antibacterial properties of the twenty eight isolates of three group lactobacilli namely Lactobacillus plantarum, Lactobacillus casei and Lactobacillus delbruki. For this purpose Twenty eight different Lactobacillus strains that isolated from Koozeh cheese as a traditional cheese were screened. The acid tolerance test was studied under pH 2.0 and 3.0 with 7.5 as control. The cell count for the acid tolerance test was obtained at an interval of 0, 1, 2 and 3 hours respectively and was pour plated on Man, Rogosa, and Sharpe (MRS agar to be incubated at 37 °C for 24 hours. All cells were selected for bile tolerance test in MRS broth containing bile concentrations of 0% as control and 0.3% as test. Then cell counts were enumerated after 24 hours of incubation on MRS agar. Results showed twenty seven isolates did not have ability to tolerate acid and bile salts and antimicrobial activity against four indicator bacteria included Eshirichia coli, Listeria monocytogenesis, bacillus cereus, Salmonella entritidis. Only one Isolate namely Lactobacillus casei could tolerate acid and bile salt and had antibacterial activity against of L. monocytogenesis. Therefore we can consider this strain as a native probiotic but extra examinations was required.

  6. [Bile phospholipids; function and significance].

    Science.gov (United States)

    Salvioli, G; Salati, R

    1977-09-19

    The part played by phospholipides in the genesis of cholesterol gallstone considered. This is present in patients who frequently present a lecithin synthesis defect at hepatic level since precursors are used for forming triglycerides. Nevertheless polyunsaturated phosphatidicholine has a negative influence on the SB + PL/C ratio in the bile of T-tube subjects receiving 2 g of substance i.v. for 5 days.

  7. Current surgical treatment for bile duct cancer

    Institute of Scientific and Technical Information of China (English)

    Yasuji Seyama; Masatoshi Makuuchi

    2007-01-01

    Since extrahepatic bile duct cancer is difficult to diagnose and to cure, a safe and radical surgical strategy is needed. In this review, the modes of infiltration and spread of extrahepatic bile duct cancer and surgical strategy are discussed. Extended hemihepatectomy, with or without pancreatoduodenectomy (PD), plus extrahepatic bile duct resection and regional lymphadenectomy has recently been recognized as the standard curative treatment for hilar bile duct cancer. On the other hand, PD is the choice of treatment for middle and distal bile duct cancer. Major hepatectomy concomitant with PD (hepatopancreatoduodenectomy) has been applied to selected patients with widespread tumors. Preoperative biliary drainage (BD) followed by portal vein embolization (PVE) enables major hepatectomy in patients with hilar bile duct cancer without mortality. BD should be performed considering the surgical procedure, especially, in patients with separated intrahepatic bile ducts caused by hilar bile duct cancer. Right or left trisectoriectomy are indicated according to the tumor spread and biliary anatomy. As a result, extended radical resection offers a chance for cure of hilar bile duct cancer with improved resectability, curability, and a 5-year survival rate of 40%. A 5-year survival rate has ranged from 24% to 39% after PD for middle and distal bile duct cancer.

  8. THE ALPHA/BETA-HYDROLASE FOLD

    NARCIS (Netherlands)

    OLLIS, DL; CHEAH, E; CYGLER, M; FROLOW, F; FRANKEN, SM; HAREL, M; REMINGTON, SJ; SILMAN, [No Value; SCHRAG, J; SUSSMAN, JL; VERSCHUEREN, KHG; GOLDMAN, A

    1992-01-01

    We have identified a new protein fold-the alpha/beta-hydrolase fold-that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta-sheet, not barrel, of eight beta-sheets connected by alpha-helices. These

  9. The α/β hydrolase fold

    NARCIS (Netherlands)

    Ollis, David L.; Cheah, Eong; Cygler, Miroslaw; Dijkstra, Bauke; Frolow, Felix; Franken, Sybille M.; Harel, Michal; Remington, S. James; Silman, Israel; Schrag, Joseph; Sussman, Joel L.; Verschueren, Koen H.G.; Goldman, Adrian

    1992-01-01

    We have identified a new protein fold-the α/β hydrolase fold-that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an α/β sheet, not barrel, of eight β-sheets connected by α-helices. These enzymes have diverge

  10. 蔵灵菇源克鲁维酵母M3菌株胆盐水解酶的特性研究%Studies on the Characteristics of Bile Salt Hydrolase by Kluyveromyces marxianus M3 from Tibetan Kefir

    Institute of Scientific and Technical Information of China (English)

    刘慧; 何欢; 张雪娇; 潘昌莉; 张红星

    2009-01-01

    探讨蔵灵菇马克斯克鲁维酵母M3菌株胆盐水解酶作用底物的反应条件与金属离子对酶活性的影响及其发酵动力学类型.采用单因素多水平试验方法,在pH 4~8、温度31~43℃、底物浓度4~8 mmol/L及不同化学试剂(SDS、EDTA、尿素、Cu2+、Mg2+、Ca2+、Fe3+、Al3+、Mn2+)的条件下,胆盐水解酶与底物反应30 min,检测酶活力;平板活菌计数法分析细胞生长与产酶的关系;双倒数作图法求得酶促反应动力学常数Km.结果表明,胆盐水解酶最造反应条件:pH为6.0、底物浓度为7mmol/L、温度为37℃,Mn2+、Fe3+、Ca2+金属离子对酶活性有较大提高作用,其他化学试剂对酶活性影响不大.M3菌株在18~21 h进入稳定期,于18 h对数生长期时酶活性达到最高,表明其胆盐水解酶发酵动力学类型为生长偶联合成型.其酶促反应动力学常数Km为2.60 mmol/L,说明该酶与最适底物的亲和力较大.

  11. Screening of bile salt hydrolase activity and application of 16Sr DNA molecular methods for identification of lactic acid bacteria%具有胆盐水解酶活力乳酸菌的筛选及16S rDNA分子生物学鉴定

    Institute of Scientific and Technical Information of China (English)

    董改香; 王俊国; 段智变; 张和平

    2008-01-01

    对分离自内蒙古地区牧民家庭自制的2份酸马奶中的9株乳酸菌,进行胆盐水解酶活力的研究.采用定性和定量两种方法,筛选具有胆盐水解酶活力菌株,并对筛选出的茵株进行16S rDNA分子生物学鉴定.结果表明:9株菌中只有菌株18-1-3有白色颗粒状沉淀生成,其余8株均没产生.游离胆酸的生成量和牛磺胆酸钠的消失量分别为0.8524 mmol/L和0.8520 mmol/L.即游离胆酸钠的生成量和牛磺胆酸钠的消失量成比例.18-1-3菌株鉴定为发酵乳杆菌(Lb.fermentum).

  12. Membrane damage by bile salts: the protective function of phospholipids.

    Science.gov (United States)

    Martin, G P; Marriott, C

    1981-12-01

    The direct toxicity of sodium deoxycholate (SDC) and lysophosphatidylcholine (LPC) to biological membranes was assessed by measurement of goldfish overturn time. When phosphatidylcholine (PC) was incorporated into the aqueous media, the toxicity of both SDC and LPC was reduced, as indicated by increased overturn time. Fish were also pretreated for various times in media containing (a) 1 mM SDC and (b) 1 mM SDC with 1 mM PC. Subsequent transfer to solution, 100 mg litre-1 quinalbarbitone sodium showed that reciprocal overturn times for fish treated using method (a) increased linearly with duration of pretreatment up to a limiting value, obtained after 20 min exposure; 40 min exposure to 1 mM SDC was directly toxic. Fish pretreated using regimen (b) survived longer when challenged with barbiturate, and the reciprocal overturn times were a linear function of time of pretreatment up to at least 40 min. PC also provided protection against membrane damage caused by the synthetic surfactant sodium dodecyl sulphate. Mixed micelle formation between PC and surfactant is thought to account for the protective effects. The results are of significance in the consideration of reflux hypothesis for the aetiology of gastric ulceration and also the possible formulation of drug delivery systems intended to enhance absorption whilst minimizing gastrointestinal damage.

  13. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures.

    Science.gov (United States)

    Liu, Jie; Lu, Hong; Lu, Yuan-Fu; Lei, Xiaohong; Cui, Julia Yue; Ellis, Ewa; Strom, Stephen C; Klaassen, Curtis D

    2014-10-01

    Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. For the classic pathway of BA synthesis, BAs except for UDCA markedly suppressed CYP7A1 (70-95%), the rate-limiting enzyme of bile acid synthesis, but only moderately (35%) down-regulated CYP8B1 at a high concentration of 100μM. BAs had minimal effects on mRNA of two enzymes of the alternative pathway of BA synthesis, namely CYP27A1 and CYP7B1. BAs increased the two major target genes of the farnesoid X receptor (FXR), namely the small heterodimer partner (SHP) by fourfold, and markedly induced fibroblast growth factor 19 (FGF19) over 100-fold. The BA uptake transporter Na(+)-taurocholate co-transporting polypeptide was unaffected, whereas the efflux transporter bile salt export pump was increased 15-fold and OSTα/β were increased 10-100-fold by BAs. The expression of the organic anion transporting polypeptide 1B3 (OATP1B3; sixfold), ATP-binding cassette (ABC) transporter G5 (ABCG5; sixfold), multidrug associated protein-2 (MRP2; twofold), and MRP3 (threefold) were also increased, albeit to lesser degrees. In general, CDCA was the most potent and effective BA in regulating these genes important for BA homeostasis, whereas DCA and CA were intermediate, LCA the least, and UDCA ineffective.

  14. The influence of ferric (III citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384

    Directory of Open Access Journals (Sweden)

    O. Maslovska

    2013-02-01

    peroxidation products in bacterial cells confirms free radical mechanism of oxidation of polyunsaturated fatty acids. Thus, for fulfiling complete analyses of cell response against oxidative stress it was reasonable to investigate the influence of ferric (III citrate on specific ATP-hydrolase activity, Na+, K+-ATP-hydrolase activity and Mg2+-ATP-hydrolase activity of D. acetoxidans ІМV В-7384. Bacteria were cultivated in the modified Postgaite C medium during four days under the anaerobic conditions and temperature +27°С with addition from 10 to 20 mM of ferric (III citrate into the growth medium. Control samples didn’t contain investigated metal salt. Chosen concentrations of metal salt caused inhibition of bacterial growth by 20–50%. Activities of ATP-hydrolases were investigated as described. It was shown, that specific ATP-hydrolase activity of D. acetoxidans ІМV В-7384 is changing in dependance on duration of ferric (III citrate exposure and concentration of the metal salt. Addition of the ferric (III citrate in relatively low concentrations (10–12 mM causes increasing of specific ATP-hydrolase activity of D. acetoxidans IMV B-7384 in comparison with control. Activity of investigated enzymes was inhibited under the increasing of metal salt concentration in bacterial growth medium. Increase of duration of D. acetoxidans IMV B-7384 cultivation causes decrease of ATP-hydrolase activity. Addition of ferric (III citrate causes simultaneous increasing of Na+, K+-ATP-hydrolase activity and inhibition of Mg2+-ATP-hydrolase activity during four days of bacterial cultivation.

  15. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    Science.gov (United States)

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.

  16. Bile acid biosynthesis and its regulation

    Directory of Open Access Journals (Sweden)

    Areta Hebanowska

    2010-10-01

    Full Text Available Bile acid biosynthesis is the main pathway of cholesterol catabolism. Bile acids are more soluble than cholesterol so are easier to excrete. As amphipathic molecules they participate in lipid digestion and absorption in the intestine and they help to excrete free cholesterol with bile. They are also ligands for nuclear receptors regulating the expression of genes involved in cholesterol metabolism. Interconversion of cholesterol into bile acids is an important point of its homeostasis. Seventeen enzymes are engaged in this process and many of them are cytochromes P450. Bile acid synthesis initiation may proceed with the “classical” pathway (starting with cholesterol hydroxylation at the C7α position or the “alternative” pathway (starting with cholesterol hydroxylation at the C27 position. Two additional pathways are possible, though their quantitative significance is small (initiated with cholesterol hydroxylations of C24 and C25 positions. Oxysterols produced are not only intermediates of bile acid biosynthesis but also important regulators of metabolism. Bile acid biosynthesis takes place in the liver, but some enzymes are also present in other organs, where they participate in regulation of cholesterol metabolism. Those enzymes are potential targets for new drugs against cholesterol metabolism disturbances. This article is a brief description of the bile acid biosynthesis pathway and participating enzymes.

  17. Successful Endoscopic Therapy of Traumatic Bile Leaks

    Directory of Open Access Journals (Sweden)

    Matthew P. Spinn

    2013-02-01

    Full Text Available Traumatic bile leaks often result in high morbidity and prolonged hospital stay that requires multimodality management. Data on endoscopic management of traumatic bile leaks are scarce. Our study objective was to evaluate the efficacy of the endoscopic management of a traumatic bile leak. We performed a retrospective case review of patients who were referred for endoscopic retrograde cholangiopancreatography (ERCP after traumatic bile duct injury secondary to blunt (motor vehicle accident or penetrating (gunshot trauma for management of bile leaks at our tertiary academic referral center. Fourteen patients underwent ERCP for the management of a traumatic bile leak over a 5-year period. The etiology included blunt trauma from motor vehicle accident in 8 patients, motorcycle accident in 3 patients and penetrating injury from a gunshot wound in 3 patients. Liver injuries were grade III in 1 patient, grade IV in 10 patients, and grade V in 3 patients. All patients were treated by biliary stent placement, and the outcome was successful in 14 of 14 cases (100%. The mean duration of follow-up was 85.6 days (range 54-175 days. There were no ERCP-related complications. In our case review, endoscopic management with endobiliary stent placement was found to be successful and resulted in resolution of the bile leak in all 14 patients. Based on our study results, ERCP should be considered as first-line therapy in the management of traumatic bile leaks.

  18. A rare case of bile duct cyst

    Institute of Scientific and Technical Information of China (English)

    Qing-Gang Wang; Shu-Tian Zhang

    2009-01-01

    Choledochal cyst is an uncommon disease usually seen in young women and can be divided into five types. We report a 66-year-old woman who was diagnosed with types Ⅱ and Ⅱ bile duct cyst simultaneously after surgery, which is a rare type of bile duct cyst.

  19. Bile duct hamartomas (von Mayenburg complexes) mimicking liver metastases from bile duct cancer: MRC findings

    Institute of Scientific and Technical Information of China (English)

    Yasuhiko Nagano; Kenichi Matsuo; Katsuya Gorai; Kazuya Sugimori; Chikara Kunisaki; Hideyuki Ike; Katsuaki Tanaka; Toshio Imada; Hiroshi Shimada

    2006-01-01

    We present a case of a 72-year-old man with a common bile duct cancer, who was initially believed to have multiple liver metastases based on computed tomography findings, and in whom magnetic resonance cholangiography (MRC) revealed a diagnosis of bile duct hamartomas. At exploration for pancreaticoduodenectomy, liver palpation revealed disseminated nodules at the surface of the liver. These nodules showed gray-white nodular lesions of about 0.5cm in diameter scattered on the surface of both liver lobes, which were looked like multiple liver metastases from bile duct cancer. Frozen section of the liver biopsy disclosed multiple bile ducts with slightly dilated lumens embedded in the collagenous stroma characteristics of multiple bile duct hamartomas (BDHs). Only two reports have described the MRC features of bile duct hamartomas. Of all imaging procedures, MRC provides the most relevant features for the imaging diagnosis of bile duct hamartomas.

  20. Bile acid metabolism in ileostomy patients.

    Science.gov (United States)

    Huibregtse, K; Hoek, F; Sanders, G T; Tytgat, G N

    1977-04-01

    In ten ileostomy patients, a 14C-cholylglycine breath test was performed. The 14CO2 in the exhaled air and the 14C bile acid quantity and composition and fat content in the subsequent 24 h ileostomy effluent were determined and compared to the values in twenty healthy controls. The results show that in ileostomy patients only minor bile acid-deconjugation occurs in vivo. Deconjugation in the ileostomy bags was found to be mainly responsible for the absence of conjugated bile acids in many of the ileostomy effluent samples. Secondary bile acids were not present in these patients, as determined by TLC. The fecal fat and bile acid excretion was found to be in the normal range in ileostomy patients provided no concomitant ileum resection was present.

  1. Bile acids in health and disease

    DEFF Research Database (Denmark)

    Krag, E; Thaysen, E H

    1996-01-01

    improved. Important physiological research on the mechanisms of hepatic bile flow was conducted. An intestinal perfusion model served as a tool providing information on absorption kinetics and on transmucosal water and electrolyte movements. The gallstone disease, liver diseases, inflammatory bowel disease...... to the understanding of the factors involved in the solubility of cholesterol in bile. The growing international understanding of the potential importance of the bile acids in health and disease gave raise to a substantial Danish contribution in the 1970s and 1980s in parallel with international achievements. Emphasis......, fat malabsorption, and other intestinal disorders were studied. The 'idiopathic ileopathy' as a cause for bile acid malabsorption causing diarrhoea was established as a new disorder. Thus, in the time period concerned, substantial Danish contributions emerged on major and minor topics of the bile acid...

  2. [Bile composition in patients with chronic pancreatitis].

    Science.gov (United States)

    Dronov, O I; Koval's'ka, I O; Shvets', Iu P; Vesel's'kyĭ, S P

    2013-05-01

    There was investigated a hepatic bile in 50 persons, aged 35-58 years old, including 20--practically healthy persons (I group), 20 patients, suffering chronic fibrose-degenerative pancreatitis (CHFDP) without jaundice syndrome (II group) and 10 patients, suffering CHFDP with jaundice syndrome (III group). There were determined the contents of the bile acids, the lipids and electrolytic contents of bile. A trustworthy difference in the bile contents was registered in patients, suffering CHFDP with the jaundice syndrome and without it, comparing with such in healthy persons. This have had permitted to add the complex of medicinal preoperative preparation of these patients substantially, and to apply the electrolytes content of a bile to apply as an additional diagnostic marker.

  3. Increased activity of ionised calcium in gall bladder bile in gall stone disease.

    Science.gov (United States)

    Rudnicki, M; Jørgensen, T; Thode, J

    1992-10-01

    The actual activity of ionised calcium (Ca2+) in gall bladder bile determined with an ion-selective electrode was significantly higher in patients with gall stone disease (n = 15) than in patients without gall stones (n = 10) (0.43 mmol/kg v 0.31 mmol/kg; p titration with HCl/NaOH, however, the Ca2+ activity fell with increasing pH in a biphasic manner, with the breaking point occurring at a significantly lower median pH in patients with gall stones than in patients without (pH 7.1 v 8.2; p < 0.0001). The combination of a higher activity of calcium in bile and precipitation of bile salts taking place at a lower pH in patients with gall stone disease than in patients without gall stones suggests a major role for calcium and pH in the pathogenesis of gall stones. Strict anaerobic sampling is not necessary for the measurements of Ca2+ in gall bladder bile, because the Ca2+ was not significantly affected by the changes in pCO2. The metabolic studies suggest, however, that simultaneous measurements of the activity of Ca2+ and pH is important in order to interpret data for the calcium activity in gall bladder bile.

  4. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  5. Transport and biological activities of bile acids.

    Science.gov (United States)

    Zwicker, Brittnee L; Agellon, Luis B

    2013-07-01

    Bile acids have emerged as important biological molecules that support the solubilization of various lipids and lipid-soluble compounds in the gut, and the regulation of gene expression and cellular function. Bile acids are synthesized from cholesterol in the liver and eventually released into the small intestine. The majority of bile acids are recovered in the distal end of the small intestine and then returned to the liver for reuse. The components of the mechanism responsible for the recycling of bile acids within the enterohepatic circulation have been identified whereas the mechanism for intracellular transport is less understood. Recently, the ileal lipid binding protein (ILBP; human gene symbol FABP6) was shown to be needed for the efficient transport of bile acids from the apical side to the basolateral side of enterocytes in the distal intestine. This review presents an overview of the transport of bile acids between the liver and the gut as well as within hepatocytes and enterocytes. A variety of pathologies is associated with the malfunction of the bile acid transport system.

  6. Circadian dysregulation disrupts bile acid homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Ma

    Full Text Available BACKGROUND: Bile acids are potentially toxic compounds and their levels of hepatic production, uptake and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: Both restricted feeding, which phase shifts peripheral clocks, and genetic ablation in Per1(-/-/Per2(-/- (PERDKO mice disrupted normal bile acid control and resulted in hepatic cholestasis. Restricted feeding caused a dramatic, transient elevation in hepatic bile acid levels that was associated with activation of the xenobiotic receptors CAR and PXR and elevated serum aspartate aminotransferase (AST, indicative of liver damage. In the PERDKO mice, serum bile acid levels were elevated and the circadian expression of key bile acid synthesis and transport genes, including Cyp7A1 and NTCP, was lost. This was associated with blunted expression of a primary clock output, the transcription factor DBP, which transactivates the promoters of both genes. CONCLUSIONS/SIGNIFICANCE: We conclude that disruption of the circadian clock results in dysregulation of bile acid homeostasis that mimics cholestatic disease.

  7. Bile Duct Adenoma with Oncocytic Features

    Directory of Open Access Journals (Sweden)

    E. J. Johannesen

    2014-01-01

    Full Text Available Bile duct adenomas are benign bile duct proliferations usually encountered as an incidental finding. Oncocytic bile duct neoplasms are rare and the majority are malignant. A 61-year-old male with a diagnosis of colorectal adenocarcinoma was undergoing surgery when a small white nodule was discovered on the surface of the right lobe of his liver. This lesion was composed of cytologically bland cells arranged in tightly packed glands. These cells were immunopositive for cytokeratin 7, negative for Hep Par 1, contained mucin, and had a Ki67 proliferation index of 8%. The morphology, immunophenotype, presence of mucin, and normal appearing bile ducts, as well as the increased Ki67 proliferation rate, were consistent with a bile duct adenoma with oxyphilic (oncocytic change. Oncocytic tumors in the liver are rare; the first described in 1992. Only two bile duct adenomas with oncocytic change have been reported and neither of them had reported mucin production or the presence of normal appearing bile ducts within the lesion.

  8. Laser-guided repair of complex bile duct strictures.

    NARCIS (Netherlands)

    Gulik, T. van; Beek, J.; Reuver, P. de; Aronson, D.C.; Delden, O. van; Busch, O.; Gouma, D.

    2009-01-01

    BACKGROUND: The repair of bile duct strictures (BDS) requires identification of healthy bile duct proximal to the stenosis. Identification may be difficult in complex bile duct injuries after cholecystectomy or partial liver resection. AIM: We describe a technique to identify the prestenotic bile du

  9. [Correlations of bile acids in the bile of rats in conditions of alloxan induced diabetes melitus].

    Science.gov (United States)

    Danchenko, N M; Vesel'skyĭ, S P; Tsudzevych, B O

    2014-01-01

    The ratio of bile acids in the bile of rats with alloxan diabetes was investigated using the method of thin-layer chromatography. Changes of coefficients of conjugation and hydroxylation of bile acids were calculated and analyzed in half-hour samples of bile obtained during the 3-hour experiment. It has been found that the processes of conjugation of cholic acid with glycine and taurine are inhibited in alloxan diabetes. At the same time a significant increase of free threehydroxycholic and dixydroxycholic bile acids and conjugates of the latter ones with taurine has been registered. Coefficients of hydroxylation in alloxan diabetes show the domination of "acidic" pathway in bile acid biosynthesis that is tightly connected with the activity of mitochondrial enzymes.

  10. Phytosterol ester constituents affect micellar cholesterol solubility in model bile.

    Science.gov (United States)

    Brown, Andrew W; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P

    2010-09-01

    Plant sterols and stanols (phytosterols) and their esters are nutraceuticals that lower LDL cholesterol, but the mechanisms of action are not fully understood. We hypothesized that intact esters and simulated hydrolysis products of esters (phytosterols and fatty acids in equal ratios) would differentially affect the solubility of cholesterol in model bile mixed micelles in vitro. Sodium salts of glycine- and taurine-conjugated bile acids were sonicated with phosphatidylcholine and either sterol esters or combinations of sterols and fatty acids to determine the amount of cholesterol solubilized into micelles. Intact sterol esters did not solubilize into micelles, nor did they alter cholesterol solubility. However, free sterols and fatty acids altered cholesterol solubility independently (no interaction effect). Equal contents of cholesterol and either campesterol, stigmasterol, sitosterol, or stigmastanol (sitostanol) decreased cholesterol solubility in micelles by approximately 50% compared to no phytosterol present, with stigmasterol performing slightly better than sitosterol. Phytosterols competed with cholesterol in a dose-dependent manner, demonstrating a 1:1 M substitution of phytosterol for cholesterol in micelle preparations. Unsaturated fatty acids increased the micelle solubility of sterols as compared with saturated or no fatty acids. No differences were detected in the size of the model micelles. Together, these data indicate that stigmasterol combined with saturated fatty acids may be more effective at lowering cholesterol micelle solubility in vivo.

  11. Bile canalicular changes and defective bile secretion in Opisthorchis viverrini-infected hamsters.

    Science.gov (United States)

    Charoensuk, Lakhanawan; Pinlaor, Porntip; Laothong, Umawadee; Yongvanit, Puangrat; Pairojkul, Chawalit; Nawa, Yukifumi; Pinlaor, Somchai

    2014-12-01

    Infection with the liver fluke Opisthorchis viverrini (Digenea) (Poirier, 1886) causes bile duct injury and periductal fibrosis by chronic overproduction of inflammatory-mediators and eventually results in cholangiocarcinoma development. While extensive research works have been done on O. viverrini infection-associated changes of bile ducts and periductal fibrosis, little attention was paid on morphological and biochemical changes of the bile canaliculi (BC), the origin of bile flow. We aimed to investigate the morphological and functional alterations of BC in the liver of hamsters infected with O. viverrini at one and three months post-infection. Ultrastructural changes of BC showed dilatation of BC and significant reduction of the density of microvilli as early as at one month post-infection. Immunohistochemistry revealed that CD10, a BC marker, expression was reduced early as one month post-infection. The mRNA expression of the genes encoding molecules related to bile secretion including bile acid uptake transporters (slc10a1 and slco1a1), bile acid dependent (abcb11) and independent (abcc2) bile flow and bile acid biosynthesis (cyp7a1 and cyp27a1) were significantly decreased at one month post-infection in association with the reduction of bile volume. In contrast, the expression of the mRNA of bile acid regulatory genes (fxr and shp-1) was significantly increased. These changes essentially persisted up to three months post-infection. In conclusion, O. viverrini infection induces morphological and functional changes of BC in association with the decrease of bile volume.

  12. Fungal epoxide hydrolases: new landmarks in sequence-activity space.

    Science.gov (United States)

    Smit, Martha S

    2004-03-01

    Epoxide hydrolases are useful catalysts for the hydrolytic kinetic resolution of epoxides, which are sought after intermediates for the synthesis of enantiopure fine chemicals. The epoxide hydrolases from Aspergillus niger and from the basidiomycetous yeasts Rhodotorula glutinis and Rhodosporidium toruloides have demonstrated potential as versatile, user friendly biocatalysts for organic synthesis. A recombinant A. niger epoxide hydrolase, produced by an overproducing A. niger strain, is already commercially available and recombinant yeast epoxide hydrolases expressed in Escherichia coli have shown excellent results. Within the vast body of activity information on the one hand and gene sequence information on the other hand, the epoxide hydrolases from the Rhodotorula spp. and A. niger stand out because we have sequence information as well as activity information for both the wild-type and recombinant forms of these enzymes.

  13. Bile acid signaling and biliary functions

    Directory of Open Access Journals (Sweden)

    Hannah Jones

    2015-03-01

    Full Text Available This review focuses on various components of bile acid signaling in relation to cholangiocytes. Their roles as targets for potential therapies for cholangiopathies are also explored. While many factors are involved in these complex signaling pathways, this review emphasizes the roles of transmembrane G protein coupled receptor (TGR5, farnesoid X receptor (FXR, ursodeoxycholic acid (UDCA and the bicarbonate umbrella. Following a general background on cholangiocytes and bile acids, we will expand the review and include sections that are most recently known (within 5–7 years regarding the field of bile acid signaling and cholangiocyte function. These findings all demonstrate that bile acids influence biliary functions which can, in turn, regulate the cholangiocyte response during pathological events.

  14. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    Science.gov (United States)

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB.

  15. Differential expression of cholangiocyte and ileal bile acid transporters following bile acid supplementation and depletion

    Institute of Scientific and Technical Information of China (English)

    N. Sertac Kip; Konstantinos N. Lazaridis; Anatoliy I. Masyuk; Patrick L. Splinter; Robert C. Huebert; Nicholas F. LaRusso

    2004-01-01

    AIM: We have previously demonstrated that cholangiocytes,the epithelial cells lining intrahepatic bile ducts, encode two functional bile acid transporters via alternative splicing of a single gene to facilitate bile acid vectorial transport.Cholangiocytes possess ASBT, an apical sodium-dependent bile acid transporter to take up bile acids, and t-ASBT, a basolateral alternatively spliced and truncated form of ASBT to efflux bile acids. Though hepatocyte and ileal bile acid transporters are in part regulated by the flux of bile acids,the effect of alterations in bile acid flux on the expression of t-ASBT in terminal ileocytes remains unclear. Thus, we tested the hypothesis that expression of ASBT and t-ASBT in cholangiocytes and ileocytes was regulated by bile acid flux. METHODS: Expression of ASBT and t-ASBT message and protein in cholangiocytes and ileocytes isolated from pairfed rats given control (C) and 1% taurocholate (TCA) or 5% cholestyramine (CY) enriched diets, were assessed by both quantitative RNase protection assays and quantitative immunoblotting. The data obtained from each of the control groups were pooled to reflect the changes observed following TCA and CY treatments with respect to the control diets.Cholangiocyte taurocholate uptake was determined using a novel microperfusion technique on intrahepatic bile duct units (IBDUs) derived from C, TCA and CY fed rats.RESULTS: In cholangiocytes, both ASBT and t-ASBT message RNA and protein were significantly decreased in response to TCA feeding compared to C diet. In contrast,message and protein of both bile acid transporters significantly increased following CY feeding compared to C diet. In the ileum, TCA feeding significantly up-regulated both ASBT and t-ASBT message and protein compared to C diet, while CY feeding significantly down-regulated message and protein of both bile acid transporters compared to C diet. As anticipated from alterations in cholangiocyte ASBT expression, the uptake of

  16. Neuronal transport of acid hydrolases and peroxidase within the lysosomal system or organelles: involvement of agranular reticulum-like cisterns.

    Science.gov (United States)

    Broadwell, R D; Oliver, C; Brightman, M W

    1980-04-01

    Neurosecretory neurons of the hyperosmotically stressed hypothalamo-neurohypophysial system have been a useful model with which to demonstrate interrelationships among perikaryal lysosomes, agranular reticulum-like cisterns, endocytotic vacuoles, and the axoplasmic transport of acid hydrolases and horseradish peroxidase. Supraoptic neurons from normal mice and mice given 2% salt water to drink for 5--8 days have been studied using enzyme cytochemical techniques for peroxidase and lysosomal acid hydrolases. Peroxidase-labeling of these neurons was accomplished by intravenous injection or cerebral ventriculocisternal perfusion of the protein as previously reported (Broadwell and Brightman, '79). Compared to normal controls, supraoptic cell bodies from hyperosmotically stimulated mice contained elevated concentrations of peroxidase-labeled dense bodies demonstrated to be secondary lysosomes and acid hydrolase-positive and peroxidase-positive cisterns either attached or unattached to secondary lysosomes. These cisterns were smooth-surfaced and 400--1,000 A wide. Their morphology was similar to that of the agranular reticulum. Some of the cisterns contained both peroxidase and acid hydrolase activities. The cisterns probably represent an elongated form of lysosome and, therefore, are not elements of the agranular reticulum per se. By virtue of their direct connections with perikaryal secondary lysosomes, these cisterns may provide the route by which acid hydrolases and exogenous macromolecules can leave perikaryal secondary lysosomes for anterograde flow down the axon. Very few smooth-surfaced cisterns were involved in the retrograde transport of peroxidase within pituitary stalk axons from normal and salt-treated mice injected intravenously with peroxidase. Peroxidase undergoing retrograde transport was predominantly in endocytotic structures such as vacuoles and cup-shaped organelles, which deliver this exogenous macromolecule directly to secondary lysosomes for

  17. Bacterial CS2 hydrolases from Acidithiobacillus thiooxidans strains are homologous to the archaeal catenane CS2 hydrolase.

    Science.gov (United States)

    Smeulders, Marjan J; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R M; Hermans, John; Jetten, Mike S M; Op den Camp, Huub J M

    2013-09-01

    Carbon disulfide (CS(2)) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS(2) is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO(2)) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS(2)-polluted airstreams. We report on the mechanism of bacterial CS(2) conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS(2) hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS(2) hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS(2) hydrolases within the β-CA family. Unlike CAs, the CS(2) hydrolases did not hydrate CO(2) but converted CS(2) and COS with H(2)O to H(2)S and CO(2). The CS(2) hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS(2) hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS(2) hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS(2) hydrolases based on the structure of Acidianus strain A1-3 CS(2) hydrolase suggest that the A. thiooxidans strain G8 CS(2) hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation.

  18. Taurolithocholate impairs bile canalicular motility and canalicular bile secretion in isolated rat hepatocyte couplets

    Institute of Scientific and Technical Information of China (English)

    Norihito Watanabe; Tatehiro Kagawa; Sei-ichiro Kojima; Shinji Takashimizu; Naruhiko Nagata; Yasuhiro Nishizaki; Tetsuya Mine

    2006-01-01

    AIM: To investigate the effects of taurolithocholate (TLC)on the canalicular motility in isolated rat hepatocyte couplets (IRHC).METHODS: TLC was added to IRHC at concentrations of 10 and 50 μmol/L, respectively. In each group, five time-lapse movies containing 3 representative bile canaliculi were taken under phase-contrast microscopy for 12 h. The number of bile canalicular contractions and the intervals between consecutive canalicular contractions were calculated. Furthermore, the effects of TLC on IRHC were examined by transmission electron microscopy.RESULTS: The bile canalicular contractions were spontaneous and forceful in the controls. Active vesicular movement was observed in the pericanalicular region. Immediately after the addition of TLC, the bile canaliculi were deformed, and canalicular bile was incorporated into the vacuoles. The canaliculi were gradually dilated, and canalicular contractions were markedly inhibited by TLC. The vesicular movements became extremely slow in the pericanalicular region. The number of canalicular contractions significantly decreased in the TLC-treated groups, as compared with that in the controls. The time intervals were prolonged, as the TLC dosage increased,indicating that bile secretion into the canaliculi was impaired with TLC. Transmission electron microscopy revealed the lamellar transformation of the canalicular membranes in IRHC treated with TLC.CONCLUSION: TLC impairs both the bile canalicular contractions and the canalicular bile secretion, possibly by acting directly on the canalicular membranes in TLCinduced cholestasis.

  19. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation

    NARCIS (Netherlands)

    Lefebvre, Philippe; Cariou, Bertrand; Lien, Fleur; Kuipers, Folkert; Staels, Bart

    2009-01-01

    Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiol Rev 89: 147-191,2009; doi: 10.1152/physrev.00010.2008. - The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an incre

  20. Effect of bile acids on digestion

    Directory of Open Access Journals (Sweden)

    O. O. Stremoukhov

    2013-12-01

    Full Text Available Studying the effects of different bile acids in the body in recent years significantly increased the understanding of their physiological functions. The role of bile acids is to transfer to Striated border of enterocytes lipids in high micellar concentration and subsequent return them to the water layer in the molecular form. The rate of diffusion of molecules or particles is inversely proportional to the square root of the magnitude of their molecular weight. Main components of the glycoprotein complex (GPC allows to preserve the natural structure of mucosa. Previous physicochemical experiments on GPC established presence of bile acids (3,5 to 10 mg/ml, enzymes (amylase and lipase, amino acids (from 10150 to 29500 ug/ml in the complex. Objective. The aim was to study the influence of bile on fat filtration on the model of GPC. Method and Materials. Soaked filters were put on the tubes: with bile - the first, water - the second group, GPC bile at a dose of 25 mg/kg - the third group. Then on each filter was poured 2 ml of liquid fat. 30 minutes after the start of the experiment the amount of liquid fat that passes through the filter was measured. Results and Discussion. As established in the first group (bile medical, the amount of liquid fat, which passed through the filter amounted to 1,85±0,02 ml. In the second group (water - 0,30 ± 0,03 ml. In the third group (GPC 25 mg/kg - 1,75±0,02 ml. After that the impact of GPC bile in emulsification of fats was studied. 1 ml of vegetable oil and 1,5 ml of purified water were contributed in three series of tubes. The first series of test tubes left unchanged. In the other two 2 ml in 2 series - medical bile in 3 series - GPC bile were added. Tubes were shaken in all series. In the first (control series observed the formation of turbid fluid - emulsion. However, in a few seconds instability of the emulsion was detected. In the second and third series of tubes formation of stable emulsions which are

  1. Bile Acid Signaling in Liver Metabolism and Diseases

    Directory of Open Access Journals (Sweden)

    Tiangang Li

    2012-01-01

    Full Text Available Obesity, diabetes, and metabolic syndromes are increasingly recognized as health concerns worldwide. Overnutrition and insulin resistance are the major causes of diabetic hyperglycemia and hyperlipidemia in humans. Studies in the past decade provide evidence that bile acids are not just biological detergents facilitating gut nutrient absorption, but also important metabolic regulators of glucose and lipid homeostasis. Pharmacological alteration of bile acid metabolism or bile acid signaling pathways such as using bile acid receptor agonists or bile acid binding resins may be a promising therapeutic strategy for the treatment of obesity and diabetes. On the other hand, bile acid signaling is complex, and the molecular mechanisms mediating the bile acid effects are still not completely understood. This paper will summarize recent advances in our understanding of bile acid signaling in regulation of glucose and lipid metabolism, and the potentials of developing novel therapeutic strategies that target bile acid metabolism for the treatment of metabolic disorders.

  2. Hepatic bile acids and bile acid-related gene expression in pregnant and lactating rats

    Directory of Open Access Journals (Sweden)

    Qiong N. Zhu

    2013-08-01

    Full Text Available Background. Significant physiological changes occur during pregnancy and lactation. Intrahepatic cholestasis of pregnancy (ICP is a liver disease closely related to disruption of bile acid homeostasis. The objective of this study was to examine the regulation of bile acid synthesis and transport in normal pregnant and lactating rats.Materials and Methods. Livers from timed pregnant SD rats were collected on gestational days (GD 10, 14 and 19, and postnatal days (PND 1, 7, 14 and 21. Total bile acids were determined by the enzymatic method, total RNA was isolated and subjected to real time RT-PCR analysis. Liver protein was extracted for western-blot analysis.Results. Under physiological conditions hepatic bile acids were not elevated during pregnancy but increased during lactation in rats. Bile acid synthesis rate-limiting enzyme Cyp7a1 was unchanged on gestational days, but increased on PND14 and 21 at mRNA and protein levels. Expression of Cyp8b1, Cyp27a1 and Cyp7b1 was also higher during lactation. The mRNA levels of small heterodimer partner (SHP and protein levels of farnesoid X receptor (FXR were increased during pregnancy and lactation. Bile acid transporters Ntcp, Bsep, Mrp3 and Mrp4 were lower at gestation, but increased during lactation. Hepatic Oatp transporters were decreased during pregnancy and lactation.Conclusion. Hepatic bile acid homeostasis is maintained during normal pregnancy in rats, probably through the FXR-SHP regulation. The expression of bile acid synthesis genes and liver bile acid accumulation were increased during lactation, together with increased expression of bile acid efflux transporter Bsep, Mrp3 and Mrp4.

  3. A simplified electrostatic model for hydrolase catalysis.

    Science.gov (United States)

    Pessoa Filho, Pedro de Alcantara; Prausnitz, John M

    2015-07-01

    Toward the development of an electrostatic model for enzyme catalysis, the active site of the enzyme is represented by a cavity whose surface (and beyond) is populated by electric charges as determined by pH and the enzyme's structure. The electric field in the cavity is obtained from electrostatics and a suitable computer program. The key chemical bond in the substrate, at its ends, has partial charges with opposite signs determined from published force-field parameters. The electric field attracts one end of the bond and repels the other, causing bond tension. If that tension exceeds the attractive force between the atoms, the bond breaks; the enzyme is then a successful catalyst. To illustrate this very simple model, based on numerous assumptions, some results are presented for three hydrolases: hen-egg white lysozyme, bovine trypsin and bovine ribonuclease. Attention is given to the effect of pH.

  4. Peptidoglycan hydrolase fusions maintain their parental specificities.

    Science.gov (United States)

    Donovan, David M; Dong, Shengli; Garrett, Wes; Rousseau, Geneviève M; Moineau, Sylvain; Pritchard, David G

    2006-04-01

    The increased incidence of bacterial antibiotic resistance has led to a renewed search for novel antimicrobials. Avoiding the use of broad-range antimicrobials through the use of specific peptidoglycan hydrolases (endolysins) might reduce the incidence of antibiotic-resistant pathogens worldwide. Staphylococcus aureus and Streptococcus agalactiae are human pathogens and also cause mastitis in dairy cattle. The ultimate goal of this work is to create transgenic cattle that are resistant to mastitis through the expression of an antimicrobial protein(s) in their milk. Toward this end, two novel antimicrobials were produced. The (i) full-length and (ii) 182-amino-acid, C-terminally truncated S. agalactiae bacteriophage B30 endolysins were fused to the mature lysostaphin protein of Staphylococcus simulans. Both fusions display lytic specificity for streptococcal pathogens and S. aureus. The full lytic ability of the truncated B30 protein also suggests that the SH3b domain at the C terminus is dispensable. The fusions are active in a milk-like environment. They are also active against some lactic acid bacteria used to make cheese and yogurt, but their lytic activity is destroyed by pasteurization (63 degrees C for 30 min). Immunohistochemical studies indicated that the fusion proteins can be expressed in cultured mammalian cells with no obvious deleterious effects on the cells, making it a strong candidate for use in future transgenic mice and cattle. Since the fusion peptidoglycan hydrolase also kills multiple human pathogens, it also may prove useful as a highly selective, multipathogen-targeting antimicrobial agent that could potentially reduce the use of broad-range antibiotics in fighting clinical infections.

  5. Bile composition in Alagille Syndrome and PFIC patients having Partial External Biliary Diversion

    Directory of Open Access Journals (Sweden)

    Thompson Richard J

    2008-10-01

    Full Text Available Abstract Background Partial External Biliary Diversion (PEBD is a surgical intervention to treat children with Progressive Familial Intrahepatic Cholestasis (PFIC and Alagille syndrome (AGS. PEBD can reduce disease progression, and examining the alterations in biliary lipid composition may be a prognostic factor for outcome. Methods Biliary lipid composition and the clinical course of AGS and PFIC patients were examined before and after PEBD. Results Pre-PEBD bile from AGS patients had greater chenodeoxycholic/cholic acid (CDCA/CA, bile salt, cholesterol and phospholipid concentrations than PFIC patients. AGS patients, and PFIC patients with familial intrahepatic cholestasis 1 (FIC1 genotype, responded better to PEBD than PFIC patients with bile salt export protein (BSEP genotype. After successful PEBD, AGS patients have higher biliary lipid concentrations than PFIC patients and PEBD also increases biliary phospholipid concentrations in FIC1 patients. Conclusion Both AGS and FIC1 patients can benefit from PEBD, and preserved biliary phospholipid concentrations may be associated with better outcomes post-PEBD.

  6. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian;

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state, are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to ...... of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora....

  7. Bile acid formation in primary human hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Curt Einarsson; Ewa Ellis; Anna Abrahamsson; Bo-G6ran Ericzon; Ingemar Bj rkhem; Magnus Axelson

    2000-01-01

    AIM To evaluate a culture system for bile acid formation in primary human hepatocytes in comparison with HepG2 cells. METHODS Hepatocytes were isolated from normal human liver tissue and were cultured in serum-free William's E medium. The medium was collected and renewed every 24 h. Bile acids and their precursors in media were finally analysed by gas chromatography-mass spectrometry. RESULTS Cholic acid ( CA ) andchenodeoxycholic acid (CDCA) conjugated with glycine or taurine accounted for 70% and 25% of total steroids. A third of CDCA was also conjugated with sulphuric acid. Dexamathasone and thyroid hormorm alone or in combination did not significantly effect bile acid formation. The addition of cyclosporin A (10 μmol/L) inhibited the synthesis of CA and CDCA by about 13% and 30%, respectively. CONCLUSION Isolated human hepatocytes in primary culture behave as in the intact liver by converting cholesterol to conjugated CA and CDCA. This is in contrast to cultured HepG2 cells, which release large amounts of bile acid precursors and unconjugated bile acids into the medium.

  8. Bile acid formation in primary human hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Curt Einarsson; Ewa Ellis; Anna Abrahamsson; Bo-G ran Ericzon; Ingemar Bj rkhem; Magnus Axelson

    2000-01-01

    AIM To evaluate a system for bile acid formation in human hepatocytes in comparison with HepG2 cells.METHODS Hepatocytes were isolated from normal human liver tissue and were cultured in serum-freeWilliam's E medium. The medium was collected and renewed every 24 h. Bile acids and their precursors inmedia were finally analysed by gas chromatography-mass spectrometry.RESULTS Cholic acid (CA) and chenodeoxycholic acid (CDCA) conjugated with glycine or taurineaccounted for 70% and 25% of total steroids. One third of CDCA was also conjugated with sulphuric acid.Dexamethasone and thyroid hormone alone or in combination did not significantly affect bile acid formation.The addition of cyclosporin A (10 tm) inhibited the synthesis of CA and CDCA by about 13% and 30%,respectively.CONCLUSION Isolated human hepatocytes in primary culture behave as in the intact liver by convertingalmost quantitatively cholesterol to conjugated CA and CDCA. This is in contrast to cultured HepG2 cells,which release large amounts of bile acid precursors and unconjugated bile acids into the medium.

  9. Bile Acid-Induced Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Elisabeth Lang

    2016-04-01

    Full Text Available Background/Aims: In nucleated cells, bile acids may activate cation channels subsequently leading to entry of Ca2+. In erythrocytes, increase of cytosolic Ca2+ activity triggers eryptosis, the suicidal death of erythrocytes characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis is triggered by bile duct ligation, an effect partially attributed to conjugated bilirubin. The present study explored, whether bile acids may stimulate eryptosis. Methods: Phosphatidylserine exposing erythrocytes have been identified utilizing annexin V binding, cell volume estimated from forward scatter, cytosolic Ca2+ activity determined using Fluo-3 fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Results: The exposure of human erythrocytes to glycochenodesoxycholic (GCDC and taurochenodesoxycholic (TCDC acid was followed by a significant decrease of forward scatter and significant increase of Fluo-3 fluorescence, ceramide abundance as well as annexin V binding. The effect on annexin V binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusion: Bile acids stimulate suicidal cell death, an effect paralleled by and in part due to Ca2+ entry and ceramide. The bile acid induced eryptosis may in turn lead to accelerated clearance of circulating erythrocytes and, thus, may contribute to anemia in cholestatic patients.

  10. Classiifcation of iatrogenic bile duct injur y

    Institute of Scientific and Technical Information of China (English)

    Wan-Yee Lau; Eric C.H. Lai

    2007-01-01

    BACKGROUND: Iatrogenic bile duct injury continues to be an important clinical problem, resulting in serious morbidity, and occasional mortality, to patients. The ease of management, operative risk, and outcome of bile duct injuries vary considerably, and are highly dependent on the type of injury and its location. This article reviews the various classiifcation systems of bile duct injury. DATA SOURCES: A Medline, PubMed database search was performed to identify relevant articles using the keywords"bile duct injury", "cholecystectomy", and “classiifcation”. Additional papers were identiifed by a manual search of the references from the key articles. RESULTS: Traditionally, biliary injuries have been classiifed using the Bismuth's classiifcation. This classiifcation, which originated from the era of open surgery, is intended to help the surgeons to choose the appropriate technique for the repair, and it has a good correlation with the ifnal outcome after surgical repair. However, the Bismuth's classiifcation does not encompass the whole spectrum of injuries that are possible. Bile duct injury during laparoscopic cholecystectomy tends to be more severe than those with open cholecystectomy. Strasberg’s classiifcation made Bismuth’s classiifcation much more comprehensive by including various other types of extrahepatic bile duct injuries. Our group, Bergman et al, Neuhaus et al, Csendes et al, and Stewart et al have also proposed other classiifcation systems to complement the Bismuth's classiifcation. CONCLUSIONS:None of the classiifcation system is universally accepted as each has its own limitation. Hopefully, a universally accepted comprehensive classiifcation system will be published in the near future.

  11. Carboxylic ester hydrolases in mitochondria from rat skeletal muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Zelander, T

    1990-01-01

    A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both organophosph......A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both...

  12. The gut microbiome, probiotics, bile acids axis, and human health.

    Science.gov (United States)

    Jones, Mitchell Lawrence; Tomaro-Duchesneau, Catherine; Prakash, Satya

    2014-06-01

    The human gut microbiome produces potent ligands to bile acid receptors, and probiotics could act as therapeutics of bile acid dysmetabolism. A recent study in Cell Reports demonstrates that probiotic VSL#3 affects bile acid deconjugation and excretion, as well as the gut-liver FXR-FGF15 axis.

  13. Beyond intestinal soap-bile acids in metabolic control

    NARCIS (Netherlands)

    Kuipers, Folkert; Bloks, Vincent W.; Groen, Albert K.

    2014-01-01

    Over the past decade, it has become apparent that bile acids are involved in a host of activities beyond their classic functions in bile formation and fat absorption. The identification of the farnesoid X receptor (FXR) as a nuclear receptor directly activated by bile acids and the discovery that bi

  14. A case of fascioliasis in common bile duct

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Soo Youn; Park, Cheol Min; Chung, Kyu Byung; Lee, Chang Hong; Park, Seung Chul; Choi, Sang Yong; Lim, Han Jong [Korea University College of Medicine, Seoul (Korea, Republic of)

    1989-10-15

    A case of Fascioliasis of common bile duct is confirmed by visualization of adult fluke. Fascioliasis caused by Fasciola hepatica, is common parasitic disease in cattle and sheep. Human is an accidental host. ERCP demonstrated irregular linear conglomerated filling defects in common bile duct. Through surgical intervention, we found adult flukes of F. hepatica and adenomatous hyperplasia of common bile duct.

  15. Carboxylic ester hydrolase and amylase in ischemic pancreatitis in the guinea pig.

    Science.gov (United States)

    Blind, P J; Bläckberg, L; Lundström, E B; Emdin, S O; Hernell, O

    1996-05-01

    The observation that an elevated level of pancreatic carboxylic ester hydrolase (CEH) in serum is a more sensitive and specific marker of acute pancreatitis than is elevated serum amylase activity prompted us to explore whether these findings could be confirmed in an experimental model and, if so, to find the explanation behind this difference. We therefore developed a model for ischemic pancreatitis in the guinea pig and a sandwich enzyme-linked immunosorbent assay for determination of CEH in this species. There was a strong correlation between duration of ischemia and severity of pancreatic inflammation and between severity of inflammation and serum CEH level. In contrast, serum amylase was elevated only in animals with the most severe grade of inflammation. Amylase was, however, increased in urine in animals with mild inflammation, but the level did not increase with severity of inflammation. Only one of 31 animals had detectable CEH in urine. In animals with intermediate serum CEH levels the serum and biliary concentrations correlated, indicating that CEH may be cleared by the liver. Amylase was detectable in bile only in animals with high serum levels. The results confirm our observations made in previous clinical studies. A likely explanation for differences in serum levels of CEH and amylase is clearance from the circulation at different rates and, at least partly, via different routes, e.g., the liver and kidney, respectively.

  16. The "flying" bile duct: avulsion of the common bile duct in a plane crash survivor.

    LENUS (Irish Health Repository)

    Mohan, H

    2012-02-01

    Blunt trauma is an unusual cause of extrahepatic bile duct injury. This is a case of a 51-year-old gentleman who sustained a significant seatbelt injury in a plane crash. Laparotomy, performed due to persistent abdominal pain, revealed that the common bile duct (CBD) was completely avulsed from the duodenum. Following insertion of drains and transfer to a hepatobiliary centre, the devascularised CBD was excised and replaced with a roux-en-y hepaticojejunostomy. Necrotic tissue was debrided from the pancreatic head. A persistent bile leak developed from the sub-hepatic drain. Repeat laparotomy revealed a bile leak from small ducts on the liver surface. Ligation of the ducts and bioglue sealing of the area were successfully performed. Subsequent to this a pancreatic fistula developed from the main pancreatic duct, which has since resolved. This unusual case illustrates the need for prompt recognition and early repair to optimise outcomes in traumatic CBD injury.

  17. Bile acids for primary sclerosing cholangitis

    DEFF Research Database (Denmark)

    Poropat, Goran; Giljaca, Vanja; Stimac, Davor

    2011-01-01

    Primary sclerosing cholangitis is a progressive chronic cholestatic liver disease that usually leads to the development of cirrhosis. Studies evaluating bile acids in the treatment of primary sclerosing cholangitis have shown a potential benefit of their use. However, no influence on patients...

  18. Double common bile duct: A case report

    Institute of Scientific and Technical Information of China (English)

    Srdjan P Djuranovic; Milenko B Ugljesic; Nenad S Mijalkovic; Viktorija A Korneti; Nada V Kovacevic; Tamara M Alempijevic; Slaven V Radulovic; Dragan V Tomic; Milan M Spuran

    2007-01-01

    Double common bile duct (DCBD) is a rare congenital anomaly in which two common bile ducts exist. One usually has normal drainage into the papilla duodeni major and the other usually named accessory common bile duct (ACBD) opens in different parts of upper gastrointestinal tract (stomach, duodenum, ductus pancreaticus or septum). This anomaly is of great importance since it is often associated with biliary lithiasis, choledochal cyst, anomalous pancreaticobiliary junction (APBJ) and upper gastrointestinal tract malignancies. We recently recognized a rare case of DCBD associated with APBJ with lithiasis in better developed common bile duct. The opening site of ACBD was in the pancreatic duct. The anomaly was suspected by transabdominal ultrasonography and finally confirmed by endoscopic retrograde cholangiopancreatography (ERCP) followed by endoscopic sphincterotomy and stone extraction. According to the literature, the existence of DCBD with the opening of ACBD in the pancreatic duct is most frequently associated with APBJ and gallbladder carcinoma. In case of DCBD, the opening site of ACBD is of greatest clinical importance because of its close implications with concomitant pathology. The adequate diagnosis of this rare anomaly is significant since the operative complications may occur in cases with DCBD which is not recognized prior to surgical treatment.

  19. 13.7.Gallbladder and bile duct

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920141 Relationship between endotoxemiaand humoral immunity during biliary shock.CHI Pan (池畔),et al.Dept Liv & Bili Surg,UnionHosp,Fujian Med Coll.Chin J Digest 1991; 11(8):141-143.The authors observed dynamically the changesof plasma endotoxin (ET),bile ET and immunolo-

  20. Cefotaxime and desacetyl cefotaxime in human bile

    OpenAIRE

    1983-01-01

    Ten patients were injected with 2 g cefotaxime i. v. The antibacterial activity in the bile was measured by the agar diffusion test and the concentrations of cefotaxime and desacetyl cefotaxime were determined by high performance liquid chromatography. The values found allow the use of cefotaxime in infectious biliary diseases.

  1. Familial occurrence of congenital bile duct dilatation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Congenital bile duct dilatation (CBD) that developed in a parent and son is presented.Familial occurrence of CBD is rare,with only a few male cases having been reported.Since the initial report of CBD occurring in siblings in 1981,a total of 20 cases (10 pairs) have been published as of 2007.Clinical and genetic features of CBD are discussed.

  2. Protection of Dachaihu Granule on guinea pigs with bile pigment stones and its mechanism%大柴胡颗粒对胆色素结石豚鼠保护作用机制研究

    Institute of Scientific and Technical Information of China (English)

    喻斌; 阮鸣; 张志芬; 王兆龙; 卢金福; 吕高红; 许惠琴

    2013-01-01

    目的 观察大柴胡颗粒对胆色素结石豚鼠胆囊黏膜表皮生长因子(EGF)表达水平,肝、胆超微结构,肝组织胆固醇7α-羟化酶(CYP7Al)mRNA水平以及胆盐转运子BSEP、MRP2表达水平的影响,明确其对胆色素结石豚鼠的保护作用机制.方法 采用饲料法复制胆色素结行豚鼠模型,免疫组化法观察大柴胡颗粒(11、2.2、4.4 g/kg)对胆色素结石豚鼠的胆囊EGF水平的影响,透射电镜观察肝胆组织超微结构的改变,RT-PCR法检测肝组织CYP7A1基因表达水平,Westernblotting法检测肝脏中BSEP、MRP2表达水平,以熊去氧胆酸作为阳性对照.结果 大柴胡颗粒对胆结石豚鼠胆囊黏膜EGF表达影响不明显,但较好地改善其肝胆超微结构,其2.2、4.4 g/kg剂量组还能增加肝脏组织CYP7A1的基因转录(P<0.05、0.01)和BSEP、MRP2蛋白表达水平(P<0.05).结论 大柴胡颗粒抑制豚鼠胆色素结石形成可能与其影响豚鼠胆汁酸代谢、促进胆盐转运子功能、保护肝胆细胞器结构有关,而与胆囊黏膜EGF功能无明显关系.%Objective To study the effect of Dachaihu Granules (DG) on the expression of epidermal growth factors (EGF) of gallbladder mucosa in guinea pigs with bile pigment stones (BPS),the ultrastructure of liver and gallbladder epithelial cells,the level of cholesterol 7 alpha-hydrolase (CYP7A1) mRNA,and the expression of bile salt transporters,BSEP and MRP2,in liver cells for explaining the protective mechanism of the drug further.Methods The guinea pigs with BPS were established by fodder method.With the interference of DG (1.1,2.2,and 4.4 g/kg),the expression of EGF locating on the bile gallbladder was detected by immunohistochemistry.The ultrastructure of liver and gallbladder epithelial cells was detected by transmission electron microscopy (TEM).The CYP7A1 mRNA expression level in liver was detected by RT-PCR and the expression levels of BSEP and MRP2 in liver were detected by Western blotting

  3. Salt cookbook

    CERN Document Server

    Saha, Anirban

    2015-01-01

    If you are a professional associated with system and infrastructure management, looking at automated infrastructure and deployments, then this book is for you. No prior experience of Salt is required.

  4. Phosphate salts

    Science.gov (United States)

    ... levels that are too high, and for preventing kidney stones. They are also taken for treating osteomalacia (often ... But intravenous phosphate salts should not be used. Kidney stones (nephrolithiasis). Taking potassium phosphate by mouth might help ...

  5. Bile acid signaling in metabolic disease and drug therapy.

    Science.gov (United States)

    Li, Tiangang; Chiang, John Y L

    2014-10-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.

  6. Herbert Falk: a vital force in the renaissance of bile acid research and bile acid therapy.

    Science.gov (United States)

    Hofmann, Alan F

    2011-01-01

    Herbert Falk died on August 8, 2008, after a long illness. It was his vision that initiated the Bile Acid Meetings and brought to market chenodeoxycholic acid and ursodeoxycholic acid for the dissolution of cholesterol gallstones as well as the successful treatment of cholestatic liver disease. The 1st Bile Acid Meeting was a small workshop held at the University Hospital of Freiburg in 1970. Great interest in the topic was evident at that small meeting and led to a larger meeting in 1972, whose scope included both the basic and clinical aspects of bile acids. These meetings have continued at biennial intervals, the 2010 meeting being the 21st. The program has always included discussions of the most fundamental aspects of bile acid biosynthesis and metabolism as well as clinical applications of bile acid therapy. The meetings featured brief presentations, ample time for discussion, and imaginative social programs. They have always been flawlessly organized. Social programs usually included a hike through the beautiful countryside of the Black Forest followed by dinner in a rustic restaurant. Herbert Falk took part in these programs, personally welcoming every participant. In the warm glow of the 'Badische' hospitality, friendships developed, and scientific collaborations were often arranged. From a scientific standpoint, there has been enormous progress in understanding the chemistry and biology of bile acids. Herbert Falk established the Windaus Prize in 1978, and the prize has been given to individuals whose contributions moved the field forward. These bile acid meetings have been marvelous, rewarding experiences. We must all be grateful to Herbert Falk's vision in establishing the Falk Foundation that has so generously sponsored these meetings. We also express our gratitude to his widow, Ursula Falk, who continues this worthy tradition.

  7. Copper ions inactivate S-ade-nosylhomocysteine hydrolase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    S-adenosylhomocysteine (AdoHcy) hydrolase isan enzyme that regulates biomethylation and some otherphysiological processes. Recombinant AdoHcy hydrolase wasoverexpressed in E. coli JM109 and purified with ion ex-change and gel filtration chromatographies. The effects ofcopper ions (Cu2+) on the activity of AdoHcy hydrolase wereinvestigated and the results showed that Cu2+ inhibited theenzyme's activity by a concentration and time-dependentprocess. The inhibition constant (Ki) and the apparent rateconstant (kapp) were calculated to be (14 + 4) nmol @ L-1 and(1.08 + 0.15) min-1, respectively. The existence of the naturalsubstrate Ado could to some extent prevent Cu2+ from inac-tivating the enzyme, suggesting that copper ions possiblycould compete with the natural substrate on enzyme's sub-strate binding site. Further studies on the mechanism of in-hibition are being carried out.

  8. Pepsin and bile acid concentrations in sputum of mustard gas exposed patients

    Directory of Open Access Journals (Sweden)

    Ashraf Karbasi

    2013-01-01

    Full Text Available Background/Aim: Gastro-esophageal reflux has been suggested to be associated with several pulmonary complications such as asthma, and post-transplant bronchiolitis obliterans (BO. Pepsin or bile salts in the sputum is shown to be an optimal molecular marker of gastric contents macro/micro aspiration. In this study, we investigated sputum pepsin as a marker of micro-aspiration in sulfur mustard (SM exposed cases compared to healthy controls. Materials and Methods: In a case controlled study, 26 cases with BO and 12 matched healthy controls were recruited and all cases were symptomatic and their exposure to SM was previously documented during Iran-Iraq conflict. Pepsin levels in sputum and total bile acids were measured using enzymatic assay. The severity of respiratory disorder was categorized based upon the spirometric values. Result: The average concentration of pepsin in sputum was higher in the case group (0.29 ± 0.23 compared with healthy subjects (0.13 ± 0.07; P ± 0.003. Moreover, the average concentration of bile acids in the sputum cases was not significantly different in comparison to the controls ( P = 0.5. Conclusion: Higher pepsin concentrations in sputum of SM exposed patients compared with healthy control subjects indicate the occurrence of significantly more gastric micro-aspiration in SM exposed patients.

  9. Bile tract adenomyoma: A case report

    Institute of Scientific and Technical Information of China (English)

    Gui-Ming Shu; Yi-Jun Wang; Zhi Du; Dong-Yan Li; Chang-Li Liu

    2008-01-01

    This paper described a rare case of adenomyoma of common bile duct. The case is a 51-year-old man who was hospitalized for yellow color skin and sclera and itching for 2 mo without abdominal pain. Nothing special was found in physical examination except yellowish skin and sclera. The clinical presentation and Computerized Tomography (CT), Magnetic resonance cholangiopancreatography (MRCP), and ultrasonography suspected a tumor of the distal bile duct. The patient was treated successfully by pancreaticoduodenectomy. Histologically, the lesion consisted of adenoid and myofibrous tissue and moderate atypia. The immunophenotype of the epithelial component was cytokeratin 7+/cytokeratin 20-. The patient has been well without any evidence of recurrence for 12 mo since his operation.

  10. Percutaneous treatment of benign bile duct strictures

    Energy Technology Data Exchange (ETDEWEB)

    Koecher, Martin [Department of Radiology, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic)]. E-mail: martin.kocher@seznam.cz; Cerna, Marie [Department of Radiology, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Havlik, Roman [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Kral, Vladimir [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Gryga, Adolf [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Duda, Miloslav [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic)

    2007-05-15

    Purpose: To evaluate long-term results of treatment of benign bile duct strictures. Materials and methods: From February 1994 to November 2005, 21 patients (9 men, 12 women) with median age of 50.6 years (range 27-77 years) were indicated to percutaneous treatment of benign bile duct stricture. Stricture of hepatic ducts junction resulting from thermic injury during laparoscopic cholecystectomy was indication for treatment in one patient, stricture of hepaticojejunostomy was indication for treatment in all other patients. Clinical symptoms (obstructive jaundice, anicteric cholestasis, cholangitis or biliary cirrhosis) have appeared from 3 months to 12 years after surgery. Results: Initial internal/external biliary drainage was successful in 20 patients out of 21. These 20 patients after successful initial drainage were treated by balloon dilatation and long-term internal/external drainage. Sixteen patients were symptoms free during the follow-up. The relapse of clinical symptoms has appeared in four patients 9, 12, 14 and 24 months after treatment. One year primary clinical success rate of treatment for benign bile duct stricture was 94%. Additional two patients are symptoms free after redilatation (15 and 45 months). One patient is still in treatment, one patient died during secondary treatment period without interrelation with biliary intervention. The secondary clinical success rate is 100%. Conclusion: Benign bile duct strictures of hepatic ducts junction or biliary-enteric anastomosis are difficult to treat surgically and endoscopically inaccessible. Percutaneous treatment by balloon dilatation and long-term internal/external drainage is feasible in the majority of these patients. It is minimally invasive, safe and effective.

  11. Bilingüismo en sordos

    OpenAIRE

    Juliarena, Graciela Edith

    2012-01-01

    El presente trabajo se ocupa de conceptualizar al sordo en tanto que sujeto constituido a partir de la adquisición del lenguaje de señas, su relación con la lengua hablada mayoritariamente en el grupo social que cohabita y la productividad de su bilingüismo en función de una comunicación más eficiente con su entorno.

  12. Effect of Nicotine on Gallbladder Bile

    Directory of Open Access Journals (Sweden)

    Anglo-Dutch Nicotine Intestinal Study Group

    1994-01-01

    Full Text Available Several studies have shown that symptomatic gallstones are largely a disease of nonsmokers, which raises the possibility that nicotine may protect against the formation of gallstones. To examine the effect of nicotine on the gallbladder, 32 rabbits were allocated to four groups: controls and three treatment groups in which nicotine tartarate at low, medium and high doses was administered subcutaneously via an osmotic minipump. After 14 days’ treatment the gallbladder was removed and measurements made of gallbladder mucin synthesis, bile mucin concentration, bile acid concentration and cholesterol saturation. Serum nicotine concentrations (ng/mL were (± SE 0.4±0.1, 3.5±0.4, 8.8±0.8 and 16.2±1.8 in the controls and three treatment groups, respectively. Total bile acid concentration increased significantly in all three treated groups with the greatest increase in the group given low dose nicotine (P<0.001. Cholesterol saturation did not differ significantly in any group but soluble mucin concentration in gallbladder bile was significantly reduced (P=0.013, 95% CI: 16 to 111 with high dose nicotine. Gallbladder mucin synthesis, measured by 3H-glucosamine incorporation, did not change significantly with nicotine treatment. Subcutaneous nicotine 2.0 mg/kg/day for 14 days significantly reduced the concentration of biliary mucin, which could potentially reduce cholesterol nucleation and subsequent gallstone formation. This may be one of the mechanisms responsible for the relative reduction in gallstone disease among smokers.

  13. Extrahepatic bile duct neurilemmoma mimicking Klatskin tumor.

    Science.gov (United States)

    Kamani, Fereshteh; Dorudinia, Atosa; Goravanchi, Farhood; Rahimi, Farzaneh

    2007-04-01

    Neurilemmoma rarely develops in the biliary tree. Here, we report a 39-year-old Iranian woman with neurilemmoma in the extrahepatic bile duct presenting with progressively deepening jaundice. On the basis of clinical and radiological features, this tumor was initially suspected as Klatskin tumor. Histologically, the tumor was a typical neurilemmoma. Immunostaining showed that tumor cells were strongly and diffusely positive for S-100 protein, which supported the diagnosis of neurilemmoma. Neurilemmoma should be considered in the differential diagnosis of obstructive jaundice.

  14. Ocular injury secondary to sheep bile exposure

    Science.gov (United States)

    Okullo, Alfin Taddeo; Low, Tim; Baker, Louise Leslie

    2012-01-01

    A 57-year-old abattoir worker was seen at a general practitioner after sheep bile splashed into his left eye. Flourescein examination revealed extensive ulceration involving at least two-thirds of the corneal surface. Copious irrigation with normal saline, application of chloramphenicol ointment and an eye patch resulted in excellent healing within 2 days with return to normal vision for the patient thereafter. PMID:23208813

  15. Bear bile: dilemma of traditional medicinal use and animal protection

    Directory of Open Access Journals (Sweden)

    Nagamatsu Tadashi

    2009-01-01

    Full Text Available Abstract Bear bile has been used in Traditional Chinese Medicine (TCM for thousands of years. Modern investigations showed that it has a wide range of pharmacological actions with little toxicological side effect and the pure compounds have been used for curing hepatic and biliary disorders for decades. However, extensive consumption of bear bile made bears endangered species. In the 1980's, bear farming was established in China to extract bear bile from living bears with "Free-dripping Fistula Technique". Bear farming is extremely inhumane and many bears died of illness such as chronic infections and liver cancer. Efforts are now given by non-governmental organizations, mass media and Chinese government to end bear farming ultimately. At the same time, systematic research has to be done to find an alternative for bear bile. In this review, we focused on the literature, laboratory and clinical results related to bear bile and its substitutes or alternative in English and Chinese databases. We examined the substitutes or alternative of bear bile from three aspects: pure compounds derived from bear bile, biles from other animals and herbs from TCM. We then discussed the strategy for stopping the trading of bear bile and issues of bear bile related to potential alternative candidates, existing problems in alternative research and work to be done in the future.

  16. Bile acids: Chemistry, physiology, and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    Maria J Monte; Jose JG Marin; Alvaro Antelo; Jose Vazquez-Tato

    2009-01-01

    The family of bile acids includes a group of molecular species of acidic steroids with very peculiar physicalchemical and biological characteristics. They are synthesized by the liver from cholesterol through several complementary pathways that are controlled by mechanisms involving fine-tuning by the levels of certain bile acid species. Although their bestknown role is their participation in the digestion and absorption of fat, they also play an important role in several other physiological processes. Thus, genetic abnormalities accounting for alterations in their synthesis, biotransformation and/or transport may result in severe alterations, even leading to lethal situations for which the sole therapeutic option may be liver transplantation. Moreover, the increased levels of bile acids reached during cholestatic liver diseases are known to induce oxidative stress and apoptosis, resulting in damage to the liver parenchyma and, ventually, extrahepatic tissues. When this occurs during pregnancy, the outcome of gestation may be challenged. In contrast, the physical-chemical and biological properties of these compounds have been used as the bases for the development of drugs and as pharmaceutical tools for the delivery of active agents.

  17. Profile of hepatocyte apoptosis and bile lakes before and after bile duct decompression in severe obstructive jaundice patients

    Institute of Scientific and Technical Information of China (English)

    ToarJMLalisang; RadenSjamsuhidajat; NurjatiCSiregar; AkmalTaher

    2010-01-01

    BACKGROUND: Excessive hepatocyte apoptosis and bile lakes in severe obstructive jaundice might impair liver functions. Although decompression of the bile duct has been reported to improve liver functions in animal studies, the mechanism of obstruction differs from that in humans. This study aimed to determine the profiles of hepatocyte apoptosis and bile lakes following bile duct decompression in patients with severe obstructive jaundice in the clinical setting. METHODS: We conducted a "before and after study" on severe obstructive jaundice patients as a model of inhibition of the excessive process by bile duct decompression. Specimens of liver biopsies were taken before and after decompression of the bile duct and then stained by terminal deoxynucleotide transferase-mediated dUTP nick end-labeling (TUNEL) to identify hepatocyte apoptosis and by hematoxilin-eosin (HE) to identify bile lakes. All measurements were independently done by 2 observers. RESULTS: Twenty-one severe obstructive jaundice patients were included. In all patients, excessive hepatocyte apoptosis and bile lakes were apparent. After decompression, the hepatocyte apoptosis index decreased from 53.1 (SD 105) to 11.7 (SD 13.6) (P CONCLUSION: Bile duct decompression improves hepatocyte apoptosis and bile lakes in cases of severe obstructive jaundice, similar to the findings in animal studies.

  18. Effects of CYP7A1 overexpression on cholesterol and bile acid homeostasis.

    Science.gov (United States)

    Pandak, W M; Schwarz, C; Hylemon, P B; Mallonee, D; Valerie, K; Heuman, D M; Fisher, R A; Redford, K; Vlahcevic, Z R

    2001-10-01

    The initial and rate-limiting step in the classic pathway of bile acid biosynthesis is 7alpha-hydroxylation of cholesterol, a reaction catalyzed by cholesterol 7alpha-hydroxylase (CYP7A1). The effect of CYP7A1 overexpression on cholesterol homeostasis in human liver cells has not been examined. The specific aim of this study was to determine the effects of overexpression of CYP7A1 on key regulatory steps involved in hepatocellular cholesterol homeostasis, using primary human hepatocytes (PHH) and HepG2 cells. Overexpression of CYP7A1 in HepG2 cells and PHH was accomplished by using a recombinant adenovirus encoding a CYP7A1 cDNA (AdCMV-CYP7A1). CYP7A1 overexpression resulted in a marked activation of the classic pathway of bile acid biosynthesis in both PHH and HepG2 cells. In response, there was decreased HMG-CoA-reductase (HMGR) activity, decreased acyl CoA:cholesterol acyltransferase (ACAT) activity, increased cholesteryl ester hydrolase (CEH) activity, and increased low-density lipoprotein receptor (LDLR) mRNA expression. Changes observed in HMGR, ACAT, and CEH mRNA levels paralleled changes in enzyme specific activities. More specifically, LDLR expression, ACAT activity, and CEH activity appeared responsive to an increase in cholesterol degradation after increased CYP7A1 expression. Conversely, accumulation of the oxysterol 7alpha-hydroxycholesterol in the microsomes after CYP7A1 overexpression was correlated with a decrease in HMGR activity.

  19. The Frequency of Bacterial Agents in the Bile Juice of Patients with Bile Stones and

    Directory of Open Access Journals (Sweden)

    Tajeddin E

    2012-01-01

    Full Text Available Background and objectives: Bile in healthy people is a sterile fluid andpresence of any microorganism can be a marker for a disorder likecholelithiasis. The aim of this study was to determine the frequencyof bacterial agents in the bile of patients with bilestone, malignant pancreaticand biliary diseases.Material and Methods: One hundred and two bile samples were obtained,during six months in 2011, from patients subjected to ERCP in Taleghanihospital, Tehran. First, Patient's clinical data, the type stone, and their diseasestatus were studied, and then the microbiological investigations, such asculture, identification of the bacteria and detection of their counts, drugsusceptibility testing and molecular tests (16s rDNA PCR performed on allthe samples. Higher than 103 bacteria counts for each sample, in the absence ofunderlying infections, was considered as stable colonization. We run SPSSversion 13 to analyze the data.Results: Out of 42(41.1% positive bile culture samples, 59 bacterial isolatesare detected by conventional methods. Of culture negative samples, sevenhave bacterial DNA indicated by PCR method. The most isolated bacteria areE. coli (%34.4, Enterococcus spp. (%19.7, Klebsiella pneumoniae (%18 andPseudomonas aeruginos (18%. The most frequent stones are cholesterol,black pigment and brown pigment, respectively. There is no significantassociation between the diseases, stones and types of bacteria. Previousantibiotic usage (44.6% is meaningfully more than that of other biliaryproblems (p=0.01.Conclusion: The presence of bacteria, Escherchi coli and Entrococcus whichare the most in bile samples, is considered as a risk factor in pathogenesis ofbiliary disorders. Further studies on the pathogenesis and pathophysiologicaleffects of bacteria can help us to clarify the role of bacteria in producing bilestones.Key words: Bile stones, Bacteria, ERCP, Antibiotics.

  20. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts

    Directory of Open Access Journals (Sweden)

    Lilian C.G. Oliveira

    2015-06-01

    Full Text Available Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs and polyhydroxyalkanoates (PHAs. Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications.

  1. In vivo multiphoton imaging of bile duct ligation

    Science.gov (United States)

    Liu, Yuan; Li, Feng-Chieh; Chen, Hsiao-Chin; Chang, Po-shou; Yang, Shu-Mei; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Bile is the exocrine secretion of liver and synthesized by hepatocytes. It is drained into duodenum for the function of digestion or drained into gallbladder for of storage. Bile duct obstruction is a blockage in the tubes that carry bile to the gallbladder and small intestine. However, Bile duct ligation results in the changes of bile acids in serum, liver, urine, and feces1, 2. In this work, we demonstrate a novel technique to image this pathological condition by using a newly developed in vivo imaging system, which includes multiphoton microscopy and intravital hepatic imaging chamber. The images we acquired demonstrate the uptake, processing of 6-CFDA in hepatocytes and excretion of CF in the bile canaliculi. In addition to imaging, we can also measure kinetics of the green fluorescence intensity.

  2. Bile acid sequestrants and the treatment of type 2 diabetes mellitus

    NARCIS (Netherlands)

    Staels, Bart; Kuipers, Folkert

    2007-01-01

    Bile acids promote bile formation and facilitate dietary lipid absorption. Animal and human studies showing disturbed bile acid metabolism in diabetes mellitus suggest a link between bile acids and glucose control. Bile acids are activating ligands of the farnesoid X receptor (FXR), a nuclear recept

  3. Microbiology of gallbladder bile in uncomplicated symptomatic cholelithiasis

    Institute of Scientific and Technical Information of China (English)

    Vasitha Abeysuriya; Kemal Ismil Deen; Tamara Wijesuriya; Sujatha Senadera Salgado

    2008-01-01

    BACKGROUND: Few studies have assessed microlfora and their antibiotic sensitivity in normal bile and lithogenic bile with different types of gallstones. METHODS: We performed a case control study of 70 bile samples (35 cholesterol and 35 pigment stones from 51 females and 19 males, aged 21-72 years with a median age of 37 years) from patients who underwent laparoscopic cholecystectomy for uncomplicated cholelithiasis, and 20 controls (14 females and 6 males, aged 33-70 years with a median age of 38 years) who underwent laparotomy and had no gallbladder stone shown by ultrasound scan. The bile samples were aerobically cultured to assess microlfora and their antibiotic susceptibility. The procedures were undertaken under sterile conditions. RESULTS: Thirty-eight (54%) of the 70 patients with gallstones had bacterial isolates. Nine isolates (26%) were from cholesterol stone-containing bile and 29 isolates (82%) from pigment stone-containing bile (P=0.01, t test). Twenty-eight of these 38 (74%) bile samples were shown positive only after enrichment in brain heart infusion medium (BHI) (P=0.02, t test). The overall bacterial isolates from bile samples revealed E. coli predominantly, followed by P. aeruginosa, Enterococcus spp., Klebsiella spp. and S. epidermidis. There were no bacterial isolates in the bile of controls after either direct inoculation or enrichment in BHI. CONCLUSIONS: Bacterial isolates were found in pigment stone-containing bile. Non-lithogenic bile revealed no bacteria, showing an association between gallstone formation and the presence of bacteria in bile. Antibiotic sensitivity patterns of isolated organisms were similar irrespective of the type of stone.

  4. The Adsorption Effect of Quaternized Chitosan Derivatives on Bile Acid

    Institute of Scientific and Technical Information of China (English)

    Shu Xian MENG; Ya Qing FENG; Wen Jin LI; Cai Xia YIN; Jin Ping DENG

    2006-01-01

    Three quaternized chitosan derivatives were synthesized and their adsorption performance of bile acid from aqueous solution was studied. The adsorption capacities and rates of bile acid onto quaternized chitosan derivatives were evaluated. The kinetic experimental data properly correlated with the second-order kinetic model, which indicated that the chemical sorption is the rate-limiting step. The results showed that the quaternized chitosan derivatives are favorable adsorbents for bile acid.

  5. Further characterization of intestinal lactase/phlorizin hydrolase

    DEFF Research Database (Denmark)

    Skovbjerg, H; Norén, O; Sjöström, H

    1982-01-01

    Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis in the pres......Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis...... in the presence of SDS. Pig lactase/phlorizin hydrolase was shown to have the same quaternary structure as the human enzyme, i.e., built up of two polypeptides of the same molecular weight (160000). In addition to hydrolyzing lactose, phlorizin and a number of synthetic substrates, both the human and the pig...... enzyme were shown to have a considerable activity against cellotriose and cellotetraose, and a low but significant activity against cellulose. The lactase/phlorizin hydrolase isolated from pigs in which the pancreatic ducts had been disconnected 3 days before death and from Ca2+-precipitated enterocyte...

  6. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  7. Properties of epoxide hydrolase from the yeast Rhodotorula glutinis

    NARCIS (Netherlands)

    Ariës-Kronenburg, N.A.E.

    2002-01-01

     Epoxide hydrolases are ubiquitous enzymes that can be found in nearly all living organisms. Some of the enzymes play an important role in detoxifying xenobiotic and metabolic compounds. Others are important in the growth of organisms like the juvenile hormone in some insec

  8. Magnetic resonance imaging of extrahepatic bile duct disruption

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Yon-Cheong; Wang, Li-Jen; Chen, Chi-Jen [Department of Radiology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Gueishan, 33333 Taoyuan (Taiwan); Chen, Ray-Jade [Division of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Gueishan, 33333 Taoyuan (Taiwan)

    2002-10-01

    Blunt injury of the extrahepatic bile duct is rare and hence a large series of scientific study of its MRI is difficult to perform. We present the MRI and MR cholangiography of a case of blunt extrahepatic bile duct injury proven at surgery. The diagnosis could be established based on MRI findings of an abrupt tapering of the extrahepatic bile duct with a retracted end, a discordant small-caliber proximal duct, massive ascites, and a hematoma in proximity to the bile duct injury. This non-invasive MRI study is a promising imaging modality to evaluate biliary tract injury. (orig.)

  9. Gallbladder bile composition in patients with Crohn's disease

    Institute of Scientific and Technical Information of China (English)

    Annika Lapidus; Jan-Erik (A)kerlund; Curt Einarsson

    2006-01-01

    AIM: To further elucidate the pathogenesis and mechanisms of the high risk of gallstone formation in Crohn's disease.METHODS: Gallbladder bile was obtained from patients with Crohn's disease who were admitted for elective surgery (17 with ileallileocolonic disease and 7 with Crohn's colitis). Fourteen gallstone patients served as controls. Duodenal bile was obtained from ten healthy subjects before and after the treatment with ursodeoxycholic acid. Bile was analyzed for biliary lipids,bile acids, bilirubin, crystals, and crystal detection time (CDT). Cholesterol saturation index was calculated.RESULTS: The biliary concentration of bilirubin was about 50% higher in patients with Crohn's disease than in patients with cholesterol gallstones. Ten of the patients with Crohn's disease involving ileum and three of those with Crohn's colitis had cholesterol saturated bile. Four patients with ileal disease and one of those with colonic disease displayed cholesterol crystals in their bile. About 1/3 of the patients with Crohn's disease had a short CDT. Treatment of healthy subjects with ursodeoxycholic acid did not increase the concentration of bilirubin in duodenal bile. Several patients with Crohn's disease,with or without ileal resection/disease had gallbladder bile supersaturated with cholesterol and short CDT and contained cholesterol crystals. The biliary concentration of bilirubin was also increased in patients with Crohn's colitis probably not due to bile acid malabsorption.CONCLUSION: Several factors may be of importance for the high risk of developing gallstones of both cholesterol and pigment types in patients with Crohn's disease.

  10. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors

    DEFF Research Database (Denmark)

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.;

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium......-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L...... to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms....

  11. Xenobiotic, bile acid, and cholesterol transporters: function and regulation.

    Science.gov (United States)

    Klaassen, Curtis D; Aleksunes, Lauren M

    2010-03-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of

  12. Bile Acid Pool Dynamics in Progressive Familial lntrahepatic Cholestasis With Partial External Bile Diversion

    NARCIS (Netherlands)

    Jericho, Hilary S.; Kaurs, Elizabeth; Boverhof, Renze; Knisely, Alex; Shneider, Benjamin L.; Verkade, Henkjan J.; Whitington, Peter F.

    2015-01-01

    Objectives: Partial external bile diversion (PEBD) is an established therapy for low-gamma-glutamyl transferase (GGT) progressive familial intrahepatic cholestasis (PFIC). This study sought to determine whether the dynamics of the cholic acid (CA) and chenodeoxycholic acid (CDCA) pools in subjects w

  13. Determination of conjugated bile acids in human bile and duodenal fluid by reverse-phase high-performance liquid chromatography.

    Science.gov (United States)

    Bloch, C A; Watkins, J B

    1978-05-01

    A simple mehtod using reverse-phase liquid chromatography is presented for resolution and quantitation of the major conjugated bile acids of man, including the glycine and taurine conjugates of the dihydroxy bile acids, chenodeoxycholic and deoxycholic acid. Using modern, high-performance chromatographic equipment, analysis time is less than 30 minutes. The quantitative range of the method, with detection by refractive index, is 0.05 to 0.1 mumol of bile acid and the limit of detection for an injection sample is 0.01 mumol. This provides a sensitivity sufficient for analysis of dilute duodenal and gallbladder bile with minimal sample preparation.

  14. Classification and management of bile duct injuries

    OpenAIRE

    2011-01-01

    To review the classification and general guidelines for treatment of bile duct injury patients and their long term results. In a 20-year period, 510 complex circumferential injuries have been referred to our team for repair at the Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán” hospital in Mexico City and 198 elsewhere (private practice). The records at the third level Academic University Hospital were analyzed and divided into three periods of time: GI-1990-99 (33 cases...

  15. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    Science.gov (United States)

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2015-04-01

    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease.

  16. Role of nucleation of bile liquid crystal in gallstone formation

    Institute of Scientific and Technical Information of China (English)

    Hai-Ming Yang; Jie Wu; Jin-Yi Li; Lin Gu; Min-Fei Zhou

    2003-01-01

    AIM: To explore the role of bile liquid crystal in the process of gallbladder stone formation and to provide bases for preventing and treating cholelithiasis.METHODS: 46 guinea pigs, half males and half females,were randomly divided into control group and stone-causing group. Normal feed and stoneleading feed were used respectively to raise guinea pigs in the control group and stone-causing group. The guinea pigs were killed in three batches during the raising period. Under polarizing microscope, the pattern changes of bile liquid crystal in the gallbladder biles of the guinea pigs in the control group and stone-causing group were dynamicly observed respectively in single-blind trial.RESULTS: It was found that there were few crystals in the guinea pigs′biles of the control group, and their Malta cross was small and scattered, and existed in single form. With the increase of the feeding days, bile liquid crystals grew and Malta cross became bigger with their distribution densified, denser somewhere, but always existed in single form. While those of the stone-causing group had more bile liquid crystals, Malta cross was big and merged in strings.With the increase of the feeding days, bile liquid crystals grew in amount and strings of Malta cross increased and became bigger. The crosses in strings were arranged more and more regularly and they gradually changed into stone crystals.CONCLUSION: Formation of gallbladder stone is a process of nucleation from different substances, and the causing-stone gallbladder bile is a constantly supersaturated solution, and bile liquid crystal is a nucleation factor in the formation of gallbladder stones. The process of nucleation includes gathering, merging and phase-changing of bile liquid crystals.The process of gathering, merging of bile liquid crystal is the key to nucleation.

  17. Endoscopic Management of Difficult Bile Duct Stones

    Directory of Open Access Journals (Sweden)

    Christian Ell

    1992-01-01

    Full Text Available More than 90% of all common bile duct concrements can be removed via the endoscopic retrograde route via endoscopic sphincterotomy, stone extraction by baskets and balloon catheters, or mechanical lithotripsy. Oversized, very hard or impacted stones, however, often still resist conventional endoscopic therapy. Promising new or improved approaches for the treatment of these stones are intracorporeal or extracorporeal shock wave lithotripsy. Shockwave lithotriptors for extracorporeal shockwave lithotripsy are currently available worldwide. However, for the waterbath first generation devices, general anesthesia is required since shockwaves are very painful. Furthermore, an x-ray localization system is essential to visualize the stones after having filled the bile duct over a nasobiliary catheter. An average of two shockwave treatments with additional two to four endoscopic sessions are required. ln tracorporeal lithotripsy promises more comfort and less effort for the patient. Shockwaves are generated either by means of the spark gap principle (electrohydraulic probes or by laser-induced plasma generation. Laser-induced shockwave lithotripsy appears to be more safer, since with dye and solid state lasers, athermal, well-controlled shockwaves can be generateJ without the risks for duct perfo ration (as described for the electrohydraulic system. Furthermore, a recently developed stone-tissue detection system integrated in a new dye laser system enchances the safety of laser-induced lithotripsy. ln consequence, lithotripsy without direct endoscopic control appears possible in selected cases.

  18. Bile pigments in pulmonary and vascular disease

    Directory of Open Access Journals (Sweden)

    Stefan W. Ryter

    2012-03-01

    Full Text Available The bile pigments, biliverdin and bilirubin, are endogenously-derived substances generated during enzymatic heme degradation. These compounds have been shown to act as chemical antioxidants in vitro. Bilirubin formed in tissues circulates in the serum, prior to undergoing hepatic conjugation and biliary excretion. The excess production of bilirubin has been associated with neurotoxicity, in particular to the newborn. Nevertheless, clinical evidence suggests that mild states of hyperbilirubinemia may be beneficial in protecting against cardiovascular disease in adults. Pharmacological application of either bilirubin and/or its biological precursor biliverdin, can provide therapeutic benefit in several animal models of cardiovascular and pulmonary disease. Furthermore, biliverdin and bilirubin can confer protection against ischemia/reperfusion injury and graft rejection secondary to organ transplantation in animal models. Several possible mechanisms for these effects have been proposed, including direct antioxidant and scavenging effects, and modulation of signaling pathways regulating inflammation, apoptosis, cell proliferation, and immune responses. The practicality and therapeutic-effectiveness of bile pigment application to humans remains unclear.

  19. Bile pigments in pulmonary and vascular disease.

    Science.gov (United States)

    Ryter, Stefan W

    2012-01-01

    The bile pigments, biliverdin, and bilirubin, are endogenously derived substances generated during enzymatic heme degradation. These compounds have been shown to act as chemical antioxidants in vitro. Bilirubin formed in tissues circulates in the serum, prior to undergoing hepatic conjugation and biliary excretion. The excess production of bilirubin has been associated with neurotoxicity, in particular to the newborn. Nevertheless, clinical evidence suggests that mild states of hyperbilirubinemia may be beneficial in protecting against cardiovascular disease in adults. Pharmacological application of either bilirubin and/or its biological precursor biliverdin, can provide therapeutic benefit in several animal models of cardiovascular and pulmonary disease. Furthermore, biliverdin and bilirubin can confer protection against ischemia/reperfusion injury and graft rejection secondary to organ transplantation in animal models. Several possible mechanisms for these effects have been proposed, including direct antioxidant and scavenging effects, and modulation of signaling pathways regulating inflammation, apoptosis, cell proliferation, and immune responses. The practicality and therapeutic-effectiveness of bile pigment application to humans remains unclear.

  20. Mechanical properties of the porcine bile duct wall

    Directory of Open Access Journals (Sweden)

    Andersen Helle

    2004-07-01

    Full Text Available Abstract Background and Aim The function of the common bile duct is to transport bile from the liver and the gall bladder to the duodenum. Since the bile duct is a distensible tube consisting mainly of connective tissue, it is important to obtain data on the passive mechanical wall properties. The aims of this study were to study morphometric and biomechanical wall properties during distension of the bile duct. Methods Ten normal porcine common bile ducts were examined in vitro. A computer-controlled volume ramp infusion system with concomitant pressure recordings was constructed. A video camera provided simultaneous measurement of outer dimensions of the common bile duct. Wall stresses and strains were computed. Results The common bile duct length increased by 25% from 24.4 ± 1.8 mm at zero pressure to 30.5 ± 2.0 mm at 5 kPa (p (βε - 1. The circumferential stress-strain curve was shifted to the left when compared to the longitudinal stress-strain curve, i.e. the linear constants (α values were different (p 0.5. Conclusion The porcine bile duct exhibited nonlinear anisotropic mechanical properties.

  1. Further investigations on the macromolecular complex in human bile

    NARCIS (Netherlands)

    Verschure, J.C.M.; Wael, J. de; Mijnlieff, P.F.

    1956-01-01

    The formation of complexes in human bile was further studied by the preparation of various synthetic complexes and extracts. These were compared for a number of properties with the natural complex of human gall bladder bile. It appeared that protein is probably and bilirubin quite definitely a const

  2. Differential diagnosis in patients with suspected bile acid synthesis defects

    Institute of Scientific and Technical Information of China (English)

    Dorothea Haas; Hongying Gan-Schreier; Claus-Dieter Langhans; Tilman Rohrer; Guido Engelmann; Maura Heverin; David W Russell

    2012-01-01

    AIM:To investigate the clinical presentations associated with bile acid synthesis defects and to describe identification of individual disorders and diagnostic pitfalls.METHODS:Authors describe semiquantitative determination of 16 urinary bile acid metabolites by electrospray ionization-tandem mass spectrometry.Sample preparation was performed by solid-phase extraction.The total analysis time was 2 min per sample.Authors determined bile acid metabolites in 363 patients with suspected defects in bile acid metabolism.RESULTS:Abnormal bile acid metabolites were found in 36 patients.Two patients had bile acid synthesis defects but presented with atypical presentations.In 2 other patients who were later shown to be affected by biliary atresia and cystic fibrosis the profile of bile acid metabolites was initially suggestive of a bile acid synthesis defect.Three adult patients suffered from cerebrotendinous xanthomatosis.Nineteen patients had peroxisomal disorders,and 10 patients had cholestatic hepatopathy of other cause.CONCLUSION:Screening for urinary cholanoids should be done in every infant with cholestatic hepatopathy as well as in children with progressive neurological disease to provide specific therapy.

  3. Bile acids, farnesoid X receptor, atherosclerosis and metabolic control

    NARCIS (Netherlands)

    Kuipers, Folkert; Stroeve, Johanna H. M.; Caron, Sandrine; Staels, Bart

    2007-01-01

    Purpose of review Bile acids are amphiphilic molecules synthesized from cholesterol exclusively in the liver that are essential for effective absorption of dietary fat. In addition to this classical role', bile acids act as signalling molecules that control their own metabolism by activating the nuc

  4. Isolation and characterization of chicken bile matrix metalloproteinase

    Science.gov (United States)

    Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix (ECM) proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies but the significance of their expression in normal, he...

  5. Chicken bile Matrix metalloproteinase; its characterization and significance

    Science.gov (United States)

    Previous studies from our lab had shown that the avian bile was rich in matrix metalloproteinase (MMP), enzymes implicated in the degradation of extracellular matrices (ECM) such as collagens and proteoglycans. We hypothesized that bile MMP may be evolutionarily associated with the digestion of ECM ...

  6. Impaired Bile Acid Homeostasis in Children with Severe Acute Malnutrition.

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    Full Text Available Severe acute malnutrition (SAM is a major cause of mortality in children under 5 years and is associated with hepatic steatosis. Bile acids are synthesized in the liver and participate in dietary fat digestion, regulation of energy expenditure, and immune responses. The aim of this work was to investigate whether SAM is associated with clinically relevant changes in bile acid homeostasis.An initial discovery cohort with 5 healthy controls and 22 SAM-patients was used to identify altered bile acid homeostasis. A follow up cohort of 40 SAM-patients were then studied on admission and 3 days after clinical stabilization to assess recovery in bile acid metabolism. Recruited children were 6-60 months old and admitted for SAM in Malawi. Clinical characteristics, feces and blood were collected on admission and prior to discharge. Bile acids, 7α-hydroxy-4-cholesten-3-one (C4 and FGF-19 were quantified.On admission, total serum bile acids were higher in children with SAM than in healthy controls and glycine-conjugates accounted for most of this accumulation with median and interquartile range (IQR of 24.6 μmol/L [8.6-47.7] compared to 1.9 μmol/L [1.7-3.3] (p = 0.01 in controls. Total serum bile acid concentrations did not decrease prior to discharge. On admission, fecal conjugated bile acids were lower and secondary bile acids higher at admission compared to pre- discharge, suggesting increased bacterial conversion. FGF19 (Fibroblast growth factor 19, a marker of intestinal bile acid signaling, was higher on admission and was associated with decreased C4 concentrations as a marker of bile acid synthesis. Upon recovery, fecal calprotectin, a marker of intestinal inflammation, was lower.SAM is associated with increased serum bile acid levels despite reduced synthesis rates. In SAM, there tends to be increased deconjugation of bile acids and conversion from primary to secondary bile acids, which may contribute to the development of liver disease.

  7. Optic properties of bile liquid crystals in human body

    Institute of Scientific and Technical Information of China (English)

    Hai Ming Yang; Jie Wu; Jian Li Zhou; Li Jun He; Xian Fang Xu; Jin Yi Li

    2000-01-01

    AIM To further study the properties of bile liquid crystals, and probe into the relationship between bile liquid crystals and gallbladder stone formation, and provide evidence for the prevention and treatment of cholecystolithissis. METNODS The optic properties of bile liquid crystals in human body were determined by the method of crystal optics under polarizing microscope with plane polarized light and perpendicular polarized light. RESULTS Under a polarizing microscope with plane polarized light, bile liquid crystals scattered in bile appeared round, oval or irregularly round. The color of bile liquid crystals was a little lighter than that of the bile around. When the stage was turned round, the color of bile liquid crystals or the darkness and lightness of the color did not change obviously. On the border between bile liquid crystals and the bile around, brighter Becke-Line could be observed. When the microscope tube is lifted, Becke. Line moved inward, and when lowered,Becke-Line moved outward. Under a perpendicular polarized light, bile liquid crystals showd some special interference patterns, called Malta cross. When the stage was tuming round at an angle of 360°, the Malta cross showed four times of extinction. In the vibrating direction of 45° angle of relative to upper and lower polarizing plate, gypsum test-board with optical path difference of 530 nm was inserted, the first and the third quadrants of Malta cross appeared to be blue, and the second and the fourth quadrants appeared orange. When mica test-board with optical path difference of 147 nm was inserted, the first and the third quadrants of Malta cross appeared yellow, and the second and the fourth quadrants appeared dark grey. CONCLUSION The bile liquid crystals were distributed in bile in the form of global grains. Their polychroism and absorption were slight,but the edge and Becke-Line were very clear. Its refractive index was larger than that of the bile.These liquid crystals were uniaxial

  8. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Tracy L., E-mail: tracylmarion@qualyst.com [Curriculum in Toxicology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7270 (United States); Perry, Cassandra H., E-mail: cassandraperry@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); St Claire, Robert L., E-mail: bobstclaire@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); Brouwer, Kim L.R., E-mail: kbrouwer@unc.edu [Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, CB 7569 Kerr Hall, Chapel Hill, NC 27599-7569 (United States)

    2012-05-15

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR{sup ®} technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na{sup +}-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA

  9. Poly(aspartic acid) (PAA) hydrolases and PAA biodegradation: current knowledge and impact on applications.

    Science.gov (United States)

    Hiraishi, Tomohiro

    2016-02-01

    Thermally synthesized poly(aspartic acid) (tPAA) is a bio-based, biocompatible, biodegradable, and water-soluble polymer that has a high proportion of β-Asp units and equivalent moles of D- and L-Asp units. Poly(aspartic acid) (PAA) hydrolase-1 and hydrolase-2 are tPAA biodegradation enzymes purified from Gram-negative bacteria. PAA hydrolase-1 selectively cleaves amide bonds between β-Asp units via an endo-type process, whereas PAA hydrolase-2 catalyzes the exo-type hydrolysis of the products of tPAA hydrolysis by PAA hydrolase-1. The novel reactivity of PAA hydrolase-1 makes it a good candidate for a biocatalyst in β-peptide synthesis. This mini-review gives an overview of PAA hydrolases with emphasis on their biochemical and functional properties, in particular, PAA hydrolase-1. Functionally related enzymes, such as poly(R-3-hydroxybutyrate) depolymerases and β-aminopeptidases, are compared to PAA hydrolases. This mini-review also provides findings that offer an insight into the catalytic mechanisms of PAA hydrolase-1 from Pedobacter sp. KP-2.

  10. Swertianlarin, an Herbal Agent Derived from Swertia mussotii Franch, Attenuates Liver Injury, Inflammation, and Cholestasis in Common Bile Duct-Ligated Rats

    Directory of Open Access Journals (Sweden)

    Liangjun Zhang

    2015-01-01

    Full Text Available Swertianlarin is an herbal agent abundantly distributed in Swertia mussotii Franch, a Chinese traditional herb used for treatment of jaundice. To study the therapeutic effect of swertianlarin on cholestasis, liver injury, serum proinflammatory cytokines, and bile salt concentrations were measured by comparing rats treated with swertianlarin 100 mg/kg/d or saline for 3, 7, or 14 days after bile duct ligation (BDL. Serum alanine aminotransferase (ATL and aspartate aminotransferase (AST levels were significantly decreased in BDL rats treated with swertianlarin for 14 days (P<0.05. The reduced liver injury in BDL rats by swertianlarin treatment for 14 days was further confirmed by liver histopathology. Levels of serum tumor necrosis factor alpha (TNFα were decreased by swertianlarin in BDL rats for 3 and 7 days (P<0.05. Moreover, reductions in serum interleukins IL-1β and IL-6 levels were also observed in BDL rats treated with swertianlarin (P<0.05. In addition, most of serum toxic bile salt concentrations (e.g., chenodeoxycholic acid (CDCA and deoxycholic acid (DCA in cholestatic rats were decreased by swertianlarin (P<0.05. In conclusion, the data suggest that swertianlarin derived from Swertia mussotii Franch attenuates liver injury, inflammation, and cholestasis in bile duct-ligated rats.

  11. Aberrant bile ducts, 'remnant surface bile ducts,' and peribiliary glands: descriptive anatomy, historical nomenclature, and surgical implications.

    Science.gov (United States)

    El Gharbawy, Ramadan M; Skandalakis, Lee J; Heffron, Thomas G; Skandalakis, John E

    2011-05-01

    The term "aberrant bile ducts" has been used to designate three heterogeneous groups of biliary structures: (1) bile ducts degenerating or disappearing (unknown etiology, diverse locations); (2) curious biliary structures in the transverse fissure; and (3) aberrant right bile ducts draining directly into the common hepatic duct. We report our observations on these three groups. Twenty-nine fresh human livers of stillborns and adults were injected differentially with colored latex and dissected. Adult livers showed portal venous and hepatic arterial branches, and bile ducts not associated with parenchyma, subjacent to and firmly adherent with the liver capsule: elements of ramifications of normal sheaths were present on the liver's surface. These ramifications, having lost parenchyma associated with them, then sequentially lost their portal branches, bile ducts and arterial branches. This process affected the ramifications of the sheaths in the left triangular ligament, adjacent to the inferior vena cava, in the gallbladder bed and anywhere else on the liver's surface and resulted in the presence of bile ducts accompanied by portal venous and/or hepatic arterial branches and not associated with parenchyma for a period of time. This first group represented normal bile ducts that do not meet the criteria of aberration and could be appropriately designated "remnant surface bile ducts." Such changes were not found in the transverse fissures and review of the literature revealed that the curious biliary structures are the microscopic peribiliary glands. The third group met the criteria of aberration and the anatomy of a representative duct is described.

  12. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    OpenAIRE

    Gabriel Zamith Leal Dalmaso; Davis Ferreira; Alane Beatriz Vermelho

    2015-01-01

    The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hy...

  13. Effects of bile acid administration on bile acid synthesis and its circadian rhythm in man

    Energy Technology Data Exchange (ETDEWEB)

    Pooler, P.A.; Duane, W.C.

    1988-09-01

    In man bile acid synthesis has a distinct circadian rhythm but the relationship of this rhythm to feedback inhibition by bile acid is unknown. We measured bile acid synthesis as release of 14CO2 from (26-14C)cholesterol every 2 hr in three normal volunteers during five separate 24-hr periods. Data were fitted by computer to a cosine curve to estimate amplitude and acrophase of the circadian rhythm. In an additional six volunteers, we measured synthesis every 2 hr from 8:00 a.m. to 4:00 p.m. only. During the control period, amplitude (expressed as percentage of mean synthesis) averaged 52% and acrophase averaged 6:49 a.m. During administration of ursodeoxycholic acid (15 mg per kg per day), synthesis averaged 126% of baseline (p less than 0.1), amplitude averaged 43% and acrophase averaged 6:20 a.m. During administration of chenodeoxycholic acid (15 mg per kg per day), synthesis averaged 43% of baseline (p less than 0.001), amplitude averaged 53% and acrophase averaged 9:04 a.m. Addition of prednisone to this regimen of chenodeoxycholic acid to eliminate release of 14CO2 from corticosteroid hormone synthesis resulted in a mean amplitude of 62% and a mean acrophase of 6:50 a.m., values very similar to those in the baseline period. Administration of prednisone alone also did not significantly alter the baseline amplitude (40%) or acrophase (6:28 a.m.). We conclude that neither chenodeoxycholic acid nor ursodeoxycholic acid significantly alters the circadian rhythm of bile acid synthesis in man.

  14. Promotion of PDT efficacy by bile acids

    Science.gov (United States)

    Castelli, Michelle; Reiners, John, Jr.; Kessel, David

    2003-06-01

    We had previously described the use of relatively hydrophobic bile acids, notably UDCA (ursodeoxycholate) for the promotion of the apoptotic response to photodynamic therapy. Further study revealed that this effect occurred only when the target for photodamage was the anti-apoptotic protein Bcl-2. The efficacy of lysosomal photodamage, leading to a cleavage of the protein Bid, was not influenced by UDCA. Moreover, the apoptotic cell death resulting from treatment of cells with the non-peptidic Bcl-2 inhibitor HA 14-1 was also promoted by UDCA. These results are consistent with the proposal that the pro-apoptotic effects of UDCA are directed against Bcl-2, promoting inactivation by HA 14-1 or photodamage.

  15. Intestinal bile acid physiology and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    Olga Mart(I)nez-Augustin; Ferm(I)n Sánchez de Medina

    2008-01-01

    Bile acids (Bas) have a long established role in fat digestion in the intestine by acting as tensioactives,due to their amphipatic characteristics.Bas are reabsorbed very efficiently by the intestinal epithelium and recycled back to the liver v/a transport mechanisms that have been largely elucidated.The transport and synthesis of Bas are tightly regulated in part by specific plasma membrane receptors and nuclear receptors.In addition to their primary effect,Bas have been claimed to play a role in gastrointestinal cancer,intestinal inflammation and intestinal ionic transport.Bas are not equivalent in any of these biological activities,and structural requirements have been generally identified.In particular,some Bas may be useful for cancer chemoprevention and perhaps in inflammatory bowel disease,although further research is necessary in this field.This review covers the most recent developments in these aspects of BA intestinal biology.

  16. Exploitation of Bile Acid Transport Systems in Prodrug Design

    Directory of Open Access Journals (Sweden)

    Elina Sievänen

    2007-08-01

    Full Text Available The enterohepatic circulation of bile acids is one of the most efficient recycling routes in the human body. It is a complex process involving numerous transport proteins, which serve to transport bile acids from the small intestine into portal circulation, from the portal circulation into the hepatocyte, from the hepatocyte into the bile, and from the gall bladder to the small intestine. The tremendous transport capacity and organ specificity of enterohepatic circulation combined with versatile derivatization possibilities, rigid steroidal backbone, enantiomeric purity, availability, and low cost have made bile acids attractive tools in designing pharmacological hybrid molecules and prodrugs with the view of improving intestinal absorption, increasing the metabolic stability of pharmaceuticals, specifically targeting drugs to organs involved in enterohepatic circulation, as well as sustaining therapeutically reasonable systemic concentrations of active agents. This article briefly describes bile acid transport proteins involved in enterohepatic circulation, summarizes the key factors affecting on the transport by these proteins, and reviews the use of bile acids and their derivatives in designing prodrugs capable of exploiting the bile acid transport system.

  17. Human bile sorption by cancrinite-type zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Linares, Carlos F. [Laboratorio de Catalisis y Metales de Transicion, Facultad de Ciencias y Tecnologia, Departamento de Quimica, Universidad de Carabobo, Valencia. Edo. Carabobo, Apartado Postal 3336 (Venezuela, Bolivarian Republic of)], E-mail: clinares@uc.edu.ve; Colmenares, Maryi; Ocanto, Freddy [Laboratorio de Catalisis y Metales de Transicion, Facultad de Ciencias y Tecnologia, Departamento de Quimica, Universidad de Carabobo, Valencia. Edo. Carabobo, Apartado Postal 3336 (Venezuela, Bolivarian Republic of); Valbuena, Oscar [Facultad de Ciencias y Tecnologia, Departamento de Biologia, Universidad de Carabobo, Valencia. Edo. Carabobo, Apartado Postal 3336 (Venezuela, Bolivarian Republic of)], E-mail: ovalbuena@uc.edu.ve

    2009-01-01

    A nitrated cancrinite-type zeolite was synthesized from zeolite X, NaOH and NaNO{sub 3} solutions under autogeneous pressure at 80 deg. C for 48 h. This zeolite was characterized by X-ray diffraction (XRD), FT-IR-spectroscopy, scanning electron microscopy (SEM) and BET surface area. XRD, SEM and FT-IR confirmed the presence of nitrated cancrinite-type zeolite without other collateral phases as sodalite. Then, this sodium zeolite was exchanged with potassium and calcium cations and finally, these modified zeolites were reacted with biliar solutions from human gallbladder. Several factors such as: mass of used cancrinite, nature of the exchanged cation and reaction time of the cancrinite-bile solution interactions were studied. The composition of bile solutions (bile acids, phospholipids and bilirubin) was analyzed before and after the cancrinite-bile solution reaction. Results showed that the components of the bile were notably reduced after the contact with solids. Ca-cancrinite, 120 min of reaction time and 500 mg of solids were the best conditions determined for the bile acid reduction in human bile. When the modified zeolites were compared with the commercial cholestyramine, it was found that zeolites were more active than the latter. These zeolites may be an alternative choice to diminish cholesterol levels in hypercholesterolemic patients.

  18. Bile Acid Determination after Standardized Glucose Load in Pregnant Women

    Science.gov (United States)

    Adams, April; Jacobs, Katherine; Vogel, Rachel Isaksson; Lupo, Virginia

    2015-01-01

    Objective Intrahepatic cholestasis of pregnancy (ICP) is a rare liver disorder, usually manifesting in the third trimester and associated with increased perinatal morbidity and mortality. The hallmark laboratory abnormality in ICP is elevated fasting serum bile acids; however, there are limited data on whether a nonfasting state affects a pregnant woman's total bile acids. This study assesses fasting and nonfasting bile acid levels in 10 healthy pregnant women after a standardized glucose load to provide insight into the effects of a glucose load on bile acid profiles. Study Design Pilot prospective cohort analysis of serum bile acids in pregnant women. A total of 10 healthy pregnant women from 28 to 32 weeks' gestation were recruited for the study before undergoing a glucose tolerance test. Total serum bile acids were collected for each subject in the overnight fasting state, and 1 and 3 hours after the 100-g glucose load. Results There was a statistically significant difference between fasting versus 3-hour values. There was no statistically significant difference between fasting versus 1-hour and 1-hour versus 3-hour values. Conclusion There is a difference between fasting and nonfasting total serum bile acids after a 100-g glucose load in healthy pregnant women. PMID:26495178

  19. Ursodeoxycholic acid treatment of vanishing bile duct syndromes

    Institute of Scientific and Technical Information of China (English)

    Thomas Pusl; Ulrich Beuers

    2006-01-01

    Vanishing bile duct syndromes (VBDS) are characterized by progressive loss of small intrahepatic ducts caused by a variety of different diseases leading to chronic cholestasis, cirrhosis, and premature death from liver failure. The majority of adult patients with VBDS suffer from primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Ursodeoxycholic acid (UDCA), a hydrophilic dihydroxy bile acid, is the only drug currently approved for the treatment of patients with PBC, and anticholestatic effects have been reported for several other cholestatic syndromes. Several potential mechanisms of action of UDCA have been proposed including stimulation of hepatobiliary secretion, inhibition of apoptosis and protection of cholangiocytes against toxic effects of hydrophobic bile acids.

  20. Spontaneous common bile duct perforation due to periampullary growth

    Directory of Open Access Journals (Sweden)

    Pandiaraja Javabal

    2014-06-01

    Full Text Available Spontaneous common bile duct perforations are an unusual cause of acute abdomen. In spontaneous common bile duct perforation, malignant growth is even rare. It is a rare entity usually reported in infants and children due to congenital anomalies. It is rarely reported in adults. In this case report, a 55 - year - old male patient who was diagnosed as a duodenal perforation in the pre - operative period, but the intra - operative findings was common bile duct perforation due to periampullary growth, is reported

  1. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants.

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Gotoh

    Full Text Available Vibrio parahaemolyticus, a bacterial pathogen, causes human gastroenteritis. A type III secretion system (T3SS2 encoded in pathogenicity island (Vp-PAI is the main contributor to enterotoxicity and expression of Vp-PAI encoded genes is regulated by two transcriptional regulators, VtrA and VtrB. However, a host-derived inducer for the Vp-PAI genes has not been identified. Here, we demonstrate that bile induces production of T3SS2-related proteins under osmotic conditions equivalent to those in the intestinal lumen. We also show that bile induces vtrA-mediated vtrB transcription. Transcriptome analysis of bile-responsive genes revealed that bile strongly induces expression of Vp-PAI genes in a vtrA-dependent manner. The inducing activity of bile was diminished by treatment with bile acid sequestrant cholestyramine. Finally, we demonstrate an in vivo protective effect of cholestyramine on enterotoxicity and show that similar protection is observed in infection with a different type of V. parahaemolyticus or with non-O1/non-O139 V. cholerae strains of vibrios carrying the same kind of T3SS. In summary, these results provide an insight into how bacteria, through the ingenious action of Vp-PAI genes, can take advantage of an otherwise hostile host environment. The results also reveal a new therapeutic potential for widely used bile acid sequestrants in enteric bacterial infections.

  2. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    Science.gov (United States)

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  3. Hepatobiliary Scan in Infantile Spontaneous Perforation of Common Bile Duct

    Energy Technology Data Exchange (ETDEWEB)

    Zeon, Seok Kil; Ryu, Jong Gul; Lee, Eun Young [Keimyung University School of Medicine, Taegu (Korea, Republic of); Lee, Jong Gil [Taegu Fatima Hospital, Taegu (Korea, Republic of)

    1996-03-15

    Spontaneous perforation of CBD in infant is a rare but fatal disease. We report a case of bile leakage from common bile duct in 11 months old girl with progressive abdominal distension and vomiting, preoperatively diagnosed by hepatobiliary scan with Tc-99m-DISIDA, which was confirmed by surgery. Operative cholangiogram showed a small perforation at the confluence of cystic duct and common bile duct with mild fusiform dilatation, and no definite abnormality in confluence of the common bile duct and pancreatic duct. Simple drainage of the free peritoneal bilous fluid and T-tube drainage were performed without any evidence of the complication. Patient was inevitable for 6 months OPD follow-up examination.

  4. Conserved Aspartic Acid Residues Lining the Extracellular Loop I of Sodium-coupled Bile Acid Transporter ASBT Interact with Na+ and 7α-OH Moieties on the Ligand Cholestane Skeleton*

    Science.gov (United States)

    Hussainzada, Naissan; Da Silva, Tatiana Claro; Zhang, Eric Y.; Swaan, Peter W.

    2008-01-01

    Functional contributions of residues Val-99—Ser-126 lining extracellular loop (EL) 1 of the apical sodium-dependent bile acid transporter were determined via cysteine-scanning mutagenesis, thiol modification, and in silico interpretation. Despite membrane expression for all but three constructs (S112C, Y117C, S126C), most EL1 mutants (64%) were inactivated by cysteine mutation, suggesting a functional role during sodium/bile acid co-transport. A negative charge at conserved residues Asp-120 and Asp-122 is required for transport function, whereas neutralization of charge at Asp-124 yields a functionally active transporter. D124A exerts low affinity for common bile acids except deoxycholic acid, which uniquely lacks a 7α-hydroxyl (OH) group. Overall, we conclude that (i) Asp-122 functions as a Na+ sensor, binding one of two co-transported Na+ ions, (ii) Asp-124 interacts with 7α-OH groups of bile acids, and (iii) apolar EL1 residues map to hydrophobic ligand pharmacophore features. Based on these data, we propose a comprehensive mechanistic model involving dynamic salt bridge pairs and hydrogen bonding involving multiple residues to describe sodium-dependent bile acid transporter-mediated bile acid and cation translocation. PMID:18508772

  5. Thermo-chemo-radiotherapy for advanced bile duct carcinoma

    Institute of Scientific and Technical Information of China (English)

    Terumi Kamisawa; Yuyang Tu; Naoto Egawa; Katsuyuki Karasawa; Tadayoshi Matsuda; Kouji Tsuruta; Atsutake Okamoto

    2005-01-01

    AIM: Complete resection of the bile duct carcinoma is sometimes difficult by subepithelial spread in the duct wall or direct invasion of adjacent blood vessels. Nonresected extrahepatic bile duct carcinoma has a dismal prognosis,with a life expectancy of about 6 mo to 1 year. To improve the treatment results of locally advanced bile duct carcinoma, we have been conducting a clinical trial using regional hyperthermia in combination with chemoradiation therapy.METHODS: Eight patients complaining of obstructive jaundice with advanced extrahepatic bile duct underwent thermo-chemo-radiotherapy (TCRT). All tumors were located in the upper bile duct and involved hepatic bifurcation, and obstructed the bile duct completely.Radiofrequency capacitive hyperthermia was administered simultaneously with chemotherapeutic agents once weekly immediately following radiotherapy at 2 Gy.We administered heat to the patient for 40 min after the tumor temperature had risen to 42 ℃. The chemotherapeutic agents employed were cis-platinum (CDDP,50 mg/m2) in combination with 5-fluorouracil (5-FU,800 mg/m2) or methotrexate (MTX, 30 mg/m2) in combination with 5-FU (800 mg/m2). Number of heat treatments ranged from 2 to 8 sessions. The bile duct at autopsy was histologically examined in three patients treated with TCRT.RESULTS: In respect to resolution of the bile duct, there were three complete regression (CR), two partial regression (PR), and three no change (NC). Mean survival was 13.2±10.8 mo (mean±SD). Four patients survived for more than 20 mo. Percutaneous transhepatic biliary drainage (PTBD) tube could be removed in placement of self-expandable metallic stent into the patency-restored bile duct after TCRT. No major side effects occurred. At autopsy, marked hyalinization or fibrosis with necrosis replaced extensively bile duct tumor and wall, in which suppressed cohesiveness of carcinoma cells and degenerative cells were sparsely observed.CONCLUSION: Although the number of cases is

  6. Qualitative and quantitative determination of drotaverine metabolites in rat bile.

    Science.gov (United States)

    Vargay, Z; Simon, G; Winter, M; Szüts, T

    1980-01-01

    After oral and intravenous administration of drotaverin-14C its metabolites were determined in rat bile. Three major metabolites were identified by tlc. All the metabolites appeared in conjugated form. No unchanged drotaverine was detectable in the bile, except after treatment with doses much in excess of the therapeutic range. The ratio of major metabolites to unchanged product was determined by two-dimensional densitometry using a Telechrom Video Densitometer.

  7. A case of peribiliary cysts accompanying bile duct carcinoma

    Institute of Scientific and Technical Information of China (English)

    Fumihiko Miura; Tadahiro Takada; Hodaka Amano; Masahiro Yoshida; Takahiro Isaka; Naoyuki Toyota; Keita Wada; Kenji Takagi; Kenichiro Karo

    2006-01-01

    A rare case of peribiliary cysts accompaying bile duct carcinoma is presented. A 54-year-old man was diagnosed as having lower bile duct carcinoma and peribiliary cysts by diagnostic imaging. He underwent pylorus preserving pancreatoduodenectomy. As for the peribiliary cysts, a course of observation was taken.Over surgery due to misdiagnosis of patients with biliary malignancy accompanied by peribiliary cysts should be avoided.

  8. Bile duct hamar tomas-the von Meyenburg complex

    Institute of Scientific and Technical Information of China (English)

    Valdemir José Alegre Salles; Alexandre Marotta; Jorge Miguel Kather Netto; Manlio Basílio Speranzini; Marcos Roberto Martins

    2007-01-01

    Hamartomas of the bile duct (von Meyenburg complex) are benign neoplasms of the liver, constituted histologically cystic dilatations of the bile duct, encompassed by ifbrous stroma. We report a 42-year-old female patient with symptomatic cholecystitis, whose gross and ultrasonic appearance suggestive of multiple liver metastases. Magnetic resonance imaging and liver biopsy are the gold standards for diagnosis of this rare hepatobiliary condition.

  9. Urinary excretion of bile acid glucosides and glucuronides in extrahepatic cholestasis.

    Science.gov (United States)

    Wietholtz, H; Marschall, H U; Reuschenbach, R; Matern, H; Matern, S

    1991-04-01

    Recently the formation of bile acid glucosides has been described as a novel conjugation mechanism in vitro and in vivo. In 10 patients with extrahepatic cholestasis caused by carcinoma of the head of the pancreas we investigated excretion rates and profiles of urinary bile acid glucosides. Urinary bile acid glucosides and, for comparison, bile acid glucuronides were extracted and characterized according to established methods. In controls total urinary bile acid glucoside excretion was 0.22 +/- 0.03 mumol/24 hr (mean +/- S.E.M.)-in the range of bile acid glucuronide excretion (0.41 +/- 0.06 mumol/24 hr; mean +/- S.E.M.). A gas chromatography-mass spectrometry-characterized trihydroxy bile acid glucoside of still-unknown hydroxyl positions accounted for 65% of total urinary bile acid glucosides. In extrahepatic cholestasis total urinary bile acid glucoside excretion was 0.52 +/- 0.13 mumol/24 hr (mean +/- SEM), yet significantly lower than bile acid glucuronide excretion (1.53 +/- 0.13 mumol/24 hr; mean +/- SEM; p less than 0.001). In cholestasis the primary bile acid derivatives cholic and chenodeoxycholic acid glucosides amounted to 90%, whereas the trihydroxy bile acid glucoside had decreased to 5% of total bile acid glucoside excretion, indicating its alteration during enterohepatic circulation. The data establish the composition and quantity of urinary bile acid glucosides in healthy controls and cholestasis and constitute a quantitative comparison with another glycosidic conjugation reaction, bile acid glucuronidation.

  10. The anti-mutagenic properties of bile pigments.

    Science.gov (United States)

    Bulmer, A C; Ried, K; Blanchfield, J T; Wagner, K-H

    2008-01-01

    Bile pigments, including bilirubin and biliverdin, are endogenous compounds belonging to the porphyrin family of molecules. In the past, bile pigments and bilirubin in particular were thought of as useless by-products of heme catabolism that can be toxic if they accumulate. However, in the past 20 years, research probing the physiological relevance of bile pigments has been mounting, with evidence to suggest bile pigments possess significant antioxidant and anti-mutagenic properties. More specifically, bile pigments are potent peroxyl radical scavengers and inhibit the mutagenic effects of a number of classes of mutagens (polycyclic aromatic hydrocarbons, heterocyclic amines, oxidants). Coincidentally, persons with elevated circulating bilirubin concentrations have a reduced prevalence of cancer and cardio-vascular disease. Despite the encouraging in vitro anti-mutagenic effects of bile pigments, relatively little research has been conducted on their inhibitory capacity in bacterial and cultured cell assays of mutation, which might link the existing in vitro and in vivo observations. This is the first review to summarise the published data and it is our hope it will stimulate further research on these potentially preventative compounds.

  11. Microstructural analysis of bile: relevance to cholesterol gallstone pathogenesis.

    Science.gov (United States)

    Rubin, M; Pakula, R; Konikoff, F M

    2000-07-01

    The study of physical-chemical factors and pathways leading to cholesterol crystallization in bile has important clinical relevance. The major processes in cholesterol gallstone formation can be subdivided into nucleation, formation and precipitation of solid crystals (crystallization), crystal growth, crystal agglomeration and stone growth. A clear understanding of the microstructural events occurring during the earliest stages of these processes in bile is crucial for the identification of factors possibly delaying or preventing precipitation of cholesterol crystals and, therefore, gallstone formation in bile. Detection and characterization of microstructures in native and model biles can be achieved by both direct and indirect techniques. Direct imaging techniques provide more readily interpretable information, but sample preparation problems, particularly for electron microscopy, are a source of artifacts. Moreover, microscopic techniques provide only qualitative data without the possibility to quantitate or to analyse the composition of microstructures. Several indirect techniques have been used to obtain additional microstructural information about nucleating bile. These techniques have the disadvantage of often being model dependent in addition to constraints specific for each method. The systematic, judicious use of a combination of complementary direct and indirect techniques have led to a comprehensive understanding of the various microstructural processes and interactions occurring during bile secretion, flow in the biliary tract and storage in the gallbladder. This forms the basis for our current understanding of cholesterol nucleation, crystallization and gallstone formation.

  12. Individual bile acids have differential effects on bile acid signaling in mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu; Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  13. Elemental diet and bile induced pancreatitis.

    Science.gov (United States)

    Kerstein, M D; Tonkens, R M

    1976-08-01

    The effectiveness of an elemental diet was investigated as both a prophylactic and therapeutic agent in experimental canine pancreatitis. Pancreatitis was induced by operative injection of a bile -saline solution mixture under pressure retrograde into the main pancreatic duct. In addition to a preinjection control sample, serial biopsies were obtained at 30 minute intervals for 90 minutes after injection and fixed for light and electron microscopic examinations. In addition, preoperative and postoperative blood samples were drawn and analyzed for amylase. After operation, half of the dogs from each original group were fed Vivonex-100, the other half from each group, regular laboratory chow, yielding four ultimate groups based on preoperative and postoperative diets. Successful induction of pancreatitis was evaluated by the difference between preoperative and postoperative amylase values, all of which were significant by group at the p less than 0.01 level. No ultrastructural evidence was found for the modification of zymogen granules with the pretreatment elemental diet nor were differences evident, histologically or ultrastructurally, in the severity of pancreatitis between the pretreated and nonpretreated groups. Finally, gross mortality figures demonstrated no efficacy of elemental diet for pretreatment prophylaxis of acute pancreatitis.

  14. Prolonged cholestasis and ductopenia following gold salt therapy.

    Science.gov (United States)

    Basset, Céline; Vadrot, Jacqueline; Denis, Jacques; Poupon, Joël; Zafrani, Elie Serge

    2003-04-01

    Hepatotoxicity, predominantly cholestatic, is a rare adverse effect of gold salt therapy, which usually completely resolves within a few months. We report the case of a female patient treated for rheumatoid arthritis, who had gold salt overdose, and in whom acute cholestatic hepatitis occurred three weeks after beginning of therapy. Evolution of gold concentration was followed in plasma and urine, as well as in cutaneous and liver dry tissue. Liver biopsy showed marked inflammatory changes of interlobular bile ducts that evolved towards ductopenia, which was responsible for prolonged cholestasis still present 15 months later. In addition, sialadenitis with sicca syndrome was noted six months after onset of the disease. The mechanism of hepatotoxicity was probably immunoallergic since liver lesions were associated with hypersensitivity syndrome including dermatitis and blood and tissue eosinophilia. This is the first report of gold salt hepatotoxicity with histological demonstration of cholangitis followed by ductopenia.

  15. Differentiation of various traditional Chinese medicines derived from animal bile and gallstone: simultaneous determination of bile acids by liquid chromatography coupled with triple quadrupole mass spectrometry.

    Science.gov (United States)

    Qiao, Xue; Ye, Min; Pan, De-lin; Miao, Wen-juan; Xiang, Cheng; Han, Jian; Guo, De-an

    2011-01-01

    Animal biles and gallstones are popularly used in traditional Chinese medicines, and bile acids are their major bioactive constituents. Some of these medicines, like cow-bezoar, are very expensive, and may be adulterated or even replaced by less expensive but similar species. Due to poor ultraviolet absorbance and structural similarity of bile acids, effective technology for species differentiation and quality control of bile-based Chinese medicines is still lacking. In this study, a rapid and reliable method was established for the simultaneous qualitative and quantitative analysis of 18 bile acids, including 6 free steroids (cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, hyodeoxycholic acid, and ursodeoxycholic acid) and their corresponding glycine conjugates and taurine conjugates, by using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). This method was used to analyze six bile-based Chinese medicines: bear bile, cattle bile, pig bile, snake bile, cow-bezoar, and artificial cow-bezoar. Samples were separated on an Atlantis dC₁₈ column and were eluted with methanol-acetonitrile-water containing ammonium acetate. The mass spectrometer was monitored in the negative electrospray ionization mode. Total ion currents of the samples were compared for species differentiation, and the contents of bile acids were determined by monitoring specific ion pairs in a selected reaction monitoring program. All 18 bile acids showed good linearity (r² > 0.993) in a wide dynamic range of up to 2000-fold, using dehydrocholic acid as the internal standard. Different animal biles could be explicitly distinguished by their major characteristic bile acids: tauroursodeoxycholic acid and taurochenodeoxycholic acid for bear bile, glycocholic acid, cholic acid and taurocholic acid for cattle bile, glycohyodeoxycholic acid and glycochenodeoxycholic acid for pig bile, and taurocholic acid for snake bile. Furthermore, cattle bile, cow

  16. Acetylcarnitine hydrolase activity in bovine caudal epididymal spermatozoa

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, K.; Foster, R.A.; Casillas, E.R.

    1986-05-01

    Recently, the authors identified mM concentrations of acetylcarnitine in epidiymal fluids and have investigated the metabolism of acetylcarnitine by bovine and hamster caudal epididymal spermatozoa. (1-/sup 14/C)acetyl-L-carnitine is oxidized to /sup 14/CO/sub 2/ by washed, intact hamster and bovine sperm at maximal rates of 8.4 and 15.2 nmol/hr/10/sup 7/ cells respectively. Conversely, the carnitine moiety of acetyl-L-(/sup 3/H-methyl)carnitine is not accumulated by sperm under similar conditions. Hydrolysis of (/sup 3/H)acetyl-L-carnitine and competition of uptake of (/sup 3/H)acetate by unlabeled acetate was demonstrated in incubations of intact cells of both species. The amount of (/sup 3/H)acetate accumulated in the incubation medium is time-dependent and also depends on the concentration of unlabeled acetate. A partial solubilization of acetylcarnitine hydrolase activity from washed, intact bovine caudal epididymal spermatozoa in buffer or 0.01% Triton X-100 is observed. There is an enrichment of acetylcarnitine hydrolase activity in purified plasma membranes from bovine caudal epididymal spermatozoa when compared to the activity present in broken cell preparations or other cellular fractions. The results suggest that acetylcarnitine is a substrate for spermatozoa as they traverse the epididymis.

  17. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Gabriel Zamith Leal Dalmaso

    2015-04-01

    Full Text Available The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.

  18. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    2017-02-01

    Full Text Available Polyurethanes (PU are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The degradation of the polyester PU Impranil DLN by the polyester hydrolases LC cutinase (LCC, TfCut2, Tcur1278 and Tcur0390 was analyzed using a turbidimetric assay. The highest hydrolysis rates were obtained with TfCut2 and Tcur0390. TfCut2 also showed a significantly higher substrate affinity for Impranil DLN than the other three enzymes, indicated by a higher adsorption constant K. Significant weight losses of the solid thermoplastic polyester PU (TPU Elastollan B85A-10 and C85A-10 were detected as a result of the enzymatic degradation by all four polyester hydrolases. Within a reaction time of 200 h at 70 °C, LCC caused weight losses of up to 4.9% and 4.1% of Elastollan B85A-10 and C85A-10, respectively. Gel permeation chromatography confirmed a preferential degradation of the larger polymer chains. Scanning electron microscopy revealed cracks at the surface of the TPU cubes as a result of enzymatic surface erosion. Analysis by Fourier transform infrared spectroscopy indicated that the observed weight losses were a result of the cleavage of ester bonds of the polyester TPU.

  19. Clinical pathology of primary bile reflux gastritis

    Directory of Open Access Journals (Sweden)

    Ping YAO

    2011-05-01

    Full Text Available Objective To analyze the clinical and pathological features of primary bile reflux gastritis(BRG.Methods Endoscopy,Helicobacter pylori(H.pylori detection,and histopathologic examination were performed in 218 patients with primary BRG(observed group and 236 patients with simple chronic gastritis(SCG,control group as identified by gastroscope in order to analyze the endoscopic abnormalities,the frequency of H.pylori infection,pathological features and scores of inflammation.Results The frequency of H.pylori infection was 39.0%(85/218 in the observed group,which was significantly lower than that in the control group [52.1%(123/236].The topographic abnormalities of the antral mucosa as detected by gastroscopy,i.e.,congestion,hemorrhagic spots,erosion were not significantly different between BRG and SCG patients(P > 0.05.The scores of chronic and active inflammation were higher in patients when H.pylori infection was present than in patients without H.pylori infection in both groups(P < 0.05.The scores of inflammation,the detection rates of the antral intestinal metaplasia,antral atrophy and atypical hyperplasia were all higher in observed group than in control group(P < 0.05.The incidence of lengthening of gastric pits,telangiectasis or interstitial edema in BRG patients was also significantly higher than those in SCG patients(P < 0.05.Conclusions Primary BRG shows features of chemical gastritis with a higher tendency toward mucosal atrophy,intestinal metaplasia and atypical hyperplasia.Gastropic examination and biopsy should be emphasized.

  20. Bile acids as endogenous etiologic agents in gastrointestinal cancer

    Institute of Scientific and Technical Information of China (English)

    Harris Bernstein; Carol Bernstein; Claire M Payne; Katerina Dvorak

    2009-01-01

    Bile acids are implicated as etiologic agents in cancer of the gastrointestinal (GI) tract, including cancer of the esophagus, stomach, small intestine, liver, biliary tract, pancreas and colon/rectum. Deleterious effects of bile acid exposure, likely related to carcinogenesis,include: induction of reactive oxygen and reactive nitrogen species; induction of DNA damage; stimulation of mutation; induction of apoptosis in the short term,and selection for apoptosis resistance in the long term.These deleterious effects have, so far, been reported most consistently in relation to esophageal and colorectal cancer, but also to some extent in relation to cancer of other organs. In addition, evidence is reviewed for an association of increased bile acid exposure with cancer risk in human populations, in specific human genetic conditions, and in animal experiments. A model for the role of bile acids in GI carcinogenesis is presented from a Darwinian perspective that offers an explanation for how the observed effects of bile acids on cells contribute to cancer development.

  1. Optimizing Human Bile Preparation for Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Hao-Tsai Cheng

    2016-01-01

    Full Text Available Aims. Bile is an important body fluid which assists in the digestion of fat and excretion of endogenous and exogenous compounds. In the present study, an improved sample preparation for human bile was established. Methods and Material. The method involved acetone precipitation followed by protein extraction using commercially available 2D Clean-Up kit. The effectiveness was evaluated by 2-dimensional electrophoresis (2DE profiling quality, including number of protein spots and spot distribution. Results. The total protein of bile fluid in benign biliary disorders was 0.797 ± 0.465 μg/μL. The sample preparation method using acetone precipitation first followed by 2D Clean-Up kit protein extraction resulted in better quality of 2DE gel images in terms of resolution as compared with other sample preparation methods. Using this protocol, we obtained approximately 558 protein spots on the gel images and with better protein spots presentation of haptoglobin, serum albumin, serotransferrin, and transthyretin. Conclusions. Protein samples of bile prepared using acetone precipitation followed by 2D Clean-Up kit exhibited high protein resolution and significant protein profile. This optimized protein preparation protocol can effectively concentrate bile proteins, remove abundant proteins and debris, and yield clear presentation of nonabundant proteins and its isoforms on 2-dimensional electrophoresis gel images.

  2. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.

    Science.gov (United States)

    Buchebner, Marlene; Pfeifer, Thomas; Rathke, Nora; Chandak, Prakash G; Lass, Achim; Schreiber, Renate; Kratzer, Adelheid; Zimmermann, Robert; Sattler, Wolfgang; Koefeler, Harald; Fröhlich, Eleonore; Kostner, Gerhard M; Birner-Gruenberger, Ruth; Chiang, Kyle P; Haemmerle, Guenter; Zechner, Rudolf; Levak-Frank, Sanja; Cravatt, Benjamin; Kratky, Dagmar

    2010-10-01

    Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.

  3. In vitro lipid peroxidation of intestinal bile salt-based nanoemulsions

    DEFF Research Database (Denmark)

    Courraud, J; Charnay, C; Cristol, J P;

    2013-01-01

    , the latter being the least resistant to oxidation. In the experimental conditions, AAPH was the only efficient oxidant. Alpha-tocopherol and lutein significantly slowed FA degradation from 4 to 1 μM, respectively. On the contrary, beta-carotene did not show any protective capacity at 4 μM. In conclusion...

  4. Affinity capillary electrophoresis method for investigation of bile salts complexation with sulfobutyl ether-ß-cyclodextrin

    DEFF Research Database (Denmark)

    Østergaard, Jesper; Jensen, Henrik; Holm, Rene

    2012-01-01

    an influence on the ionic strength of the background electrolyte when the cyclodextrin is used in capillary electrophoresis. Mobility-shift affinity capillary methods for investigation of the complexation of taurocholate and taurochenodeoxycholate with the negatively charged cyclodextrin derivative applying...... constant power and ionic strength conditions as well as constant voltage and varying ionic strength were investigated. A new approach for the correction of background electrolyte ionic strength was developed. Mobility-shift affinity capillary electrophoresis experiments obtained at constant voltage...

  5. Buccal transport of flecainide and sotalol : effect of a bile salt and ionization state

    NARCIS (Netherlands)

    Deneer, VHM; Drese, GB; Roemele, PEH; Verhoef, JC; Lie-A-Huen, L; Kingma, JH; Brouwers, JRBJ; Junginger, HE

    2002-01-01

    Patients with infrequent attacks of supraventricular arrhythmia may benefit from self administration of antiarrhythmic drugs on an 'as required' basis. The oral cavity is easily accessible and the potential for rapid absorption exists. The effects of ionization state and sodium glycocholate on the e

  6. Production of recombinant human bile salt stimulated lipase and its variant in Pichia pastoris.

    Science.gov (United States)

    Sahasrabudhe, A V; Solapure, S M; Khurana, R; Suryanarayan, V; Ravishankar, S; deSousa, S M; Das, G

    1998-12-01

    hBSSL and its truncated variant hBSSL-C cDNA clones were expressed in Pichia pastoris using two different signal peptides, native signal peptide and invertase signal peptide, respectively, to facilitate secretion of the recombinant proteins into the culture medium. Both recombinant proteins were secreted into the culture medium to a level of 45-50 mg/liter in shake flask cultures. Native signal peptide of hBSSL was recognized in P. pastoris and was cleaved at the same site as in humans. The level of expression of the hBSSL gene was found to be dependent on the number of its copies integrated into the host chromosome. The multicopy transformant clone was found to be very stable. When grown and induced in a fermentor, the level of accumulation of the recombinant hBSSL in the culture medium improved from 50 mg/liter in shake flask cultures to 300 mg/liter. The recombinant hBSSL purified from the culture supernatant was found to be similar to the native hBSSL in its biochemical properties except for the lectin-binding profile.

  7. Bile acid nuclear receptor FXR and digestive system diseases

    Directory of Open Access Journals (Sweden)

    Lili Ding

    2015-03-01

    Full Text Available Bile acids (BAs are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR, plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases.

  8. [Postoperative handling in biliodigestive derivation by iatrogenic bile duct injury].

    Science.gov (United States)

    Domínguez, I; Mercado, M A

    2008-01-01

    Bile duct injury is a severe complication related to cholecystectomy, impacting in the long-term quality of life and functional status. Bile duct repair is the first-line treatment for complex injuries. During short-term and long-term postoperative care, it is important to bear in mind the diagnostic tools, both laboratory and imaging, that will be useful to evaluate a possible surgical complication and to plan an adequate therapeutic strategy. In addition, post-surgical classification describes patients according to their complications and clinical course. In this review we describe the principal issues of postoperative care after bile duct repair, highlighting the diagnosis, severity classification and therapeutic approach of acute cholangitis.

  9. The behaviour of salt and salt caverns

    NARCIS (Netherlands)

    Fokker, P.A.

    1995-01-01

    Salts are mined for both storage and extraction purposes, either via dry or solution mining techniques. For operational, environmental and geological purposes, it is important to understand and predict the in situ behaviour of salt, in particular the creep and strength characteristics. A micro-mecha

  10. Thermodynamics of Enzyme-Catalyzed Reactions. Part 3. Hydrolases

    Science.gov (United States)

    Goldberg, Robert N.; Tewari, Yadu B.

    1994-11-01

    Equilibrium constants and enthalpy changes for reactions catalyzed by the hydrolase class of enzymes have been compiled. For each reaction the following information is given: The reference for the data; the reaction studied; the name of the enzyme used and its Enzyme Commission number; the method of measurement; the conditions of measurement [temperature, pH, ionic strength, and the buffer(s) and cofactor(s) used]; the data and an evaluation of it; and, sometimes, commentary on the data and on any corrections which have been applied to it or any calculations for which the data have been used. The data from 145 references have been examined and evaluated. Chemical Abstract Service registry numbers are given for the substances involved in these various reactions. There is a cross reference between the substances and the Enzyme Commission numbers of the enzymes used to catalyze the reactions in which the substances participate.

  11. Epoxides and soluble epoxide hydrolase in cardiovascular physiology.

    Science.gov (United States)

    Imig, John D

    2012-01-01

    Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.

  12. Cooking without salt

    Science.gov (United States)

    DASH diet; High blood pressure - DASH; Hypertension - DASH; Low-salt diet - DASH ... Explore cooking with salt substitutes. Add a splash of lemon and other citrus fruits, or wine, to soups and other dishes. Or use them ...

  13. Congenital double bile duct presenting as recurrent cholangitis in a child

    Directory of Open Access Journals (Sweden)

    K.D. Chakravarty

    2015-12-01

    Full Text Available Double common bile duct (DCBD is a rare congenital anomaly. Most of these bile duct anomalies are associated with bile duct stones, anomalous pancreaticobiliary junction (APBJ, pancreatitis and bile duct or gastric cancers. Early detection and treatment is important to avoid long term complications. Surgical resection of the anomalous bile duct and reconstruction of the biliary enteric anastomosis is the treatment of choice. We report a rare case of DCBD anomaly in a girl, who presented with recurrent cholangitis. She had type Va DCBD anomaly. She underwent successful resection of the bile duct and reconstruction of the biliary enteric anastomosis. Preoperative imaging and diagnosis of the congenital biliary anomaly is very important to avoid intraoperative bile duct injury. Review of the literature shows very few cases of type Va DCBD, presenting with either bile duct stones or APBJ.

  14. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Kortner, Trond M; Björkhem, Ingemar; Krasnov, Aleksei; Timmerhaus, Gerrit; Krogdahl, Åshild

    2014-06-28

    Plants now supply more than 50 % of protein in Norwegian salmon aquafeeds. The inclusion of plant protein in aquafeeds may be associated with decreased lipid digestibility and cholesterol and bile salt levels, indicating that the replacement of fishmeal with plant protein could result in inadequate supplies of cholesterol in fish. A reduction in feed efficiency, fish growth and pathogen resistance is often observed in parallel to alterations in sterol metabolism. Previous studies have indicated that the negative effects induced by plant components can be attenuated when diets are supplemented with cholesterol. The present study evaluated the effects of dietary cholesterol supplementation (1·5 %) in Atlantic salmon fed a plant-based diet for 77 d. The weights of body, intestines and liver were recorded and blood, tissues, faeces, chyme and bile were sampled for the evaluation of effects on growth, nutrient utilisation and metabolism, and transcriptome and metabolite levels, with particular emphasis on sterol metabolism and organ structure and function. Cholesterol supplementation did not affect the growth or organ weights of Atlantic salmon, but seemed to promote the induction of cholesterol and plant sterol efflux in the intestine while suppressing sterol uptake. Cholesterol biosynthesis decreased correspondingly and conversion into bile acids increased. The marked effect of cholesterol supplementation on bile acid synthesis suggests that dietary cholesterol can be used to increase bile acid synthesis in fish. The present study clearly demonstrated how Atlantic salmon adjusted their metabolic functions in response to the dietary load of cholesterol. It has also expanded our understanding of sterol metabolism and turnover, adding to the existing, rather sparse, knowledge of these processes in fish.

  15. Gut microbiota inhibit Asbt-dependent intestinal bile acid reabsorption via Gata4

    NARCIS (Netherlands)

    Out, Carolien; Patankar, Jay V.; Doktorova, Marcela; Boesjes, Marije; Bos, Trijnie; de Boer, Sanna; Havinga, Rick; Wolters, Henk; Boverhof, Renze; van Dijk, Theo H.; Smoczek, Anna; Bleich, Andre; Sachdev, Vinay; Kratky, Dagmar; Kuipers, Folkert; Verkade, Henkjan J.; Groen, Albert K.

    2015-01-01

    Background & Aims: Regulation of bile acid homeostasis in mammals is a complex process regulated via extensive cross-talk between liver, intestine and intestinal microbiota. Here we studied the effects of gut microbiota on bile acid homeostasis in mice. Methods: Bile acid homeostasis was assessed in

  16. The Farnesoid X receptor - A molecular link between bile acid and lipid and glucose metabolism

    NARCIS (Netherlands)

    Claudel, T; Staels, B; Kuipers, F

    2005-01-01

    Bile acids are the end products of cholesterol metabolism. They are synthesized in the liver and secreted via bile into the intestine, where they aid in the absorption of fat-soluble vitamins and dietary fat. Subsequently, bile acids return to the liver to complete their enterohepatic circulation. T

  17. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    Science.gov (United States)

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  18. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: skarnam@vcu.edu [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: asanyal@mcvh-vcu.edu [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  19. Les lipases sont des hydrolases atypiques : principales caractéristiques et applications

    Directory of Open Access Journals (Sweden)

    Fickers P.

    2008-01-01

    Full Text Available ipases are atypical hydrolases: principal characteristics and applications. Due to their kinetic and substrate specificities, triacylglycerol acyl-hydrolases or lipases are atypical enzymes. In function of their microenvironment, lipases are able to act as hydrolases in aqueous solution or as biocatalysts in organic synthesis. As hydrolases, they are responsible of the triglycerids catabolism into fatty acids and glycerol. In many organisms, this reaction plays a major role in the fat and lipid metabolism. In addition, lipases are also able to hydrolyse phospholipids and cholesterol esters. In organic solvent, lipases could catalyse reactions such as esterifications, acidolysis or alcoolysis with enantio-, regio- and chimioselectivity. Lipases form a mixed class of enzyme due to their animal, vegetal or microbial origins. All those properties led to the development of many applications in the food and chemical industries but also in the medical and therapeutic field.

  20. The salts of Mars

    Science.gov (United States)

    Clark, B. C.; Van Hart, D. C.

    1981-01-01

    Salt compounds are apparently an important component of the fine-grained regolith on Mars. Salt enrichment may be explained either as a secondary concentration of chemical weathering products or as direct incorporation of planetary released volatiles. Geochemical measurements and chemical relationships constrain the salt species and resultant physicochemical consequences. A likely assemblage is dominated by (Mg,Na)SO4, NaCl, and (Mg,Ca)CO3. Formation of brine in equilibrium with such a salt mixture is unlikely under the temperature and water-vapor restrictions prevalent over most, if not all, of the Martian surface. Acidic conditions, accompanying salt formation, favor the preferential destruction of susceptible igneous minerals.

  1. Ventajas y desventajas del bilingüismo

    Directory of Open Access Journals (Sweden)

    Alfredo Ardila

    2012-01-01

    Full Text Available Las personas bilingües tienen que coordinar dos sistemas lingüísticos. Esto implica algunas ganancias, pero también un costo. Las ganancias del bilingüismo incluyen: un incremento de la flexibilidad mental; una superioridad en el desarrollo de aquellas funciones cognitivas relacionadas con la atención y la inhibición; el uso de una cantidad mayor de estrategias cognoscitivas en la solución de problemas; un aumento de la llamada conciencia metalingüística; y una habilidad mayor de comunicación. Entre los costos del bilingüismo se menciona: cierto retraso aparente en la adquisición del lenguaje; una interferencia entre ambos sistemas fonológicos, léxicos y gramaticales; y un posible decremento en el vocabulario en las dos lenguas. Se concluye que existe una gran variabilidad de experiencias lingüísticas en las personas bilingües y un gran número de variables afecta su ejecución en diferentes tareas intelectuales.

  2. Bile acid and immunosuppressive therapy in primary biliary cirrhosis

    NARCIS (Netherlands)

    F.H.J. Wolfhagen (Franciscus)

    1995-01-01

    textabstractPrimary Biliary Cirrhosis (PBC) is a chronic, cholestatic liver disease characterized by non-suppurative destruction of interlobular and septal bile ducts, with subsequent liver damage and eventually development of cirrhosis. The disease is relatively rare with an estimated annual incide

  3. Carbon monoxide and bile pigments: surprising mediators of vascular function.

    Science.gov (United States)

    Durante, William

    2002-08-01

    Heme oxygenase (HO) catalyzes the degradation of heme to CO, iron, and biliverdin. Biliverdin is subsequently metabolized to bilirubin by the enzyme biliverdin reductase. Although long considered irrelevant byproducts of heme catabolism, recent studies indicate that CO and the bile pigments biliverdin and bilirubin may play an important physiological role in the circulation. The release of CO by vascular cells may modulate blood flow and blood fluidity by inhibiting vasomotor tone, smooth muscle cell proliferation, and platelet aggregation. CO may also maintain the integrity of the vessel wall by directly blocking vascular cell apoptosis and by inhibiting the release of pro-apoptotic inflammatory cytokines from the vessel wall. These effects of CO are mediated via multiple pathways, including activation of soluble guanylate cyclase, potassium channels, p38 mitogen-activated protein kinase, or inhibition of cytochrome P450. In addition, the release of bile pigments may serve to sustain vascular homeostasis by protecting vascular cells from oxidative stress and by inhibiting the adhesion and infiltration of leukocytes into the vessel wall. Induction of HO-1 gene expression and the subsequent release of CO and bile pigments are observed in numerous vascular disorders and may provide an important adaptive mechanism to preserve homeostasis at sites of vascular injury. Thus, the HO-catalyzed formation of CO and bile pigments by vascular cells may function as a critical endogenous vasoprotective system. Moreover, pharmacological or genetic approaches targeting HO-1 to the vessel wall may represent a novel therapeutic approach in treating vascular disease.

  4. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L.; Dorko, Kenneth [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Clarke, Joanna I. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Gholami, Parviz [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Li, Feng [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS (United States); Fan, Fang [Department of Pathology, University of Kansas Medical Center, Kansas City, KS (United States); Jenkins, Rosalind E.; Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Hagenbuch, Bruno [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Olyaee, Mojtaba [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  5. Current perspective in the treatment of bile duct injuries

    Directory of Open Access Journals (Sweden)

    Juan Jos and eacute; Granados-Romero

    2016-03-01

    Full Text Available The laparoscopic cholecystectomy is considered the gold standard for the treatment of benign gallbladder disease, which is associated with an increased incidence of biliary injuries. These types of injuries are multicausal, and anatomical variations or anatomical perception errors are the most common risk factors. The objective of this study is to describe the evolution in the management of bile duct injuries and actual, diagnostic tools, incidence, prognosis and treatment. A literature research about diagnosis and treatment of iatrogenic bile duct injuries as well as their impact on the incidence of morbidity and mortality, based on a 30-year period, was performed on Medline, Cochrane, Embase, MedScape and PubMed database, for all studies that met the eligibility criteria. A thorough quality assessment of all included studies was performed. Synthesis of the results was achieved by narrative review. The bile duct injury is a complication that requires a complex therapy and multidisciplinary management. Reconstruction and treatment techniques have been evolving. The selection of adequate treatment will impact on the patient and acute;s quality of life. The results of the existing studies reporting on iatrogenic bile duct injuries are useful; because the iatrogenic bile duct injuries are complex alterations and constitute one of the most serious complications of a cholecystectomy and require a comprehensive approach, immediate repair, proper drainage and timely referral to adequate treatment to improve long-term prognosis. According to the literature review, currently there better treatments such as absorbable prosthesis, which improve the prognosis and patient and acute;s quality of life, and represent less risk of complications in short/long term. [Int J Res Med Sci 2016; 4(3.000: 677-684

  6. Characterization and functional analysis of Trichinella spiralis Nudix hydrolase.

    Science.gov (United States)

    Long, Shao Rong; Wang, Zhong Quan; Jiang, Peng; Liu, Ruo Dan; Qi, Xin; Liu, Pei; Ren, Hui Jun; Shi, Hai Ning; Cui, Jing

    2015-12-01

    Trichinella spiralis Nudix hydrolase (TsNd) was identified by screening a T7 phage display cDNA library from T. spiralis intestinal infective larvae (IIL), and vaccination of mice with recombinant TsNd protein (rTsNd) or TsNd DNA vaccine produced a partial protective immunity. The aim of this study was to identify the characteristics and biological functions of TsNd in the process of invasion and development of T. spiralis larvae. Transcription and expression of TsNd gene at all developmental stages of T. spiralis were observed by qPCR and immunofluorescent test (IFT). The rTsNd had the Nd enzymatic activity to dGTP, NAD, NADP and CoA. Its kinetic properties on the preferred substrate dGTP were calculated, and the Vmax, Km, and kcat/Km values at pH 8.0 were 3.19 μM min(-1) μg(-1), 370 μM, and 144 s(-1) M(-1), respectively, in reaction matrix containing 5 mM Zn(2+) and 2 mM DTT. The rTsNd was active from 25 °C to 50 °C, with optimal activity at 37 °C. rTsNd was able to bind specifically to mouse intestinal epithelial cells (IECs) and promoted the larval invasion of IECs, whereas anti-rTsNd antibodies inhibited the larval invasion of IECs in a dose-dependent manner. Anti-rTsNd antibodies could kill T. spiralis infective larvae by an ADCC-mediated mechanism. Our results showed that the rTsNd protein was able to interact with host IECs, had the Nudix hydrolasing activity and the enzymatic activity appeared to be essential indispensable for the T. spiralis larval invasion, development and survival in host.

  7. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  8. Analyses of bile from gallbladders of Arius platystomus, Arius tenuispinis, Pomadasys commersonni and Kishinoella tonggol.

    Science.gov (United States)

    Hassan, Amir; Ahmed, Mansoor; Rasheed, Munawwer; Mansoor, Najia; Khan, Rafeeq Alam; Kamal, Mustafa; Rashid, Mohammad Abdur

    2015-07-01

    Bile from gallbladders of Arius platystomus (Singhara), Arius tenuispinis (Khagga), Pomadasys commersonni (Holoola) and Kishinoella tonggol (Dawan) were derivatised and analysed by GC-MS for identification of bile acids and bile alcohols. Cholic acid and Chenodeoxycholic acid were found as major bile acids in Arius platystomus, Arius tenuispinis and Pomadasys commersonni. Other bile acids identified in Arius platystomus were allochenodeoxycholic acid, allodeoxycholic acid, 3α,7α,12α-trihydroxy-24-methyl-5β-cholestane-26-oic acid, and 3α,7α,12α, 24-tetrahydroxy-5α-cholestane-26-oic acid. Cholesterol was found as major bile alcohol in Arius platystomus, Arius tenuispinis and Pomadasys commersonni. Cholic acid was the major bile acid identified in the bile of Kishinoella tonggol while other bile acids included 3α,7α,12α-tridydroxy-5α-cholestanoic acid and 3α,7α,12α-tridydroxy-5β-cholestanoic acid. Bile alcohol 5β-cyprinol was present in significant amounts with 5β-cholestane-3α,7α,12α,24-tetrol being the other contributors in the bile of Kishinoella tonggol.

  9. Detection of markers of hepatitis viral infection in the tissue of bile duct carcinoma

    Institute of Scientific and Technical Information of China (English)

    LIU Hou-bao; QIAN Zhen-yu; WANG Bing-sheng; TONG Sai-xiong

    2008-01-01

    @@ Hepatitis B virus (HBV) is an admitted oncogenic virus. Many epidemiological and molecular biological studies have demonstrated that chronic infection with HBV is a major risk factor associated with the development of hepatocellular carcinoma (HCC) and intrahepatic bile duct cancer.1-4 Compared with hepatocytes and intrahepatic bile duct epithelial cells,extrahepatic bile duct epithelial cells have autoploid in embryogenesis,continuity in anatomy and a similar internal environment.The question arises whether extrahepatic bile duct epithelial cells can receive HBV infection or not? The role of hepatitis viral infection in the pathogenesis of bile duct carcinoma has not yet been clarified.although a causative relationship between HBV or HCV infection and extrahepatic bile duct carcinoma has been reported in the literature.5,6 In this study,we focused on the evidence of hepatitis viral infection in tissue of bile duct carcinoma.

  10. Simultaneous Extensive Intraductal Papillary Neoplasm of the Bile Duct and Pancreas: A Very Rare Entity

    Directory of Open Access Journals (Sweden)

    Vor Luvira

    2016-01-01

    Full Text Available Intraductal papillary neoplasm of the bile duct (IPNB is a specific type of bile duct tumor. It has been proposed that it could be the biliary counterpart of the intraductal papillary neoplasm of the pancreas (IPMN-P. This hypothesis is supported by the presence of simultaneous intraductal tumors of both the bile duct and pancreas. There have been five reports of patients with simultaneous IPNB and IPMN-P. In all of these cases, biliary involvement was limited to the intrahepatic and perihilar bile duct, which had characteristics similar to IPMN-P and usually had slow progression in nature. Herein, we present the first case of extensive intraductal neoplasm involving the extrahepatic bile duct, intrahepatic bile duct, and entire length of the pancreas with a poor outcome, even after being treated aggressively with radical surgery and adjuvant chemotherapy. Additionally, we summarize previous case reports of simultaneous intraductal lesions of the bile duct and pancreas.

  11. Boldine enhances bile production in rats via osmotic and Farnesoid X receptor dependent mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cermanova, Jolana [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Kadova, Zuzana [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove (Czech Republic); Zagorova, Marie [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Hroch, Milos [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Tomsik, Pavel [Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Nachtigal, Petr; Kudlackova, Zdenka [Department of Biological and Medical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove (Czech Republic); Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek [Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove (Czech Republic); Laho, Tomas [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Micuda, Stanislav, E-mail: micuda@lfhk.cuni.cz [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic)

    2015-05-15

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. - Highlights: • Boldine may increase bile production by direct as well as indirect mechanisms. • Biliary concentrations of boldine above 10 μM directly stimulate bile production. • Long-term oral boldine administration increases bile acid (BA) biliary secretion. • Boldine

  12. Mucin and phospholipids determine viscosity of gallbladder bile in-patients with gallstones

    Institute of Scientific and Technical Information of China (English)

    Dieter Jungst; Anna Niemeyer; Iris Muller; Benedikta Zundt; Gunther Meyer; Martin Wilhelmi; Reginald del Pozo

    2001-01-01

    AIM An increased viscosity of gallbladder bile has been considered an important factor in the pathogenesis of gallstone disease. Besides lipids and proteins, mucin has been suggested to affect the viscosity of bile. To further clarify these issues we compared mucin, protein and the lipid components of hepatic and gallbladder bile and its viscosity in patients with gallstones.METHODS Viscosity of bile ( mpa. s ) wasmeasured using rotation viscosimetry in regard to the non-Newtonian property of bile at law shear rates.RESULTS Biliary viscosity was markedly higher in gallbladder bile of patients with cholesterol (5.00 ± 0.60 mpa. s, mean ± SEM, n --28) and mixed stones (3.50±0.68 mPa. s; n =8) compared to hepatic bile (0.92 ± 0.06 mpa. s,n -6). A positive correlation between mucin and viscosity was found in gallbladder biles (r=0.65; P<0.001) but not in hepatic biles. The addition of physiologic and supraphysiologic amounts of mucin to gallbladder bile resulted in a dose dependent non linear increase of its viscosity. A positive correlation was determined between phospholipid concentration and viscosity (r = 0.34, P<0.005) in gallbladder biles. However, no correlation was found between total protein or the other lipid concentrations and viscosity in both gallbladder and hepatic biles.CONCLUSION The viscosity of gallbladder bile is markedly higher than that of hepatic bile in patients with gallstones. The concentration of mucin is the major determinant of biliary viscosity and may contribute by this mechanism to the role of mucin in the pathogenesis of gallstones.

  13. Oral administration of Bifidobacterim bifidum for modulating microflora, acid and bile resistance, and physiological indices in mice.

    Science.gov (United States)

    Wang, Bao-Gui; Xu, Hai-Bo; Wei, Hua; Zeng, Zhe-Ling; Xu, Feng

    2015-02-01

    Bifidobacteria are generally acknowledged as major gut microflora used as probiotics, which promote human health. In this study, the effects of the administration of Bifidobacterim bifidum on modulating gastrointestinal (GI) tract microflora, acid and bile resistance, and physiological indices in BALB/c mice were investigated. Results showed that B. bifidum can significantly improve the ecosystem of the GI tract by increasing the amount of probiotics and reducing the populations of pathogenic bacteria, as measured by plate count and real-time PCR. After exposure to simulated GI tract conditions, the growth of gut microflora in the B. bifidum group was higher than that in the control group when incubated for 12 h in MRS or nutrient broth adjusted to pH 2.0 or 3.0 or in the presence of a concentration of bile salt (0.45% m/v). The blood biochemical index was examined, and the physiological effect of the cell-free extract of gut microflora was evaluated by measuring the activity of various enzymes, including α-glucosidases, esterase, and lactate dehydrogenase. This study suggested that a B. bifidum strain can stabilize blood sugar, lower cholesterol levels in serum, and improve metabolic activity. Moreover, B. bifidum was a promising enhancer of microbial diversity in mouse intestine and played a vital role in human physiological processes, which can benefit the health of a host.

  14. Discovery of enantioselectivity of urea inhibitors of soluble epoxide hydrolase.

    Science.gov (United States)

    Manickam, Manoj; Pillaiyar, Thanigaimalai; Boggu, PullaReddy; Venkateswararao, Eeda; Jalani, Hitesh B; Kim, Nam-Doo; Lee, Seul Ki; Jeon, Jang Su; Kim, Sang Kyum; Jung, Sang-Hun

    2016-07-19

    Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) in the metabolic pathway of arachidonic acid and has been considered as an important therapeutic target for chronic diseases such as hypertension, diabetes and inflammation. Although many urea derivatives are known as sEH inhibitors, the enantioselectivity of the inhibitors is not highlighted in spite of the stereoselective hydrolysis of EETs by sEH. In an effort to explore the importance of enantioselectivity in the urea scaffold, a series of enantiomers with the stereocenter adjacent to the urea nitrogen atom were prepared. The selectivity of enantiomers of 1-(α-alkyl-α-phenylmethyl)-3-(3-phenylpropyl)ureas showed wide range differences up to 125 fold with the low IC50 value up to 13 nM. The S-configuration with planar phenyl and small alkyl groups at α-position is crucial for the activity and selectivity. However, restriction of the free rotation of two α-groups with indan-1-yl or 1,2,3,4-tetrahydronaphthalen-1-yl moiety abolishes the selectivity between the enantiomers, despite the increase in activity up to 13 nM. The hydrophilic group like sulfonamido group at para position of 3-phenylpropyl motif of 1-(α-alkyl-α-phenylmethyl-3-(3-phenylpropyl)urea improves the activity as well as enantiomeric selectivity. All these ureas are proved to be specific inhibitor of sEH without inhibition against mEH.

  15. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  16. Surgical Intervention for Hepatocellular Carcinoma with Bile Buct Thrombi

    Institute of Scientific and Technical Information of China (English)

    PENGShuyou; LIUYingbin; WANGJianwei; CAIXiujun; MOUYiping; WUYulian; FangHeqing; LIJiangtao; WANGXinbao; XUBin; LIHaijun

    2003-01-01

    Objective: To summarize the experience of surgical intervention for hepatocellular carcinoma(HCC) with bile duct thrombi (BDT), and to evaluate the influence on prognosis. Methods: From 1994 to 2002, 15 patients with HCC and BDT who underwent surgical intervention were retrospectively analyzed.Results: The operative procedures included hepatectomy with removel of BDT (n=7), hepatectomy com-bined with extrahepatic bile duct resection (n=4), thrombectomy through choledochotomy (n=3), piggy back orthotopic liver transplantation (n=1). The 1-and 3-year survival rates were 73.3% and 40%, respec-tively. Two patients survived over 5 years. Conclusion: Surgical intervention was effective for patients with HCC and BDT. Operation for recurrent lesion can prolong survival period. Liver transplantation is a new treatment worthy of further investigation.

  17. Pancreatic fistula through the distal common bile duct

    Directory of Open Access Journals (Sweden)

    Čolović Radoje B.

    2002-01-01

    Full Text Available Pancreatic fistula is usually caused by acute or chronic pancreatitis, injury and operations of the pancreas. The pancreatic juice comes either from the main pancreatic duct or from side branches. Extremely rare pancreatic fistula may come through the distal end of the common bile duct that is not properly sutured or ligated after traumatic or operative transaction. We present a 58-year old man who developed a life threatening high output pancreatic fistula through the distal end of the common bile duct that was simply ligated after resection for carcinoma. Pancreatic fistula was developed two weeks after original surgery and after two emergency reoperations for serious bleeding from the stump of the right gastric artery resected and ligated during radical limphadenectomy. The patient was treated conservatively by elevation of the drain- age bag after firm tunnel round the drain was formed so that there was no danger of spillage of the pancreatic juice within abdomen.

  18. Eosinophilic cholecystitis with common bile duct stricture: a rare disease.

    Science.gov (United States)

    Mehanna, Daniel; Naseem, Zainab; Mustaev, Muslim

    2016-05-24

    Although the most common cause of cholecystitis is gallstones, other conditions may present as acute cholecystitis. We describe a case of eosinophilic cholecystitis with common bile duct stricture. A 36-year-old woman initially had generalised abdominal pain and peripheral eosinophilia. Diagnostic laparoscopy showed eosinophilic ascites and necrotic nodules on the posterior abdominal wall. She was treated with anthelminthics on presumption of toxacara infection based on borderline positivity of serological tests. She later presented with acute cholecystitis and had a cholecystectomy and choledocotomy. Day 9 T-tube cholangiogram showed irregular narrowing of the distal common bile duct. The patient's symptoms were improved with steroids and the T-tube was subsequently removed.

  19. Primary sclerosing cholangitis – The arteriosclerosis of the bile duct?

    Directory of Open Access Journals (Sweden)

    Trauner Michael

    2007-01-01

    Full Text Available Abstract Primary sclerosing cholangitis (PSC is a chronic inflammatory disease of unknown aetiology affecting the large bile ducts and characterized by periductal fibrosis and stricture formation, which ultimately result in biliary cirrhosis and liver failure. Arteriosclerosis involves the accumulation of altered lipids and lipoproteins in large arteries; this drives inflammation and fibrosis and ultimately leads to narrowing of the arteries and hypoperfusion of dependent organs and tissues. Knowledge of the causative factors is crucial to the understanding of disease mechanisms and the development of specific treatment. Based on pathogenetic similarities between PSC and arteriosclerosis, we hypothesize that PSC represents "arteriosclerosis of the bile duct" initiated by toxic biliary lipids. This hypothesis is based on common molecular, cellular, and morphological features providing the conceptual framework for a deeper understanding of their pathogenesis. This hypothesis should stimulate translational research to facilitate the search for novel treatment strategies for both diseases.

  20. [Surgical therapy of proximal extrahepatic bile duct tumors (Klatskin tumors)].

    Science.gov (United States)

    Timm, S; Gassel, H-J; Thiede, A

    2007-08-01

    Due to their anatomical position, the tendency of early infiltrative growth and their poor prognosis without treatment, klatskin tumors are challenging concerning diagnosis and therapy. In contrast to other tumors of the gastrointestinal tract, for which exact diagnostic and stage dependent therapeutic guidelines could be formulated, clear recommendations for klatskin tumors are missing. Thus, survival rates after local resection, e. g. resection of the bile duct bifurcation alone, show high rates of R1/2 resection and early tumor recurrence. With an additional hepatic resection formally curative resections and long-term survival can be improved. Extended liver resections including the portal vein provide the highest rates of R0 resections for hilar carcinomas of the extrahepatic bile duct. Survival rates after liver transplantation for klatskin tumors are not yet convincing. Promising first results have been reported for the combination of neoadjuvant treatment and liver transplantation and might show future perspectives for the treatment of klatskin tumors.

  1. Raisin dietary fiber composition and in vitro bile acid binding.

    Science.gov (United States)

    Camire, Mary E; Dougherty, Michael P

    2003-01-29

    Raisins are dried grapes that are popular shelf-stable snacks. Three commercially important types of raisins were studied: sun-dried (natural), artificially dried (dipped), and sulfur dioxide-treated (golden) raisins. Dietary fiber composition was analyzed by AACC method 32-25. Polysaccharides were hydrolyzed, and the resulting sugars were analyzed by colorimetric and gas chomatographic methods. Fructans were measured with a colorimetric kit assay. Total dietary fiber values agreed with published values, with pectins and neutral polysaccharides of mannose and glucose residues predominating. Dipped raisins had over 8% fructans. No fructans were found in fresh grapes. Raisin types varied in their ability to bind bile acids in vitro. Coarsely chopped raisins bound more bile than did finely chopped or whole raisins.

  2. Analysis of ileal sodium/bile acid cotransporter and related nuclear receptor genes in a family with multiple cases of idiopathic bile acid malabsorption

    Institute of Scientific and Technical Information of China (English)

    Marco Montagnani; Anna Abrahamsson; Cecilia G(a)lman; G(o)sta Eggertsen; Hanns-Ulrich Marschall; Elisa Ravaioli; Curt Einarsson; Paul A Dawson

    2006-01-01

    The etiology of most cases of idiopathic bile acid malabsorption (TBAM) is unknown. Tn this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ileal apical sodium-bile acid cotransporter gene (ASBT; gene symbol, SLC10A2) and in the genes for several of the nuclear receptors known to be important for ASBT expression: the farnesoid X receptor (FXR)and peroxisome proliferator activated receptor alpha (PPARα). The patients presented with a clinical history of idiopathic chronic watery diarrhea, which was responsive to cholestyramine treatment and consistent with IBAM. Bile acid absorption was determined using 75Se-homocholic acid taurine(SeHCAT); bile acid synthesis was estimated by measuring the plasma levels of 7α-hydroxy-4-cholesten-3-one (C4). The ASBT,FXR, and PPARα genes in the affected and unaffected family members were analyzed using single stranded conformation polymorphism (SSCP), denaturing HPLC,and direct sequencing. No ASBT mutations were identified and the ASBT gene did not segregate with the bile acid malabsorption phenotype. Similarly, no mutations or polymorphisms were identified in the FXR or PPARα genes associated with the bile acid malabsorption phenotype. These studies indicate that the intestinal bile acid malabsorption in these patients cannot be attributed to defects in ASBT. In the absence of apparent ileal disease, alternative explanations such as accelerated transit through the small intestine may be responsible for the IBAM.

  3. Lower Rate of Major Bile Duct Injury and Increased Intraoperative Management of Common Bile Duct Stones after Implementation of Routine Intraoperative Cholangiography

    NARCIS (Netherlands)

    Buddingh, K. Tim; Weersma, Rinse K.; Savenije, Rolf A. J.; van Dam, Gooitzen M.; Nieuwenhuijs, Vincent B.

    2011-01-01

    BACKGROUND: Our university medical center is the only center in The Netherlands that has adopted a policy of routine intraoperative cholangiography (IOC) during cholecystectomy. This study aimed to describe the rate of bile duct injury (BDI) and management of common bile duct (CBD) stones before and

  4. The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population

    NARCIS (Netherlands)

    Lu, Y.; Feskens, E.J.M.; Boer, J.M.A.; Müller, M.R.

    2010-01-01

    The liver is currently known to be the major organ to eliminate excess cholesterol from our body. It accomplishes this function in two ways: conversion of cholesterol molecules into bile acids (BAs) and secretion of unesterified cholesterol molecules into bile. BAs are synthesized in the hepatocytes

  5. Ursodeoxycholic acid in the Ursidae: biliary bile acids of bears, pandas, and related carnivores.

    Science.gov (United States)

    Hagey, L R; Crombie, D L; Espinosa, E; Carey, M C; Igimi, H; Hofmann, A F

    1993-11-01

    The biliary bile acid composition of gallbladder bile obtained from six species of bears (Ursidae), the Giant panda, the Red panda, and 11 related carnivores were determined by reversed phase liquid chromatography and gas chromatography-mass spectrometry. Bile acids were conjugated solely with taurine (in N-acyl linkage) in all species. Ursodeoxycholic acid (3 alpha, 7 beta-dihydroxy-5 beta-cholan-24-oic acid) was present in all Ursidae, averaging 1-39% of biliary bile acids depending on the species; it was not detected or present as a trace constituent (bears, and its proportion averaged 34% (range 0-62%). Ursodeoxycholic acid averaged 17% of biliary bile acids in the Polar bear (n = 4) and 18% in the Brown bear (n = 6). Lower proportions (1-8%) were present in the Sun bear (n = 2), Ceylon Sloth bear (n = 1), and the Spectacled bear (n = 1). Bile of all species contained taurine-conjugated chenodeoxycholic acid and cholic acid. In some related carnivores, deoxycholic acid, the 7-dehydroxylation product of cholic acid, was also present. To determine whether the 7 beta hydroxy group of ursodeoxycholic acid was formed by hepatic or bacterial enzymes, bile acids were determined in hepatic bile obtained from bears with chronic biliary fistulae. Fistula bile samples contained ursodeoxycholic acid, chenodeoxycholic acid, and a trace amount of cholic acid, all as taurine conjugates, indicating that ursodeoxycholic acid is a primary bile acid formed in the liver in Ursidae.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Extracorporeal shock-wave lithotripsy of bile duct stones

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tae; Kim, Myung Joon; Yoo, Hyung Sik; Suh, Jung Ho; Lee, Moo Sang; Jo, Jang Hwan; Kim, Byung Ro [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    During the past one and half year, we performed ESWL therapy in 13 patients with common bile duct and intrahepatic duct stones, applying Lithostar-R (Siemens co. West Germany) and analyzed their results. In 13 patients, 9 residual common bile duct stones and 7 intrahepatic duct stones were selected postoperatively. The size of stones were ranged from 0.7 cm to 3.5 cm in diameter. 2 stones were multiple and the remained 14 were single in number. The visualization of stones were done with fluoroscopy after the injection of contrast media via cholangiographic T-tube or ERCP. ESWL were applied continuously until stone disintegration was visible, or upto maximum number of 3500 discharge of shock wave. If not disintegrated upto 3500, patients were underwent second or third lithotripsy session with interval of one week. Our results showed that among 9 common bile duct stones, 4 were completely disintegrated and passed out spontaneously, but 3 partially fragmented and removed by the additional procedure. 2 were failed. Among 7 intrahepatic stones, 3 completely and 2 partially were succeeded. One stone partially fragmented were retained without removal and other one were failed. Skin petechia in all patients were revealed on the entry port of shock wave, but no serous complication was not occurred.

  7. Bile acid receptors and nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    With the high prevalence of obesity, diabetes, and otherfeatures of the metabolic syndrome in United States,nonalcoholic fatty liver disease (NAFLD) has inevitablybecome a very prevalent chronic liver disease and isnow emerging as one of the leading indications for livertransplantation. Insulin resistance and derangementof lipid metabolism, accompanied by activation ofthe pro-inflammatory response and fibrogenesis, areessential pathways in the development of the moreclinically significant form of NAFLD, known as nonalcoholicsteatohepatitis (NASH). Recent advances inthe functional characterization of bile acid receptors,such as farnesoid X receptor (FXR) and transmembraneG protein-coupled receptor (TGR) 5, have providedfurther insight in the pathophysiology of NASH andhave led to the development of potential therapeutictargets for NAFLD and NASH. Beyond maintaining bileacid metabolism, FXR and TGR5 also regulate lipidmetabolism, maintain glucose homeostasis, increaseenergy expenditure, and ameliorate hepatic inflammation.These intriguing features have been exploitedto develop bile acid analogues to target pathways inNAFLD and NASH pathogenesis. This review providesa brief overview of the pathogenesis of NAFLD andNASH, and then delves into the biological functions ofbile acid receptors, particularly with respect to NASHpathogenesis, with a description of the associatedexperimental data, and, finally, we discuss the prospectsof bile acid analogues in the treatment of NAFLD andNASH.

  8. Iatrogenic bile duct injuries from biliar y tract surger y

    Institute of Scientific and Technical Information of China (English)

    Umar Ali; Zhen-Hua Ma; Cheng-En Pan; Qing-Yong Ma

    2007-01-01

    BACKGROUND:Cholecystectomy is the most commonly performed procedure in general surgery. However, bile duct injury is a rare but still one of the most common complications. These injuries sometimes present variably after primary surgery. Timely detection and appropriate management decrease the morbidity and mortality of the operation. METHODS:Five cases of iatrogenic bile duct injury (IBDI) were managed at the Department of Surgery, First Afifliated Hospital, Xi'an Jiaotong University. All the cases who underwent both open and laparoscopic cholecystectomy had persistent injury to the biliary tract and were treated accordingly. RESULTS: Recovery of the patients was uneventful. All patients were followed-up at the surgical outpatient department for six months to three years. So far the patients have shown good recovery. CONCLUSIONS:In cases of IBDI it is necessary to perform the operation under the supervision of an experienced surgeon who is specialized in the repair of bile duct injuries, and it is also necessary to detect and treat the injury as soon as possible to obtain a satisfactory outcome.

  9. SALT for Language Acquisition.

    Science.gov (United States)

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  10. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  11. Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase

    Science.gov (United States)

    Barta, Michael L.; Lovell, Scott; Sinclair, Amy N.; Battaile, Kevin P.; Hefty, P. Scott

    2014-01-01

    Asymmetric diadenosine 5′,5′″-P1,P4-tetraphosphate (Ap4A) hydrolases are members of the Nudix superfamily that asymmetrically cleave the metabolite Ap4A into ATP and AMP while facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication and dissemination typically have one or zero Nudix family proteins, this suggests that CT771 could be critical for chlamydial biology and pathogenesis. We identified orthologs to CT771 within environmental Chlamydiales that share active site residues suggesting a common function. Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 Å and 1.9 Å resolution, respectively. The structure of CT771 shows a αβα-sandwich motif with many conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases might be more similar than previously thought. The aforementioned structural similarities, in tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these studies provide the molecular details for substrate binding and specificity, supporting the analysis that CT771 is an Ap4A hydrolase (nudH). PMID:24354275

  12. Geomechanics of bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Serata, S.; Milnor, S.W.

    1979-06-08

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained.

  13. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  14. Salt and nephrolithiasis.

    Science.gov (United States)

    Ticinesi, Andrea; Nouvenne, Antonio; Maalouf, Naim M; Borghi, Loris; Meschi, Tiziana

    2016-01-01

    Dietary sodium chloride intake is nowadays globally known as one of the major threats for cardiovascular health. However, there is also important evidence that it may influence idiopathic calcium nephrolithiasis onset and recurrence. Higher salt intake has been associated with hypercalciuria and hypocitraturia, which are major risk factors for calcium stone formation. Dietary salt restriction can be an effective means for secondary prevention of nephrolithiasis as well. Thus in this paper, we review the complex relationship between salt and nephrolithiasis, pointing out the difference between dietary sodium and salt intake and the best methods to assess them, highlighting the main findings of epidemiologic, laboratory and intervention studies and focusing on open issues such as the role of dietary salt in secondary causes of nephrolithiasis.

  15. Prunasin hydrolases during fruit development in sweet and bitter almonds.

    Science.gov (United States)

    Sánchez-Pérez, Raquel; Belmonte, Fara Sáez; Borch, Jonas; Dicenta, Federico; Møller, Birger Lindberg; Jørgensen, Kirsten

    2012-04-01

    Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet.

  16. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Li L. L.; van der Lelie D.; Taghavi, S.; McCorkle, S. M.; Zhang, Y.-B.; Blewitt, M. G.; Brunecky, R.; Adney, W. S.; Himmel, M. E.; Brumm, P.; Drinkwater, C.; Mead, D. A.; Tringe, S. G.

    2011-08-01

    To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-{alpha}-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-{beta}-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-{beta}-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.

  17. Fatty acid amide hydrolase inhibition by neurotoxic organophosphorus pesticides.

    Science.gov (United States)

    Quistad, G B; Sparks, S E; Casida, J E

    2001-05-15

    Organophosphorus (OP) compound-induced inhibition of acetylcholinesterase (AChE) and neuropathy target esterase explains the rapid onset and delayed neurotoxic effects, respectively, for OP insecticides and related compounds but apparently not a third or intermediate syndrome with delayed onset and reduced limb mobility. This investigation tests the hypothesis that fatty acid amide hydrolase (FAAH), a modulator of endogenous signaling compounds affecting sleep (oleamide) and analgesia (anandamide), is a sensitive target for OP pesticides with possible secondary neurotoxicity. Chlorpyrifos oxon inhibits 50% of the FAAH activity (IC50 at 15 min, 25 degrees C, pH 9.0) in vitro at 40--56 nM for mouse brain and liver, whereas methyl arachidonyl phosphonofluoridate, ethyl octylphosphonofluoridate (EOPF), oleyl-4H-1,3,2-benzodioxaphosphorin 2-oxide (oleyl-BDPO), and dodecyl-BDPO give IC50s of 0.08--1.1 nM. These BDPOs and EOPF inhibit mouse brain FAAH in vitro with > or =200-fold higher potency than for AChE. Five OP pesticides inhibit 50% of the brain FAAH activity (ED50) at diazinon, and methamidophos occurs near acutely toxic levels, profenofos and tribufos are effective at asymptomatic doses. Two BDPOs (dodecyl and phenyl) and EOPF are potent inhibitors of FAAH in vivo (ED50 0.5--6 mg/kg). FAAH inhibition of > or =76% in brain depresses movement of mice administered anandamide at 30 mg/kg ip, often leading to limb recumbency. Thus, OP pesticides and related inhibitors of FAAH potentiate the cannabinoid activity of anandamide in mice. More generally, OP compound-induced FAAH inhibition and the associated anandamide accumulation may lead to reduced limb mobility as a secondary neurotoxic effect.

  18. Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    Directory of Open Access Journals (Sweden)

    Li Luen-Luen

    2011-08-01

    Full Text Available Abstract Background To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms. Results From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in Escherichia coli. Further characterization showed that two enzymes showed significant activity on p-nitrophenyl-α-L-arabinofuranoside, one enzyme had significant activity against p-nitrophenyl-β-D-glucopyranoside, and one enzyme showed significant activity against p-nitrophenyl-β-D-xylopyranoside. Enzymes were also tested in the presence of ionic liquids. Conclusions Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate. Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.

  19. Individual bile acids have differential effects on bile acid signaling in mice.

    Science.gov (United States)

    Song, Peizhen; Rockwell, Cheryl E; Cui, Julia Yue; Klaassen, Curtis D

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  20. Concepciones del bilingüismo y evaluación de la competencia bilingüe

    NARCIS (Netherlands)

    García, A.M.; Manoiloff, L.; Wagner, M.A.

    2016-01-01

    La investigación psicolingüística y cognitivista del bilingüismo es clave de cara al desarrollo de las ciencias del lenguaje en el siglo XXI. Para propiciar el acercamiento del neófito, este capítulo presenta los principales rudimentos teóricos y metodológicos del campo. Primero, se resumen datos so

  1. A novel α-L-arabinofuranosidase of family 43 glycoside hydrolase (Ct43Araf from Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Shadab Ahmed

    Full Text Available The study describes a comparative analysis of biochemical, structural and functional properties of two recombinant derivatives from Clostridium thermocellum ATCC 27405 belonging to family 43 glycoside hydrolase. The family 43 glycoside hydrolase encoding α-L-arabinofuranosidase (Ct43Araf displayed an N-terminal catalytic module CtGH43 (903 bp followed by two carbohydrate binding modules CtCBM6A (405 bp and CtCBM6B (402 bp towards the C-terminal. Ct43Araf and its truncated derivative CtGH43 were cloned in pET-vectors, expressed in Escherichia coli and functionally characterized. The recombinant proteins displayed molecular sizes of 63 kDa (Ct43Araf and 34 kDa (CtGH43 on SDS-PAGE analysis. Ct43Araf and CtGH43 showed optimal enzyme activities at pH 5.7 and 5.4 and the optimal temperature for both was 50°C. Ct43Araf and CtGH43 showed maximum activity with rye arabinoxylan 4.7 Umg(-1 and 5.0 Umg(-1, respectively, which increased by more than 2-fold in presence of Ca(2+ and Mg(2+ salts. This indicated that the presence of CBMs (CtCBM6A and CtCBM6B did not have any effect on the enzyme activity. The thin layer chromatography and high pressure anion exchange chromatography analysis of Ct43Araf hydrolysed arabinoxylans (rye and wheat and oat spelt xylan confirmed the release of L-arabinose. This is the first report of α-L-arabinofuranosidase from C. thermocellum having the capacity to degrade both p-nitrophenol-α-L-arabinofuranoside and p-nitrophenol-α-L-arabinopyranoside. The protein melting curves of Ct43Araf and CtGH43 demonstrated that CtGH43 and CBMs melt independently. The presence of Ca(2+ ions imparted thermal stability to both the enzymes. The circular dichroism analysis of CtGH43 showed 48% β-sheets, 49% random coils but only 3% α-helices.

  2. Novel Approach to Bile Duct Damage in Primary Biliary Cirrhosis: Participation of Cellular Senescence and Autophagy

    Directory of Open Access Journals (Sweden)

    Motoko Sasaki

    2012-01-01

    Full Text Available Primary biliary cirrhosis (PBC is characterized by antimitochondrial autoantibodies (AMAs in patients' sera and histologically by chronic nonsuppurative destructive cholangitis in small bile ducts, eventually followed by extensive bile duct loss and biliary cirrhosis. The autoimmune-mediated pathogenesis of bile duct lesions, including the significance of AMAs, triggers of the autoimmune process, and so on remain unclear. We have reported that cellular senescence in biliary epithelial cells (BECs may be involved in bile duct lesions and that autophagy may precede the process of biliary epithelial senescence in PBC. Interestingly, BECs in damaged bile ducts show characteristicsof cellular senescence and autophagy in PBC. A suspected causative factor of biliary epithelial senescence is oxidative stress. Furthermore, senescent BECs may modulate the microenvironment around bile ducts by expressing various chemokines and cytokines called senescence-associated secretory phenotypes and contribute to the pathogenesis in PBC.

  3. Use of Omega-3 Polyunsaturated Fatty Acids to Treat Inspissated Bile Syndrome: A Case Report

    Science.gov (United States)

    Jun, Woo Young; Cho, Min Jeng; Han, Hye Seung

    2016-01-01

    Inspissated bile syndrome (IBS) is a rare condition in which thick intraluminal bile, including bile plugs, sludge, or stones, blocks the extrahepatic bile ducts in an infant. A 5-week-old female infant was admitted for evaluation of jaundice and acholic stool. Diagnostic tests, including ultrasound sonography, magnetic resonance cholangiopancreatography, and a hepatobiliary scan, were not conclusive. Although the diagnosis was unclear, the clinical and laboratory findings improved gradually on administration of urodeoxycholic acid and lipid emulsion containing omega-3 polyunsaturated fatty acids (PUFAs) for 3 weeks. However, a liver biopsy was suggestive of biliary atresia. This finding forced us to perform intraoperative cholangiography, which revealed a patent common bile duct with impacted thick bile. We performed normal saline irrigation and the symptom was improved, the final diagnosis was IBS. Thus, we herein report that IBS can be treated with omega-3 PUFAs as an alternative to surgical intervention. PMID:28090475

  4. Murein hydrolase activity of surface layer proteins from Lactobacillus acidophilus against Escherichia coli.

    Science.gov (United States)

    Meng, Jun; Gao, Shu-Ming; Zhang, Qiu-Xiang; Lu, Rong-Rong

    2015-08-01

    The aim of this study was to investigate the murein hydrolase activities of the surface layer proteins (SLPs) from two strains of Lactobacillus acidophilus using zymography. The influence of these hydrolase activities on Escherichia coli ATCC 43893 was also evaluated by analysing their growth curve, cell morphology and physiological state. After the incubation of E. coli with SLPs, growth was inhibited, the number of viable cells was significantly reduced, examination by transmission electron microscopy showed that the cell wall was damaged and flow cytometry results indicated that the majority of the cells were sublethally injured. All of these results suggested that the SLPs of both L. acidophilus strains possessed murein hydrolase activities that were sublethal to E. coli cells.

  5. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides.

    Science.gov (United States)

    Leite, José P; Duarte, Márcia; Paiva, Ana M; Ferreira-da-Silva, Frederico; Matias, Pedro M; Nunes, Olga C; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala) that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system.

  6. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides.

    Directory of Open Access Journals (Sweden)

    José P Leite

    Full Text Available Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system.

  7. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    Science.gov (United States)

    2015-06-19

    2015): << Inhibiting inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores: potential spore...inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores potential spore decontamination strategies 5a...EASIER, SAFER, and CHEAPER Inducing spore germination should make resulting bacteria much more susceptible to decontamination methods and will be

  8. The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications

    NARCIS (Netherlands)

    Procopio da Silva, Luciano; Macrae, Andrew; van Elsas, Jan Dirk; Seldin, Lucy

    2013-01-01

    The draft genome of the soil actinomycete Dietzia cinnamea P4 reveals a versatile group of alpha/beta-hydrolase fold enzymes. Phylogenetic and comparative sequence analyses were used to classify the alpha/beta-hydrolases of strain P4 into six different groups: (i) lipases, (ii) esterases, (iii) epox

  9. Crushed Salt Constitutive Model

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  10. The effects of short term lipid infusion on plasma and hepatic bile lipids in humans

    OpenAIRE

    Pakula, R; Konikoff, F.; Moser, A.; Greif, F.; Tietz, A; Gilat, T; Rubin, M

    1999-01-01

    BACKGROUND—Patients on parenteral nutrition have an increased incidence of gall bladder sludge and gallstone disease, thought to be related to bile stasis. Intravenous lipid emulsions, especially those containing medium chain triglycerides, have also been shown to have a lithogenic effect on the composition of bile in the gall bladder.
AIMS—To determine whether lipid infusion influences hepatic bile composition in patients with an indwelling T tube following cholecystectomy and choledochotomy...

  11. Ectopic Opening of the Common Bile Duct into the Duodenal Bulb: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Su; Park, Soo Youn [Catholic University St. Vincent' s Hospital, Suwon (Korea, Republic of)

    2009-08-15

    An ectopic opening of the common bile duct into the duodenal bulb is a very rare congenital malformation of the bile duct, which may cause a recurrent duodenal ulcer or biliary diseases including choledocholithiasis or cholangitis. ERCP plays major role in the diagnosis of this biliary malformation. We report a case of an ectopic opening of the common bile duct into the duodenal bulb, which was detected on the upper gastrointestinal series.

  12. A stated preference investigation into the Chinese demand for farmed vs. wild bear bile.

    Directory of Open Access Journals (Sweden)

    Adam J Dutton

    Full Text Available Farming of animals and plants has recently been considered not merely as a more efficient and plentiful supply of their products but also as a means of protecting wild populations from that trade. Amongst these nascent farming products might be listed bear bile. Bear bile has been exploited by traditional Chinese medicinalists for millennia. Since the 1980s consumers have had the options of: illegal wild gall bladders, bile extracted from caged live bears or the acid synthesised chemically. Despite these alternatives bears continue to be harvested from the wild. In this paper we use stated preference techniques using a random sample of the Chinese population to estimate demand functions for wild bear bile with and without competition from farmed bear bile. We find a willingness to pay considerably more for wild bear bile than farmed. Wild bear bile has low own price elasticity and cross price elasticity with farmed bear bile. The ability of farmed bear bile to reduce demand for wild bear bile is at best limited and, at prevailing prices, may be close to zero or have the opposite effect. The demand functions estimated suggest that the own price elasticity of wild bear bile is lower when competing with farmed bear bile than when it is the only option available. This means that the incumbent product may actually sell more items at a higher price when competing than when alone in the market. This finding may be of broader interest to behavioural economists as we argue that one explanation may be that as product choice increases price has less impact on decision making. For the wildlife farming debate this indicates that at some prices the introduction of farmed competition might increase the demand for the wild product.

  13. The effect of Macrotyloma uniflorum seed on bile lithogenicity against diet induced cholelithiasis on mice

    Directory of Open Access Journals (Sweden)

    Papiya Bigoniya

    2014-01-01

    Conclusions: M. uniflorum seed exerted antilithogenic influence by decreasing the cholesterol hyper-secretion into bile and increasing the bile acid output, thus decreasing the formation of LG bile in mice. The effect was maximum in the AE as it also reduced papillary proliferation of gallbladder and fatty degeneration of the liver. The potential antilithogenic effect of the AE of M. uniflorum may be due to antioxidant property of its rich total polyphenol and tannins content.

  14. Modified rendezvous intrahepatic bile duct cannulation technique to pass a PTBD catheter in ERCP

    Institute of Scientific and Technical Information of China (English)

    Tae; Hoon; Lee; Sang-Heum; Park; Sae; Hwan; Lee; Chang-Kyun; Lee; Suck-Ho; Lee; Il-Kwun; Chung; Hong; Soo; Kim; Sun-Joo; Kim

    2010-01-01

    The rendezvous procedure combines an endoscopic technique with percutaneous transhepatic biliary drainage(PTBD).When a selective common bile duct cannulation fails,PTBD allows successful drainage and retrograde access for subsequent rendezvous techniques.Traditionally,rendezvous procedures such as the PTBDassisted over-the-wire cannulation method,or the parallel cannulation technique,may be available when a bile duct cannot be selectively cannulated.When selective intrahepatic bile duct(IHD) cannulation fai...

  15. Cheese intake lowers plasma cholesterol concentrations without increasing bile acid excretion

    OpenAIRE

    Hjerpsted, Julie Bousgaard; Dragsted, Lars Ove; Tholstrup, Tine

    2016-01-01

    Purpose Cheese is a dairy product with high calcium content. It has been suggested that calcium intake may increase fecal excretion of bile acids that would cause a regeneration of bile acids from hepatic cholesterol and thereby result in a lowering of plasma cholesterol concentrations. We aimed to test this hypothesis by assessing bile acid and calcium concentrations in fecal samples from humans after intake of cheese and butter. Methods The study was a randomized, 2 × 6 weeks crossover, die...

  16. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  17. Sequential changes of lamellar body hydrolases during ozone-induced alveolar injury and repair

    Energy Technology Data Exchange (ETDEWEB)

    Glew, R.H.; Basu, A.; Shelley, S.A.; Paterson, J.F.; Diven, W.F.; Montgomery, M.R.; Balis, J.U.

    1989-05-01

    Lamellar body hydrolases in acutely damaged and regenerating type II cells were determined using an established rat model with well-defined stages of bronchiolo-alveolar injury and repair. Lamellar bodies were isolated from control and ozone-exposed (3.0 ppm for 8 hours) adult male rats by sucrose density gradient centrifugation and analyzed for their content of six different lysosomal hydrolases. Immediately after 3 ppm ozone exposure (zero-time) there was a significant decrease in specific enzyme activity (units/mg protein) of five lamellar body hydrolases and these activities remained depressed for at least 24 hours after exposure. In addition, total enzyme activity (units/lung) was reduced at zero-time for beta-hexosaminidase and at 24 hours postexposure for alpha-mannosidase and alpha-L-fucosidase. During the reparative and recovery stages (48 to 96 hours) the hydrolases demonstrated variable elevations in both specific activity and total activity (units/lung). Characteristically, beta-hexosaminidase and beta-galactosidase reached supranormal values at 96 hours, whereas alpha-mannosidase remained below normal levels through the recovery stage. Moreover, at 24 to 48 hours the lamellar body fraction demonstrated prominent enzyme depletion relative to the expanding pool of stored surfactant. It is concluded that acute ozone stress initiates the development of hydrolase deficiency within the lamellar bodies of injured and regenerating type II cells. This deficiency state is followed by asynchronous lamellar body hydrolase elevations that reflect distinct patterns of response rather than uniform return to normal condition. The lysosomal enzyme changes of lamellar bodies may be pathogenetically linked to the development of associated alterations in the storage and secretion of surfactant.

  18. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  19. Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of “preneoplastic antigen”-like molecules

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongying [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Yoshimura, Kazunori [Department of Physiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Kobayashi, Nobuharu; Sugiyama, Kazuo [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Sawada, Jun-ichi; Saito, Yoshiro [Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501 (Japan); Morisseau, Christophe; Hammock, Bruce D. [Department of Entomology and Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616-8584 (United States); Akatsuka, Toshitaka, E-mail: akatsuka@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2012-04-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with

  20. Biosynthesis of intestinal microvillar proteins. Intracellular processing of lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M; Skovbjerg, H; Norén, Ove

    1984-01-01

    The biosynthesis of pig small intestinal lactase-phlorizin hydrolase (EC 3.2.1.23-62) was studied by labelling of organ cultured mucosal explants with [35S]methionine. The earliest detactable form of the enzyme was an intracellular, membrane-bound polypeptide of Mr 225 000, sensitive to endo H...... 000 polypeptide is of the same size as the mature lactase-phlorizin hydrolase and was the only form expressed in the microvillar membrane. Together, these data are indicative of an intracellular proteolytic cleavage during transport. The presence of leupeptin during labelling prevented the appearance...

  1. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry.

    Science.gov (United States)

    Sathya, T A; Khan, Mahejibin

    2014-11-01

    Traditional use of enzymes for food processing and production of food ingredients resulted in fast-growing enzyme industries world over. The advances in technologies gave rise to exploring newer enzymes and/or modified enzymes for specific application. Search for novel enzymes that can augment catalytic efficiency and advances in molecular biology techniques including sequencing has targeted microbial diversity through metagenomic approaches for sourcing enzymes from difficult to culture organisms. Such mining studies have received more attention in characterizing hydrolases, their prevalence, broad substrate specificities, stability, and independence of cofactors. The focus on glycosyl hydrolases from metagenome for their application in food sector is reviewed.

  2. Recurrent pyogenic cholangitis: The pattern of thickening of the extrahepatic bile duct on CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hoon; Lim, Jae Hoon; Ko, Young Tae; Lee, Dong Ho; Jeong, Yu Mee; Lee, Eil Seong [Kang Hee University Hospital, Seoul (Korea, Republic of)

    1993-05-15

    The pattern of thickening of the extrahepatic bile duct on computed tomography was analysed in 30 cases with recurrent pyogenic cholangitis diagnosed by surgery (n=19) or by clinical basis (n=11). The mean wall thickness of the extrahepatic bile duct was 3.3 mm (range, 1-6.3 mm). Diffuse thickening of the extrahepatic bile ductal wall was demonstrated in 26 of 30 cases. Diffuse thickening of the extrahepatic bile duct in recurrent pyogenic cholangitis may be differentiated from focal thickening of duct in a common duct cancer or pancreatic cancer.

  3. Changes of gastrointestinal myoelectric activity and bile acid pool size after cholecystectomy in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Xue-Mei Zhang; Lei Dong; Li-Na Liu; Bi-Xia Chang; Qian He; Qian Li

    2005-01-01

    AIM: To investigate the bile acid pool size after cholecystectomy whether or not correlated to the gastrointestinal migrating myoelectric complex (MMC) in guinea pigs.METHODS: Gallbladder motilities were assessed before cholecystectomy. Furthermore, we continuously monitored interdigestive gastrointestinal motilities using bipolar electrodes in conscious guinea pigs before and after surgery at 4 wk in standard diet group and high cholesterol diet (cholesterol gallstone) group. Total bile acid pool sizes were measured by isotope dilution method at meantime.RESULTS: After cholecystectomy, there were parallel falls in duration of phase Ⅰ, Ⅱ, Ⅲ and MMC cycle duration but increase in amplitude in the guinea pigs with normal gallbladder function, and in the guinea pigs with cholesterol stones. However, There were not significantly differences. On the other hand, the bile acid pool was definitely small in the GS guinea pigs compared to normal guinea pigs and became slightly smaller after cholecystectomy. Similarly, bile acid in gallbladder bile, fecal bile acid was slightly increased in GS guinea pigs after cholecystectomy, to the same degree as normal. These differences, however, were not significant.CONCLUSION: It is concluded that in the guinea pigs with normal gallbladder function, and in the guinea pigs with cholesterol stones: (1) Cholecystectomy produce a similar but less marked trend in bile acid pool; and (2) MMC are linked to enterohepatic circulation of bile acids, rather than surgery, which is consistent with changes of the bile acid pool size. As a result, gastrointestinal dyskinesia is not involved in occurrence of postcholecystectomy syndrome.

  4. Bile Duct Leaks from the Intrahepatic Biliary Tree: A Review of Its Etiology, Incidence, and Management

    Directory of Open Access Journals (Sweden)

    Sorabh Kapoor

    2012-01-01

    Full Text Available Bile leaks from the intrahepatic biliary tree are an important cause of morbidity following hepatic surgery and trauma. Despite reduction in mortality for hepatic surgery in the last 2 decades, bile leaks rates have not changed significantly. In addition to posted operative bile leaks, leaks may occur following drainage of liver abscess and tumor ablation. Most bile leaks from the intrahepatic biliary tree are transient and managed conservatively by drainage alone or endoscopic biliary decompression. Selected cases may require reoperation and enteric drainage or liver resection for management.

  5. Evaluation of a semiquantitative SNAP test for measurement of bile acids in dogs

    OpenAIRE

    Rachel L. Seibert; Tobias, Karen M.; Ann Reed; Karl R. Snyder

    2014-01-01

    Background. Serum bile acids (SBA) are used as a routine screening tool of liver function in dogs. Serum samples are usually shipped to a referral laboratory for quantitative analysis with an enzymatic chemistry analyzer. The canine SNAP Bile Acids Test (SNAP-BAT) provides an immediate, semi-quantitative measurement of bile acid concentrations in-house. With the SNAP-BAT, bile acids concentrations of 5–30 µmol/L are quantified, and results outside of that range are classified as 30 µmol/L. Ag...

  6. THE CYTOTOXIC EFFECTS OF CRUDE BILE ON HUMAN PANCREATIC CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To identify effects of bile acids on pancreatic cancer, The ultrastructure and growth of PANC-1 and MIA PaCa-2 cell lines in crude bile modified medium were studied. Methods The growth of PANC-1 and MIA PaCa-2 cells in RPMI 1640 with or without 1%, 2% and 4% of the purified crude bile (containing total bile acids 10.17mmol/L) was assessed for 2, 4, 6, 8d by using MTT assay to determine inhibitory rate. The cell surface and intracellular ultrastructure of PANC-1 cells was investigated by SEM and TEM at 24h and 48h, respectively. Re sults The proliferation of both cell lines in bile treated medium were greatly retarded (P <0.001). The inhibitory rate of 1%, 2% and 4% bile on Panc-1 cells in 4d were 38%, 60% and 66%, respectively (P <0. 05), on MIA PaCa-2 cells at 4d were 28%, 39% and 52%, respectively (P <0. 05). The cells grown in bile for 48h lost their mi crovilli, their mitochondria and other organelles became vacuolated. Conclusion The bile acids in bile has cytotoxicity on PANC-1 and MIAPACA-2 cells, which may inhibit pancreatic cancer progress in patients clinically.

  7. Effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Zheng Wu; Yi Lüi; Bo Wang; Chang Liu; Zuo-Ren Wang,

    2003-01-01

    AIM: Pancreatic cancer in the head is frequently accompanied by jaundice and high bile acid level in serum. This study focused on the direct effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer.METHODS: Pancreatic cancer cell lines PANC-1, MIA PaCa2 and PGHAM-1 were explored in this study. The cell lines were cultured in media supplemented with certain bile acids,CA, DCA, LCA, TCDC, TDCA and GCA. Their influence on cell growth was measured with MTT assay after 72 h of incubation. Cell cycles of PANC-1 cells in 40 μM of bile acids media were analyzed by flow cytometry. Ultrastructural alteration of PANC-1 cells induced by DCA was observed using scanning and transmission electron microscope (SEM and TEM).RESULTS: At various concentrations of bile acids and incubation time, no enhanced effects of bile acids on cell proliferation were observed. Significant inhibitory effects were obtained in almost all media with bile acids. DCA and CA increased the percentage of G0+G1 phase cells, while GCA and TDCA elevated the S phase cell number. After 48 h of incubation in DCA medium, PANC-1 cells showed some structural damages such as loss of their microvilli and vacuolization of organelles in cytoplasm.CONCLUSION: Bile acids can reduce proliferation of pancreatic cancer cells due to their direct cytotoxicity. This result implies that elevation of bile acids in jaundiced serum may inhibit pancreatic cancer progression.

  8. [Study of crystalline structures of the bile in the diagnosis of cholelithiasis].

    Science.gov (United States)

    Postolov, P M; Bykov, A V; Mishin, S G

    1990-10-01

    Under analysis were results of polarization microscopy of bile in 111 patients with cholelithiasis, 8 patients with acalculous cholecystitis and 8 practically healthy people. It was found that in healthy people there are no crystalline structures in the initial state of bile. The composition of bile from patients with cholelithiasis is characterized by the presence of three types of crystals: solid crystals of cholesterol monohydrate, calcium bilirubinate granules and calcium carbonate microspherolites. Polarization microscopy of bile may be used as a sufficiently simple method of diagnostics of stone disease.

  9. Conformational Variability of Organophosphorus Hydrolase upon Soman and Paraoxon Binding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diego Eb; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-12-31

    The bacterial enzyme organophosphorus hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pK{sub a} calculations and multiple explicit-solvent molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of OPH bound to two substrates hydrolyzed with very distinct catalytic efficiencies: the nerve agent soman (O-pinacolyl-methyl-phosphonofluoridate) and the pesticide paraoxon (diethyl p-nitrophenyl phosphate). pK{sub a} calculations for the substrate-bound and unbound enzyme showed a significant pK{sub a} shift from standard values ({Delta}pK{sub a} = {+-} 3 units) for residues 254His and 275Arg. MD simulations of the doubly protonated 254His revealed a dynamic hydrogen bond network connecting the catalytic residue 301Asp via 254His to 232Asp, 233Asp, 275Arg and 235Asp, and is consistent with a previously postulated proton relay mechanism to ferry protons away from the active site with substrates that do not require activation of the leaving group. Hydrogen bonds between 301Asp and 254His were persistent in the OPH-paraoxon complex but not in the OPH-soman one, suggesting a potential role for such interaction in the more efficient hydrolysis of paraoxon over soman by OPH. These results are in line with previous mutational studies of residue 254His, which led to an increase of the catalytic efficiency of OPH over soman yet decreased its efficiency for paraoxon. In addition, comparative analysis of the molecular trajectories for OPH bound to soman and paraoxon suggests that binding of the latter facilitates the conformational transition of OPH from the

  10. Hepatic bile acid metabolism in the neonatal hamster: expansion of the bile acid pool parallels increased Cyp7a1 expression levels.

    Science.gov (United States)

    Burke, Katie T; Horn, Paul S; Tso, Patrick; Heubi, James E; Woollett, Laura A

    2009-07-01

    Intraluminal concentrations of bile acids are low in newborn infants and increase rapidly after birth, at least partly owing to increased bile acid synthesis rates. The expansion of the bile acid pool is critical since bile acids are required to stimulate bile flow and absorb lipids, a major component of newborn diets. The purpose of the present studies was to determine the mechanism responsible for the increase in bile acid synthesis rates and the subsequent enlargement of bile acid pool sizes (BAPS) during the neonatal period, and how changes in circulating hormone levels might affect BAPS. In the hamster, pool size was low just after birth and increased modestly until 10.5 days postpartum (dpp). BAPS increased more significantly ( approximately 3-fold) between 10.5 and 15.5 dpp. An increase in mRNA and protein levels of cholesterol 7alpha-hydroxylase (Cyp7a1), the rate-limiting step in classical bile acid synthesis, immediately preceded an increase in BAPS. In contrast, levels of oxysterol 7alpha-hydroxylase (Cyp7b1), a key enzyme in bile acid synthesis by the alternative pathway, were relatively elevated by 1.5 dpp. farnesyl X receptor (FXR) and short heterodimeric partner (SHP) mRNA levels remained relatively constant at a time when Cyp7a1 levels increased. Finally, although simultaneous increases in circulating cortisol and Cyp7a1 levels occurred, precocious expression of Cyp7a1 could not be induced in neonatal hamsters with dexamethasone. Thus the significant increase in Cyp7a1 levels in neonatal hamsters is due to mechanisms independent of the FXR and SHP pathway and cortisol.

  11. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... and Over-the-Counter Medications Stimulant ADHD Medications: Methylphenidate and Amphetamines Synthetic Cannabinoids Synthetic Cathinones ("Bath Salts") Effects of Drug Abuse Comorbidity: Addiction and Other Mental Disorders Drug Use ...

  12. Telmisartan attenuates hepatic fibrosis in bile duct-ligated rats

    Institute of Scientific and Technical Information of China (English)

    En-tong YI; Rui-xia LIU; Yan WEN; Cheng-hong YIN

    2012-01-01

    Aim: To evaluate the antifibrotic effect of telmisartan,an angiotensin Ⅱ receptor blocker,in bile duct-ligated rats.Methods: Adult Sprague-Dawley rats were allocated to 3 groups: sham-operated rats,model rats underwent common bile duct ligation (BDL),and BDL rats treated with telmisartan (8 mg/kg,po,for 4 weeks).The animals were sacrificed on d 29,and liver histology was examined,the Knodell and Ishak scores were assigned,and the expression of angiotensin-converting enzyme (ACE) and ACE2 was evaluated with immunohistochemical staining.The mRNAs and proteins associated with liver fibrosis were evaluated using RTQ-PCR and Western blot,respectively.Results: The mean fibrosis score of BDL rats treated with telmisartan was significantly lower than that of the model rats (1.66±0.87 vs 2.13±0.35,P=0.015).However,there was no significant difference in inflammation between the two groups,both of which showed moderate inflammation.Histologically,treatment with telmisartan significantly ameliorated BDL-caused the hepatic fibrosis.Treatment with telmisartan significantly upregulated the mRNA levels of ACE2 and MAS,and decreased the mRNA levels of ACE,angiotensin Ⅱ type 1 receptor (AT1-R),collagen type Ⅲ,and transforming growth factor β1 (TGF-β1).Moreover,treatment with telmisartan significantly increased the expression levels of ACE2 and MAS proteins,and inhibited the expression levels of ACE and AT1-R protein.Conclusion: Telmisartan attenuates liver fibrosis in bile duct-ligated rats via increasing ACE2 expression level.

  13. Effect of bile acid sequestrants on glycaemic control

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David Peick; Mikkelsen, Kristian Hallundbæk;

    2012-01-01

    In addition to the lipid-lowering effect of bile acid sequestrants (BASs), they also lower blood glucose and, therefore, could be beneficial in the treatment of patients with type 2 diabetes mellitus (T2DM). Three oral BASs are approved by the US Food and Drug Administration (FDA) for the treatment...... of hypercholesterolaemia: colestipol, cholestyramine and colesevelam. The BAS colestimide/colestilan is used in Japan. Colesevelam was recently approved by the FDA for the treatment of T2DM. We plan to provide a systematic review with meta-analysis of the glucose-lowering effect of BASs with the aim to evaluate...

  14. Unusual scintigraphic appearance of perforation of the common bile duct

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, M.O.; Tauxe, W.N.; Scott, J.W.; Aldrete, J.S.

    1983-12-01

    This report deals with the diagnosis of perforation of the common bile duct into the lesser sac by HIDA cholescintigraphy. The first hour images after injection were suggestive of biliary obstruction. Subsequent images demonstrated unusual accumulations of the activity into the lesser sac and retroperitoneal potential spaces. Careful correlation between scintigraphic and surgical findings were undertaken. The case is reported to demonstrate the scintigraphic findings in choledochal perforation and to stress the importance of carrying out late images when the initial ones are abnormal.

  15. Suppression of the HPA Axis During Cholestasis Can Be Attributed to Hypothalamic Bile Acid Signaling.

    Science.gov (United States)

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Divan, Ali; Grant, Stephanie; Patel, Nisha; Newell-Rogers, Karen; DeMorrow, Sharon

    2015-12-01

    Suppression of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to occur during cholestatic liver injury. Furthermore, we have demonstrated that in a model of cholestasis, serum bile acids gain entry into the brain via a leaky blood brain barrier and that hypothalamic bile acid content is increased. Therefore, the aim of the current study was to determine the effects of bile acid signaling on the HPA axis. The data presented show that HPA axis suppression during cholestatic liver injury, specifically circulating corticosterone levels and hypothalamic corticotropin releasing hormone (CRH) expression, can be attenuated by administration of the bile acid sequestrant cholestyramine. Secondly, treatment of hypothalamic neurons with various bile acids suppressed CRH expression and secretion in vitro. However, in vivo HPA axis suppression was only evident after the central injection of the bile acids taurocholic acid or glycochenodeoxycholic acid but not the other bile acids studied. Furthermore, we demonstrate that taurocholic acid and glycochenodeoxycholic acid are exerting their effects on hypothalamic CRH expression after their uptake through the apical sodium-dependent bile acid transporter and subsequent activation of the glucocorticoid receptor. Taken together with previous studies, our data support the hypothesis that during cholestatic liver injury, bile acids gain entry into the brain, are transported into neurons through the apical sodium-dependent bile acid transporter and can activate the glucocorticoid receptor to suppress the HPA axis. These data also lend themselves to the broader hypothesis that bile acids may act as central modulators of hypothalamic peptides that may be altered during liver disease.

  16. Repression of Salmonella enterica phoP expression by small molecules from physiological bile.

    Science.gov (United States)

    Antunes, L Caetano M; Wang, Melody; Andersen, Sarah K; Ferreira, Rosana B R; Kappelhoff, Reinhild; Han, Jun; Borchers, Christoph H; Finlay, B Brett

    2012-05-01

    Infection with Salmonella enterica serovar Typhi in humans causes the life-threatening disease typhoid fever. In the laboratory, typhoid fever can be modeled through the inoculation of susceptible mice with Salmonella enterica serovar Typhimurium. Using this murine model, we previously characterized the interactions between Salmonella Typhimurium and host cells in the gallbladder and showed that this pathogen can successfully invade gallbladder epithelial cells and proliferate. Additionally, we showed that Salmonella Typhimurium can use bile phospholipids to grow at high rates. These abilities are likely important for quick colonization of the gallbladder during typhoid fever and further pathogen dissemination through fecal shedding. To further characterize the interactions between Salmonella and the gallbladder environment, we compared the transcriptomes of Salmonella cultures grown in LB broth or physiological murine bile. Our data showed that many genes involved in bacterial central metabolism are affected by bile, with the citric acid cycle being repressed and alternative respiratory systems being activated. Additionally, our study revealed a new aspect of Salmonella interactions with bile through the identification of the global regulator phoP as a bile-responsive gene. Repression of phoP expression could also be achieved using physiological, but not commercial, bovine bile. The biological activity does not involve PhoPQ sensing of a bile component and is not caused by bile acids, the most abundant organic components of bile. Bioactivity-guided purification allowed the identification of a subset of small molecules from bile that can elicit full activity; however, a single compound with phoP inhibitory activity could not be isolated, suggesting that multiple molecules may act in synergy to achieve this effect. Due to the critical role of phoP in Salmonella virulence, further studies in this area will likely reveal aspects of the interaction between Salmonella

  17. Gut microbiota, cirrhosis and alcohol regulate bile acid metabolism in the gut

    Science.gov (United States)

    Ridlon, Jason M.; Kang, Dae-Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic and disease progression in cirrhosis, metabolic syndrome and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of deoxycholic acid (DCA). Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis

  18. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra

    2005-04-01

    Full Text Available Abstract Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5:443–448. We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used

  19. Fungal lytic polysaccharide monooxygenases bind starch and β-cyclodextrin similarly to amylolytic hydrolases

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Isaksen, Trine; Vaaje-Kolstad, Gustav;

    2016-01-01

    , the clustering of CBM20s from starch-targeting LPMOs and hydrolases was in accord with taxonomy and did not correlate to appended catalytic activity. Altogether, these results demonstrate that the CBM20-binding scaffold is retained in the evolution of hydrolytic and oxidative starch-degrading activities....

  20. A flow cytometer-based whole cell screening toolbox for directed hydrolase evolution through fluorescent hydrogels.

    Science.gov (United States)

    Lülsdorf, Nina; Pitzler, Christian; Biggel, Michael; Martinez, Ronny; Vojcic, Ljubica; Schwaneberg, Ulrich

    2015-05-21

    A high throughput whole cell flow cytometer screening toolbox was developed and validated by identifying improved variants (1.3-7-fold) for three hydrolases (esterase, lipase, cellulase). The screening principle is based on coupled enzymatic reaction using glucose derivatives which yield upon hydrolysis a fluorescent-hydrogel-layer on the surface of E. coli cells.

  1. In Silico Investigation of Flavonoids as Potential Trypanosomal Nucleoside Hydrolase Inhibitors

    Directory of Open Access Journals (Sweden)

    Christina Hung Hung Ha

    2015-01-01

    Full Text Available Human African Trypanosomiasis is endemic to 37 countries of sub-Saharan Africa. It is caused by two related species of Trypanosoma brucei. Current therapies suffer from resistance and public accessibility of expensive medicines. Finding safer and effective therapies of natural origin is being extensively explored worldwide. Pentamidine is the only available therapy for inhibiting the P2 adenosine transporter involved in the purine salvage pathway of the trypanosomatids. The objective of the present study is to use computational studies for the investigation of the probable trypanocidal mechanism of flavonoids. Docking experiments were carried out on eight flavonoids of varying level of hydroxylation, namely, flavone, 5-hydroxyflavone, 7-hydroxyflavone, chrysin, apigenin, kaempferol, fisetin, and quercetin. Using AutoDock 4.2, these compounds were tested for their affinity towards inosine-adenosine-guanosine nucleoside hydrolase and the inosine-guanosine nucleoside hydrolase, the major enzymes of the purine salvage pathway. Our results showed that all of the eight tested flavonoids showed high affinities for both hydrolases (lowest free binding energy ranging from −10.23 to −7.14 kcal/mol. These compounds, especially the hydroxylated derivatives, could be further studied as potential inhibitors of the nucleoside hydrolases.

  2. Intestinal Uptake of Quercetin-3- Glucoside in Rats Involves Hydrolysis by Lactase Phlorizin Hydrolase

    NARCIS (Netherlands)

    Sesink, A.L.A.; Arts, I.C.W.; Faassen-Peters, M.; Hollman, P.C.H.

    2003-01-01

    Quercetin has antioxidant, anti-inflammatory, antiproliferative and anticarcinogenic properties. In plant foods, quercetin occurs mainly bound to various sugars via a ß-glycosidic link. We hypothesized that lactase phlorizin hydrolase (LPH), an enzyme at the brush border membrane of intestinal cells

  3. Genetically lowered microsomal epoxide hydrolase activity and tobacco-related cancer in 47,000 individuals

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Nordestgaard, Børge G

    2011-01-01

    Two functional polymorphisms of the microsomal epoxide hydrolase (mEH) gene (EPHX1), Tyr113His (rs1051740) and His139Arg (rs2234922), have variably been found to influence susceptibility to various cancer forms. We tested whether genetically lowered mEH activity affects risk of developing cancer...

  4. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries

    DEFF Research Database (Denmark)

    Ferrandi, Erica Elisa; Sayer, Christopher; Isupov, Michail N.;

    2015-01-01

    The epoxide hydrolases (EHs) represent an attractive option for the synthesis of chiral epoxides and 1,2-diols which are valuable building blocks for the synthesis of several pharmaceutical compounds. A metagenomic approach has been used to identify two new members of the atypical EH limonene-1,2...

  5. Microsomal epoxide hydrolase genotypes and the risk for head and neck cancer.

    NARCIS (Netherlands)

    Lacko, M.; Roelofs, H.M.J.; Morsche, R.H.M. te; Voogd, A.C.; Ophuis, MB Oude; Peters, W.H.M.; Manni, J.J.

    2008-01-01

    BACKGROUND: Microsomal epoxide hydrolase (mEH) is an enzyme involved in the metabolism of (pre)carcinogens in tobacco smoke. We investigated whether functional genetic polymorphisms in mEH may have a risk-modifying effect on head and neck carcinogenesis. METHODS: Blood from 429 patients with oral, p

  6. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were co-polym

  7. Genetically reduced soluble epoxide hydrolase activity and risk of stroke and other cardiovascular disease

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Grande, Peer;

    2010-01-01

    BACKGROUND AND PURPOSE: The development of stroke has been linked to lowered levels of epoxyeicosatrienoic acids in the cerebral microvasculature. These substances are metabolized by the enzyme-soluble epoxide hydrolase encoded by the EPHX2 gene. We tested whether genetically reduced soluble...

  8. BIODEGRADATION OF ORGANOPHOSPHORUS PESTICIDES BY SURFACE-EXPRESSED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    Science.gov (United States)

    Organophosphorus hydrolase (OPH) was displayed and anchored onto the surface ofEscherichia coli using an Lpp-OmpA fusion system. Production of the fusion proteins in membranefractions was verified by immunoblotting with OmpA antisera. inclusion of the organophosphorus...

  9. The role of epoxide hydrolase Y113H gene variant in pancreatic diseases.

    NARCIS (Netherlands)

    Ockenga, J.; Strunck, S.; Post, C.; Schulz, H.U.; Halangk, J.; Pfutzer, R.H.; Lohr, M.; Oettle, H.; Kage, A.; Rosendahl, J.; Keim, V.; Drenth, J.P.H.; Jansen, J.B.M.J.; Lochs, H.; Witt, H.

    2009-01-01

    OBJECTIVES: Chronic pancreatitis (CP) and pancreatic adenocarcinoma (pCA) are associated with risk factors such as alcohol intake and tobacco smoking. Microsomal epoxide hydrolase (EPHX1) is a phase II detoxifying enzyme capable of tobacco-borne toxicant inactivation. We studied the role of the EPHX

  10. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats

    NARCIS (Netherlands)

    Koeners, Maarten P.; Wesseling, Sebastiaan; Ulu, Arzu; Lopez Sepulveda, Rocio; Morisseau, Christophe; Braam, Branko; Hammock, Bruce D.; Joles, Jaap A.

    2011-01-01

    Koeners MP, Wesseling S, Ulu A, Sepulveda RL, Morisseau C, Braam B, Hammock BD, Joles JA. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 300: E691-E698, 2011. First published January 25, 2011; doi:

  11. Prunasin hydrolases localization during fruit development in sweet and bitter almonds

    DEFF Research Database (Denmark)

    Sánchez Pérez, Raquel; Belmonte, Fara Sáez; Borch-Jensen, Jonas;

    2012-01-01

    , and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal...

  12. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  13. Genetic Cholestasis: Lessons from the Molecular Physiology of Bile Formation

    Directory of Open Access Journals (Sweden)

    Peter LM Jansen

    2000-01-01

    Full Text Available Progressive familial intrahepatic cholestasis (PFIC is a group of severe genetic cholestatic liver diseases of early life. PFIC types 1 and 2 are characterized by cholestasis and a low to normal serum gamma-glutamyltransferase (GGT activity, whereas in PFIC type 3, the serum GGT activity is elevated. PFIC types 1 and 2 occur due to mutations in loci at chromosome 18 and chromosome 2, respectively. The pathophysiology of PFIC type 1 is not well understood. PFIC types 2 and 3 are caused by transport defects in the liver affecting the hepatobiliary secretion of bile acids and phospholipids, respectively. Benign recurrent intrahepatic cholestasis (BRIC is linked to a mutation in the same familial intrahepatic cholestasis 1 locus at chromosome 18. Defects of bile acid synthesis may be difficult to differentiate from these transport defects.Intrahepatic cholestasis of pregnancy (ICP appears to be related to these cholestatic diseases. For example, heterozygosity in families with PFIC type 3 is associated with ICP, but ICP has also been reported in families with BRIC.In Dubin-Johnson syndrome there is no cholestasis; only the hepatobiliary transport of conjugated bilirubin is affected. This, therefore, is a mild disease, and patients have a normal lifespan.

  14. Development of hepatorenal syndrome in bile duct ligated rats

    Institute of Scientific and Technical Information of China (English)

    Regina M Pereira; Ana Cristina Sim(o)es e Silva; Robson AS dos Santos; Eduardo A Oliveira; Virg(i)nia HR Leite; Filipi LC Dias; Alysson S Rezende; Lincoln P Costa; Luciola S Barcelos; Mauro M Teixeira

    2008-01-01

    AIM: To evaluate in bile duct ligated rats whether there were progressive alterations of renal function without changes in histopathology.METHODS: Male Wistar rats were submitted to sham-surgery or bile duct ligation (BDL) and divided according to the post-procedure time (2, 4 and 6-wk).To determine renal function parameters, rats were placed in metabolic cages and, at the end of the experiment, blood and urine samples were obtained.Histology and hydroxyproline content were analyzed in liver and renal tissue.RESULTS: Rats with 2 wk of BDL increased free water clearance (P = 0.02), reduced urinary osmolality (P =0.03) and serum creatinine (P = 0.01) in comparison to the sham group. In contrast, rats at 6 wk of BDL showed features of HRS, including significant increase in serum creatinine and reductions in creatinine clearance,water excretion and urinary sodium concentration. Rats with 4 wk of BDL exhibited an intermediate stage of renal dysfunction. Progressive hepatic fibrosis according to post-procedure time was confirmed by histology.The increased levels of liver hydroxyproline contrasted with the absence of structural changes in the kidney, as assessed by histology and unchanged hydroxyproline content in renal tissue.CONCLUSION: Our data show that BDL produced progressive renal dysfunction without structural changes in the kidney, characterizing HRS. The present model will be useful to understand the pathophysiology of HRS.

  15. Surgical versus endoscopic management of common bile duct stones.

    Science.gov (United States)

    Miller, B M; Kozarek, R A; Ryan, J A; Ball, T J; Traverso, L W

    1988-01-01

    The charts of all patients with common bile duct (CBD) stones admitted to Virginia Mason Medical Center between January 1, 1981 and July 31, 1986 were reviewed to define current methods of management and results of operative versus endoscopic therapy. Two hundred thirty-seven patients with CBD stones were treated. One hundred thirty patients had intact gallbladders. Of these patients, 76 (59%) underwent cholecystectomy and common bile duct exploration (CBDE) while 54 (41%) underwent endoscopic papillotomy (EP) only. Of the 107 patients admitted with recurrent stones after cholecystectomy, all but five were treated with EP. The overall mortality rate was 3.0%. Complications, success, and death rates were all similar for CBDE and EP, but the complications of EP were often serious and directly related to the procedure (GI hemorrhage, 6; duodenal perforation, 5; biliary sepsis, 4; pancreatitis, 1). Patients undergoing EP required significantly shorter hospitalization than those undergoing CBDE. Multivariate analysis showed that age greater than 70 years, technical failure, and complications increased the risk of death, regardless of procedure performed. Twenty-one per cent of those undergoing EP with gallbladders intact eventually required cholecystectomy. The conclusion is that the results of EP and CBDE are similar, and the use of EP has not reduced the mortality rates of this disease. PMID:3341812

  16. Imaging by the SSFSE single slice method at different viscosities of bile

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Hiroya; Usui, Motoki; Fukunaga, Kenichi; Yamamoto, Naruto; Ikegami, Toshimi [Kawasaki Hospital, Kobe (Japan)

    2001-11-01

    The single shot fast spin echo single thick slice method (single slice method) is a technique that visualizes the water component alone using a heavy T{sub 2}. However, this method is considered to be markedly affected by changes in the viscosity of the material because a very long TE is used, and changes in the T{sub 2} value, which are related to viscosity, directly affect imaging. In this study, we evaluated the relationship between the effects of TE and the T{sub 2} value of bile in the single slice method and also examined the relationship between the signal intensity of bile on T{sub 1}- and T{sub 2}-weighted images and imaging by MR cholangiography (MRC). It was difficult to image bile with high viscosities at a usual effective TE level of 700-1,500 ms. With regard to the relationship between the signal intensity of bile and MRC imaging, all T{sub 2} values of the bile samples showing relatively high signal intensities on the T{sub 1}-weighted images suggested high viscosities, and MRC imaging of these bile samples was poor. In conclusion, MRC imaging of bile with high viscosities was poor with the single slice method. Imaging by the single slice method alone of bile showing a relatively high signal intensity on T{sub 1}-weighted images should be avoided, and combination with other MRC sequences should be used. (author)

  17. Metabolic Effects of Bile Acids in the Gut in Health and Disease

    NARCIS (Netherlands)

    Boesjes, Marije; Brufau Dones, Gemma

    2014-01-01

    In the last decade, it became clear that bile acids, in addition to their role in intestinal absorption of lipids and fat-soluble vitamins, are major regulators of metabolism. They activate signal transduction pathways through binding to the specific bile acid receptors TGR5 and FXR. Indirectly, bil

  18. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5beta-reductase....

  19. Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals

    Science.gov (United States)

    Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...

  20. Modelling of the pathological bile flow in the duct with a calculus.

    Science.gov (United States)

    Kuchumov, Alex G; Nyashin, Yuriy I; Samarcev, Vladimir A; Gavrilov, Vasiliy A

    2013-01-01

    The aim of the present paper is to develop an analytical model for description of the pathological bile flow in the major duodenal papilla duct with a calculus. The problem is separated into two parts. The first part deals with determination of bile behaviour and constitutive relation parameters of the pathological bile. The viscosity vs. shear rate, the viscosity vs. time, and shear stress vs. shear rate dependences are obtained for different types of bile taken from patients of different age and sex. As a result, the approximation of curves described by the Casson equation was obtained. It was shown that the pathological bile is a thixotropic non-Newtonian fluid. The second part is directly related to modelling of the bile flow in the duct with a calculus. As a result of solving the problem, the bile velocity profile, flow rate vs. time, and bile pressure vs. calculus radius were obtained. The dependences obtained may play an important role in the assessment of an indication to operation.

  1. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    Science.gov (United States)

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; pacetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  2. Changing patterns of traumatic bile duct injuries: a review of forty years experience

    Institute of Scientific and Technical Information of China (English)

    Zhi-Qiang Huang; Xiao-Qiang Huang

    2002-01-01

    AIM: To summarize the experiences of treating bile ductinjuries in 40 years of clinical practice.METHODS: Based on the experience of more than 40 yearsof clinical work, 122 cases including a series of 61 bile ductinjuries of the Southwest Hospital, Chongqing, and 42cases (1989-1997) and 19 cases (1998-2001) of the GeneralHospital of PLA, Beijing, cases were reviewed with specialreference to the pattern of injury. A series of cases of theliver and the biliary tract injuries following interventionaltherapy for hepatic tumors, most often hemangioma of theliver, were collected. Chinese medical literature from 1995 to1999 dealing with 2742 traumatic bile duct strictures werereviewed.RESULTS: There was a changing pattern of the bile ductinjury. Although most of the cases of bile duct injuriesresulted from open cholecystectomy. Other types of traumasuch as laparoscopic cholecystectomy (LC) and hepaticsurgery were increased in recent years. Moreover, serioushepato-biliary injuries following HAE using sclerotic agentssuch as sodium morrhuate and absolute ethanol for thetreatment of hepatic hemangiomas were encountered inrecent years. Experiences in how to avoid bile duct injuryand to treat traumatic biliary strictures were presented.CONCLUSION: Traumatic bile duct stricture is one of theserious complications of hepato-biliary surgery, itsprevalence seemed to be increased in recent years. Thepattern of bile duct injury was also changed and has becomemore complicated. Interventional therapy with sclerosingagents may cause serious hepatobiliary complications andshould be avoided.

  3. Bile acids for liver-transplanted patients. Protocol for a Cochrane Review

    DEFF Research Database (Denmark)

    Chen, W; Gluud, C

    2003-01-01

    Liver transplantation has become a widely accepted form of treatment for numerous end-stage liver diseases. Bile acids may decrease the degree of allograft rejection after liver transplantation by changing the expression of major histocompatibility complex class molecules in bile duct epithelium...

  4. Effects of corn oil and wheat brans on bile acid metabolism in rats.

    Science.gov (United States)

    Gallaher, D D; Franz, P M

    1990-11-01

    High concentrations of colonic bile acids may promote tumor formation. Some studies have found that high levels of dietary fat increase fecal bile acid excretion, whereas others report no effect. Wheat bran appears to reduce fecal bile acid concentration. This study was conducted to determine the effect of different dietary fat levels and types of wheat bran on bile acid metabolism. Rats were fed diets containing either no fiber, 2% cholestyramine (CHO) or brans of hard red spring, soft white winter or durum wheat--at both a 5 or 20% fat level. Animals were fed for 7 wk, and feces were collected in the last week. Wheat bran (all types) significantly increased fecal mass approximately fourfold, and CHO significantly increased fecal mass twofold compared to the fiber-free diet. Increasing the fat level did not increase fecal bile acid excretion, nor did the addition of wheat bran. Addition of CHO, however, more than doubled it. CHO increased fecal bile acid concentration, all wheat brans decreased it and fat level had no effect. Bile acid pool size was increased slightly by fat level and cholestyramine feeding but not by wheat brans. These results indicate that fat level slightly alters bile acid metabolism but that wheat brans do not.

  5. The role of dissolved carbon dioxide and whole bile in the in vitro activation of Taenia taeniaeformis oncospheres.

    Science.gov (United States)

    Ishiwata, K; Oku, Y; Kamiya, M

    1993-12-01

    Dissolved carbon dioxide was deemed not to be an important factor in the activation of Taenia taeniaeformis oncospheres. Rabbit bile was found to provide the most appropriate whole bile for in vitro activation of oncospheres.

  6. Aberrant subvesical bile ducts identified during laparoscopic cholecystectomy: A rare case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Theodoros Mariolis-Sapsakos

    2017-01-01

    Conclusion: Aberrant subvesical bile ducts are associated with a high risk of surgical bile duct injury. Nevertheless, meticulous operative technique combined with surgeons’ perpetual awareness concerning this peculiar anatomical aberration leads to a safe laparoscopic cholecystectomy.

  7. El bilingüismo en la interpretación. Estudio comparativo entre los tipos de bilingüismo enfocado a la interpretación

    OpenAIRE

    Verdaguer Menéndez-Arango, Carlota; Boéri, Julie

    2012-01-01

    Este trabajo delimita el término bilingüismo y define los diferentes tipos estudiando qué relevancia tienen (ventajas y/o desventajas) en la interpretación. Se estudia si algún tipo de bilingüismo ofrece mayor predisposición para interpretar. Concluye con un experimento de Think Aloud Protocol (TAP) a estudiantes de interpretación castellano-alemán.

  8. γ-PGA Hydrolases of Phage Origin in Bacillus subtilis and Other Microbial Genomes.

    Directory of Open Access Journals (Sweden)

    Stefania Mamberti

    Full Text Available Poly-γ-glutamate (γ-PGA is an industrially interesting polymer secreted mainly by members of the class Bacilli which forms a shield able to protect bacteria from phagocytosis and phages. Few enzymes are known to degrade γ-PGA; among them is a phage-encoded γ-PGA hydrolase, PghP. The supposed role of PghP in phages is to ensure access to the surface of bacterial cells by dismantling the γ-PGA barrier. We identified four unannotated B. subtilis genes through similarity of their encoded products to PghP; in fact these genes reside in prophage elements of B. subtilis genome. The recombinant products of two of them demonstrate efficient polymer degradation, confirming that sequence similarity reflects functional homology. Genes encoding similar γ-PGA hydrolases were identified in phages specific for the order Bacillales and in numerous microbial genomes, not only belonging to that order. The distribution of the γ-PGA biosynthesis operon was also investigated with a bioinformatics approach; it was found that the list of organisms endowed with γ-PGA biosynthetic functions is larger than expected and includes several pathogenic species. Moreover in non-Bacillales bacteria the predicted γ-PGA hydrolase genes are preferentially found in species that do not have the genetic asset for polymer production. Our findings suggest that γ-PGA hydrolase genes might have spread across microbial genomes via horizontal exchanges rather than via phage infection. We hypothesize that, in natural habitats rich in γ-PGA supplied by producer organisms, the availability of hydrolases that release glutamate oligomers from γ-PGA might be a beneficial trait under positive selection.

  9. Salt treatment Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Stefan [NUKEM Technologies GmbH, Alzenau (Germany)

    2013-07-01

    The Task of NUKEM Technologies GmbH is to develop a technical solution for the treatment of salt containing effluents at Fukushima Daiichi. The target of the treatment is a solidified product suitable for the safe storage on site. Therefore, NUKEM investigated several technologies (direct cementation, drying and storage, drying and subsequent cementation) in order to find a fit for purpose solution. The following tasks have been considered: (a) Mechanical strength and homogeneity of the product; (b) Cost efficient solution (cost for the drying system vs. reduced amount of storage containers); (c) Proven technology; (d) On site storage. NUKEM made some practical test in parallel with different recipes. The aim was to embed as much as possible salt quantity into the cement matrix, but still meet the requested mechanical strength and required homogeneity. As a result NUKEM recommended to apply the following technologies (a) a drying system, to produce a dry salt product (b) a cementation facility, to generate a homogeneous salt/cement matrix (c) a filling station with attached CMS (Container measuring station) to fill the resulting cement/salt matrix into containers suitable for the storage at Fukushima Daiichi. (orig.)

  10. Fragmentation of common bile duct and pancreatic duct stones by extracorporeal shock-wave lithotripsy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ham Gyum [Ansan Junior College, Seoul (Korea, Republic of); Son, Soon Yong; Lee, Won Hong [Asan Medical Center, Seoul (Korea, Republic of)

    1998-06-01

    To determine its usefulness and safety of extracorporeal shock-wave lithotripsy in common bile duct and pancreatic duct stones, we analyzed the results of 13 patients with common bile duct stones and 6 patients with pancreatic duct stones which were removed by endoscopic procedures using the balloon or basket, who was performed the extracorporeal shock-wave lithotripsy using the ultrasonography for stone localization with a spark gap type Lithotriptor(Dornier MPL 9000, Germany). Fragmentation and complete clearance of the common bile duct and pancreatic duct stones were obtained in 19 of 19 patients(100%). Apart from transient attacks of fever in 2 of 13 patients with common bile duct stones(15%) and mild elevation of serum amylase and lipase in 2 of 6 patients with pancreatic duct stones(33%), no other serious side effects were observed. In our experiences, extracorporeal shock-wave lithotripsy is a safe and useful treatment for endoscopically unretrievable common bile duct and pancreatic duct stones.

  11. Structural basis of the alternating-access mechanism in a bile acid transporter

    Science.gov (United States)

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications

  12. A retrospective analysis of endoscopic treatment outcomes in patients with postoperative bile leakage

    Science.gov (United States)

    Sayar, Suleyman; Olmez, Sehmus; Avcioglu, Ufuk; Tenlik, Ilyas; Saritas, Bunyamin; Ozdil, Kamil; Altiparmak, Emin; Ozaslan, Ersan

    2016-01-01

    OBJECTIVE: Bile leakage, while rare, can be a complication seen after cholecystectomy. It may also occur after hepatic or biliary surgical procedures. Etiology may be underlying pathology or surgical complication. Endoscopic retrograde cholangiopancreatography (ERCP) can play major role in diagnosis and treatment of bile leakage. Present study was a retrospective analysis of outcomes of ERCP procedure in patients with bile leakage. METHODS: Patients who underwent ERCP for bile leakage after surgery between 2008 and 2012 were included in the study. Etiology, clinical and radiological characteristics, and endoscopic treatment outcomes were recorded and analyzed. RESULTS: Total of 31 patients (10 male, 21 female) were included in the study. ERCP was performed for bile leakage after cholecystectomy in 20 patients, after hydatid cyst operation in 10 patients, and after hepatic resection in 1 patient. Clinical signs and symptoms of bile leakage included abdominal pain, bile drainage from percutaneous drain, peritonitis, jaundice, and bilioma. Twelve (60%) patients were treated with endoscopic sphincterotomy (ES) and nasobiliary drainage (NBD) catheter, 7 patients (35%) were treated with ES and biliary stent (BS), and 1 patient (5%) was treated with ES alone. Treatment efficiency was 100% in bile leakage cases after cholecystectomy. Ten (32%) cases of hydatid cyst surgery had subsequent cystobiliary fistula. Of these patients, 7 were treated with ES and NBD, 2 were treated with ES and BS, and 1 patient (8%) with ES alone. Treatment was successful in 90% of these cases. CONCLUSION: ERCP is an effective method to diagnose and treat bile leakage. Endoscopic treatment of postoperative bile leakage should be individualized based on etiological and other factors, such as accompanying fistula. PMID:28058396

  13. Antineutrophil cytoplasmic antibodies in bile are associated with disease activity in primary sclerosing cholangitis.

    Science.gov (United States)

    Lenzen, Henrike; Weismüller, Tobias J; Negm, Ahmed A; Wlecke, Jenny; Loges, Stephanie; Strassburg, Christian P; Manns, Michael P; Lankisch, Tim O

    2013-10-01

    OBJECTIVE. Primary sclerosing cholangitis (PSC) is an autoimmune cholestatic liver disease of unknown etiology. The role of antineutrophil cytoplasmic antibodies (ANCAs) in the serum of patients with PSC remains unclear. We hypothesized that ANCA may be detectable in bile, potentially providing diagnostic and prognostic information. METHODS. Serum and bile were prospectively collected during endoscopic retrograde cholangiography (ERC) in 72 patients with PSC and other non-PSC obstructive biliary diseases. ANCA measurements were performed by indirect immunofluorescence (IIF). RESULTS. Immunoglobulin G (IgG) ANCA was detected significantly more often in the bile of PSC patients (15/39; 38%) than without (2/33; 6%) (p = 0.001). IgG ANCA in bile was associated with a ten times higher risk of PSC (p = 0.005). In addition, IgG ANCA positivity in bile was associated with the presence of dominant strictures (p = 0.03), cholangiographic severity (p = 0.004), number of ERC (p = 0.01) and interventions performed (p = 0.03). However, IgG ANCA in bile did not correlate with transplantation, cholangiocarcinoma or death. No association was observed between ANCA positivity in sera and ANA and ASCA positivity in sera or bile with the above-mentioned clinical features. CONCLUSIONS. The presence of ANCA in the bile of patients with PSC is a novel finding and highly suggestive of PSC. Biliary IgG ANCA correlates with the severity of bile duct strictures and the ensuing number of ERCs and interventions. Therefore, a positive ANCA status in bile may serve as a diagnostic and prognostic marker of the disease progression and biliary complications.

  14. Profiling of urinary bile acids in piglets by a combination of enzymatic deconjugation and targeted LC-MRM-MS

    Science.gov (United States)

    Bile acids (BAs) have an important role in the control of fat, glucose and cholesterol metabolism. Synthesis of bile acids is the major pathway for the metabolism of cholesterol and for the excretion of excess cholesterol in mammals. Bile acid intermediates and/or their metabolites are excreted in...

  15. Steam Cooking Significantly Improves in Vitro Bile Acid Binding of Beets, Eggplant, Asparagus, Carrots, Green Beans and Cauliflower

    Science.gov (United States)

    The relative healthful potential of cooked beets, okra, eggplant, asparagus, carrots, green beans, cauliflower and turnips was evaluated by determining their in vitro bile acid binding using a mixture of bile acids secreted in human bile at a duodenal physiological pH of 6.3. Six treatments and two...

  16. Mechanism for salt scaling

    Science.gov (United States)

    Valenza, John J., II

    Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of

  17. The Mode of Inhibitor Binding to Peptidyl-tRNA Hydrolase: Binding Studies and Structure Determination of Unbound and Bound Peptidyl-tRNA Hydrolase from Acinetobacter baumannii

    Science.gov (United States)

    Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P.

    2013-01-01

    The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design. PMID:23844024

  18. The mode of inhibitor binding to peptidyl-tRNA hydrolase: binding studies and structure determination of unbound and bound peptidyl-tRNA hydrolase from Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Sanket Kaushik

    Full Text Available The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.

  19. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil [Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States); Servinsky, Matthew D. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Gerlach, Elliot S. [Federal Staffing Resources, 2200 Somerville Road, Annapolis, MD 21401 (United States); Sund, Christian J. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Hurley, Margaret M., E-mail: katherine.germane.civ@mail.mil [US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 (United States); Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States)

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  20. Mycophenolate mofetil for drug-induced vanishing bile duct syndrome

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Amoxicillin/clavulanate is associated with liver injury,mostly of a cholestatic pattern. While outcomes are usually benign, progression to cirrhosis and death has been reported. The role of immunosuppressive therapy for patients with a protracted course is unclear. We report the case of an elderly patient who developed prolonged cholestasis secondary to amoxicillin/clavulanate. Vanishing bile duct syndrome was confirmed by sequential liver biopsies. The patient responded to prednisone treatment,but could not be weaned off corticosteroids, even when azathioprine was added. Complete withdrawal of both prednisone and azathioprine was possible by using mycophenolate mofetil, an inosine monophosphate dehydrogenase inhibitor. Sustained remission has been maintained for more than 3 years with low-dose mycophenolate mofetil.

  1. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    Directory of Open Access Journals (Sweden)

    Olivier F. Noel

    2016-01-01

    Full Text Available Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes.

  2. The putative α/β-hydrolases of Dietzia cinnamea P4 strain as potential enzymes for biocatalytic applications.

    Science.gov (United States)

    Procópio, Luciano; Macrae, Andrew; van Elsas, Jan Dirk; Seldin, Lucy

    2013-03-01

    The draft genome of the soil actinomycete Dietzia cinnamea P4 reveals a versatile group of α/β-hydrolase fold enzymes. Phylogenetic and comparative sequence analyses were used to classify the α/β-hydrolases of strain P4 into six different groups: (i) lipases, (ii) esterases, (iii) epoxide hydrolases, (iv) haloacid dehalogenases, (v) C-C breaking enzymes and (vi) serine peptidases. The high number of lipases/esterases (41) and epoxide hydrolase enzymes (14) present in the relatively small (3.6 Mb) P4 genome is unusual; it is likely to be linked to the survival of strain P4 in its natural environment. Strain P4 is thus equipped with a large number of genes which would appear to confer survivability in harsh hot tropical soil. As such, this highly resilient soil bacterial strain provides an interesting genome for enzyme mining for applications in the field of biotransformations of polymeric compounds.

  3. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  4. Photoluminescence of urine salts

    Science.gov (United States)

    Bordun, O.; Drobchak, O.

    2008-02-01

    Photoexcitation and luminescence spectra of dried urine sample under laser excitation were studied. Luminescence spectra of urine are determined by luminescence of urea which is the main component of urine. The presence of pathological salts in urine leads to the long-wave shifting of maxima of luminescence and to the decreasing of luminescence intensity.

  5. What Are Bath Salts?

    Science.gov (United States)

    ... in Missouri. She won the 3rd place 2013 Addiction Science Award . Read More » 0 Comments Bath Salts: An Emerging Danger February 05, 2013 / Sara Bellum ... copy Listen Drug Facts ... Nicotine, & E-Cigarettes Brain and Addiction Drug Overdoses in Youth HIV/AIDS and Drug ...

  6. Isolated segmental, sectoral and right hepatic bile duct injuries

    Institute of Scientific and Technical Information of China (English)

    Radoje B Colovic

    2009-01-01

    The treatment of isolated segmental, sectoral and right hepatic bile duct injuries is controversial. Nineteen patients were treated over a 26-year period. Group one was comprised of 4 patients in whom the injury was primarily repaired during the original surgery;3 over a T-tube, 1 with a Roux-en-Y. These patients had an uneventful recovery. The second group consisted of 5 patients in whom the duct was ligated;4 developed infection, 3 of which required drainage and biliary repair. Two patients had good long-term outcomes;the third developed a late anastomotic stricture requiring further surgery. The fourth patient developed a small bile leak and pain which resolved spontaneously. The fifth patient developed complications from which he died. The third group was comprised of 4 patients referred with biliary peritonitis;all underwent drainage and lavage, and developed biliary fistulae, 3 of which resolved spontaneously, 1 required Roux-en-Y repair, with favorable outcomes. The fourth group consisted of 6 patients with biliary fistulae. Two patients, both with an 8-wk history of a fistula, underwent Roux-en-Y repair. Two others also underwent a Roux-en-Y repair, as their fistulae showed no signs of closure. The remaining 2 patients had spontaneous closure of their biliary fistulae. A primary repair is a reasonable alternative to ligature of injured duct. Patients with ligated ducts may develop complications. Infected ducts require further surgery. Patients with biliary peritonitis must be treated with drainage and lavage. There is a 50% chance that a biliary fistula will close spontaneously. In cases where the biliary fistula does not close within 6 to 8 wk, a Roux-en-Y anastomosis should be considered.

  7. Iatrogenic bile duct injury with loss of confluence

    Institute of Scientific and Technical Information of China (English)

    Miguel-Angel; Mercado; Mario; Vilatoba; Alan; Contreras; Pilar; Leal-Leyte; Eduardo; Cervantes-Alvarez; Juan-Carlos; Arriola; Bruno-Adonai; Gonzalez

    2015-01-01

    AIM: To describe our experience concerning the surgical treatment of Strasberg E-4(Bismuth Ⅳ) bile duct injuries. METHODS: In an 18-year period, among 603 patients referred to our hospital for surgical treatment of complex bile duct injuries, 53 presented involvement of the hilar confluence classified as Strasberg E4 injuries. Imagenological studies, mainly magnetic resonance imaging showed a loss of confluence. The files of these patients were analyzed and general data were recorded, including type of operation and postoperative outcome with emphasis on postoperative cholangitis, liver function test and quality of life. The mean time of follow-up was of 55.9 ± 52.9 mo(median = 38.5, minimum = 2, maximum = 181.2). All other patients with Strasberg A, B, C, D, E1, E2, E3, or E5 biliary injuries were excluded from this study.RESULTS: Patients were divided in three groups: G1(n = 21): Construction of neoconfluence + Roux-en-Y hepatojejunostomy. G2(n = 26): Roux-en-Y portoenterostomy. G3(n = 6): Double(right and left) Rouxen-Y hepatojejunostomy. Cholangitis was recorded in two patients in group 1, in 14 patients in group 2, and in one patient in group 3. All of them required transhepatic instrumentation of the anastomosis and six patients needed live transplantation.CONCLUSION: Loss of confluence represents a surgicalchallenge. There are several treatment options at different stages. Roux-en-Y bilioenteric anastomosis(neoconfluence, double-barrel anastomosis, portoenterostomy) is the treatment of choice, and when it is technically possible, building of a neoconfluence has better outcomes. When liver cirrhosis is shown, liver transplantation is the best choice.

  8. Curcumin prevents bile canalicular alterations in the liver of hamsters infected with Opisthorchis viverrini.

    Science.gov (United States)

    Jattujan, Prapaporn; Pinlaor, Somchai; Charoensuk, Lakhanawan; Arunyanart, Channarong; Welbat, Jariya Umka; Chaijaroonkhanarak, Wunnee

    2013-12-01

    Opisthorchis viverrini infection causes inflammation and liver injury leading to periductal fibrosis. Little is known about the pathological alterations in bile canaliculi in opisthorchiasis. This study aimed to investigate bile canalicular alterations in O. viverrini-infected hamsters and to examine the chemopreventive effects of curcumin on such changes. Hamsters were infected with O. viverrini and one group of animals was fed with 1% dietary curcumin supplement. Animals were examined during the acute infection phase, days 21 and 30 post-infection (PI) and chronic infection phase (day 90 PI). Scanning electron microscopy revealed that in the infected group fed with a normal diet, bile canaliculi became slightly tortuous by 30 day PI and more tortuous at day 90 PI. Transmission electron microscopy showed a reduction in microvilli density of canaliculi starting at day 30 PI, with a marked loss of microvilli at day 90 PI. These ultrastructral changes were slightly seen at day 21 PI, which was similar to that found in infected animals fed with 1% curcumin-supplemented diet. Notably, curcumin treatment prevented the reduction of microvilli density, reduced the dilation of bile canaliculi, and decreased the tortuosity of the bile canaliculi relative to non-infected animals on a normal diet at days 30 and 90 PI. These results suggest that curcumin reduces alteration of bile canaliculi and may be a promising agent to prevent the onset of bile duct abnormalities induced by O. viverrini infection.

  9. Alteration of the enterohepatic recirculation of bile acids in rats after exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scanff, P.; Souidi, M.; Grison, S.; Griffiths, N.M.; Gourmelon, P. [Inst. de Radioprotection et de Surete Nucleaire, (IRSN), Direction de la RadioProtection de l' Homme, Service de Radiobiologie et d' Epidemiologie, Fontenay-aux-Roses, CEDEX (France)]. E-mail: pascale.scanff@irsn.fr

    2004-02-01

    The aim of this work was to study acute alterations of the enterohepatic recirculation (EHR) of bile acids 3 days after an 8-Gy radiation exposure in vivo in the rat by a washout technique. Using this technique in association with HPLC analysis, the EHR of the major individual bile acids was determined in control and irradiated animals. Ex vivo ileal taurocholate absorption was also studied in Ussing chambers. Major hepatic enzyme activities involved in bile acid synthesis were also measured. Measurements of bile acid intestinal content and intestinal absorption efficiency calculation from washout showed reduced intestinal absorption with significant differences from one bile acid to another: absorption of taurocholate and tauromuricholate was decreased, whereas absorption of the more hydrophobic taurochenodeoxycholate was increased, suggesting that intestinal passive diffusion was enhanced, whereas ileal active transport might be reduced. Basal hepatic secretion was increased only for taurocholate, in accordance with the marked increase of CYP8B1 activity in the liver. The results are clearly demonstrate that concomitantly with radiation-induced intestinal bile acid malabsorption, hepatic bile acid synthesis and secretion are also changed. A current working model for pathophysiological changes in enterohepatic recycling after irradiation is thus proposed. (author)

  10. Effects of human and porcine bile on the proteome of Helicobacter hepaticus

    Directory of Open Access Journals (Sweden)

    Okoli Arinze S

    2012-04-01

    Full Text Available Abstract Background Helicobacter hepaticus colonizes the intestine and liver of mice causing hepatobiliary disorders such as hepatitis and hepatocellular carcinoma, and has also been associated with inflammatory bowel disease in children. In its habitat, H. hepaticus must encounter bile which has potent antibacterial properties. To elucidate virulence and host-specific adaptation mechanisms of H. hepaticus modulated by human or porcine bile, a proteomic study of its response to the two types of bile was performed employing two-dimensional gel electrophoresis (2-DE and mass spectrometry. Results The 2-DE and mass spectrometry analyses of the proteome revealed that 46 proteins of H. hepaticus were differentially expressed in human bile, 18 up-regulated and 28 down-regulated. In the case of porcine bile, 32 proteins were differentially expressed of which 19 were up-regulated, and 13 were down-regulated. Functional classifications revealed that identified proteins participated in various biological functions including stress response, energy metabolism, membrane stability, motility, virulence and colonization. Selected genes were analyzed by RT-PCR to provide internal validation for the proteomic data as well as provide insight into specific expressions of motility, colonization and virulence genes of H. hepaticus in response to human or porcine bile. Conclusions Overall, the data suggested that bile is an important factor that determines virulence, host adaptation, localization and colonization of specific niches within host environment.

  11. Evaluation of bile reflux in HIDA images based on fluid mechanics.

    Science.gov (United States)

    Lo, Rong-Chin; Huang, Wen-Lin; Fan, Yu-Ming

    2015-05-01

    We propose a new method to help physicians assess, using a hepatobiliary iminodiacetic acid scan image, whether or not there is bile reflux into the stomach. The degree of bile reflux is an important index for clinical diagnosis of stomach diseases. The proposed method applies image-processing technology combined with a hydrodynamic model to determine the extent of bile reflux or whether the duodenum is also folded above the stomach. This condition in 2D dynamic images suggests that bile refluxes into the stomach, when endoscopy shows no bile reflux. In this study, we used optical flow to analyze images from Tc99m-diisopropyl iminodiacetic acid cholescintigraphy (Tc99m-DISIDA) to ascertain the direction and velocity of bile passing through the pylorus. In clinical diagnoses, single photon emission computed tomography (SPECT) is the main clinical tool for evaluating functional images of hepatobiliary metabolism. Computed tomography (CT) shows anatomical images of the external contours of the stomach, liver, and biliary extent. By exploiting the functional fusion of the two kinds of medical image, physicians can obtain a more accurate diagnosis. We accordingly reconstructed 3D images from SPECT and CT to help physicians choose which cross sections to fuse with software and to help them more accurately diagnose the extent and quantity of bile reflux.

  12. Carpinteria Salt Marsh Habitat Polygons

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — We identified five common habitat types in Carpinteria Salt Marsh: channels, pans (flats), marsh, salt flat and upland. We then drew polygons around each habitat...

  13. Salt ingestion caves.

    Directory of Open Access Journals (Sweden)

    Lundquist Charles A.

    2006-01-01

    Full Text Available Large vertebrate herbivores, when they find a salt-bearing layer of rock, say in a cliff face, can produce sizable voids where, overgenerations, they have removed and consumed salty rock. The cavities formed by this natural animal process constitute a uniqueclass of caves that can be called salt ingestion caves. Several examples of such caves are described in various publications. Anexample in Mississippi U.S.A., Rock House Cave, was visited by the authors in 2000. It seems to have been formed by deer orbison. Perhaps the most spectacular example is Kitum Cave in Kenya. This cave has been excavated to a length over 100 metersby elephants. An ancient example is La Cueva del Milodon in Chile, which is reported to have been excavated by the now extinctmilodon, a giant ground sloth. Still other possible examples can be cited. This class of caves deserves a careful definition. First, thecavity in rock should meet the size and other conventions of the locally accepted definition of a cave. Of course this requirement differsin detail from country to country, particularly in the matter of size. The intent is to respect the local conventions. The characteristicthat human entry is possible is judged to be a crucial property of any recognized cave definition. Second, the cavity should besignificantly the result of vertebrate animal consumption of salt-bearing rock. The defining process is that rock removed to form thecave is carried away in the digestive track of an animal. While sodium salts are expected to be the norm, other salts for which thereis animal hunger are acceptable. Also some other speleogenesis process, such as solution, should not be excluded as long as it issecondary in formation of a cave in question.

  14. Postoperative bile leakage managed successfully by intrahepatic biliary ablation with ethanol

    Institute of Scientific and Technical Information of China (English)

    Tetsuya Shimizu; Takashi Tajiri; Hiroshi Yoshida; Yasuhiro Mamada; Nobuhiko Taniai; Satoshi Matsumoto; Yoshiaki Mizuguchi; Shigeki Yokomuro; Yasuo Arima; Koho Akimaru

    2006-01-01

    We report a case of postoperative refractory bile leakage managed successfully by intrahepatic biliary ablation with ethanol. A 75-year-old man diagnosed with hepatocellular carcinoma underwent extended posterior segmentectomy including the caudate lobe and a part of the anterior segment. The hepatic tumor attached to the anterior branch of the bile duct was detached carefully and resected. Fluid drained from the liver surface postoperatively contained high concentrations of total bilirubin, at a constant volume of 150 mL per day. On d 32 after surgery, a fistulogram of the drainage tube demonstrated an enhancement of the anterior bile duct.Endoscopic retrograde cholangiography demonstrated complete obstruction of the proximal anterior bile duct and no enhancement of the peripheral anterior bile duct.On d 46 after surgery, a retrograde transhepatic biliary drainage (RTBD) tube was inserted into the anterior bile duct under open surgery. However, a contrast study of RTBD taken 7 mo post-surgery revealed that the fistula remained patent despite prolonged conservative management, so we decided to perform ethanol ablation of the isolated bile duct. Four mL pure ethanol was injected into the isolated anterior bile duct for ten minutes, the procedure being repeated five times a week. Following 23 attempts, the volume of bile juice reached less than 10 mL per day. The RTBD was clamped and removed two days later. After RTBD removal, the patient had no complaints or symptoms. Follow-up magnetic resonance imaging demonstrated atrophy of the ethanol-injected anterior segment without liver abscess formation.

  15. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    Directory of Open Access Journals (Sweden)

    Laura James

    Full Text Available Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001, glycodeoxycholic acid (R=0.581; p<0.001, and glycochenodeoxycholic acid (R=0.571; p<0.001. Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  16. Salt fluoridation and oral health

    OpenAIRE

    Thomas M. Marthaler

    2013-01-01

    The aim of this paper is to make known the potential of fluoridated salt in community oral health programs, particularly in South Eastern Europe. Since 1922, the addition of iodine to salt has been successful in Switzerland. Goiter is virtually extinct. By 1945, the cariesprotective effect of fluorides was well established. Based on the success of water fluoridation, a gynecologist started adding of fluoride to salt. The sale of fluoridated salt began in 1956 in the Swiss Canton of Zurich,...

  17. CLA-enriched diet containing t10,c12-CLA alters bile acid homeostasis and increases the risk of cholelithiasis in mice.

    Science.gov (United States)

    Letona, Amaia Zabala; Niot, Isabelle; Laugerette, Fabienne; Athias, Anne; Monnot, Marie-Claude; Portillo, Maria P; Besnard, Philippe; Poirier, Hélène

    2011-08-01

    Mice fed a mixture of CLA containing t10,c12-CLA lose fat mass and develop hyperinsulinemia and hepatic steatosis due to an accumulation of TG and cholesterol. Because cholesterol is the precursor in bile acid (BA) synthesis, we investigated whether t10,c12-CLA alters BA metabolism. In Expt. 1, female C57Bl/6J mice were fed a standard diet for 28 d supplemented with a CLA mixture (1 g/100 g) or not (controls). In Expt. 2, the feeding period was reduced to 4, 6, and 10 d. In Expt. 3, mice were fed a diet supplemented with linoleic acid, c9,t11-CLA, or t10,c12-CLA (0.4 g/100 g) for 28 d. In Expt. 1, the BA pool size was greater in CLA-fed mice than in controls and the entero-hepatic circulation of BA was altered due to greater BA synthesis and ileal reclamation. This resulted from higher hepatic cholesterol 7α-hydroxylase (CYP7A1) and ileal apical sodium BA transporter expressions in CLA-fed mice. Furthermore, hepatic Na(+)/taurocholate co-transporting polypeptide (NTCP) (-52%) and bile salt export pump (BSEP) (-77%) protein levels were lower in CLA-fed mice than in controls, leading to a greater accumulation of BA in the plasma (+500%); also, the cholesterol saturation index and the concentration of hydrophobic BA in the bile were greater in CLA-fed mice, changes associated with the presence of cholesterol crystals. Expt. 2 suggests that CLA-mediated changes were caused by hyperinsulinemia, which occurred after 6 d of the CLA diet before NTCP and BSEP mRNA downregulation (10 d). Expt. 3 demonstrated that only t10,c12-CLA altered NTCP and BSEP mRNA levels. In conclusion, t10,c12-CLA alters BA homeostasis and increases the risk of cholelithiasis in mice.

  18. Proteins with an alpha/beta hydrolase fold: Relationships between subfamilies in an ever-growing superfamily.

    Science.gov (United States)

    Lenfant, Nicolas; Hotelier, Thierry; Bourne, Yves; Marchot, Pascale; Chatonnet, Arnaud

    2013-03-25

    Alpha/beta hydrolases function as hydrolases, lyases, transferases, hormone precursors or transporters, chaperones or routers of other proteins. The amount of structural and functional available data related to this protein superfamily expands exponentially, as does the number of proteins classified as alpha/beta hydrolases despite poor sequence similarity and lack of experimental data. However the superfamily can be rationally divided according to sequence or structural homologies, leading to subfamilies of proteins with potentially similar functions. Since the discovery of proteins homologous to cholinesterases but devoid of enzymatic activity (e.g., the neuroligins), divergent functions have been ascribed to members of other subfamilies (e.g., lipases, dipeptidylaminopeptidase IV, etc.). To study the potentially moonlighting properties of alpha/beta hydrolases, the ESTHER database (for ESTerase and alpha/beta Hydrolase Enzymes and Relatives; http://bioweb.ensam.inra.fr/esther), which collects, organizes and disseminates structural and functional information related to alpha/beta hydrolases, has been updated with new tools and the web server interface has been upgraded. A new Overall Table along with a new Tree based on HMM models has been included to tentatively group subfamilies. These tools provide starting points for phylogenetic studies aimed at pinpointing the origin of duplications leading to paralogous genes (e.g., acetylcholinesterase versus butyrylcholinesterase, or neuroligin versus carboxylesterase). Another of our goals is to implement new tools to distinguish catalytically active enzymes from non-catalytic proteins in poorly studied or annotated subfamilies.

  19. Acerca de la macroestructura y la microestructura en el diccionario bilingüe

    Directory of Open Access Journals (Sweden)

    Polonca Kocjančič

    2004-12-01

    Full Text Available Los lexicógrafos producen obras de referencia de distintos tipos; el resultado más extendido de su actividad son los diccionarios generales (Ilson, 2002: 331. En la introducción los diccionarios bilingües se clasifican según la tipología general de los dicciona- rios, se presentan sus características y se explica la relación entre los tipos de diccionarios bilingües y los destinatarios. En las dos partes siguientes, se presentan varios aspectos de la macroestructura y la microestructura en el diccionario bilingüe.

  20. Cheese intake lowers plasma cholesterol concentrations without increasing bile acid excretion

    DEFF Research Database (Denmark)

    Hjerpsted, Julie Bousgaard; Dragsted, Lars Ove; Tholstrup, Tine

    2016-01-01

    Purpose Cheese is a dairy product with high calcium content. It has been suggested that calcium intake may increase fecal excretion of bile acids that would cause a regeneration of bile acids from hepatic cholesterol and thereby result in a lowering of plasma cholesterol concentrations. We aimed...... with 13% energy from cheese or butter. Results After 6 weeks of intervention cheese resulted in higher amounts of calcium excreted in feces compared to butter. However, no difference was observed in fecal bile acid output despite lower serum total, LDL and HDL cholesterol concentrations observed...

  1. Detection of bile duct leaks using MR cholangiography with mangfodipir trisodium (Teslascan).

    Science.gov (United States)

    Vitellas, K M; El-Dieb, A; Vaswani, K; Bennett, W F; Fromkes, J; Steinberg, S; Bova, J G

    2001-01-01

    Mangafodipir trisodium (Teslascan), a hepatobiliary contrast agent, has the potential of providing functional biliary imaging similar to hepatobiliary scintigraphy. To our knowledge. the potential role of this biliary contrast agent in the detection of bile duct leaks has not been reported. In this case report, we report the first case of a bile duct leak diagnosed with enhanced MRI with mangafodipir trisodium in a patient following laparoscopic cholecystectomy. Our case illustrates that functional MR cholangiography images can be successfully acquired by using a post-mangafodipir fat-suppressed GRE technique and that bile duct leaks can be detected.

  2. Diagnosis in bile acid-CoA: Amino acid N-acyltransferase deficiency

    Institute of Scientific and Technical Information of China (English)

    Nedim Had(z)i(c); Laura N Bull; Peter T Clayton; AS Knisely

    2012-01-01

    Cholate-CoA ligase (CCL) and bile acid-CoA:amino acid N-acyltransferase (BAAT) sequentially mediate bile-acid amidation.Defects can cause intrahepatic cholestasis.Distinction has required gene sequencing.We assessed potential clinical utility of immunostaining of liver for CCL and BAAT.Using commercially available antibodies against BAAT and CCL,we immunostained liver from an infant with jaundice,deficiency of amidated bile acids,and transcription-terminating mutation in BAAT.CCL was normally expressed.BAAT expression was not detected.Immunostaining may facilitate diagnosis in bileacid amidation defects.

  3. Gallstone-Induced Perforation of the Common Bile Duct in Pregnancy

    Directory of Open Access Journals (Sweden)

    N. Dabbas

    2008-01-01

    Full Text Available Spontaneous perforation of the extrahepatic biliary system is a rare presentation of ductal stones. We report the case of a twenty-year-old woman presenting at term with biliary peritonitis caused by common bile duct (CBD perforation due to an impacted stone in the distal common bile duct. The patient had suffered a single herald episode of acute gallstone pancreatitis during the third trimester. The patient underwent an emergency laparotomy, bile duct exploration, and removal of the ductal stone. The postoperative course was uneventful.

  4. Detection of bacterial DNA in bile of cats with lymphocytic cholangitis.

    Science.gov (United States)

    Otte, C M A; Gutiérrez, O Pérez; Favier, R P; Rothuizen, J; Penning, L C

    2012-04-23

    In this study, we have successfully used molecular methods based on the amplification of the 16S ribosomal RNA gene on feline bile samples to show that bile of cats with LC is not sterile. This is probably due to the fact that the inflammatory process in the biliary tree causes dilatations. As a result, bacteria can easily migrate from the intestines via the common bile duct. The diversity of species identified and the presence of Helicobacter spp. DNA in both patients and controls suggests that bacteriobilia is secondary to the disease and is not the cause of LC.

  5. Evaluating the beneficial and detrimental effects of bile pigments in early and later life.

    Science.gov (United States)

    Dennery, Phyllis A

    2012-01-01

    The heme degradation pathway has been conserved throughout phylogeny and allows for the removal of a pro-oxidant and the generation of unique molecules including bile pigments with important cellular functions. The impact of bile pigments on health and disease are reviewed, as is the special circumstance of neonatal hyperbilirubinemia. In addition, the importance of promoter polymorphisms in the UDP-glucuronosyl transferase gene (UGTA1), which is key to the elimination of excess bilirubin and to the prevention of its toxicity, are discussed. Overall, the duality of bile pigments as either cytoprotective or toxic molecules is highlighted.

  6. Evaluating the beneficial and detrimental effects of bile pigments in early and later life

    Directory of Open Access Journals (Sweden)

    Phyllis A. Dennery

    2012-06-01

    Full Text Available The heme degradation pathway has been conserved throughout phylogeny and allows for the removal of a pro-oxidant and the generation of unique molecules including bile pigment with important cellular functions. The impact of bile pigments on health and disease are reviewed as is the special circumstance of neonatal hyperbilirubinemia. In addition, the importance of promoter polymorphisms in the UDP-glucuronyltransferase gene (UGTA1, which is key to the elimination of excess bilirubin and to preventing its toxicity, are discussed. Overall, the duality of bile pigments as either cytoprotective or toxic molecules is highlighted.

  7. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    Science.gov (United States)

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  8. Effects of dietary fiber from wheat, corn, and soy hull bran on excretion of fecal bile acids in humans.

    Science.gov (United States)

    Bell, E W; Emken, E A; Klevay, L M; Sandstead, H H

    1981-06-01

    Effects of dietary fiber on bile acid excretion and fecal bile acid concentration have been studied for seven subjects fed 26 g of either soft white wheat bran, corn bran, soybean hulls, or hard red spring wheat bran. Results indicate that even in a controlled study using a metabolic word, individual subject variation has a major impact on fecal bile acid excretion. This observation has not been fully appreciated in previous human studies. No significant change in the composition of fecal bile acids could be associated with the decrease in serum lipid levels previously reported. A method for the isolation and quantitation of fecal bile acids is described which does not require purification by thin-layer chromatography. A preliminary study of lyophilized fecal samples stored at -10 to -30 degrees C showed very little or no change in bile acid content. Samples stored at room temperatures for 11 months showed a substantial reduction in bile acid content.

  9. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M

    1990-01-01

    The pig intestinal brush border enzymes aminopeptidase N (EC 3.4.11.2) and lactase-phlorizin hydrolase (EC 3.2.1.23-62) are present in the microvillar membrane as homodimers. Dimethyl adipimidate was used to cross-link the two [35S]methionine-labeled brush border enzymes from cultured mucosal...... explants. For aminopeptidase N, dimerization did not begin until 5-10 min after synthesis, and maximal dimerization by cross-linking of the transient form of the enzyme required 1 h, whereas the mature form of aminopeptidase N cross-linked with unchanged efficiency from 45 min to 3 h of labeling. Formation...... of dimers of this enzyme therefore occurs prior to the Golgi-associated processing, and the slow rate of dimerization may be the rate-limiting step in the transport from the endoplasmic reticulum to the Golgi complex. For lactase-phlorizin hydrolase, the posttranslational processing includes a proteolytic...

  10. Effects of bile acids and the bile acid receptor FXR agonist on the respiratory rhythm in the in vitro brainstem medulla slice of neonatal Sprague-Dawley rats.

    Directory of Open Access Journals (Sweden)

    Cong Zhao

    Full Text Available Intrahepatic cholestasis of pregnancy is always accompanied by adverse fetal outcomes such as malfunctions of respiration. Farnesoid X receptor (FXR plays a critical role in the homeostasis of bile acids. Thus, we are determined to explore the effects of farnesoid X receptor (FXR and five bile acids on respiratory rhythm generation and modulation of neonatal rats. Spontaneous periodic respiratory-related rhythmical discharge activity (RRDA was recorded from hypoglossal nerves during the perfusion of modified Krebs solution. Group 1-6 was each given GW4064 and five bile acids of chenodeoxycholic acid (CDCA, deoxycholic acid (DCA, lithocholic acid (LCA, cholic acid (CA as well as ursodeoxycholic acid (UDCA at different concentrations to identify their specific functions on respiratory rhythm modulations. Group 7 was applied to receive FXR blocker Z-guggulsterone and Z-guggulsterone with the above bile acids separately to explore the role of FXR in the respiratory rhythm modulation. Group 8 was given dimethyl sulfoxide (DMSO as controls. Apart from UDCA, CDCA, DCA LCA and CA all exerted effects on RRDA recorded from hypoglossal nerves in a concentration-dependent manner. Respiratory cycle (RC, Inspiratory time (TI, Expiratory Time (TE and Integral Amplitude (IA were influenced and such effects could be reversed by Z-guggulsterone. FXR may contribute to the effects on the modulation of respiratory rhythm exerted by bile acids.

  11. Salt supply to and significance of asymmetric salt diapirs

    DEFF Research Database (Denmark)

    Koyi, H.; Burliga, S.; Chemia, Zurab

    2012-01-01

    Salt diapirs can be asymmetric both internally and externally reflecting their evolution history. As such, this asymmetry bear a significant amount of information about the differential loading (± lateral forces) and in turn the salt supply that have shaped the diapir. In two dimensions......, In this study we compare results of analogue and numerical models of diapirs with two natural salt diapris (Klodawa and Gorleben diapirs) to explain their salt supply and asymmetric evolution. In a NW-SE section, the Gorleben salt diapir possesses an asymmetric external geometry represented by a large...... southeastern overhang due to salt extrusion during Middle Cretaceous followed by its burial in Tertiary. This external asymmetry is also reflected in the internal configuration of the diapir which shows different rates of salt flow on the two halves of the structure. The asymmetric external and internal...

  12. Selective Inhibition of Plant Serine Hydrolases by Agrochemicals Revealed by Competitive ABPP

    OpenAIRE

    Kaschani, Farnusch; Nickel, Sabrina; Pandey, Bikram; Benjamin F Cravatt; Kaiser, Markus; van der Hoorn, Renier A L

    2011-01-01

    Organophosphate and –phosphonates and their thiol derivatives are often used in agroindustry as herbicides and insecticides, but their potential off-targets in the plant and their consumers are poorly investigated. Here, we use competitive Activity-based Protein Profiling (ABPP) of serine hydrolases (SHs) to detect targets of these agrochemicals and other compounds in Arabidopsis thaliana. Using broad-range and specific probes, and by overexpression of various SHs in planta, we are able to co...

  13. Tertiary Structure and Characterization of a Glycoside Hydrolase Family 44 Endoglucanase from Clostridium acetobutylicum▿ †

    OpenAIRE

    2009-01-01

    A gene encoding a glycoside hydrolase family 44 (GH44) protein from Clostridium acetobutylicum ATCC 824 was synthesized and transformed into Escherichia coli. The previously uncharacterized protein was expressed with a C-terminal His tag and purified by nickel-nitrilotriacetic acid affinity chromatography. Crystallization and X-ray diffraction to a 2.2-Å resolution revealed a triose phosphate isomerase (TIM) barrel-like structure with additional Greek key and β-sandwich folds, similar to othe...

  14. The Crystal Structure of Bacillus subtilis Lipase : A Minimal α/β Hydrolase Fold Enzyme

    NARCIS (Netherlands)

    Pouderoyen, Gertie van; Eggert, Thorsten; Jaeger, Karl-Erich; Dijkstra, Bauke W.

    2001-01-01

    The X-ray structure of the lipase LipA from Bacillus subtilis has been determined at 1.5 Å resolution. It is the first structure of a member of homology family I.4 of bacterial lipases. The lipase shows a compact minimal α/β hydrolase fold with a six-stranded parallel β-sheet flanked by five α-helic

  15. Organophosphate Hydrolase in Conductometric Biosensor for the Detection of Organophosphate Pesticides

    OpenAIRE

    2015-01-01

    The research has developed an enzyme biosensor for the detection organophosphate pesticide residues. The biosensor consists of a pair of screen-printed carbon electrode (SPCEs). One of electrodes contains immobilized organophosphate hydrolase (OPH) on a chitosan membrane by cross-linking it with glutaraldehyde. The area of the electrodes was optimized to 3, 5, and 7 mm2. The OPH was isolated from Pseudomonas putida, and was purified by the ammonium sulfate precipitation method, with 6444 ppm ...

  16. Molecular Cloning of a Novel cDNA From Mus Muscular BALB/c Mice Encoding Glycosyl Hydrolase Family 1: A Homolog of HumanLactase-Phlorizin Hydrolase

    Institute of Scientific and Technical Information of China (English)

    WEI HE; ZHEN-YU JI; CHENG-YU HUANG

    2006-01-01

    Objective To study the mechanism of lactose intolerance (LI) by cloning the mouse lactase cDNA and recombining a vector. Methods Total murine RNA was isolated from the small intestine of a 4-week-old BALB/c mouse (♂).Gene-specific primers were designed and synthesized according to the cDNA sequences of lactase-phlorizin hydrolase (LPH) in human, rat, and rabbit. A coding sequence (CDS) fragment was obtained using RT-PCR, and inserted into a clone vector pNEB-193, then the cDNA was sequenced and analyzed using bioinformatics. Results The cDNA from the BALB/c mouse with 912 bp encoding 303 amino acid residues. Analysis of the deduced amino acid sequence using bioinformatics revealed that this cDNA shared extensive sequence homology with human LPH containing a conserved glycosy1 hydrolase family 1 motif important for regulating lactase intolerance. Conclusion BALB/c mouse LPH cDNA (GenBank accession No: AY751548) provides a necessary foundation for study of the biological function and regulatory mechanism of the lactose intolerance in mice.

  17. Identification of urine tauro-β-muricholic acid as a promising biomarker in Polygoni Multiflori Radix-induced hepatotoxicity by targeted metabolomics of bile acids.

    Science.gov (United States)

    Zhao, Dong-Sheng; Jiang, Li-Long; Fan, Ya-Xi; Dong, Lei-Chi; Ma, Jiang; Dong, Xin; Xu, Xiao-Jun; Li, Ping; Li, Hui-Jun

    2017-02-24

    Polygoni Multiflori Radix (PMR) has been widely used as a tonic for centuries. However, hepatotoxicity cases linked to PMR have been frequently reported and appropriate biomarkers for clinical diagnosis are currently lacking. Here, an approach using UPLC-QqQ/MS-based targeted metabolomics of bile acids (BAs) complemented with biochemistry and histopathology was applied to characterize the development and recovery processes of PMR-induced hepatotoxicity in rats and to identify biomarkers. The expression of bile salt export pump (Bsep) and sodium taurocholate cotransporting polypeptide (Ntcp) were evaluated to investigate the underlying mechanism. Steatosis and inflammatory cell infiltration were observed in PMR-treated rats, which were accompanied by the elevation of serum biochemistry. The metabolic profiles of BAs were analyzed by Principal Component Analysis, hyodeoxycholic acid (HDCA) in serum and tauro-β-muricholic acid (TβMCA) in urine were identified as potential biomarkers for PMR-induced hepatotoxicity. The elevated expression of Bsep and decreased expression of Ntcp in the liver of PMRtreated rats indicated that hepatotoxicity was related to the disorders of BAs metabolism. Our study demonstrated that BAs may be used for clinical diagnosis of PMR-induced hepatotoxicity. Urine TβMCA was identified as a promising biomarker to facilitate the clinical monitoring of PMR-induced hepatotoxicity and may serve as potential therapeutic target.

  18. Role of Intestinal Hydrolase in the Absorption of Prenylated Flavonoids Present in Yinyanghuo

    Directory of Open Access Journals (Sweden)

    Ming Hu

    2011-02-01

    Full Text Available Purpose: Yinyanghuo (Herba Epimdii is a traditional Chinese herb containing prenylated flavonoids as its active constituents. The aim of this study was to examine the significance of the intestinal hydrolysis of prenylated flavonoids by lactase phlorizin hydrolase (LPH, an enzyme at the brush border membrane of intestinal cells. Methods: A four-site perfused rat intestinal model was used. The concentration of the flavonoids of interest and their metabolites in different intestinal segements were analyzed by HPLC, and the apparent permeabilities were calculated. A lactase phlorizin hydrolase inhibitor (gluconolactone was employed to investigate the mechanism of the intestinal absorption, and the metabolites of the four flavonoids were identified using LC/MS/MS. Results: Diglycosides (icariin or triglycosides (epimedin A, epimedin B, and epimedin C were hydrolyzed rapidly in duodenum and jejunum producing one or two metabolites, while a monoglycoside (baohuoside I was absorbed directly. When co-perfused with glucono-lactone, both the hydrolysis of diglycosides and triglycosides were significantly inhibited, with inhibition rates for icariin (62%, 50%, 40%, 46%, epimedin A, (55%, 26%, 21%, 14%; epimedin B (42%, 40%, 74%, 22%, and epimedin C (42%, 40%, 52%, 35% in duodenum, jejunum, ileum, and colon, respectively. Also the metabolites of icariin, epimedin A, epimedin B, and epimedin C were identified as baohuoside I (one of two, sagittatoside A, sagittatoside B, and 2"-O-rhamnosylicariside II, respectively. Conclusions: The results showed that lactase phlorizin hydrolase was a major determinant of the intestinal absorption of prenylated flavonoids present in Yinyanghuo.

  19. Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection

    Directory of Open Access Journals (Sweden)

    Natalie J. Spillman

    2016-10-01

    Full Text Available Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs. EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids by epoxide hydrolases (EHs. The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1 and 2 (PfEH2, both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium.

  20. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Asim K.; Aukema, Kelly G.; Elias, Mikael; Wackett, Lawrence P.

    2017-03-27

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas the two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.