WorldWideScience

Sample records for bile salt hydrolase

  1. Bile salt hydrolase of Bifidobacterium longum - Biochemical and genetic characterization

    NARCIS (Netherlands)

    Tanaka, H; Hashiba, Honoo; Kok, Jan; Mierau, Igor

    2000-01-01

    A bile salt hydrolase (BSH) was isolated from Bifidobacterium longum SBT2928, purified, and characterized, Furthermore, we describe for the first time cloning and analysis of the gene encoding BSII (bsh) in a member of the genus Bifidobacterium. The enzyme has a native molecular weight of 125,000 to

  2. Effect of Bile Salt Hydrolase Inhibitors on a Bile Salt Hydrolase from Lactobacillus acidophilus

    Directory of Open Access Journals (Sweden)

    Jun Lin

    2014-12-01

    Full Text Available Bile salt hydrolase (BSH, a widely distributed function of the gut microbiota, has a profound impact on host lipid metabolism and energy harvest. Recent studies suggest that BSH inhibitors are promising alternatives to antibiotic growth promoters (AGP for enhanced animal growth performance and food safety. Using a high-purity BSH from Lactobacillus salivarius strain, we have identified a panel of BSH inhibitors. However, it is still unknown if these inhibitors also effectively inhibit the function of the BSH enzymes from other bacterial species with different sequence and substrate spectrum. In this study, we performed bioinformatics analysis and determined the inhibitory effect of identified BSH inhibitors on a BSH from L. acidophilus. Although the L. acidophilus BSH is phylogenetically distant from the L. salivarius BSH, sequence analysis and structure modeling indicated the two BSH enzymes contain conserved, catalytically important amino residues and domain. His-tagged recombinant BSH from L. acidophilus was further purified and used to determine inhibitory effect of specific compounds. Previously identified BSH inhibitors also exhibited potent inhibitory effects on the L. acidophilus BSH. In conclusion, this study demonstrated that the BSH from L. salivarius is an ideal candidate for screening BSH inhibitors, the promising alternatives to AGP for enhanced feed efficiency, growth performance and profitability of food animals.

  3. Allelic variation of bile salt hydrolase genes in Lactobacillus salivarius does not determine bile resistance levels.

    LENUS (Irish Health Repository)

    Fang, Fang

    2009-09-01

    Commensal lactobacilli frequently produce bile salt hydrolase (Bsh) enzymes whose roles in intestinal survival are unclear. Twenty-six Lactobacillus salivarius strains from different sources all harbored a bsh1 allele on their respective megaplasmids. This allele was related to the plasmid-borne bsh1 gene of the probiotic strain UCC118. A second locus (bsh2) was found in the chromosomes of two strains that had higher bile resistance levels. Four Bsh1-encoding allele groups were identified, defined by truncations or deletions involving a conserved residue. In vitro analyses showed that this allelic variation was correlated with widely varying bile deconjugation phenotypes. Despite very low activity of the UCC118 Bsh1 enzyme, a mutant lacking this protein had significantly lower bile resistance, both in vitro and during intestinal transit in mice. However, the overall bile resistance phenotype of this and other strains was independent of the bsh1 allele type. Analysis of the L. salivarius transcriptome upon exposure to bile and cholate identified a multiplicity of stress response proteins and putative efflux proteins that appear to broadly compensate for, or mask, the effects of allelic variation of bsh genes. Bsh enzymes with different bile-degrading kinetics, though apparently not the primary determinants of bile resistance in L. salivarius, may have additional biological importance because of varying effects upon bile as a signaling molecule in the host.

  4. Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1

    OpenAIRE

    Lambert, J. M.; Bongers, R.S.; Vos; Kleerebezem, M.

    2008-01-01

    Bile salts play an important role in the digestion of lipids in vertebrates and are synthesized and conjugated to either glycine or taurine in the liver. Following secretion of bile salts into the small intestine, intestinal microbes are capable of deconjugating the glycine or taurine from the bile salts, using an enzyme called bile salt hydrolase (Bsh). Intestinal lactobacilli are regarded as major contributors to bile salt hydrolysis in vivo. Since the bile salt-hydrolyzing strain Lactobaci...

  5. Functional Analysis of Four Bile Salt Hydrolase and Penicillin Acylase Family Members in Lactobacillus plantarum WCFS1▿ †

    OpenAIRE

    Lambert, J M; Bongers, R.S.; Vos, de, R.; Kleerebezem, M.

    2008-01-01

    Bile salts play an important role in the digestion of lipids in vertebrates and are synthesized and conjugated to either glycine or taurine in the liver. Following secretion of bile salts into the small intestine, intestinal microbes are capable of deconjugating the glycine or taurine from the bile salts, using an enzyme called bile salt hydrolase (Bsh). Intestinal lactobacilli are regarded as major contributors to bile salt hydrolysis in vivo. Since the bile salt-hydrolyzing strain Lactobaci...

  6. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536

    OpenAIRE

    Grill, J; Schneider, F.; Crociani, J.; Ballongue, J.

    1995-01-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis...

  7. A new insight into the physiological role of bile salt hydrolase among intestinal bacteria from the genus Bifidobacterium.

    Directory of Open Access Journals (Sweden)

    Piotr Jarocki

    Full Text Available This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.

  8. Bile salt hydrolase in Lactobacillus plantarum: functional analysis and delivery to the intestinal tract of the host

    NARCIS (Netherlands)

    Lambert, J.M.

    2008-01-01

    In the liver of mammals, bile salts are synthesised from cholesterol and conjugated to either taurine or glycine. Following release into the intestine, conjugated bile salts can be deconjugated by members of the endogenous microbiota that produce an enzyme called bile salt hydrolase (Bsh). Bsh appea

  9. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100

    International Nuclear Information System (INIS)

    The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving [14C]taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in medium free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined

  10. Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth

    Science.gov (United States)

    Travers, Marie-Agnès; Sow, Cissé; Zirah, Séverine; Deregnaucourt, Christiane; Chaouch, Soraya; Queiroz, Rayner M. L.; Charneau, Sébastien; Allain, Thibault; Florent, Isabelle; Grellier, Philippe

    2016-01-01

    Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present. PMID:27729900

  11. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536.

    Science.gov (United States)

    Grill, J; Schneider, F; Crociani, J; Ballongue, J

    1995-07-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis was ca. 40,000 Da. The intact enzyme had a relative molecular weight of ca. 250,000 as determined by gel filtration chromatography, suggesting that the native BSH of B. longum is probably a hexamer. The purified enzyme is active towards both glycine and taurine conjugates of cholate, deoxycholate, and chenodeoxycholate. The pH optimum is in the range of 5.5 to 6.5. A loss of BSH activity is observed after incubation at temperatures higher than 42(deg)C; at 60(deg)C, 50% of the BSH activity is lost. The importance of free sulfhydryl groups at the enzyme active center is suggested. For B. longum BB536, no significant difference in the initial rate of deconjugation and enzymatic efficiency appears between bile salts. The enzymatic efficiency is higher for B. longum BB536 than for other genera. In this paper, a new method which permits a display of BSH activity directly on polyacrylamide gels is described; this method confirms the molecular weight obtained for B. longum BB536 BSH.

  12. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers

    Directory of Open Access Journals (Sweden)

    Jun eLin

    2014-02-01

    Full Text Available The growth-promoting effect of antibiotic growth promoters (AGPs was correlated with the decreased activity of bile salt hydrolase (BSH, an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization. Consistent with this finding, independent chicken studies have demonstrated that AGP usage significantly reduced population of Lactobacillus species, the major BSH-producers in the intestine. Recent finding also demonstrated that some AGPs, such as tetracycline and roxarsone, display direct inhibitory effect on BSH activity. Therefore, BSH is a promising microbiome target for developing novel alternatives to AGPs. Specifically, dietary supplementation of BSH inhibitor may promote host lipid metabolism and energy harvest, consequently enhancing feed efficiency and body weight gain in food animals.

  13. Cloning and Expression of Bile Salt Hydrolase Gene from Lactobacillus plantarum M1-UVS29

    Institute of Scientific and Technical Information of China (English)

    Yu Chang-qing; Li Rong

    2015-01-01

    We cloned and expressed bile salt hydrolase gene ofLactobacillus plantarum M1-UVS29 inLactococcus lactis NZ9000 successfully. Gene-specific primers for amplification ofL. plantarum bsh were designed by using sequence which availabled from GenBank. The production of PCR amplicon was confirmed by sequencing and cloned into pMD18-T vector, and then recombined into expression vector pNZ8148 and yielding vector pNZ8148-BSH. pNZ8148-BSH was transferred intoLactococcus lactis NZ9000. Sequencing indicated that the clonedbsh fragment contained 995 nucleotides, and shared 99.3% sequence homology withbsh gene fromL. plantarum MBUL10. Clonedbsh fragment was successfully transduced into NICE expression system and confirmed by PCR and restriction digest. Recombinant BSH protein was analyzed by SDS-PAGE. The molecular weight of BSH protein was approximately 37 ku. Activity of the expressed protein was 0.77 µmol• min-1. The successfully expressed proteins by genetic engineering technology made the function of lactic acid bacteria be abundant and laid the foundation for further researches into cholesterol-lowering lactic acid bacterium food and probiotics.

  14. Isolation, Identification and Partial Characterization of a Lactobacillus casei Strain with Bile Salt Hydrolase Activity from Pulque.

    Science.gov (United States)

    González-Vázquez, R; Azaola-Espinosa, A; Mayorga-Reyes, L; Reyes-Nava, L A; Shah, N P; Rivera-Espinoza, Y

    2015-12-01

    The aim of this study was to isolate, from pulque, Lactobacillus spp. capable of survival in simulated gastrointestinal stress conditions. Nine Gram-positive rods were isolated; however, only one strain (J57) shared identity with Lactobacillus and was registered as Lactobacillus casei J57 (GenBank accession: JN182264). The other strains were identified as Bacillus spp. The most significant observation during the test of tolerance to simulated gastrointestinal conditions (acidity, gastric juice and bile salts) was that L. casei J57 showed a rapid decrease (p ≤ 0.05) in the viable population at 0 h. Bile salts were the stress condition that most affected its survival, from which deoxycholic acid and the mix of bile salts (oxgall) were the most toxic. L. casei J57 showed bile salt hydrolase activity over primary and secondary bile salts as follows: 44.91, 671.72, 45.27 and 61.57 U/mg to glycocholate, taurocholate, glycodeoxycholate and taurodeoxycholate. In contrast, the control strain (L. casei Shirota) only showed activity over tauroconjugates. These results suggest that L. casei J57 shows potential for probiotic applications.

  15. Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1

    NARCIS (Netherlands)

    Lambert, J.M.; Bongers, R.S.; Vos, de W.M.; Kleerebezem, M.

    2008-01-01

    Bile salts play an important role in the digestion of lipids in vertebrates and are synthesized and conjugated to either glycine or taurine in the liver. Following secretion of bile salts into the small intestine, intestinal microbes are capable of deconjugating the glycine or taurine from the bile

  16. IS30-related transposon mediated insertional inactivation of bile salt hydrolase (bsh1) gene of Lactobacillus plantarum strain Lp20.

    Science.gov (United States)

    Kumar, Rajesh; Grover, Sunita; Kaushik, Jai K; Batish, Virender Kumar

    2014-01-01

    Lactobacillus plantarum is a flexible and versatile microorganism that inhabits a variety of niches, and its genome may express up to four bsh genes to maximize its survival in the mammalian gut. However, the ecological significance of multiple bsh genes in L. plantarum is still not clearly understood. Hence, this study demonstrated the disruption of bile salt hydrolase (bsh1) gene due to the insertion of a transposable element in L. plantarum Lp20 - a wild strain of human fecal origin. Surprisingly, L. plantarum strain Lp20 produced a ∼2.0 kb bsh1 amplicon against the normal size (∼1.0 kb) bsh1 amplicon of Bsh(+)L. plantarum Lp21. Strain Lp20 exhibited minimal Bsh activity in spite of having intact bsh2, bsh3 and bsh4 genes in its genome and hence had a Bsh(-) phenotype. Cloning and sequence characterization of Lp20 bsh1 gene predicted four individual open reading frames (ORFs) within this region. BLAST analysis of ORF1 and ORF2 revealed significant sequence similarity to the L. plantarum bsh1 gene while ORF3 and ORF4 showed high sequence homology to IS30-family transposases. Since, IS30-related transposon element was inserted within Lp20 bsh1 gene in reverse orientation (3'-5'), it introduced several stop codons and disrupted the protein reading frames of both Bsh1 and transposase. Inverted terminal repeats (GGCAGATTG) of transposon, mediated its insertion at 255-263 nt and 1301-1309 nt positions of Lp20 bsh1 gene. In conclusion, insertion of IS30 related-transposon within the bsh1 gene sequence of L. plantarum strain Lp20 demolished the integrity and functionality of Bsh1 enzyme. Additionally, this transposon DNA sequence remains active among various Lactobacillus spp. and hence harbors the potential to be explored in the development of efficient insertion mutagenesis system.

  17. Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria

    NARCIS (Netherlands)

    Lambert, J.M.; Siezen, R.J.; Vos, de W.M.; Kleerebezem, M.

    2008-01-01

    Most Gram-positive bacteria inhabiting the gastrointestinal tract are capable of hydrolysing bile salts. Bile salt hydrolysis is thought to play an important role in various biological processes in the host. Therefore, correct annotation of bacterial bile salt hydrolases (Bsh) in public databases (E

  18. A Bile Salt Hydrolase of Brucella abortus Contributes to the Establishment of a Successful Infection through the Oral Route in Mice▿ †

    Science.gov (United States)

    Delpino, M. Victoria; Marchesini, María I.; Estein, Silvia M.; Comerci, Diego J.; Cassataro, Juliana; Fossati, Carlos A.; Baldi, Pablo C.

    2007-01-01

    Choloylglycine hydrolase (CGH), a bile salt hydrolase, has been annotated in all the available genomes of Brucella species. We obtained the Brucella CGH in recombinant form and demonstrated in vitro its capacity to cleave glycocholate into glycine and cholate. Brucella abortus 2308 (wild type) and its isogenic Δcgh deletion mutant exhibited similar growth rates in tryptic soy broth in the absence of bile. In contrast, the growth of the Δcgh mutant was notably impaired by both 5% and 10% bile. The bile resistance of the complemented mutant was similar to that of the wild-type strain. In mice infected through the intragastric or the intraperitoneal route, splenic infection was significantly lower at 10 and 20 days postinfection in animals infected with the Δcgh mutant than in those infected with the wild-type strain. For both routes, no differences in spleen CFU were found between animals infected with the wild-type strain and those infected with the complemented mutant. Mice immunized intragastrically with recombinant CGH mixed with cholera toxin (CGH+CT) developed a specific mucosal humoral (immunoglobulin G [IgG] and IgA) and cellular (interleukin-2) immune responses. Fifteen days after challenge by the same route with live B. abortus 2308 cells, splenic CFU counts were 10-fold lower in mice immunized with CGH+CT than in mice immunized with CT or phosphate-buffered saline. This study shows that CGH confers on Brucella the ability to resist the antimicrobial action of bile salts. The results also suggest that CGH may contribute to the ability of Brucella to infect the host through the oral route. PMID:17088355

  19. Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Cheng-Chih Tsai

    2014-01-01

    Full Text Available This study collected different probiotic isolates from animal and plant sources to evaluate the bile-salt hydrolase activity of probiotics in vitro. The deconjugation potential of bile acid was determined using high-performance liquid chromatography. HepG2 cells were cultured with probiotic strains with high BSH activity. The triglyceride (TG and apolipoprotein B (apo B secretion by HepG2 cells were evaluated. Our results show that the BSH activity and bile-acid deconjugation abilities of Pediococcus acidilactici NBHK002, Bifidobacterium adolescentis NBHK006, Lactobacillus rhamnosus NBHK007, and Lactobacillus acidophilus NBHK008 were higher than those of the other probiotic strains. The cholesterol concentration in cholesterol micelles was reduced within 24 h. NBHK007 reduced the TG secretion by 100% after 48 h of incubation. NBHK002, NBHK006, and NBHK007 could reduce apo B secretion by 33%, 38%, and 39%, respectively, after 24 h of incubation. The product PROBIO S-23 produced a greater decrease in the total concentration of cholesterol, low-density lipoprotein, TG, and thiobarbituric acid reactive substance in the serum or livers of hamsters with hypercholesterolemia compared with that of hamsters fed with a high-fat and high-cholesterol diet. These results show that the three probiotic strains of lactic acid bacteria are better candidates for reducing the risk of cardiovascular disease.

  20. 直物乳杆菌ST—III胆盐水解酶的表达及其酶活力分析%Expression and Activity Analysis of Bile Salt Hydrolases from LactobaciUus plantarum ST- III

    Institute of Scientific and Technical Information of China (English)

    任婧; 姚晶

    2012-01-01

    以植物乳杆菌(Lactobacillus plantarum)ST-III4种胆盐水解酶(BsHs)的编码序列(bsh1~4),将其克隆至表达载体pET.28b(+)上,在原核系统进行表达,并对其酶活力进行测定,结果发现4种BSHs的酶活力分别为29.00、20.49、24.90、21.13U/mL。同时BSH1比其他3种BSHs表现出更高的水解能力。%In vertebrates, bile salt hydrolysis plays an essential role in fat metabolism. Bile salts are synthesized in the liver. In the small intestine, glycine or taurine are de-conjugated from bile salts by the enzyme bile salt hydrolase (BSH, EC 3.5.1.24) from intestinal microbes, which reduces the serum cholesterol level. In this study, four predicted bile salt hydrolase (bsh) genes from Lactobacillus plantarum ST-III were cloned into pET-28b(+) vector and expressed in Escherichia coli. The hydrolysis activity of these enzymes was 29.00, 20.49, 24.90 U/mL and 21.13 U/mL, respectively.

  1. Current Status of Research on the Structure and Function of Bile Salt Hydrolase Gene%胆盐水解酶基因结构与功能研究现状

    Institute of Scientific and Technical Information of China (English)

    黄艳娜; 任婧

    2015-01-01

    胆盐水解酶是微生物生长、繁殖过程中产生的一种胞内酶,因其可能与降低血胆固醇、预防心血管疾病有关而受到广泛关注。本文从胆盐水解酶的特性出发,综述了胆盐水解酶的生理功能、酶学活性、微生物菌群的来源及特征,以及胆盐水解酶的氨基酸结构等方面的研究进展,以期为进一步深入研究胆盐水解酶的作用机理及相关制品的开发利用提供参考。%Bile salt hydrolase (BSH) is considered to be especially relevant for microbes that reside in the mammalian gastrointestinal tract, which also helps to reduce the blood cholesterol level of the host. This review focuses on the occurrence of bile salt hydrolase among different microorganisms and its physiological characterization, enzyme activity, substrate specificity and genetics involved with recent updates. The current perspective reveals a huge market potential of probiotics with bile salt hydrolase.

  2. Low retinol levels differentially modulate bile salt-induced expression of human and mouse hepatic bile salt transporters

    NARCIS (Netherlands)

    M.O. Hoeke; J.R.M. Plass; J. Heegsma; M. Geuken; D. van Rijsbergen; J.F.W. Baller; F. Kuipers; H. Moshage; P.L.M. Jansen; K.N. Faber

    2009-01-01

    The farnesoid X receptor/retinoid X receptor-alpha (FXR/RXRalpha) complex regulates bile salt homeostasis, in part by modulating transcription of the bile salt export pump (BSEP/ABCB11) and small heterodimer partner (SHP/NR0B2). FXR is activated by bile salts, RXRalpha by the vitamin A derivative 9-

  3. Low Retinol Levels Differentially Modulate Bile Salt-Induced Expression of Human and Mouse Hepatic Bile Salt Transporters

    NARCIS (Netherlands)

    Hoeke, Martijn O.; Plass, Jacqueline R. M.; Heegsma, Janette; Geuken, Mariska; van Rijsbergen, Duncan; Baller, Julius F. W.; Kuipers, Folkert; Moshage, Han; Jansen, Peter L. M.; Faber, Klaas Nico

    2009-01-01

    The farnesoid X receptor/retinoid X receptor-alpha (FXR/RXR alpha) complex regulates bile salt homeostasis, in part by modulating transcription of the bile salt export pump (BSEP/ABCB11 I) and small heterodimer partner (SHP/NR0B2). FXR is activated by bile salts, RXR alpha by the vitamin A derivativ

  4. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis

    NARCIS (Netherlands)

    B. Stieger

    2010-01-01

    Generation of bile is a key function of the liver. Its impairment leads to accumulation of cytotoxic bile salts in hepatocytes and, consequently, to liver disease. The bile salt export pump, BSEP, is critically involved in the secretion of bile salts into bile. Its function can be disturbed or aboli

  5. The Role of the Sodium-Taurocholate Cotransporting Polypeptide (NTCP) and of the Bile Salt Export Pump (BSEP) in Physiology and Pathophysiology of Bile Formation

    OpenAIRE

    Stieger, B

    2011-01-01

    Bile formation is an important function of the liver. Bile salts are a major constituent of bile and are secreted by hepatocytes into bile and delivered into the small intestine, where they assist in fat digestion. In the small intestine, bile salts are almost quantitatively reclaimed and transported back via the portal circulation to the liver. In the liver, hepatocytes take up bile salts and secrete them again into bile for ongoing enterohepatic circulation. Uptake of bile salts into hepato...

  6. Activation of CFTR by ASBT-mediated bile salt absorption

    NARCIS (Netherlands)

    Bijvelds, MJC; Jorna, H; Verkade, HJ; Bot, AGM; Hofmann, F; Agellon, LB; Sinaasappel, M; de Jonge, HR

    2005-01-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal

  7. Dissolution rate of griseofulvin in bile salt solutions.

    Science.gov (United States)

    de Smidt, J H; Offringa, J C; Crommelin, D J

    1991-04-01

    Bile salts increase the apparent solubility of lipophilic poorly water-soluble drugs like griseofulvin. In this study, the dissolution kinetics of griseofulvin in solutions of bile salts (sodium taurocholate and sodium cholate) were investigated. A rotating disk apparatus was chosen to monitor dissolution kinetics; it well-defined hydrodynamic conditions allowed for analysis of the behavior of bile salt micelles under different conditions. Griseofulvin solubility and dissolution rate increased with increasing bile salt concentration in the dissolution medium. The enhancement of the dissolution rate was not linearly related to the solubility increase, as diffusional transport of the solubilized drug proved to be less efficient than transport of the unsolubilized ("free") drug. The dissolution process proved to be controlled by convective diffusion. An analysis of the data with the phase separation model provided results for the micellar diffusion coefficient comparable with literature data obtained with different techniques. PMID:1865343

  8. Bile salts of the West Indian manatee, Trichechus manatus latirostris: novel bile alcohol sulfates and absence of bile acids.

    Science.gov (United States)

    Kuroki, S; Schteingart, C D; Hagey, L R; Cohen, B I; Mosbach, E H; Rossi, S S; Hofmann, A F; Matoba, N; Une, M; Hoshita, T

    1988-04-01

    The bile salts present in gallbladder bile of the West Indian manatee, Trichechus manatus latirostris, an herbivorous marine mammal of the tropical and subtropical margins of the Atlantic Ocean, were found to consist of a mixture of bile alcohol sulfates. Bile acids, previously believed to be present in all mammals, were not detected. Using chromatography, mass spectrometry, and 1H- and 13C-nuclear magnetic resonance spectroscopy, the major bile alcohol was identified as 5 beta-cholestane-3 alpha,6 beta,7 alpha-25,26-pentol; that is, it had the nuclear structure of alpha-muricholic acid and the side chain structure of bufol. This compound has not been described previously and the trivial name "alpha-trichechol" is proposed. The second most abundant compound was 5 beta-cholestane-3 alpha,7 alpha,25,26-tetrol. Other bile alcohols were tentatively identified as 5 beta-cholestane-3 alpha,6 beta,7 beta,25,26-pentol (named beta-trichechol), 3 alpha,6 alpha,7 beta, 25-26-pentol (named omega-trichechol) and 5 beta-cholestane-3 alpha,6 beta,7 alpha,26-tetrol. The 1H and 13C NMR spectra of the four 6,7 epimers of 3,6,7 trihydroxy bile acids are described and discussed. All bile alcohols were present as ester sulfates, the sulfate group being tentatively assigned to the 26-hydroxy group. 12-Hydroxy compounds were not detected. The manatee is the first mammal found to lack bile acids, presumably because it lacks the enzymes required for oxidation of the 26-hydroxy group to a carboxylic acid. Trichechols, like other bile salts, are water-soluble end products of cholesterol metabolism; whether they also function as biological surfactants in promoting biliary cholesterol secretion or lipid digestion is unknown. PMID:3392467

  9. Mechanism by which bile salt disrupts the gastric mucosal barrier in the dog.

    OpenAIRE

    Duane, W C; Wiegand, D M

    1980-01-01

    Bile salts disrupt a functional "gastric mucosal barrier" increasing net forward-diffusion (+) of Na+ and back-diffusion (-) of H+. Studying canine Heidenhain pouches, we attempted to distinguish between two possible mechanisms for this effect: (a) mucosal uptake of bile salt with subsequent cellular injury or (b) dissolution of mucosal lipids by intralumenal bile salt. A 10 mM mixture of six conjugated bile salts simulating the proportions found in human bile induced net Na+ flux of 15.5 +/-...

  10. Function and regulation of the human bile salt export pump

    OpenAIRE

    Plass, Jacqueline Regina Maria

    2005-01-01

    During the past decade, important progress has been made in our understanding of the pathophysiology of cholestasis. Inherited disorders have been explained at the molecular level and were shown to be the result of mutations in enzymes involved in bile salt biosynthesis or transmembrane transporters involved in bile formation. Acquired cholestasis, for instance due to inflammation, is linked to disregulation of these proteins. The challenge of future research is to use this knowledge to devel...

  11. Bile salts and their importance for drug absorption

    DEFF Research Database (Denmark)

    Holm, René; Müllertz, Anette; Mu, Huiling

    2013-01-01

    in different animal species and an overview of the literature investigating the influence of bile salts on the in vivo performance of different compounds and drug formulations. Generally, there is a positive effect on bioavailability when bile is present in the gastro-intestinal tract, independent...... of the formulation systems, e.g. suspensions, solutions, cyclodextrin complexes or lipid based formulations, but a few exceptions have also been reported....

  12. Biosynthesis and Trafficking of the Bile Salt Export Pump, BSEP: Therapeutic Implications of BSEP Mutations

    OpenAIRE

    Soroka, Carol J.; Boyer, James L.

    2013-01-01

    The bile salt export pump (BSEP, ABCB11) is the primary transporter of bile acids from the hepatocyte to the biliary system. This rate-limiting step in bile formation is essential to the formation of bile salt dependent bile flow, the enterohepatic circulation of bile acids, and the digestion of dietary fats. Mutations in BSEP are associated with cholestatic diseases such as progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2),...

  13. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis

    OpenAIRE

    Stieger, B

    2010-01-01

    Generation of bile is a key function of the liver. Its impairment leads to accumulation of cytotoxic bile salts in hepatocytes and, consequently, to liver disease. The bile salt export pump, BSEP, is critically involved in the secretion of bile salts into bile. Its function can be disturbed or abolished by inherited mutations. This will lead to progressive intrahepatic cholestais and severe liver disease. In addition to mutations, BSEP can be inhibited by acquired factors, such as xenobiotics...

  14. Prevention of Endotoxaemia in Obstructive Jaundice — a Comparative Study of Bile Salts

    OpenAIRE

    Pain, J A; Bailey, M. E.

    1988-01-01

    Systemic endotoxaemia is associated with postoperative renal dysfunction in obstructive jaundice, and can be prevented by the pre-operative administration of certain bile salts. In order to find the most effective bile salt for use in this condition, a comparison of the anti-endotoxic activities of different bile salts was performed. Bile salts were incubated in vitro with endotoxin and the resultant endotoxin level was measured with a quantitative limulus assay. The in vivo effec...

  15. Flagging Drugs That Inhibit the Bile Salt Export Pump.

    Science.gov (United States)

    Montanari, Floriane; Pinto, Marta; Khunweeraphong, Narakorn; Wlcek, Katrin; Sohail, M Imran; Noeske, Tobias; Boyer, Scott; Chiba, Peter; Stieger, Bruno; Kuchler, Karl; Ecker, Gerhard F

    2016-01-01

    The bile salt export pump (BSEP) is an ABC-transporter expressed at the canalicular membrane of hepatocytes. Its physiological role is to expel bile salts into the canaliculi from where they drain into the bile duct. Inhibition of this transporter may lead to intrahepatic cholestasis. Predictive computational models of BSEP inhibition may allow for fast identification of potentially harmful compounds in large databases. This article presents a predictive in silico model based on physicochemical descriptors that is able to flag compounds as potential BSEP inhibitors. This model was built using a training set of 670 compounds with available BSEP inhibition potencies. It successfully predicted BSEP inhibition for two independent test sets and was in a further step used for a virtual screening experiment. After in vitro testing of selected candidates, a marketed drug, bromocriptin, was identified for the first time as BSEP inhibitor. This demonstrates the usefulness of the model to identify new BSEP inhibitors and therefore potential cholestasis perpetrators. PMID:26642869

  16. Clinical application of transcriptional activators of bile salt transporters ☆

    OpenAIRE

    Baghdasaryan, Anna; Chiba, Peter; Trauner, Michael

    2014-01-01

    Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular...

  17. Effect of bile salts and bile acids on human gastric mucosal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yinxue Song; Jun Gong

    2008-01-01

    Objective:To explore the effect of bile salt and bile acid on cultured eternalized human gastric mucosa epithelium GES-1 cells.Methods:Cultured eternalized human gastric mucosa epithelium GES-1 cells were treated with media containing 6 different kinds of bile salts and 3 different kinds of bile acids and their mixture with different concentrations: GCDC(glycochenodeoxycholate), GDC (glycodeoxycholate), GC(glycocholate), TCDC(taurochenodeoxycholate), TDC(taurodeoxycholate), TC (taurocholate), LCA (lithocholicacid), CA(cholic acid), DCA(deoxycholic acid)(50 μ mol/L,250 μ mol/L,500 μ mol/L, 1000 μ mol/L), DY(mixture of bile salts) and DS(mixture of bile acids)(250 μ mol/L,500 μ mol/L,1000 μ mol/L,1500 μ mol/L, 2000 μ mol/L), in comparison with thecontrol group(in normal media without bile salts and bile acids).Cell proliferation was assessed by MTT(3-[4,5-Dimethylthiaolyl]-2,5- diphenyl-tetrazolium bromide) assay for 72 hours with different concentrations and the apoptotic cells were assayed by flow cytometry (FCM) with Annex V-FITC conjugated with propidium iodide(PI) staining for 24 hours with different concentrations(1500,2000 μ mol/L).Results:There was no significant difference in morphology and cell proliferation in GC group after 24-72 h.Low concentration(50 μ mol/L) of GCDC, GDC, TCDC, TDC and TC accelerated gastric epithelial cell growth in a dosage-time dependent manner.At middle concentration (250-500 μ mol/L), it showed positive effect after 24-48 h, while negative effect after 72 h.At high concentration(1000 μ tool/L), it accelerated gastric epithelial cell growth after 24h and show consistent inhibition even leading to necrosis after 48-72 h.LCA and CA showed a positive effect on the concentration of 50 μ mol/L after 24-72 h, while 250-1000 It mol/L showed a trend towards apoptosis after 24-72 h.At 50-500 μ mol/L, DCA showed proliferation after 24 h and apoptosis after 48-72 h, but showed necrosis after 24-72 h at 1000 μ moiFL.DY and DS

  18. Investigating bile salt aggregation using coarse-grained molecular dynamics simulations

    Science.gov (United States)

    Vila Verde, Ana; Frenkel, Daan

    2010-03-01

    Bile salts are necessary for fat digestion due to their unusual surfactant properties: they assemble into small, polydisperse micelles and easily form mixed micelles with poorly soluble amphiphiles. Understanding these properties requires molecular scale information about bile salt micelles, something challenging to obtain experimentally but amenable to computational modeling. To address this issue we build a coarse-grained model of bile salts. We investigate their aggregation behavior through molecular dynamics simulations in a grand-canonical parallel tempering scheme. We validate our model against available solubility and light scattering data. Our results indicate that at physiological bile salt and counter ion concentrations, bile salts pack in many different orientations in pure bile micelles, contrary to standard surfactants. This feature may be physiologically relevant, allowing bile salts to solubilize the heterogeneous blends of fats typical of digestion.

  19. Recent insights into the function and regulation of the bile salt export pump (ABCB11)

    OpenAIRE

    Stieger, B

    2009-01-01

    PURPOSE OF REVIEW: Generation of bile is an important function of the liver. Its impairment can be caused by inherited mutations or by acquired factors and leads to cholestasis. Bile salts are an important constituent of bile and are secreted by the bile salt export pump (BSEP) from hepatocytes. RECENT FINDINGS: Significant progress was made in the understanding of mechanisms and consequences of malfunctioning BSEP. This information was gained from extensive characterization of patients with ...

  20. Ursodeoxycholate modulates bile flow and bile salt pool independently from the cystic fibrosis transmembrane regulator (Cftr) in mice

    NARCIS (Netherlands)

    Bodewes, Frank A. J. A.; Wouthuyzen-Bakker, Marjan; Bijvelds, Marcel J.; Havinga, Rick; de Jonge, Hugo R.; Verkade, Henkjan J.

    2012-01-01

    Bodewes FAJA, Wouthuyzen-Bakker M, Bijvelds MJ, Havinga R, de Jonge HR, Verkade HJ. Ursodeoxycholate modulates bile flow and bile salt pool independently from the cystic fibrosis transmembrane regulator (Cftr) in mice. Am J Physiol Gastrointest Liver Physiol 302: G1035-G1042, 2012. First published F

  1. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review.

    Science.gov (United States)

    Malik, Nisar Ahmad

    2016-05-01

    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings. PMID:26781714

  2. Differential proteomic analysis of outer membrane enriched extracts of Bacteroides fragilis grown under bile salts stress.

    Science.gov (United States)

    Boente, Renata F; Pauer, Heidi; Silva, Deborah N S; Filho, Joaquim Santos; Sandim, Vanessa; Antunes, Luis Caetano M; Ferreira, Rosana Barreto Rocha; Zingali, Russolina B; Domingues, Regina M C P; Lobo, Leandro A

    2016-06-01

    Bacteroides fragilis is the most commonly isolated anaerobic bacteria from infectious processes. Several virulence traits contribute to the pathogenic nature of this bacterium, including the ability to tolerate the high concentrations of bile found in the gastrointestinal tract (GIT). The activity of bile salts is similar to detergents and may lead to membrane permeabilization and cell death. Modulation of outer membrane proteins (OMPs) is considered a crucial event to bile salts resistance. The primary objective of the current work was to identify B. fragilis proteins associated with the stress induced by high concentration of bile salts. The outer membrane of B. fragilis strain 638R was isolated after growth either in the presence of 2% conjugated bile salts or without bile salts. The membrane fractions were separated on SDS-PAGE and analyzed by ESI-Q/TOF tandem mass spectrometry. A total of 37 proteins were identified; among them nine were found to be expressed exclusively in the absence of bile salts whereas eight proteins were expressed only in the presence of bile salts. These proteins are related to cellular functions such as transport through membrane, nutrient uptake, and protein-protein interactions. This study demonstrates the alteration of OMPs composition in B. fragilis during bile salts stress resistance and adaptation to environmental changes. Proteomics of OMPs was also shown to be a useful approach in the identification of new targets for functional analyses. PMID:26948242

  3. Altered intestinal bile salt biotransformation in a cystic fibrosis (Cftr(-/-)) mouse model with hepato-biliary pathology

    NARCIS (Netherlands)

    Bodewes, Frank A. J. A.; van der Wulp, Mariette Y. M.; Beharry, Satti; Doktorova, Marcela; Havinga, Rick; Boverhof, Renze; Phillips, M. James; Durie, Peter R.; Verkade, Henkjan J.

    2015-01-01

    Background: Cftr(-/-tm1UC) mice develop progressive hepato-biliary pathology. We hypothesize that this liver pathology is related to alterations' in biliary bile hydrophobicity and bile salt metabolism in Cftr(-/-tm1Unc) mice. Methods: We determined bile production, biliary and fecal bile salt- and

  4. The Role of Bile Salt Export Pump Gene Repression in Drug-Induced Cholestatic Liver Toxicity

    OpenAIRE

    Garzel, Brandy; Yang, Hui; Zhang, Lei; Huang, Shiew-Mei; Polli, James E.; Wang, Hongbing

    2014-01-01

    The bile salt export pump (BSEP, ABCB11) is predominantly responsible for the efflux of bile salts, and disruption of BSEP function is often associated with altered hepatic homeostasis of bile acids and cholestatic liver injury. Accumulating evidence suggests that many drugs can cause cholestasis through interaction with hepatic transporters. To date, a relatively strong association between drug-induced cholestasis and attenuated BSEP activity has been proposed. However, whether repression of...

  5. The Bile Salt Export Pump: Clinical and Experimental Aspects of Genetic and Acquired Cholestatic Liver Disease

    OpenAIRE

    Lam, Ping; Soroka, Carol J.; Boyer, James L.

    2010-01-01

    The primary transporter responsible for bile salt secretion is the bile salt export pump (BSEP, ABCB11), a member of the ATP-binding cassette (ABC) superfamily, which is located at the bile canalicular apical domain of hepatocytes. In humans, BSEP deficiency results in several different genetic forms of cholestasis, which include progressive familial intrahepatic cholestasis type 2 (PFIC2), benign recurrent intrahepatic cholestasis type 2 (BRIC2), as well as other acquired forms of cholestasi...

  6. Review article: the function and regulation of proteins involved in bile salt biosynthesis and transport

    NARCIS (Netherlands)

    Pellicoro, Antonella; Faber, Klaas Nico

    2007-01-01

    Background Bile salts are produced and secreted by the liver and are required for intestinal absorption of fatty food components and excretion of endobiotics and xenobiotics. They are reabsorbed in the terminal ileum and transported back to the liver via the portal tract. Dedicated bile salt transpo

  7. Effects of bile salts on percolation and size of AOT reversed micelles.

    Science.gov (United States)

    Yang, Hui; Erford, Karen; Kiserow, Douglas J; McGown, Linda B

    2003-06-15

    The effects of two trihydroxy bile salts, sodium taurocholate (NaTC) and 3-[(3-cholamidylpropyl)dimethylammonio]-1-propane sulfonate (CHAPS), on the size, shape and percolation temperature of reversed micelles formed by sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in isooctane were studied. The percolation temperature of the reversed micelles decreased upon inclusion of bile salts, indicating increased water uptake. Dynamic light scattering (DLS) measurements showed consistent enlargement of reversed micelles upon addition of the bile salts; the hydrodynamic radius increased sixfold in the presence of 10 mM CHAPS and doubled in the presence of 5 mM NaTC. Inclusion of the enzyme yeast alcohol dehydrogenase (YADH) increased the percolation temperature and distorted the spherical structure of the AOT reversed micelles. The spherical structure was restored upon addition of bile salt. These results may help to explain the increase in activity of YADH in AOT reversed micelles upon addition of bile salts.

  8. Hepatocyte transplantation in bile salt export pump-deficient mice: selective growth advantage of donor hepatocytes under bile acid stress

    OpenAIRE

    Chen, Huey-Ling; Chen, Hui-Ling; Yuan, Ray-Hwang; Wu, Shang-Hsin; Chen, Ya-Hui; Chien, Chin-Sung; Chou, Shi-Ping; Wang, Renxue; Ling, Victor; Chang, Mei-Hwei

    2012-01-01

    The bile salt export pump (Bsep) mediates the hepatic excretion of bile acids, and its deficiency causes progressive familial intrahepatic cholestasis. The current study aimed to induce bile acid stress in Bsep −/− mice and to test the efficacy of hepatocyte transplantation in this disease model. We fed Bsep −/− and wild-type mice cholic acid (CA) or ursodeoxycholic acid (UDCA). Both CA and UDCA caused cholestasis and apoptosis in the Bsep −/− mouse liver. Wild-type mice had minimal liver inj...

  9. Activation of CFTR by ASBT-mediated bile salt absorption.

    Science.gov (United States)

    Bijvelds, Marcel J C; Jorna, Huub; Verkade, Henkjan J; Bot, Alice G M; Hofmann, Franz; Agellon, Luis B; Sinaasappel, Maarten; de Jonge, Hugo R

    2005-11-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal ileum might also modulate intestinal fluid secretion. Taurocholate (TC) induced a biphasic rise in the short circuit current across ileal tissue, reflecting transepithelial electrogenic ion transport. This response was sensitive to bumetanide and largely abrogated in Cftr-null mice, indicating that it predominantly reflects CFTR-mediated Cl- secretion. The residual response in Cftr-null mice could be attributed to electrogenic ASBT activity, as it matched the TC-coupled absorptive Na+ flux. TC-evoked Cl- secretion required ASBT-mediated TC uptake, because it was blocked by a selective ASBT inhibitor and was restricted to the distal ileum. Suppression of neurotransmitter or prostaglandin release, blocking of the histamine H1 receptor, or pretreatment with 5-hydroxytryptamine did not abrogate the TC response, suggesting that neurocrine or immune mediators of Cl- secretion are not involved. Responses to TC were retained after carbachol treatment and after permeabilization of the basolateral membrane with nystatin, indicating that BS modulate CFTR channel gating rather than the driving force for Cl- exit. TC-induced Cl- secretion was maintained in cGMP-dependent protein kinase II-deficient mice and only partially inhibited by the cAMP-dependent protein kinase inhibitor H89, suggesting a mechanism of CFTR activation different from cAMP or cGMP signaling. We conclude that active BS absorption in the ileum triggers CFTR activation and, consequently, local salt and water secretion, which may serve to prevent intestinal obstruction in the postprandial state. PMID:16037545

  10. The adsorption-desorption behaviour and structure function relationships of bile salts.

    Science.gov (United States)

    Parker, Roger; Rigby, Neil M; Ridout, Michael J; Gunning, A Patrick; Wilde, Peter J

    2014-09-14

    The digestion of dietary components in the human gastrointestinal (GI) tract is a complex, dynamic, inherently heterogeneous process. A key aspect of the digestion of lipid in the GI tract is the combined action of bile salts, lipase and colipase in hydrolysing and solubilising dispersed lipid. The bile salts are a mixture of steroid acid conjugates with surfactant properties. In order to examine whether the different bile salts have different interfacial properties their dynamic interfacial behaviour was characterised. Differences in the adsorption behaviour to solid hydrophobic surfaces of bile salt species were studied using dual polarisation interferometry and atomic force microscopy (AFM) under physiological conditions. Specifically, the cholates adsorbed more slowly and a significant proportion were irreversibly adsorbed following buffer rinsing; whereas the deoxycholates and chenodeoxycholates adsorbed more rapidly and desorbed to a greater extent following buffer rinsing. The conjugating groups (taurine, glycine) did not influence the behaviour. AFM showed that the interfacial structures that remained following buffer rinsing were also different between these two groups. In addition, the adsorption-desorption behaviour affected the adsorption of colipase to a solid surface. This supports the idea that cooperative adsorption occurs between certain bile salts and colipase to facilitate the adsorption and activity of pancreatic lipase in order to restore lipolytic activity in the presence of bile salts. This study provides insights into how differences in bile salt structure could affect lipase activity and solubilisation of lipolysis products and other lipid-soluble bioactive molecules. PMID:25008989

  11. Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids

    DEFF Research Database (Denmark)

    Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim;

    2016-01-01

    Knowledge about colloidal assemblies present in human intestinal fluids (HIFs), such as bile salt micelles and phospholipid vesicles, is regarded of importance for a better understanding of the in vivo dissolution and absorption behavior of poorly soluble drugs (Biopharmaceutics Classification...

  12. Bile Salts: Natural Detergents for the Prevention of Sexually Transmitted Diseases

    OpenAIRE

    Herold, Betsy C.; Kirkpatrick, Risa; Marcellino, Daniel; Travelstead, Anna; Pilipenko, Valentina; Krasa, Holly; Bremer, James; Dong, Li Jin; Cooper, Morris D.

    1999-01-01

    The development of new, safe, topical microbicides for intravaginal use for the prevention of sexually transmitted diseases is imperative. Previous studies have suggested that bile salts may inhibit human immunodeficiency virus infection; however, their activities against other sexually transmitted pathogens have not been reported. To further explore the potential role of bile salts in preventing sexually transmitted diseases, we examined the in vitro activities and cytotoxicities of select b...

  13. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites

    Directory of Open Access Journals (Sweden)

    Hofmann Alan F

    2010-05-01

    Full Text Available Abstract Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense. Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites

  14. NMR characterization of the interaction of the Salmonella type III secretion system protein SipD and bile salts.

    Science.gov (United States)

    Wang, Yu; Nordhues, Bryce A; Zhong, Dalian; De Guzman, Roberto N

    2010-05-18

    Salmonella and Shigella bacteria require the type III secretion system (T3SS) to inject virulence proteins into their hosts and initiate infections. The tip proteins SipD and IpaD are critical components of the Salmonella and Shigella T3SS, respectively. Recently, SipD and IpaD have been shown to interact with bile salts, which are enriched in the intestines, and are hypothesized to act as environmental sensors for these enteric pathogens. Bile salts activate the Shigella T3SS but repress the Salmonella T3SS, and the mechanism of this differing response to bile salts is poorly understood. Further, how SipD binds to bile salts is currently unknown. Computer modeling predicted that IpaD binds the bile salt deoxycholate in a cleft formed by the N-terminal domain and the long central coiled coil of IpaD. Here, we used NMR methods to determine which SipD residues are affected by the interaction with the bile salts deoxycholate, chenodeoxycholate, and taurodeoxcholate. The bile salts perturbed nearly the same set of SipD residues; however, the largest chemical shift perturbations occurred away from what was predicted for the bile salt binding site in IpaD. Our NMR results indicate that that bile salt interaction of SipD will be different from what was predicted for IpaD, suggesting a possible mechanism for the differing response of Salmonella and Shigella to bile salts.

  15. Bile Salt Export Pump is Dysregulated with Altered Farnesoid X Receptor Isoform Expression in Patients with Hepatocellular Carcinoma

    OpenAIRE

    Chen, Yuan; Song, Xiulong; Valanejad, Leila; Vasilenko, Alexander; More, Vijay; Qiu, Xi; Chen, Weikang; Lai, Yurong; Slitt, Angela; Stoner, Matthew; Yan, Bingfang; Deng, Ruitang

    2013-01-01

    As a canalicular bile acid effluxer, bile salt export pump (BSEP) plays a vital role in maintaining bile acid homeostasis. BSEP deficiency leads to severe cholestasis and hepatocellular carcinoma (HCC) in young children. Regardless of the etiology, chronic inflammation is the common pathological process for HCC development. Clinical studies showed that bile acid homeostasis is disrupted in HCC patients with elevated serum bile acid level as a proposed marker for HCC. However, the underlying m...

  16. Liver Receptor Homolog-1 Is Critical for Adequate Up-regulation of Cyp7a1 Gene Transcription and Bile Salt Synthesis During Bile Salt Sequestration

    NARCIS (Netherlands)

    Out, Carolien; Hageman, Jurre; Bloks, Vincent W.; Gerrits, Han; Gelpke, Maarten D. Sollewijn; Bos, Trijnie; Havinga, Rick; Smit, Martin J.; Kuipers, Folkert; Groen, Albert K.

    2011-01-01

    Liver receptor homolog-1 (LRH-1) is a nuclear receptor that controls a variety of metabolic pathways. In cultured cells, LRH-1 induces the expression of CYP7A1 and CYP8B1, key enzymes in bile salt synthesis. However, hepatic Cyp7a1 mRNA levels were not reduced upon hepatocyte-specific Lrh-1 deletion

  17. Bile salts inhibit growth and induce apoptosis of human esophageal cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Ru Zhang; Jun Gong; Hui Wang; Li Wang

    2005-01-01

    AIM: To explore the effect of six bile salts, including glycocholate (GC), glycochenodeoxycholate (GCDC), glycodeoxycholate (GDC), taurocholate (TC), taurochenodeoxycholate (TCDC), taurodeoxycholate (TDC), and two bile acids including cholic acid (CA) and deoxycholic acid (DCA) on esophageal cancer Eca109 cell line.METHODS: Eca109 cells were exposed to six bile salts, two bile acids and the mixed bile salts at different concentrations for 24-72 h. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the cell proliferation. Apoptotic morphology was observed by phase-contrast video microscopy and deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)assay. Sub-G1 DNA fragmentations and early apoptosis cells were assayed by flow cytometry (FCM) with propidium iodide (PI) staining and annexin V-FITC conjugated with PI staining. Apoptosis DNA ladders on agarose were observed. Activation of caspase-3 was assayed by FCM with FITC-conjugated monoclonal rabbit anti-active caspase3 antibody and expressions of Bcl-2 and Bax proteins were examined immunocytochemically in 500 μmol/L-TC-induced apoptosis cells.RESULTS: Five bile salts except for GC, and two bile acids and the mixed bile salts could initiate growth inhibition of Eca109 cells in a dose- and time-dependent manner.TUNEL, FCM, and DNA ladder assays all demonstrated apoptosis induced by bile salts and bile acids at 500 μmol/L,except for GC. Early apoptosis cell percentages in Eca109 cells treated with GCDC, GDC, TC, TCDC, TDC,CA at 500 μmol/L for 12 h, DCA at 500 μmol/L for 6 h,and mixed bile salts at 1 000 μmol/L for 12 h were 7.5%,8.7%, 14.8%, 8.9%, 7.8%, 9.3%, 22.6% and 12.5%,respectively, all were significantly higher than that in control (1.9%). About 22% of the cell population treated with TC at 500 μmol/L for 24 h had detectable active caspase-3, and were higher than that in the control (1%). Immunocytochemical assay suggested that TC down-regulated Bcl

  18. Bile salt receptor complex activates a pathogenic type III secretion system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N.; Salomon, Dor; Tomchick, Diana R.; Grishin, Nick V.; Orth, Kim

    2016-07-05

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered thatVibrio parahaemolyticusVtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment.

  19. Bile salts induce expression of the afimbrial LDA adhesin of atypical enteropathogenic Escherichia coli.

    Science.gov (United States)

    Torres, Alfredo G; Tutt, Christopher B; Duval, Lisabeth; Popov, Vsevolod; Nasr, Abdelhakim Ben; Michalski, Jane; Scaletsky, Isabel C A

    2007-04-01

    Atypical enteropathogenic Escherichia coli (aEPEC) strains are frequently implicated in infant diarrhoea in developing countries. Not much is known about the adherence properties of aEPEC; however, it has been shown that these strains can adhere to tissue-cultured cells. A chromosomal region designated the locus for diffuse adherence (LDA) confers aEPEC strain 22 the ability to adhere to culture cells. LDA is an afimbrial adhesin that contains a major subunit, LdaG, whose expression is induced on MacConkey agar at 37 degrees C. We hypothesized that the bile salts found in this culture media induce the expression of LdaG. Strain 22 and the LdaG mutant were grown in Luria-Bertani (LB) media in the presence or absence of bile salts and heat-extracted surface-expressed proteins were separated by SDS-PAGE to determine whether expression of the 25 kDa LdaG protein was induced. Western blot analysis with anti-LdaG confirmed that bile salts enhance LdaG expression at 37 degrees C. Adhesion assays on HeLa cells revealed that adhesion in a diffuse pattern of strain 22 increased in the presence of bile salts. We also confirmed that expression of the localized adherence pattern observed in the ldaG mutant required the presence of a large cryptic plasmid found in strain 22 and that this phenotype was not induced by bile salts. At the transcriptional level, the ldaG-lacZ promoter fusion displayed maximum beta-galactosidase activity when the parent strain was grown in LB supplemented with bile salts. Fluorescence Activated Cell Sorting analysis, immunogold labelling electron microscopy and immunofluorescence using anti-LdaG sera confirmed that LDA is a bile salts-inducible surface-expressed afimbrial adhesin. Finally, LdaG expression was induced in presence of individual bile salts but not by other detergents. We concluded that bile salts increase expression of LDA, conferring a diffuse adherence pattern and having an impact on the adhesion properties of this aEPEC strain.

  20. Estrogen and Estrogen Receptor-α-Mediated Transrepression of Bile Salt Export Pump

    OpenAIRE

    Chen, Yuan; Vasilenko, Alex; Song, Xiulong; Valanejad, Leila; Verma, Ruchi; You, Sangmin; Yan, Bingfang; Shiffka, Stephanie; Hargreaves, Leeza; Nadolny, Christina; Deng, Ruitang

    2015-01-01

    Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy is the most prevalent disorder with elevated serum bile acid levels. We have previously shown that estrogen 17β-estradiol (E2) transrepresses bile salt export pump (BSEP) through an interaction between estrogen receptor (ER)-α and farnesoid X receptor (FXR) and transrepression of BSEP by E2/ERα is an etiological contributing factor to intrahepatic cholestasis of pregnancy. Currently the mechanistic insights into such tr...

  1. Liver receptor homolog 1 transcriptionally regulates human bile salt export pump expression*

    OpenAIRE

    Song, Xiulong; Kaimal, Rajani; Yan, Bingfang; Deng, Ruitang

    2008-01-01

    The metabolic conversion of cholesterol into bile acids in liver is initiated by the rate-limiting cholesterol 7α-hydroxylase (CYP7A1), whereas the bile salt export pump (BSEP) is responsible for the canalicular secretion of bile acids. Liver receptor homolog 1 (LRH-1) is a key transcriptional factor required for the hepatic expression of CYP7A1. We hypothesized that LRH-1 was also involved in the transcriptional regulation of BSEP. In support of our hypothesis, we found that overexpression o...

  2. Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate.

    Science.gov (United States)

    Buchweitz, Maria; Kroon, Paul A; Rich, Gillian T; Wilde, Peter J

    2016-11-15

    To understand the bioaccessibility of the flavonoid quercetin we studied its interaction with bile salt micelles. The environmental sensitivity of quercetin's UV-visible absorption spectrum gave information about quercetin partitioning. Two quercetin absorption peaks gave complementary information: Peak A (240-280nm) on the intermicellar phase and Peak B (340-440nm) on the micellar phase. Thus, by altering pH, we showed that only non-ionised quercetin partitions into micelles. We validated our interpretation by studying quercetin's interaction with SDS micelles. Pyrene fluorescence and the quercetin UV-visible spectra show that the adsorption site for pyrene and quercetin in bile salt micelles is more hydrophobic than that for SDS micelles. Also, both quercetin and pyrene reported a higher critical micelle concentration for bile salts than for SDS. Our method of using a flavonoid as an intrinsic probe, is generally applicable to other lipophilic bioactives, whenever they have observable environmental dependent properties. PMID:27283643

  3. Thermodynamics of complexes between nucleobase-modified {beta}-cyclodextrins and bile salts

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yu [Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071 Tianjin (China)], E-mail: yuliu@nankai.edu.cn; Zhang Qian; Guo Dongsheng; Zhuang Ruijie; Wang Lihua [Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071 Tianjin (China)

    2008-04-10

    The binding of three nucleobase-modified {beta}-CDs, (i.e., mono(6-ade-6-deoxy)-{beta}-CD 2, mono(6-thy-6-deoxy)-{beta}-CD 3, and mono(6-ura-6-deoxy)-{beta}-CD 4) with four bile salts (deoxycholate, DCA; cholate, CA; glycocholate, GCA; and taurocholate, TCA) were investigated by means of circular dichroism, 2D NMR spectroscopy and calorimetric titration. The results show the binding of host 2 with bile salts is weaker and different from hosts 3 and 4. Enthalpy changes between hosts 2-4 and bile salts are much more favorable than those of native {beta}-CD 1, whereas the entropy changes are unfavorable.

  4. Dietary fat assimilation and bile salt absorption in the killifish intestine

    International Nuclear Information System (INIS)

    Radiolabeled taurocholate (TC) and triolein were used to study fat assimilation and bile salt absorption in the stomachless saltwater killifish, Fundulus heteroclitus. Fat absorption occurred primarily in the proximal intestine with approximately 87% of a single dose (9 mg fat/8 g fish) absorbed in 2 h. Luminal triolein hydrolysis and enterocyte triolein resynthesis were tightly coupled. Killifish gallbladder bile contains taurocholate and cholate in an equal molar ratio at a combined concentration of 237 +/- 25 mM (n = 10) in 24-h-fasted fish. During fat assimilation luminal bile salt and fatty acid concentrations ranged between 10 and 30 mM. Between and during meals the total concentration of bile salts in the intestinal tissue remained roughly constant (4-6 mM) with the proximal one-third of the intestine containing 40% of the total and the remainder equally distributed between the mid and distal regions. All three regions of the intestine rapidly incorporated ingested TC in vivo, with the amount incorporated proportional to the pool size. In contrast, in vitro at low TC concentrations (60 nM), the distal one-third of the intestine incorporated 10 times as much TC in 2-min uptake experiments as the proximal and mid regions. Although there are many similarities between fat and bile salt assimilation in killifish and mammals, overall the processes are much simpler in killifish

  5. Direct Measurement of the Thermodynamics of Chiral Recognition in Bile Salt Micelles.

    Science.gov (United States)

    Anderson, Shauna L; Rovnyak, David; Strein, Timothy G

    2016-04-01

    Isothermal titration calorimetry (ITC) is shown to be a sensitive reporter of bile salt micellization and chiral recognition. Detailed ITC characterization of bile micelle formation as well as the chiral recognition capabilities of sodium cholate (NaC), deoxycholate (NaDC), and taurodeoxycholate (NaTDC) micelle systems are reported. The ΔH(demic) of these bile salt micelle systems is directly observable and is strongly temperature-dependent, allowing also for the determination of ΔCp(demic). Using the pseudo-phase separation model, ΔG(demic) and TΔS(demic) were also calculated. Chirally selective guest-host binding of model racemic compounds 1,1'-bi-2-napthol (BN) and 1,1'-binaphthyl-2,2'-diylhydrogenphosphate (BNDHP) to bile salt micelles was then investigated. The S-isomer was shown to bind more tightly to the bile salt micelles in all cases. A model was developed that allows for the quantitative determination of the enthalpic difference in binding affinity that corresponds to chiral selectivity, which is on the order of 1 kJ mol(-1).

  6. Transcriptional Dynamics of Bile Salt Export Pump during Pregnancy: Mechanisms and Implications in Intrahepatic Cholestasis of Pregnancy

    OpenAIRE

    Song, Xiulong; Vasilenko, Alexander; Chen, Yuan; Valanejad, Leila; Verma, Ruchi; Yan, Bingfang; Deng, Ruitang

    2014-01-01

    Bile salt export pump (BSEP) is responsible for biliary secretion of bile acids, a rate limiting step in the enterohepatic circulation of bile acids and transactivated by nuclear receptor farnesoid x receptor (FXR). Intrahepatic cholestasis of pregnancy (ICP) is the most prevalent disorder among diseases unique to pregnancy and primarily occurs in the third trimester of pregnancy with a hallmark of elevated serum bile acids. Currently, the transcriptional regulation of BSEP during pregnancy a...

  7. FXR-dependent reduction of hepatic steatosis in a bile salt deficient mouse model.

    Science.gov (United States)

    Kunne, Cindy; Acco, Alexandra; Duijst, Suzanne; de Waart, Dirk R; Paulusma, Coen C; Gaemers, Ingrid; Oude Elferink, Ronald P J

    2014-05-01

    It has been established that bile salts play a role in the regulation of hepatic lipid metabolism. Accordingly, overt signs of steatosis have been observed in mice with reduced bile salt synthesis. The aim of this study was to identify the mechanism of hepatic steatosis in mice with bile salt deficiency due to a liver specific disruption of cytochrome P450 reductase. In this study mice lacking hepatic cytochrome P450 reductase (Hrn) or wild type (WT) mice were fed a diet supplemented with or without either 0.1% cholic acid (CA) or 0.025% obeticholic acid, a specific FXR-agonist. Feeding a CA-supplemented diet resulted in a significant decrease of plasma ALT in Hrn mice. Histologically, hepatic steatosis ameliorated after CA feeding and this was confirmed by reduced hepatic triglyceride content (115.5±7.3mg/g liver and 47.9±4.6mg/g liver in control- and CA-fed Hrn mice, respectively). The target genes of FXR-signaling were restored to normal levels in Hrn mice when fed cholic acid. VLDL secretion in both control and CA-fed Hrn mice was reduced by 25% compared to that in WT mice. In order to gain insight in the mechanism behind these bile salt effects, the FXR agonist also was administered for 3weeks. This resulted in a similar decrease in liver triglycerides, indicating that the effect seen in bile salt fed Hrn animals is FXR dependent. In conclusion, steatosis in Hrn mice is ameliorated when mice are fed bile salts. This effect is FXR dependent. Triglyceride accumulation in Hrn liver may partly involve impaired VLDL secretion. PMID:24548803

  8. Genetic variations of bile salt transporters as predisposing factors for drug-induced cholestasis, intrahepatic cholestasis of pregnancy and therapeutic response of viral hepatitis

    OpenAIRE

    Stieger, B; Geier, A.

    2011-01-01

    INTRODUCTION: Drug-induced cholestasis, intrahepatic cholestasis of pregnancy and viral hepatitis are acquired forms of liver disease. Cholestasis is a pathophysiologic state with impaired bile formation and subsequent accumulation of bile salts in hepatocytes. The bile salt export pump (BSEP) (ABCB11) is the key export system for bile salts from hepatocytes. AREAS COVERED: This article provides an introduction into the physiology of bile formation followed by a summary of the current knowled...

  9. Biliary excretion of pravastatin and taurocholate in rats with bile salt export pump (Bsep) impairment.

    Science.gov (United States)

    Cheng, Yaofeng; Freeden, Chris; Zhang, Yueping; Abraham, Pamela; Shen, Hong; Wescott, Debra; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong

    2016-07-01

    The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27059119

  10. Thermodynamics of the interaction of γ-cyclodextrin and tauro- and glyco-conjugated bile salts

    DEFF Research Database (Denmark)

    Schönbeck, Jens Christian Sidney; Westh, Peter; Holm, René;

    2013-01-01

    The structural differences in the interaction between natural γ-cyclodextrin and bile salts common in rat, dog and man was were investigated by 1H-ROESY and 13C NMR and molecular modeling and the thermodynamic parameters of the reaction by isothermal titration calorimetry. The γ-cyclodextrin was ......The structural differences in the interaction between natural γ-cyclodextrin and bile salts common in rat, dog and man was were investigated by 1H-ROESY and 13C NMR and molecular modeling and the thermodynamic parameters of the reaction by isothermal titration calorimetry. The γ...

  11. The mechanism of increased biliary lipid secretion in mice with genetic inactivation of bile salt export pump

    NARCIS (Netherlands)

    Gooijert, K. E. R.; Havinga, R.; Wolters, Henk; Wang, R.; Ling, V.; Tazuma, S.; Verkade, H. J.

    2015-01-01

    Human bile salt export pump (BSEP) mutations underlie progressive familial intrahepatic cholestasis type 2 (PFIC2). In the PFIC2 animal model, Bsep(-/-) mice, biliary secretion of bile salts (BS) is decreased, but that of phospholipids (PL) and cholesterol (CH) is increased. Under physiological cond

  12. A progressive familial intrahepatic cholestasis type 2 mutation causes an unstable, temperature-sensitive bile salt export pump

    NARCIS (Netherlands)

    Plass, JRM; Mol, O; Heegsma, J; Geuken, M; Elling, G; Muller, M; Faber, KN; Jansen, PLM

    2004-01-01

    Background Aims: Progressive familial intrahepatic cholestasis type 2 (PFIC-2) patients have a defect in the hepatocanalicular bile salt secretion. The disease is caused by mutations in the bile salt export pump (BSEP). Ten different missense mutations have been described. In this study, we analysed

  13. A study of salt effects on the complexation between beta-cyclodextrins and bile salts based on the Hofmeister series

    DEFF Research Database (Denmark)

    Holm, Rene; Schonbeck, Christian; Somprasirt, Pitchayanun;

    2014-01-01

    bound drug molecules. The influence of Hofmeister ions on the binding constants of complexes between CDs (β-CD and hydroxypropylated β-CD) and bile salts (glycocholate and glycochenodeoxycholate) were examined by isothermal titration calorimetry. The chaotropic anions tended to weaken these inclusion...

  14. Prebiotic oligosaccharides and the enterohepatic circulation of bile salts in rats

    NARCIS (Netherlands)

    H. van Meer (Hester); G. Boehm (Günther); F. Stellaard (Frans); A. Vriesema (Aldwin); J. Knol (Jan); R. Havinga (Rick); P.J.J. Sauer (Pieter); H.J. Verkade (Henkjan)

    2008-01-01

    textabstractHuman milk contains prebiotic oligosaccharides, which stimulate the growth of intestinal bifidobacteria and lactobacilli. It is unclear whether the prebiotic capacity of human milk contributes to the larger bile salt pool size and the more efficient fat absorption in infants fed human mi

  15. Prebiotic oligosaccharides and the enterohepatic circulation of bile salts in rats

    NARCIS (Netherlands)

    van Meer, Hester; Boehm, Gunther; Stellaard, Frans; Vriesema, Aldwin; Knol, Jan; Havinga, Rick; Sauer, Pieter J.; Verkade, Henkjan J.

    2008-01-01

    Human milk contains prebiotic oligosaccharides, which stimulate the growth of intestinal bifidobacteria and lactobacilli. It is unclear whether the prebiotic capacity of human milk contributes to the larger bile salt pool size and the more efficient fat absorption in infants fed human milk compared

  16. Severe bile salt export pump deficiency : 82 different ABCB11 mutations in 109 families

    NARCIS (Netherlands)

    Strautnieks, Sandra S.; Byrne, Jane A.; Pawlikowska, Ludmila; Cebecauerova, Dita; Rayner, Anne; Dutton, Laura; Meier, Yvonne; Antoniou, Anthony; Stieger, Bruno; Arnell, Henrik; Ozcay, Figen; Al-Hussaini, Hussa F.; Bassas, Atif F.; Verkade, Henkjan J.; Fischler, Bjorn; Nemeth, Antal; Kotalova, Radana; Shneider, Benjamin L.; Cielecka-Kuszyk, Joanna; McClean, Patricia; Whitington, Peter F.; Sokal, Etienne; Jirsa, Milan; Wali, Sami H.; Jankowska, Irena; Pawlowska, Joanna; Mieli-Vergani, Giorgina; Knisely, A. S.; Bull, Laura N.; Thompson, Richard J.

    2008-01-01

    Background & Aims: Patients with severe bile salt export pump (BSEP) deficiency present as infants with progressive cholestatic liver disease. We characterized mutations of ABCB11 (encoding BSEP) in such patients and correlated genotypes with residual protein detection and risk of malignancy. Method

  17. Is bile salt-dependent lipase concentration in serum of any help in pancreatic cancer diagnosis?

    Science.gov (United States)

    Lombardo, D; Montalto, G; Roudani, S; Mas, E; Laugier, R; Sbarra, V; Abouakil, N

    1993-09-01

    The diagnostic value of bile salt-dependent lipase for pancreatic diseases was tested in sera of 187 patients. Of these patients, 76 suffered from pancreatic carcinoma, 43 from nonmalignant liver diseases (cirrhosis and chronic hepatitis), 18 from acute pancreatitis, and 20 from chronic pancreatitis. The remaining subjects were controls without pancreatic pathology. Bile salt-dependent lipase was determined by a sandwich enzyme-linked immunosorbent assay using polyclonal antibodies. Amylase and CA 19-9 antigen were also determined. In sera from control patients, the mean level of bile salt-dependent lipase was 1.5 micrograms/L. This level is quite similar to that of patients with benign liver diseases (1.1 micrograms/L) and with chronic pancreatitis (1.4 micrograms/L), but it was raised to 3.5 micrograms/L in patients with acute pancreatitis and decreased to 0.5 microgram/L in subjects with pancreatic adenocarcinoma. Thirty percent of control subjects and 73% of cancer patients had a bile salt-dependent lipase serum level below the cutoff value of 0.5 microgram/L. In acute pancreatitis, 11 of 16 subjects had levels above 1.5 micrograms/L. Amylase level largely increased in acute pancreatitis but was normal in all other groups. Concerning CA 19-9 antigen, 65% of control patients and > 80% of patients with nonmalignant pancreatic or liver diseases had normal levels. In sera from cancer patients, 80% presented with high levels. Accordingly, 36 of 38 patients with pancreatic cancer had either low serum levels of bile salt-dependent lipase ( 37 U/ml; sensitivity 95%).(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Analysis of the Bile Salt Export Pump (ABCB11) Interactome Employing Complementary Approaches.

    Science.gov (United States)

    Przybylla, Susanne; Stindt, Jan; Kleinschrodt, Diana; Schulte Am Esch, Jan; Häussinger, Dieter; Keitel, Verena; Smits, Sander H; Schmitt, Lutz

    2016-01-01

    The bile salt export pump (BSEP, ABCB11) plays an essential role in the formation of bile. In hepatocytes, BSEP is localized within the apical (canalicular) membrane and a deficiency of canalicular BSEP function is associated with severe forms of cholestasis. Regulation of correct trafficking to the canalicular membrane and of activity is essential to ensure BSEP functionality and thus normal bile flow. However, little is known about the identity of interaction partners regulating function and localization of BSEP. In our study, interaction partners of BSEP were identified in a complementary approach: Firstly, BSEP interaction partners were co-immunoprecipitated from human liver samples and identified by mass spectrometry (MS). Secondly, a membrane yeast two-hybrid (MYTH) assay was used to determine protein interaction partners using a human liver cDNA library. A selection of interaction partners identified both by MYTH and MS were verified by in vitro interaction studies using purified proteins. By these complementary approaches, a set of ten novel BSEP interaction partners was identified. With the exception of radixin, all other interaction partners were integral or membrane-associated proteins including proteins of the early secretory pathway and the bile acyl-CoA synthetase, the second to last, ER-associated enzyme of bile salt synthesis. PMID:27472061

  19. Structural transition in aqueous lipid/bile salt [DPPC/NaDC] supramolecular aggregates: SANS and DLS study

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.A. [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Janich, M.; Hildebrand, A. [Martin-Luther-University, Halle (Saale) (Germany); Strunz, P. [Berlin Neutron Scattering Center, HZB, Berlin (Germany); Neubert, R.H.H. [Martin-Luther-University, Halle (Saale) (Germany); Lombardo, D., E-mail: lombardo@me.cnr.it [CNR–IPCF, Istituto per i Processi Chimico Fisici – (Sez. Messina), I-98158, Messina (Italy)

    2013-10-16

    Highlights: • Self-assembly in model DPPC lipids and NaDC bile salt by SANS and DLS experiments. • Bile salt creates structural interference against cohesive tendency of DPPC bilayers. • NaDC steric interactions cause transition toward different supramolecular structures. - Abstract: Small angle neutron scattering (SANS) and dynamic light scattering (DLS) were used to study different aggregation states in sodium deoxycholate (NaDC)-phosphatidylcholine systems at T = 60 °C. Size and shape of the aggregates investigated as a function of the NaDC bile salt concentration (at the constant DPPC concentration of 6 mM) indicate a strong dependence of the size and morphology of the generated aggregates on the relative amount of NaDC bile salt. More specifically large occupied area of the bile salt induces a steric interaction which promotes the transition toward a variety of supramolecular structures ranging from ellipsoidal vesicles, ribbon-like structures, up to final spherical mixed micelles at the large amount of bile salt of 10 mM NaDC. The findings of the obtained results give important insight for understanding the formation of different topologies in aqueous lipid–bile salt mixtures as well as stimulate new routes for liposome reconstitution–solubilisation processes suitable for technological applications.

  20. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    Science.gov (United States)

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  1. A C-terminal tyrosine-based motif in the bile salt export pump directs clathrin-dependent endocytosis

    OpenAIRE

    Lam, Ping; Xu, Shuhua; Soroka, Carol J.; Boyer, James L.

    2012-01-01

    The liver specific bile salt export pump (BSEP) is crucial for bile-acid dependent bile flow at the apical membrane. BSEP, a member of the family of structurally related ATP-Binding Cassette (ABC) proteins, is composed of 12 transmembrane segments (TMS) and 2 large cytoplasmic nucleotide binding domains (NBD). The regulation of trafficking of BSEP to and from the cell surface is not well understood, but is believed to play an important role in cholestatic liver diseases such as primary famili...

  2. Formation of drug-bearing vesicles in mixed colloids of bile salts and phosphatidylcholine

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, R.P.; Mang, J. [Los Alamos National Lab., NM (United States); Hofmann, A.F.; Schteingart, C. [Univ. of California, San Diego, CA (United States); Alkan-Onyuksel, H.; Ayd, S. [Univ. of Illinois, Urbana, IL (United States)

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors used small-angle neutron scattering to study drug interactions with mixed colloids of bile salt and phosphatidylcholine. Because the mixed colloids form liposomes spontaneously, this system is a model for drug-bile interactions that are important in understanding the efficacy of oral drug formulations and in advanced applications for liposome drug delivery systems. The authors studied particle formation in incorporation of enzymatic products formed in the gut and the effects of cholesteric drugs and taxol on vesicle formation. The studies show that particle morphology is not affected by inclusion of most cholesteric drugs and taxol, and is not affected by incorporation of the products of enzymatic action. The findings suggest that particle form is important for the physiological function of bile and they are beginning to show which drugs affect liposome formation.

  3. Affinity capillary electrophoresis method for investigation of bile salts complexation with sulfobutyl ether-ß-cyclodextrin

    DEFF Research Database (Denmark)

    Østergaard, Jesper; Jensen, Henrik; Holm, Rene

    2012-01-01

    Sulfobutyl ether-ß-cyclodextrin (SBEßCD) is utilized in preformulation and drug formulation as an excipient for solubilization of drugs with poor aqueous solubility. Approximately seven negative charges of SBEßCD play a role with respect to solubilization and complexation, but also have...... an influence on the ionic strength of the background electrolyte when the cyclodextrin is used in capillary electrophoresis. Mobility-shift affinity capillary methods for investigation of the complexation of taurocholate and taurochenodeoxycholate with the negatively charged cyclodextrin derivative applying...... for the bile salts were in the same range as those previously reported for the interaction with neutral ß-cyclodextrins derivatives, i.e. the positions of the negative charges on SBEßCD and the bile salts within the complex did not lead to significant electrostatic repulsion....

  4. Colipase enhances hydrolysis of dietary triglycerides in the absence of bile salts.

    Science.gov (United States)

    Bläckberg, L; Hernell, O; Bengtsson, G; Olivecrona, T

    1979-11-01

    This study explores how dietary lipids are digested when intraduodenal bile salts are low or absent. Long-chain triglycerides emulsified with phosphatidylcholine were found to be hydrolyzed very slowly by pancreatic lipase alone, as if the surface layer of phospholipids enveloping the triglycerides impeded the action of the enzyme. Colipase enhanced triglyceride hydrolysis severalfold, both when added before or after the lipase. Hydrolysis became even more rapid when the emulsion was first incubated with pancreatic phospholipase. Hydrolysis of long-chain triglycerides was also severely impeded when other proteins were added to the system, probably because they adsorbed to the oil-water interface of the emulsion droplets. It was previously known that bile salts can relieve such inhibition, presumably by desorbing the adsorbed proteins. Colipase was found to enhance hydrolysis severalfold in a dose-dependent manner even in the absence of bile salts, i.e., it could partially or completely relieve the inhibition depending upon the amount and the type of inhibitory protein added to the system. Prior exposure of a protein-coated triglyceride emulsion to another lipase also enhanced the rate at which pancreatic lipase could then hydrolyze the lipids. Most dietary triglycerides are probably presented for intestinal digestion in emulsions covered by proteins and/or phospholipids. These emulsions would be hydrolyzed slowly by pancreatic lipase alone. However, through the action of the lipase in stomach contents and of pancreatic phospholipase and through the lipolysis-promoting effects of collipase, these triglycerices can be rather efficiently hydrolyzed, even in the absence of bile salts.

  5. The influence of bile salt on the chemotherapeutic response of docetaxel-loaded thermosensitive nanomicelles

    Directory of Open Access Journals (Sweden)

    Kim DW

    2014-08-01

    Full Text Available Dong Wuk Kim,1,* Thiruganesh Ramasamy,2,* Ju Yeon Choi,2 Jeong Hwan Kim,2 Chul Soon Yong,2 Jong Oh Kim,2 Han-Gon Choi1 1College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea; 2College of Pharmacy, Yeungnam University, Gyongsan, South Korea *These two authors contributed equally to this work Abstract: The primary aim of this work was to investigate the potential of bile salt, sodium taurocholate (NaTC, in improving the bioavailability and anti-tumor efficacy of docetaxel (DCT upon rectal administration. Poloxamer-based nanomicelles with thermosensitive and mucoadhesive properties were prepared using the cold method. The optimized nanomicellar formulation was evaluated in terms of physicochemical and viscoelastic parameters. Nanomicelles containing bile salt maintained sufficient gelation strength (234×102 mPa·s and mucoadhesive force (17.3×102 dyne/cm2 to be retained in the upper part of the rectum. They significantly enhanced the DCT internalization across the rectal mucosa and showed a high plasma level during the first 4 hours of the study period, compared to nanomicelles with no bile salt. As a result, a slightly higher rectal bioavailability of ~33% was observed in nanomicelles containing bile salt, compared to ~28% from the latter system. The higher pharmacokinetic parameters for rectally administered DCT/P407/P188/Tween 80/NaTC (0.25%/11%/15%/10%/0.1% by weight, respectively resulted in significant anti-tumor efficacy. However, the tumor regression rate for the NaTC group was not statistically different from that for nanomicelles without NaTC. Therefore, overall results suggest that thermosensitive nanomicelles could be a potential dosage form for improvement of the bioavailability and chemotherapeutic profile of DCT. Keywords: anti-cancer efficiency, bioavailability, docetaxel, liquid suppository, rectal delivery, thermosensitive

  6. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families

    OpenAIRE

    Strautnieks, S S; Byrne, J A; Pawlikowska, L.; Cebecauerova, D; Rayner, A; Dutton, L; Meier, Y; Antoniou, A; Stieger, B; Arnell, H; Ozcay, F; Al-Hussaini, H F; Bassas, A F; Verkade , H.J.; Fischler, B

    2008-01-01

    BACKGROUND & AIMS: Patients with severe bile salt export pump (BSEP) deficiency present as infants with progressive cholestatic liver disease. We characterized mutations of ABCB11 (encoding BSEP) in such patients and correlated genotypes with residual protein detection and risk of malignancy. METHODS: Patients with intrahepatic cholestasis suggestive of BSEP deficiency were investigated by single-strand conformation polymorphism analysis and sequencing of ABCB11. Genotypes sorted by likely ph...

  7. Hydrolysis of human milk fat globules by pancreatic lipase: role of colipase, phospholipase A2, and bile salts.

    OpenAIRE

    Bläckberg, L; Hernell, O.; Olivecrona, T

    1981-01-01

    Human milk fat globules were used to explore how dietary triglycerides are hydrolyzed by pancreatic lipase. These triglycerides were hydrolyzed very slowly by lipase alone as if the surface layer of proteins and phospholipids impeded the action of the enzyme. The inhibition of lipase activity could be overcome by addition either of colipase or of pancreatic phospholipase A2. Colipase enhanced triglyceride hydrolysis in a dose-dependent manner whether bile salts were present or not. Bile salts...

  8. The Association between Bile Salt Export Pump Single-Nucleotide Polymorphisms and Primary Biliary Cirrhosis Susceptibility and Ursodeoxycholic Acid Response

    OpenAIRE

    Rui-rui Chen; Yuan-jun Li; Xin-min Zhou; Lu Wang; Juan Xing; Shuang Han; Li-na Cui; Lin-hua Zheng; Kai-chun Wu; Yong-quan Shi; Zhe-yi Han; Ying Han; Dai-ming Fan

    2014-01-01

    Background. Primary biliary cirrhosis (PBC) is a chronic and progressive cholestasis liver disease. Bile salt export pump (BSEP) is the predominant bile salt efflux system of hepatocytes. BSEP gene has been attached great importance in the susceptibility of PBC and the response rate of ursodeoxycholic acid (UDCA) treatment of PBC patients. Methods. In this study, TaqMan assay was used to genotype four variants of BSEP, and the Barcelona criteria were used for evaluating the response rate of U...

  9. Degradation of the Bile Salt Export Pump at Endoplasmic Reticulum in Progressive Familial Intrahepatic Cholestasis Type II (PFIC II)

    OpenAIRE

    Wang, Lin; Dong, Huiping; Soroka, Carol J.; WEI, NING; Boyer, James L.; Hochstrasser, Mark

    2008-01-01

    The bile salt export pump (Bsep) represents the major bile salt transport system at the canalicular membrane of hepatocytes. When examined in model cell lines, genetic mutations in the BSEP gene impair its targeting and transport function, contributing to the pathogenesis of PFIC II. PFIC II mutations are known to lead to a deficiency of BSEP in human hepatocytes, suggesting that PFIC II mutants are unstable and degraded in the cell. To investigate this further, we have characterized the impa...

  10. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  11. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  12. Interactions between selected bile salts and Triton X-100 or sodium lauryl ether sulfate

    Directory of Open Access Journals (Sweden)

    Ćirin Dejan M

    2011-12-01

    Full Text Available Abstract Background In order to develop colloidal drug carriers with desired properties, it is important to determine physico-chemical characteristics of these systems. Bile salt mixed micelles are extensively studied as novel drug delivery systems. The objective of the present investigation is to develop and characterize mixed micelles of nonionic (Triton X-100 or anionic (sodium lauryl ether sulfate surfactant having oxyethylene groups in the polar head and following bile salts: cholate, deoxycholate and 7-oxodeoxycholate. Results The micellization behaviour of binary anionic-nonionic and anionic-anionic surfactant mixtures was investigated by conductivity and surface tension measurements. The results of the study have been analyzed using Clint's, Rubingh's, and Motomura's theories for mixed binary systems. The negative values of the interaction parameter indicate synergism between micelle building units. It was noticed that Triton X-100 and sodium lauryl ether sulfate generate the weakest synergistic interactions with sodium deoxycholate, while 7-oxodeoxycholate creates the strongest attractive interaction with investigated co-surfactants. Conclusion It was concluded that increased synergistic interactions can be attributed to the larger number of hydrophilic groups at α side of the bile salts. Additionally, 7-oxo group of 7-oxodeoxycholate enhance attractive interactions with selected co-surfactants more than 7-hydroxyl group of sodium cholate.

  13. Interaction of Bile Salts with β-Cyclodextrins Reveals Nonclassical Hydrophobic Effect and Enthalpy-Entropy Compensation.

    Science.gov (United States)

    Paul, Bijan K; Ghosh, Narayani; Mukherjee, Saptarshi

    2016-04-28

    Herein, we present an endeavor toward exploring the lacuna underlying the host:guest chemistry of inclusion complex formation between bile salt(s) and β-cyclodextrin(s) (βCDs). An extensive thermodynamic investigation based on isothermal titration calorimetry (ITC) demonstrates a dominant contribution from exothermic enthalpy change (ΔH enthalpy-entropy compensation behavior showing indication for almost complete compensation. To this end, we have quantified the interaction of two bile salt molecules (namely, sodium deoxycholate and sodium glycocholate) with a series of varying chemical substituents on the host counterpart, namely, βCD, (2-hydroxypropyl)-βCD, and methyl βCD.

  14. Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence.

    Science.gov (United States)

    Yang, Menghua; Liu, Zhi; Hughes, Chambers; Stern, Andrew M; Wang, Hui; Zhong, Zengtao; Kan, Biao; Fenical, William; Zhu, Jun

    2013-02-01

    To be successful pathogens, bacteria must often restrict the expression of virulence genes to host environments. This requires a physical or chemical marker of the host environment as well as a cognate bacterial system for sensing the presence of a host to appropriately time the activation of virulence. However, there have been remarkably few such signal-sensor pairs identified, and the molecular mechanisms for host-sensing are virtually unknown. By directly applying a reporter strain of Vibrio cholerae, the causative agent of cholera, to a thin layer chromatography (TLC) plate containing mouse intestinal extracts, we found two host signals that activate virulence gene transcription. One of these was revealed to be the bile salt taurocholate. We then show that a set of bile salts cause dimerization of the transmembrane transcription factor TcpP by inducing intermolecular disulfide bonds between cysteine (C)-207 residues in its periplasmic domain. Various genetic and biochemical analyses led us to propose a model in which the other cysteine in the periplasmic domain, C218, forms an inhibitory intramolecular disulfide bond with C207 that must be isomerized to form the active C207-C207 intermolecular bond. We then found bile salt-dependent effects of these cysteine mutations on survival in vivo, correlating to our in vitro model. Our results are a demonstration of a mechanism for direct activation of the V. cholerae virulence cascade by a host signal molecule. They further provide a paradigm for recognition of the host environment in pathogenic bacteria through periplasmic cysteine oxidation.

  15. The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS produced by yogurt starter bacteria

    Directory of Open Access Journals (Sweden)

    Boke Hatice

    2010-01-01

    Full Text Available The aim of this study was to investigate a possible relation between EPS production and resistance to bile salts and tolerance to low pH. Eight strains which produced the highest and lowest amount of EPS (16- 211mg/l were selected among 54 bacteria isolated from yogurt. Additionally, they were tested for resistance to bile salts (0.15, 0.3 % and tolerance to low pH (2.0-3.0. After treatment with bile salts and acid, viable bacteria (log cfu ml-1 were determined by surface plating. The high EPS producing strains (B3, G12, W22 showed a significant (P<0.05 protective effect against low pH (pH 2.0. All Streptococcus thermophilus strains showed a higher tolerance to bile salts than the Lactobacillus delbrueckii subsp. bulgaricus strains. The high EPS-producing S. thermophilus (W22, T12 and L. bulgaricus (B3, G2 strains showed a significant (P<0.01 protective effect against bile salts (0.3 %.

  16. Bile Salt and Acid Tolerant of Lactic Acid Bacteria Isolated from Proventriculus of Broiler Chicken

    Directory of Open Access Journals (Sweden)

    E. Damayanti

    2014-08-01

    Full Text Available The aim of this research was to obtain the lactic acid bacteria (LAB as probiotic candidates which have resistance to bile salt and acid condition. LAB was obtained using isolation method from proventriculus of broiler chicken. Selective MRS media with 0.2% CaCO3 addition were used for LAB isolation using pour plate sampling method under anaerobic condition. The result showed that four selected isolates had morphological and biochemical characteristics as LAB. The selected LAB was characterized as follow: antibacterial activities, antibiotic sensitivity, resistance on bile salt, gastric juice and acid condition, and biochemical identification. Antibacterial activities assay of cell free supernatant was confirmed using disc paper diffusion method which was arranged on factorial design and each treatment consisted of three replications. The cell free supernatant of LAB isolates had antibacterial activities against Escherichia coli, Pseudomonas aerugenosa, and Salmonella pullorum. Molecular identification procedure using 16S rRNA sequence analysis showed that R01 and R02 as Pediococcus acidilactici. The viability of the two isolates were tested by acid pH (pH 1, 2, and 3, gastric juice pH 2, and bile salt condition for digestives tract simulation. The result showed that R01 and R02 had a high viability percentages at pH 1, 2, and 3 (95.45%, 99.49%, 104.01%, and 67.17%, 120.74%, 103.4%, respectively and at bile salt simulation for 1-2 hours (100.35%-102.71% and 100.02%-102.65%, respectively, but at gastric juice simulation for 1-2 hours, the P. acidilactici R01 had higher viability than P. acidilactici R02 (59.69%-76.53% versus 43.57%-40.69%, respectively. In the antibiotic sensitivity test for three antibiotics (i.e. erythromicin 15 µg, penicillin G 10 µg, and streptomycin 10 µg, the P. acidilactici R02 showed resistance to Streptomycin and Penicillin. It is concluded that P. acidilactici R01 and P. acidilactici R02 isolated from proventriculus

  17. Bile salt/phospholipid mixed micelle precursor pellets prepared by fluid-bed coating

    Directory of Open Access Journals (Sweden)

    Dong F

    2013-04-01

    Full Text Available Fuxia Dong,1,2 Yunchang Xie,1 Jianping Qi,1 Fuqiang Hu,3 Yi Lu,1 Sanming Li,2 Wei Wu1 1School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of Ministry of Education and PLA, Shanghai, People’s Republic of China; 2School of Pharmacy, Shenyang Pharmaceutical University, Liaoning, People’s Republic of China; 3School of Pharmacy, Zhejiang University, Hangzhou, People’s Republic of China Abstract: Bile salt/phospholipid mixed micelles (MMs are potent carriers used for oral absorption of drugs that are poorly soluble in water; however, there are many limitations associated with liquid formulations. In the current study, the feasibility of preparing bile salt/phospholipid MM precursor (preMM pellets with high oral bioavailability, using fluid-bed coating technology, was examined. In this study, fenofibrate (FB and sodium deoxycholate (SDC were used as the model drug and the bile salt, respectively. To prepare the MMs and to serve as the micellular carrier, a weight ratio of 4:6 was selected for the sodium deoxycholate/phospholipids based on the ternary phase diagram. Polyethylene glycol (PEG 6000 was selected as the dispersion matrix for precipitation of the MMs onto pellets, since it can enhance the solubilizing ability of the MMs. Coating of the MMs onto the pellets using the fluid-bed coating technology was efficient and the pellets were spherical and intact. MMs could be easily reconstituted from preMM pellets in water. Although they existed in a crystalline state in the preMM pellets, FB could be encapsulated into the reconstituted MMs, and the MMs were redispersed better than solid dispersion pellets (FB:PEG = 1:3 and Lipanthyl®. The redispersibility of the preMM pellets increased with the increase of the FB/PEG/micellar carrier. PreMM pellets with a FB:PEG:micellar carrier ratio of 1:1.5:1.5 showed 284% and 145% bioavailability relative to Lipanthyl® and solid dispersion pellets (FB:PEG = 1:3, respectively. Fluid

  18. The role of bile salt export pump mutations in progressive familial intrahepatic cholestasis type II

    OpenAIRE

    Wang, Lin; Soroka, Carol J.; Boyer, James L.

    2002-01-01

    PFIC II is a subtype of progressive familial intrahepatic cholestasis (PFIC) that is associated with mutations in the ABCB11 gene encoding the bile salt export pump (BSEP). However it is not known how these mutations cause this disease. To evaluate these mechanisms, we introduced seven PFIC II–associated missense mutations into rat Bsep and assessed their effects on Bsep membrane localization and transport function in MDCK and Sf9 cells, respectively. Five mutations, G238V, E297G, G982R, R115...

  19. The feline bile salt export pump: a structural and functional comparison with canine and human Bsep/BSEP

    OpenAIRE

    Beusekom, C.D. van; Heuvel, J.J.M.W. van den; Koenderink, J.B.; Schrickx, J.A.; Russel, F G M

    2013-01-01

    Background The bile salt export pump (BSEP/ABCB11) is the primary transporter for the excretion of bile acids from hepatocytes into bile. In human, inhibition of BSEP by drugs has been related to drug-induced cholestasis and subsequent cytotoxic effects. The role of BSEP in canine and feline liver diseases has not been studied in detail, but the same mechanism of inhibition by drugs as in humans could play a role in veterinary medicine. The aim of this study was to investigate the functional ...

  20. Oxysterol 22(R)-Hydroxycholesterol Induces the Expression of the Bile Salt Export Pump through Nuclear Receptor Farsenoid X Receptor but Not Liver X Receptor

    OpenAIRE

    Deng, Ruitang; Yang, Dongfang; Yang, Jian; Yan, Bingfang

    2005-01-01

    Oxysterols are intermediates in the synthesis of bile acids and steroid hormones from cholesterol and function as ligands for liver X receptor (LXR). Bile salt export pump (BSEP) is responsible for canalicular secretion of bile acids and is tightly regulated by its substrates bile acids through nuclear receptor farnesoid X receptor (FXR). In a microarray study using human hepatocytes, BSEP was markedly induced not only by chenodeoxycholic acid (CDCA) but also by oxysterol 22(R)-hydroxycholest...

  1. Membranolytic Activity of Bile Salts: Influence of Biological Membrane Properties and Composition

    Directory of Open Access Journals (Sweden)

    Alfred Blume

    2007-10-01

    Full Text Available The two main steps of the membranolytic activity of detergents: 1 the partitioning of detergent molecules in the membrane and 2 the solubilisation of the membrane are systematically investigated. The interactions of two bile salt molecules, sodium cholate (NaC and sodium deoxycholate (NaDC with biological phospholipid model membranes are considered. The membranolytic activity is analysed as a function of the hydrophobicity of the bile salt, ionic strength, temperature, membrane phase properties, membrane surface charge and composition of the acyl chains of the lipids. The results are derived from calorimetric measurements (ITC, isothermal titration calorimetry. A thermodynamic model is described, taking into consideration electrostatic interactions, which is used for the calculation of the partition coefficient as well as to derive the complete thermodynamic parameters describing the interaction of detergents with biological membranes (change in enthalpy, change in free energy, change in entropy etc. The solubilisation properties are described in a so-called vesicle-to-micelle phase transition diagram. The obtained results are supplemented and confirmed by data obtained from other biophysical techniques (DSC differential scanning calorimetry, DLS dynamic light scattering, SANS small angle neutron scattering.

  2. Multifaceted applications of bile salts in pharmacy: an emphasis on nanomedicine

    Directory of Open Access Journals (Sweden)

    Elnaggar YS

    2015-06-01

    Full Text Available Yosra SR Elnaggar Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt Abstract: The human body has long provided pharmaceutical science with biomaterials of interesting applications. Bile salts (BSs are biomaterials reminiscent of traditional surfactants with peculiar structure and self-assembled topologies. In the pharmaceutical field, BSs were employed on the basis of two different concepts. The first concept exploited BSs’ metabolic and homeostatic functions in disease modulation, whereas the second one utilized BSs’ potential to modify drug-delivery characteristics, which recently involved nanotechnology. This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain. Endogenous applications highlighted the role of BS in modulating hypercholesterolemia and cancer therapy in view of enterohepatic circulation. In addition, recent BS-integrated nanomedicines have been surveyed, chiefly size-tunable cholate nanoparticles, BS-lecithin mixed micelles, bilosomes, probilosomes, and surface-engineered bilosomes. A greater emphasis has been laid on nanosystems for vaccine and cancer therapy. The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted. Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined. Keywords: bile salt, nanomedicine, bilosomes, liposomes, size-tunable nanoparticles 

  3. Liposomes containing bile salts as novel ocular delivery systems for tacrolimus (FK506: in vitro characterization and improved corneal permeation

    Directory of Open Access Journals (Sweden)

    Dai Y

    2013-05-01

    Full Text Available Yikang Dai,1 Rui Zhou,2 Lin Liu,1 Yi Lu,2 Jianping Qi,2 Wei Wu21Department of Ophthalmology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 2Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, People's Republic of ChinaAbstract: The objective of this study was to investigate the potential of liposomes containing bile salts as an ophthalmic delivery system for tacrolimus to improve corneal permeability. Liposomes containing bile salts, including sodium taurocholate, sodium deoxycholate, and sodium glycocholate, were produced by the thin-film dispersion method with a particle size of approximately 100 nm and an entrapment efficiency of more than 90%. Less than 5% tacrolimus was released from conventional liposomes and from liposomes containing sodium taurocholate, sodium deoxycholate, or sodium glycocholate over 12 hours. The cellular uptake of conventional liposomes was significantly higher than that of liposomes containing bile salts. However, liposomes containing bile salts exerted a 3–4-fold increase of tacrolimus in ex vivo corneal transport of tacrolimus compared with conventional liposomes. When rabbit eyes were treated with a DiI perchlorate-loaded liposome suspension, liposomes containing bile salts showed fast and sustained penetration across the cornea. Unfortunately, liposomes containing sodium deoxycholate caused toxicity or irritation to both spontaneously derived human corneal epithelial cells and the rabbit cornea. Therefore, liposomes containing sodium taurocholate and sodium glycocholate are potential carriers in ocular drug delivery systems, given their low toxicity and vastly improved permeability.Keywords: liposomes, bile salt, tacrolimus, cornea, sodium taurocholate, sodium deoxycholate, sodium glycocholate

  4. TYPE 2 INOSITOL 1,4,5-TRISPHOSPHATE RECEPTOR MODULATES BILE SALT EXPORT PUMP ACTIVITY IN RAT HEPATOCYTES

    OpenAIRE

    Kruglov, Emma A.; Gautam, Samir; Guerra, Mateus T.; Nathanson, Michael H.

    2011-01-01

    Bile salt secretion is mediated primarily by the bile salt export pump (Bsep), a transporter on the canalicular membrane of the hepatocyte. However, little is known about the short-term regulation of Bsep activity. Ca2+ regulates targeting and insertion of transporters in many cell systems, and Ca2+ release near the canalicular membrane is mediated by the type II inositol 1,4,5-trisphosphate receptor (InsP3R2), so we investigated the possible role of InsP3R2 in modulating Bsep activity. The k...

  5. Bile Salt Sequestration Induces Hepatic De Novo Lipogenesis Through Farnesoid X Receptor- and Liver X Receptor alpha-Controlled Metabolic Pathways in Mice

    NARCIS (Netherlands)

    Herrema, Hillechien; Meissner, Maxi; van Dijk, Theo H.; Brufau Dones, Gemma; Boverhof, Renze; Oosterveer, Maaike H.; Reijngoud, Dirk-Jan; Muller, Michael; Stellaard, Frans; Groen, Albert K.; Kuipers, Folkert

    2010-01-01

    Diabetes is characterized by high blood glucose levels and dyslipidemia. Bile salt sequestration has been found to improve both plasma glycemic control and cholesterol profiles in diabetic patients. Yet bile salt sequestration is also known to affect triglyceride (TG) metabolism, possibly through si

  6. Bile salt sequestration induces hepatic de novo lipogenesis through farnesoid X receptor– and liver X receptora–controlled metabolic pathways in mice

    NARCIS (Netherlands)

    Herrema, H.J.; Meissner, M.; Dijk, van Th.; Brufau, G.; Boverhof, R.; Oosterveer, M.H.; Reijngoud, D.J.; Müller, M.R.; Stellaard, F.; Groen, A.K.; Kuipers, F.

    2010-01-01

    Diabetes is characterized by high blood glucose levels and dyslipidemia. Bile salt sequestration has been found to improve both plasma glycemic control and cholesterol profiles in diabetic patients. Yet bile salt sequestration is also known to affect triglyceride (TG) metabolism, possibly through si

  7. The unique ligand binding features of subfamily-II iLBPs with respect to bile salts and related drugs.

    Science.gov (United States)

    Favretto, Filippo; Ceccon, Alberto; Zanzoni, Serena; D'Onofrio, Mariapina; Ragona, Laura; Molinari, Henriette; Assfalg, Michael

    2015-04-01

    Intracellular lipid binding proteins (iLBPs) are a family of evolutionarily related small cytoplasmic proteins implicated in the transcellular transport of lipophilic ligands. Subfamily-II iLBPs include the liver fatty acid binding protein (L-FABP), and the ileal and the liver and ileal bile acid binding proteins (L-BABP and I-BABP). Atomic-level investigations during the past 15-20 years have delivered relevant information on bile acid binding by this protein group, revealing unique features including binding cooperativity, promiscuity, and site selectivity. Using NMR spectroscopy and other biophysical techniques, our laboratories have contributed to an understanding of the molecular determinants of some of these properties and their generality among proteins from different animal species. We focused especially on formation of heterotypic complexes, considering the mixed compositions of physiological bile acid pools. Experiments performed with synthetic bile acid derivatives showed that iLBPs could act as targets for cell-specific contrast agents and, more generally, as effective carriers of amphiphilic drugs. This review collects the major findings related to bile salt interactions with iLBPs aiming to provide keys for a deeper understanding of protein-mediated intracellular bile salt trafficking. PMID:25468388

  8. The Role of the Enterohepatic Circulation of Bile Salts and Nuclear Hormone Receptors in the Regulation of Cholesterol Homeostasis: Bile Salts as Ligands for Nuclear Hormone Receptors

    OpenAIRE

    Redinger, Richard N.

    2003-01-01

    The coordinated effect of lipid activated nuclear hormone receptors; liver X receptor (LXR), bound by oxysterol ligands and farnesoid X receptor (FXR), bound by bile acid ligands, act as genetic transcription factors to cause feed-forward cholesterol catabolism to bile acids and feedback repression of bile acid synthesis, respectively. It is the coordinated action of LXR and FXR, each dimerized to retinoid X receptor, that signal nuclear DNA response elements to encode proteins that prevent e...

  9. Bile duct obstruction

    Science.gov (United States)

    ... the liver. It contains cholesterol, bile salts, and waste products such as bilirubin . Bile salts help your ... can lead to life-threatening infection and a dangerous buildup of bilirubin. If the blockage lasts a ...

  10. Mice lacking Mrp3 (Abcc3) have normal bile salt transport, but altered hepatic transport of endogenous glucuronides

    NARCIS (Netherlands)

    N. Zelcer; K. van de Wetering; R. de Waart; G.L. Scheffer; H.U. Marschall; P.R. Wielinga; A. Kuil; C. Kunne; A. Smith; M. Valk; J. Wijnholds; R. Oude Elferink; P. Borst

    2006-01-01

    Background/Aim: Multidrug Resistance Protein 3 (MRP3) transports bile salts and glucuronide conjugates in vitro and is postulated to protect the liver in cholestasis. Whether the absence of Mrp3 affects these processes in vivo is tested. Methods: Mrp3-deficient mice were generated and the contributi

  11. Activity of the Bile Salt Export Pump (ABCB11) Is Critically Dependent on Canalicular Membrane Cholesterol Content

    NARCIS (Netherlands)

    C.C. Paulusma; D.R. de Waart; C. Kunne; K.S. Mok; R.P.J. Oude Elferink

    2009-01-01

    Mutations in ATP8B1 cause severe inherited liver disease. The disease is characterized by impaired biliary bile salt excretion (cholestasis), but the mechanism whereby impaired ATP8B1 function results in cholestasis is poorly understood. ATP8B1 is a type 4 P-type ATPase and is a flippase for phospha

  12. Bacterial Bile Metabolising Gene Abundance in Crohn's, Ulcerative Colitis and Type 2 Diabetes Metagenomes

    OpenAIRE

    Labbé, Alain; Ganopolsky, Jorge G.; Martoni, Christopher J.; Prakash, Satya; Jones, Mitchell L.

    2014-01-01

    We performed an analysis to determine the importance of bile acid modification genes in the gut microbiome of inflammatory bowel disease and type 2 diabetic patients. We used publicly available metagenomic datasets from the Human Microbiome Project and the MetaHIT consortium, and determined the abundance of bile salt hydrolase gene (bsh), 7 alpha-dehydroxylase gene (adh) and 7-alpha hydroxysteroid dehydrogenase gene (hsdh) in fecal bacteria in diseased populations of Crohn's disease (CD), Ulc...

  13. Bile salt liposomes for enhanced lymphatic transport and oral bioavailability of paclitaxel.

    Science.gov (United States)

    Zhang, Bin; Xue, Aiying; Zhang, Chen; Yu, Jinlong; Chen, Wen; Sun, Deqing

    2016-06-01

    Paclitaxel (PTX), a BCS class IV drug that is characterized by its poor solubility and is a substrate for P-glycoprotein, is one of the most widely used antineoplastic agents. However, oral administration of PTX for chemotherapy is highly challenging. The aim of this study was to develop bile-salt liposomes (BS-Lips) to enhance the absorption of PTX and thus improve its therapeutic outcome. The BS-Lips were prepared by the thin-film hydration method and characterized in terms of particle size and morphology. Drug release and in vitro stability in simulated gastrointestinal fluids and in media of different pH values were evaluated, as well as in vivo performance, including antitumor activity and pharmacokinetics in rats, with the plasma concentrations determined by a HPLC method. The PTX-loaded BS-Lips were successfully prepared with a diameter of approximately 150 nm and an entrapment efficiency of greater than 90 percent. Moreover, the BS-Lips were not affected by gastrointestinal enzymes or pH alternation, as evident from the unchanged particle size and the drug retained in BS-Lips after 6 h incubation. The insertion of bile salt into the lipid layer of liposomes increased the lymphatic transport of PTX by twofold. Importantly, BS-Lips increased the oral bioavailability of PTX by 2.5 and 4-fold, respectively, compared with conventional liposomes (Lips) and Taxol (free drug), thereby displaying a better inhibition of tumor growth that was similar to the group injected intravenously with Taxol. In conclusion, the BS-Lips represent promising vehicles for the oral delivery of PTX, thereby enabling an intravenous-to-oral switch for cancer chemotherapy. PMID:27455550

  14. Ultrafast fluorescence resonance energy transfer in a bile salt aggregate: Excitation wavelength dependence

    Indian Academy of Sciences (India)

    Ujjwal Mandal; Subhadip Ghosh; Dibyendu Kumar Das; Aniruddha Adhikari; Shantanu Dey; Kankan Bhattacharyya

    2008-01-01

    Fluorescence resonance energy transfer (FRET) from Coumarin 153 (C153) to Rhodamine 6G (R6G) in a secondary aggregate of a bile salt (sodium deoxycholate, NaDC) is studied by femtosecond up-conversion. The emission spectrum of C153 in NaDC is analysed in terms of two spectra-one with emission maximum at 480 nm which corresponds to a non-polar and hydrophobic site and another with maximum at ∼ 530 nm which arises from a polar hydrophilic site. The time constants of FRET were obtained from the rise time of the emission of the acceptor (R6G). In the NaDC aggregate, FRET occurs in multiple time scales -4 ps and 3700 ps. The 4 ps component is assigned to FRET from a donor (D) to an acceptor (A) held at a close distance (DA ∼ 17 Å) inside the bile salt aggregate. The 3700 ps component corresponds to a donor-acceptor distance ∼ 48 Å. The long (3700 ps) component may involve diffusion of the donor. With increase in the excitation wavelength (ex) from 375 to 435 nm, the relative contribution of the ultrafast component of FRET (∼ 4 ps) increases from 3 to 40% with a concomitant decrease in the contribution of the ultraslow component (∼3700 ps) from 97 to 60%. The ex dependence is attributed to the presence of donors at different locations. At a long ex (435 nm) donors in the highly polar peripheral region are excited. A short ex (375 nm) `selects’ donor at a hydrophobic location.

  15. Effects of bile salts and divalent cations on the adsorption of norfloxacin by agricultural soils.

    Science.gov (United States)

    Kong, Xuesong; Feng, Shixiang; Zhang, Xu; Li, Yan

    2014-04-01

    The effects of bile salts (sodium cholate and sodium deoxycholate, 0-20 mmol/L), divalent cations (Ca(2+), Mg(2+), Cu(2+) and Zn(2+), 0-20 mmol/L) or pH (3.0-10.0) on the adsorption of norfloxacin by three selected soils (Paddy_H, Paddy_G and Red_J) were systematically studied. Soil adsorption of norfloxacin follows a pseudo second-order kinetics model, and the maximum adsorption capacity has been determined from the nonlinear fit of the Langmuir isotherm model to be 88.8, 88.1 and 63.0 μmol/g for the adsorption onto Paddy_H, Paddy_G and Red_J, respectively. The results indicate that norfloxacin has a high adsorption affinity for the agricultural soils tested and that the organic content of these soils have at least a slight influence on this adsorption. The adsorption of norfloxacin to soils was strongly dependent on pH and exhibited a maximum at approximately pH 6. The presence of divalent cations prominently suppressed the adsorption of norfloxacin by paddy soils, which followed an order of Cu(2+) > Mg(2+) > Ca(2+) > Zn(2+), and by red soil, which followed an order of Cu(2+) > Zn(2+) > Ca(2+) > Mg(2+). The adsorption of norfloxacin (by the soils studied) sharply decreased as the amount of bile salts was increased. For uncharged norfloxacin at environmentally relevant pH values, such factors as soil type, exogenous divalent cations and macromolecules significantly altered the environmental fate and transport of norfloxacin between aquatic and soil interfaces. PMID:25079415

  16. Mechanistic insights into isoform-dependent and species-specific regulation of bile salt export pump by farnesoid X receptor

    OpenAIRE

    Song, Xiulong; Chen, Yuan; Valanejad, Leila; Kaimal, Rajani; Yan, Bingfang; Stoner, Matthew; Deng, Ruitang

    2013-01-01

    Expression of bile salt export pump (BSEP) is regulated by the bile acid/farnesoid X receptor (FXR) signaling pathway. Two FXR isoforms, FXRα1 and FXRα2, are predominantly expressed in human liver. We previously showed that human BSEP was isoform-dependently regulated by FXR and diminished with altered expression of FXRα1 and FXRα2 in patients with hepatocellular carcinoma. In this study, we demonstrate that FXRα1 and FXRα2 regulate human BSEP through two distinct FXR responsive elements (FXR...

  17. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    Science.gov (United States)

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-01

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  18. Gene expression changes associated with Barrett's esophagus and Barrett's-associated adenocarcinoma cell lines after acid or bile salt exposure

    Directory of Open Access Journals (Sweden)

    Sahbaie Peyman

    2007-06-01

    Full Text Available Abstract Background Esophageal reflux and Barrett's esophagus represent two major risk factors for the development of esophageal adenocarcinoma. Previous studies have shown that brief exposure of the Barrett's-associated adenocarcinoma cell line, SEG-1, or primary cultures of Barrett's esophageal tissues to acid or bile results in changes consistent with cell proliferation. In this study, we determined whether similar exposure to acid or bile salts results in gene expression changes that provide insights into malignant transformation. Methods Using previously published methods, Barrett's-associated esophageal adenocarcinoma cell lines and primary cultures of Barrett's esophageal tissue were exposed to short pulses of acid or bile salts followed by incubation in culture media at pH 7.4. A genome-wide assessment of gene expression was then determined for the samples using cDNA microarrays. Subsequent analysis evaluated for statistical differences in gene expression with and without treatment. Results The SEG-1 cell line showed changes in gene expression that was dependent on the length of exposure to pH 3.5. Further analysis using the Gene Ontology, however, showed that representation by genes associated with cell proliferation is not enhanced by acid exposure. The changes in gene expression also did not involve genes known to be differentially expressed in esophageal adenocarcinoma. Similar experiments using short-term primary cultures of Barrett's esophagus also did not result in detectable changes in gene expression with either acid or bile salt exposure. Conclusion Short-term exposure of esophageal adenocarcinoma SEG-1 cells or primary cultures of Barrett's esophagus does not result in gene expression changes that are consistent with enhanced cell proliferation. Thus other model systems are needed that may reflect the impact of acid and bile salt exposure on the esophagus in vivo.

  19. Intracellular Trafficking of Bile Salt Export Pump (ABCB11) in Polarized Hepatic Cells: Constitutive Cycling between the Canalicular Membrane and rab11-positive EndosomesV⃞

    OpenAIRE

    Wakabayashi, Yoshiyuki; Lippincott-Schwartz, Jennifer; Arias, Irwin M.

    2004-01-01

    The bile salt export pump (BSEP, ABCB11) couples ATP hydrolysis with transport of bile acids into the bile canaliculus of hepatocytes. Its localization in the apical canalicular membrane is physiologically regulated by the demand to secrete biliary components. To gain insight into how such localization is regulated, we studied the intracellular trafficking of BSEP tagged with yellow fluorescent protein (YFP) in polarized WIF-B9 cells. Confocal imaging revealed that BSEP-YFP was localized at t...

  20. Estrogen and Estrogen Receptor-α-Mediated Transrepression of Bile Salt Export Pump.

    Science.gov (United States)

    Chen, Yuan; Vasilenko, Alex; Song, Xiulong; Valanejad, Leila; Verma, Ruchi; You, Sangmin; Yan, Bingfang; Shiffka, Stephanie; Hargreaves, Leeza; Nadolny, Christina; Deng, Ruitang

    2015-04-01

    Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy is the most prevalent disorder with elevated serum bile acid levels. We have previously shown that estrogen 17β-estradiol (E2) transrepresses bile salt export pump (BSEP) through an interaction between estrogen receptor (ER)-α and farnesoid X receptor (FXR) and transrepression of BSEP by E2/ERα is an etiological contributing factor to intrahepatic cholestasis of pregnancy. Currently the mechanistic insights into such transrepression are not fully understood. In this study, the dynamics of coregulator recruitment to BSEP promoter after FXR activation and E2 treatment were established with quantitative chromatin immunoprecipitation assays. Coactivator peroxisome proliferator-activated receptor-γ coactivator-1 was predominantly recruited to the BSEP promoter upon FXR activation, and its recruitment was decreased by E2 treatment. Meanwhile, recruitment of nuclear receptor corepressor was markedly increased upon E2 treatment. Functional evaluation of ERα and ERβ chimeras revealed that domains AC of ERα are the determinants for ERα-specific transrepression on BSEP. Further studies with various truncated ERα proteins identified the domains in ERα responsible for ligand-dependent and ligand-independent transrepression. Truncated ERα-AD exhibited potent ligand-independent transrepressive activity, whereas ERα-CF was fully capable of transrepressing BSEP ligand dependently in vitro in Huh 7 cells and in vivo in mice. Both ERα-AD and ERα-CF proteins were associated with FXR in the coimmunoprecipitation assays. In conclusion, E2 repressed BSEP expression through diminishing peroxisome proliferator-activated receptor-γ coactivator-1 recruitment with a concurrent increase in nuclear receptor corepressor recruitment to the BSEP promoter. Domains AD and CF in ERα mediated ligand-independent and ligand-dependent transrepression on BSEP, respectively, through interacting with FXR. PMID:25675114

  1. Bile salts inhibit growth and induce apoptosis of culture human normal esophageal mucosal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Ru Zhang; Jun Gong; Hui Wang; Li Wang

    2005-01-01

    AIM: To investigate the effect of six bile salts:glycocholate (GC), glycochenodeoxycholate (GCDC),glycodeoxycholate (GDC), taurocholate (TC),taurochenodeoxycholate (TCDC), taurodeoxycholate (TDC), and their mixture on cultured human normal esophageal mucosal epithelial cells.METHODS: Human normal esophageal mucosal epithelial cells were cultured with serum-free keratinocyte medium. 3-[4,5-Dimethylthiaolyl]-2,5-diphenyl-tetrazolium bromide assay was applied to the detection of cell proliferation. Apoptotic morphology was observed by phase-contrast video microscopy and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Sub-G1 DNA fragmentations and early apoptotic cells were assayed by flow cytometry (FCM) with propidium iodide (PI) staining and annexin V-FITC conjugated with PI staining.Apoptotic DNA ladders on agarose gel electrophoresis were observed.RESULTS: Except for GC, GCDC, GDC, TC, TCDC, TDC and their mixture could initiate growth inhibition of esophageal mucosal epithelial cells in a dose- and time-dependent manner. TUNEL and FCM assays demonstrated that the bile salts at 500 μmol/L and their mixture at 1 500 μmol/L induced apoptosis except for GC. The percentage of sub-G1 detected by FCM with PI staining was 83.5% in cells treated with 500μmol/L TC for 2 h, and 19.8%, 20.4%, 25.6%, 13.5%, and 75.8% in cells treated with 500 μmol/L GCDC, TCDC, GDC,TDC, and 1 500 μmol/L mixture for 24 h, respectively,which were higher than that of the control (1.5%). The percentage was 1.4% in cells with 500 μmol/L GC for 24 h.DNA ladders on agarose gel electrophoresis were seen in cells treated with 500 μmol/L TC for 2 h and 1 500 μmol/Lmixture for 24 h.CONCLUSION: All GCDC, GDC, TC, TCDC, TDC and their mixture can inhibit growth and induce apoptosis of cultured human normal esophageal mucosal epithelial cells, but GC is well tolerated by the cells.

  2. Thermodynamics and structure of inclusion compounds of tauro- and glyco-conjugated bile salts and beta-cyclodextrin

    DEFF Research Database (Denmark)

    Holm, Rene; Shi, Wei; Andersen Hartvig, Rune;

    2009-01-01

    , and the structural differences in the interaction were investigated by H-1-ROESY NMR and molecular modeling. The beta-cyclodextrin was selected based upon its frequent use in preformulation and drug formulation as oral excipients for the solubilization of drug substances with low aqueous solubility. All......The interaction between natural beta-cyclodextrin and bile salts common in rat, dog and man, taurocholate, tauro-beta-muricholate, taurodeoxycholate, taurochenodeoxycholate, glycocholate, glycodeoxycholate and glycochenodeoxycholate, was studied using isothermal titration calorimetry...... the investigated bile salts possessed affinity for the cyclodextrin, though with large variations in the stability constants. The variations in the enthalpic and entropic contributions to the overall Gibbs free energy and consequently the stability constants revealed differences in the binding mode between...

  3. Early Identification of Clinically Relevant Drug Interactions with the Human Bile Salt Export Pump (BSEP; ABCB11)

    OpenAIRE

    Pedersen, Jenny M.; Matsson, Pär; Bergström, Christel A.S.; Hoogstraate, Janet; Norén, Agneta; LeCluyse, Edward L.; Artursson, Per

    2013-01-01

    A comprehensive analysis was performed to investigate how inhibition of the human bile salt export pump (BSEP/ABCB11) relates to clinically observed drug-induced liver injury (DILI). Inhibition of taurocholate (TA) transport was investigated in BSEP membrane vesicles for a data set of 250 compounds, and 86 BSEP inhibitors were identified. Structure-activity modeling identified BSEP inhibition to correlate strongly with compound lipophilicity, whereas positive molecular charge was associated w...

  4. Heterologous Overexpression and Mutagenesis of the Human Bile Salt Export Pump (ABCB11) Using DREAM (Directed REcombination-Assisted Mutagenesis)

    OpenAIRE

    Jan Stindt; Philipp Ellinger; Claudia Stross; Verena Keitel; Dieter Häussinger; Smits, Sander H. J.; Ralf Kubitz; Lutz Schmitt

    2011-01-01

    Homologous recombination in Saccharomyces cerevisiae is a well-studied process. Here, we describe a yeast-recombination-based approach to construct and mutate plasmids containing the cDNA of the human bile salt export pump (BSEP) that has been shown to be unstable in E. coli. Using this approach, we constructed the necessary plasmids for a heterologous overexpression of BSEP in the yeast Pichia pastoris. We then applied a new site-directed mutagenesis method, DREAM (Directed REcombination-Ass...

  5. The Hypolipidemic Agent Guggulsterone Regulates the Expression of Human Bile Salt Export Pump: Dominance of Transactivation over Farsenoid X Receptor-Mediated Antagonism

    OpenAIRE

    Deng, Ruitang; Yang, Dongfang; Radke, Amy; Yang, Jian; Yan, Bingfang

    2006-01-01

    Conversion of cholesterol to bile acids in the liver is initiated by the rate-limiting enzyme cholesterol 7α-hydroxylase (CYP7A1) and excretion of bile acids from the liver is mediated by the bile salt export pump (BSEP). The expression of CYP7A1 and BSEP is coordinately regulated by a negative feedback and positive feed-forward mechanism, respectively, through bile acid-mediated activation of farsenoid X receptor (FXR). It is well established that hypolipidemic agent guggulsterone is an FXR ...

  6. Computational investigation of enthalpy-entropy compensation in complexation of glycoconjugated bile salts with β-cyclodextrin and analogs.

    Science.gov (United States)

    Tidemand, Kasper D; Schönbeck, Christian; Holm, René; Westh, Peter; Peters, Günther H

    2014-09-18

    The inclusion complexes of glycoconjugated bile salts with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrins (HP-β-CD) in aqueous solution were investigated by molecular dynamics simulations to provide a molecular explanation of the experimentally observed destabilizing effect of the HP substituents. Good agreement with experimental data was found with respect to penetration depths of CDs. An increased degree of HP substitution (DS) resulted in an increased probability of blocking the cavity opening, thereby hindering the bile salt from entering CD. Further, the residence time of water molecules in the cavity increased with the DS. Release of water from the cavity resulted in a positive enthalpy change, which correlates qualitatively with the experimentally determined increase in complexation enthalpy and contributes to the enthalpy-entropy compensation. The positive change in complexation entropy with DS was not able to compensate for this unfavorable change in enthalpy induced by the HP substituents, resulting in a destabilizing effect. This was found to originate from fixation of the HP substituents and decreased free rotation of the bile salts within the CD cavities.

  7. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate.

    Science.gov (United States)

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-11-17

    Recently [Neubrand, M. W., et al. (2015) Biochemistry 54, 1542-1557], we determined a concentration-dependent monomer-dimer-tetramer equilibrium in aqueous bilirubin ditaurate (BDT) solutions and explored the nature of high-affinity binding of BDT monomers with monomers and micelles of the common taurine-conjugated bile salts (BS). We now investigate, employing complementary physicochemical methods, including fluorescence emission spectrophotometry and quasi-elastic light scattering spectroscopy, the influence of phosphatidylcholine (PC), the predominant phospholipid of bile and calcium, the major divalent biliary cation, on these self-interactions and heterointeractions. We have used short-chain, lyso and long-chain PC species as models and contrasted our results with those of parallel studies employing unconjugated bilirubin (UCB) as the fully charged dianion. Both bile pigments interacted with the zwitterionic headgroup of short-chain lecithins, forming water-soluble (BDT) and insoluble ion-pair complexes (UCB), respectively. Upon micelle formation, BDT monomers apparently remained at the headgroup mantle of short-chain PCs, but the ion pairs with UCB became internalized within the micelle's hydrophobic core. BDT interacted with the headgroups of unilamellar egg yolk (EY) PC vesicles; however, with the simultaneous addition of CaCl2, a reversible aggregation took place, but not vesicle fusion. With mixed EYPC/BS micelles, BDT became bound to the hydrophilic surface (as with simple BS micelles), and in turn, both BDT and BS bound calcium, but not other divalent cations. The calcium complexation of BDT and BS was enhanced strongly with increases in micellar EYPC, suggesting calcium-mediated cross-bridging of hydrophilic headgroups at the micelle's surface. Therefore, the physicochemical binding of BDT to BS in an artificial bile medium is influenced not only by BS species and concentration but also by long-chain PCs and calcium ions that exert a specific rather

  8. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate.

    Science.gov (United States)

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-11-17

    Recently [Neubrand, M. W., et al. (2015) Biochemistry 54, 1542-1557], we determined a concentration-dependent monomer-dimer-tetramer equilibrium in aqueous bilirubin ditaurate (BDT) solutions and explored the nature of high-affinity binding of BDT monomers with monomers and micelles of the common taurine-conjugated bile salts (BS). We now investigate, employing complementary physicochemical methods, including fluorescence emission spectrophotometry and quasi-elastic light scattering spectroscopy, the influence of phosphatidylcholine (PC), the predominant phospholipid of bile and calcium, the major divalent biliary cation, on these self-interactions and heterointeractions. We have used short-chain, lyso and long-chain PC species as models and contrasted our results with those of parallel studies employing unconjugated bilirubin (UCB) as the fully charged dianion. Both bile pigments interacted with the zwitterionic headgroup of short-chain lecithins, forming water-soluble (BDT) and insoluble ion-pair complexes (UCB), respectively. Upon micelle formation, BDT monomers apparently remained at the headgroup mantle of short-chain PCs, but the ion pairs with UCB became internalized within the micelle's hydrophobic core. BDT interacted with the headgroups of unilamellar egg yolk (EY) PC vesicles; however, with the simultaneous addition of CaCl2, a reversible aggregation took place, but not vesicle fusion. With mixed EYPC/BS micelles, BDT became bound to the hydrophilic surface (as with simple BS micelles), and in turn, both BDT and BS bound calcium, but not other divalent cations. The calcium complexation of BDT and BS was enhanced strongly with increases in micellar EYPC, suggesting calcium-mediated cross-bridging of hydrophilic headgroups at the micelle's surface. Therefore, the physicochemical binding of BDT to BS in an artificial bile medium is influenced not only by BS species and concentration but also by long-chain PCs and calcium ions that exert a specific rather

  9. In vitro lipid peroxidation of intestinal bile salt-based nanoemulsions: potential role of antioxidants.

    Science.gov (United States)

    Courraud, J; Charnay, C; Cristol, J P; Berger, J; Avallone, S

    2013-12-01

    Over the last decades, oxidative stress has been described as a deleterious phenomenon contributing to numerous noncommunicable diseases such as cardiovascular disease, diabetes, and cancers. As many authors ascribed the healthy effect of fruit and vegetable consumption mainly to their antioxidant contents, it has been hypothesized that their protection could occur from the gut. Therefore, the aim of this study was to develop an original and physiological model of nanoemulsions to study lipid peroxidation within the intestine and to assess the properties of potential antioxidants in this setting. Several nanoemulsions were compared in terms of physical characteristics and reactivity to 2,2'-azobis-(2-amidinopropane) hydrochloride (AAPH)-induced oxidation. Formulations included different types of lipids, a detergent (a conjugated bile salt or sodium dodecyl sulfate) and, finally, lipophilic antioxidants. Hemin and myoglobin were also tested as relevant potential oxidants. Fatty acid (FA) peroxidation was monitored by gas chromatography while malondialdehyde and antioxidant contents were measured by HPLC. Investigated nanoemulsions were composed of spherical or cylindrical mixed micelles, the latter being the least resistant to oxidation. In the experimental conditions, AAPH was the only efficient oxidant. Alpha-tocopherol and lutein significantly slowed FA degradation from 4 to 1 μM, respectively. On the contrary, beta-carotene did not show any protective capacity at 4 μM. In conclusion, the tested nanoemulsions were appropriate to assess antioxidant capacity during the intestinal phase of digestion.

  10. Enhanced oral absorption of insulin-loaded liposomes containing bile salts: a mechanistic study.

    Science.gov (United States)

    Niu, Mengmeng; Tan, Ya'nan; Guan, Peipei; Hovgaard, Lars; Lu, Yi; Qi, Jianping; Lian, Ruyue; Li, Xiaoyang; Wu, Wei

    2014-01-01

    Liposomes containing bile salts (BS-liposomes) significantly enhanced the oral bioavailability of insulin (rhINS). However, the underlying absorption mechanisms have not been well understood yet. In this study, the transiting fate of the liposomes was first investigated using fluorescent imaging tools to confirm the effect of enhanced gastrointestinal stability. In order to obtain evidence of enhanced transcellular permeation, the interaction between BS-liposomes and the biomembrane was investigated in Caco-2 cell lines. BS-liposomes were found to be more stable in the gastrointestinal tract by showing prolonged residence time in comparison with conventional liposomes. BS-liposomes were significantly more effective for cellular uptake and transport of rhINS; and this effect was found to be size- and concentration-dependent. A good linear correlation was observed between the concentration of the liposomes and uptake/transport of rhINS. Confocal laser scanning microscopy visualization further validated the transcellular transit of BS-liposomes. The BS-liposomes showed little effect on cytotoxicity and did not induce apoptosis within 24h investigation. It was concluded that BS-liposomes showed improved in vivo residence time and enhanced permeation across the biomemebranes. Mechanisms of trans-enterocytic internalization could be proposed as an interpretation for enhanced absorption of insulin-loaded liposomes.

  11. NF-E2- related factor 2 (Nrf2) is a positive regulator of human bile salt export pump (BSEP) expression*

    OpenAIRE

    Weerachayaphorn, Jittima; Cai, Shi-Ying; Soroka, Carol J.; Boyer, James L.

    2009-01-01

    The bile salt export pump (BSEP, ABCB11) is the major determinant of bile salt dependent bile secretion and its deficiency leads to cholestatic liver injury. BSEP/Bsep gene expression is regulated by the nuclear farnesoid X receptor (FXR). However, BSEP expression is retained in the liver of the Fxr−/− mice although reduced, indicating that there may be additional transcriptional factors that regulate its expression. The NF-E2-related factor-2 (Nrf2) plays a major role in response to oxidativ...

  12. The mechanism of increased biliary lipid secretion in mice with genetic inactivation of bile salt export pump.

    Science.gov (United States)

    Gooijert, K E R; Havinga, R; Wolters, H; Wang, R; Ling, V; Tazuma, S; Verkade, H J

    2015-03-01

    Human bile salt export pump (BSEP) mutations underlie progressive familial intrahepatic cholestasis type 2 (PFIC2). In the PFIC2 animal model, Bsep(-/-) mice, biliary secretion of bile salts (BS) is decreased, but that of phospholipids (PL) and cholesterol (CH) is increased. Under physiological conditions, the biliary secretion of PL and CH is positively related ("coupled") to that of BS. We aimed to elucidate the mechanism of increased biliary lipid secretion in Bsep(-/-) mice. The secretion of the BS tauro-β-muricholic acid (TβMCA) is relatively preserved in Bsep(-/-) mice. We infused Bsep(-/-) and Bsep(+/+) (control) mice with TβMCA in stepwise increasing dosages (150-600 nmol/min) and determined biliary bile flow, BS, PL, and CH secretion. mRNA and protein expression of relevant canalicular transporters was analyzed in livers from noninfused Bsep(-/-) and control mice. TβMCA infusion increased BS secretion in both Bsep(-/-) and control mice. The secreted PL or CH amount per BS, i.e., the "coupling," was continuously two- to threefold higher in Bsep(-/-) mice (P Bsep(-/-) mice (Abcg5; P Bsep(-/-) mice could be excluded. We conclude that the mechanism of increased biliary lipid secretion in Bsep(-/-) mice is based on increased expression of the responsible canalicular transporter proteins. PMID:25552583

  13. Bile salt-stimulated lipase plays an unexpected role in arthritis development in rodents.

    Directory of Open Access Journals (Sweden)

    Susanne Lindquist

    Full Text Available OBJECTIVE: The present study aimed to explore the hypothesis that bile salt-stimulated lipase (BSSL, in addition to being a key enzyme in dietary fat digestion during early infancy, plays an important role in inflammation, notably arthritis. METHODS: Collagen-induced arthritis (CIA and pristane-induced arthritis (PIA in rodents are commonly used experimental models that reproduce many of the pathogenic mechanisms of human rheumatoid arthritis, i.e. increased cellular infiltration, synovial hyperplasia, pannus formation, and erosion of cartilage and bone in the distal joints. We used the CIA model to compare the response in BSSL wild type (BSSL-WT mice with BSSL-deficient 'knock-out' (BSSL-KO and BSSL-heterozygous (BSSL-HET littermates. We also investigated if intraperitoneal injection of BSSL-neutralizing antibodies affected the development or severity of CIA and PIA in mice and rats, respectively. RESULTS: In two consecutive studies, we found that BSSL-KO male mice, in contrast to BSSL-WT littermates, were significantly protected from developing arthritis. We also found that BSSL-HET mice were less prone to develop disease compared to BSSL-WT mice, but not as resistant as BSSL-KO mice, suggesting a gene-dose effect. Moreover, we found that BSSL-neutralizing antibody injection reduced both the incidence and severity of CIA and PIA in rodents. CONCLUSION: Our data strongly support BSSL as a key player in the inflammatory process, at least in rodents. It also suggests the possibility that BSSL-neutralizing agents could serve as a therapeutic model to reduce the inflammatory response in humans.

  14. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review.

    Science.gov (United States)

    Cheng, Yaofeng; Woolf, Thomas F; Gan, Jinping; He, Kan

    2016-08-01

    The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross

  15. Computational Investigation of Enthalpy-Entropy Compensation in Complexation of Glycoconjugated Bile Salts with β-Cyclodextrin and Analogs

    DEFF Research Database (Denmark)

    Tidemand, Kasper Damgaard; Schonbeck, Christian; Holm, Rene;

    2014-01-01

    of water molecules in the cavity increased with the DS. Release of water from the cavity resulted in a positive enthalpy change, which correlates qualitatively with the experimentally determined increase in complexation enthalpy and contributes to the enthalpy-entropy compensation. The positive change...... in complexation entropy with DS was not able to compensate for this unfavorable change in enthalpy induced by the HP substituents, resulting in a destabilizing effect. This was found to originate from fixation of the HP substituents and decreased free rotation of the bile salts within the CD cavities....

  16. Photoactive bile salts with critical micellar concentration in the micromolar range.

    Science.gov (United States)

    Gomez-Mendoza, Miguel; Marin, M Luisa; Miranda, Miguel A

    2016-05-14

    The aggregation behavior of bile salts is strongly dependent on the number of hydroxyl groups. Thus, cholic acid (CA), with three hydroxyls, starts forming aggregates at 15 mM, while deoxycholic, chenodeoxycholic or ursodeoxycholic acids, with two hydroxyls, start aggregating at 5-10 mM; for lithocholic acid, with only one hydroxyl group, aggregation is observed at lower concentration (2-3 mM). Here, the singular self-assembling properties of dansyl and naproxen derivatives of CA (3β-Dns-CA and 3β-NPX-CA, respectively) have been demonstrated on the basis of their photoactive properties. Thus, the emission spectra of 3β-Dns-CA registered at increasing concentrations (25-140 μM) showed a remarkable non-linear enhancement in the emission intensity accompanied by a hypsochromic shift of the maximum and up to a three-fold increase in the singlet lifetime. The inflection point at around 50-70 μM pointed to the formation of unprecedented assemblies at such low concentrations. In the case of 3β-NPX-CA, when the NPX relative triplet lifetime was plotted against concentration, a marked increase (up to two-fold) was observed at 40-70 μM, indicating the formation of new 3β-NPX-CA assemblies at ca. 50 μM. Additional evidence supporting the formation of new 3β-Dns-CA or 3β-NPX-CA assemblies at 40-70 μM was obtained from singlet excited state quenching experiments using iodide. Moreover, to address the potential formation of hybrid assemblies, 1 : 1 mixtures of 3β-Dns-CA and 3β-NPX-CA (2-60 μM, total concentration) were subjected to steady-state fluorescence experiments, and their behavior was compared to that of the pure photoactive derivatives. A lower increase in the emission was observed for 3β-NPX-CA in the mixture, while a huge increase was experienced by 3β-Dns-CA in the same concentration range (up to 60 μM total). A partial intermolecular energy transfer from NPX to Dns, consistent with their reported singlet energies, was revealed, pointing to the

  17. Determination of bile salt critical micellization concentration on the road to drug discovery.

    Science.gov (United States)

    Natalini, Benedetto; Sardella, Roccaldo; Gioiello, Antimo; Ianni, Federica; Di Michele, Alessandro; Marinozzi, Maura

    2014-01-01

    With the discovery of the bile acid (BA)-activated nuclear and membrane receptors, the role of BAs as signalling molecules in important paracrine and endocrine networks has been fully documented in the last decade. Besides regulating their own synthesis and transport, BAs have been demonstrated being involved in triggering the adaptive response to cholestasis and other insults to liver. More to the point, their recognized ability to control the general energy-related metabolism and inflammation processes has contributed to justify the renewed interest towards this class of amphiphilic steroidal compounds. All these evidences feed a continuing interest in the BA research aimed at designing and synthesizing new side chain- and body-modified derivatives endowed with improved biological and physico-chemical profiles, as well as with proper ADMET behaviour. In this context, the micellar aggregation of BAs, and the respective critical micellization concentration (CMC) value (determined on the BA sodium salt, BS), is considered a key parameter that needs to be determined in the preliminary phase of compound characterization, being implicated in cytotoxicity issues. An extraordinary variety of different analytical techniques and methods have been proposed along the years with the aim of better identifying the start of the self-aggregation process of BS monomers. The unicity of the physico-chemical nature of such class of compounds can be invoked to explain this unusual interest. Accordingly, a number of both invasive and non-invasive approaches have been developed along with a limited number of indirect chromatographic-based estimation strategies. Worth to be mentioned among the non-invasive determination methods are those based on potentiometry, freezing point depression, surface tension, nuclear magnetic resonance, viscosimetry, turbidimetry, microcalorimetry, refractometry, conductimetry, spectrophotometry, cholesterol solubilization, and monoglucuronide solubilization

  18. Complexation of tauro- and glyco-conjugated bile salts with alpha-cyclodextrin and hydroxypropyl-alpha-cyclodextrin studied by affinity capillary electrophoresis and molecular modelling

    DEFF Research Database (Denmark)

    Holm, Rene; Schönbeck, Jens Christian Sidney; Askjær, Sune;

    2011-01-01

    electrophoresis. The cyclodextrins are applied as excipients for solubilisation of drug substances with poor aqueous solubility. Accurate determination of stability constants is challenging for weak analyte–ligand interactions such as the conjugated bile salt α-cyclodextrin interactions. A new approach...... for correction of medium effects due to the high additive concentrations in the background electrolyte was introduced. The use of prostaglandin A1 as an interacting marker molecule offered a more satisfactory approach for correction than the commonly employed methods based on viscosity or current ratios...... affinities toward the substituted cyclodextrin. Molecular modelling demonstrated that the interaction between the two species involves the side chain of the bile salt. All together, these results indicate minor bile salt-mediated displacement of substances from α-cyclodextrin complexes in the small intestine....

  19. Interaction of a dietary fiber (pectin) with gastrointestinal components (bile salts, calcium, and lipase): a calorimetry, electrophoresis, and turbidity study.

    Science.gov (United States)

    Espinal-Ruiz, Mauricio; Parada-Alfonso, Fabián; Restrepo-Sánchez, Luz-Patricia; Narváez-Cuenca, Carlos-Eduardo; McClements, David Julian

    2014-12-31

    An in vitro gastrointestinal model consisting of oral, gastric, and intestinal phases was used to elucidate the impact of pectin on the digestion of emulsified lipids. Pectin reduced the extent of lipid digestion, which was attributed to its binding interactions with specific gastrointestinal components. The interaction of pectin with bile salts, lipase, CaCl2, and NaCl was therefore investigated by turbidity, microstructure, electrophoresis, and isothermal titration calorimetry (ITC) at pH 7.0 and 37 °C. ITC showed that the interaction of pectin was endothermic with bile salts, but exothermic with CaCl2, NaCl, and lipase. Electrophoresis, microstructure, and turbidity measurements showed that anionic pectin formed electrostatic complexes with calcium ions, which may have decreased lipid digestion due to increased lipid flocculation or microgel formation because this would reduce the surface area of lipid exposed to the lipase. This research provides valuable insights into the physicochemical and molecular mechanisms of the interaction of pectin with gastrointestinal components that may affect the rate and extent of lipid digestion.

  20. The Association between Bile Salt Export Pump Single-Nucleotide Polymorphisms and Primary Biliary Cirrhosis Susceptibility and Ursodeoxycholic Acid Response

    Directory of Open Access Journals (Sweden)

    Rui-rui Chen

    2014-01-01

    Full Text Available Background. Primary biliary cirrhosis (PBC is a chronic and progressive cholestasis liver disease. Bile salt export pump (BSEP is the predominant bile salt efflux system of hepatocytes. BSEP gene has been attached great importance in the susceptibility of PBC and the response rate of ursodeoxycholic acid (UDCA treatment of PBC patients. Methods. In this study, TaqMan assay was used to genotype four variants of BSEP, and the Barcelona criteria were used for evaluating the response rate of UDCA treatment. Results. Variant A allele of BSEP rs473351 (dominant model, OR = 2.063; 95% CI, 1.254–3.393; P=0.004 was highly associated with PBC susceptibility. On the contrary, variant A allele of BSEP rs2287618 (dominant model, OR = 0.617; 95% CI, 0.411–0.928; P=0.020 provided a protective role and Barcelona evaluation criterion indicated that the frequency of variant allele at BSEP rs2287618 was significantly decreased in UDCA-responsive PBC patients (P=0.021. Conclusion. These results suggested that BSEP rs473351 was closely associated with the susceptibility of PBC and if people with BSEP rs2287618 were diagnosed as PBC, the UDCA treatment was not satisfactory. Larger studies with mixed ethnicity subjects and stratified by clinical and subclinical characteristics are needed to validate our findings.

  1. The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding.

    Science.gov (United States)

    Moore, S A; Kingston, R L; Loomes, K M; Hernell, O; Bläckberg, L; Baker, H M; Baker, E N

    2001-09-21

    Human bile salt-stimulated lipase (BSSL), which is secreted from the pancreas into the digestive tract and from the lactating mammary gland into human milk, is important for the effective absorption of dietary lipids. The dependence of BSSL on bile acids for activity with water-insoluble substrates differentiates it from other lipases. We have determined the crystal structure of a truncated variant of human BSSL (residues 1-5.8) and refined it at 2.60 A resolution, to an R-factor of 0.238 and R(free) of 0.275. This variant lacks the C-terminal alpha-helix and tandem C-terminal repeat region of native BSSL, but retains full catalytic activity. A short loop (residues 115-126) capable of occluding the active-site (the active site loop) is highly mobile and exists in two conformations, the most predominant of which leaves the active-site open for interactions with substrate. The bile salt analogue 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonic acid (CHAPS) was present in the crystallisation medium, but was not observed bound to the enzyme. However, the structure reveals a sulfonate group from the buffer piperizine ethane sulfonic acid (PIPES), making interactions with Arg63 and His115. His115 is part of the active-site loop, indicating that the loop could participate in the binding of a sulphate group from either the glycosaminoglycan heparin (known to bind BSSL) or a bile acid such as deoxycholate. Opening of the 115-126 active-site loop may be cooperatively linked to a sulphate anion binding at this site. The helix bundle domain of BSSL (residues 319-398) exhibits weak electron density and high temperature factors, indicating considerable structural mobility. This domain contains an unusual Asp:Glu pair buried in a hydrophobic pocket between helices alpha(H) and alpha(K) that may be functionally important. We have also solved the structure of full-length glycosylated human BSSL at 4.1 A resolution, using the refined coordinates of the truncated molecule as

  2. Determination of stability constants of tauro- and glyco-conjugated bile salts with the negatively charged sulfobutylether-β-cyclodextrin: comparison of affinity capillary electrophoresis and isothermal titration calorimetry and thermodynamic analysis of the interaction

    DEFF Research Database (Denmark)

    Holm, René; Østergaard, Jesper; Schönbeck, Jens Christian Sidney;

    2014-01-01

    The aim of the present work was to investigate the interaction between bile salts present in the intestine of man, dog and rat with the negatively charged cyclodextrin (CD), sulfobutylether-β-cyclodextrin (SBEβCD). The interactions between bile salts and CDs are of importance for the release of C...

  3. Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae.

    Science.gov (United States)

    Bachmann, Verena; Kostiuk, Benjamin; Unterweger, Daniel; Diaz-Satizabal, Laura; Ogg, Stephen; Pukatzki, Stefan

    2015-01-01

    The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen's arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.

  4. Bile Salts Modulate the Mucin-Activated Type VI Secretion System of Pandemic Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Verena Bachmann

    Full Text Available The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen's arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS. This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.

  5. Comparison of the effects of feeding Indian fish liver oils supplemented with or without cholesterol and bile salts on certain enzymes in liver, heart and serum of rats

    Directory of Open Access Journals (Sweden)

    Tanksale K

    1978-01-01

    Full Text Available The enzymes viz. glucose-6-P-dehydrogenase (EC 1.1.1.49, cholesterol esterase (EC 3.1.1.13, aspartate amino transferase (EC 2.6.1.1 and alanine amino transferase (2.6.1.2 are intimately related to lipid metabolism. Hence their activities are bound to be affected by the type of dietary fat and substances like bile salts and cholesterol which also influence the lipid metabolism. This relationship between dietary lipid constituent and enzymes was studied in albino rats maintained on diets containing three Indian Shark Liver Oils viz. Waghbeer, Khada mushi and Pisori supple-mented with or without cholesterol and bile salts, Enzyme activities were studied in liver, heart and serum. It was noted that higher unsaturation of dietary fat increased the activity of glucose-6-P-dehydrogenase enzyme while activities of transaminases and chole-sterol esterase were lowered. Addition of cholesterol and bile salts to these diets decreased the activity of glucose-6-P-dehydrogenase and hydrolytic activity of cholesterol esterase. There was increase in the activities of transaminases and esterifying activity of choles-terol esterase due to supplementation with cholesterol and bile salts.

  6. Heterologous overexpression and mutagenesis of the human bile salt export pump (ABCB11 using DREAM (Directed REcombination-Assisted Mutagenesis.

    Directory of Open Access Journals (Sweden)

    Jan Stindt

    Full Text Available Homologous recombination in Saccharomyces cerevisiae is a well-studied process. Here, we describe a yeast-recombination-based approach to construct and mutate plasmids containing the cDNA of the human bile salt export pump (BSEP that has been shown to be unstable in E. coli. Using this approach, we constructed the necessary plasmids for a heterologous overexpression of BSEP in the yeast Pichia pastoris. We then applied a new site-directed mutagenesis method, DREAM (Directed REcombination-Assisted Mutagenesis that completely bypasses E. coli by using S. cerevisiae as the plasmid host with high mutagenesis efficiency. Finally, we show how to apply this strategy to unstable non-yeast plasmids by rapidly turning an existing mammalian BSEP expression construct into a S. cerevisiae-compatible plasmid and analyzing the impact of a BSEP mutation in several mammalian cell lines.

  7. Effects of Bile Salt Sodium Glycodeoxycholate on the Self-Assembly of PEO-PPO-PEO Triblock Copolymer P123 in Aqueous Solution.

    Science.gov (United States)

    Bayati, Solmaz; Galantini, Luciano; Knudsen, Kenneth D; Schillén, Karin

    2015-12-22

    A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.

  8. Hypolipidemic agent Z-guggulsterone: metabolism interplays with induction of carboxylesterase and bile salt export pump

    OpenAIRE

    Yang, Dongfang; Yang, Jian; Shi, Deshi; Xiao, Da; Chen, Yi-Tzai; Black, Chris; Deng, Ruitang; Yan, Bingfang

    2012-01-01

    Z-Guggulsterone is a major ingredient in the Indian traditional hypolipidemic remedy guggul. A study in mice has established that its hypolipidemic effect involves the farnesoid X receptor (FXR), presumably by acting as an antagonist of this receptor. It is generally assumed that the antagonism leads to induction of cytochrome P450 7A1 (CYP7A1), the rate-limiting enzyme converting free cholesterol to bile acids. In this study, we tested whether Z-guggulsterone indeed induces human CYP7A1. In ...

  9. Exon-skipping and mRNA decay in human liver tissue: molecular consequences of pathogenic bile salt export pump mutations

    OpenAIRE

    Carola Dröge; Heiner Schaal; Guido Engelmann; Daniel Wenning; Dieter Häussinger; Ralf Kubitz

    2016-01-01

    The bile salt export pump BSEP mediates bile formation. Over 150 BSEP mutations are associated with progressive familial intrahepatic cholestasis type 2 (PFIC-2), with few characterised specifically. We examined liver tissues from two PFIC-2 patients compound heterozygous for the splice-site mutation c.150 + 3A > C and either c.2783_2787dup5 resulting in a frameshift with a premature termination codon (child 1) or p.R832C (child 2). Splicing was analysed with a minigene system and mRNA sequen...

  10. New chitosan salt in gastro-resistant oral formulation could interfere with enteric bile salts emulsification of diet fats: preliminary laboratory observations and physiologic rationale.

    Science.gov (United States)

    Fratter, Andrea; Frare, Carmen; Uras, Giovanni; Bonini, Mauro; Casari Bariani, Enrico; Ragazzo, Barbara; Gaballo, Paolo; Longobardi, Pasquale; Codemo, Carlo; Paoli, Antonio

    2014-06-01

    Chitosan (CH) is a polymer of glucosamine that is extracted from the shells of several sea fruits. It is well recognized as a nutritional supplement that is used to reduce body weight and blood lipid levels, but its clinical efficacy has not been clearly demonstrated. The true mechanism of action and physiological processes involved in these properties of CH are not yet understood or explained. The most accepted theories assume that CH reduces dietary fat absorption by trapping the fat in the gastric lumen. The very low pH of the gastric lumen induces CH jellification and, therefore, entrapment of the fats. This article describes the most plausible mechanism by which CH interferes with fat absorption in the first part of the enteric tract while interacting with cholic acids. We emphasize the weak points of the classic CH-containing formulations, which are unable to prove this theory. We also report preliminary experimental data of a new CH salt-containing formulation that is capable of effectively interfering with bile salt emulsification processes and, as a result, reducing dietary fat absorption.

  11. Technical Pitfalls and Improvements for High-speed Screening and QSAR Analysis to Predict Inhibitors of the Human Bile Salt Export Pump (ABCB11/BSEP)

    OpenAIRE

    Saito, Hikaru; Osumi, Masako; Hirano, Hiroyuki; Shin, Wangsoo; Nakamura, Ryota; Ishikawa, Toshihisa

    2009-01-01

    Drug-induced hepatotoxicity is one of the major problems encountered in drug discovery and development. Selection of a candidate compound for pre-clinical studies in the drug discovery process is a critical step that can determine the speed and expenditure of clinical development. Because inhibition of human adenosine triphosphate-binding cassette transporter ABCB11 (SPGP/bile salt export pump) has severe consequences, which include intrahepatic cholestasis and hepatotoxicity, resulting from ...

  12. The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase.

    OpenAIRE

    Bernbäck, S; Bläckberg, L; Hernell, O

    1990-01-01

    Gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase all have potential roles in digestion of human milk triacylglycerol. To reveal the function of each lipase, an in vitro study was carried out with purified lipases and cofactors, and with human milk as substrate. Conditions were chosen to resemble those of the physiologic environment in the gastrointestinal tract of breast-fed infants. Gastric lipase was unique in its ability to initiate hydrolysis of milk t...

  13. Toward Predicting Drug-Induced Liver Injury: Parallel Computational Approaches to Identify Multidrug Resistance Protein 4 and Bile Salt Export Pump Inhibitors

    OpenAIRE

    Welch, Matthew A.; Köck, Kathleen; Urban, Thomas J.; Brouwer, Kim L.R.; Swaan, Peter W.

    2015-01-01

    Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were ...

  14. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines.

    Science.gov (United States)

    Aburahma, Mona Hassan

    2016-07-01

    Most of the new drugs, biological therapeutics (proteins/peptides) and vaccines have poor performance after oral administration due to poor solubility or degradation in the gastrointestinal tract (GIT). Though, vesicular carriers exemplified by liposomes or niosomes can protect the entrapped agent to a certain extent from degradation. Nevertheless, the harsh GIT environment exemplified by low pH, presence of bile salts and enzymes limits their capabilities by destabilizing them. In response to that, more resistant bile salts-containing vesicles (BS-vesicles) were developed by inclusion of bile salts into lipid bilayers constructs. The effectiveness of orally administrated BS-vesicles in improving the performance of vesicles has been demonstrated in researches. Yet, these attempts did not gain considerable attention. This is the first review that provides a comprehensive overview of utilizing BS-vesicles as a promising pharmaceutical carrier with a special focus on their successful applications in oral delivery of therapeutic macromolecules and vaccines. Insights on the possible mechanisms by which BS-vesicles improve the oral bioavailability of the encapsulated drug or immunological response of entrapped vaccine are explained. In addition, methods adopted to prepare and characterize BS-vesicles are described. Finally, the gap in the scientific researches tackling BS-vesicles that needs to be addressed is highlighted. PMID:25390191

  15. Determination of thermodynamic potentials and the aggregation number for micelles with the mass-action model by isothermal titration calorimetry: A case study on bile salts.

    Science.gov (United States)

    Olesen, Niels Erik; Westh, Peter; Holm, René

    2015-09-01

    The aggregation number (n), thermodynamic potentials (ΔG, ΔH, ΔS) and critical micelle concentration (CMC) for 6 natural bile salts were determined on the basis of both original and previously published isothermal titration calorimetry (ITC) data. Different procedures to estimate parameters of micelles with ITC were compared to a mass-action model (MAM) of reaction type: n⋅S⇌Mn. This analysis can provide guidelines for future ITC studies of systems behaving in accordance with this model such as micelles and proteins that undergo self-association to oligomers. Micelles with small aggregation numbers, as those of bile salts, are interesting because such small aggregates cannot be characterized as a separate macroscopic phase and the widely applied pseudo-phase model (PPM) is inaccurate. In the present work it was demonstrated that the aggregation number of micelles was constant at low concentrations enabling determination of the thermodynamic potentials by the MAM. A correlation between the aggregation number and the heat capacity was found, which implies that the dehydrated surface area of bile salts increases with the aggregation number. This is in accordance with Tanford's principles of opposing forces where neighbouring molecules in the aggregate are better able to shield from the surrounding hydrophilic environment when the aggregation number increases.

  16.  Bile salt export pump deficiency disease: two novel, late onset, ABCB11 mutations identified by next generation sequencing.

    Science.gov (United States)

    Vitale, Giovanni; Pirillo, Martina; Mantovani, Vilma; Marasco, Elena; Aquilano, Adelia; Gamal, Nesrine; Francalanci, Paola; Conti, Fabio; Andreone, Pietro

    2016-01-01

     Progressive familial intrahepatic cholestasis (PFIC) is a heterogeneous group of autosomal recessive cholestatic diseases of childhood and represents the main indication for liver transplantation at this age; PFIC2 involves ABCB11 gene, that encodes the ATPdependent canalicular bile salt export pump (BSEP). Benign intrahepatic cholestasis (BRIC) identifies a group of diseases involving the same genes and characterized by intermittent attacks of cholestasis with no progression to liver cirrhosis. Diagnosis with standard sequencing techniques is expensive and available only at a few tertiary centers. We report the application of next generation sequencing (NGS) in the diagnosis of the familial intrahepatic cholestasis with a parallel sequencing of three causative genes. We identified the molecular defects in ABCB11 gene in two different probands who developed a severe cholestatic disease of unknown origin. In the first patient a compound heterozygosity for the novel frameshift mutation p.Ser1100GlnfsX38 and the missense variant p.Glu135Lys was detected. In the second patient, triggered by contraceptive therapy, we identified homozygosity for a novel missense variant p.Ala523Gly. In conclusion, these mutations seem to have a late onset and a less aggressive clinical impact, acting as an intermediate form between BRIC and PFIC. PMID:27493120

  17. Downregulation of p63 upon exposure to bile salts and acid in normal and cancer esophageal cells in culture.

    Science.gov (United States)

    Roman, Sabine; Pétré, Aurélia; Thépot, Amélie; Hautefeuille, Agnès; Scoazec, Jean-Yves; Mion, François; Hainaut, Pierre

    2007-07-01

    p63 is a member of the p53 protein family that regulates differentiation and morphogenesis in epithelial tissues and is required for the formation of squamous epithelia. Barrett's mucosa is a glandular metaplasia of the squamous epithelium that develops in the lower esophagus in the context of chronic, gastroesophageal reflux and is considered as a precursor for adenocarcinoma. Normal or squamous cancer esophageal cells were exposed to deoxycholic acid (DCA, 50, 100, or 200 microM) and chenodeoxycholic and taurochenodeoxycholic acid at pH 5. p63 and cyclooxygenase-2 (COX-2) expressions were studied by Western blot and RT-PCR. DCA exposure at pH 5 led to a spectacular decrease in the levels of all isoforms of the p63 proteins. This decrease was observed within minutes of exposure, with a synergistic effect between DCA and acid. Within the same time frame, levels of p63 mRNA were relatively unaffected, whereas levels of COX-2, a marker of stress responses often induced in Barrett's mucosa, were increased. Similar results were obtained with chenodeoxycholic acid but not its taurine conjugate at pH 5. Proteasome inhibition by lactacystin or MG-132 partially blocked the decrease in p63, suggesting a posttranslational degradation mechanism. These results show that combined exposure to bile salt and acid downregulates a critical regulator of squamous differentiation, providing a mechanism to explain the replacement of squamous epithelium by a glandular metaplasia upon exposure of the lower esophagus to gastric reflux. PMID:17615180

  18. Chronic effect of oral cholestyramine, a bile salt sequestrant, and exogenous cholecystokinin on insulin release in rats.

    Science.gov (United States)

    Kogire, M; Gomez, G; Uchida, T; Ishizuka, J; Greeley, G H; Thompson, J C

    1992-01-01

    Oral cholestyramine, a bile salt sequestrant, stimulates pancreatic exocrine secretion and growth chiefly by increasing cholecystokinin (CCK) release. In this report, we examine pancreatic insulin content and insulin release from the isolated perfused pancreas in rats given oral cholestyramine (4%, wt/wt) or subcutaneous CCK-8 (1 micrograms/kg every 8 h) for 2 weeks. Cholestyramine significantly increased pancreatic weight by 32%. CCK administration significantly increased pancreatic weight by 15%. Total pancreatic content of protein and DNA were also increased significantly by cholestyramine and pancreatic protein content was increased significantly by CCK administration. Total pancreatic insulin content was not affected by cholestyramine or CCK. Both cholestyramine and CCK significantly increased the first phase of glucose (8.4 mM)-stimulated release of insulin [mean insulin output (ng/min): control, 2.0 +/- 0.1; cholestyramine, 2.7 +/- 0.2; CCK, 2.6 +/- 0.2]. Cholestyramine also significantly enhanced the second phase of glucose-stimulated release of insulin. Insulin release stimulated by CCK-8 (10(-10) M) was not affected by oral cholestyramine or CCK treatment. These findings indicate that oral cholestyramine and exogenous CCK have a stimulatory effect on beta cell function. Since pancreatic insulin content was not affected by cholestyramine and CCK treatment, cholestyramine and CCK may increase the sensitivity of beta cells to glucose. The absence of a stimulatory effect of cholestyramine and CCK administration on insulin release in response to CCK-8 may be related to a down-regulation of CCK receptors on beta cells.

  19. Role of polymorphic bile salt export pump (BSEP, ABCB11) transporters in anti-tuberculosis drug-induced liver injury in a Chinese cohort

    OpenAIRE

    Ru Chen; Jing Wang; Shaowen Tang; Yuan Zhang; Xiaozhen Lv; Shanshan Wu; Zhirong Yang; Yinyin Xia; Dafang Chen; Siyan Zhan

    2016-01-01

    Evidence indicates that the polymorphisms in bile salt export pump (BSEP, encoded by ABCB11) may play an important role in the development of anti-tuberculosis drug-induced liver injury (ATDILI) and we aim to investigate the association between genetic variants of ABCB11 and the risk of ATDILI in a Chinese cohort. A total of 89 tuberculosis patients with ATDILI and 356 matched ATDILI -free patients constituted cases and controls. Genetic polymorphisms of ABCB11 were determined by TaqMan singl...

  20. Self-assembly of aqueous bilirubin ditaurate, a natural conjugated bile pigment, to contraposing enantiomeric dimers and M(-) and P(+) tetramers and their selective hydrophilic disaggregation by monomers and micelles of bile salts.

    Science.gov (United States)

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-02-24

    The solution behavior of bilirubin ditaurate (BDT), the first naturally occurring conjugated bile pigment to be physically and chemically characterized, was assessed in aqueous solution and in monomeric and micellar solutions of common taurine-conjugated bile salts (BS). Analytical ultracentrifugation revealed that BDT self-associates in monomer-dimer equilibria between 1 and 500 μM, forming limiting tetramers at low millimolar concentrations. Self-association was enthalpically driven with ΔG values of ≈5 kcal/mol, suggesting strong hydrophobic interactions. Added NaCl and decreases in temperature shifted the oligomerization to lower BDT concentrations. On the basis of circular dichroism spectra and the limiting size of the self-aggregates, we infer that the tetramers are composed of 2P(+) and 2M(-) enantiomeric BDT pairs in "ridge-tile" conformations interacting in a "double-bookend" structure. With added monomeric BS, blue shifts in the UV-vis spectra and tight isosbestic points revealed that BDT/BS heterodimers form, followed by BDT "decorating" BS micelles mostly via hydrophilic interactions. Conformational enantiomerism, fluorescence intensities, and anisotropy, as well as resistance of the hybrid particles to disaggregation in 6 M urea, suggested that two or three hydrogen-bonding sites bound BDT monomers to the hydroxyl groups of BS, possibly via pyrrole-π-orbital-OH interactions. BDT stabilized these interactions by enveloping the BS in its "ridge-tile" pincers with variable strain that maximized van der Waals interactions. Possibly because the BDT molecule becomes highly strained with BS subtending a 7β-hydroxyl group, BDT became totally resistant to oxidation in air. This work predicts that, because of BS dissolution of the BDT self-aggregates, BS/bilirubin hybrid particles, which are stabilized hydrophilically, are likely to be the dominant mode of transport for all conjugated bilirubins in bile. PMID:25671490

  1. Self-assembly of aqueous bilirubin ditaurate, a natural conjugated bile pigment, to contraposing enantiomeric dimers and M(-) and P(+) tetramers and their selective hydrophilic disaggregation by monomers and micelles of bile salts.

    Science.gov (United States)

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-02-24

    The solution behavior of bilirubin ditaurate (BDT), the first naturally occurring conjugated bile pigment to be physically and chemically characterized, was assessed in aqueous solution and in monomeric and micellar solutions of common taurine-conjugated bile salts (BS). Analytical ultracentrifugation revealed that BDT self-associates in monomer-dimer equilibria between 1 and 500 μM, forming limiting tetramers at low millimolar concentrations. Self-association was enthalpically driven with ΔG values of ≈5 kcal/mol, suggesting strong hydrophobic interactions. Added NaCl and decreases in temperature shifted the oligomerization to lower BDT concentrations. On the basis of circular dichroism spectra and the limiting size of the self-aggregates, we infer that the tetramers are composed of 2P(+) and 2M(-) enantiomeric BDT pairs in "ridge-tile" conformations interacting in a "double-bookend" structure. With added monomeric BS, blue shifts in the UV-vis spectra and tight isosbestic points revealed that BDT/BS heterodimers form, followed by BDT "decorating" BS micelles mostly via hydrophilic interactions. Conformational enantiomerism, fluorescence intensities, and anisotropy, as well as resistance of the hybrid particles to disaggregation in 6 M urea, suggested that two or three hydrogen-bonding sites bound BDT monomers to the hydroxyl groups of BS, possibly via pyrrole-π-orbital-OH interactions. BDT stabilized these interactions by enveloping the BS in its "ridge-tile" pincers with variable strain that maximized van der Waals interactions. Possibly because the BDT molecule becomes highly strained with BS subtending a 7β-hydroxyl group, BDT became totally resistant to oxidation in air. This work predicts that, because of BS dissolution of the BDT self-aggregates, BS/bilirubin hybrid particles, which are stabilized hydrophilically, are likely to be the dominant mode of transport for all conjugated bilirubins in bile.

  2. Bile acid transporters in health and disease

    OpenAIRE

    Kosters, Astrid; Karpen, Saul J

    2008-01-01

    In recent years the discovery of a number of major transporter proteins expressed in the liver and intestine specifically involved in bile acid transport has led to improved understanding of bile acid homeostasis and the enterohepatic circulation. Na+-dependent bile acid uptake from portal blood into the liver is mediated primarily by the Na+ taurocholate co-transporting polypeptide (NTCP), while secretion across the canalicular membrane into bile is carried out by the Bile salt export pump (...

  3. PENGIKATAN GARAM EMPEDU OLEH SUSU KEDELAI TERFERMENTASI DAN STABILITASNYA TERHADAP PEPSIN DAN PANKREATIN [Binding of Bile Salts by Fermented Soymilk and Its Stability Against Pepsin and Pancreatin

    Directory of Open Access Journals (Sweden)

    Yusmarini1*

    2013-06-01

    Full Text Available Processed soybean products especially the fermented ones have beneficial health effects since they are capable of reducing the level of plasmacholesterol (hypocholesterolemic effect. One of the mechanisms is by increasing the binding of bile salt. This research was aimed to assess the ability of soymilk, fermented soymilk products and fermented soymilk products combined with enzymatic hydrolysis to bind bile salts. The stability of the binding against hydrolysis by digestive enzymes (pepsin and pancreatin was also evaluated. Fermented soybean products inoculated with isolates of L. plantarum 1 R.11.1.2 was be able to bind 1.40 μmol/100 mg protein (62.26% of natrium taurocholate. This binding ability is slightly higher than that of soymilk to natrium taurocholate, i.e.1.33 μmol/100 mg protein (59.04%. Addition of a protease enzyme specific to hydrophobic amino acid (thermolysin on fermented soymilk products was able to enhance the ability of bind natrium taurocholate. Enzymatic hydrolysis products having a molecular weight of <7 kDa could bind 1.51 μmol/100 mg protein natrium taurocholate (67.4%. There was a significant increase in the binding, i.e. 7.9% by the fermented products or an increase of 13.5% from soymilk. Meanwhile peptides measuring ≥7 kDa showed no binding ability against natrium taurocholate.

  4. Effects of encapsulation on the viability of potential probiotic Lactobacillus plantarum exposed to high acidity condition and presence of bile salts.

    Science.gov (United States)

    Tee, W F; Nazaruddin, R; Tan, Y N; Ayob, M K

    2014-09-01

    This study investigated the survival of encapsulated potential probiotic Lactobacillus plantarum which isolated from fermented cocoa beans. κ-Carrageenan was used to encapsulate the probiotic. Encapsulation techniques such as emulsification, freeze-drying or extrusion were adopted to encapsulate the probiotic. Freeze-drying and extrusion methods showed higher (p < 0.05) efficiency (89.48 ± 3.21 and 92.26 ± 1.45%, respectively) in encapsulating the probiotic compared to the emulsification method (82.19 ± 0.71% efficiency). Freeze-dried encapsulated probiotic L. plantarum was selected for further survival analysis as greater amount of beads were produced compared to the extrusion method. Freeze-dried probiotic was found to have significantly (p < 0.05) higher tolerance to acid at pH 2 with higher survival percentage compared to non-encapsulated probiotic. However, freeze-drying encapsulation was proven not to enhance the resistance of the probiotic to bile salt as evidenced by the one log colony reduction as for the non-encapsulated probiotic. Further modification of freeze-drying encapsulation technique is needed to enhance the survival of the encapsulated potential probiotic L. plantarum toward bile salt in the future.

  5. Exon-skipping and mRNA decay in human liver tissue: molecular consequences of pathogenic bile salt export pump mutations.

    Science.gov (United States)

    Dröge, Carola; Schaal, Heiner; Engelmann, Guido; Wenning, Daniel; Häussinger, Dieter; Kubitz, Ralf

    2016-01-01

    The bile salt export pump BSEP mediates bile formation. Over 150 BSEP mutations are associated with progressive familial intrahepatic cholestasis type 2 (PFIC-2), with few characterised specifically. We examined liver tissues from two PFIC-2 patients compound heterozygous for the splice-site mutation c.150 + 3A > C and either c.2783_2787dup5 resulting in a frameshift with a premature termination codon (child 1) or p.R832C (child 2). Splicing was analysed with a minigene system and mRNA sequencing from patients' livers. Protein expression was shown by immunofluorescence. Using the minigene, c.150 + 3A > C causes complete skipping of exon 3. In liver tissue of child 1, c.2783_2787dup5 was found on DNA but not on mRNA level, implying nonsense-mediated mRNA decay (NMD) when c.2783_2787dup5 is present. Still, BSEP protein as well as mRNA with and without exon 3 were detectable and can be assigned to the c.150 + 3A > C allele. Correctly spliced transcripts despite c.150 + 3A > C were also confirmed in liver of child 2. In conclusion, we provide evidence (1) for effective NMD due to a BSEP frameshift mutation and (2) partial exon-skipping due to c.150 + 3A > C. The results illustrate that the extent of exon-skipping depends on the genomic and cellular context and that regulation of splicing may have therapeutic potential. PMID:27114171

  6. Selenium- or tellurium- containing bile acids and derivatives thereof

    International Nuclear Information System (INIS)

    This invention relates to the preparation of selenium and tellurium derivatives, particularly γ-emitting radioactive derivatives of bile acids and bile salts. Such compounds are valuable in the examination of body function, especially small bowel function. (author)

  7. Proliposomes containing a bile salt for oral delivery of Ginkgo biloba extract: Formulation optimization, characterization, oral bioavailability and tissue distribution in rats.

    Science.gov (United States)

    Zheng, Bin; Teng, Lirong; Xing, Gaoyang; Bi, Ye; Yang, Shuang; Hao, Fei; Yan, Guodong; Wang, Xinmei; Lee, Robert J; Teng, Lesheng; Xie, Jing

    2015-09-18

    Proliposomes containing a bile salt were developed to improve the oral bioavailability of Ginkgo biloba extract (GbE). GbE loaded proliposomes (P-GbE) were successfully prepared by spray drying method. The formulation was optimized using the response surface methodology. FE-SEM, DSC, and FT-IR were used to study the surface morphology and molecular state of proliposomes, and demonstrated key interactions between the formulation ingredients. In vitro studies showed delayed release and enhanced dissolution of Ginkgo flavonoids and terpene lactones from GbE proliposomes. Proliposomes significantly enhanced GbE absorption in the gastrointestinal tract and decreased its elimination. The bioavailabilities of quercetin, kaempferol, isorhmnetin, ginkgolide A, ginkgolide B and ginkgolide C from proliposomes relative to the control were 245%, 211%, 264%, 203%, 333%, and 294%, respectively. Proliposomes were shown to selectively deliver GbE to critical target tissues. In conclusion, development of proliposomes formulation for GbE solved the problem of its poor oral bioavailability, prolonged its duration of action, and increased drug distribution in critical tissues, especially in the brain, therefore, warrant further investigation.

  8. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose.

    Science.gov (United States)

    Niu, Mengmeng; Lu, Yi; Hovgaard, Lars; Guan, Peipei; Tan, Yanan; Lian, Ruyue; Qi, Jianping; Wu, Wei

    2012-06-01

    Oral delivery of protein or polypeptide drugs remains a challenge due to gastric and enzymatic degradation as well as poor permeation across the intestinal epithelia. In this study, liposomes containing bile salts were developed as a new oral insulin delivery system. The primary goal was to investigate the effect of cholate type, particle size and dosage of the liposomes on the hypoglycemic activity and oral bioavailability. Liposomes containing sodium glycocholate (SGC), sodium taurocholate (STC) or sodium deoxycholate (SDC) were prepared by a reversed-phase evaporation method. After oral administration, all liposomes elicited a certain degree of hypoglycemic effect in parallel with an increase in blood insulin level. The highest oral bioavailability of approximately 8.5% and 11.0% could be observed with subcutaneous insulin as reference for SGC-liposomes in non-diabetic and diabetic rats, respectively. Insulin-loaded liposomes showed slower and sustained action over a period of over 20 h with peak time around 8-12h. SGC-liposomes showed higher oral bioavailability than liposomes containing STC or SDC and conventional liposomes. The hypoglycemic effect was size-dependent with the highest at 150 nm or 400 nm and was proportionally correlated to the administered dose. The results supported the hypothesis of insulin absorption as intact liposomes.

  9. Role of polymorphic bile salt export pump (BSEP, ABCB11) transporters in anti-tuberculosis drug-induced liver injury in a Chinese cohort.

    Science.gov (United States)

    Chen, Ru; Wang, Jing; Tang, Shaowen; Zhang, Yuan; Lv, Xiaozhen; Wu, Shanshan; Yang, Zhirong; Xia, Yinyin; Chen, Dafang; Zhan, Siyan

    2016-01-01

    Evidence indicates that the polymorphisms in bile salt export pump (BSEP, encoded by ABCB11) may play an important role in the development of anti-tuberculosis drug-induced liver injury (ATDILI) and we aim to investigate the association between genetic variants of ABCB11 and the risk of ATDILI in a Chinese cohort. A total of 89 tuberculosis patients with ATDILI and 356 matched ATDILI -free patients constituted cases and controls. Genetic polymorphisms of ABCB11 were determined by TaqMan single-nucleotide polymorphism (SNP) genotyping assay. Odds ratio (OR) with 95% confidence intervals (CIs) was estimated by conditional logistic regression model. There were no significant differences in genotype frequencies of ABCB11 between cases and controls. In the subgroup analysis, polymorphisms of rs2287616 were found to be associated with cholestatic/mixed pattern of liver injury under dominant and addictive model (OR = 3.84, 95% CI:1.16-12.75, P = 0.028 and OR = 2.51, 95% CI:1.12-5.62, P = 0.025, respectively), however the significance disappeared after Bonferroni correction. This study suggested that genetic variants of ABCB11 gene might contribute to anti-tuberculosis drug-induced cholestatic liver injury in Chinese patients. Studies in larger, varied populations are required to confirm these findings. PMID:27293027

  10. Thermal stabilization of bicelles by a bile-salt-derived detergent: a combined ³¹P and ²H nuclear magnetic resonance study.

    Science.gov (United States)

    Morales, Hannah Hazel; Saleem, Qasim; Macdonald, Peter M

    2014-12-23

    The properties of bicelles composed of mixtures of long-chain lipids dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG), stabilized by zwitterionic bile salt analogue 3-[(3-cholamidopropyl)dimethyl-d6-ammonio]-2-hydroxy-1-propanesulfonate (CHAPSO-d6), deuterated at both amino methyls, were investigated by a combination of (31)P and (2)H NMR, focusing on the behavior of CHAPSO as a function of temperature. For compositions of molar ratio q = [DMPC + DMPG]/[CHAPSO] = 3, R = [DMPG]/[DMPC + DMPG] = 0, 0.01 and 0.10 and lipid concentration CL = 25 wt % lipid at temperatures of between 30 and 60 °C, magnetic alignment was readily achieved as assessed via both (31)P NMR of the phospholipids and (2)H NMR of CHAPSO-d6. Increasing temperature yielded higher values for the chemical shift anisotropy of the former and the quadrupole splitting of the latter, consistent with the progressive migration of CHAPSO from edge regions into planar regions of the bicellar assemblies. However, relative to dihexadecyl phosphatidylcholine (DHPC), CHAPSO exhibited lower miscibility with DMPC, although the presence of DMPG enhanced this miscibility. At 65 °C, thermal instability became evident in the appearance of a separate isotropic component in both (31)P and (2)H NMR spectra. This isotropic phase was CHAPSO-enriched but less so as a function of increasing DMPG. These findings indicate that the enhanced thermal stability of CHAPSO- versus DHPC-containing bicelles arises from a combination of the larger surface area that edge CHAPSO is able to mask, mole for mole, and its relative preference for edge regions, plus, possibly, specific interactions with DMPG. PMID:25426518

  11. Identification of the bile salt binding site on ipad from Shigella flexneri and the influence of ligand binding on IpaD structure

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Guragain, Manita; Adam, Philip; Dickenson, Nicholas E.; Patil, Mrinalini; Geisbrecht, Brian V.; Picking, Wendy L.; Picking, William D. (UMKC); (OKLU)

    2012-10-25

    Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nano-machine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices {alpha}3 and {alpha}7, with concomitant movement in the orientation of helix {alpha}7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC-bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.

  12. Toward predicting drug-induced liver injury: parallel computational approaches to identify multidrug resistance protein 4 and bile salt export pump inhibitors.

    Science.gov (United States)

    Welch, Matthew A; Köck, Kathleen; Urban, Thomas J; Brouwer, Kim L R; Swaan, Peter W

    2015-05-01

    Drug-induced liver injury (DILI) is an important cause of drug toxicity. Inhibition of multidrug resistance protein 4 (MRP4), in addition to bile salt export pump (BSEP), might be a risk factor for the development of cholestatic DILI. Recently, we demonstrated that inhibition of MRP4, in addition to BSEP, may be a risk factor for the development of cholestatic DILI. Here, we aimed to develop computational models to delineate molecular features underlying MRP4 and BSEP inhibition. Models were developed using 257 BSEP and 86 MRP4 inhibitors and noninhibitors in the training set. Models were externally validated and used to predict the affinity of compounds toward BSEP and MRP4 in the DrugBank database. Compounds with a score above the median fingerprint threshold were considered to have significant inhibitory effects on MRP4 and BSEP. Common feature pharmacophore models were developed for MRP4 and BSEP with LigandScout software using a training set of nine well characterized MRP4 inhibitors and nine potent BSEP inhibitors. Bayesian models for BSEP and MRP4 inhibition/noninhibition were developed with cross-validated receiver operator curve values greater than 0.8 for the test sets, indicating robust models with acceptable false positive and false negative prediction rates. Both MRP4 and BSEP inhibitor pharmacophore models were characterized by hydrophobic and hydrogen-bond acceptor features, albeit in distinct spatial arrangements. Similar molecular features between MRP4 and BSEP inhibitors may partially explain why various drugs have affinity for both transporters. The Bayesian (BSEP, MRP4) and pharmacophore (MRP4, BSEP) models demonstrated significant classification accuracy and predictability. PMID:25735837

  13. Bile resistance mechanisms in Lactobacillus and Bifidobacterium

    Directory of Open Access Journals (Sweden)

    Lorena eRuiz

    2013-12-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonise our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesised in the liver from cholesterol. Host enzymes conjugate the newly synthesised free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilisation of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile.

  14. Bile resistance mechanisms in Lactobacillus and Bifidobacterium.

    Science.gov (United States)

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  15. Study on the ability of bile salt-binding among different tea extracts in vitro%不同茶浸提液对胆酸盐的结合及其降血脂机理的研究

    Institute of Scientific and Technical Information of China (English)

    胡凯; 黄惠华

    2011-01-01

    The binding capacity of the extracts from green tea,Oolong tea,Puer tea,dark tea and black tea to bile salts were compared as well as the correlation between tea polyphenol and the bile salts binding capability in vitro under the conditions of the simulated human digestive environment.The results showed that the rate of bile salts-binding was fast and there was a significant correlation between the bile salts binding capacity and tea polyphenol content.Relative to cholestyrammine,green tea extract showed the 38.4% binding capacity for sodium taurocholate,46.5% for glycocholate and 42.0% for sodium cholate,exhibiting the maximum binding capability,followed by the semi-fermented(e.g.Oolong tea)and fully fermented teas(e.g.Puer tea,black tea and dark tea).%在体外模拟人体消化环境,研究绿茶浸提液对胆酸盐的等温吸附性质,比较不同茶浸提液对胆酸盐的结合能力,同时探讨了茶多酚含量与茶浸提液结合胆酸盐的相关关系。结果表明,茶浸提液对胆酸盐结合速度较快,Freundilich等温式、Langmiur等温式均能良好地反映绿茶浸提液对胆酸盐的结合;绿茶浸提液结合胆酸盐的能力最强,其结合牛磺胆酸钠、甘氨胆酸钠、胆酸钠的量分别是考来烯胺的38.4%、46.5%和42.0%;其次是半发酵茶(铁观音,35.2%、41.7%和42.6%)、发酵茶(普洱茶、滇红茶和六堡茶)。不同茶浸

  16. Application of spray granulation for conversion of mixed phospholipid-bile salt micelles to dry powder form: influence of drug hydrophobicity on nanoparticle reagglomeration

    Directory of Open Access Journals (Sweden)

    Lv QY

    2014-01-01

    in vivo performance of the dried powder obtained after spray granulation.Keywords: cucurbitacin B, glycyrrhizin, mixed phospholipid-bile salt micelles, fluid bed granulation, poorly water soluble drugs

  17. Conjugated primary bile salts reduce permeability of endotoxin through bacteria-stimulated intestinal epithelial cells and synergize with lecithin in suppression of inflammatory cytokine production

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schaeckeler, Simone; Moser, Lydia;

    2007-01-01

    : The effect of CPBS (0.5 mM and 1.5 mM), phosphatidylcholine(0.38 mM), and human bile (0.5% vol/vol) on the barrier function was assessed by the measurement of transepithelial electrical resistance, by endotoxin permeability through the intestinal epithelial cell layer, and by basolateral cytokine enzyme...

  18. Equilibrium and kinetic factors influencing bile sequestrant efficacy.

    Science.gov (United States)

    Luner, P E; Amidon, G L

    1992-05-01

    In vitro bile salt binding equilibria and kinetic studies were performed with cholestyramine to determine how these factors influence bile sequestrant efficacy in vivo. Chloride ion at physiologic concentrations caused more than a twofold reduction in glycocholate (GCH) binding, compared to binding in the absence of salt, over a range of GCH concentrations and was also observed to displace bound GCH. In addition, chloride ion displaced from cholestyramine as a result of bile salt binding was measured using a chloride selective electrode, and the results show that bile salt binding is due to ion exchange. Comparison of the results of the equilibrium binding experiments to human data shows that the effect of anion binding competition alone cannot account for the lack of efficacy of cholestyramine. Consideration of other effects, such as additional binding competition or poor availability for binding, based on data from the literature, shows that adequate bile salt binding potential exists and that these interferences are not major factors influencing resin efficacy. In kinetic studies, both binding uptake of GCH and displacement of GCH from cholestyramine by chloride ion were relatively rapid, indicating that cholestyramine should equilibrate rapidly with bile salts in the GI tract. Based on these findings, it is suggested that the low efficacy of cholestyramine is a result mainly of its relatively poor ability to prevent bile salt reabsorption in the ileum.

  19. Conjugated primary bile salts reduce permeability of endotoxin through intestinal epithelial cells and synergize with phosphatidylcholine in suppression of inflammatory cytokine production

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schaeckeler, S.; Moser, L.;

    2007-01-01

    : The effect of CPBS (0.5 mM and 1.5 mM), phosphatidylcholine (0.38 mM), and human bile (0.5% vol/vol) on the barrier function was assessed by the measurement of transepithelial electrical resistance, by endotoxin permeability through the intestinal epithelial cell layer, and by basolateral cytokine enzyme......-linked immunosorbent assay measurement (tumor necrosis factor-[alpha], interleukins-6, -8, and -10). Micelles formed by CPBS were detected by dynamic light scattering. The association of endotoxin with CPBS micelles was tested by fluorescence resonance energy transfer. MEASUREMENTS AND MAIN RESULTS: Apical addition...

  20. Novel, major 2α- and 2β-hydroxy bile alcohols and bile acids in the bile of Arapaima gigas, a large South American river fish.

    Science.gov (United States)

    Sato née Okihara, Rika; Saito, Tetsuya; Ogata, Hiroaki; Nakane, Naoya; Namegawa, Kazunari; Sekiguchi, Shoutaro; Omura, Kaoru; Kurabuchi, Satoshi; Mitamura, Kuniko; Ikegawa, Shigeo; Raines, Jan; Hagey, Lee R; Hofmann, Alan F; Iida, Takashi

    2016-03-01

    Bile alcohols and bile acids from gallbladder bile of the Arapaima gigas, a large South American freshwater fish, were isolated by reversed-phase high-performance liquid chromatography. The structures of the major isolated compounds were determined by electrospray-tandem mass spectrometry and nuclear magnetic resonance using (1)H- and (13)C-NMR spectra. The novel bile salts identified were six variants of 2-hydroxy bile acids and bile alcohols in the 5α- and 5β-series, with 29% of all compounds having hydroxylation at C-2. Three C27 bile alcohols were present (as ester sulfates): (24ξ,25ξ)-5α-cholestan-2α,3α,7α,12α,24,26-hexol; (25ξ)-5β-cholestan-2β,3α,7α,12α,26,27-hexol, and (25ξ)-5α-cholestan-2α,3α,7α,12α,26,27-hexol. A single C27 bile acid was identified: (25ξ)-2α,3α,7α,12α-tetrahydroxy-5α-cholestan-26-oic acid, present as its taurine conjugate. Two novel C24 bile acids were identified: the 2α-hydroxy derivative of allochenodeoxycholic acid and the 2β-hydroxy derivative of cholic acid, both occurring as taurine conjugates. These studies extend previous work in establishing the natural occurrence of novel 2α- and 2β-hydroxy-C24 and C27 bile acids as well as C27 bile alcohols in both the normal (5β) as well as the (5α) "allo" A/B-ring juncture. The bile salt profile of A. gigas appears to be unique among vertebrates. PMID:26768415

  1. Bacterial bile metabolising gene abundance in Crohn's, ulcerative colitis and type 2 diabetes metagenomes.

    Directory of Open Access Journals (Sweden)

    Alain Labbé

    Full Text Available We performed an analysis to determine the importance of bile acid modification genes in the gut microbiome of inflammatory bowel disease and type 2 diabetic patients. We used publicly available metagenomic datasets from the Human Microbiome Project and the MetaHIT consortium, and determined the abundance of bile salt hydrolase gene (bsh, 7 alpha-dehydroxylase gene (adh and 7-alpha hydroxysteroid dehydrogenase gene (hsdh in fecal bacteria in diseased populations of Crohn's disease (CD, Ulcerative Colitis (UC and Type 2 diabetes mellitus (T2DM. Phylum level abundance analysis showed a significant reduction in Firmicute-derived bsh in UC and T2DM patients but not in CD patients, relative to healthy controls. Reduction of adh and hsdh genes was also seen in UC and T2DM patients, while an increase was observed in the CD population as compared to healthy controls. A further analysis of the bsh genes showed significant differences in the correlations of certain Firmicutes families with disease or healthy populations. From this observation we proceeded to analyse BSH protein sequences and identified BSH proteins clusters representing the most abundant strains in our analysis of Firmicute bsh genes. The abundance of the bsh genes corresponding to one of these protein clusters was significantly reduced in all disease states relative to healthy controls. This cluster includes bsh genes derived from Lachospiraceae, Clostridiaceae, Erysipelotrichaceae and Ruminococcaceae families. This metagenomic analysis provides evidence of the importance of bile acid modifying enzymes in health and disease. It further highlights the importance of identifying gene and protein clusters, as the same gene may be associated with health or disease, depending on the strains expressing the enzyme, and differences in the enzymes themselves.

  2. Different pathways of canalicular secretion of sulfated and non-sulfated fluorescent bile acids : a study in isolated hepatocyte couplets and TR- rats

    NARCIS (Netherlands)

    Mills, CO; Milkiewicz, P; Muller, M; Roma, MG; Havinga, R; Coleman, R; Kuipers, F; Jansen, PLM; Elias, E

    1999-01-01

    Background/Aims: Fluorescent bile acids have proved useful for characterizing bile salt transport mechanisms, The aim of this study was to further validate the use of lysyl-fluorescein conjugated bile acid analogues as surrogate bile acids, Methods: We analyzed biliary excretion kinetics of cholyl l

  3. Early bile duct cancer

    Institute of Scientific and Technical Information of China (English)

    Jae Myung Cha; Myung-Hwan Kim; Se Jin Jang

    2007-01-01

    Bile duct cancers are frequently diagnosed as advanced diseases. Over half of patients with advanced bile duct cancer present with unresectable malignancies and their prognosis has been very poor even after curative resections. Although there has been a need to diagnose bile duct cancer at its early stage, it has been a difficult goal to achieve due to our lack of knowledge regarding this disease entity. Early bile duct cancer may be defined as a carcinoma whose invasion is confined within the fibromuscular layer of the extrahepatic bile duct or intrahepatic large bile duct without distant metastasis irrespective of lymph node involvement. Approximately 3%-10% of resected bile duct cancers have been reported to be early cancers in the literature. The clinicopathological features of patients with early bile duct cancer differ from those of patients with advanced bile duct cancer, with more frequent asymptomatic presentation, characteristic histopathological findings,and excellent prognosis. This manuscript is organized to emphasize the need for convening an international consensus to develop the concept of early bile duct cancer.

  4. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid...... and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption...... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...

  5. Painful Bile Extraction Methods

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    It was only in the past 20 years that countries in Asia began to search for an alternative to protect moon bears from being killed for their bile and other body parts. In the early 1980s, a new method of extracting bile from living bears was developed in North Korea. In 1983, Chinese scientists imported this technique from North Korea. According to the Animals Asia Foundation, the most original method of bile extraction is to embed a latex catheter, a narrow rubber

  6. Physiology of bile secretion

    Institute of Scientific and Technical Information of China (English)

    Alejandro Esteller

    2008-01-01

    The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment,in different situations,results in the syndrome of cholestasis.The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed.Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane.This review summarizes recent data on the molecular determinants of this primary bile formation.The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bileduct epithelial cells (cholangiocytes) as bile passes through bile ducts.The mechanisms of fluid and solute transport in cholangiocytes will also be discussed.In contrast to hepatocytes where secretion is constant and poorly controlled,cholangiocyte secretion is regulated by hormones and nerves.A short section dedicated to these regulatory mechanisms of bile secretion has been included.The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.

  7. 茶花水溶性蛋白的分离纯化及其体外吸附胆酸盐能力的研究%In vitro Binding of Bile Salts by Water-soluble Protein Extract from Tea Flower

    Institute of Scientific and Technical Information of China (English)

    邓雪; 黄惠华

    2013-01-01

    通过采用硫酸铵盐析法、DEAE-Sepharose Fast Flow离子交换层析法提取分离制备茶花水溶性蛋白,并通过磷酸盐缓冲液pH值的最佳选择改善分离提纯效果.同时在体外模拟人体消化环境,通过体外吸附胆酸盐能力的测定证实所提取分离得到的茶花水溶性蛋白具有一定的降血脂功能.结果发现:当磷酸盐缓冲溶液pH值为5.0于室温下洗脱的效果最好,得到的3个主要分离组分中峰Ⅲ的体外吸附胆酸盐能力最佳,其对胆酸钠,甘氨胆酸钠,牛磺胆酸钠的吸附量分别为0.78±0.02、0.64±0.00、1.60±0.02 μmol/mL.%Water-soluble protein was extracted from tea flower by salting out with ammonium sulfate and purified by DEAE-Sepharose Fast Flow chromatography. Optimal conditions for the salting out and DEAE-Sepharose Fast Flow chromatographic separation of water-soluble proteins were determined. The results of experiments on bile salt adsorption in vitro demonstrated that the obtained water-soluble protein extract had hypolipidemic effect. Besides, the best elution results of water-soluble proteins on DEAE-Sepharose Fast Flow column were achieved at pH 5.0 and 10 mmol/L phosphate buffer as eluent at room temperature. Peak III exhibited the best bile salt adsorption ability among three separation peaks obtained than peak II and I. The bile salt-binding capability of the three bile salts was 0.78±0.02, 0.6440.00, 1.60±0.02 mmol/mL, respectively.

  8. Regulation of hepatic bile acid transporters Ntcp and Bsep expression

    OpenAIRE

    Cheng, Xingguo; Buckley, David; Klaassen, Curtis D.

    2007-01-01

    Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression ...

  9. Use of Cassette Dosing in Sandwich-Cultured Rat and Human Hepatocytes to Identify Drugs that Inhibit Bile Acid Transport

    OpenAIRE

    Kristina K Wolf; Vora, Sapana; Webster, Lindsey O.; Generaux, Grant T.; Polli, Joseph W; Brouwer, Kim L.R.

    2009-01-01

    Hepatocellular accumulation of bile acids due to inhibition of the canalicular bile salt export pump (BSEP/ABCB11) is one proposed mechanism of drug-induced liver injury (DILI). Some hepatotoxic compounds also are potent inhibitors of bile acid uptake by Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1). This study used a cassette dosing approach in rat and human sandwich-cultured hepatocytes (SCH) to determine whether known or suspected hepatotoxic drugs inhibit bile acid ...

  10. Combination Lopinavir and Ritonavir Alter Exogenous and Endogenous Bile Acid Disposition in Sandwich-Cultured Rat Hepatocytes

    OpenAIRE

    Griffin, LaToya M.; Watkins, Paul B.; Perry, Cassandra H.; Robert L St Claire; Brouwer, Kim L.R.

    2013-01-01

    Inhibition of the bile salt export pump (BSEP) can cause intracellular accumulation of bile acids and is a risk factor for drug-induced liver injury in humans. Antiretroviral protease inhibitors lopinavir (LPV) and ritonavir (RTV) are reported BSEP inhibitors. However, the consequences of LPV and RTV, alone and combined (LPV/r), on hepatocyte viability, bile acid transport, and endogenous bile acid disposition in rat hepatocytes have not been examined. The effect of LPV, RTV, and LPV/r on cel...

  11. Verification of Thiosulfate-Citrate-Bile Salts-Sucrose (TCBS)Agar Medium Industrial Standard%硫代硫酸盐-柠檬酸盐-胆盐-蔗糖琼脂培养基行业标准验证

    Institute of Scientific and Technical Information of China (English)

    孙楠; 黄杰; 于婷; 孙彬裕; 高尚先; 曲守方

    2014-01-01

    Objective To verify the application of professional standard for Thiosulfate-Citrate-Bile Salts-Sucrose (TCBS)agar medium.Methods TCBS agar medium produced by different factories are obtained for pH value and microbiological grow test according to the formulated medium standard.pH value and solution of medium are determined and bacterial cultures of the control strains are inoculated in the medium to detected bacterial growth.Results pH value and solution of medium were within the specified range. The control strains grew well. Conclusion As the recommended industrial standard, TCBS agar medium standard may be applied to evaluate and supervise the TCBS agar medium quality in our country.%目的:按照修订的硫代硫酸盐-柠檬酸盐-胆盐-蔗糖(TCBS)琼脂培养基行业标准中的要求进行试验,验证该行业标准的适用性。方法取不同厂家生产的TCBS琼脂培养基,根据TCBS琼脂培养基行业标准的要求,进行pH值、水分的测定和微生物生长试验。测定了TCBS琼脂培养基的pH值和水分,并将质控菌株的培养物接种到受试的培养基平皿中进行微生物生长试验。结果TCBS琼脂培养基的pH值和水分均符合行业标准的规定,且各质控菌株生长良好。结论作为推荐性的国家行业标准,TCBS琼脂培养基行业标准可以用于我国该培养基的质量评价和监管工作的需要。

  12. Radixin定点突变过表达对HepG2细胞膜转运蛋白Bsep的影响%Effect of radixin phosphorylation on bile salt export pump expression on HepG2 cell membrane

    Institute of Scientific and Technical Information of China (English)

    封欣婵; 柴进; 程英; 陈文生

    2014-01-01

    目的 构建pcDNA3.1-RDX定点突变真核过表达质粒,研究其在胆汁淤积时对HepG2细胞膜转运蛋白胆盐输出泵(bile salt export pump,Bsep)定位表达的影响.方法 从含有RDX野生型质粒中,利用PCR方法钓取RDX野生型基因片段并以野生型为基础进行定点突变,PCR扩增后转入pcDNA3.1载体,其产物转化DH-5α感受态细胞.对长出的单克隆进行菌落PCR鉴定,再对PCR鉴定阳性的克隆进行测序和比对分析,比对正确即为构建成功的目的质粒.将目的质粒转染HepG2细胞,经G418筛选构建稳转细胞株.提取各株细胞的总蛋白,检测磷酸化RDX是否影响HepG2细胞膜上转运蛋白Bsep的表达.结果 PCR和测序结果均证实pcDNA3.1-RDX WT、pcDNA3.1-RDX T564D、pcDNA3.1-RDXT564A过表达载体构建成功.蛋白免疫印迹表明,与转染pcDNA-3.1-RDX-WT的HepG2相比,转染pcDNA-3.1-T564D的HepG2的Bsep膜蛋白表达量显著增加(P<0.05),而转染pcDNA-3.1-T564A的HepG2的Bsep膜蛋白表达量有所下降(P>0.05).结论 成功构建了pcDNA3.1-RDX WT、pcDNA3.1-RDX T564D、pcDNA3.1-RDX T564A过表达载体,并证实RDX的磷酸化能增强HepG2细胞膜上Bsep的表达.

  13. Detection of hepatitis in children with idiopathic cholestatic bile salt export pump gene mutations%特发性胆汁淤积性肝炎患儿胆盐输出泵基因突变的检测

    Institute of Scientific and Technical Information of China (English)

    高国鹏; 王琳琳; 唐清; 单庆文; 云翔; 董淳强

    2012-01-01

    目的 对特发性胆汁淤积性肝炎患儿的胆盐输出泵(BSEP)基因进行突变筛查.方法 特发性胆汁淤积性肝炎患儿90例,采用聚合酶链反应—单链构象多态性(PCR-SSCP)检查结合DNA测序技术,检测BSEP基因的第7、8、11、12、14、15、18、21、26号外显子的突变情况.针对发现的突变位点,在71例健康婴儿中进行筛查以排除基因多态性.结果 在2例患儿BSEP基因的第7外显子上检测到相同的杂合突变c.499G >T,导致基因编码的BSEP蛋白的第167位丙氨酸(Ala)被丝氨酸(Ser)所替代(p.A167S).该位点的突变未在71例健康婴儿中发现,排除了BSEP基因的多态性.结论 在特发性胆汁淤积性肝炎患儿中,发现一种新的BSEP基因突变,位点为c.499G> T.%Objective To evaluate bile salt export pump gene ( BSEP) mutation in children with cholestasis in idio-pathic infantile hepatitis. Methods 90 cases of cholestasis in idiopathic infantile hepatitis (case group) were studied by polymerase chain reaction-single strand conformation polymorphism ( PCR - SSCP) and DNA sequencing technology to detect BSEP gene mutation in exon7, 8, 11, 12, 14, 15, 18, 21, 26 in idiopathic infantile hepatitis. 71 cases of healthy babies without infantile hepatitis (control group) by DNA sequencing technology to exclude gene polymorphism. Results Exon 7 of BSEP gene in two cases was found the same heterozygous mutation c. 499G > T, and BSEP protein lead to the gene encoding the 167 alanine (Ala) , serine ( Ser) replaced (p. A167S). The sites of mutation is not found in 71 cases of healthy infants, excluding the BSEP gene polymorphism. Conclusion A new BSEP gene mutation is found in children with idiopathic infantile cholestatic hepatitis, sites for the c.499G > T.

  14. Bile culture (image)

    Science.gov (United States)

    ... tract. A specimen of bile is placed in culture media and observed for growth of microorganisms. If there ... no infection. If there is growth in the culture media, the growth is then isolated and identified to ...

  15. 5-Thio-D-glycopyranosylamines and their amidinium salts as potential transition-state mimics of glycosyl hydrolases: synthesis, enzyme inhibitory activities, X-ray crystallography, and molecular modeling

    DEFF Research Database (Denmark)

    Kavlekar, Lizie M.; Kuntz, Douglas A.; Wen, Xin;

    2005-01-01

    The synthesis of new glycosidase inhibitors, namely, the glycosylamines of 5-thioglucose and 5-thiomannose and their corresponding amidinium salts are described. We report also the crystal structures of 5-thio-D-mannopyranosyl amine 1 and 5-thio-D-mannopyranosylamidinium bromide 2 bound in the en...

  16. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2007-01-01

    Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness.......Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness....

  17. Digestion of phospholipids after secretion of bile into the duodenum changes the phase behavior of bile components.

    Science.gov (United States)

    Birru, Woldeamanuel A; Warren, Dallas B; Ibrahim, Ahmed; Williams, Hywel D; Benameur, Hassan; Porter, Christopher J H; Chalmers, David K; Pouton, Colin W

    2014-08-01

    Bile components play a significant role in the absorption of dietary fat, by solubilizing the products of fat digestion. The absorption of poorly water-soluble drugs from the gastrointestinal tract is often enhanced by interaction with the pathways of fat digestion and absorption. These processes can enhance drug absorption. Thus, the phase behavior of bile components and digested lipids is of great interest to pharmaceutical scientists who seek to optimize drug solubilization in the gut lumen. This can be achieved by dosing drugs after food or preferably by formulating the drug in a lipid-based delivery system. Phase diagrams of bile salts, lecithin, and water have been available for many years, but here we investigate the association structures that occur in dilute aqueous solution, in concentrations that are present in the gut lumen. More importantly, we have compared these structures with those that would be expected to be present in the intestine soon after secretion of bile. Phosphatidylcholines are rapidly hydrolyzed by pancreatic enzymes to yield equimolar mixtures of their monoacyl equivalents and fatty acids. We constructed phase diagrams that model the association structures formed by the products of digestion of biliary phospholipids. The micelle-vesicle phase boundary was clearly identifiable by dynamic light scattering and nephelometry. These data indicate that a significantly higher molar ratio of lipid to bile salt is required to cause a transition to lamellar phase (i.e., liposomes in dilute solution). Mixed micelles of digested bile have a higher capacity for solubilization of lipids and fat digestion products and can be expected to have a different capacity to solubilize lipophilic drugs. We suggest that mixtures of lysolecithin, fatty acid, and bile salts are a better model of molecular associations in the gut lumen, and such mixtures could be used to better understand the interaction of drugs with the fat digestion and absorption pathway.

  18. [Bile acids in the bile in diabetes mellitus].

    Science.gov (United States)

    Slivka, O Ia; Zelinskiĭ, B A; Zelinskiĭ, S Ts

    1979-01-01

    Hepatic and gall bladder bile of healthy persons (8) and of patients with severe form of diabetes mellitus (17) was studied. Paer chromatography was applied for determination of cholic, chenodeoxycholic, deoxycholic bile acids and their conjugates with glycin and taurine. An absolute content and percentage of glycodeoxycholic and glycochenodeoxycholic bile acids were increased, and glycochenodeoxycholic acid content and taurates proportion were decreased in the gall bladder and hepatic bile of diabetic patients. The data obtained pointed to disturbed hepatic function in severe diabetes mellitus; it was expressed in suppression of bile acids synthesis and conjugation, and also in depression of transformation of deoxycholic into cholic acid.

  19. Gallblader and bile duct

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    2009215 Construction of the specific MUC5AC-siRNA expression plasmid and effect of siRNA on proliferation and apoptosis in human bile duct cancer line HCCC-9810.HUANG Qing(黄强),et al.Dept General Surg,Affili Prov Hosp,Anhui Med Univ,Hefei 230001.World Chin J Digestol.2009;17(6):566-572.

  20. Bile acid interactions with cholangiocytes

    Institute of Scientific and Technical Information of China (English)

    Xuefeng Xia; Heather Francis; Shannon Glaser; Gianfranco Alpini; Gene LeSage

    2006-01-01

    Cholangiocytes are exposed to high concentrations of bile acids at their apical membrane. A selective transporter for bile acids, the Apical Sodium Bile Acid Cotransporter (ASBT) (also referred to as Ibat; gene name Slc10a2)is localized on the cholangiocyte apical membrane. On the basolateral membrane, four transport systems have been identified (t-ASBT, multidrug resistance (MDR)3,an unidentified anion exchanger system and organic solute transporter (Ost) heteromeric transporter, OstαOstβ. Together, these transporters unidirectionally move bile acids from ductal bile to the circulation. Bile acids absorbed by cholangiocytes recycle via the peribiliaryplexus back to hepatocytes for re-secretion into bile.This recycling of bile acids between hepatocytes and cholangiocytes is referred to as the cholehepatic shunt pathway. Recent studies suggest that the cholehepatic shunt pathway may contribute in overall hepatobiliary transport of bile acids and to the adaptation to chronic cholestasis due to extrahepatic obstruction. ASBT is acutely regulated by an adenosine 3', 5'-monophosphate (cAMP)-dependent translocation to the apical membrane and by phosphorylation-dependent ubiquitination and proteasome degradation. ASBT is chronically regulated by changes in gene expression in response to biliary bile acid concentration and inflammatory cytokines.Another potential function of cholangiocyte ASBT is to allow cholangiocytes to sample biliary bile acids in order to activate intracellular signaling pathways. Bile acids trigger changes in intracellular calcium, protein kinase C (PKC), phosphoinositide 3-kinase (PI3K), mitogenactivated protein (MAP) kinase and extracellular signalregulated protein kinase (ERK) intracellular signals.Bile acids significantly alter cholangiocyte secretion,proliferation and survival. Different bile acids have differential effects on cholangiocyte intracellular signals,and in some instances trigger opposing effects on cholangiocyte secretion

  1. Amylase activity in human bile.

    Science.gov (United States)

    Donaldson, L A; Joffe, S N; McIntosh, W; Brodie, M J

    1979-03-01

    The mean amylase level in 42 human bile samples was 154 IU/l and there was no significant difference in the amylase activity of 32 paired serum and bile samples. Estimation of the amylase thermolability of bile showed it to be similar to that of serum. This suggests that the amylase activity in bile may have filtered through the liver from the hepatic circulation rather than refluxed from the pancreatic duct. The presence of amylase in human bile provides further evidence that the liver might have a role in the regulation of serum amylase.

  2. Detoxification Strategy of Epoxide Hydrolase

    OpenAIRE

    Arand, Michael; Cronin, Annette; Hengstler, Jan G.; Herrero Plana, Maria Elena; Lohmann, Matthias; Oesch, Franz

    2003-01-01

    The human microsomal epoxide hydrolase, a single enzyme, has to detoxify a broad range of structurally diverse, potentially genotoxic epoxides that are formed in the course of xenobiotic metabolism. The enzyme has developed a unique strategy to combine a broad substrate specificity with a high detoxification efficacy, by immediately trapping the reactive compounds as covalent intermediates and by being expressed at high levels for high trapping capacity. Computer simulation and experimental d...

  3. Low-fat, high-carbohydrate and high-fat, low-carbohydrate diets decrease primary bile acid synthesis in humans

    NARCIS (Netherlands)

    Bisschop, PH; Bandsma, RHJ; Stellaard, F; Meijer, AJ; Sauerwein, HP; Kuipers, F; Romijn, JA

    2004-01-01

    Background: Dietary fat content influences bile salt metabolism, but quantitative data from controlled studies in humans are scarce. Objective: The objective of the study was to establish the effect of dietary fat content on the metabolism of primary bile salts. Design: The effects of eucaloric extr

  4. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity.

    Directory of Open Access Journals (Sweden)

    Esther M Verhaag

    Full Text Available Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis.To investigate the mechanisms that underlie the hormetic response that protect hepatocytes against experimental cholestatic conditions.HepG2.rNtcp cells were preconditioned (24 h with sub-apoptotic concentrations (0.1-50 μM of various bile acids, the superoxide donor menadione, TNF-α or the Farsenoid X Receptor agonist GW4064, followed by a challenge with the apoptosis-inducing bile acid glycochenodeoxycholic acid (GCDCA; 200 μM for 4 h, menadione (50 μM, 6 h or cytokine mixture (CM; 6 h. Levels of apoptotic and necrotic cell death, mRNA expression of the bile salt export pump (ABCB11 and bile acid sensors, as well as intracellular GCDCA levels were analyzed.Preconditioning with the pro-apoptotic bile acids GCDCA, taurocholic acid, or the protective bile acids (tauroursodeoxycholic acid reduced GCDCA-induced caspase-3/7 activity in HepG2.rNtcp cells. Bile acid preconditioning did not induce significant levels of necrosis in GCDCA-challenged HepG2.rNtcp cells. In contrast, preconditioning with cholic acid, menadione or TNF-α potentiated GCDCA-induced apoptosis. GCDCA preconditioning specifically reduced GCDCA-induced cell death and not CM- or menadione-induced apoptosis. The hormetic effect of GCDCA preconditioning was concentration- and time-dependent. GCDCA-, CDCA- and GW4064- preconditioning enhanced ABCB11 mRNA levels, but in contrast to the bile acids, GW4064 did not significantly reduce GCDCA-induced caspase-3/7 activity. The GCDCA challenge strongly increased intracellular levels of this bile acid, which was not lowered by GCDCA

  5. Therapeutic targeting of bile acids

    Science.gov (United States)

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  6. Bile duct malignancies.

    Science.gov (United States)

    Tucek, S; Tomasek, J; Halámkova, J; Kiss, I; Andrasina, T; Hemmelová, B; Adámková-Krákorová, D; Vyzula, R

    2010-01-01

    Bile duct malignancies include intrahepatic cholangiocarcinoma (ICC), extrahepatic cholangiocarcinoma (ECC), gall bladder carcinoma (GC) and carcinoma of Vater's ampulla (ampulloma). Bile duct neoplasms are rare tumours with overall poor prognosis. The overall incidence affects up to 12.5 per 100,000 persons in the Czech Republic. The mortality rate has risen recently to 9.5 per 100,000 persons. The incidence and mortality have been remarkably stable over the past 3 decades. The survival rate of patients with these tumours is poor, usually not exceeding 12 months. The diagnostic process is complex, uneasy and usually late. Most cases are diagnosed when unresectable, and palliative treatment is the main approach of medical care for these tumours. The treatment remains very challenging. New approaches have not brought much improvement in this field. Standards of palliative care are lacking and quality of life assessments are surprisingly not common. From the scarce data it seems, however, that multimodal individually tailored treatment can prolong patients'survival and improve the health-related quality of life. The care in specialized centres offers methods of surgery, interventional radiology, clinical oncology and high quality supportive care. These methods are discussed in the article in greater detail. Improvements in this field can be sought in new diagnostic methods and new procedures in surgery and interventional radiology. Understanding the tumour biology on the molecular level could shift the strategy to a more successful one, resulting in more cured patients. Further improvements in palliative care can be sought by defining new targets and new drug development. The lack of patients with bile duct neoplasms has been the limiting factor for any improvements. A new design of larger randomized international multicentric clinical trials with prompt data sharing could help to overcome this major problem. Defining standards of palliative care is a necessity

  7. Gallbladder and bile duct

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930559 An experimental study on effective hep-atic blood flow and hepatic energy metabolismfollowing acute obstructive cholangitis and bil-iary obstruction.SUN Wenbing (孙文兵),et al.Hepatobili Surg,Center,Southwest Hosp,Chongqing 630000.Chin J Digest 1992;12(5):261—263.The changes of effective hepatic blood flow(E-HBF)and hepatic energy metabolism were stud-ied following acutc obstructive cholangitis(AOC)and bile duct ligation(BDL)in rats.The resultsshowed that EHBF was significantly decreased at24hs after and further decreased at 48hs afterBDL.And EHBF was significantly decreased at

  8. Bile acid promotes liver regeneration via farnesoid X receptor signaling pathways in rats.

    Science.gov (United States)

    Ding, Long; Yang, Yu; Qu, Yikun; Yang, Ting; Wang, Kaifeng; Liu, Weixin; Xia, Weibin

    2015-06-01

    Bile acids, which are synthesized from cholesterol in the hepatocytes of the liver, are amphipathic molecules with a steroid backbone. Studies have shown that bile acid exhibits important effects on liver regeneration. However, the mechanism underlying these effects remains unclear. The aim of the present study was to investigate the effect of bile acid and the farnesoid X receptor (FXR) on hepatic regeneration and lipid metabolism. Rats were fed with 0.2% bile acid or glucose for 7 days and then subjected to a 50 or 70% hepatectomy. Hepatic regeneration rate, serum and liver levels of bile acid, and expression of FXR and Caveolin‑1, were detected at 24, 48 or 72 h following hepatectomy. The expression of proliferating cell nuclear antigen (PCNA) in the liver was measured using immunohistochemistry at the end of the study. Hepatocytes isolated from rats were treated with bile acid, glucose, FXR agonist and FXR antagonist, separately or in combination. Lipid metabolism, the expression of members of the FXR signaling pathway and energy metabolism‑related factors were measured using ELISA kits or western blotting. Bile acid significantly increased the hepatic regeneration rate and the expression of FXR, Caveolin‑1 and PCNA. Levels of total cholesterol and high density lipoprotein were increased in bile acid‑ or FXR agonist‑treated hepatocytes in vitro. Levels of triglyceride, low density lipoprotein and free fatty acid were decreased. In addition, bile acid and FXR agonists increased the expression of bile salt export pump and small heterodimer partner, and downregulated the expression of apical sodium‑dependent bile acid transporter, Na+/taurocholate cotransporting polypeptide and cholesterol 7α‑hydroxylase. These results suggested that physiological concentrations of bile acid may promote liver regeneration via FXR signaling pathways, and may be associated with energy metabolism. PMID:25634785

  9. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2003-01-01

    The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness.......The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness....

  10. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Philippe Gérard

    2013-12-01

    Full Text Available The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host’s enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered.

  11. 5α-Bile alcohols function as farnesoid X receptor antagonists

    International Nuclear Information System (INIS)

    The farnesoid X receptor (FXR) is a bile acid/alcohol-activated nuclear receptor that regulates lipid homeostasis. Unlike other steroid receptors, FXR binds bile acids in an orientation that allows the steroid nucleus A to face helix 12 in the receptor, a crucial domain for coactivator-recruitment. Because most naturally occurring bile acids and alcohols contain a cis-oriented A, which is distinct from that of other steroids and cholesterol metabolites, we investigated the role of this 5β-configuration in FXR activation. The results showed that the 5β-(A/B cis) bile alcohols 5β-cyprinol and bufol are potent FXR agonists, whereas their 5α-(A/B trans) counterparts antagonize FXR transactivation and target gene expression. Both isomers bound to FXR, but their ability to induce coactivator-recruitment and thereby induce transactivation differed. These findings suggest a critical role for the A orientation of bile salts in agonist/antagonist function

  12. Mechanistic Modeling Reveals the Critical Knowledge Gaps in Bile Acid–Mediated DILI

    OpenAIRE

    Woodhead, J L; Yang, K.; Brouwer, K L R; Siler, S. Q.; Stahl, S H; Ambroso, J L; Baker, D; Watkins, P B; Howell, B A

    2014-01-01

    Bile salt export pump (BSEP) inhibition has been proposed to be an important mechanism for drug-induced liver injury (DILI). Modeling can prioritize knowledge gaps concerning bile acid (BA) homeostasis and thus help guide experimentation. A submodel of BA homeostasis in rats and humans was constructed within DILIsym, a mechanistic model of DILI. In vivo experiments in rats with glibenclamide were conducted, and data from these experiments were used to validate the model. The behavior of DILIs...

  13. Bile acid sequestrants for cholesterol

    Science.gov (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  14. Risk Factors for Development of Cholestatic Drug-Induced Liver Injury: Inhibition of Hepatic Basolateral Bile Acid Transporters Multidrug Resistance-Associated Proteins 3 and 4

    OpenAIRE

    Köck, Kathleen; Ferslew, Brian C.; Netterberg, Ida; Yang, Kyunghee; Urban, Thomas J.; Swaan, Peter W.; Stewart, Paul W.; Brouwer, Kim L.R.

    2014-01-01

    Impaired hepatic bile acid export may contribute to development of cholestatic drug-induced liver injury (DILI). The multidrug resistance-associated proteins (MRP) 3 and 4 are postulated to be compensatory hepatic basolateral bile acid efflux transporters when biliary excretion by the bile salt export pump (BSEP) is impaired. BSEP inhibition is a risk factor for cholestatic DILI. This study aimed to characterize the relationship between MRP3, MRP4, and BSEP inhibition and cholestatic potentia...

  15. Micellar aggregates and hydrogels from phosphonobile salts

    OpenAIRE

    Babu, Ponnusamy; Chopra, D.; Row, Guru TN; Maitra, Uday

    2005-01-01

    The aggregation properties of novel bile acid analogs-phosphonobile salts (PBS)-have been studied. The critical micellar concentration of 23 and 24-phosphonobile salts were measured using fluorescence and P-31 NMR methods. All the ten synthesized phosphonobile salts formed gels at different pH ranges in water. The pH range at which individual PBSs could gelate water was narrow and influenced by the number and conformation of hydroxyl groups. A reversible thermochromic system has been develope...

  16. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile.

    Science.gov (United States)

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-09-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. PMID:27381048

  17. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice.

    Science.gov (United States)

    Silvennoinen, Reija; Quesada, Helena; Kareinen, Ilona; Julve, Josep; Kaipiainen, Leena; Gylling, Helena; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-05-11

    Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress. PMID:25969465

  18. Endocrine and paracrine role of bile acids

    Institute of Scientific and Technical Information of China (English)

    Verena Keitel; Ralf Kubitz; Dieter H(a)ussinger

    2008-01-01

    Bile acids are not only important for the absorption of dietary lipids and fat soluble vitamins but are signalling molecules with diverse endocrine and paracrine functions.Bile acids regulate bile acid,lipid and glucose metabolism and modulate temperature and energy homeostasis.Furthermore,bile acids can not only promote cell proliferation and liver regeneration but can also induce programmed cell death.Bile acid functions are mediated through different pathways which comprise the activation of nuclear hormone receptors,of intracellular kinases and of the plasma membranebound,G-protein coupled bile acid receptor TGR5/Gpbar-1.

  19. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review.

    Science.gov (United States)

    Wang, David Q-H; Carey, Martin C

    2014-08-01

    Forty-four different animal biles obtained from both invertebrates and vertebrates (including human bile) have been used for centuries for a host of maladies in traditional Chinese medicine (TCM) beginning with dog, ox and common carp biles approximately in the Zhou dynasty (c. 1046-256 BCE). Overall, different animal biles were prescribed principally for the treatment of liver, biliary, skin (including burns), gynecological and heart diseases, as well as diseases of the eyes, ears, nose, mouth and throat. We present an informed opinion of the clinical efficacy of the medicinal uses of the different animal biles based on their presently known principal chemical components which are mostly steroidal detergent-like molecules and the membrane lipids such as unesterified cholesterol and mixed phosphatidylcholines and sometimes sphingomyelin, as well as containing lipopigments derived from heme principally bilirubin glucuronides. All of the available information on the ethnopharmacological uses of biles in TCM were collated from the rich collection of ancient Chinese books on materia medica held in libraries in China and United States and the composition of various animal biles was based on rigorous separatory and advanced chemical identification techniques published since the mid-20(th) century collected via library (Harvard's Countway Library) and electronic searches (PubMed and Google Scholar). Our analysis of ethnomedical data and information on biliary chemistry shows that specific bile salts, as well as the common bile pigment bilirubin and its glucuronides plus the minor components of bile such as vitamins A, D, E, K, as well as melatonin (N-acetyl-5-methoxytryptamine) are salutary in improving liver function, dissolving gallstones, inhibiting bacterial and viral multiplication, promoting cardiac chronotropsim, as well as exhibiting anti-inflammatory, anti-pyretic, anti-oxidant, sedative, anti-convulsive, anti-allergic, anti-congestive, anti-diabetic and anti

  20. Bile components and amino acids affect survival of the newly excysted juvenile Clonorchis sinensis in maintaining media.

    Science.gov (United States)

    Li, Shunyu; Kim, Tae Im; Yoo, Won Gi; Cho, Pyo Yun; Kim, Tong-Soo; Hong, Sung-Jong

    2008-10-01

    Clonorchis sinensis thrives on bile juice. The effects of bile and bile acids on newly excysted juvenile C. sinensis (CsNEJ) were studied in terms of survival. Survival of CsNEJs maintained in 1x Locke's solution, Dulbecco's modified Eagle's medium, NCTC 109, Eagle's, RPMI 1640, and 0.1% glucose was high, but dropped rapidly in 2x Locke's, 0.85% NaCl, and phosphate-buffered saline. Most amino acids in the media favored CsNEJ survival; however, aspartic and glutamic acids and adenine reduced survival. Survival was also significantly lower in media containing more than 0.1% bile. CsNEJs preconditioned in low bile media survived longer in higher bile media. All bile acids and conjugated bile salts were found to favor CsNEJ survival, except for lithocholic acid (LCA) which was toxic. NCTC 109 medium was found to be optimal for the in vitro maintenance of CsNEJs and 1x Locke's solution to be suitable for analyzing the biological effects of bioactive compounds and molecules. Based on these results, we propose that bile acids enhance activity of CsNEJs, but LCA deteriorate CsNEJs.

  1. Bile acids for primary sclerosing cholangitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Gluud, C

    2003-01-01

    Bile acids have been used for treating primary sclerosing cholangitis, but their beneficial and harmful effects remain unclear.......Bile acids have been used for treating primary sclerosing cholangitis, but their beneficial and harmful effects remain unclear....

  2. Effects of bile diversion in rats on intestinal sphingomyelinases and ceramidase

    NARCIS (Netherlands)

    Duan, R. D.; Verkade, H. J.; Cheng, Y.; Havinga, R.; Nilsson, A.

    2007-01-01

    Alkaline sphingomyelinase (Alk-SMase) and neutral ceramidase (N-CDase) in the intestinal microvillar membrane are responsible for dietary sphingomyelin digestion. The activities of the enzymes require the presence of bile salt, and the enzymes can be released into the gut lumen in active forms by bi

  3. Characterization of the role of ABCG2 as a bile acid transporter in liver and placenta.

    Science.gov (United States)

    Blazquez, Alba G; Briz, Oscar; Romero, Marta R; Rosales, Ruben; Monte, Maria J; Vaquero, Javier; Macias, Rocio I R; Cassio, Doris; Marin, Jose J G

    2012-02-01

    ABCG2 is involved in epithelial transport/barrier functions. Here, we have investigated its ability to transport bile acids in liver and placenta. Cholylglycylamido fluorescein (CGamF) was exported by WIF-B9/R cells, which do not express the bile salt export pump (BSEP). Sensitivity to typical inhibitors suggested that CGamF export was mainly mediated by ABCG2. In Chinese hamster ovary (CHO cells), coexpression of rat Oatp1a1 and human ABCG2 enhanced the uptake and efflux, respectively, of CGamF, cholic acid (CA), glycoCA (GCA), tauroCA, and taurolithocholic acid-3-sulfate. The ability of ABCG2 to export these bile acids was confirmed by microinjecting them together with inulin in Xenopus laevis oocytes expressing this pump. ABCG2-mediated bile acid transport was inhibited by estradiol 17β-d-glucuronide and fumitremorgin C. Placental barrier for bile acids accounted for 14-fold increased maternal cholanemia induced by obstructive cholestasis in pregnant rats. In rat placenta, the expression of Abcg2, which was much higher than that of Bsep, was not affected by short-term cholestasis. In pregnant rats, fumitremorgin C did not affect uptake/secretion of GCA by the liver but inhibited its fetal-maternal transfer. Compared with wild-type mice, obstructive cholestasis in pregnant Abcg2(-/-) knockout mice induced similar bile acid accumulation in maternal serum but higher accumulation in placenta, fetal serum, and liver. In conclusion, ABCG2 is able to transport bile acids. The importance of this function depends on the relative expression in the same epithelium of other bile acid exporters. Thus, ABCG2 may play a key role in bile acid transport in placenta, as BSEP does in liver. PMID:22096226

  4. Bile acids in regulation of intestinal physiology.

    LENUS (Irish Health Repository)

    Keating, Niamh

    2009-10-01

    In addition to their roles in facilitating lipid digestion and absorption, bile acids are recognized as important regulators of intestinal function. Exposure to bile acids can dramatically influence intestinal transport and barrier properties; in recent years, they have also become appreciated as important factors in regulating cell growth and survival. Indeed, few cells reside within the intestinal mucosa that are not altered to some degree by exposure to bile acids. The past decade saw great advances in the knowledge of how bile acids exert their actions at the cellular and molecular levels. In this review, we summarize the current understanding of the role of bile acids in regulation of intestinal physiology.

  5. Effects of tegaserod on bile composition and hepatic secretion in Richardson ground squirrels on an enriched cholesterol diet

    Directory of Open Access Journals (Sweden)

    Pfannkuche Hans-Juergen

    2006-06-01

    Full Text Available Abstract Background Tegaserod is effective in treating IBS patients with constipation, and does not alter gallbladder motility in healthy individuals or in patients with IBS. However, it is not known if tegaserod affects the biliary tract in gallstone disease, so to this end the effects of tegaserod on bile composition and hepatic secretion of Richardson ground squirrels maintained on an enriched cholesterol diet were examined. Results Animals were fed either a control (0.03% or enriched (1% cholesterol diet for 28 days, and treated s.c. with tegaserod (0.1 mg/kg BID or vehicle. Bile flow, bile acid, phospholipids and cholesterol secretion were measured with standard methods. Tegaserod treatment or enriched cholesterol diet, alone or combination, did not alter body or liver weights. The enriched cholesterol diet increased cholesterol saturation index (CSI, cholesterol concentrations in gallbladder and hepatic duct bile by ~50% and decreased bile acids in gallbladder bile by 17%. Tegaserod treatment reversed these cholesterol-induced changes. None of the treatments, drug or diet, altered fasting gallbladder volume, bile flow and bile salts or phospholipid secretion in normal diet and cholesterol-fed animals. However, tegaserod treatment prevented the decreases in bile acid pool size and cycling frequency caused by the enriched cholesterol diet, consequent to re-establishing normal bile acid to concentrations in the gall bladder. Tegaserod had no effect on these parameters with normal diet animals. Conclusion Tegaserod treatment results in increased enterohepatic cycling and lowers cholesterol saturation in the bile of cholesterol-fed animals. These effects would decrease conditions favorable to cholesterol gallstone formation.

  6. Investigation of antibacterial, acid and bile tolerance properties of lactobacilli isolated from Koozeh cheese

    Directory of Open Access Journals (Sweden)

    Hassan Hassanzadazar

    2012-09-01

    Full Text Available Lactobacillus strains are a major part of the probiotics, microflora of the intestine and of fermented dairy products, and are found in a variety of environments. The aim of this study was to find out the ability of bile and acid tolerance and antibacterial properties of the twenty eight isolates of three group lactobacilli namely Lactobacillus plantarum, Lactobacillus casei and Lactobacillus delbruki. For this purpose Twenty eight different Lactobacillus strains that isolated from Koozeh cheese as a traditional cheese were screened. The acid tolerance test was studied under pH 2.0 and 3.0 with 7.5 as control. The cell count for the acid tolerance test was obtained at an interval of 0, 1, 2 and 3 hours respectively and was pour plated on Man, Rogosa, and Sharpe (MRS agar to be incubated at 37 °C for 24 hours. All cells were selected for bile tolerance test in MRS broth containing bile concentrations of 0% as control and 0.3% as test. Then cell counts were enumerated after 24 hours of incubation on MRS agar. Results showed twenty seven isolates did not have ability to tolerate acid and bile salts and antimicrobial activity against four indicator bacteria included Eshirichia coli, Listeria monocytogenesis, bacillus cereus, Salmonella entritidis. Only one Isolate namely Lactobacillus casei could tolerate acid and bile salt and had antibacterial activity against of L. monocytogenesis. Therefore we can consider this strain as a native probiotic but extra examinations was required.

  7. Screening of bile salt hydrolase activity and application of 16Sr DNA molecular methods for identification of lactic acid bacteria%具有胆盐水解酶活力乳酸菌的筛选及16S rDNA分子生物学鉴定

    Institute of Scientific and Technical Information of China (English)

    董改香; 王俊国; 段智变; 张和平

    2008-01-01

    对分离自内蒙古地区牧民家庭自制的2份酸马奶中的9株乳酸菌,进行胆盐水解酶活力的研究.采用定性和定量两种方法,筛选具有胆盐水解酶活力菌株,并对筛选出的茵株进行16S rDNA分子生物学鉴定.结果表明:9株菌中只有菌株18-1-3有白色颗粒状沉淀生成,其余8株均没产生.游离胆酸的生成量和牛磺胆酸钠的消失量分别为0.8524 mmol/L和0.8520 mmol/L.即游离胆酸钠的生成量和牛磺胆酸钠的消失量成比例.18-1-3菌株鉴定为发酵乳杆菌(Lb.fermentum).

  8. The influence of ferric (III citrate on ATP-hydrolases of Desulfuromonas acetoxidans ІМV В-7384

    Directory of Open Access Journals (Sweden)

    O. Maslovska

    2013-02-01

    peroxidation products in bacterial cells confirms free radical mechanism of oxidation of polyunsaturated fatty acids. Thus, for fulfiling complete analyses of cell response against oxidative stress it was reasonable to investigate the influence of ferric (III citrate on specific ATP-hydrolase activity, Na+, K+-ATP-hydrolase activity and Mg2+-ATP-hydrolase activity of D. acetoxidans ІМV В-7384. Bacteria were cultivated in the modified Postgaite C medium during four days under the anaerobic conditions and temperature +27°С with addition from 10 to 20 mM of ferric (III citrate into the growth medium. Control samples didn’t contain investigated metal salt. Chosen concentrations of metal salt caused inhibition of bacterial growth by 20–50%. Activities of ATP-hydrolases were investigated as described. It was shown, that specific ATP-hydrolase activity of D. acetoxidans ІМV В-7384 is changing in dependance on duration of ferric (III citrate exposure and concentration of the metal salt. Addition of the ferric (III citrate in relatively low concentrations (10–12 mM causes increasing of specific ATP-hydrolase activity of D. acetoxidans IMV B-7384 in comparison with control. Activity of investigated enzymes was inhibited under the increasing of metal salt concentration in bacterial growth medium. Increase of duration of D. acetoxidans IMV B-7384 cultivation causes decrease of ATP-hydrolase activity. Addition of ferric (III citrate causes simultaneous increasing of Na+, K+-ATP-hydrolase activity and inhibition of Mg2+-ATP-hydrolase activity during four days of bacterial cultivation.

  9. Bacterial Cyanuric Acid Hydrolase for Water Treatment.

    Science.gov (United States)

    Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

    2015-10-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation.

  10. Spontaneous Bile Duct Rupture in Pregnancy

    OpenAIRE

    Piotrowski, Joseph J.; Greg Van Stiegmann; R. Dale Liechty

    1990-01-01

    Spontaneous bile duct rupture occurred in a 23-year-old who required emergency Cesarean section for fetal distress. This condition has not been reported in association with pregnancy. Only forty cases of spontaneous bile duct perforation in adults have been previously reported. Seventy percent of these perforations were related to biliary calculi. Sites of perforation were evenly distributed between common hepatic duct and common bile duct. Recommended treatment includes cholecystectomy, comm...

  11. Beyond growth: novel functions for bacterial cell wall hydrolases.

    Science.gov (United States)

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  12. Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity.

    Science.gov (United States)

    Bright, Nicholas A; Davis, Luther J; Luzio, J Paul

    2016-09-12

    The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. PMID:27498570

  13. Potency of individual bile acids to regulate bile acid synthesis and transport genes in primary human hepatocyte cultures.

    Science.gov (United States)

    Liu, Jie; Lu, Hong; Lu, Yuan-Fu; Lei, Xiaohong; Cui, Julia Yue; Ellis, Ewa; Strom, Stephen C; Klaassen, Curtis D

    2014-10-01

    Bile acids (BAs) are known to regulate their own homeostasis, but the potency of individual bile acids is not known. This study examined the effects of cholic acid (CA), chenodeoxycholic acid (CDCA), deoxycholic acid (DCA), lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) on expression of BA synthesis and transport genes in human primary hepatocyte cultures. Hepatocytes were treated with the individual BAs at 10, 30, and 100μM for 48 h, and RNA was extracted for real-time PCR analysis. For the classic pathway of BA synthesis, BAs except for UDCA markedly suppressed CYP7A1 (70-95%), the rate-limiting enzyme of bile acid synthesis, but only moderately (35%) down-regulated CYP8B1 at a high concentration of 100μM. BAs had minimal effects on mRNA of two enzymes of the alternative pathway of BA synthesis, namely CYP27A1 and CYP7B1. BAs increased the two major target genes of the farnesoid X receptor (FXR), namely the small heterodimer partner (SHP) by fourfold, and markedly induced fibroblast growth factor 19 (FGF19) over 100-fold. The BA uptake transporter Na(+)-taurocholate co-transporting polypeptide was unaffected, whereas the efflux transporter bile salt export pump was increased 15-fold and OSTα/β were increased 10-100-fold by BAs. The expression of the organic anion transporting polypeptide 1B3 (OATP1B3; sixfold), ATP-binding cassette (ABC) transporter G5 (ABCG5; sixfold), multidrug associated protein-2 (MRP2; twofold), and MRP3 (threefold) were also increased, albeit to lesser degrees. In general, CDCA was the most potent and effective BA in regulating these genes important for BA homeostasis, whereas DCA and CA were intermediate, LCA the least, and UDCA ineffective.

  14. Bacteriological analysis of bile in cholecystectomy patients

    Directory of Open Access Journals (Sweden)

    Pratik M. Parekh

    2015-11-01

    Methods: The study was a prospective study carried out in SSG Hospital. A total of 78 patients undergone cholecystectomy who met the inclusion criteria were included in the study. 3cc bile was aspirated from all patients, this collected bile from gallbladder before cholecystectomy was transported to the laboratory in sterile test-tube. The specimen was evaluated to find out whether it is sterile or has any bacteria present. The types of bacteria are determined and whether the amount of isolate is significant or not. And sensitivity to antibacterial agents against antibiotics was determined. Results: 19 patients showed positive bile culture in which Escherichia coli was the most common isolated bacteria (63.16% among positive bile culture and 15.38% among all patients and bile was sterile in 59 patients (75.64%. Other organisms isolated were Pseudomonas (3.85%, Klebsiella (2.56%, coagulase negative Staphylococcus and Staphylococcus viridans (1.28%. Positive bile culture was a more common finding (50% of patients were bile culture positive in patients with acute cholecystitis in this study. Post-operative wound infection is more common (15.79% in group of patients with isolated organism from bile. There is a strong correlation between bile culture and wound culture (75%. Conclusions: It was found that sensitivity to third- and fourth-generation cephalosporins was higher as compared to aminoglycoside in acute as well as chronic cholecystitis. In this study levofloxacin also shows good sensitivity against isolated organism from bile. Piperacilin and tazobactum also shows good sensitivity against isolated organism from bile and they are more effective against pseudomonas. The resistance to second-generation cephalosporins and aminoglycoside has increased. For preoperative prophylaxis third and fourth-generation cephalosporins and levofloxacin show better promise and may be used as the first line of preoperative prophylaxis in operations for acute and chronic

  15. Aspergillus niger DLFCC-90 Rhamnoside Hydrolase, a New Type of Flavonoid Glycoside Hydrolase

    OpenAIRE

    Liu, Tingqiang; Yu, Hongshan; Zhang, Chunzhi; Lu, Mingchun; Piao, Yongzhe; Ohba, Masashi; Tang, Minqian; Yuan, Xiaodong; Wei, Shenghua; Wang, Kan; Ma, Anzhou; Feng, Xue; Qin, Siqing; Mukai, Chisato; Tsuji, Akira

    2012-01-01

    A novel rutin-α-l-rhamnosidase hydrolyzing α-l-rhamnoside of rutin, naringin, and hesperidin was purified and characterized from Aspergillus niger DLFCC-90, and the gene encoding this enzyme, which is highly homologous to the α-amylase gene, was cloned and expressed in Pichia pastoris GS115. The novel enzyme was classified in glycoside-hydrolase (GH) family 13.

  16. Hydrolase activity in Jerusalem artichoke and chicory

    Energy Technology Data Exchange (ETDEWEB)

    Klaushofer, H.; Abraham, B.; Leichtfried, G.

    1988-03-01

    Post-harvest storage of chicory and Jerusalem artichoke and overwintering of Jerusalem artichoke in the soil cause a more or less pronounced shortening of the fructan chain, depending on the variety. The proportion of fructose in the total fructan thus shifts towards glucose. This reduction on the fructose/glucose ratio is undesirable if the intention is to obtain a sweetener of high fructose content. In this work an attempt was made, via the quantity of fructose formed after a 4(3)-hour reaction of a tuber (root) extract with inulin, to assign a characteristic value to the depolymerization tendency of the material in question. However, since the plant extract not only contains enzymes (hydrolase A and B) that shorten the fructan chains but the activity of fructosyltransferase (SST, FFT) and enzymes of microbial origin (inulinase II, invertase) must also be considered, the concept of 'hydrolase activity' used by the authors is essentially an expression of 'total activity'. The activity unit (EU) is defined as the ability to split of 1 ..mu..mol of fructose from (chicory) inulin per minute under experimental conditions. Values of 0.25 to 0.77 EU/g dry solids were found in Jerusalem artichoke. Considerable differences may occur between varieties from the same cultivated area and the same harvest period. With one and the same variety, the activity appears to be subject to marked yearly fluctuations, so that at present, because of hydrolase activity, nothing certain can be said about the depolymerization tendency of a variety.

  17. Successful Endoscopic Therapy of Traumatic Bile Leaks

    Directory of Open Access Journals (Sweden)

    Matthew P. Spinn

    2013-02-01

    Full Text Available Traumatic bile leaks often result in high morbidity and prolonged hospital stay that requires multimodality management. Data on endoscopic management of traumatic bile leaks are scarce. Our study objective was to evaluate the efficacy of the endoscopic management of a traumatic bile leak. We performed a retrospective case review of patients who were referred for endoscopic retrograde cholangiopancreatography (ERCP after traumatic bile duct injury secondary to blunt (motor vehicle accident or penetrating (gunshot trauma for management of bile leaks at our tertiary academic referral center. Fourteen patients underwent ERCP for the management of a traumatic bile leak over a 5-year period. The etiology included blunt trauma from motor vehicle accident in 8 patients, motorcycle accident in 3 patients and penetrating injury from a gunshot wound in 3 patients. Liver injuries were grade III in 1 patient, grade IV in 10 patients, and grade V in 3 patients. All patients were treated by biliary stent placement, and the outcome was successful in 14 of 14 cases (100%. The mean duration of follow-up was 85.6 days (range 54-175 days. There were no ERCP-related complications. In our case review, endoscopic management with endobiliary stent placement was found to be successful and resulted in resolution of the bile leak in all 14 patients. Based on our study results, ERCP should be considered as first-line therapy in the management of traumatic bile leaks.

  18. Iatrogenic bile duct injuries – clinical problems

    Directory of Open Access Journals (Sweden)

    Głuszek Stanisław

    2014-01-01

    Full Text Available Laparoscopic cholecystectomy is one of the most frequently performed surgical procedures in surgical wards. Iatrogenic bile duct injuries (IBDI incurred during the procedures are among postoperative complications that are most difficult to treat. The risk of bile duct injury is 0.2-0.4%, and their consequences are unpleasant both for the surgeon and for the patient.

  19. Bile acids for liver-transplanted patients

    DEFF Research Database (Denmark)

    Poropat, Goran; Giljaca, Vanja; Stimac, Davor;

    2010-01-01

    Liver transplantation has become a widely accepted form of treatment for numerous end-stage liver diseases. Bile acids may decrease allograft rejection after liver transplantation by changing the expression of major histocompatibility complex class molecules in bile duct epithelium and central vein...

  20. Bile acids for liver-transplanted patients

    DEFF Research Database (Denmark)

    Chen, Weikeng; Gluud, C

    2005-01-01

    Liver transplantation has become a widely accepted form of treatment for numerous end-stage liver diseases. Bile acids may decrease the degree of allograft rejection after liver transplantation by changing the expression of major histocompatibility complex class molecules in bile duct epithelium...

  1. Bile acid biosynthesis and its regulation

    Directory of Open Access Journals (Sweden)

    Areta Hebanowska

    2010-10-01

    Full Text Available Bile acid biosynthesis is the main pathway of cholesterol catabolism. Bile acids are more soluble than cholesterol so are easier to excrete. As amphipathic molecules they participate in lipid digestion and absorption in the intestine and they help to excrete free cholesterol with bile. They are also ligands for nuclear receptors regulating the expression of genes involved in cholesterol metabolism. Interconversion of cholesterol into bile acids is an important point of its homeostasis. Seventeen enzymes are engaged in this process and many of them are cytochromes P450. Bile acid synthesis initiation may proceed with the “classical” pathway (starting with cholesterol hydroxylation at the C7α position or the “alternative” pathway (starting with cholesterol hydroxylation at the C27 position. Two additional pathways are possible, though their quantitative significance is small (initiated with cholesterol hydroxylations of C24 and C25 positions. Oxysterols produced are not only intermediates of bile acid biosynthesis but also important regulators of metabolism. Bile acid biosynthesis takes place in the liver, but some enzymes are also present in other organs, where they participate in regulation of cholesterol metabolism. Those enzymes are potential targets for new drugs against cholesterol metabolism disturbances. This article is a brief description of the bile acid biosynthesis pathway and participating enzymes.

  2. A rare case of bile duct cyst

    Institute of Scientific and Technical Information of China (English)

    Qing-Gang Wang; Shu-Tian Zhang

    2009-01-01

    Choledochal cyst is an uncommon disease usually seen in young women and can be divided into five types. We report a 66-year-old woman who was diagnosed with types Ⅱ and Ⅱ bile duct cyst simultaneously after surgery, which is a rare type of bile duct cyst.

  3. Micellar aggregates and hydrogels from phosphonobile salts.

    Science.gov (United States)

    Babu, Ponnusamy; Chopra, D; Row, T N Guru; Maitra, Uday

    2005-10-21

    The aggregation properties of novel bile acid analogs-phosphonobile salts (PBS)-have been studied. The critical micellar concentration of 23 and 24-phosphonobile salts were measured using fluorescence and 31P NMR methods. All the ten synthesized phosphonobile salts formed gels at different pH ranges in water. The pH range at which individual PBSs could gelate water was narrow and influenced by the number and conformation of hydroxyl groups. A reversible thermochromic system has been developed (with 23-phosphonodeoxycholate at pH 3.3), which changes color upon gelation. The investigation of the first hydrogels derived from trihydroxy bile acid analogs 1 and 6 was made using fluorescence, 31P NMR, X-ray crystallography, circular dichroism and SEM. The present studies reveal that the gel network consists of a chiral, fibrous structure possessing hydrophobic interiors. PMID:16211104

  4. Bile acid dissolution therapy of gallbladder stones.

    Science.gov (United States)

    Fromm, H; Malavolti, M

    1992-11-01

    Oral cholelitholytic bile acid therapy has become established treatment for selected patients with cholesterol gallstones. The treatment finds its clinical application both alone and in combination with ESWL. UDCA alone or, less commonly, a combination of this bile acid with CDCA is used. Optimal results can be expected only in carefully selected patients. Bile acid dissolution therapy is most successful in patients with radiolucent gallstones which are OCG to be floating. Dissolution is seldom seen when the stones are > 1 cm in size. Cholelitholytic treatment in combination with ESWL yields optimal results in single radiolucent gallstones which are not greater than 2 cm. ESWL thus makes it possible to use medical treatment effectively in single 1-2 cm gallstones when bile acids alone would not be successful. Bile acid treatment is extremely safe, especially if UDCA is given without the addition of CDCA. PMID:1486209

  5. Bile acids in health and disease

    DEFF Research Database (Denmark)

    Krag, E; Thaysen, E H

    1996-01-01

    improved. Important physiological research on the mechanisms of hepatic bile flow was conducted. An intestinal perfusion model served as a tool providing information on absorption kinetics and on transmucosal water and electrolyte movements. The gallstone disease, liver diseases, inflammatory bowel disease...... to the understanding of the factors involved in the solubility of cholesterol in bile. The growing international understanding of the potential importance of the bile acids in health and disease gave raise to a substantial Danish contribution in the 1970s and 1980s in parallel with international achievements. Emphasis...... was on the possible clinical implications of bile acids. Studies on physiology and pathophysiology were in focus. Patients who have had an intestinal bypass operation for obesity served as a model for obtaining new knowledge on various aspects of the properties of the bile acids. Also the analytical methods were...

  6. Acute bile nephropathy secondary to anabolic steroids.

    Science.gov (United States)

    Alkhunaizi, Ahmed M; ElTigani, Mohamed A; Rabah, Rola S; Nasr, Samih H

    2016-02-01

    Renal dysfunction in cholestatic liver disease is multifactorial. Acute kidney injury may develop secondary to renal vasoconstriction in the setting of peripheral vasodilation and relative hypovolemia, tubular obstruction by bile casts, and direct tubular toxicity from bile. Anabolic steroids are frequently used by athletes to boost endurance and increase muscle mass. These agents are a recently recognized cause of hepatotoxicity and jaundice and may lead to acute kidney injury. To increase awareness about this growing problem and to characterize the pathology of acute kidney injury in this setting, we report on a young male who developed acute kidney injury in the setting of severe cholestatic jaundice related to ingestion of anabolic steroids used for bodybuilding. Kidney biopsy showed bile casts within distal tubular lumina, filamentous bile inclusions within tubular cells, and signs of acute tubular injury. This report supports the recently re-emerged concept of bile nephropathy cholemic nephrosis. PMID:26587777

  7. Acute bile nephropathy secondary to anabolic steroids.

    Science.gov (United States)

    Alkhunaizi, Ahmed M; ElTigani, Mohamed A; Rabah, Rola S; Nasr, Samih H

    2016-02-01

    Renal dysfunction in cholestatic liver disease is multifactorial. Acute kidney injury may develop secondary to renal vasoconstriction in the setting of peripheral vasodilation and relative hypovolemia, tubular obstruction by bile casts, and direct tubular toxicity from bile. Anabolic steroids are frequently used by athletes to boost endurance and increase muscle mass. These agents are a recently recognized cause of hepatotoxicity and jaundice and may lead to acute kidney injury. To increase awareness about this growing problem and to characterize the pathology of acute kidney injury in this setting, we report on a young male who developed acute kidney injury in the setting of severe cholestatic jaundice related to ingestion of anabolic steroids used for bodybuilding. Kidney biopsy showed bile casts within distal tubular lumina, filamentous bile inclusions within tubular cells, and signs of acute tubular injury. This report supports the recently re-emerged concept of bile nephropathy cholemic nephrosis.

  8. Fungal epoxide hydrolases: new landmarks in sequence-activity space.

    Science.gov (United States)

    Smit, Martha S

    2004-03-01

    Epoxide hydrolases are useful catalysts for the hydrolytic kinetic resolution of epoxides, which are sought after intermediates for the synthesis of enantiopure fine chemicals. The epoxide hydrolases from Aspergillus niger and from the basidiomycetous yeasts Rhodotorula glutinis and Rhodosporidium toruloides have demonstrated potential as versatile, user friendly biocatalysts for organic synthesis. A recombinant A. niger epoxide hydrolase, produced by an overproducing A. niger strain, is already commercially available and recombinant yeast epoxide hydrolases expressed in Escherichia coli have shown excellent results. Within the vast body of activity information on the one hand and gene sequence information on the other hand, the epoxide hydrolases from the Rhodotorula spp. and A. niger stand out because we have sequence information as well as activity information for both the wild-type and recombinant forms of these enzymes.

  9. Bacterial CS2 hydrolases from Acidithiobacillus thiooxidans strains are homologous to the archaeal catenane CS2 hydrolase.

    Science.gov (United States)

    Smeulders, Marjan J; Pol, Arjan; Venselaar, Hanka; Barends, Thomas R M; Hermans, John; Jetten, Mike S M; Op den Camp, Huub J M

    2013-09-01

    Carbon disulfide (CS(2)) and carbonyl sulfide (COS) are important in the global sulfur cycle, and CS(2) is used as a solvent in the viscose industry. These compounds can be converted by sulfur-oxidizing bacteria, such as Acidithiobacillus thiooxidans species, to carbon dioxide (CO(2)) and hydrogen sulfide (H2S), a property used in industrial biofiltration of CS(2)-polluted airstreams. We report on the mechanism of bacterial CS(2) conversion in the extremely acidophilic A. thiooxidans strains S1p and G8. The bacterial CS(2) hydrolases were highly abundant. They were purified and found to be homologous to the only other described (archaeal) CS(2) hydrolase from Acidianus strain A1-3, which forms a catenane of two interlocked rings. The enzymes cluster in a group of β-carbonic anhydrase (β-CA) homologues that may comprise a subclass of CS(2) hydrolases within the β-CA family. Unlike CAs, the CS(2) hydrolases did not hydrate CO(2) but converted CS(2) and COS with H(2)O to H(2)S and CO(2). The CS(2) hydrolases of A. thiooxidans strains G8, 2Bp, Sts 4-3, and BBW1, like the CS(2) hydrolase of Acidianus strain A1-3, exist as both octamers and hexadecamers in solution. The CS(2) hydrolase of A. thiooxidans strain S1p forms only octamers. Structure models of the A. thiooxidans CS(2) hydrolases based on the structure of Acidianus strain A1-3 CS(2) hydrolase suggest that the A. thiooxidans strain G8 CS(2) hydrolase may also form a catenane. In the A. thiooxidans strain S1p enzyme, two insertions (positions 26 and 27 [PD] and positions 56 to 61 [TPAGGG]) and a nine-amino-acid-longer C-terminal tail may prevent catenane formation.

  10. Structure of plant bile pigments

    Energy Technology Data Exchange (ETDEWEB)

    Schoenleber, R.W.

    1983-12-01

    Selective peptide cleavage has provided a general procedure for the study of the structure, including stereochemistry, of plant bile pigments. The information derived from the synthesis and spectral analysis of a series of 2,3-dihydrodioxobilins allows the determination of the trans relative stereochemistry for ring A of the ..beta../sub 1/-phycocyanobilin from C-phycocyanin as well as for ring A of phytochrome. A complete structure proof of the five phycoerythrobilins attached to the ..cap alpha.. and ..beta.. subunits of B-phycoerythrin is described. One of these tetrapyrroles is doubly-peptide linked to a single peptide chain through two thioethers at the C-3' and C-18' positions. The four remaining phycoerythrobilins are singly-linked to the protein through thioethers at the C-3' position and all possess the probable stereochemistry C-2(R), C-3(R), C-3'(R), and C-16(R).

  11. Bile Duct Adenoma with Oncocytic Features

    Directory of Open Access Journals (Sweden)

    E. J. Johannesen

    2014-01-01

    Full Text Available Bile duct adenomas are benign bile duct proliferations usually encountered as an incidental finding. Oncocytic bile duct neoplasms are rare and the majority are malignant. A 61-year-old male with a diagnosis of colorectal adenocarcinoma was undergoing surgery when a small white nodule was discovered on the surface of the right lobe of his liver. This lesion was composed of cytologically bland cells arranged in tightly packed glands. These cells were immunopositive for cytokeratin 7, negative for Hep Par 1, contained mucin, and had a Ki67 proliferation index of 8%. The morphology, immunophenotype, presence of mucin, and normal appearing bile ducts, as well as the increased Ki67 proliferation rate, were consistent with a bile duct adenoma with oxyphilic (oncocytic change. Oncocytic tumors in the liver are rare; the first described in 1992. Only two bile duct adenomas with oncocytic change have been reported and neither of them had reported mucin production or the presence of normal appearing bile ducts within the lesion.

  12. The first case of pediatric bile duct adenoma

    OpenAIRE

    Zhi Li; Xiaoyi Sun; Jiexiong Feng

    2015-01-01

    Intrahepatic bile duct adenoma (BDA) is a rare benign epithelial liver tumor derived from bile duct cells. We report the first case of pediatric bile duct adenoma in the world. Furthermore, we review the diagnosis, pathology, treatment and prognosis of bile duct adenoma.

  13. Re-characterization of mono-2-ethylhexyl phthalate hydrolase belonging to the serine hydrolase family.

    Science.gov (United States)

    Iwata, Makoto; Imaoka, Takuya; Nishiyama, Takashi; Fujii, Takao

    2016-08-01

    A novel bacterium assimilating di-2-ethylhexyl phthalate as a sole carbon source was isolated, and identified as a Rhodococcus species and the strain was named EG-5. The strain has a mono-2-ethylhexyl phthalate (MEHP) hydrolase (EG-5 MehpH), which exhibits some different enzymatic features when compared with the previously reported MEHP hydrolase (P8219 MehpH) from Gordonia sp. These differences include different pH optimum activity, maximal reaction temperature and heat stability. The Km and Vmax values of EG-5 MehpH were significantly higher than those of P8219 MehpH. The primary structure of EG-5 MehpH showed the highest sequence identity to that of P8219 MehpH (39%) among hydrolases. The phylogenetic tree suggested that EG-5 MehpH and P8219 MehpH were categorized in different groups of the novel MEHP hydrolase family. Mutation of a conserved R(109) residue of EG-5 MehpH to a hydrophobic residue resulted in a dramatic reduction in the Vmax value towards MEHP without affecting the Km value. These results indicate that this residue may neutralize the negative charge of a carboxylate anion of MEHP, and thus inhibit the catalytic nucleophile from attacking the ester bond. In other words, the R residue blocks inhibition from the carboxylate anion of MEHP. Recently, registered hypothetical proteins exhibiting 98% or 99% identities for EG-5 MehpH or for P8219 MehpH were found from some pathogens belonging to Actinomycetes. The protein may have other activities besides MEHP hydrolysis and function in other physiological reactions in some Actinomycetes. PMID:26868518

  14. Phytosterol ester constituents affect micellar cholesterol solubility in model bile.

    Science.gov (United States)

    Brown, Andrew W; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P

    2010-09-01

    Plant sterols and stanols (phytosterols) and their esters are nutraceuticals that lower LDL cholesterol, but the mechanisms of action are not fully understood. We hypothesized that intact esters and simulated hydrolysis products of esters (phytosterols and fatty acids in equal ratios) would differentially affect the solubility of cholesterol in model bile mixed micelles in vitro. Sodium salts of glycine- and taurine-conjugated bile acids were sonicated with phosphatidylcholine and either sterol esters or combinations of sterols and fatty acids to determine the amount of cholesterol solubilized into micelles. Intact sterol esters did not solubilize into micelles, nor did they alter cholesterol solubility. However, free sterols and fatty acids altered cholesterol solubility independently (no interaction effect). Equal contents of cholesterol and either campesterol, stigmasterol, sitosterol, or stigmastanol (sitostanol) decreased cholesterol solubility in micelles by approximately 50% compared to no phytosterol present, with stigmasterol performing slightly better than sitosterol. Phytosterols competed with cholesterol in a dose-dependent manner, demonstrating a 1:1 M substitution of phytosterol for cholesterol in micelle preparations. Unsaturated fatty acids increased the micelle solubility of sterols as compared with saturated or no fatty acids. No differences were detected in the size of the model micelles. Together, these data indicate that stigmasterol combined with saturated fatty acids may be more effective at lowering cholesterol micelle solubility in vivo.

  15. Peptidoglycan hydrolase fusions maintain their parental specificities.

    Science.gov (United States)

    Donovan, David M; Dong, Shengli; Garrett, Wes; Rousseau, Geneviève M; Moineau, Sylvain; Pritchard, David G

    2006-04-01

    The increased incidence of bacterial antibiotic resistance has led to a renewed search for novel antimicrobials. Avoiding the use of broad-range antimicrobials through the use of specific peptidoglycan hydrolases (endolysins) might reduce the incidence of antibiotic-resistant pathogens worldwide. Staphylococcus aureus and Streptococcus agalactiae are human pathogens and also cause mastitis in dairy cattle. The ultimate goal of this work is to create transgenic cattle that are resistant to mastitis through the expression of an antimicrobial protein(s) in their milk. Toward this end, two novel antimicrobials were produced. The (i) full-length and (ii) 182-amino-acid, C-terminally truncated S. agalactiae bacteriophage B30 endolysins were fused to the mature lysostaphin protein of Staphylococcus simulans. Both fusions display lytic specificity for streptococcal pathogens and S. aureus. The full lytic ability of the truncated B30 protein also suggests that the SH3b domain at the C terminus is dispensable. The fusions are active in a milk-like environment. They are also active against some lactic acid bacteria used to make cheese and yogurt, but their lytic activity is destroyed by pasteurization (63 degrees C for 30 min). Immunohistochemical studies indicated that the fusion proteins can be expressed in cultured mammalian cells with no obvious deleterious effects on the cells, making it a strong candidate for use in future transgenic mice and cattle. Since the fusion peptidoglycan hydrolase also kills multiple human pathogens, it also may prove useful as a highly selective, multipathogen-targeting antimicrobial agent that could potentially reduce the use of broad-range antibiotics in fighting clinical infections.

  16. Primary hepatocellular carcinoma in extrahepatic bile duct

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seok Tae; Ham, Soo Youn; Park, Cheol Min; Kim, Jung Hyuk; Cha, In Ho; Chung, Kyoo Byung; Suh, Woon Hyuck; Lee, Chang Hong [College of Medicine, Korea University, Seoul (Korea, Republic of)

    1991-03-15

    Obstructive jaundice due to hepatocellular carcinoma in an extrahepatic bile duct, without a mass lesion in the liver parenchyma, is extremely rare. We experienced two cases of primary hepatocellular carcinoma arising from an extrahepatic bile duct: one in a 53-year-old man whose {alpha} -fetoprotein value was 800 ng/ml, and another in a 39-year-old woman, in whom the mass lesion was found to be attached to an extrahepatic bile duct. These tumors had a well-marginated sausage-like shape on CT and US, and the contrast media passed freely along their margins on both PTC and ERCP. Recurrences of these tumors were observed in the extrahepatic bile duct 6 and 2 months after surgery, respectively.

  17. A proton wire and water channel revealed in the crystal structure of isatin hydrolase

    DEFF Research Database (Denmark)

    Bjerregaard-Andersen, Kaare; Sommer, Theis; Jensen, Jan Kristian;

    2014-01-01

    The high resolution crystal structures of isatin hydrolase from Labrenzia aggregata in the apo and the product state, are described. These are the first structures of a functionally characterized metal-dependent hydrolase of this fold. Isatin hydrolase converts isatin to isatinate and belongs to ...... of orthologous genes encoding isatin hydrolases within the prokaryotic kingdom. The isatin hydrolase orthologues found in human gut bacteria raise the question as to whether the indole-3-acetic acid degradation pathway is present in human gut flora....

  18. Differential expression of cholangiocyte and ileal bile acid transporters following bile acid supplementation and depletion

    Institute of Scientific and Technical Information of China (English)

    N. Sertac Kip; Konstantinos N. Lazaridis; Anatoliy I. Masyuk; Patrick L. Splinter; Robert C. Huebert; Nicholas F. LaRusso

    2004-01-01

    AIM: We have previously demonstrated that cholangiocytes,the epithelial cells lining intrahepatic bile ducts, encode two functional bile acid transporters via alternative splicing of a single gene to facilitate bile acid vectorial transport.Cholangiocytes possess ASBT, an apical sodium-dependent bile acid transporter to take up bile acids, and t-ASBT, a basolateral alternatively spliced and truncated form of ASBT to efflux bile acids. Though hepatocyte and ileal bile acid transporters are in part regulated by the flux of bile acids,the effect of alterations in bile acid flux on the expression of t-ASBT in terminal ileocytes remains unclear. Thus, we tested the hypothesis that expression of ASBT and t-ASBT in cholangiocytes and ileocytes was regulated by bile acid flux. METHODS: Expression of ASBT and t-ASBT message and protein in cholangiocytes and ileocytes isolated from pairfed rats given control (C) and 1% taurocholate (TCA) or 5% cholestyramine (CY) enriched diets, were assessed by both quantitative RNase protection assays and quantitative immunoblotting. The data obtained from each of the control groups were pooled to reflect the changes observed following TCA and CY treatments with respect to the control diets.Cholangiocyte taurocholate uptake was determined using a novel microperfusion technique on intrahepatic bile duct units (IBDUs) derived from C, TCA and CY fed rats.RESULTS: In cholangiocytes, both ASBT and t-ASBT message RNA and protein were significantly decreased in response to TCA feeding compared to C diet. In contrast,message and protein of both bile acid transporters significantly increased following CY feeding compared to C diet. In the ileum, TCA feeding significantly up-regulated both ASBT and t-ASBT message and protein compared to C diet, while CY feeding significantly down-regulated message and protein of both bile acid transporters compared to C diet. As anticipated from alterations in cholangiocyte ASBT expression, the uptake of

  19. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules.

    Science.gov (United States)

    Copple, Bryan L; Li, Tiangang

    2016-02-01

    For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that

  20. Taurolithocholate impairs bile canalicular motility and canalicular bile secretion in isolated rat hepatocyte couplets

    Institute of Scientific and Technical Information of China (English)

    Norihito Watanabe; Tatehiro Kagawa; Sei-ichiro Kojima; Shinji Takashimizu; Naruhiko Nagata; Yasuhiro Nishizaki; Tetsuya Mine

    2006-01-01

    AIM: To investigate the effects of taurolithocholate (TLC)on the canalicular motility in isolated rat hepatocyte couplets (IRHC).METHODS: TLC was added to IRHC at concentrations of 10 and 50 μmol/L, respectively. In each group, five time-lapse movies containing 3 representative bile canaliculi were taken under phase-contrast microscopy for 12 h. The number of bile canalicular contractions and the intervals between consecutive canalicular contractions were calculated. Furthermore, the effects of TLC on IRHC were examined by transmission electron microscopy.RESULTS: The bile canalicular contractions were spontaneous and forceful in the controls. Active vesicular movement was observed in the pericanalicular region. Immediately after the addition of TLC, the bile canaliculi were deformed, and canalicular bile was incorporated into the vacuoles. The canaliculi were gradually dilated, and canalicular contractions were markedly inhibited by TLC. The vesicular movements became extremely slow in the pericanalicular region. The number of canalicular contractions significantly decreased in the TLC-treated groups, as compared with that in the controls. The time intervals were prolonged, as the TLC dosage increased,indicating that bile secretion into the canaliculi was impaired with TLC. Transmission electron microscopy revealed the lamellar transformation of the canalicular membranes in IRHC treated with TLC.CONCLUSION: TLC impairs both the bile canalicular contractions and the canalicular bile secretion, possibly by acting directly on the canalicular membranes in TLCinduced cholestasis.

  1. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation

    NARCIS (Netherlands)

    Lefebvre, Philippe; Cariou, Bertrand; Lien, Fleur; Kuipers, Folkert; Staels, Bart

    2009-01-01

    Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiol Rev 89: 147-191,2009; doi: 10.1152/physrev.00010.2008. - The incidence of the metabolic syndrome has taken epidemic proportions in the past decades, contributing to an incre

  2. Direct detection, cloning and characterization of a glucoside hydrolase from forest soil.

    Science.gov (United States)

    Hua, Mei; Zhao, Shubo; Zhang, Lili; Liu, Dongbo; Xia, Hongmei; Li, Fan; Chen, Shan

    2015-06-01

    A glucoside hydrolase gene, egl01, was cloned from the soil DNA of Changbai Mountain forest by homologous PCR amplification. The deduced sequence of 517 amino acids included a catalytic domain of glycoside hydrolase family 5 and was homologous to a putative cellulase from Bacillus licheniformis. The recombinant enzyme, Egl01, was maximally active at pH 5 and 50 °C and it was stable at pH 3-9, 4-50 °C, and also stable in the presence of metal ions, organic solvents, surfactants and salt. Its activity was above 120 % in 2-3 M NaCl/KCl and over 70 % was retained in 1-4 M NaCl/KCl for 6d. Egl01 hydrolyzed carboxymethyl cellulose, beechwood xylan, crop stalk, laminarin, filter paper, and avicel but not pNPG, indicating its broad substrate specificity. These properties make this recombinant enzyme a promising candidate for industrial applications. PMID:25700816

  3. Hepatic bile acids and bile acid-related gene expression in pregnant and lactating rats

    Directory of Open Access Journals (Sweden)

    Qiong N. Zhu

    2013-08-01

    Full Text Available Background. Significant physiological changes occur during pregnancy and lactation. Intrahepatic cholestasis of pregnancy (ICP is a liver disease closely related to disruption of bile acid homeostasis. The objective of this study was to examine the regulation of bile acid synthesis and transport in normal pregnant and lactating rats. Materials and Methods. Livers from timed pregnant SD rats were collected on gestational days (GD 10, 14 and 19, and postnatal days (PND 1, 7, 14 and 21. Total bile acids were determined by the enzymatic method, total RNA was isolated and subjected to real time RT-PCR analysis. Liver protein was extracted for western-blot analysis. Results. Under physiological conditions hepatic bile acids were not elevated during pregnancy but increased during lactation in rats. Bile acid synthesis rate-limiting enzyme Cyp7a1 was unchanged on gestational days, but increased on PND14 and 21 at mRNA and protein levels. Expression of Cyp8b1, Cyp27a1 and Cyp7b1 was also higher during lactation. The mRNA levels of small heterodimer partner (SHP and protein levels of farnesoid X receptor (FXR were increased during pregnancy and lactation. Bile acid transporters Ntcp, Bsep, Mrp3 and Mrp4 were lower at gestation, but increased during lactation. Hepatic Oatp transporters were decreased during pregnancy and lactation. Conclusion. Hepatic bile acid homeostasis is maintained during normal pregnancy in rats, probably through the FXR-SHP regulation. The expression of bile acid synthesis genes and liver bile acid accumulation were increased during lactation, together with increased expression of bile acid efflux transporter Bsep, Mrp3 and Mrp4.

  4. Carboxylic ester hydrolase and amylase in ischemic pancreatitis in the guinea pig.

    Science.gov (United States)

    Blind, P J; Bläckberg, L; Lundström, E B; Emdin, S O; Hernell, O

    1996-05-01

    The observation that an elevated level of pancreatic carboxylic ester hydrolase (CEH) in serum is a more sensitive and specific marker of acute pancreatitis than is elevated serum amylase activity prompted us to explore whether these findings could be confirmed in an experimental model and, if so, to find the explanation behind this difference. We therefore developed a model for ischemic pancreatitis in the guinea pig and a sandwich enzyme-linked immunosorbent assay for determination of CEH in this species. There was a strong correlation between duration of ischemia and severity of pancreatic inflammation and between severity of inflammation and serum CEH level. In contrast, serum amylase was elevated only in animals with the most severe grade of inflammation. Amylase was, however, increased in urine in animals with mild inflammation, but the level did not increase with severity of inflammation. Only one of 31 animals had detectable CEH in urine. In animals with intermediate serum CEH levels the serum and biliary concentrations correlated, indicating that CEH may be cleared by the liver. Amylase was detectable in bile only in animals with high serum levels. The results confirm our observations made in previous clinical studies. A likely explanation for differences in serum levels of CEH and amylase is clearance from the circulation at different rates and, at least partly, via different routes, e.g., the liver and kidney, respectively.

  5. 胆盐输出泵基因多态性与特发性婴儿肝炎肝内胆汁瘀积的关系%Relationship between Bile Salt Export Pump Gene Polymorphisms and lntrahepatic Cholestasis in Idiopathic In-fantile Hepatitis

    Institute of Scientific and Technical Information of China (English)

    邓亚楠; 王琳琳; 陈秀奇; 唐清; 高国鹏; 单庆文; 云翔

    2011-01-01

    目的 探讨特发性婴儿肝炎肝内胆汁瘀积患儿胆盐输出泵(BSEP)基因的突变情况.方法 收集2008年10月- 2010年2月就诊于广西医科大学第一附属医院儿科的婴儿胆汁瘀积性肝炎患儿81例(病例组),48例无肝内胆汁瘀积、肝功能正常的婴儿为对照组.提取病例组和对照组儿童外周血DNA,采用聚合酶链反应-单链构象多态性(PCR-SSCP)和DNA测序技术检测BSEP基因上2、3、4、5、6、9、10、16、17、23、24外显子基因多态性,分析BSEP基因多态性与特发性婴儿肝炎肝内胆汁瘀积之间的关系.结果在外显子24上检测到BSEP A1028A同义突变,编码的氨基酸未改变,均为丙氨酸;其他10个外显子均未发现异常突变.A1028A基因型在病例组,CC型53例(占65.4%),TC型28例(占34.6%),C等位基因频率为82.7%;对照组中CC型32例(占66.7%),TC型16例(占33.3%),C等位基因频率为83.3%.二组基因型差异经Fisher's精确概率法检验,差异无统计学意义(P>0.05);等位基因频率经Fisher's精确概率法检验,差异亦无统计学意义(P>0.05).结论 尚不能认为BSEP A1028A是特发性婴儿肝炎肝内胆汁瘀积的一个危险因素.BSEP A1028A与特发性婴儿肝炎肝内胆汁瘀积发生的易感性无关.%Objective To evaluate the bile salt export pump(BSEP) gene polymorphisms in the pathogenesis of intrahepatic cholestasis in idiopathic infantile hepatitis. Methods The genomic DNA was obtained from peripheral blood of 81 patients with idiopathic infantile cholestasis as case group, who hospitalized in the Department of Pediatrics of the First Affiliated Hospital of Guangxi Medical University from Oct. 2008 to Feb.2010,and 48 normal liver function infants without intrahepatic cholestasis as control group. The BSEP gene 2,3,4,5,6,9,10, 16,17,23,24 exons polymorphism were genotyped by polymerase chain reaction - single strand conformation polymorphism(PCR - SSCP) and sequenced. The statistical

  6. Bile composition in Alagille Syndrome and PFIC patients having Partial External Biliary Diversion

    Directory of Open Access Journals (Sweden)

    Thompson Richard J

    2008-10-01

    Full Text Available Abstract Background Partial External Biliary Diversion (PEBD is a surgical intervention to treat children with Progressive Familial Intrahepatic Cholestasis (PFIC and Alagille syndrome (AGS. PEBD can reduce disease progression, and examining the alterations in biliary lipid composition may be a prognostic factor for outcome. Methods Biliary lipid composition and the clinical course of AGS and PFIC patients were examined before and after PEBD. Results Pre-PEBD bile from AGS patients had greater chenodeoxycholic/cholic acid (CDCA/CA, bile salt, cholesterol and phospholipid concentrations than PFIC patients. AGS patients, and PFIC patients with familial intrahepatic cholestasis 1 (FIC1 genotype, responded better to PEBD than PFIC patients with bile salt export protein (BSEP genotype. After successful PEBD, AGS patients have higher biliary lipid concentrations than PFIC patients and PEBD also increases biliary phospholipid concentrations in FIC1 patients. Conclusion Both AGS and FIC1 patients can benefit from PEBD, and preserved biliary phospholipid concentrations may be associated with better outcomes post-PEBD.

  7. Bile acid formation in primary human hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Curt Einarsson; Ewa Ellis; Anna Abrahamsson; Bo-G6ran Ericzon; Ingemar Bj rkhem; Magnus Axelson

    2000-01-01

    AIM To evaluate a culture system for bile acid formation in primary human hepatocytes in comparison with HepG2 cells. METHODS Hepatocytes were isolated from normal human liver tissue and were cultured in serum-free William's E medium. The medium was collected and renewed every 24 h. Bile acids and their precursors in media were finally analysed by gas chromatography-mass spectrometry. RESULTS Cholic acid ( CA ) andchenodeoxycholic acid (CDCA) conjugated with glycine or taurine accounted for 70% and 25% of total steroids. A third of CDCA was also conjugated with sulphuric acid. Dexamathasone and thyroid hormorm alone or in combination did not significantly effect bile acid formation. The addition of cyclosporin A (10 μmol/L) inhibited the synthesis of CA and CDCA by about 13% and 30%, respectively. CONCLUSION Isolated human hepatocytes in primary culture behave as in the intact liver by converting cholesterol to conjugated CA and CDCA. This is in contrast to cultured HepG2 cells, which release large amounts of bile acid precursors and unconjugated bile acids into the medium.

  8. [Isolated neurofibroma of the common bile duct].

    Science.gov (United States)

    Carbia, S; Pagola, J; Flaster, N; Guida, A; Jufe, L; González, B; Caniparoli, A

    1995-01-01

    The neurogenic tumors in the biliary tract are rare and usually are amputation neuroma that occur after cholecystectomy. We describe a case of isolated neurofibroma of the common bile duct in a young man not cholecystectomized. The patient suffered recurrent episodes of abdominal pain, vomiting and weight loss without clinical signs of Von Recklinghausen's disease or jaundice. The hepatogram was normal. The echography indicated a solid formation with obstruction of the proximal common bile duct. In the ERCP the stenosis was found. Surgical excision of the tumor and anastomosis of bilateral hepatic ducts and jejunum were carried out. At microscopic examination intraparietal neurofibroma of the common bile duct was found. As isolated entity, we know of only one reported case. PMID:8731581

  9. Classiifcation of iatrogenic bile duct injur y

    Institute of Scientific and Technical Information of China (English)

    Wan-Yee Lau; Eric C.H. Lai

    2007-01-01

    BACKGROUND: Iatrogenic bile duct injury continues to be an important clinical problem, resulting in serious morbidity, and occasional mortality, to patients. The ease of management, operative risk, and outcome of bile duct injuries vary considerably, and are highly dependent on the type of injury and its location. This article reviews the various classiifcation systems of bile duct injury. DATA SOURCES: A Medline, PubMed database search was performed to identify relevant articles using the keywords"bile duct injury", "cholecystectomy", and “classiifcation”. Additional papers were identiifed by a manual search of the references from the key articles. RESULTS: Traditionally, biliary injuries have been classiifed using the Bismuth's classiifcation. This classiifcation, which originated from the era of open surgery, is intended to help the surgeons to choose the appropriate technique for the repair, and it has a good correlation with the ifnal outcome after surgical repair. However, the Bismuth's classiifcation does not encompass the whole spectrum of injuries that are possible. Bile duct injury during laparoscopic cholecystectomy tends to be more severe than those with open cholecystectomy. Strasberg’s classiifcation made Bismuth’s classiifcation much more comprehensive by including various other types of extrahepatic bile duct injuries. Our group, Bergman et al, Neuhaus et al, Csendes et al, and Stewart et al have also proposed other classiifcation systems to complement the Bismuth's classiifcation. CONCLUSIONS:None of the classiifcation system is universally accepted as each has its own limitation. Hopefully, a universally accepted comprehensive classiifcation system will be published in the near future.

  10. Basal efflux of bile acids contributes to drug-induced bile acid-dependent hepatocyte toxicity in rat sandwich-cultured hepatocytes.

    Science.gov (United States)

    Susukida, Takeshi; Sekine, Shuichi; Ogimura, Eiichiro; Aoki, Shigeki; Oizumi, Kumiko; Horie, Toshiharu; Ito, Kousei

    2015-10-01

    The bile salt export pump (BSEP or Bsep) functions as an apical transporter to eliminate bile acids (BAs) from hepatocytes into the bile. BSEP or Bsep inhibitors engender BA retention, suggested as an underlying mechanism of cholestatic drug-induced liver injury. We previously reported a method to evaluate BSEP-mediated BA-dependent hepatocyte toxicity by using sandwich-cultured hepatocytes (SCHs). However, basal efflux transporters, including multidrug resistance-associated proteins (MRP or Mrp) 3 and 4, also participate in BA efflux. This study examined the contribution of basal efflux transporters to BA-dependent hepatocyte toxicity in rat SCHs. The apical efflux of [(3)H]taurocholic acid (TC) was potently inhibited by 10 μM cyclosporine A (CsA), with later inhibition of basal [(3)H]TC efflux, while MK571 simultaneously inhibited both apical and basal [(3)H]TC efflux. CsA-induced BA-dependent hepatocyte toxicity was 30% at most at 10 μM CsA and ∼60% at 50 μM, while MK571 exacerbated hepatocyte toxicity at concentrations of ≥50 μM. Quinidine inhibited only basal [(3)H]TC efflux and showed BA-dependent hepatocyte toxicity in rat SCHs. Hence, inhibition of basal efflux transporters as well as Bsep may precipitate BA-dependent hepatocyte toxicity in rat SCHs. PMID:26055650

  11. Bile acids: emerging role in management of liver diseases

    OpenAIRE

    Asgharpour, Amon; Kumar, Divya; Sanyal, Arun

    2015-01-01

    Bile acids are well known for their effects on cholesterol homeostasis and lipid digestion. Since the discovery of bile acid receptors, of which there are farnesoid X receptor (FXR), a nuclear receptor, and the plasma membrane G-protein receptor, as well as Takeda G-protein coupled receptor clone 5, further roles have been elucidated for bile acids including glucose and lipid metabolism as well as inflammation. Additionally, treatment with bile acid receptor agonists has shown a decrease in t...

  12. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei

    Directory of Open Access Journals (Sweden)

    Afef Najjari

    2016-01-01

    Full Text Available Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH patterns for all strains was characterized by two lytic bands of ∼80 (B1 and ∼70 kDa (B2, except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species.

  13. Phenotypic and genotypic characterization of peptidoglycan hydrolases of Lactobacillus sakei.

    Science.gov (United States)

    Najjari, Afef; Amairi, Houda; Chaillou, Stéphane; Mora, Diego; Boudabous, Abdellatif; Zagorec, Monique; Ouzari, Hadda

    2016-01-01

    Lactobacillus sakei, a lactic acid bacterium naturally found in fresh meat and sea products, is considered to be one of the most important bacterial species involved in meat fermentation and bio-preservation. Several enzymes of Lb. sakei species contributing to microbial safeguarding and organoleptic properties of fermented-meat were studied. However, the specific autolytic mechanisms and associated enzymes involved in Lb. sakei are not well understood. The autolytic phenotype of 22 Lb. sakei strains isolated from Tunisian meat and seafood products was evaluated under starvation conditions, at pH 6.5 and 8.5, and in the presence of different carbon sources. A higher autolytic rate was observed when cells were grown in the presence of glucose and incubated at pH 6.5. Almost all strains showed high resistance to mutanolysin, indicating a minor role of muramidases in Lb. sakei cell lysis. Using Micrococcus lysodeikticus cells as a substrate in activity gels zymogram, peptidoglycan hydrolase (PGH) patterns for all strains was characterized by two lytic bands of ∼80 (B1) and ∼70 kDa (B2), except for strain BMG.167 which harbored two activity signals at a lower MW. Lytic activity was retained in high salt and in acid/basic conditions and was active toward cells of Lb. sakei, Listeria monocytogenes, Listeria ivanovii and Listeria innocua. Analysis of five putative PGH genes found in the Lb. sakei 23 K model strain genome, indicated that one gene, lsa1437, could encode a PGH (N-acetylmuramoyl-L-alanine amidase) containing B1 and B2 as isoforms. According to this hypothesis, strain BMG.167 showed an allelic version of lsa1437 gene deleted of one of the five LysM domains, leading to a reduction in the MW of lytic bands and the high autolytic rate of this strain. Characterization of autolytic phenotype of Lb. sakei should expand the knowledge of their role in fermentation processes where they represent the dominant species. PMID:26843981

  14. Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity.

    Science.gov (United States)

    Styles, Nathan A; Shonsey, Erin M; Falany, Josie L; Guidry, Amber L; Barnes, Stephen; Falany, Charles N

    2016-07-01

    Bile acid CoA:amino acid N-acyltransferase (BAAT) is the terminal enzyme in the synthesis of bile salts from cholesterol and catalyzes the conjugation of taurine or glycine to bile acid CoA thioesters to form bile acid N-acylamidates. BAAT has a dual localization to the cytosol and peroxisomes, possibly due to an inefficient carboxy-terminal peroxisomal targeting signal (PTS), -serine-glutamine-leucine (-SQL). Mutational analysis was used to define the role of the carboxy terminus in peroxisomal localization and kinetic activity. Amidation activity of BAAT and BAAT lacking the final two amino acids (AAs) (BAAT-S) were similar, whereas the activity of BAAT with a canonical PTS sequence (BAAT-SKL) was increased >2.5-fold. Kinetic analysis of BAAT and BAAT-SKL showed that BAAT-SKL had a lower Km for taurine and glycine as well as a greater Vmax There was no difference in the affinity for cholyl-CoA. In contrast to BAAT, BAAT-SKL forms bile acid N-acylamidates with β-alanine. BAAT-S immunoprecipitated when incubated with peroxisomal biogenesis factor 5 (Pex5) and rabbit anti-Pex5 antibodies; however, deleting the final 12 AAs prevented coimmunoprecipitation with Pex5, indicating the Pex5 interaction involves more than the -SQL sequence. These results indicate that even small changes in the carboxy terminus of BAAT can have significant effects on activity and substrate specificity. PMID:27230263

  15. The effect of dietary psyllium hydrocolloid and lignin on bile.

    Science.gov (United States)

    Brydon, W G; Borup-Christensen, S; Van der Linden, W; Eastwood, M A

    1979-07-01

    Animal experiments suggest that supplementing the diet with either psyllium seed husk or lignin alters the ratio of deoxycholic acid to chenodeoxycholic in bile. In this study dosages of psyllium seed husk or lignin acceptable to patients with gallstones do not appear to alter the relative amounts of cholesterol, or individual bile acids in the bile. PMID:524929

  16. A case of fascioliasis in common bile duct

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Soo Youn; Park, Cheol Min; Chung, Kyu Byung; Lee, Chang Hong; Park, Seung Chul; Choi, Sang Yong; Lim, Han Jong [Korea University College of Medicine, Seoul (Korea, Republic of)

    1989-10-15

    A case of Fascioliasis of common bile duct is confirmed by visualization of adult fluke. Fascioliasis caused by Fasciola hepatica, is common parasitic disease in cattle and sheep. Human is an accidental host. ERCP demonstrated irregular linear conglomerated filling defects in common bile duct. Through surgical intervention, we found adult flukes of F. hepatica and adenomatous hyperplasia of common bile duct.

  17. Copper ions inactivate S-ade-nosylhomocysteine hydrolase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    S-adenosylhomocysteine (AdoHcy) hydrolase isan enzyme that regulates biomethylation and some otherphysiological processes. Recombinant AdoHcy hydrolase wasoverexpressed in E. coli JM109 and purified with ion ex-change and gel filtration chromatographies. The effects ofcopper ions (Cu2+) on the activity of AdoHcy hydrolase wereinvestigated and the results showed that Cu2+ inhibited theenzyme's activity by a concentration and time-dependentprocess. The inhibition constant (Ki) and the apparent rateconstant (kapp) were calculated to be (14 + 4) nmol @ L-1 and(1.08 + 0.15) min-1, respectively. The existence of the naturalsubstrate Ado could to some extent prevent Cu2+ from inac-tivating the enzyme, suggesting that copper ions possiblycould compete with the natural substrate on enzyme's sub-strate binding site. Further studies on the mechanism of in-hibition are being carried out.

  18. Further characterization of intestinal lactase/phlorizin hydrolase

    DEFF Research Database (Denmark)

    Skovbjerg, H; Norén, O; Sjöström, H;

    1982-01-01

    enzyme were shown to have a considerable activity against cellotriose and cellotetraose, and a low but significant activity against cellulose. The lactase/phlorizin hydrolase isolated from pigs in which the pancreatic ducts had been disconnected 3 days before death and from Ca2+-precipitated enterocyte......Pig intestinal lactase/phlorizin hydrolase (EC 3.2.1.23/62) was purified in its amphiphilic form by immunoadsorbent chromatography. The purified enzyme was free of other known brush border enzymes and appeared homogeneous in immunoelectrophoresis and polyacrylamide gel electrophoresis...... in the presence of SDS. Pig lactase/phlorizin hydrolase was shown to have the same quaternary structure as the human enzyme, i.e., built up of two polypeptides of the same molecular weight (160000). In addition to hydrolyzing lactose, phlorizin and a number of synthetic substrates, both the human and the pig...

  19. Salt Tolerance

    OpenAIRE

    Xiong, Liming; Zhu, Jian-Kang

    2002-01-01

    Studying salt stress is an important means to the understanding of plant ion homeostasis and osmo-balance. Salt stress research also benefits agriculture because soil salinity significantly limits plant productivity on agricultural lands. Decades of physiological and molecular studies have generated a large body of literature regarding potential salt tolerance determinants. Recent advances in applying molecular genetic analysis and genomics tools in the model plant Arabidopsis thaliana are sh...

  20. The "flying" bile duct: avulsion of the common bile duct in a plane crash survivor.

    LENUS (Irish Health Repository)

    Mohan, H

    2012-02-01

    Blunt trauma is an unusual cause of extrahepatic bile duct injury. This is a case of a 51-year-old gentleman who sustained a significant seatbelt injury in a plane crash. Laparotomy, performed due to persistent abdominal pain, revealed that the common bile duct (CBD) was completely avulsed from the duodenum. Following insertion of drains and transfer to a hepatobiliary centre, the devascularised CBD was excised and replaced with a roux-en-y hepaticojejunostomy. Necrotic tissue was debrided from the pancreatic head. A persistent bile leak developed from the sub-hepatic drain. Repeat laparotomy revealed a bile leak from small ducts on the liver surface. Ligation of the ducts and bioglue sealing of the area were successfully performed. Subsequent to this a pancreatic fistula developed from the main pancreatic duct, which has since resolved. This unusual case illustrates the need for prompt recognition and early repair to optimise outcomes in traumatic CBD injury.

  1. Protection of Dachaihu Granule on guinea pigs with bile pigment stones and its mechanism%大柴胡颗粒对胆色素结石豚鼠保护作用机制研究

    Institute of Scientific and Technical Information of China (English)

    喻斌; 阮鸣; 张志芬; 王兆龙; 卢金福; 吕高红; 许惠琴

    2013-01-01

    目的 观察大柴胡颗粒对胆色素结石豚鼠胆囊黏膜表皮生长因子(EGF)表达水平,肝、胆超微结构,肝组织胆固醇7α-羟化酶(CYP7Al)mRNA水平以及胆盐转运子BSEP、MRP2表达水平的影响,明确其对胆色素结石豚鼠的保护作用机制.方法 采用饲料法复制胆色素结行豚鼠模型,免疫组化法观察大柴胡颗粒(11、2.2、4.4 g/kg)对胆色素结石豚鼠的胆囊EGF水平的影响,透射电镜观察肝胆组织超微结构的改变,RT-PCR法检测肝组织CYP7A1基因表达水平,Westernblotting法检测肝脏中BSEP、MRP2表达水平,以熊去氧胆酸作为阳性对照.结果 大柴胡颗粒对胆结石豚鼠胆囊黏膜EGF表达影响不明显,但较好地改善其肝胆超微结构,其2.2、4.4 g/kg剂量组还能增加肝脏组织CYP7A1的基因转录(P<0.05、0.01)和BSEP、MRP2蛋白表达水平(P<0.05).结论 大柴胡颗粒抑制豚鼠胆色素结石形成可能与其影响豚鼠胆汁酸代谢、促进胆盐转运子功能、保护肝胆细胞器结构有关,而与胆囊黏膜EGF功能无明显关系.%Objective To study the effect of Dachaihu Granules (DG) on the expression of epidermal growth factors (EGF) of gallbladder mucosa in guinea pigs with bile pigment stones (BPS),the ultrastructure of liver and gallbladder epithelial cells,the level of cholesterol 7 alpha-hydrolase (CYP7A1) mRNA,and the expression of bile salt transporters,BSEP and MRP2,in liver cells for explaining the protective mechanism of the drug further.Methods The guinea pigs with BPS were established by fodder method.With the interference of DG (1.1,2.2,and 4.4 g/kg),the expression of EGF locating on the bile gallbladder was detected by immunohistochemistry.The ultrastructure of liver and gallbladder epithelial cells was detected by transmission electron microscopy (TEM).The CYP7A1 mRNA expression level in liver was detected by RT-PCR and the expression levels of BSEP and MRP2 in liver were detected by Western blotting

  2. Double common bile duct: A case report

    Institute of Scientific and Technical Information of China (English)

    Srdjan P Djuranovic; Milenko B Ugljesic; Nenad S Mijalkovic; Viktorija A Korneti; Nada V Kovacevic; Tamara M Alempijevic; Slaven V Radulovic; Dragan V Tomic; Milan M Spuran

    2007-01-01

    Double common bile duct (DCBD) is a rare congenital anomaly in which two common bile ducts exist. One usually has normal drainage into the papilla duodeni major and the other usually named accessory common bile duct (ACBD) opens in different parts of upper gastrointestinal tract (stomach, duodenum, ductus pancreaticus or septum). This anomaly is of great importance since it is often associated with biliary lithiasis, choledochal cyst, anomalous pancreaticobiliary junction (APBJ) and upper gastrointestinal tract malignancies. We recently recognized a rare case of DCBD associated with APBJ with lithiasis in better developed common bile duct. The opening site of ACBD was in the pancreatic duct. The anomaly was suspected by transabdominal ultrasonography and finally confirmed by endoscopic retrograde cholangiopancreatography (ERCP) followed by endoscopic sphincterotomy and stone extraction. According to the literature, the existence of DCBD with the opening of ACBD in the pancreatic duct is most frequently associated with APBJ and gallbladder carcinoma. In case of DCBD, the opening site of ACBD is of greatest clinical importance because of its close implications with concomitant pathology. The adequate diagnosis of this rare anomaly is significant since the operative complications may occur in cases with DCBD which is not recognized prior to surgical treatment.

  3. Bile acids for primary sclerosing cholangitis

    DEFF Research Database (Denmark)

    Poropat, Goran; Giljaca, Vanja; Stimac, Davor;

    2011-01-01

    Primary sclerosing cholangitis is a progressive chronic cholestatic liver disease that usually leads to the development of cirrhosis. Studies evaluating bile acids in the treatment of primary sclerosing cholangitis have shown a potential benefit of their use. However, no influence on patients...

  4. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors

    DEFF Research Database (Denmark)

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.;

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium...

  5. Hepatic bile acids and bile acid-related gene expression in pregnant and lactating rats

    OpenAIRE

    Zhu, Qiong N.; Xie, Hong M.; Dan Zhang; Jie Liu; Yuan F. Lu

    2013-01-01

    Background. Significant physiological changes occur during pregnancy and lactation. Intrahepatic cholestasis of pregnancy (ICP) is a liver disease closely related to disruption of bile acid homeostasis. The objective of this study was to examine the regulation of bile acid synthesis and transport in normal pregnant and lactating rats. Materials and Methods. Livers from timed pregnant SD rats were collected on gestational days (GD) 10, 14 and 19, and postnatal days (PND) 1, 7, 14 and 21. T...

  6. Human Lung Hydrolases Delineate Mycobacterium tuberculosis–Macrophage Interactions and the Capacity To Control Infection

    OpenAIRE

    Arcos, Jesus; Sasindran, Smitha J.; Fujiwara, Nagatoshi; Turner, Joanne; Schlesinger, Larry S; Torrelles, Jordi B.

    2011-01-01

    Pulmonary surfactant contains homeostatic and antimicrobial hydrolases. When Mycobacterium tuberculosis is initially deposited in the terminal bronchioles and alveoli, as well as following release from lysed macrophages, bacilli are in intimate contact with these lung surfactant hydrolases. We identified and measured several hydrolases in human alveolar lining fluid and lung tissue that, at their physiological concentrations, dramatically modified the M. tuberculosis cell envelope. Independen...

  7. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein–Coupled Bile Acid Receptors

    OpenAIRE

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J.; Gribble, Fiona M.; Reimann, Frank

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein–coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1–secreting L-cells from t...

  8. Effect of the bile-acid sequestrant colestipol on postprandial serum bile-acid concentration: evaluation by bioluminescent enzymic analysis.

    Science.gov (United States)

    Rossi, S S; Wayne, M L; Smith, R B; Wright, C E; Andreadis, N A; Hofmann, A F

    1989-02-01

    Chronic ingestion of bile-acid sequestrants has been shown to decrease the serum cholesterol concentration and coronary events in hypercholesterolaemic patients. To develop improved sequestrants, a rapid, convenient method for testing the bile-acid binding efficacy of sequestrants is needed. Serum bile-acid concentrations could be used to detect bile-acid binding by an administered sequestrant, since the serum bile-acid concentration is determined largely by the rate of intestinal absorption in healthy individuals. To test this, serum bile-acid concentrations were measured at frequent intervals over 24 h in five otherwise healthy hypercholesterolaemic subjects during the ingestion of three standard meals, with or without the addition of 5 g colestipol granules administered 30 min before each meal. Total serum bile-acid concentration was measured with a previously reported bioluminescent enzymic assay, that uses a 3 alpha-hydroxysteroid dehydrogenase, an oxido-reductase, and a bacterial luciferase co-immobilized on to Sepharose beads. Bile acids in 1 ml of serum were isolated by solid-phase extraction chromatography with reversed-phase C18 cartridges. Colestipol lowered the postprandial elevation of serum bile acids by one half, with a subsequent decrease in the cumulative area under the curve. The data suggest that measurement of serum bile-acid concentrations by bioluminescence is a rapid, simple way to document the efficacy of bile-acid sequestrants.

  9. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  10. Monoclonal Antibodies Specific for Hippurate Hydrolase of Campylobacter jejuni

    OpenAIRE

    Steele, Marina; Gyles, Carlton; Chan, Voon Loong; Odumeru, Joseph

    2002-01-01

    Eleven monoclonal antibodies raised against recombinant Campylobacter jejuni hippurate hydrolase were tested for binding to lysates from 19 C. jejuni strains, 12 other Campylobacter strains, and 21 non-Campylobacter strains. Several monoclonal antibodies bound to C. jejuni but not to other Campylobacter species and may be useful in a species-specific immunoassay.

  11. Properties of epoxide hydrolase from the yeast Rhodotorula glutinis

    NARCIS (Netherlands)

    Ariës-Kronenburg, N.A.E.

    2002-01-01

     Epoxide hydrolases are ubiquitous enzymes that can be found in nearly all living organisms. Some of the enzymes play an important role in detoxifying xenobiotic and metabolic compounds. Others are important in the growth of organisms like the juvenile hormone in some insec

  12. Carboxylic ester hydrolases in mitochondria from rat skeletal muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Zelander, T

    1990-01-01

    A mitochondrial pellet, prepared from rat skeletal muscle, contained a number of carboxylic ester hydrolase isoenzymes. The esterases which split alpha-naphthyl acetate were organophosphate sensitive, whereas two out of three indoxyl acetate hydrolysing enzymes were resistant to both organophosph...

  13. alpha/beta hydrolase fold enzymes : the family keeps growing

    NARCIS (Netherlands)

    Nardini, M; Dijkstra, BW

    1999-01-01

    The alpha/beta hydrolase fold is a typical example of a tertiary fold adopted by proteins that have no obvious sequence similarity, but nevertheless, in the course of evolution, diverged from a common ancestor. Recently solved structures demonstrate a considerably increased variability in fold archi

  14. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts.

    Science.gov (United States)

    Oliveira, Lilian C G; Ramos, Patricia Locosque; Marem, Alyne; Kondo, Marcia Y; Rocha, Rafael C S; Bertolini, Thiago; Silveira, Marghuel A V; da Cruz, João Batista; de Vasconcellos, Suzan Pantaroto; Juliano, Luiz; Okamoto, Debora N

    2015-06-01

    Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs) and polyhydroxyalkanoates (PHAs). Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU) of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications. PMID:26273248

  15. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts

    Directory of Open Access Journals (Sweden)

    Lilian C.G. Oliveira

    2015-06-01

    Full Text Available Halophilic microorganisms are able to grow in the presence of salt and are also excellent source of enzymes and biotechnological products, such as exopolysaccharides (EPSs and polyhydroxyalkanoates (PHAs. Salt-tolerant bacteria were screened in the Organic Composting Production Unit (OCPU of São Paulo Zoological Park Foundation, which processes 4 ton/day of organic residues including plant matter from the Atlantic Rain Forest, animal manure and carcasses and mud from water treatment. Among the screened microorganisms, eight halotolerant bacteria grew at NaCl concentrations up to 4 M. These cultures were classified based on phylogenetic characteristics and comparative partial 16S rRNA gene sequence analysis as belonging to the genera Staphylococcus, Bacillus and Brevibacterium. The results of this study describe the ability of these halotolerant bacteria to produce some classes of hydrolases, namely, lipases, proteases, amylases and cellulases, and biopolymers. The strain characterized as of Brevibacterium avium presented cellulase and amylase activities up to 4 M NaCl and also produced EPSs and PHAs. These results indicate the biotechnological potential of certain microorganisms recovered from the composting process, including halotolerant species, which have the ability to produce enzymes and biopolymers, offering new perspectives for environmental and industrial applications.

  16. Pepsin and bile acid concentrations in sputum of mustard gas exposed patients

    Directory of Open Access Journals (Sweden)

    Ashraf Karbasi

    2013-01-01

    Full Text Available Background/Aim: Gastro-esophageal reflux has been suggested to be associated with several pulmonary complications such as asthma, and post-transplant bronchiolitis obliterans (BO. Pepsin or bile salts in the sputum is shown to be an optimal molecular marker of gastric contents macro/micro aspiration. In this study, we investigated sputum pepsin as a marker of micro-aspiration in sulfur mustard (SM exposed cases compared to healthy controls. Materials and Methods: In a case controlled study, 26 cases with BO and 12 matched healthy controls were recruited and all cases were symptomatic and their exposure to SM was previously documented during Iran-Iraq conflict. Pepsin levels in sputum and total bile acids were measured using enzymatic assay. The severity of respiratory disorder was categorized based upon the spirometric values. Result: The average concentration of pepsin in sputum was higher in the case group (0.29 ± 0.23 compared with healthy subjects (0.13 ± 0.07; P ± 0.003. Moreover, the average concentration of bile acids in the sputum cases was not significantly different in comparison to the controls ( P = 0.5. Conclusion: Higher pepsin concentrations in sputum of SM exposed patients compared with healthy control subjects indicate the occurrence of significantly more gastric micro-aspiration in SM exposed patients.

  17. Colesevelam: a new bile acid sequestrant.

    Science.gov (United States)

    Wong, N N

    2001-01-01

    Coronary heart disease is the most prevalent form of cardiovascular disease in the United States. Hyperlipidemia--specifically, increased total and low-density lipoprotein cholesterol levels--positively correlates with the development of coronary heart disease. Colesevelam, a nonabsorbed, water-insoluble polymer, is a new bile acid sequestrant that is effective in lowering total and low-density lipoprotein cholesterol levels. In several short-term, placebo-controlled studies, colesevelam has decreased total cholesterol levels by approximately 6 to 10% and low-density lipoprotein cholesterol levels by approximately 9 to 20%. When given in combination with atorvastatin, lovastatin, or simvastatin, low-density lipoprotein cholesterol levels were decreased more than with colesevelam alone. Its unique hydrogel formulation may also minimize the potential for gastrointestinal adverse effects, which are common with other bile acid sequestrants. There have been few published studies available concerning this drug; no long-term studies and few large-scale studies have been published.

  18. Effect of Nicotine on Gallbladder Bile

    Directory of Open Access Journals (Sweden)

    Anglo-Dutch Nicotine Intestinal Study Group

    1994-01-01

    Full Text Available Several studies have shown that symptomatic gallstones are largely a disease of nonsmokers, which raises the possibility that nicotine may protect against the formation of gallstones. To examine the effect of nicotine on the gallbladder, 32 rabbits were allocated to four groups: controls and three treatment groups in which nicotine tartarate at low, medium and high doses was administered subcutaneously via an osmotic minipump. After 14 days’ treatment the gallbladder was removed and measurements made of gallbladder mucin synthesis, bile mucin concentration, bile acid concentration and cholesterol saturation. Serum nicotine concentrations (ng/mL were (± SE 0.4±0.1, 3.5±0.4, 8.8±0.8 and 16.2±1.8 in the controls and three treatment groups, respectively. Total bile acid concentration increased significantly in all three treated groups with the greatest increase in the group given low dose nicotine (P<0.001. Cholesterol saturation did not differ significantly in any group but soluble mucin concentration in gallbladder bile was significantly reduced (P=0.013, 95% CI: 16 to 111 with high dose nicotine. Gallbladder mucin synthesis, measured by 3H-glucosamine incorporation, did not change significantly with nicotine treatment. Subcutaneous nicotine 2.0 mg/kg/day for 14 days significantly reduced the concentration of biliary mucin, which could potentially reduce cholesterol nucleation and subsequent gallstone formation. This may be one of the mechanisms responsible for the relative reduction in gallstone disease among smokers.

  19. Percutaneous treatment of benign bile duct strictures

    Energy Technology Data Exchange (ETDEWEB)

    Koecher, Martin [Department of Radiology, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic)]. E-mail: martin.kocher@seznam.cz; Cerna, Marie [Department of Radiology, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Havlik, Roman [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Kral, Vladimir [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Gryga, Adolf [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic); Duda, Miloslav [Department of Surgery, University Hospital, I.P.Pavlova 6, 775 20 Olomouc (Czech Republic)

    2007-05-15

    Purpose: To evaluate long-term results of treatment of benign bile duct strictures. Materials and methods: From February 1994 to November 2005, 21 patients (9 men, 12 women) with median age of 50.6 years (range 27-77 years) were indicated to percutaneous treatment of benign bile duct stricture. Stricture of hepatic ducts junction resulting from thermic injury during laparoscopic cholecystectomy was indication for treatment in one patient, stricture of hepaticojejunostomy was indication for treatment in all other patients. Clinical symptoms (obstructive jaundice, anicteric cholestasis, cholangitis or biliary cirrhosis) have appeared from 3 months to 12 years after surgery. Results: Initial internal/external biliary drainage was successful in 20 patients out of 21. These 20 patients after successful initial drainage were treated by balloon dilatation and long-term internal/external drainage. Sixteen patients were symptoms free during the follow-up. The relapse of clinical symptoms has appeared in four patients 9, 12, 14 and 24 months after treatment. One year primary clinical success rate of treatment for benign bile duct stricture was 94%. Additional two patients are symptoms free after redilatation (15 and 45 months). One patient is still in treatment, one patient died during secondary treatment period without interrelation with biliary intervention. The secondary clinical success rate is 100%. Conclusion: Benign bile duct strictures of hepatic ducts junction or biliary-enteric anastomosis are difficult to treat surgically and endoscopically inaccessible. Percutaneous treatment by balloon dilatation and long-term internal/external drainage is feasible in the majority of these patients. It is minimally invasive, safe and effective.

  20. Salt cookbook

    CERN Document Server

    Saha, Anirban

    2015-01-01

    If you are a professional associated with system and infrastructure management, looking at automated infrastructure and deployments, then this book is for you. No prior experience of Salt is required.

  1. Bile acids: Chemistry, physiology, and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    Maria J Monte; Jose JG Marin; Alvaro Antelo; Jose Vazquez-Tato

    2009-01-01

    The family of bile acids includes a group of molecular species of acidic steroids with very peculiar physicalchemical and biological characteristics. They are synthesized by the liver from cholesterol through several complementary pathways that are controlled by mechanisms involving fine-tuning by the levels of certain bile acid species. Although their bestknown role is their participation in the digestion and absorption of fat, they also play an important role in several other physiological processes. Thus, genetic abnormalities accounting for alterations in their synthesis, biotransformation and/or transport may result in severe alterations, even leading to lethal situations for which the sole therapeutic option may be liver transplantation. Moreover, the increased levels of bile acids reached during cholestatic liver diseases are known to induce oxidative stress and apoptosis, resulting in damage to the liver parenchyma and, ventually, extrahepatic tissues. When this occurs during pregnancy, the outcome of gestation may be challenged. In contrast, the physical-chemical and biological properties of these compounds have been used as the bases for the development of drugs and as pharmaceutical tools for the delivery of active agents.

  2. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    Science.gov (United States)

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2015-04-01

    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease.

  3. Profile of hepatocyte apoptosis and bile lakes before and after bile duct decompression in severe obstructive jaundice patients

    Institute of Scientific and Technical Information of China (English)

    ToarJMLalisang; RadenSjamsuhidajat; NurjatiCSiregar; AkmalTaher

    2010-01-01

    BACKGROUND: Excessive hepatocyte apoptosis and bile lakes in severe obstructive jaundice might impair liver functions. Although decompression of the bile duct has been reported to improve liver functions in animal studies, the mechanism of obstruction differs from that in humans. This study aimed to determine the profiles of hepatocyte apoptosis and bile lakes following bile duct decompression in patients with severe obstructive jaundice in the clinical setting. METHODS: We conducted a "before and after study" on severe obstructive jaundice patients as a model of inhibition of the excessive process by bile duct decompression. Specimens of liver biopsies were taken before and after decompression of the bile duct and then stained by terminal deoxynucleotide transferase-mediated dUTP nick end-labeling (TUNEL) to identify hepatocyte apoptosis and by hematoxilin-eosin (HE) to identify bile lakes. All measurements were independently done by 2 observers. RESULTS: Twenty-one severe obstructive jaundice patients were included. In all patients, excessive hepatocyte apoptosis and bile lakes were apparent. After decompression, the hepatocyte apoptosis index decreased from 53.1 (SD 105) to 11.7 (SD 13.6) (P CONCLUSION: Bile duct decompression improves hepatocyte apoptosis and bile lakes in cases of severe obstructive jaundice, similar to the findings in animal studies.

  4. The Frequency of Bacterial Agents in the Bile Juice of Patients with Bile Stones and

    Directory of Open Access Journals (Sweden)

    Tajeddin E

    2012-01-01

    Full Text Available Background and objectives: Bile in healthy people is a sterile fluid andpresence of any microorganism can be a marker for a disorder likecholelithiasis. The aim of this study was to determine the frequencyof bacterial agents in the bile of patients with bilestone, malignant pancreaticand biliary diseases.Material and Methods: One hundred and two bile samples were obtained,during six months in 2011, from patients subjected to ERCP in Taleghanihospital, Tehran. First, Patient's clinical data, the type stone, and their diseasestatus were studied, and then the microbiological investigations, such asculture, identification of the bacteria and detection of their counts, drugsusceptibility testing and molecular tests (16s rDNA PCR performed on allthe samples. Higher than 103 bacteria counts for each sample, in the absence ofunderlying infections, was considered as stable colonization. We run SPSSversion 13 to analyze the data.Results: Out of 42(41.1% positive bile culture samples, 59 bacterial isolatesare detected by conventional methods. Of culture negative samples, sevenhave bacterial DNA indicated by PCR method. The most isolated bacteria areE. coli (%34.4, Enterococcus spp. (%19.7, Klebsiella pneumoniae (%18 andPseudomonas aeruginos (18%. The most frequent stones are cholesterol,black pigment and brown pigment, respectively. There is no significantassociation between the diseases, stones and types of bacteria. Previousantibiotic usage (44.6% is meaningfully more than that of other biliaryproblems (p=0.01.Conclusion: The presence of bacteria, Escherchi coli and Entrococcus whichare the most in bile samples, is considered as a risk factor in pathogenesis ofbiliary disorders. Further studies on the pathogenesis and pathophysiologicaleffects of bacteria can help us to clarify the role of bacteria in producing bilestones.Key words: Bile stones, Bacteria, ERCP, Antibiotics.

  5. In vivo multiphoton imaging of bile duct ligation

    Science.gov (United States)

    Liu, Yuan; Li, Feng-Chieh; Chen, Hsiao-Chin; Chang, Po-shou; Yang, Shu-Mei; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Bile is the exocrine secretion of liver and synthesized by hepatocytes. It is drained into duodenum for the function of digestion or drained into gallbladder for of storage. Bile duct obstruction is a blockage in the tubes that carry bile to the gallbladder and small intestine. However, Bile duct ligation results in the changes of bile acids in serum, liver, urine, and feces1, 2. In this work, we demonstrate a novel technique to image this pathological condition by using a newly developed in vivo imaging system, which includes multiphoton microscopy and intravital hepatic imaging chamber. The images we acquired demonstrate the uptake, processing of 6-CFDA in hepatocytes and excretion of CF in the bile canaliculi. In addition to imaging, we can also measure kinetics of the green fluorescence intensity.

  6. The Adsorption Effect of Quaternized Chitosan Derivatives on Bile Acid

    Institute of Scientific and Technical Information of China (English)

    Shu Xian MENG; Ya Qing FENG; Wen Jin LI; Cai Xia YIN; Jin Ping DENG

    2006-01-01

    Three quaternized chitosan derivatives were synthesized and their adsorption performance of bile acid from aqueous solution was studied. The adsorption capacities and rates of bile acid onto quaternized chitosan derivatives were evaluated. The kinetic experimental data properly correlated with the second-order kinetic model, which indicated that the chemical sorption is the rate-limiting step. The results showed that the quaternized chitosan derivatives are favorable adsorbents for bile acid.

  7. Microbiology of gallbladder bile in uncomplicated symptomatic cholelithiasis

    Institute of Scientific and Technical Information of China (English)

    Vasitha Abeysuriya; Kemal Ismil Deen; Tamara Wijesuriya; Sujatha Senadera Salgado

    2008-01-01

    BACKGROUND: Few studies have assessed microlfora and their antibiotic sensitivity in normal bile and lithogenic bile with different types of gallstones. METHODS: We performed a case control study of 70 bile samples (35 cholesterol and 35 pigment stones from 51 females and 19 males, aged 21-72 years with a median age of 37 years) from patients who underwent laparoscopic cholecystectomy for uncomplicated cholelithiasis, and 20 controls (14 females and 6 males, aged 33-70 years with a median age of 38 years) who underwent laparotomy and had no gallbladder stone shown by ultrasound scan. The bile samples were aerobically cultured to assess microlfora and their antibiotic susceptibility. The procedures were undertaken under sterile conditions. RESULTS: Thirty-eight (54%) of the 70 patients with gallstones had bacterial isolates. Nine isolates (26%) were from cholesterol stone-containing bile and 29 isolates (82%) from pigment stone-containing bile (P=0.01, t test). Twenty-eight of these 38 (74%) bile samples were shown positive only after enrichment in brain heart infusion medium (BHI) (P=0.02, t test). The overall bacterial isolates from bile samples revealed E. coli predominantly, followed by P. aeruginosa, Enterococcus spp., Klebsiella spp. and S. epidermidis. There were no bacterial isolates in the bile of controls after either direct inoculation or enrichment in BHI. CONCLUSIONS: Bacterial isolates were found in pigment stone-containing bile. Non-lithogenic bile revealed no bacteria, showing an association between gallstone formation and the presence of bacteria in bile. Antibiotic sensitivity patterns of isolated organisms were similar irrespective of the type of stone.

  8. Management of excluded segmental bile duct leakage following liver resection

    Science.gov (United States)

    Honoré, Charles; Vibert, Eric; Hoti, Emir; Azoulay, Daniel; Adam, René; Castaing, Denis

    2009-01-01

    Background: Postoperative bile leak secondary to a fistula is a known complication of hepatic surgery. Four different biliary fistula sub-types have been described: type A refers to minor leakage from the bile duct stump; type B to major leakage caused by insufficient closure of the bile duct stump; type C to major leakage caused by injury to the bile duct, and type D (the rarest) to the division and exclusion of a bile duct. This complication results from functional liver parenchyma in which bile drainage is excluded from the main duct. Methods: A retrospective review of the database for 163 patients diagnosed with post-hepatic surgery bile leak from April 1992 to June 2007 was performed. Results: Three patients were found to have type D biliary fistula, with durations of 3–21 months. The bile leak developed after a right hepatectomy in two patients and a right hepatectomy extending to segment IV in one patient. All three patients were rescheduled for surgical exploration, following failure of medical treatment. The procedure consisted of repeat resection of the independent liver parenchyma containing the fistula. One patient developed a postoperative leak from a hepaticojejunal anastomosis (treated conservatively) and the other two patients had an uneventful recovery. No recurrence of bile leak was encountered during their follow-up. Conclusions: Our experience indicates that conservative treatment is deceptive and not efficacious. For this condition, surgical intervention is the treatment of choice because it is very effective and is associated with a low morbidity. PMID:19718366

  9. Gallbladder bile composition in patients with Crohn's disease

    Institute of Scientific and Technical Information of China (English)

    Annika Lapidus; Jan-Erik (A)kerlund; Curt Einarsson

    2006-01-01

    AIM: To further elucidate the pathogenesis and mechanisms of the high risk of gallstone formation in Crohn's disease.METHODS: Gallbladder bile was obtained from patients with Crohn's disease who were admitted for elective surgery (17 with ileallileocolonic disease and 7 with Crohn's colitis). Fourteen gallstone patients served as controls. Duodenal bile was obtained from ten healthy subjects before and after the treatment with ursodeoxycholic acid. Bile was analyzed for biliary lipids,bile acids, bilirubin, crystals, and crystal detection time (CDT). Cholesterol saturation index was calculated.RESULTS: The biliary concentration of bilirubin was about 50% higher in patients with Crohn's disease than in patients with cholesterol gallstones. Ten of the patients with Crohn's disease involving ileum and three of those with Crohn's colitis had cholesterol saturated bile. Four patients with ileal disease and one of those with colonic disease displayed cholesterol crystals in their bile. About 1/3 of the patients with Crohn's disease had a short CDT. Treatment of healthy subjects with ursodeoxycholic acid did not increase the concentration of bilirubin in duodenal bile. Several patients with Crohn's disease,with or without ileal resection/disease had gallbladder bile supersaturated with cholesterol and short CDT and contained cholesterol crystals. The biliary concentration of bilirubin was also increased in patients with Crohn's colitis probably not due to bile acid malabsorption.CONCLUSION: Several factors may be of importance for the high risk of developing gallstones of both cholesterol and pigment types in patients with Crohn's disease.

  10. Potent Urea and Carbamate Inhibitors of Soluble Epoxide Hydrolases

    Science.gov (United States)

    Morisseau, Christophe; Goodrow, Marvin H.; Dowdy, Deanna; Zheng, Jiang; Greene, Jessica F.; Sanborn, James R.; Hammock, Bruce D.

    1999-08-01

    The soluble epoxide hydrolase (sEH) plays a significant role in the biosynthesis of inflammation mediators as well as xenobiotic transformations. Herein, we report the discovery of substituted ureas and carbamates as potent inhibitors of sEH. Some of these selective, competitive tightbinding inhibitors with nanomolar Ki values interacted stoichiometrically with the homogenous recombinant murine and human sEHs. These inhibitors enhance cytotoxicity of trans-stilbene oxide, which is active as the epoxide, but reduce cytotoxicity of leukotoxin, which is activated by epoxide hydrolase to its toxic diol. They also reduce toxicity of leukotoxin in vivo in mice and prevent symptoms suggestive of acute respiratory distress syndrome. These potent inhibitors may be valuable tools for testing hypotheses of involvement of diol and epoxide lipids in chemical mediation in vitro or in vivo systems.

  11. In liver transplantation, T tube bile represents total bile flow: physiological and scintigraphic studies on biliary secretion of organic anions.

    Science.gov (United States)

    Lenzen, R; Bähr, A; Eichstädt, H; Marschall, U; Bechstein, W O; Neuhaus, P

    1999-01-01

    The present study was performed to clarify the recovery of hepatocellular uptake and the biliary secretion of bile acids during the first 14 days after orthotopic liver transplantation (OLT) and to determine the fraction of bile flow appearing outside through the T tube and entering the duodenum. Therefore, we determined primary and secondary bile acids in bile samples obtained from the T tube at day 5 after OLT, while the T tube was permanently open, and at days 10 and 14 after OLT, i.e., 4 and 9 days after closure of the T tube, respectively, thus restoring enterohepatic bile acid circulation. In addition, we performed hepatobiliary scintigraphy using technetium 99m-labeled [2,4,6 trimethyl-3-bromo]imino-diacetic acid (technetium 99m-BRIDA) in 12 patients between days 4 and 17 after OLT. Chromatographic analyses of biliary bile acids showed no secondary bile acids during the first 5 days after OLT, as opposed to 10 and 14 days after OLT when enterohepatic circulation was restored. Eleven patients with an uncomplicated postoperative course after OLT showed a significantly reduced hepatic uptake and biliary secretion of 99mTc-BRIDA during the first days after OLT with progressive recovery. One patient with an acute allograft rejection episode showed almost no uptake and only minimal secretion. The bile fraction appearing outside through the inserted T tube represented 94.6% +/- 6.2% of the injected 99mTc-BRIDA. We conclude that OLT results in markedly impaired hepatocellular uptake and biliary secretion of organic anions. Simultaneously, bile acid synthesis is significantly reduced, which, in addition, diminishes bile secretion of the graft. We show that T tube bile is a valid tool for bile physiological studies in patients in whom transplantation was successfully performed. PMID:9873086

  12. Conformational Variability of Organophosphorous Hydrolase upon Soman and Paraoxon Binding

    OpenAIRE

    Gomes, Diego E.B.; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-01-01

    The bacterial enzyme organophosphorous hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pKa calculations and multiple ...

  13. Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca.

    Science.gov (United States)

    Gouda, Mona K; Kleeberg, Ilona; van den Heuvel, Joop; Müller, Rolf-Joachim; Deckwer, Wolf-Dieter

    2002-01-01

    The production of a polyester-degrading hydrolase from the thermophilic actinomycete Thermomonospora fusca was investigated with regard to its potential technical application. Only in the presence of a polyester (random aliphatic-aromatic copolyester from 1,4-butanediol, terephthalic acid, and adipic acid with around 40-50 mol % terephthalic acid in the acid component), the excretion of the extracellular enzyme could be achieved with an optimized synthetic medium using pectin and NH(4)Cl as nitrogen source. Compared to complex media, a significantly higher specific activity at comparable volumetric yields could be obtained, thus reducing the expenditure for purification. The activity profile in the medium is controlled by a complex process involving (1) induction of enzyme excretion, (2) enzyme adsorption on the hydrophobic polyester surface, (3) inhibition of enzyme generation by monomers produced by polyester cleavage, and (4) enzyme denaturation. Diafiltration with cellulose acetate membranes as the sole downstream processing step led to a product of high purity and with sufficient yield (60% of total activity). Scaling-up from shaking flasks to a fermentor scale of 100 L revealed no specific problems. However, the excretion of the hydrolase by the actinomycete turned out to be inhibited by the degradation products (monomers) of the aliphatic-aromatic copolyester used as inductor for the enzyme production. The crude enzyme exhibited generally similar properties (temperature and pH optimum) as the highly purified hydrolase described previously; however, the storage capability and thermal stability is improved when the crude enzyme solution is diafiltrated.

  14. Determination of conjugated bile acids in human bile and duodenal fluid by reverse-phase high-performance liquid chromatography.

    Science.gov (United States)

    Bloch, C A; Watkins, J B

    1978-05-01

    A simple mehtod using reverse-phase liquid chromatography is presented for resolution and quantitation of the major conjugated bile acids of man, including the glycine and taurine conjugates of the dihydroxy bile acids, chenodeoxycholic and deoxycholic acid. Using modern, high-performance chromatographic equipment, analysis time is less than 30 minutes. The quantitative range of the method, with detection by refractive index, is 0.05 to 0.1 mumol of bile acid and the limit of detection for an injection sample is 0.01 mumol. This provides a sensitivity sufficient for analysis of dilute duodenal and gallbladder bile with minimal sample preparation.

  15. Role of nucleation of bile liquid crystal in gallstone formation

    Institute of Scientific and Technical Information of China (English)

    Hai-Ming Yang; Jie Wu; Jin-Yi Li; Lin Gu; Min-Fei Zhou

    2003-01-01

    AIM: To explore the role of bile liquid crystal in the process of gallbladder stone formation and to provide bases for preventing and treating cholelithiasis.METHODS: 46 guinea pigs, half males and half females,were randomly divided into control group and stone-causing group. Normal feed and stoneleading feed were used respectively to raise guinea pigs in the control group and stone-causing group. The guinea pigs were killed in three batches during the raising period. Under polarizing microscope, the pattern changes of bile liquid crystal in the gallbladder biles of the guinea pigs in the control group and stone-causing group were dynamicly observed respectively in single-blind trial.RESULTS: It was found that there were few crystals in the guinea pigs′biles of the control group, and their Malta cross was small and scattered, and existed in single form. With the increase of the feeding days, bile liquid crystals grew and Malta cross became bigger with their distribution densified, denser somewhere, but always existed in single form. While those of the stone-causing group had more bile liquid crystals, Malta cross was big and merged in strings.With the increase of the feeding days, bile liquid crystals grew in amount and strings of Malta cross increased and became bigger. The crosses in strings were arranged more and more regularly and they gradually changed into stone crystals.CONCLUSION: Formation of gallbladder stone is a process of nucleation from different substances, and the causing-stone gallbladder bile is a constantly supersaturated solution, and bile liquid crystal is a nucleation factor in the formation of gallbladder stones. The process of nucleation includes gathering, merging and phase-changing of bile liquid crystals.The process of gathering, merging of bile liquid crystal is the key to nucleation.

  16. [Liver, bile ducts and pancreatic diseases].

    Science.gov (United States)

    Kanno, T

    1995-06-01

    A fundamental guideline for the use of test results concerning liver, bile duct and pancreatic diseases was proposed in 1991 from the Japan Society of Clinical Pathology (JSCP). This guideline was principally based on the document of 1988 from the Committee on liver function tests of the Japanese Society of Gastroenterology (JSG). The document from the JSG was revised in May, 1994. Also a guideline for selection of markers of hepatitis virus in hepatic disorders, was proposed in January, 1994 from the same Committee of JSG. Here, we reevaluated and discussed the JSCP guideline as taking into consideration the two 1994 JSG documents. PMID:7602802

  17. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Ludmila [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Bragg, Jennifer [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Wu, Jiajie [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany; Yang, Xiaohan [ORNL; Tuskan, Gerald A [ORNL; Vogel, John [United States Department of Agriculture (USDA), Western Regional Research Center (WRRC), Albany

    2010-01-01

    Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar). To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model) and Sorghum bicolor (sorghum). We then compared the glycoside hydrolases across species, both at the whole-genome level and at the level of individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. Examination of individual glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51) revealed both similarities and distinctions between monocots and dicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets the stage for Brachypodium to be a monocot model for investigations of these enzymes and their diverse roles in planta. Insights

  18. Differential diagnosis in patients with suspected bile acid synthesis defects

    Institute of Scientific and Technical Information of China (English)

    Dorothea Haas; Hongying Gan-Schreier; Claus-Dieter Langhans; Tilman Rohrer; Guido Engelmann; Maura Heverin; David W Russell

    2012-01-01

    AIM:To investigate the clinical presentations associated with bile acid synthesis defects and to describe identification of individual disorders and diagnostic pitfalls.METHODS:Authors describe semiquantitative determination of 16 urinary bile acid metabolites by electrospray ionization-tandem mass spectrometry.Sample preparation was performed by solid-phase extraction.The total analysis time was 2 min per sample.Authors determined bile acid metabolites in 363 patients with suspected defects in bile acid metabolism.RESULTS:Abnormal bile acid metabolites were found in 36 patients.Two patients had bile acid synthesis defects but presented with atypical presentations.In 2 other patients who were later shown to be affected by biliary atresia and cystic fibrosis the profile of bile acid metabolites was initially suggestive of a bile acid synthesis defect.Three adult patients suffered from cerebrotendinous xanthomatosis.Nineteen patients had peroxisomal disorders,and 10 patients had cholestatic hepatopathy of other cause.CONCLUSION:Screening for urinary cholanoids should be done in every infant with cholestatic hepatopathy as well as in children with progressive neurological disease to provide specific therapy.

  19. What Are the Risk Factors for Bile Duct Cancer?

    Science.gov (United States)

    ... What are the risk factors for bile duct cancer? A risk factor is anything that affects your chance of getting ... to top » Guide Topics What Is Bile Duct Cancer? Causes, Risk Factors, and Prevention Early Detection, Diagnosis, and Staging Treating ...

  20. Bile signalling promotes chronic respiratory infections and antibiotic tolerance.

    Science.gov (United States)

    Reen, F Jerry; Flynn, Stephanie; Woods, David F; Dunphy, Niall; Chróinín, Muireann Ní; Mullane, David; Stick, Stephen; Adams, Claire; O'Gara, Fergal

    2016-01-01

    Despite aggressive antimicrobial therapy, many respiratory pathogens persist in the lung, underpinning the chronic inflammation and eventual lung decline that are characteristic of respiratory disease. Recently, bile acid aspiration has emerged as a major comorbidity associated with a range of lung diseases, shaping the lung microbiome and promoting colonisation by Pseudomonas aeruginosa in Cystic Fibrosis (CF) patients. In order to uncover the molecular mechanism through which bile modulates the respiratory microbiome, a combination of global transcriptomic and phenotypic analyses of the P. aeruginosa response to bile was undertaken. Bile responsive pathways responsible for virulence, adaptive metabolism, and redox control were identified, with macrolide and polymyxin antibiotic tolerance increased significantly in the presence of bile. Bile acids, and chenodeoxycholic acid (CDCA) in particular, elicited chronic biofilm behaviour in P. aeruginosa, while induction of the pro-inflammatory cytokine Interleukin-6 (IL-6) in lung epithelial cells by CDCA was Farnesoid X Receptor (FXR) dependent. Microbiome analysis of paediatric CF sputum samples demonstrated increased colonisation by P. aeruginosa and other Proteobacterial pathogens in bile aspirating compared to non-aspirating patients. Together, these data suggest that bile acid signalling is a leading trigger for the development of chronic phenotypes underlying the pathophysiology of chronic respiratory disease. PMID:27432520

  1. Do We Know What Causes Bile Duct Cancer?

    Science.gov (United States)

    ... Topic Can bile duct cancer be prevented? Do we know what causes bile duct cancer? We don’t know the exact cause of most ... genes – the instructions for how our cells function. We usually look like our parents because they are ...

  2. Bile Acid Diarrhea: Prevalence, Pathogenesis, and Therapy

    Science.gov (United States)

    Camilleri, Michael

    2015-01-01

    Bile acid diarrhea (BAD) is usually seen in patients with ileal Crohn’s disease or ileal resection. However, 25% to 50% of patients with functional diarrhea or diarrhea-predominant irritable bowel syndrome (IBS-D) also have evidence of BAD. It is estimated that 1% of the population may have BAD. The causes of BAD include a deficiency in fibroblast growth factor 19 (FGF-19), a hormone produced in enterocytes that regulates hepatic bile acid (BA) synthesis. Other potential causes include genetic variations that affect the proteins involved in BA enterohepatic circulation and synthesis or in the TGR5 receptor that mediates the actions of BA in colonic secretion and motility. BAs enhance mucosal permeability, induce water and electrolyte secretion, and accelerate colonic transit partly by stimulating propulsive high-amplitude colonic contractions. There is an increased proportion of primary BAs in the stool of patients with IBS-D, and some changes in the fecal microbiome have been described. There are several methods of diagnosing BAD, such as 75selenium homotaurocholic acid test retention, serum C4, FGF-19, and fecal BA measurement; presently, therapeutic trials with BA sequestrants are most commonly used for diagnosis. Management involves the use of BA sequestrants including cholestyramine, colestipol, and colesevelam. FXR agonists such as obeticholic acid constitute a promising new approach to treating BAD. PMID:25918262

  3. Optic properties of bile liquid crystals in human body

    Institute of Scientific and Technical Information of China (English)

    Hai Ming Yang; Jie Wu; Jian Li Zhou; Li Jun He; Xian Fang Xu; Jin Yi Li

    2000-01-01

    AIM To further study the properties of bile liquid crystals, and probe into the relationship between bile liquid crystals and gallbladder stone formation, and provide evidence for the prevention and treatment of cholecystolithissis. METNODS The optic properties of bile liquid crystals in human body were determined by the method of crystal optics under polarizing microscope with plane polarized light and perpendicular polarized light. RESULTS Under a polarizing microscope with plane polarized light, bile liquid crystals scattered in bile appeared round, oval or irregularly round. The color of bile liquid crystals was a little lighter than that of the bile around. When the stage was turned round, the color of bile liquid crystals or the darkness and lightness of the color did not change obviously. On the border between bile liquid crystals and the bile around, brighter Becke-Line could be observed. When the microscope tube is lifted, Becke. Line moved inward, and when lowered,Becke-Line moved outward. Under a perpendicular polarized light, bile liquid crystals showd some special interference patterns, called Malta cross. When the stage was tuming round at an angle of 360°, the Malta cross showed four times of extinction. In the vibrating direction of 45° angle of relative to upper and lower polarizing plate, gypsum test-board with optical path difference of 530 nm was inserted, the first and the third quadrants of Malta cross appeared to be blue, and the second and the fourth quadrants appeared orange. When mica test-board with optical path difference of 147 nm was inserted, the first and the third quadrants of Malta cross appeared yellow, and the second and the fourth quadrants appeared dark grey. CONCLUSION The bile liquid crystals were distributed in bile in the form of global grains. Their polychroism and absorption were slight,but the edge and Becke-Line were very clear. Its refractive index was larger than that of the bile.These liquid crystals were uniaxial

  4. Impaired Bile Acid Homeostasis in Children with Severe Acute Malnutrition.

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    Full Text Available Severe acute malnutrition (SAM is a major cause of mortality in children under 5 years and is associated with hepatic steatosis. Bile acids are synthesized in the liver and participate in dietary fat digestion, regulation of energy expenditure, and immune responses. The aim of this work was to investigate whether SAM is associated with clinically relevant changes in bile acid homeostasis.An initial discovery cohort with 5 healthy controls and 22 SAM-patients was used to identify altered bile acid homeostasis. A follow up cohort of 40 SAM-patients were then studied on admission and 3 days after clinical stabilization to assess recovery in bile acid metabolism. Recruited children were 6-60 months old and admitted for SAM in Malawi. Clinical characteristics, feces and blood were collected on admission and prior to discharge. Bile acids, 7α-hydroxy-4-cholesten-3-one (C4 and FGF-19 were quantified.On admission, total serum bile acids were higher in children with SAM than in healthy controls and glycine-conjugates accounted for most of this accumulation with median and interquartile range (IQR of 24.6 μmol/L [8.6-47.7] compared to 1.9 μmol/L [1.7-3.3] (p = 0.01 in controls. Total serum bile acid concentrations did not decrease prior to discharge. On admission, fecal conjugated bile acids were lower and secondary bile acids higher at admission compared to pre- discharge, suggesting increased bacterial conversion. FGF19 (Fibroblast growth factor 19, a marker of intestinal bile acid signaling, was higher on admission and was associated with decreased C4 concentrations as a marker of bile acid synthesis. Upon recovery, fecal calprotectin, a marker of intestinal inflammation, was lower.SAM is associated with increased serum bile acid levels despite reduced synthesis rates. In SAM, there tends to be increased deconjugation of bile acids and conversion from primary to secondary bile acids, which may contribute to the development of liver disease.

  5. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    International Nuclear Information System (INIS)

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR® technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na+-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA concentrations were

  6. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Marion, Tracy L., E-mail: tracylmarion@qualyst.com [Curriculum in Toxicology, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7270 (United States); Perry, Cassandra H., E-mail: cassandraperry@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); St Claire, Robert L., E-mail: bobstclaire@qualyst.com [Qualyst, Inc., Durham, NC 27713 (United States); Brouwer, Kim L.R., E-mail: kbrouwer@unc.edu [Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, CB 7569 Kerr Hall, Chapel Hill, NC 27599-7569 (United States)

    2012-05-15

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR{sup ®} technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na{sup +}-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA

  7. Swertianlarin, an Herbal Agent Derived from Swertia mussotii Franch, Attenuates Liver Injury, Inflammation, and Cholestasis in Common Bile Duct-Ligated Rats

    Directory of Open Access Journals (Sweden)

    Liangjun Zhang

    2015-01-01

    Full Text Available Swertianlarin is an herbal agent abundantly distributed in Swertia mussotii Franch, a Chinese traditional herb used for treatment of jaundice. To study the therapeutic effect of swertianlarin on cholestasis, liver injury, serum proinflammatory cytokines, and bile salt concentrations were measured by comparing rats treated with swertianlarin 100 mg/kg/d or saline for 3, 7, or 14 days after bile duct ligation (BDL. Serum alanine aminotransferase (ATL and aspartate aminotransferase (AST levels were significantly decreased in BDL rats treated with swertianlarin for 14 days (P<0.05. The reduced liver injury in BDL rats by swertianlarin treatment for 14 days was further confirmed by liver histopathology. Levels of serum tumor necrosis factor alpha (TNFα were decreased by swertianlarin in BDL rats for 3 and 7 days (P<0.05. Moreover, reductions in serum interleukins IL-1β and IL-6 levels were also observed in BDL rats treated with swertianlarin (P<0.05. In addition, most of serum toxic bile salt concentrations (e.g., chenodeoxycholic acid (CDCA and deoxycholic acid (DCA in cholestatic rats were decreased by swertianlarin (P<0.05. In conclusion, the data suggest that swertianlarin derived from Swertia mussotii Franch attenuates liver injury, inflammation, and cholestasis in bile duct-ligated rats.

  8. Aberrant bile ducts, 'remnant surface bile ducts,' and peribiliary glands: descriptive anatomy, historical nomenclature, and surgical implications.

    Science.gov (United States)

    El Gharbawy, Ramadan M; Skandalakis, Lee J; Heffron, Thomas G; Skandalakis, John E

    2011-05-01

    The term "aberrant bile ducts" has been used to designate three heterogeneous groups of biliary structures: (1) bile ducts degenerating or disappearing (unknown etiology, diverse locations); (2) curious biliary structures in the transverse fissure; and (3) aberrant right bile ducts draining directly into the common hepatic duct. We report our observations on these three groups. Twenty-nine fresh human livers of stillborns and adults were injected differentially with colored latex and dissected. Adult livers showed portal venous and hepatic arterial branches, and bile ducts not associated with parenchyma, subjacent to and firmly adherent with the liver capsule: elements of ramifications of normal sheaths were present on the liver's surface. These ramifications, having lost parenchyma associated with them, then sequentially lost their portal branches, bile ducts and arterial branches. This process affected the ramifications of the sheaths in the left triangular ligament, adjacent to the inferior vena cava, in the gallbladder bed and anywhere else on the liver's surface and resulted in the presence of bile ducts accompanied by portal venous and/or hepatic arterial branches and not associated with parenchyma for a period of time. This first group represented normal bile ducts that do not meet the criteria of aberration and could be appropriately designated "remnant surface bile ducts." Such changes were not found in the transverse fissures and review of the literature revealed that the curious biliary structures are the microscopic peribiliary glands. The third group met the criteria of aberration and the anatomy of a representative duct is described.

  9. Substitutes for Bear Bile for the Treatment of Liver Diseases: Research Progress and Future Perspective.

    Science.gov (United States)

    Li, Sha; Tan, Hor Yue; Wang, Ning; Hong, Ming; Li, Lei; Cheung, Fan; Feng, Yibin

    2016-01-01

    Bear bile has been a well-known Chinese medicine for thousands of years. Because of the endangered species protection, the concept on substitutes for bear bile was proposed decades ago. Based on their chemical composition and pharmacologic actions, artificial bear bile, bile from other animals, synthetic compounds, and medicinal plants may be the promising candidates to replace bear bile for the similar therapeutic purpose. Accumulating research evidence has indicated that these potential substitutes for bear bile have displayed the same therapeutic effects as bear bile. However, stopping the use of bear bile is a challenging task. In this review, we extensively searched PubMed and CNKI for literatures, focusing on comparative studies between bear bile and its substitutes for the treatment of liver diseases. Recent research progress in potential substitutes for bear bile in the last decade is summarized, and a strategy for the use of substitutes for bear bile is discussed carefully. PMID:27087822

  10. Substitutes for Bear Bile for the Treatment of Liver Diseases: Research Progress and Future Perspective

    Directory of Open Access Journals (Sweden)

    Sha Li

    2016-01-01

    Full Text Available Bear bile has been a well-known Chinese medicine for thousands of years. Because of the endangered species protection, the concept on substitutes for bear bile was proposed decades ago. Based on their chemical composition and pharmacologic actions, artificial bear bile, bile from other animals, synthetic compounds, and medicinal plants may be the promising candidates to replace bear bile for the similar therapeutic purpose. Accumulating research evidence has indicated that these potential substitutes for bear bile have displayed the same therapeutic effects as bear bile. However, stopping the use of bear bile is a challenging task. In this review, we extensively searched PubMed and CNKI for literatures, focusing on comparative studies between bear bile and its substitutes for the treatment of liver diseases. Recent research progress in potential substitutes for bear bile in the last decade is summarized, and a strategy for the use of substitutes for bear bile is discussed carefully.

  11. Intestinal bile acid physiology and pathophysiology

    Institute of Scientific and Technical Information of China (English)

    Olga Mart(I)nez-Augustin; Ferm(I)n Sánchez de Medina

    2008-01-01

    Bile acids (Bas) have a long established role in fat digestion in the intestine by acting as tensioactives,due to their amphipatic characteristics.Bas are reabsorbed very efficiently by the intestinal epithelium and recycled back to the liver v/a transport mechanisms that have been largely elucidated.The transport and synthesis of Bas are tightly regulated in part by specific plasma membrane receptors and nuclear receptors.In addition to their primary effect,Bas have been claimed to play a role in gastrointestinal cancer,intestinal inflammation and intestinal ionic transport.Bas are not equivalent in any of these biological activities,and structural requirements have been generally identified.In particular,some Bas may be useful for cancer chemoprevention and perhaps in inflammatory bowel disease,although further research is necessary in this field.This review covers the most recent developments in these aspects of BA intestinal biology.

  12. 13.7.Gallbladder and bile duct

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    950323 CT in predicting the efficacy of oralcholelitholysis with bile acids.FU Xianbo (傅贤波),et al.Dept Surg,3rd Teach Hosp,BeijingMed Univ,Beijing,100083.Natl Med J China1993;73(2):81—83.The efficacy of oral cholelitholytic therapywith chenodeoxycholic acid (CDCA) and ur-sodeoxycholic acid (UDCA) in 137 patients withgallstones was compared with their CT pat-terns.The best dissolving results were obtainedfrom patients with the stones in isodense andfaint category (<50Hu) on CT.All the stoneswith high density or heterogeneous calcificationon CT were insoluble.Therefore,they were con-traindicated for oral cholelitholytie therapy.Ac-cording to the abovr,criteria,the rates for disso-lution ranged from 27.7%(38/137).to 66.7%(38/57),and those for complete dissolutionranged from 9.49%(13/137) to 40.7%(11/

  13. Bile acids: emerging role in management of liver diseases.

    Science.gov (United States)

    Asgharpour, Amon; Kumar, Divya; Sanyal, Arun

    2015-10-01

    Bile acids are well known for their effects on cholesterol homeostasis and lipid digestion. Since the discovery of bile acid receptors, of which there are farnesoid X receptor (FXR), a nuclear receptor, and the plasma membrane G-protein receptor, as well as Takeda G-protein coupled receptor clone 5, further roles have been elucidated for bile acids including glucose and lipid metabolism as well as inflammation. Additionally, treatment with bile acid receptor agonists has shown a decrease in the amount of atherosclerosis plaque formation and decreased portal vascular resistance and portal hypotension in animal models. Furthermore, rodent models have demonstrated antifibrotic activity using bile acid receptor agonists. Early human data using a FXR agonist, obeticholic acid, have shown promising results with improvement of histological activity and even a reduction of fibrosis. Human studies are ongoing and will provide further information on bile acid receptor agonist therapies. Thus, bile acids and their derivatives have the potential for management of liver diseases and potentially other disease states including diabetes and the metabolic syndrome. PMID:26320013

  14. Human bile sorption by cancrinite-type zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Linares, Carlos F. [Laboratorio de Catalisis y Metales de Transicion, Facultad de Ciencias y Tecnologia, Departamento de Quimica, Universidad de Carabobo, Valencia. Edo. Carabobo, Apartado Postal 3336 (Venezuela, Bolivarian Republic of)], E-mail: clinares@uc.edu.ve; Colmenares, Maryi; Ocanto, Freddy [Laboratorio de Catalisis y Metales de Transicion, Facultad de Ciencias y Tecnologia, Departamento de Quimica, Universidad de Carabobo, Valencia. Edo. Carabobo, Apartado Postal 3336 (Venezuela, Bolivarian Republic of); Valbuena, Oscar [Facultad de Ciencias y Tecnologia, Departamento de Biologia, Universidad de Carabobo, Valencia. Edo. Carabobo, Apartado Postal 3336 (Venezuela, Bolivarian Republic of)], E-mail: ovalbuena@uc.edu.ve

    2009-01-01

    A nitrated cancrinite-type zeolite was synthesized from zeolite X, NaOH and NaNO{sub 3} solutions under autogeneous pressure at 80 deg. C for 48 h. This zeolite was characterized by X-ray diffraction (XRD), FT-IR-spectroscopy, scanning electron microscopy (SEM) and BET surface area. XRD, SEM and FT-IR confirmed the presence of nitrated cancrinite-type zeolite without other collateral phases as sodalite. Then, this sodium zeolite was exchanged with potassium and calcium cations and finally, these modified zeolites were reacted with biliar solutions from human gallbladder. Several factors such as: mass of used cancrinite, nature of the exchanged cation and reaction time of the cancrinite-bile solution interactions were studied. The composition of bile solutions (bile acids, phospholipids and bilirubin) was analyzed before and after the cancrinite-bile solution reaction. Results showed that the components of the bile were notably reduced after the contact with solids. Ca-cancrinite, 120 min of reaction time and 500 mg of solids were the best conditions determined for the bile acid reduction in human bile. When the modified zeolites were compared with the commercial cholestyramine, it was found that zeolites were more active than the latter. These zeolites may be an alternative choice to diminish cholesterol levels in hypercholesterolemic patients.

  15. Human bile sorption by cancrinite-type zeolites

    International Nuclear Information System (INIS)

    A nitrated cancrinite-type zeolite was synthesized from zeolite X, NaOH and NaNO3 solutions under autogeneous pressure at 80 deg. C for 48 h. This zeolite was characterized by X-ray diffraction (XRD), FT-IR-spectroscopy, scanning electron microscopy (SEM) and BET surface area. XRD, SEM and FT-IR confirmed the presence of nitrated cancrinite-type zeolite without other collateral phases as sodalite. Then, this sodium zeolite was exchanged with potassium and calcium cations and finally, these modified zeolites were reacted with biliar solutions from human gallbladder. Several factors such as: mass of used cancrinite, nature of the exchanged cation and reaction time of the cancrinite-bile solution interactions were studied. The composition of bile solutions (bile acids, phospholipids and bilirubin) was analyzed before and after the cancrinite-bile solution reaction. Results showed that the components of the bile were notably reduced after the contact with solids. Ca-cancrinite, 120 min of reaction time and 500 mg of solids were the best conditions determined for the bile acid reduction in human bile. When the modified zeolites were compared with the commercial cholestyramine, it was found that zeolites were more active than the latter. These zeolites may be an alternative choice to diminish cholesterol levels in hypercholesterolemic patients

  16. X-ray analysis of two antibiotic-synthesizing bacterial ester hydrolases : Preliminary results

    NARCIS (Netherlands)

    Barends, Thomas; Hensgens, Charles M.H.; Polderman-Tijmes, Jolanda J.; Jekel, P; de Vries, Erik; Janssen, Dick B.; Dijkstra, Bauke W.

    2003-01-01

    alpha-Amino-acid ester hydrolases are multimeric enzymes of potential use in antibiotic production. Knowledge of their structure could help to engineer these enzymes into economically viable biocatalysts. The alpha-amino-acid ester hydrolases from Xanthomonas citri and Acetobacter turbidans have bee

  17. Ursodeoxycholic acid treatment of vanishing bile duct syndromes

    Institute of Scientific and Technical Information of China (English)

    Thomas Pusl; Ulrich Beuers

    2006-01-01

    Vanishing bile duct syndromes (VBDS) are characterized by progressive loss of small intrahepatic ducts caused by a variety of different diseases leading to chronic cholestasis, cirrhosis, and premature death from liver failure. The majority of adult patients with VBDS suffer from primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Ursodeoxycholic acid (UDCA), a hydrophilic dihydroxy bile acid, is the only drug currently approved for the treatment of patients with PBC, and anticholestatic effects have been reported for several other cholestatic syndromes. Several potential mechanisms of action of UDCA have been proposed including stimulation of hepatobiliary secretion, inhibition of apoptosis and protection of cholangiocytes against toxic effects of hydrophobic bile acids.

  18. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants.

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Gotoh

    Full Text Available Vibrio parahaemolyticus, a bacterial pathogen, causes human gastroenteritis. A type III secretion system (T3SS2 encoded in pathogenicity island (Vp-PAI is the main contributor to enterotoxicity and expression of Vp-PAI encoded genes is regulated by two transcriptional regulators, VtrA and VtrB. However, a host-derived inducer for the Vp-PAI genes has not been identified. Here, we demonstrate that bile induces production of T3SS2-related proteins under osmotic conditions equivalent to those in the intestinal lumen. We also show that bile induces vtrA-mediated vtrB transcription. Transcriptome analysis of bile-responsive genes revealed that bile strongly induces expression of Vp-PAI genes in a vtrA-dependent manner. The inducing activity of bile was diminished by treatment with bile acid sequestrant cholestyramine. Finally, we demonstrate an in vivo protective effect of cholestyramine on enterotoxicity and show that similar protection is observed in infection with a different type of V. parahaemolyticus or with non-O1/non-O139 V. cholerae strains of vibrios carrying the same kind of T3SS. In summary, these results provide an insight into how bacteria, through the ingenious action of Vp-PAI genes, can take advantage of an otherwise hostile host environment. The results also reveal a new therapeutic potential for widely used bile acid sequestrants in enteric bacterial infections.

  19. Mechanistic investigations of unsaturated glucuronyl hydrolase from Clostridium perfringens.

    Science.gov (United States)

    Jongkees, Seino A K; Yoo, Hayoung; Withers, Stephen G

    2014-04-18

    Experiments were carried out to probe the details of the hydration-initiated hydrolysis catalyzed by the Clostridium perfringens unsaturated glucuronyl hydrolase of glycoside hydrolase family 88 in the CAZy classification system. Direct (1)H NMR monitoring of the enzymatic reaction detected no accumulated reaction intermediates in solution, suggesting that rearrangement of the initial hydration product occurs on-enzyme. An attempt at mechanism-based trapping of on-enzyme intermediates using a 1,1-difluoro-substrate was unsuccessful because the probe was too deactivated to be turned over by the enzyme. Kinetic isotope effects arising from deuterium-for-hydrogen substitution at carbons 1 and 4 provide evidence for separate first-irreversible and overall rate-determining steps in the hydration reaction, with two potential mechanisms proposed to explain these results. Based on the positioning of catalytic residues in the enzyme active site, the lack of efficient turnover of a 2-deoxy-2-fluoro-substrate, and several unsuccessful attempts at confirmation of a simpler mechanism involving a covalent glycosyl-enzyme intermediate, the most plausible mechanism is one involving an intermediate bearing an epoxide on carbons 1 and 2. PMID:24573682

  20. Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications

    Directory of Open Access Journals (Sweden)

    Gabriel Zamith Leal Dalmaso

    2015-04-01

    Full Text Available The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons. Extremozymes are adapted to work in harsh physical-chemical conditions and their use in various industrial applications such as the biofuel, pharmaceutical, fine chemicals and food industries has increased. The understanding of the specific factors that confer the ability to withstand extreme habitats on such enzymes has become a priority for their biotechnological use. The most studied marine extremophiles are prokaryotes and in this review, we present the most studied archaea and bacteria extremophiles and their hydrolases, and discuss their use for industrial applications.

  1. Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase.

    Science.gov (United States)

    Zimny, Jaroslaw; Sikora, Marta; Guranowski, Andrzej; Jakubowski, Hieronim

    2006-08-11

    Homocysteine (Hcy) editing by methionyl-tRNA synthetase results in the formation of Hcy-thiolactone and initiates a pathway that has been implicated in human disease. In addition to being cleared from the circulation by urinary excretion, Hcy-thiolactone is detoxified by the serum Hcy-thiolactonase/paraoxonase carried on high density lipoprotein. Whether Hcy-thiolactone is detoxified inside cells was unknown. Here we show that Hcy-thiolactone is hydrolyzed by an intracellular enzyme, which we have purified to homogeneity from human placenta and identified by proteomic analyses as human bleomycin hydrolase (hBLH). We have also purified an Hcy-thiolactonase from the yeast Saccharomyces cerevisiae and identified it as yeast bleomycin hydrolase (yBLH). BLH belongs to a family of evolutionarily conserved cysteine aminopeptidases, and its only known biologically relevant function was deamidation of the anticancer drug bleomycin. Recombinant hBLH or yBLH, expressed in Escherichia coli, exhibits Hcy-thiolactonase activity similar to that of the native enzymes. Active site mutations, C73A for hBLH and H369A for yBLH, inactivate Hcy-thiolactonase activities. Yeast blh1 mutants are deficient in Hcy-thiolactonase activity in vitro and in vivo, produce more Hcy-thiolactone, and exhibit greater sensitivity to Hcy toxicity than wild type yeast cells. Our data suggest that BLH protects cells against Hcy toxicity by hydrolyzing intracellular Hcy-thiolactone. PMID:16769724

  2. Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA.

    Science.gov (United States)

    Ikonen, Satu; Macícková-Cahová, Hana; Pohl, Radek; Sanda, Miloslav; Hocek, Michal

    2010-03-01

    Aqueous Sonogashira cross-coupling reactions of 5-iodopyrimidine or 7-iodo-7-deazaadenine nucleosides with bile acid-derived terminal acetylenes linked via an ester or amide tether gave the corresponding bile acid-nucleoside conjugates. Analogous reactions of halogenated nucleoside triphosphates gave directly bile acid-modified dNTPs. Enzymatic incorporation of these modified nucleotides to DNA was successfully performed using Phusion polymerase for primer extension. One of the dNTPs (dCTP bearing cholic acid) was also efficient for PCR amplification. PMID:20165813

  3. Hepatobiliary Scan in Infantile Spontaneous Perforation of Common Bile Duct

    Energy Technology Data Exchange (ETDEWEB)

    Zeon, Seok Kil; Ryu, Jong Gul; Lee, Eun Young [Keimyung University School of Medicine, Taegu (Korea, Republic of); Lee, Jong Gil [Taegu Fatima Hospital, Taegu (Korea, Republic of)

    1996-03-15

    Spontaneous perforation of CBD in infant is a rare but fatal disease. We report a case of bile leakage from common bile duct in 11 months old girl with progressive abdominal distension and vomiting, preoperatively diagnosed by hepatobiliary scan with Tc-99m-DISIDA, which was confirmed by surgery. Operative cholangiogram showed a small perforation at the confluence of cystic duct and common bile duct with mild fusiform dilatation, and no definite abnormality in confluence of the common bile duct and pancreatic duct. Simple drainage of the free peritoneal bilous fluid and T-tube drainage were performed without any evidence of the complication. Patient was inevitable for 6 months OPD follow-up examination.

  4. Genetics Home Reference: congenital bile acid synthesis defect type 2

    Science.gov (United States)

    ... DEFECT, CONGENITAL, 2 Sources for This Page Clayton PT. Disorders of bile acid synthesis. J Inherit Metab ... J, Duran M, Overmars H, Scambler PJ, Clayton PT. Mutations in SRD5B1 (AKR1D1), the gene encoding delta( ...

  5. Influence of bile flow interruption on acute experimental pancreatitis.

    Science.gov (United States)

    Sarli, L; Gafà, M; Lupi, M; Peracchia, A

    1984-01-01

    The influence of bile flow interruption on the pathogenesis of acute pancreatitis has been evaluated in the rat. The pancreatitis was induced by Pfeffer's technique and the severity of the disease was assessed by a macroscopic examination of the pancreatic damage and the calculation of amylase-to-creatinine clearance ratio (ACCR) as well. The results showed that the bile reflux into the pancreas made the pancreatic lesions caused by stasis in the gland associated with hyperstimulation of exocrine secretion more severe. On the other hand the bile reflux had no influence when the pancreatitis was due to flowing back of duodenal contents into the pancreas (closed duodenal loop). It was concluded that the bile effect is probably consistent with a pressure mechanism. In addition the reliability of ACCR in the diagnosis of acute pancreatitis was confirmed, and the test was effective in detecting even milder pancreatic damages. PMID:6206023

  6. Role of endoscopic ultrasound in common bile duct stones

    Directory of Open Access Journals (Sweden)

    Aljebreen Abdulrahman

    2007-01-01

    Full Text Available When the clinical features strongly suggest the presence of bile duct stones, management is fairly straightforward; diagnostic and therapeutic endoscopic retrograde cholangiography (ERC may in some cases constitute the entire strategy. Unfortunately, the clinical picture is often equivocal or uncertain. Although stones are unlikely to be present in the bile duct when the clinical index of suspicion is low, their presence can never be completely ruled out based on clinical and biochemical parameters. Thus, an accurate, noninvasive, reliable, and safe method for bile duct imaging would be highly advantageous. Low-risk tests, such as endoscopic ultrasound (EUS, are emerging as reliable substitutes for diagnostic ERC. This review highlights the technical aspects of examining the extra-hepatic biliary duct system and the performance and results of EUS in diagnosing patients who present with possible common bile duct stones.

  7. Bile Duct Diseases - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bile Duct Diseases URL of this page: https://medlineplus.gov/languages/bileductdiseases.html Other topics A-Z A B ...

  8. Effects of feeding bile acids and a bile acid sequestrant on hepatic bile acid composition in mice.

    Science.gov (United States)

    Zhang, Youcai; Klaassen, Curtis D

    2010-11-01

    An improved ultra performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) method was established for the simultaneous analysis of various bile acids (BA) and applied to investigate liver BA content in C57BL/6 mice fed 1% cholic acid (CA), 0.3% deoxycholic acid (DCA), 0.3% chenodeoxycholic acid (CDCA), 0.3% lithocholic acid (LCA), 3% ursodeoxycholic acid (UDCA), or 2% cholestyramine (resin). Results indicate that mice have a remarkable ability to maintain liver BA concentrations. The BA profiles in mouse livers were similar between CA and DCA feedings, as well as between CDCA and LCA feedings. The mRNA expression of Cytochrome P450 7a1 (Cyp7a1) was suppressed by all BA feedings, whereas Cyp7b1 was suppressed only by CA and UDCA feedings. Gender differences in liver BA composition were observed after feeding CA, DCA, CDCA, and LCA, but they were not prominent after feeding UDCA. Sulfation of CA and CDCA was found at the 7-OH position, and it was increased by feeding CA or CDCA more in male than female mice. In contrast, sulfation of LCA and taurolithocholic acid (TLCA) was female-predominant, and it was increased by feeding UDCA and LCA. In summary, the present systematic study on BA metabolism in mice will aid in interpreting BA-mediated gene regulation and hepatotoxicity.

  9. Regulation of human class I alcohol dehydrogenases by bile acids

    OpenAIRE

    Langhi, Cédric; Pedraz-Cuesta, Elena; Haro, Diego; Marrero, Pedro F; Rodríguez, Joan C.

    2013-01-01

    Class I alcohol dehydrogenases (ADH1s) are the rate-limiting enzymes for ethanol and vitamin A (retinol) metabolism in the liver . Because previous studies have shown that human ADH1 enzymes may participate in bile acid metabolism, we investigated whether the bile acid-activated nuclear receptor farnesoid X receptor (FXR) regulates ADH1 genes. In human hepatocytes, both the endogenous FXR ligand chenodeoxycholic acid and synthetic FXR-specific agonist GW4064 increased ADH1 mRNA, protein, and ...

  10. The Role of Diet1 in Bile Acid Metabolism

    OpenAIRE

    Lee, Jessica Mei-Ping

    2013-01-01

    Elevated cholesterol levels are associated with increased risk for atherosclerosis, heart disease and stroke. Variations in plasma cholesterol levels among individuals are determined by the interaction of environmental and genetic factors, many of which remain to be identified. This dissertation presents the initial characterization of a novel gene Diet1, the product of which influences plasma cholesterol levels through its effects on bile acid metabolism. Bile acids are synthesized from c...

  11. Pancreatitis complicating mucin-hypersecreting common bile duct adenoma

    Institute of Scientific and Technical Information of China (English)

    Panagiotis Katsinelos; George Basdanis; Grigorios Chatzimavroudis; Giorgia Karagiannoulou; Taxiarchis Katsinelos; George Paroutoglou; Basilios Papaziogas; George Paraskevas

    2006-01-01

    Villous adenomas of the bile ducts are extremely uncommon. We describe a 58-year-old man presenting with clinical signs and laboratory findings of acute pancreatitis and obstructive jaundice. Preoperative investigation demonstrated a dilated papillary orifice with mucus exiting (fish-mouth sign) and a filling defect in the distal common bile duct. He underwent a modified Whipple operation and histological examination of the surgical specimen showed villous adenoma with rich secretion of mucus.

  12. Optimizing Human Bile Preparation for Two-Dimensional Gel Electrophoresis

    OpenAIRE

    Hao-Tsai Cheng; Sen-Yung Hsieh; Chang-Mu Sung; Betty Chien-Jung Pai; Nai-Jen Liu; Carl PC Chen

    2016-01-01

    Aims. Bile is an important body fluid which assists in the digestion of fat and excretion of endogenous and exogenous compounds. In the present study, an improved sample preparation for human bile was established. Methods and Material. The method involved acetone precipitation followed by protein extraction using commercially available 2D Clean-Up kit. The effectiveness was evaluated by 2-dimensional electrophoresis (2DE) profiling quality, including number of protein spots and spot distribut...

  13. A case of peribiliary cysts accompanying bile duct carcinoma

    Institute of Scientific and Technical Information of China (English)

    Fumihiko Miura; Tadahiro Takada; Hodaka Amano; Masahiro Yoshida; Takahiro Isaka; Naoyuki Toyota; Keita Wada; Kenji Takagi; Kenichiro Karo

    2006-01-01

    A rare case of peribiliary cysts accompaying bile duct carcinoma is presented. A 54-year-old man was diagnosed as having lower bile duct carcinoma and peribiliary cysts by diagnostic imaging. He underwent pylorus preserving pancreatoduodenectomy. As for the peribiliary cysts, a course of observation was taken.Over surgery due to misdiagnosis of patients with biliary malignancy accompanied by peribiliary cysts should be avoided.

  14. Urinary excretion of bile acid glucosides and glucuronides in extrahepatic cholestasis.

    Science.gov (United States)

    Wietholtz, H; Marschall, H U; Reuschenbach, R; Matern, H; Matern, S

    1991-04-01

    Recently the formation of bile acid glucosides has been described as a novel conjugation mechanism in vitro and in vivo. In 10 patients with extrahepatic cholestasis caused by carcinoma of the head of the pancreas we investigated excretion rates and profiles of urinary bile acid glucosides. Urinary bile acid glucosides and, for comparison, bile acid glucuronides were extracted and characterized according to established methods. In controls total urinary bile acid glucoside excretion was 0.22 +/- 0.03 mumol/24 hr (mean +/- S.E.M.)-in the range of bile acid glucuronide excretion (0.41 +/- 0.06 mumol/24 hr; mean +/- S.E.M.). A gas chromatography-mass spectrometry-characterized trihydroxy bile acid glucoside of still-unknown hydroxyl positions accounted for 65% of total urinary bile acid glucosides. In extrahepatic cholestasis total urinary bile acid glucoside excretion was 0.52 +/- 0.13 mumol/24 hr (mean +/- SEM), yet significantly lower than bile acid glucuronide excretion (1.53 +/- 0.13 mumol/24 hr; mean +/- SEM; p less than 0.001). In cholestasis the primary bile acid derivatives cholic and chenodeoxycholic acid glucosides amounted to 90%, whereas the trihydroxy bile acid glucoside had decreased to 5% of total bile acid glucoside excretion, indicating its alteration during enterohepatic circulation. The data establish the composition and quantity of urinary bile acid glucosides in healthy controls and cholestasis and constitute a quantitative comparison with another glycosidic conjugation reaction, bile acid glucuronidation.

  15. Bile Stress Response in Listeria monocytogenes LO28: Adaptation, Cross-Protection, and Identification of Genetic Loci Involved in Bile Resistance

    OpenAIRE

    Begley, Máire; Gahan, Cormac G. M.; Hill, Colin

    2002-01-01

    Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella en...

  16. Contribution of Three Bile-Associated Loci, bsh, pva, and btlB, to Gastrointestinal Persistence and Bile Tolerance of Listeria monocytogenes

    OpenAIRE

    Begley, Máire; Sleator, Roy D.; Gahan, Cormac G. M.; Hill, Colin

    2005-01-01

    Listeria monocytogenes must resist the deleterious actions of bile in order to infect and subsequently colonize the human gastrointestinal tract. The molecular mechanisms used by the bacterium to resist bile and the influence of bile on pathogenesis are as yet largely unexplored. This study describes the analysis of three genes—bsh, pva, and btlB—previously annotated as bile-associated loci in the sequenced L. monocytogenes EGDe genome (lmo2067, lmo0446, and lmo0754, respectively). Analysis o...

  17. Individual bile acids have differential effects on bile acid signaling in mice

    Energy Technology Data Exchange (ETDEWEB)

    Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu; Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  18. Cholesteryl ester hydrolase activity is abolished in HSL-/- macrophages but unchanged in macrophages lacking KIAA1363.

    Science.gov (United States)

    Buchebner, Marlene; Pfeifer, Thomas; Rathke, Nora; Chandak, Prakash G; Lass, Achim; Schreiber, Renate; Kratzer, Adelheid; Zimmermann, Robert; Sattler, Wolfgang; Koefeler, Harald; Fröhlich, Eleonore; Kostner, Gerhard M; Birner-Gruenberger, Ruth; Chiang, Kyle P; Haemmerle, Guenter; Zechner, Rudolf; Levak-Frank, Sanja; Cravatt, Benjamin; Kratky, Dagmar

    2010-10-01

    Cholesteryl ester (CE) accumulation in macrophages represents a crucial event during foam cell formation, a hallmark of atherogenesis. Here we investigated the role of two previously described CE hydrolases, hormone-sensitive lipase (HSL) and KIAA1363, in macrophage CE hydrolysis. HSL and KIAA1363 exhibited marked differences in their abilities to hydrolyze CE, triacylglycerol (TG), diacylglycerol (DG), and 2-acetyl monoalkylglycerol ether (AcMAGE), a precursor for biosynthesis of platelet-activating factor (PAF). HSL efficiently cleaved all four substrates, whereas KIAA1363 hydrolyzed only AcMAGE. This contradicts previous studies suggesting that KIAA1363 is a neutral CE hydrolase. Macrophages of KIAA1363(-/-) and wild-type mice exhibited identical neutral CE hydrolase activity, which was almost abolished in tissues and macrophages of HSL(-/-) mice. Conversely, AcMAGE hydrolase activity was diminished in macrophages and some tissues of KIAA1363(-/-) but unchanged in HSL(-/-) mice. CE turnover was unaffected in macrophages lacking KIAA1363 and HSL, whereas cAMP-dependent cholesterol efflux was influenced by HSL but not by KIAA1363. Despite decreased CE hydrolase activities, HSL(-/-) macrophages exhibited CE accumulation similar to wild-type (WT) macrophages. We conclude that additional enzymes must exist that cooperate with HSL to regulate CE levels in macrophages. KIAA1363 affects AcMAGE hydrolase activity but is of minor importance as a direct CE hydrolase in macrophages.

  19. Elemental diet and bile induced pancreatitis.

    Science.gov (United States)

    Kerstein, M D; Tonkens, R M

    1976-08-01

    The effectiveness of an elemental diet was investigated as both a prophylactic and therapeutic agent in experimental canine pancreatitis. Pancreatitis was induced by operative injection of a bile -saline solution mixture under pressure retrograde into the main pancreatic duct. In addition to a preinjection control sample, serial biopsies were obtained at 30 minute intervals for 90 minutes after injection and fixed for light and electron microscopic examinations. In addition, preoperative and postoperative blood samples were drawn and analyzed for amylase. After operation, half of the dogs from each original group were fed Vivonex-100, the other half from each group, regular laboratory chow, yielding four ultimate groups based on preoperative and postoperative diets. Successful induction of pancreatitis was evaluated by the difference between preoperative and postoperative amylase values, all of which were significant by group at the p less than 0.01 level. No ultrastructural evidence was found for the modification of zymogen granules with the pretreatment elemental diet nor were differences evident, histologically or ultrastructurally, in the severity of pancreatitis between the pretreated and nonpretreated groups. Finally, gross mortality figures demonstrated no efficacy of elemental diet for pretreatment prophylaxis of acute pancreatitis.

  20. Benign disease of the common bile duct.

    Science.gov (United States)

    Saxena, R; Pradeep, R; Chander, J; Kumar, P; Wig, J D; Yadav, R V; Kaushik, S P

    1988-08-01

    The incidence of common bile duct (CBD) pathology in a group of patients with benign biliary disease (n = 505) was found to be 23.2 per cent. The spectrum included 111 patients (90.2 per cent) with CBD stones, 37 of whom (33.3 per cent) had no symptoms or findings pre-operatively indicating CBD involvement. Five patients had papillary stenosis, three had postoperative CBD strictures, one had a choledochal cyst and one had an external biliary fistula. Of the 100 CBDs measuring more than 10 mm in diameter, 90 harboured calculi. In the remaining 23 CBDs measuring less than 10 mm, calculi were present in 21. The presence of CBD calculi was demonstrated by intra-operative cholangiography in 49 patients. In the remaining patients (n = 74), the diagnosis of CBD pathology was made either by percutaneous transhepatic cholangiography, endoscopic retrograde cholangio-pancreatography, T-tube cholangiography or peroperative palpation. The surgical procedures performed included choledochotomy and T-tube drainage (n = 74), transduodenal sphincteroplasty (n = 27) and choledochoduodenostomy (n = 18). The overall mortality and morbidity of CBD exploration was 3.3 per cent and 24.4 per cent respectively, which was significantly greater than that for cholecystectomy alone (0.3 per cent and 8.6 per cent respectively). Transduodenal sphincteroplasty carried a much higher mortality (11 per cent) and morbidity (52 per cent) when compared with other procedures. PMID:3167536

  1. Differentiation of various traditional Chinese medicines derived from animal bile and gallstone: simultaneous determination of bile acids by liquid chromatography coupled with triple quadrupole mass spectrometry.

    Science.gov (United States)

    Qiao, Xue; Ye, Min; Pan, De-lin; Miao, Wen-juan; Xiang, Cheng; Han, Jian; Guo, De-an

    2011-01-01

    Animal biles and gallstones are popularly used in traditional Chinese medicines, and bile acids are their major bioactive constituents. Some of these medicines, like cow-bezoar, are very expensive, and may be adulterated or even replaced by less expensive but similar species. Due to poor ultraviolet absorbance and structural similarity of bile acids, effective technology for species differentiation and quality control of bile-based Chinese medicines is still lacking. In this study, a rapid and reliable method was established for the simultaneous qualitative and quantitative analysis of 18 bile acids, including 6 free steroids (cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, hyodeoxycholic acid, and ursodeoxycholic acid) and their corresponding glycine conjugates and taurine conjugates, by using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). This method was used to analyze six bile-based Chinese medicines: bear bile, cattle bile, pig bile, snake bile, cow-bezoar, and artificial cow-bezoar. Samples were separated on an Atlantis dC₁₈ column and were eluted with methanol-acetonitrile-water containing ammonium acetate. The mass spectrometer was monitored in the negative electrospray ionization mode. Total ion currents of the samples were compared for species differentiation, and the contents of bile acids were determined by monitoring specific ion pairs in a selected reaction monitoring program. All 18 bile acids showed good linearity (r² > 0.993) in a wide dynamic range of up to 2000-fold, using dehydrocholic acid as the internal standard. Different animal biles could be explicitly distinguished by their major characteristic bile acids: tauroursodeoxycholic acid and taurochenodeoxycholic acid for bear bile, glycocholic acid, cholic acid and taurocholic acid for cattle bile, glycohyodeoxycholic acid and glycochenodeoxycholic acid for pig bile, and taurocholic acid for snake bile. Furthermore, cattle bile, cow

  2. Epoxides and soluble epoxide hydrolase in cardiovascular physiology.

    Science.gov (United States)

    Imig, John D

    2012-01-01

    Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.

  3. Role of soluble epoxide hydrolase in the sex-specific vascular response to cerebral ischemia

    OpenAIRE

    Zhang, Wenri; Iliff, Jeffrey J.; Campbell, Caitlyn J; Wang, Ruikang K.; Hurn, Patricia D.; Alkayed, Nabil J.

    2009-01-01

    Soluble epoxide hydrolase (sEH), a key enzyme in the metabolism of vasodilator eicosanoids called epoxyeicosatrienoic acids (EETs), is sexually dimorphic and suppressed by estrogen. We determined if the sex difference in blood flow during focal cerebral ischemia is linked to sEH. Soluble epoxide hydrolase expression in brain, hydrolase activity in cerebral vessels, and plasma 14,15-dihydroxyeicosatrienoic acid (14,15-DHET) were determined in male and female wild-type (WT) and sEH knockout (sE...

  4. Identification of oxidized protein hydrolase as a potential prodrug target in prostate cancer

    International Nuclear Information System (INIS)

    Esterases are often overexpressed in cancer cells and can have chiral specificities different from that of the corresponding normal tissues. For this reason, ester prodrugs could be a promising approach in chemotherapy. In this study, we focused on the identification and characterization of differentially expressed esterases between non-tumorigenic and tumorigenic prostate epithelial cells. Cellular lysates from LNCaP, DU 145, and PC3 prostate cancer cell lines, tumorigenic RWPE-2 prostate epithelial cells, and non-tumorigenic RWPE-1 prostate epithelial cells were separated by native polyacrylamide gel electrophoresis (n-PAGE) and the esterase activity bands visualized using α-naphthyl acetate or α-naphthyl-N-acetylalaninate (ANAA) chiral esters and Fast Blue RR salt. The esterases were identified using nanospray LC/MS-MS tandem mass spectrometry and confirmed by Western blotting, native electroblotting, inhibition assays, and activity towards a known specific substrate. The serine protease/esterase oxidized protein hydrolase (OPH) was overexpressed in COS-7 cells to verify our results. The major esterase observed with the ANAA substrates within the n-PAGE activity bands was identified as OPH. OPH (EC 3.4.19.1) is a serine protease/esterase and a member of the prolyl oligopeptidase family. We found that LNCaP lysates contained approximately 40% more OPH compared to RWPE-1 lysates. RWPE-2, DU145 and PC3 cell lysates had similar levels of OPH activity. OPH within all of the cell lysates tested had a chiral preference for the S-isomer of ANAA. LNCaP cells were stained more intensely with ANAA substrates than RWPE-1 cells and COS-7 cells overexpressing OPH were found to have a higher activity towards the ANAA and AcApNA than parent COS-7 cells. These data suggest that prodrug derivatives of ANAA and AcApNA could have potential as chemotherapeutic agents for the treatment of prostate cancer tumors that overexpress OPH

  5. Clinical pathology of primary bile reflux gastritis

    Directory of Open Access Journals (Sweden)

    Ping YAO

    2011-05-01

    Full Text Available Objective To analyze the clinical and pathological features of primary bile reflux gastritis(BRG.Methods Endoscopy,Helicobacter pylori(H.pylori detection,and histopathologic examination were performed in 218 patients with primary BRG(observed group and 236 patients with simple chronic gastritis(SCG,control group as identified by gastroscope in order to analyze the endoscopic abnormalities,the frequency of H.pylori infection,pathological features and scores of inflammation.Results The frequency of H.pylori infection was 39.0%(85/218 in the observed group,which was significantly lower than that in the control group [52.1%(123/236].The topographic abnormalities of the antral mucosa as detected by gastroscopy,i.e.,congestion,hemorrhagic spots,erosion were not significantly different between BRG and SCG patients(P > 0.05.The scores of chronic and active inflammation were higher in patients when H.pylori infection was present than in patients without H.pylori infection in both groups(P < 0.05.The scores of inflammation,the detection rates of the antral intestinal metaplasia,antral atrophy and atypical hyperplasia were all higher in observed group than in control group(P < 0.05.The incidence of lengthening of gastric pits,telangiectasis or interstitial edema in BRG patients was also significantly higher than those in SCG patients(P < 0.05.Conclusions Primary BRG shows features of chemical gastritis with a higher tendency toward mucosal atrophy,intestinal metaplasia and atypical hyperplasia.Gastropic examination and biopsy should be emphasized.

  6. Ambivalent property of bilirubin in human bile juice

    Directory of Open Access Journals (Sweden)

    Anna Blázovics, Péter Sípos, Ferenc Örsi,* Mervat Abdel Rahman

    2005-03-01

    Full Text Available Gallstones are formed as a result of many metabolic disorders e.g. chronic haemolytic anaemia, diabetes mellitus, ileal diseases, short bowel syndrome, gluten sensitive enteropathy, elevated serum lipids or Crohn's disease. The relationship between gallstone disease and free radical reactions is not known exactly even today. Free radicals are involved in many clinical conditions e.g. in hyperlipidemia and in fatty liver. Oxygen free radicals are produced and accumulated while the function of mitochondrial and microsomal electron transport or in peroxisomes and the activated arachidonic acid cascade. Spontaneous lipid peroxidation and oxygen free radical products of respiratory burst of Kupffer cells can be added to peroxide pool of liver tissue. Tissues, cells and subcellular particles exhibit different specific defence activities in pathological processes, which involve free radicals. The activity of microsomal P450 enzyme system and the microsomal structure are changed during pathological free radical attack and the cholesterol/bile acid ratio in bile juice is also altered. At the same time bilirubin metabolism can also be modified. Bile samples of 88 cholecystectomysed patients in both sexes (male: 29, female: 59 were examined. HPLC analysis (HP1090 liquid chromatograph with diode array detector was used for the detection of free bilirubin and bilirubin derivates. HP5890 gas chromatograph and flame ionization detector was used for fatty acid analysis. The induced chemiluminescence intensity was also determined in bile juice with (Berthold Lumat 9501 luminometer. As results show, the occurrence of C18:1 9, C18:2 6, C20:4 6 fatty acids were in high percentage in gallbladder bile in every case of randomly chosen 17 cholecystectomysed patients in both sexes suffered from cholecystitis chronica with gallstone. Lipid peroxidation products (diene conjugates and malondialdehyde were detected in all cases of bile as well. Mathematical statistical

  7. Les lipases sont des hydrolases atypiques : principales caractéristiques et applications

    Directory of Open Access Journals (Sweden)

    Fickers P.

    2008-01-01

    Full Text Available ipases are atypical hydrolases: principal characteristics and applications. Due to their kinetic and substrate specificities, triacylglycerol acyl-hydrolases or lipases are atypical enzymes. In function of their microenvironment, lipases are able to act as hydrolases in aqueous solution or as biocatalysts in organic synthesis. As hydrolases, they are responsible of the triglycerids catabolism into fatty acids and glycerol. In many organisms, this reaction plays a major role in the fat and lipid metabolism. In addition, lipases are also able to hydrolyse phospholipids and cholesterol esters. In organic solvent, lipases could catalyse reactions such as esterifications, acidolysis or alcoolysis with enantio-, regio- and chimioselectivity. Lipases form a mixed class of enzyme due to their animal, vegetal or microbial origins. All those properties led to the development of many applications in the food and chemical industries but also in the medical and therapeutic field.

  8. Optimizing Human Bile Preparation for Two-Dimensional Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Hao-Tsai Cheng

    2016-01-01

    Full Text Available Aims. Bile is an important body fluid which assists in the digestion of fat and excretion of endogenous and exogenous compounds. In the present study, an improved sample preparation for human bile was established. Methods and Material. The method involved acetone precipitation followed by protein extraction using commercially available 2D Clean-Up kit. The effectiveness was evaluated by 2-dimensional electrophoresis (2DE profiling quality, including number of protein spots and spot distribution. Results. The total protein of bile fluid in benign biliary disorders was 0.797 ± 0.465 μg/μL. The sample preparation method using acetone precipitation first followed by 2D Clean-Up kit protein extraction resulted in better quality of 2DE gel images in terms of resolution as compared with other sample preparation methods. Using this protocol, we obtained approximately 558 protein spots on the gel images and with better protein spots presentation of haptoglobin, serum albumin, serotransferrin, and transthyretin. Conclusions. Protein samples of bile prepared using acetone precipitation followed by 2D Clean-Up kit exhibited high protein resolution and significant protein profile. This optimized protein preparation protocol can effectively concentrate bile proteins, remove abundant proteins and debris, and yield clear presentation of nonabundant proteins and its isoforms on 2-dimensional electrophoresis gel images.

  9. Bile acids as endogenous etiologic agents in gastrointestinal cancer

    Institute of Scientific and Technical Information of China (English)

    Harris Bernstein; Carol Bernstein; Claire M Payne; Katerina Dvorak

    2009-01-01

    Bile acids are implicated as etiologic agents in cancer of the gastrointestinal (GI) tract, including cancer of the esophagus, stomach, small intestine, liver, biliary tract, pancreas and colon/rectum. Deleterious effects of bile acid exposure, likely related to carcinogenesis,include: induction of reactive oxygen and reactive nitrogen species; induction of DNA damage; stimulation of mutation; induction of apoptosis in the short term,and selection for apoptosis resistance in the long term.These deleterious effects have, so far, been reported most consistently in relation to esophageal and colorectal cancer, but also to some extent in relation to cancer of other organs. In addition, evidence is reviewed for an association of increased bile acid exposure with cancer risk in human populations, in specific human genetic conditions, and in animal experiments. A model for the role of bile acids in GI carcinogenesis is presented from a Darwinian perspective that offers an explanation for how the observed effects of bile acids on cells contribute to cancer development.

  10. Structure-Guided Engineering of Molinate Hydrolase for the Degradation of Thiocarbamate Pesticides

    OpenAIRE

    Leite, José P.; Duarte, Márcia; Paiva, Ana M.; Ferreira-da-Silva, Frederico; Matias, Pedro M.; Nunes, Olga C.; Gales, Luís

    2015-01-01

    Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture show...

  11. HYDROLASING OF CONTAMINATED UNDERWATER BASIN SURFACES AT THE HANFORD K AREA

    International Nuclear Information System (INIS)

    This paper discusses selecting and implementing hydrolasing technology to reduce radioactive contamination in preparing to dispose of the K Basins; two highly contaminated concrete basins at the Hanford Site. A large collection of spent nuclear fuel stored for many years underwater at the K Basins has been removed to stable, dry, safe storage. Remediation activities have begun for the remaining highly contaminated water. sludge, and concrete basin structures. Hydrolasing will be used to decontaminate and prepare the basin structures for disposal

  12. IN VITRO SOLUBLE EPOXIDE HYDROLASE ENZYME INHIBITORY ACTIVITY OF SOME NOVEL CHALCONE DERIVATIVES

    OpenAIRE

    Kuppusamy Asokkumar; Lokeswari Prathyusha Tangella; Muthusamy Umamaheshwari; Thirumalaisamy Shivashanmugam; Varadharajan Subhadradevi; Puliyath Jagannath; Arumugam Madeswaran

    2012-01-01

    Objective Soluble epoxide hydrolase (sEH) belongs to the α/β -hydrolase superfamily, a subclass of α/β proteins. Chalcones are chemical compounds that show hopeful obliging efficacy in controlling numerous diseases. The main objective of the study is to evaluate the sEH inhibitory activity of some synthesized chalcone derivatives and identification of its mode of inhibition. Methods Four different chalcone derivatives (PC-1 to PC-4) were selected for synthesis by Claisen-Schmidt method. The i...

  13. Posttraumatic bile leaks: role of diagnostic imaging and impact on patient outcome.

    Science.gov (United States)

    Fleming, Keith W; Lucey, Brian C; Soto, Jorge A; Oates, M Elizabeth

    2006-03-01

    The aim of this study was to evaluate the impact of bile leaks on patient morbidity and hospital course following blunt and penetrating liver trauma. Forty patients who underwent hepatobiliary scintigraphy after trauma were included. Scintigraphic results were classified as follows: free intraperitoneal bile leak, contained bile leak, and no bile leak. Outcomes measured were length of hospital stay, number of procedures required, and number of subsequent imaging studies. Bile leaks were identified in 25% of patients. Eight percent had free intraperitoneal leaks, 18% contained bile leaks, and 73% had no bile leak. One study was nondiagnostic due to poor hepatic function. Mean hospitalization was as follows: free bile leak group, 53 days; contained bile leak group, 10 days; no bile leak group, 14 days. Patients with free intraperitoneal bile leak had more imaging studies and procedures than patients without free bile leak. Patients with liver injury and free intraperitoneal bile leak have longer hospitalizations and undergo more therapeutic procedures than those without, who respond to conservative management. PMID:16369810

  14. Gelation of self-assembed bile acid-PEG conjugates

    Science.gov (United States)

    Strandman, Satu; Le Devedec, Frantz; Zhu, X. X.

    2012-02-01

    The aggregation of macromolecules and low-molar-mass compounds into elongated self-assemblies such as wormlike micelles, fibers, or tubules increases the viscosity of the solutions and often leads to gelation due to network formation, even in organic solvents. Such one-dimensional nanostructures are promising candidates for drug delivery vehicles, packing materials for separation, templates for metal nanowires, biocides, and photo- or biocatalysis. An interesting group of compounds capable of this type of self-organization are bile acids, which are endogeneous steroids known to form gels at high concentrations and appropriate pH conditions. Grafting poly(ethylene oxide) on bile acids via anionic polymerization brings along thermoresponsiveness represented by lower critical solution temperature (LCST), while self-assembling occurs below another threshold temperature leading to a gelation at high concentrations, as shown by rheological experiments. The latter transition is assigned to the nanotube formation of pegylated bile acids, visualized by electron microscopy.

  15. Bile acid nuclear receptor FXR and digestive system diseases

    Directory of Open Access Journals (Sweden)

    Lili Ding

    2015-03-01

    Full Text Available Bile acids (BAs are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR, plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases.

  16. [Postoperative handling in biliodigestive derivation by iatrogenic bile duct injury].

    Science.gov (United States)

    Domínguez, I; Mercado, M A

    2008-01-01

    Bile duct injury is a severe complication related to cholecystectomy, impacting in the long-term quality of life and functional status. Bile duct repair is the first-line treatment for complex injuries. During short-term and long-term postoperative care, it is important to bear in mind the diagnostic tools, both laboratory and imaging, that will be useful to evaluate a possible surgical complication and to plan an adequate therapeutic strategy. In addition, post-surgical classification describes patients according to their complications and clinical course. In this review we describe the principal issues of postoperative care after bile duct repair, highlighting the diagnosis, severity classification and therapeutic approach of acute cholangitis.

  17. Characterization and functional analysis of Trichinella spiralis Nudix hydrolase.

    Science.gov (United States)

    Long, Shao Rong; Wang, Zhong Quan; Jiang, Peng; Liu, Ruo Dan; Qi, Xin; Liu, Pei; Ren, Hui Jun; Shi, Hai Ning; Cui, Jing

    2015-12-01

    Trichinella spiralis Nudix hydrolase (TsNd) was identified by screening a T7 phage display cDNA library from T. spiralis intestinal infective larvae (IIL), and vaccination of mice with recombinant TsNd protein (rTsNd) or TsNd DNA vaccine produced a partial protective immunity. The aim of this study was to identify the characteristics and biological functions of TsNd in the process of invasion and development of T. spiralis larvae. Transcription and expression of TsNd gene at all developmental stages of T. spiralis were observed by qPCR and immunofluorescent test (IFT). The rTsNd had the Nd enzymatic activity to dGTP, NAD, NADP and CoA. Its kinetic properties on the preferred substrate dGTP were calculated, and the Vmax, Km, and kcat/Km values at pH 8.0 were 3.19 μM min(-1) μg(-1), 370 μM, and 144 s(-1) M(-1), respectively, in reaction matrix containing 5 mM Zn(2+) and 2 mM DTT. The rTsNd was active from 25 °C to 50 °C, with optimal activity at 37 °C. rTsNd was able to bind specifically to mouse intestinal epithelial cells (IECs) and promoted the larval invasion of IECs, whereas anti-rTsNd antibodies inhibited the larval invasion of IECs in a dose-dependent manner. Anti-rTsNd antibodies could kill T. spiralis infective larvae by an ADCC-mediated mechanism. Our results showed that the rTsNd protein was able to interact with host IECs, had the Nudix hydrolasing activity and the enzymatic activity appeared to be essential indispensable for the T. spiralis larval invasion, development and survival in host. PMID:26545353

  18. Expression of Nudix hydrolase genes in barley under UV irradiation

    Science.gov (United States)

    Tanaka, Sayuri; Sugimoto, Manabu; Kihara, Makoto

    Seed storage and cultivation should be necessary to self-supply foods when astronauts would stay and investigate during long-term space travel and habitation in the bases on the Moon and Mars. Thought the sunlight is the most importance to plants, both as the ultimate energy source and as an environmental signal regulating growth and development, UV presenting the sunlight can damage many aspects of plant processes at the physiological and DNA level. Especially UV-C, which is eliminated by the stratospheric ozone layer, is suspected to be extremely harmful and give a deadly injury to plants in space. However, the defense mechanism against UV-C irradiation damage in plant cells has not been clear. In this study, we investigated the expression of Nudix hydrolases, which defense plants from biotic / abiotic stress, in barley under UV irradiation. The genes encoding the amino acid sequences, which show homology to those of 28 kinds of Nudix hydrolases in Arabidopsis thaliana, were identified in the barley full-length cDNA library. BLAST analysis showed 14 kinds of barley genes (HvNUDX1-14), which encode the Nudix motif sequence. A phylogenetic tree showed that HvNUDX1, HvNUDX7, HvNUDX9 and HvNUDX11 belonged to the ADP-ribose pyrophosphohydrolase, ADP-sugar pyrophosphohydrolase, NAD(P)H pyrophosphohydrolase and FAD pyrophosphohydrolase subfamilies, respectively, HvNUDX3, HvNUDX6, and HvNUDX8 belonged to the Ap _{n}A pyrophosphohydrolase subfamilies, HvNUDX5 and HvNUDX14 belonged to the coenzyme A pyrophosphohydrolase subfamilies, HvNUDX12 and HvNUDX13 belonged to the Ap _{4}A pyrophosphohydrolase subfamilies. Induction of HvNUDX genes by UV-A (340nm), UV-B (312nm), and UV-C (260nm) were analyzed by quantitative RT-PCR. The results showed that HvNUDX4 was induced by UV-A and UV-B, HvNUDX6 was induced by UV-B and UV-C, and HvNUDX7 and HvNUDX14 were induced by UV-C, significantly. Our results suggest that the response of HvNUDXs to UV irradiation is different by UV

  19. SK&F 97426-A: a novel bile acid sequestrant with higher affinities and slower dissociation rates for bile acids in vitro than cholestyramine.

    Science.gov (United States)

    Benson, G M; Alston, D R; Hickey, D M; Jaxa-Chamiec, A A; Whittaker, C M; Haynes, C; Glen, A; Blanchard, S; Cresswell, S R; Suckling, K E

    1997-01-01

    SK&F 97426-A is a novel bile acid sequestrant that is threefold more potent than cholestyramine at increasing bile acid excretion in the hamster. SK&F 97426-A is a quaternary alkylammonium polymethacrylate that was selected for comparison with cholestyramine in vivo because of its superior in vitro bile acid binding properties. Association, dissociation, affinity, and capacity experiments were performed under physiologically relevant conditions with the most abundant bile acids found in human bile. The bile acids came to equilibrium with SK&F 97426-A and cholestyramine within approximately 30 min and 6 min, respectively. SK&F 97426-A and cholestyramine had similar capacities for all the bile acids (between 2.5 and 4 mmol/g) and both had similar, very high affinities and slow dissociation rates for the dihydroxy bile acids. However, SK&F 97426-A had much higher affinities for the trihydroxy bile acids glycocholic acid and taurocholic acid than did cholestyramine. Dissociation of glycocholic acid and taurocholic acid from SK&F 97426-A was also much slower (27 and 25%, respectively, dissociated after 60 min) than from cholestyramine (89 and 84%, respectively, dissociated after 60 min). The higher affinities and slower dissociation rates of the trihydroxy bile acids for and from SK&F 97426-A probably account for the increased potency of SK&F 97426-A over cholestyramine in vivo.

  20. In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate

    Directory of Open Access Journals (Sweden)

    Pierre Claver Irakoze

    2011-02-01

    Full Text Available Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p

  1. In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate

    OpenAIRE

    Pierre Claver Irakoze; Jauricque Ursulla Kongo-Dia-Moukala; Hui Zhang

    2011-01-01

    Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capa...

  2. In vitro lipid peroxidation of intestinal bile salt-based nanoemulsions

    DEFF Research Database (Denmark)

    Courraud, J; Charnay, C; Cristol, J P;

    2013-01-01

    Over the last decades, oxidative stress has been described as a deleterious phenomenon contributing to numerous noncommunicable diseases such as cardiovascular disease, diabetes, and cancers. As many authors ascribed the healthy effect of fruit and vegetable consumption mainly to their antioxidant...

  3. Buccal transport of flecainide and sotalol : effect of a bile salt and ionization state

    NARCIS (Netherlands)

    Deneer, VHM; Drese, GB; Roemele, PEH; Verhoef, JC; Lie-A-Huen, L; Kingma, JH; Brouwers, JRBJ; Junginger, HE

    2002-01-01

    Patients with infrequent attacks of supraventricular arrhythmia may benefit from self administration of antiarrhythmic drugs on an 'as required' basis. The oral cavity is easily accessible and the potential for rapid absorption exists. The effects of ionization state and sodium glycocholate on the e

  4. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis

    NARCIS (Netherlands)

    Jansen, PLM; Strautnieks, SS; Jacquemin, E; Hadchouel, M; Sokal, EM; Hooiveld, GJEJ; Koning, JH; De Jager-Krikken, A; Kuipers, F; Stellaard, F; Bijleveld, CMA; Gouw, A; Van Goor, H; Thompson, RJ; Muller, M

    1999-01-01

    Background & Aims: Progressive familiar intrahepatic cholestasis (PFIC), an inherited liver disease of childhood, is characterized by cholestasis and either normal or increased serum gamma-glutamyltransferase activity. Patients with normal gamma-glutamyltransferase activity have mutations of the FIC

  5. Angiotensin II Protects Primary Rat Hepatocytes against Bile Salt-Induced Apoptosis

    NARCIS (Netherlands)

    Karimian, Golnar; Buist-Homan, Manon; Mikus, Bojana; Henning, Robert H.; Faber, Klaas Nico; Moshage, Han

    2012-01-01

    Angiotensin II (AT-II) is a pro-fibrotic compound that acts via membrane-bound receptors (AT-1R/AT-2R) and thereby activates hepatic stellate cells (HSCs). AT-II receptor blockers (ARBs) are thus important candidates in the treatment of liver fibrosis. However, multiple case reports suggest that AT-

  6. Ubiquitin C-Terminal Hydrolase L1 in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jennifer Hurst-Kennedy

    2012-01-01

    Full Text Available Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1, aka PGP9.5 is an abundant, neuronal deubiquitinating enzyme that has also been suggested to possess E3 ubiquitin-protein ligase activity and/or stabilize ubiquitin monomers in vivo. Recent evidence implicates dysregulation of UCH-L1 in the pathogenesis and progression of human cancers. Although typically only expressed in neurons, high levels of UCH-L1 have been found in many nonneuronal tumors, including breast, colorectal, and pancreatic carcinomas. UCH-L1 has also been implicated in the regulation of metastasis and cell growth during the progression of nonsmall cell lung carcinoma, colorectal cancer, and lymphoma. Together these studies suggest UCH-L1 has a potent oncogenic role and drives tumor development. Conversely, others have observed promoter methylation-mediated silencing of UCH-L1 in certain tumor subtypes, suggesting a potential tumor suppressor role for UCH-L1. In this paper, we provide an overview of the evidence supporting the involvement of UCH-L1 in tumor development and discuss the potential mechanisms of action of UCH-L1 in oncogenesis.

  7. Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization.

    Science.gov (United States)

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-08-01

    Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have biotechnological potential in chiral chemistry. We report the cloning, purification, enzymatic activity, and conformational analysis of the TrEH gene from Trichoderma reesei strain QM9414 using circular dichroism spectroscopy. The EH gene has an open reading frame encoding a protein of 343 amino acid residues, resulting in a molecular mass of 38.2kDa. The enzyme presents an optimum pH of 7.2, and it is highly active at temperatures ranging from 23 to 50°C and thermally inactivated at 70°C (t1/2=7.4min). The Michaelis constants (Km) were 4.6mM for racemic substrate, 21.7mM for (R)-(+)-styrene oxide and 3.0mM for (S)-(-)-styrene oxide. The kcat/Km analysis indicated that TrEH is enantioselective and preferentially hydrolyzes (S)-(-)-styrene oxide. The conformational stability studies suggested that, despite the extreme conditions (high temperatures and extremely acid and basic pHs), TrEH is able to maintain a considerable part of its regular structures, including the preservation of the native cores in some cases. The recombinant protein showed enantioselectivity that was distinct from other fungus EHs, making this protein a potential biotechnological tool. PMID:27177457

  8. Soluble epoxide hydrolase deficiency ameliorates acute pancreatitis in mice.

    Science.gov (United States)

    Bettaieb, Ahmed; Morisseau, Christophe; Hammock, Bruce; Haj, Fawaz

    2014-10-01

    Acute pancreatitis (AP) is a frequent gastrointestinal disorder that causes significant morbidity and its incidence has been progressively increasing. AP starts as a local inflammation in the pancreas that often leads to systemic inflammatory response and complications. Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition in murine models has beneficial effects in inflammatory diseases, but its significance in AP remains unexplored. To investigate whether sEH may have a causal role in AP we utilized sEH knockout (KO) mice to determine the effects of sEH deficiency on ceruelin- and arginine-induced AP. sEH expression increased at the protein and messenger RNA levels, as well as sEH activity in the early phase of cerulein- and arginine-induced AP in mice. In addition, amylase and lipase levels were lower in cerulein-treated sEH KO mice compared with non-treated controls. Moreover, pancreatic mRNA and serum concentrations of the inflammatory cytokines IL-1ß and IL-6 were lower in sEH KO mice compared with controls. Further, sEH KO mice exhibited decreased cerulein- and arginine-induced NF-?B inflammatory response, MAPKs activation and decreased cell death. These findings demonstrate a novel role for sEH in the progression of cerulein- and arginine-induced AP. PMID:26461340

  9. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    Science.gov (United States)

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms. PMID:26280129

  10. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein–Coupled Bile Acid Receptors

    Science.gov (United States)

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.; Glass, Leslie L.; Schoonjans, Kristina; Holst, Jens J.

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein–coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1–secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca2+. In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca2+ response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber–mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms. PMID:26280129

  11. Mutational Characterization of the Bile Acid Receptor TGR5 in Primary Sclerosing Cholangitis

    NARCIS (Netherlands)

    Hov, Johannes R.; Keitel, Verena; Laerdahl, Jon K.; Spomer, Lina; Ellinghaus, Eva; ElSharawy, Abdou; Melum, Espen; Boberg, Kirsten M.; Manke, Thomas; Balschun, Tobias; Schramm, Christoph; Bergquist, Annika; Weismueller, Tobias; Gotthardt, Daniel; Rust, Christian; Henckaerts, Liesbet; Onnie, Clive M.; Weersma, Rinse K.; Sterneck, Martina; Teufel, Andreas; Runz, Heiko; Stiehl, Adolf; Ponsioen, Cyriel Y.; Wijmenga, Cisca; Vatn, Morten H.; Stokkers, Pieter C. F.; Vermeire, Severine; Mathew, Christopher G.; Lie, Benedicte A.; Beuers, Ulrich; Manns, Michael P.; Schreiber, Stefan; Schrumpf, Erik; Haeussinger, Dieter; Franke, Andre; Karlsen, Tom H.

    2010-01-01

    Background: TGR5, the G protein-coupled bile acid receptor 1 (GPBAR1), has been linked to inflammatory pathways as well as bile homeostasis, and could therefore be involved in primary sclerosing cholangitis (PSC) a chronic inflammatory bile duct disease. We aimed to extensively investigate TGR5 sequ

  12. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    Science.gov (United States)

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  13. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Mirshahi, Faridoddin [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Grider, John R. [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Murthy, Karnam S., E-mail: skarnam@vcu.edu [Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA (United States); Sanyal, Arun J., E-mail: asanyal@mcvh-vcu.edu [Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  14. Discovery of triterpenoids as reversible inhibitors of α/β-hydrolase domain containing 12 (ABHD12.

    Directory of Open Access Journals (Sweden)

    Teija Parkkari

    Full Text Available BACKGROUND: α/β-Hydrolase domain containing (ABHD12 is a recently discovered serine hydrolase that acts in vivo as a lysophospholipase for lysophosphatidylserine. Dysfunctional ABHD12 has been linked to the rare neurodegenerative disorder called PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, cataract. In vitro, ABHD12 has been implicated in the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG. Further studies on ABHD12 function are hampered as no selective inhibitor have been identified to date. In contrast to the situation with the other endocannabinoid hydrolases, ABHD12 has remained a challenging target for inhibitor development as no crystal structures are available to facilitate drug design. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the unexpected discovery that certain triterpene-based structures inhibit human ABHD12 hydrolase activity in a reversible manner, the best compounds showing submicromolar potency. Based on structure activity relationship (SAR data collected for 68 natural and synthetic triterpenoid structures, a pharmacophore model has been constructed. A pentacyclic triterpene backbone with carboxyl group at position 17, small hydrophobic substituent at the position 4, hydrogen bond donor or acceptor at position 3 accompanied with four axial methyl substituents was found crucial for ABHD12 inhibitor activity. Although the triterpenoids typically may have multiple protein targets, we witnessed unprecedented selectivity for ABHD12 among the metabolic serine hydrolases, as activity-based protein profiling of mouse brain membrane proteome indicated that the representative ABHD12 inhibitors did not inhibit other serine hydrolases, nor did they target cannabinoid receptors. CONCLUSIONS/SIGNIFICANCE: We have identified reversibly-acting triterpene-based inhibitors that show remarkable selectivity for ABHD12 over other metabolic serine hydrolases. Based on SAR data, we have constructed the first

  15. Discovery of Triterpenoids as Reversible Inhibitors of α/β-hydrolase Domain Containing 12 (ABHD12)

    Science.gov (United States)

    Parkkari, Teija; Haavikko, Raisa; Laitinen, Tuomo; Navia-Paldanius, Dina; Rytilahti, Roosa; Vaara, Miia; Lehtonen, Marko; Alakurtti, Sami; Yli-Kauhaluoma, Jari; Nevalainen, Tapio; Savinainen, Juha R.; Laitinen, Jarmo T.

    2014-01-01

    Background α/β-hydrolase domain containing (ABHD)12 is a recently discovered serine hydrolase that acts in vivo as a lysophospholipase for lysophosphatidylserine. Dysfunctional ABHD12 has been linked to the rare neurodegenerative disorder called PHARC (polyneuropathy, hearing loss, ataxia, retinosis pigmentosa, cataract). In vitro, ABHD12 has been implicated in the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG). Further studies on ABHD12 function are hampered as no selective inhibitor have been identified to date. In contrast to the situation with the other endocannabinoid hydrolases, ABHD12 has remained a challenging target for inhibitor development as no crystal structures are available to facilitate drug design. Methodology/Principal Findings Here we report the unexpected discovery that certain triterpene-based structures inhibit human ABHD12 hydrolase activity in a reversible manner, the best compounds showing submicromolar potency. Based on structure activity relationship (SAR) data collected for 68 natural and synthetic triterpenoid structures, a pharmacophore model has been constructed. A pentacyclic triterpene backbone with carboxyl group at position 17, small hydrophobic substituent at the position 4, hydrogen bond donor or acceptor at position 3 accompanied with four axial methyl substituents was found crucial for ABHD12 inhibitor activity. Although the triterpenoids typically may have multiple protein targets, we witnessed unprecedented selectivity for ABHD12 among the metabolic serine hydrolases, as activity-based protein profiling of mouse brain membrane proteome indicated that the representative ABHD12 inhibitors did not inhibit other serine hydrolases, nor did they target cannabinoid receptors. Conclusions/Significance We have identified reversibly-acting triterpene-based inhibitors that show remarkable selectivity for ABHD12 over other metabolic serine hydrolases. Based on SAR data, we have constructed the first pharmacophore

  16. Percutaneous lithotripsy for removing difficult bile duct stones using endoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, See Hyung; Sohn, Chul Ho; Kim, Young Hwan [Dongsan Medical Center, Keimyung University College of Medicine, Daegu (Korea, Republic of)

    2008-03-15

    To describe efficacy of percutaneous lithotripsy for removing difficult bile duct stones using endoscopy. A total of 88 patients with difficulties for the removal of bile duct stones using endoscopy (an impacted stone, stone size > 15 mm, intrahepatic duct (IHD) stone, stone size to bile duct diameter ratio > 1.0), were enrolled in this study. A 12 Fr sheath was inserted through the percutaneous transhepatic biliary drainage (PTBD) tract, and then nitrol stone baskets and a 0.035' snare wire were used to capture, fragment and remove the stones. The technical and clinical success rates were analyzed, together with an analysis of any complications. The overall technical success rate of stone removal was achieved in 79 of 88 patients (89.8%). In five of nine patients with failed stone removal, small residual IHD stones were noted on a cholangiogram. Even if stone removal failed in these cases, cholangitic symptoms were improved and the drainage catheter was successfully removed. Therefore, clinical success was achieved in 84 of 88 patients (95.5%). There were no significant procedure-related complications, except for sepsis in one case. Billiary stone removal using the stone basket and guide-wire snare technique through the PTBD tract is a safe and effective procedure that can be used as a primary method in patients with difficulties for the removal of bile duct stones using endoscopy.

  17. Effect of bile acid sequestrants on glycaemic control

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David Peick; Mikkelsen, Kristian Hallundbæk;

    2012-01-01

    In addition to the lipid-lowering effect of bile acid sequestrants (BASs), they also lower blood glucose and, therefore, could be beneficial in the treatment of patients with type 2 diabetes mellitus (T2DM). Three oral BASs are approved by the US Food and Drug Administration (FDA) for the treatment...

  18. Genetics Home Reference: congenital bile acid synthesis defect type 1

    Science.gov (United States)

    ... 88(4):1833-41. Citation on PubMed Clayton PT. Disorders of bile acid synthesis. J Inherit Metab ... 13. Review. Citation on PubMed Subramaniam P, Clayton PT, Portmann BC, Mieli-Vergani G, Hadzić N. Variable ...

  19. Bile acid and immunosuppressive therapy in primary biliary cirrhosis

    NARCIS (Netherlands)

    F.H.J. Wolfhagen (Franciscus)

    1995-01-01

    textabstractPrimary Biliary Cirrhosis (PBC) is a chronic, cholestatic liver disease characterized by non-suppurative destruction of interlobular and septal bile ducts, with subsequent liver damage and eventually development of cirrhosis. The disease is relatively rare with an estimated annual incide

  20. Bile acid malabsorption in patients with chronic diarrhoea

    DEFF Research Database (Denmark)

    Wildt, S; Nørby Rasmussen, S; Lysgård Madsen, Jan;

    2003-01-01

    Bile acid malabsorption (BAM), a cause of chronic diarrhoea, can be diagnosed by the SeHCAT test. The purpose of this study was to evaluate the usefulness of SeHCAT testing by assessing the extent of BAM and describing the clinical characteristics in a group of patients with chronic diarrhoea...

  1. Ventajas y desventajas del bilingüismo

    Directory of Open Access Journals (Sweden)

    Alfredo Ardila

    2012-01-01

    Full Text Available Las personas bilingües tienen que coordinar dos sistemas lingüísticos. Esto implica algunas ganancias, pero también un costo. Las ganancias del bilingüismo incluyen: un incremento de la flexibilidad mental; una superioridad en el desarrollo de aquellas funciones cognitivas relacionadas con la atención y la inhibición; el uso de una cantidad mayor de estrategias cognoscitivas en la solución de problemas; un aumento de la llamada conciencia metalingüística; y una habilidad mayor de comunicación. Entre los costos del bilingüismo se menciona: cierto retraso aparente en la adquisición del lenguaje; una interferencia entre ambos sistemas fonológicos, léxicos y gramaticales; y un posible decremento en el vocabulario en las dos lenguas. Se concluye que existe una gran variabilidad de experiencias lingüísticas en las personas bilingües y un gran número de variables afecta su ejecución en diferentes tareas intelectuales.

  2. The behaviour of salt and salt caverns

    NARCIS (Netherlands)

    Fokker, P.A.

    1995-01-01

    Salts are mined for both storage and extraction purposes, either via dry or solution mining techniques. For operational, environmental and geological purposes, it is important to understand and predict the in situ behaviour of salt, in particular the creep and strength characteristics. A micro-mecha

  3. PySALT: SALT science pipeline

    Science.gov (United States)

    Crawford, S. M.; Still, M.; Schellart, P.; Balona, L.; Buckley, D. A. H.; Gulbis, A. A. S.; Kniazev, A.; Kotze, M.; Loaring, N.; Nordsieck, K. H.; Pickering, T. E.; Potter, S.; Romero Colmenero, E.; Vaisanen, P.; Wiliams, T.; Zietsman, E.

    2012-07-01

    The PySALT user package contains the primary reduction and analysis software tools for the SALT telescope. Currently, these tools include basic data reductions for RSS and SALTICAM in both imaging, spectroscopic, and slot modes. Basic analysis software for slot mode data is also provided. These tools are primarily written in python/PyRAF with some additional IRAF code.

  4. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L.; Dorko, Kenneth [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Clarke, Joanna I. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Gholami, Parviz [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Li, Feng [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS (United States); Fan, Fang [Department of Pathology, University of Kansas Medical Center, Kansas City, KS (United States); Jenkins, Rosalind E.; Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Hagenbuch, Bruno [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Olyaee, Mojtaba [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  5. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    International Nuclear Information System (INIS)

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  6. A prospective study of faecal bile acids and colorectal cancer.

    Science.gov (United States)

    Haines, A; Hill, M J; Thompson, M H; Owen, R W; Williams, R E; Meade, T W; Wilkes, H; Griffin, M

    2000-10-01

    A prospective study of 7079 people aged 45-74 recruited through general practices in South Wales, Herefordshire and Edinburgh, Scotland was undertaken to test the hypothesis that faecal bile acids are implicated in the causation of large bowel cancer. The population was recruited between 1974 and 1980 and the response rate for stool collection was 67%. Bile acid analyses were performed on those cases that presented by 1990. It was decided in advance to examine the hypothesis separately for left- and right-sided bowel cancer because of known epidemiological differences between the two sites and to exclude the cases presenting within 2 years of the stool sample from the analyses because the cancer could have been present at recruitment and might have possibly affected faecal bile acid concentrations. Each case (n = 51 left-sided and 8 right-sided) was matched with three controls by age (within 5 years), sex, place of residence and time of providing the stool sample (within 3 months). Statistical analyses using conditional logistic regression showed no significant differences between the left-sided cases and controls for any of the concentrations of individual bile acids, total bile acid concentrations, faecal neutral steroids, percentage bacterial conversion and the ratio of lithocholic acid to deoxycholic acid concentrations. There was a statistically significant (P = 0.021) association of the presence of chenodeoxycholic acid (5/8 samples) in the right-sided cases compared with the controls (3/23), odds ratio 6.26 (95% confidence interval 1.19, 32.84). A high proportion of primary bile acids has also been found in other studies of patients with a genetic predisposition to proximal bowel cancer, however this pattern may also occur in low risk groups, such as Indian vegetarians, suggesting that they may predispose to right-sided bowel cancer only in the presence of other, as yet unknown factors. If bile acids are involved in the causation of large bowel cancer, they

  7. Molten salt electrolyte separator

    Science.gov (United States)

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  8. Current perspective in the treatment of bile duct injuries

    Directory of Open Access Journals (Sweden)

    Juan Jos and eacute; Granados-Romero

    2016-03-01

    Full Text Available The laparoscopic cholecystectomy is considered the gold standard for the treatment of benign gallbladder disease, which is associated with an increased incidence of biliary injuries. These types of injuries are multicausal, and anatomical variations or anatomical perception errors are the most common risk factors. The objective of this study is to describe the evolution in the management of bile duct injuries and actual, diagnostic tools, incidence, prognosis and treatment. A literature research about diagnosis and treatment of iatrogenic bile duct injuries as well as their impact on the incidence of morbidity and mortality, based on a 30-year period, was performed on Medline, Cochrane, Embase, MedScape and PubMed database, for all studies that met the eligibility criteria. A thorough quality assessment of all included studies was performed. Synthesis of the results was achieved by narrative review. The bile duct injury is a complication that requires a complex therapy and multidisciplinary management. Reconstruction and treatment techniques have been evolving. The selection of adequate treatment will impact on the patient and acute;s quality of life. The results of the existing studies reporting on iatrogenic bile duct injuries are useful; because the iatrogenic bile duct injuries are complex alterations and constitute one of the most serious complications of a cholecystectomy and require a comprehensive approach, immediate repair, proper drainage and timely referral to adequate treatment to improve long-term prognosis. According to the literature review, currently there better treatments such as absorbable prosthesis, which improve the prognosis and patient and acute;s quality of life, and represent less risk of complications in short/long term. [Int J Res Med Sci 2016; 4(3.000: 677-684

  9. Chlamydia trachomatis CT771 (nudH) is an asymmetric Ap4A hydrolase

    Science.gov (United States)

    Barta, Michael L.; Lovell, Scott; Sinclair, Amy N.; Battaile, Kevin P.; Hefty, P. Scott

    2014-01-01

    Asymmetric diadenosine 5′,5′″-P1,P4-tetraphosphate (Ap4A) hydrolases are members of the Nudix superfamily that asymmetrically cleave the metabolite Ap4A into ATP and AMP while facilitating homeostasis. The obligate intracellular mammalian pathogen Chlamydia trachomatis possesses a single Nudix family protein, CT771. As pathogens that rely on a host for replication and dissemination typically have one or zero Nudix family proteins, this suggests that CT771 could be critical for chlamydial biology and pathogenesis. We identified orthologs to CT771 within environmental Chlamydiales that share active site residues suggesting a common function. Crystal structures of both apo- and ligand-bound CT771 were determined to 2.6 Å and 1.9 Å resolution, respectively. The structure of CT771 shows a αβα-sandwich motif with many conserved elements lining the putative Nudix active site. Numerous aspects of the ligand-bound CT771 structure mirror those observed in the ligand-bound structure of the Ap4A hydrolase from Caenorhabditis elegans. These structures represent only the second Ap4A hydrolase enzyme member determined from eubacteria and suggest that mammalian and bacterial Ap4A hydrolases might be more similar than previously thought. The aforementioned structural similarities, in tandem with molecular docking, guided the enzymatic characterization of CT771. Together, these studies provide the molecular details for substrate binding and specificity, supporting the analysis that CT771 is an Ap4A hydrolase (nudH). PMID:24354275

  10. Conformational diversity and enantioconvergence in potato epoxide hydrolase 1.

    Science.gov (United States)

    Bauer, P; Carlsson, Å Janfalk; Amrein, B A; Dobritzsch, D; Widersten, M; Kamerlin, S C L

    2016-06-28

    Potato epoxide hydrolase 1 (StEH1) is a biocatalytically important enzyme that exhibits rich enantio- and regioselectivity in the hydrolysis of chiral epoxide substrates. In particular, StEH1 has been demonstrated to enantioconvergently hydrolyze racemic mixes of styrene oxide (SO) to yield (R)-1-phenylethanediol. This work combines computational, crystallographic and biochemical analyses to understand both the origins of the enantioconvergent behavior of the wild-type enzyme, as well as shifts in activities and substrate binding preferences in an engineered StEH1 variant, R-C1B1, which contains four active site substitutions (W106L, L109Y, V141K and I155V). Our calculations are able to reproduce both the enantio- and regioselectivities of StEH1, and demonstrate a clear link between different substrate binding modes and the corresponding selectivity, with the preferred binding modes being shifted between the wild-type enzyme and the R-C1B1 variant. Additionally, we demonstrate that the observed changes in selectivity and the corresponding enantioconvergent behavior are due to a combination of steric and electrostatic effects that modulate both the accessibility of the different carbon atoms to the nucleophilic side chain of D105, as well as the interactions between the substrate and protein amino acid side chains and active site water molecules. Being able to computationally predict such subtle effects for different substrate enantiomers, as well as to understand their origin and how they are affected by mutations, is an important advance towards the computational design of improved biocatalysts for enantioselective synthesis. PMID:27049844

  11. Low-salt diet

    Science.gov (United States)

    ... Some have a lot of salt in them. Home water softeners add salt to water. If you have one, limit how much tap water you drink. Drink bottled water instead. Ask your doctor if a salt substitute is safe for you. Many contain a lot ...

  12. A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes

    NARCIS (Netherlands)

    Sleator, R.D.; Wemekamp-Kamphuis, H.H.; Gahan, C.G.M.; Abee, T.; Hill, C.

    2005-01-01

    The ability to colonize the gall bladder has recently been shown to be an important feature of virulent Listeria monocytogenes (J. Hardy, K. P. Francis, M. DeBoer, P. Chu, K. Gibbs, C. H. Contag. Science 303: 851853, 2004). We suggest that the cytotoxic effects of bile may be increased upon release

  13. Bile acid derivatives as ligands of the farnesoid x receptor: molecular determinants for bile acid binding and receptor modulation.

    Science.gov (United States)

    Gioiello, Antimo; Cerra, Bruno; Mostarda, Serena; Guercini, Chiara; Pellicciari, Roberto; Macchiarulo, Antonio

    2014-01-01

    Bile acids are a peculiar class of steroidal compounds that never cease to amaze. From being simple detergents with a primary role in aiding the absorption of fats and fat-soluble vitamins, bile acids are now widely considered as crucial hormones endowed with genomic and non-genomic functions that are mediated by their interaction with several proteins including the nuclear receptor Farnesoid X Receptor (FXR). Taking advantages of the peculiar properties of bile acids in interacting with the FXR receptor, several biliary derivatives have been synthesized and tested as FXR ligands. The availability of these compounds has contributed to characterize the receptor from a structural, patho-physiological and therapeutic standpoint. Among these, obeticholic acid is a first-in-class FXR agonist that is demonstrating hepatoprotective effects upon FXR activation in patients with liver diseases such as primary biliary cirrhosis and nonalcoholic steatohepatitis. This review provides an historical overview of the rationale behind the discovery of obeticholic acid and chemical tools generated to depict the molecular features and bio-pharmacological relevance of the FXR receptor, as well as to summarize structure-activity relationships of bile acid-based FXR ligands so far reported. PMID:25388535

  14. Impact of Dry Solids and Bile Acid Concentrations on Bile Acid Binding Capacity of Extruded Oat Cereals

    Science.gov (United States)

    Extruded breakfast cereals (EBC), processed from two oat lines, N979-5-2-4 (N979) and ‘Jim’, with beta-glucan concentrations of 8.7 and 4.9%, respectively, were used to determine the impact of dry solids (DS) and bile acid (BA) concentrations on in vitro BA binding efficiency. A full fractional fact...

  15. Detection of markers of hepatitis viral infection in the tissue of bile duct carcinoma

    Institute of Scientific and Technical Information of China (English)

    LIU Hou-bao; QIAN Zhen-yu; WANG Bing-sheng; TONG Sai-xiong

    2008-01-01

    @@ Hepatitis B virus (HBV) is an admitted oncogenic virus. Many epidemiological and molecular biological studies have demonstrated that chronic infection with HBV is a major risk factor associated with the development of hepatocellular carcinoma (HCC) and intrahepatic bile duct cancer.1-4 Compared with hepatocytes and intrahepatic bile duct epithelial cells,extrahepatic bile duct epithelial cells have autoploid in embryogenesis,continuity in anatomy and a similar internal environment.The question arises whether extrahepatic bile duct epithelial cells can receive HBV infection or not? The role of hepatitis viral infection in the pathogenesis of bile duct carcinoma has not yet been clarified.although a causative relationship between HBV or HCV infection and extrahepatic bile duct carcinoma has been reported in the literature.5,6 In this study,we focused on the evidence of hepatitis viral infection in tissue of bile duct carcinoma.

  16. Boldine enhances bile production in rats via osmotic and Farnesoid X receptor dependent mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cermanova, Jolana [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Kadova, Zuzana [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove (Czech Republic); Zagorova, Marie [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Hroch, Milos [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Tomsik, Pavel [Department of Medical Biochemistry, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Nachtigal, Petr; Kudlackova, Zdenka [Department of Biological and Medical Sciences, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove (Czech Republic); Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek [Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove (Czech Republic); Laho, Tomas [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic); Micuda, Stanislav, E-mail: micuda@lfhk.cuni.cz [Department of Pharmacology, Charles University in Prague, Faculty of Medicine in Hradec Kralove (Czech Republic)

    2015-05-15

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. - Highlights: • Boldine may increase bile production by direct as well as indirect mechanisms. • Biliary concentrations of boldine above 10 μM directly stimulate bile production. • Long-term oral boldine administration increases bile acid (BA) biliary secretion. • Boldine

  17. Boldine enhances bile production in rats via osmotic and Farnesoid X receptor dependent mechanisms

    International Nuclear Information System (INIS)

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. - Highlights: • Boldine may increase bile production by direct as well as indirect mechanisms. • Biliary concentrations of boldine above 10 μM directly stimulate bile production. • Long-term oral boldine administration increases bile acid (BA) biliary secretion. • Boldine

  18. Mucin and phospholipids determine viscosity of gallbladder bile in-patients with gallstones

    Institute of Scientific and Technical Information of China (English)

    Dieter Jungst; Anna Niemeyer; Iris Muller; Benedikta Zundt; Gunther Meyer; Martin Wilhelmi; Reginald del Pozo

    2001-01-01

    AIM An increased viscosity of gallbladder bile has been considered an important factor in the pathogenesis of gallstone disease. Besides lipids and proteins, mucin has been suggested to affect the viscosity of bile. To further clarify these issues we compared mucin, protein and the lipid components of hepatic and gallbladder bile and its viscosity in patients with gallstones.METHODS Viscosity of bile ( mpa. s ) wasmeasured using rotation viscosimetry in regard to the non-Newtonian property of bile at law shear rates.RESULTS Biliary viscosity was markedly higher in gallbladder bile of patients with cholesterol (5.00 ± 0.60 mpa. s, mean ± SEM, n --28) and mixed stones (3.50±0.68 mPa. s; n =8) compared to hepatic bile (0.92 ± 0.06 mpa. s,n -6). A positive correlation between mucin and viscosity was found in gallbladder biles (r=0.65; P<0.001) but not in hepatic biles. The addition of physiologic and supraphysiologic amounts of mucin to gallbladder bile resulted in a dose dependent non linear increase of its viscosity. A positive correlation was determined between phospholipid concentration and viscosity (r = 0.34, P<0.005) in gallbladder biles. However, no correlation was found between total protein or the other lipid concentrations and viscosity in both gallbladder and hepatic biles.CONCLUSION The viscosity of gallbladder bile is markedly higher than that of hepatic bile in patients with gallstones. The concentration of mucin is the major determinant of biliary viscosity and may contribute by this mechanism to the role of mucin in the pathogenesis of gallstones.

  19. Structure-guided engineering of molinate hydrolase for the degradation of thiocarbamate pesticides.

    Directory of Open Access Journals (Sweden)

    José P Leite

    Full Text Available Molinate is a recalcitrant thiocarbamate used to control grass weeds in rice fields. The recently described molinate hydrolase, from Gulosibacter molinativorax ON4T, plays a key role in the only known molinate degradation pathway ending in the formation of innocuous compounds. Here we report the crystal structure of recombinant molinate hydrolase at 2.27 Å. The structure reveals a homotetramer with a single mononuclear metal-dependent active site per monomer. The active site architecture shows similarities with other amidohydrolases and enables us to propose a general acid-base catalysis mechanism for molinate hydrolysis. Molinate hydrolase is unable to degrade bulkier thiocarbamate pesticides such as thiobencarb which is used mostly in rice crops. Using a structural-based approach, we were able to generate a mutant (Arg187Ala that efficiently degrades thiobencarb. The engineered enzyme is suitable for the development of a broader thiocarbamate bioremediation system.

  20. A novel α-L-arabinofuranosidase of family 43 glycoside hydrolase (Ct43Araf from Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Shadab Ahmed

    Full Text Available The study describes a comparative analysis of biochemical, structural and functional properties of two recombinant derivatives from Clostridium thermocellum ATCC 27405 belonging to family 43 glycoside hydrolase. The family 43 glycoside hydrolase encoding α-L-arabinofuranosidase (Ct43Araf displayed an N-terminal catalytic module CtGH43 (903 bp followed by two carbohydrate binding modules CtCBM6A (405 bp and CtCBM6B (402 bp towards the C-terminal. Ct43Araf and its truncated derivative CtGH43 were cloned in pET-vectors, expressed in Escherichia coli and functionally characterized. The recombinant proteins displayed molecular sizes of 63 kDa (Ct43Araf and 34 kDa (CtGH43 on SDS-PAGE analysis. Ct43Araf and CtGH43 showed optimal enzyme activities at pH 5.7 and 5.4 and the optimal temperature for both was 50°C. Ct43Araf and CtGH43 showed maximum activity with rye arabinoxylan 4.7 Umg(-1 and 5.0 Umg(-1, respectively, which increased by more than 2-fold in presence of Ca(2+ and Mg(2+ salts. This indicated that the presence of CBMs (CtCBM6A and CtCBM6B did not have any effect on the enzyme activity. The thin layer chromatography and high pressure anion exchange chromatography analysis of Ct43Araf hydrolysed arabinoxylans (rye and wheat and oat spelt xylan confirmed the release of L-arabinose. This is the first report of α-L-arabinofuranosidase from C. thermocellum having the capacity to degrade both p-nitrophenol-α-L-arabinofuranoside and p-nitrophenol-α-L-arabinopyranoside. The protein melting curves of Ct43Araf and CtGH43 demonstrated that CtGH43 and CBMs melt independently. The presence of Ca(2+ ions imparted thermal stability to both the enzymes. The circular dichroism analysis of CtGH43 showed 48% β-sheets, 49% random coils but only 3% α-helices.

  1. Oral administration of Bifidobacterim bifidum for modulating microflora, acid and bile resistance, and physiological indices in mice.

    Science.gov (United States)

    Wang, Bao-Gui; Xu, Hai-Bo; Wei, Hua; Zeng, Zhe-Ling; Xu, Feng

    2015-02-01

    Bifidobacteria are generally acknowledged as major gut microflora used as probiotics, which promote human health. In this study, the effects of the administration of Bifidobacterim bifidum on modulating gastrointestinal (GI) tract microflora, acid and bile resistance, and physiological indices in BALB/c mice were investigated. Results showed that B. bifidum can significantly improve the ecosystem of the GI tract by increasing the amount of probiotics and reducing the populations of pathogenic bacteria, as measured by plate count and real-time PCR. After exposure to simulated GI tract conditions, the growth of gut microflora in the B. bifidum group was higher than that in the control group when incubated for 12 h in MRS or nutrient broth adjusted to pH 2.0 or 3.0 or in the presence of a concentration of bile salt (0.45% m/v). The blood biochemical index was examined, and the physiological effect of the cell-free extract of gut microflora was evaluated by measuring the activity of various enzymes, including α-glucosidases, esterase, and lactate dehydrogenase. This study suggested that a B. bifidum strain can stabilize blood sugar, lower cholesterol levels in serum, and improve metabolic activity. Moreover, B. bifidum was a promising enhancer of microbial diversity in mouse intestine and played a vital role in human physiological processes, which can benefit the health of a host.

  2. Sequential changes of lamellar body hydrolases during ozone-induced alveolar injury and repair

    Energy Technology Data Exchange (ETDEWEB)

    Glew, R.H.; Basu, A.; Shelley, S.A.; Paterson, J.F.; Diven, W.F.; Montgomery, M.R.; Balis, J.U.

    1989-05-01

    Lamellar body hydrolases in acutely damaged and regenerating type II cells were determined using an established rat model with well-defined stages of bronchiolo-alveolar injury and repair. Lamellar bodies were isolated from control and ozone-exposed (3.0 ppm for 8 hours) adult male rats by sucrose density gradient centrifugation and analyzed for their content of six different lysosomal hydrolases. Immediately after 3 ppm ozone exposure (zero-time) there was a significant decrease in specific enzyme activity (units/mg protein) of five lamellar body hydrolases and these activities remained depressed for at least 24 hours after exposure. In addition, total enzyme activity (units/lung) was reduced at zero-time for beta-hexosaminidase and at 24 hours postexposure for alpha-mannosidase and alpha-L-fucosidase. During the reparative and recovery stages (48 to 96 hours) the hydrolases demonstrated variable elevations in both specific activity and total activity (units/lung). Characteristically, beta-hexosaminidase and beta-galactosidase reached supranormal values at 96 hours, whereas alpha-mannosidase remained below normal levels through the recovery stage. Moreover, at 24 to 48 hours the lamellar body fraction demonstrated prominent enzyme depletion relative to the expanding pool of stored surfactant. It is concluded that acute ozone stress initiates the development of hydrolase deficiency within the lamellar bodies of injured and regenerating type II cells. This deficiency state is followed by asynchronous lamellar body hydrolase elevations that reflect distinct patterns of response rather than uniform return to normal condition. The lysosomal enzyme changes of lamellar bodies may be pathogenetically linked to the development of associated alterations in the storage and secretion of surfactant.

  3. Peptidoglycan Hydrolases of Local Lactic Acid Bacteria from Kazakh Traditional Food

    Directory of Open Access Journals (Sweden)

    Serik Shaikhin

    2014-01-01

    Full Text Available Introduction: Peptidoglycan (PG is a major component of the cell wall of Gram-positive bacteria and is essential for maintaining the integrity of the bacterial cell and its shape. The bacteria synthesize PG hydrolases, which are capable of cleaving the covalent bonds of PG. They also play an important role in modeling PG, which is required for bacterial growth and division. In an era of increasing antibiotic-resistant pathogens, PG hydrolases that destroy these important structures of the cell wall act as a potential source of new antimicrobials. The aim of this study is to identify the main PG hydrolases of local lactic acid bacteria isolated from traditional foods that enhance probiotic activity of a biological preparation. Methods. Lactococcus lactis 17А and Lactococcus garvieae 19А were isolated from the traditional sausage-like meat product called kazy. They were isolated according to standards methods of microbiology. Genetic identification of the isolates were tested by determining the nucleotide sequences of 16S rDNA. The Republican collection of microorganisms took strains of Lactobacillus casei subsp. Rhamnosus 13-P, L. delbrueckii subsp. lactis CG-1 B-RKM 0044 from cheese, Lactobacillus casei subsp. casei B-RKM 0202 from homemade butter. They used the standard technique of renaturating polyacrylamide gel electrophoresis to detect PG hydrolases activity. Results. According to the profiles of PG hydrolase activity on zymograms, the enzymes of Lactococci 17A and 19A in kazy are similar in electrophoretic mobility to major autolysin AcmA, while the lactobacilli of industrial and home-made dairy products have enzymes similar to extracellular proteins p40 and p75, which have probiotic activity. Conclusions. Use of peptidoglycan hydrolases seems to be an interesting approach in the fight against multi-drug resistant strains of bacteria and could be a valuable tool for the treatment of diseases caused by these microorganisms in Kazakhstan.

  4. Bile acid metabolism by fresh human colonic contents: a comparison of caecal versus faecal samples

    Science.gov (United States)

    Thomas, L; Veysey, M; French, G; Hylemon, P; Murphy, G; Dowling, R

    2001-01-01

    BACKGROUND—Deoxycholic acid (DCA), implicated in the pathogenesis of gall stones and colorectal cancer, is mainly formed by bacterial deconjugation (cholylglycine hydrolase (CGH)) and 7α-dehydroxylation (7α-dehydroxylase (7α-DH)) of conjugated cholic acid (CA) in the caecum/proximal colon. Despite this, most previous studies of CGH and 7α-DH have been in faeces rather than in caecal contents. In bacteria, CA increases 7α-DH activity by substrate-enzyme induction but little is known about CA concentrations or CA/7α-DH induction in the human colon.
AIMS AND METHODS—Therefore, in fresh "faeces", and in caecal aspirates obtained during colonoscopy from 20 patients, we: (i) compared the activities of CGH and 7α-DH, (ii) measured 7α-DH in patients with "low" and "high" percentages of DCA in fasting serum (less than and greater than the median), (iii) studied CA concentrations in the right and left halves of the colon, and examined the relationships between (iv) 7α-DH activity and CA concentration in caecal samples (evidence of substrate-enzyme induction), and (v) 7α-DH and per cent DCA in serum.
RESULTS—Although mean CGH activity in the proximal colon (18.3 (SEM 4.40) ×10−2 U/mg protein) was comparable with that in "faeces" (16.0 (4.10) ×10− 2 U/mg protein) , mean 7α-DH in the caecum (8.54 (1.08) ×10-4 U/mg protein) was higher (p<0.05) than that in the left colon (5.72 (0.85) ×10-4 U/mg protein). At both sites, 7α-DH was significantly greater in the "high" than in the "low" serum DCA subgroups. CA concentrations in the right colon (0.94 (0.08) µmol/ml) were higher than those in the left (0.09 (0.03) µmol/ml; p<0.001) while in the caecum (but not in the faeces) there was a weak (r=0.58) but significant (p<0.005) linear relationship between 7α-DH and CA concentration. At both sites, 7α-DH was linearly related (p<0.005) to per cent DCA in serum.
INTERPRETATION/SUMMARY—These results: (i) confirm that there are marked regional

  5. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry.

    Science.gov (United States)

    Sathya, T A; Khan, Mahejibin

    2014-11-01

    Traditional use of enzymes for food processing and production of food ingredients resulted in fast-growing enzyme industries world over. The advances in technologies gave rise to exploring newer enzymes and/or modified enzymes for specific application. Search for novel enzymes that can augment catalytic efficiency and advances in molecular biology techniques including sequencing has targeted microbial diversity through metagenomic approaches for sourcing enzymes from difficult to culture organisms. Such mining studies have received more attention in characterizing hydrolases, their prevalence, broad substrate specificities, stability, and independence of cofactors. The focus on glycosyl hydrolases from metagenome for their application in food sector is reviewed. PMID:25311940

  6. Isolation, purification and characterization of a new organphosphorus hydrolase OPHC2

    Institute of Scientific and Technical Information of China (English)

    WU Ningfeng; DENG Minjie; SHI Xiuyun; LIANG Guoyi; YAO Bin; FAN Yunliu

    2004-01-01

    A bacterium with the capability of degrading organphosphorus, identified as Pseudomonas pseudoalcaligenes, is isolated from OP-treated soil. The organphosphorus hydrolase OPHC2 from this bacterium has been purified and characterized. OPHC2 has optimum activity for the reaction at 65℃ and pH 9.0 with methyl parathion as a substrate, it also shows good thermal and pH stability. Most metal ions and chemicals have no effect on the activity of OPHC2. The analyses of nucleotide sequence encoding OPHC2 and amino acid sequence of OPHC2 show that there are lower homologies with those of organphosphorus hydrolase reported in GenBank.

  7. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    Science.gov (United States)

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781

  8. Diversity of glycosyl hydrolase enzymes from metagenome and their application in food industry.

    Science.gov (United States)

    Sathya, T A; Khan, Mahejibin

    2014-11-01

    Traditional use of enzymes for food processing and production of food ingredients resulted in fast-growing enzyme industries world over. The advances in technologies gave rise to exploring newer enzymes and/or modified enzymes for specific application. Search for novel enzymes that can augment catalytic efficiency and advances in molecular biology techniques including sequencing has targeted microbial diversity through metagenomic approaches for sourcing enzymes from difficult to culture organisms. Such mining studies have received more attention in characterizing hydrolases, their prevalence, broad substrate specificities, stability, and independence of cofactors. The focus on glycosyl hydrolases from metagenome for their application in food sector is reviewed.

  9. Development of monoclonal antibodies to human microsomal epoxide hydrolase and analysis of “preneoplastic antigen”-like molecules

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongying [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Yoshimura, Kazunori [Department of Physiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Kobayashi, Nobuharu; Sugiyama, Kazuo [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan); Sawada, Jun-ichi; Saito, Yoshiro [Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501 (Japan); Morisseau, Christophe; Hammock, Bruce D. [Department of Entomology and Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616-8584 (United States); Akatsuka, Toshitaka, E-mail: akatsuka@saitama-med.ac.jp [Department of Microbiology, Faculty of Medicine, Saitama Medical University, Moroyama-cho, Iruma-gun, Saitama 350-0495 (Japan)

    2012-04-01

    Microsomal epoxide hydrolase (mEH) is a drug metabolizing enzyme which resides on the endoplasmic reticulum (ER) membrane and catalyzes the hydration of reactive epoxide intermediates that are formed by cytochrome P450s. mEH is also thought to have a role in bile acid transport on the plasma membrane of hepatocytes. It is speculated that efficient execution of such multiple functions is secured by its orientation and association with cytochrome P450 enzymes on the ER membrane and formation of a multiple transport system on the plasma membrane. In certain disease status, mEH loses its association with the membrane and can be detected as distinct antigens in the cytosol of preneoplastic foci of liver (preneoplastic antigen), in the serum in association with hepatitis C virus infection (AN antigen), or in some brain tumors. To analyze the antigenic structures of mEH in physiological and pathological conditions, we developed monoclonal antibodies against different portions of mEH. Five different kinds of antibodies were obtained: three, anti-N-terminal portions; one anti-C-terminal; and one, anti-conformational epitope. By combining these antibodies, we developed antigen detection methods which are specific to either the membrane-bound form or the linearized form of mEH. These methods detected mEH in the culture medium released from a hepatocellular carcinoma cell line and a glioblastoma cell line, which was found to be a multimolecular complex with a unique antigenic structure different from that of the membrane-bound form of mEH. These antibodies and antigen detection methods may be useful to study pathological changes of mEH in various human diseases. -- Highlights: ► Monoclonal antibodies against different portions of mEH were developed. ► They discriminate between the membrane-bound and the linearized forms of mEH. ► We analyze the antigenic structure of the altered form of mEH in tumor cells. ► Preneoplastic antigen is a multimolecular complex of mEH with

  10. Conformational Variability of Organophosphorus Hydrolase upon Soman and Paraoxon Binding

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Diego Eb; Lins, Roberto D.; Pascutti, Pedro G.; Lei, Chenghong; Soares, Thereza A.

    2011-12-31

    The bacterial enzyme organophosphorus hydrolase (OPH) exhibits both catalytic and substrate promiscuity. It hydrolyzes bonds in a variety of phosphotriester (P-O), phosphonothioate (P-S), phosphofluoridate (P-F) and phosphonocyanate (F-CN) compounds. However, its catalytic efficiency varies markedly for different substrates, limiting the broad-range application of OPH as catalyst in the bioremediation of pesticides and chemical war agents. In the present study, pK{sub a} calculations and multiple explicit-solvent molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of OPH bound to two substrates hydrolyzed with very distinct catalytic efficiencies: the nerve agent soman (O-pinacolyl-methyl-phosphonofluoridate) and the pesticide paraoxon (diethyl p-nitrophenyl phosphate). pK{sub a} calculations for the substrate-bound and unbound enzyme showed a significant pK{sub a} shift from standard values ({Delta}pK{sub a} = {+-} 3 units) for residues 254His and 275Arg. MD simulations of the doubly protonated 254His revealed a dynamic hydrogen bond network connecting the catalytic residue 301Asp via 254His to 232Asp, 233Asp, 275Arg and 235Asp, and is consistent with a previously postulated proton relay mechanism to ferry protons away from the active site with substrates that do not require activation of the leaving group. Hydrogen bonds between 301Asp and 254His were persistent in the OPH-paraoxon complex but not in the OPH-soman one, suggesting a potential role for such interaction in the more efficient hydrolysis of paraoxon over soman by OPH. These results are in line with previous mutational studies of residue 254His, which led to an increase of the catalytic efficiency of OPH over soman yet decreased its efficiency for paraoxon. In addition, comparative analysis of the molecular trajectories for OPH bound to soman and paraoxon suggests that binding of the latter facilitates the conformational transition of OPH from the

  11. The apo structure of sucrose hydrolase from Xanthomonas campestris pv. campestris shows an open active-site groove

    DEFF Research Database (Denmark)

    Champion, Elise; Remaud-Simeon, Magali; Skov, Lars Kobberøe;

    2009-01-01

    Glycoside hydrolase family 13 (GH-13) mainly contains starch-degrading or starch-modifying enzymes. Sucrose hydrolases utilize sucrose instead of amylose as the primary glucosyl donor. Here, the catalytic properties and X-ray structure of sucrose hydrolase from Xanthomonas campestris pv. campestr...

  12. Lower Rate of Major Bile Duct Injury and Increased Intraoperative Management of Common Bile Duct Stones after Implementation of Routine Intraoperative Cholangiography

    NARCIS (Netherlands)

    Buddingh, K. Tim; Weersma, Rinse K.; Savenije, Rolf A. J.; van Dam, Gooitzen M.; Nieuwenhuijs, Vincent B.

    2011-01-01

    BACKGROUND: Our university medical center is the only center in The Netherlands that has adopted a policy of routine intraoperative cholangiography (IOC) during cholecystectomy. This study aimed to describe the rate of bile duct injury (BDI) and management of common bile duct (CBD) stones before and

  13. Analysis of ileal sodium/bile acid cotransporter and related nuclear receptor genes in a family with multiple cases of idiopathic bile acid malabsorption

    Institute of Scientific and Technical Information of China (English)

    Marco Montagnani; Anna Abrahamsson; Cecilia G(a)lman; G(o)sta Eggertsen; Hanns-Ulrich Marschall; Elisa Ravaioli; Curt Einarsson; Paul A Dawson

    2006-01-01

    The etiology of most cases of idiopathic bile acid malabsorption (TBAM) is unknown. Tn this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ileal apical sodium-bile acid cotransporter gene (ASBT; gene symbol, SLC10A2) and in the genes for several of the nuclear receptors known to be important for ASBT expression: the farnesoid X receptor (FXR)and peroxisome proliferator activated receptor alpha (PPARα). The patients presented with a clinical history of idiopathic chronic watery diarrhea, which was responsive to cholestyramine treatment and consistent with IBAM. Bile acid absorption was determined using 75Se-homocholic acid taurine(SeHCAT); bile acid synthesis was estimated by measuring the plasma levels of 7α-hydroxy-4-cholesten-3-one (C4). The ASBT,FXR, and PPARα genes in the affected and unaffected family members were analyzed using single stranded conformation polymorphism (SSCP), denaturing HPLC,and direct sequencing. No ASBT mutations were identified and the ASBT gene did not segregate with the bile acid malabsorption phenotype. Similarly, no mutations or polymorphisms were identified in the FXR or PPARα genes associated with the bile acid malabsorption phenotype. These studies indicate that the intestinal bile acid malabsorption in these patients cannot be attributed to defects in ASBT. In the absence of apparent ileal disease, alternative explanations such as accelerated transit through the small intestine may be responsible for the IBAM.

  14. Bile layering: a cause for false-positive cholescintiscans

    Energy Technology Data Exchange (ETDEWEB)

    Rao, B.K.; Lieberman, L.M.

    1980-06-01

    A number of /sup 99m/Tc-labeled pharmaceuticals have been introduced recently for evaluation and diagnosis of hepatobiliary disease. Pyridoxylidene glutamate (PG) and iminodiacetic acid derivatives have evolved as the most useful agents due to excellent biliary excretion with rapid visualization of the gallbladder and the biliary ducts. These radiopharmaceuticals offer substantial advantages over /sup 131/I-rose bengal. In our experience of over 80 patients evaluated for various hepatobiliary disorders with /sup 99m/Tc PG or paraisopropyl acetanilidoiminodiacetic acid (PIPIDA), two patients had early cholescintigrams suggestive of intraluminal defects. These were not confirmed on delayed imaging. The cholescintigrams in these two patients were similar and suggested bile layering. Although demonstration of this phenomenon by oral cholecystography and intravenous cholangiography has been reported, we found no description of bile layering with radiopharmaceuticals.

  15. Primary sclerosing cholangitis – The arteriosclerosis of the bile duct?

    Directory of Open Access Journals (Sweden)

    Trauner Michael

    2007-01-01

    Full Text Available Abstract Primary sclerosing cholangitis (PSC is a chronic inflammatory disease of unknown aetiology affecting the large bile ducts and characterized by periductal fibrosis and stricture formation, which ultimately result in biliary cirrhosis and liver failure. Arteriosclerosis involves the accumulation of altered lipids and lipoproteins in large arteries; this drives inflammation and fibrosis and ultimately leads to narrowing of the arteries and hypoperfusion of dependent organs and tissues. Knowledge of the causative factors is crucial to the understanding of disease mechanisms and the development of specific treatment. Based on pathogenetic similarities between PSC and arteriosclerosis, we hypothesize that PSC represents "arteriosclerosis of the bile duct" initiated by toxic biliary lipids. This hypothesis is based on common molecular, cellular, and morphological features providing the conceptual framework for a deeper understanding of their pathogenesis. This hypothesis should stimulate translational research to facilitate the search for novel treatment strategies for both diseases.

  16. Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective.

    Science.gov (United States)

    Feng, Hui-Yi; Chen, Yang-Chao

    2016-09-01

    The role of bile acids in colorectal cancer has been well documented, but their role in pancreatic cancer remains unclear. In this review, we examined the risk factors of pancreatic cancer. We found that bile acids are associated with most of these factors. Alcohol intake, smoking, and a high-fat diet all lead to high secretion of bile acids, and bile acid metabolic dysfunction is a causal factor of gallstones. An increase in secretion of bile acids, in addition to a long common channel, may result in bile acid reflux into the pancreatic duct and to the epithelial cells or acinar cells, from which pancreatic adenocarcinoma is derived. The final pathophysiological process is pancreatitis, which promotes dedifferentiation of acinar cells into progenitor duct-like cells. Interestingly, bile acids act as regulatory molecules in metabolism, affecting adipose tissue distribution, insulin sensitivity and triglyceride metabolism. As a result, bile acids are associated with three risk factors of pancreatic cancer: obesity, diabetes and hypertriglyceridemia. In the second part of this review, we summarize several studies showing that bile acids act as cancer promoters in gastrointestinal cancer. However, more question are raised than have been solved, and further oncological and physiological experiments are needed to confirm the role of bile acids in pancreatic cancer carcinogenesis. PMID:27672269

  17. SALT Science Conference 2015

    Science.gov (United States)

    Buckley, David; Schroeder, Anja

    The Southern African Large Telescope (SALT) has seen great changes in the last years following the beginning of full time science operations in 2011. The three first generation instruments, namely the SALTICAM imager, the Robert Stobie Spectrograph (RSS) and its multiple modes and finally in 2014, the new High Resolution Spectrograph (HRS), have commissioned it. The SALT community now eagerly anticipate the installation and commissioning of the near-infrared arm of RSS, likely to commence in 2016. The the third "Science with SALT" conference was held at the Stellenbosch Institute of Advanced Study from 1-5 June 2015. The goals of this conference were to: -Present and discuss recent results from SALT observations; -Anticipate scientific programs that will be carried out with new SALT instrumentation such as RSS-NIR; -Provide a scientific environment in which to foster inter-institutional and inter-facility collaborations between scientists at the different SALT partners; -Provide an opportunity for students and postdocs to become more engaged in SALT science and operations; -Encourage the scientific strategic planning that will be necessary to insure an important role for SALT in an era of large astronomical facilities in the southern hemisphere such as MeerKAT, the SKA, LSST, and ALMA; -Consider options for future instrumentation and technical development of SALT; and, -Present, discuss, and engage in the SALT Collateral Benefits program led by SAAO. Conference proceedings editors: David Buckley and Anja Schroeder

  18. Specific Osmolyte Transporters Mediate Bile Tolerance in Listeria monocytogenes▿

    OpenAIRE

    Watson, Debbie; Sleator, Roy D.; Casey, Pat G.; Hill, Colin; Gahan, Cormac G. M.

    2009-01-01

    The food-borne pathogenic bacterium Listeria monocytogenes has the potential to adapt to an array of suboptimal growth environments encountered within the host. The pathogen is relatively bile tolerant and has the capacity to survive and grow within both the small intestine and the gallbladder in murine models of oral infection. We have previously demonstrated a role for the principal carnitine transport system of L. monocytogenes (OpuC) in gastrointestinal survival of the pathogen (R. Sleato...

  19. Iatrogenic bile duct injuries from biliar y tract surger y

    Institute of Scientific and Technical Information of China (English)

    Umar Ali; Zhen-Hua Ma; Cheng-En Pan; Qing-Yong Ma

    2007-01-01

    BACKGROUND:Cholecystectomy is the most commonly performed procedure in general surgery. However, bile duct injury is a rare but still one of the most common complications. These injuries sometimes present variably after primary surgery. Timely detection and appropriate management decrease the morbidity and mortality of the operation. METHODS:Five cases of iatrogenic bile duct injury (IBDI) were managed at the Department of Surgery, First Afifliated Hospital, Xi'an Jiaotong University. All the cases who underwent both open and laparoscopic cholecystectomy had persistent injury to the biliary tract and were treated accordingly. RESULTS: Recovery of the patients was uneventful. All patients were followed-up at the surgical outpatient department for six months to three years. So far the patients have shown good recovery. CONCLUSIONS:In cases of IBDI it is necessary to perform the operation under the supervision of an experienced surgeon who is specialized in the repair of bile duct injuries, and it is also necessary to detect and treat the injury as soon as possible to obtain a satisfactory outcome.

  20. Bile acid receptors and nonalcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    With the high prevalence of obesity, diabetes, and otherfeatures of the metabolic syndrome in United States,nonalcoholic fatty liver disease (NAFLD) has inevitablybecome a very prevalent chronic liver disease and isnow emerging as one of the leading indications for livertransplantation. Insulin resistance and derangementof lipid metabolism, accompanied by activation ofthe pro-inflammatory response and fibrogenesis, areessential pathways in the development of the moreclinically significant form of NAFLD, known as nonalcoholicsteatohepatitis (NASH). Recent advances inthe functional characterization of bile acid receptors,such as farnesoid X receptor (FXR) and transmembraneG protein-coupled receptor (TGR) 5, have providedfurther insight in the pathophysiology of NASH andhave led to the development of potential therapeutictargets for NAFLD and NASH. Beyond maintaining bileacid metabolism, FXR and TGR5 also regulate lipidmetabolism, maintain glucose homeostasis, increaseenergy expenditure, and ameliorate hepatic inflammation.These intriguing features have been exploitedto develop bile acid analogues to target pathways inNAFLD and NASH pathogenesis. This review providesa brief overview of the pathogenesis of NAFLD andNASH, and then delves into the biological functions ofbile acid receptors, particularly with respect to NASHpathogenesis, with a description of the associatedexperimental data, and, finally, we discuss the prospectsof bile acid analogues in the treatment of NAFLD andNASH.

  1. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra

    2005-04-01

    Full Text Available Abstract Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5:443–448. We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used

  2. Hormesis in Cholestatic Liver Disease; Preconditioning with Low Bile Acid Concentrations Protects against Bile Acid-Induced Toxicity

    OpenAIRE

    Verhaag, Esther M.; Manon Buist-Homan; Martijn Koehorst; Groen, Albert K; Han Moshage; Klaas Nico Faber

    2016-01-01

    Introduction Cholestasis is characterized by accumulation of bile acids and inflammation, causing hepatocellular damage. Still, liver damage markers are highest in acute cholestasis and drop when this condition becomes chronic, indicating that hepatocytes adapt towards the hostile environment. This may be explained by a hormetic response in hepatocytes that limits cell death during cholestasis. Aim To investigate the mechanisms that underlie the hormetic response that protect hepatocytes agai...

  3. Individual bile acids have differential effects on bile acid signaling in mice.

    Science.gov (United States)

    Song, Peizhen; Rockwell, Cheryl E; Cui, Julia Yue; Klaassen, Curtis D

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  4. Novel Approach to Bile Duct Damage in Primary Biliary Cirrhosis: Participation of Cellular Senescence and Autophagy

    Directory of Open Access Journals (Sweden)

    Motoko Sasaki

    2012-01-01

    Full Text Available Primary biliary cirrhosis (PBC is characterized by antimitochondrial autoantibodies (AMAs in patients' sera and histologically by chronic nonsuppurative destructive cholangitis in small bile ducts, eventually followed by extensive bile duct loss and biliary cirrhosis. The autoimmune-mediated pathogenesis of bile duct lesions, including the significance of AMAs, triggers of the autoimmune process, and so on remain unclear. We have reported that cellular senescence in biliary epithelial cells (BECs may be involved in bile duct lesions and that autophagy may precede the process of biliary epithelial senescence in PBC. Interestingly, BECs in damaged bile ducts show characteristicsof cellular senescence and autophagy in PBC. A suspected causative factor of biliary epithelial senescence is oxidative stress. Furthermore, senescent BECs may modulate the microenvironment around bile ducts by expressing various chemokines and cytokines called senescence-associated secretory phenotypes and contribute to the pathogenesis in PBC.

  5. Structure of the minimized α/β-hydrolase fold protein from Thermus thermophilus HB8

    International Nuclear Information System (INIS)

    The crystal structure of the minimized α/β-hydrolase fold protein encoded by the gene TTHA1544 from T. thermophilus HB8 has been determined at 2.0 Å resolution. The gene encoding TTHA1544 is a singleton found in the Thermus thermophilus HB8 genome and encodes a 131-amino-acid protein. The crystal structure of TTHA1544 has been determined at 2.0 Å resolution by the single-wavelength anomalous dispersion method in order to elucidate its function. There are two molecules in the asymmetric unit. Each molecule consists of four α-helices and six β-strands, with the β-strands composing a central β-sheet. A structural homology search revealed that the overall structure of TTHA1544 resembles the α/β-hydrolase fold, although TTHA1544 lacks the catalytic residues of a hydrolase. These results suggest that TTHA1544 represents the minimized α/β-hydrolase fold and that an additional component would be required for its activity

  6. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    Science.gov (United States)

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  7. The role of epoxide hydrolase Y113H gene variant in pancreatic diseases.

    NARCIS (Netherlands)

    Ockenga, J.; Strunck, S.; Post, C.; Schulz, H.U.; Halangk, J.; Pfutzer, R.H.; Lohr, M.; Oettle, H.; Kage, A.; Rosendahl, J.; Keim, V.; Drenth, J.P.H.; Jansen, J.B.M.J.; Lochs, H.; Witt, H.

    2009-01-01

    OBJECTIVES: Chronic pancreatitis (CP) and pancreatic adenocarcinoma (pCA) are associated with risk factors such as alcohol intake and tobacco smoking. Microsomal epoxide hydrolase (EPHX1) is a phase II detoxifying enzyme capable of tobacco-borne toxicant inactivation. We studied the role of the EPHX

  8. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were co-polym

  9. Biosynthesis of intestinal microvillar proteins. Intracellular processing of lactase-phlorizin hydrolase

    DEFF Research Database (Denmark)

    Danielsen, E M; Skovbjerg, H; Norén, Ove;

    1984-01-01

    The biosynthesis of pig small intestinal lactase-phlorizin hydrolase (EC 3.2.1.23-62) was studied by labelling of organ cultured mucosal explants with [35S]methionine. The earliest detactable form of the enzyme was an intracellular, membrane-bound polypeptide of Mr 225 000, sensitive to endo H as...

  10. Genetically lowered microsomal epoxide hydrolase activity and tobacco-related cancer in 47,000 individuals

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Nordestgaard, Børge G

    2011-01-01

    Two functional polymorphisms of the microsomal epoxide hydrolase (mEH) gene (EPHX1), Tyr113His (rs1051740) and His139Arg (rs2234922), have variably been found to influence susceptibility to various cancer forms. We tested whether genetically lowered mEH activity affects risk of developing cancer...

  11. Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease.

    Science.gov (United States)

    Celorrio, Marta; Fernández-Suárez, Diana; Rojo-Bustamante, Estefanía; Echeverry-Alzate, Víctor; Ramírez, María J; Hillard, Cecilia J; López-Moreno, José A; Maldonado, Rafael; Oyarzábal, Julen; Franco, Rafael; Aymerich, María S

    2016-10-01

    Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion. Modulation of the levels of the endocannabinoid 2-arachidonoyl-glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinson's disease. In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease. The fatty acid amide hydrolase inhibitor, URB597, was administered chronically to mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp) over 5weeks. URB597 (1mg/kg) prevented MPTPp induced motor impairment but it did not preserve the dopamine levels in the nigrostriatal pathway or regulate glial cell activation. The symptomatic relief of URB597 was confirmed in haloperidol-induced catalepsy assays, where its anti-cataleptic effects were both blocked by antagonists of the two cannabinoid receptors (CB1 and CB2), and abolished in animals deficient in these receptors. Other fatty acid amide hydrolase inhibitors, JNJ1661010 and TCF2, also had anti-cataleptic properties. Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinson's disease in two distinct experimental models that is mediated by cannabinoid receptors. PMID:27318096

  12. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries

    DEFF Research Database (Denmark)

    Ferrandi, Erica Elisa; Sayer, Christopher; Isupov, Michail N.;

    2015-01-01

    The epoxide hydrolases (EHs) represent an attractive option for the synthesis of chiral epoxides and 1,2-diols which are valuable building blocks for the synthesis of several pharmaceutical compounds. A metagenomic approach has been used to identify two new members of the atypical EH limonene-1...

  13. Genetically reduced soluble epoxide hydrolase activity and risk of stroke and other cardiovascular disease

    DEFF Research Database (Denmark)

    Lee, Julie; Dahl, Morten; Grande, Peer;

    2010-01-01

    BACKGROUND AND PURPOSE: The development of stroke has been linked to lowered levels of epoxyeicosatrienoic acids in the cerebral microvasculature. These substances are metabolized by the enzyme-soluble epoxide hydrolase encoded by the EPHX2 gene. We tested whether genetically reduced soluble...

  14. BIODEGRADATION OF ORGANOPHOSPHORUS PESTICIDES BY SURFACE-EXPRESSED ORGANOPHOSPHORUS HYDROLASE. (R823663)

    Science.gov (United States)

    Organophosphorus hydrolase (OPH) was displayed and anchored onto the surface ofEscherichia coli using an Lpp-OmpA fusion system. Production of the fusion proteins in membranefractions was verified by immunoblotting with OmpA antisera. inclusion of the organophosphorus...

  15. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats

    NARCIS (Netherlands)

    Koeners, Maarten P.; Wesseling, Sebastiaan; Ulu, Arzu; Lopez Sepulveda, Rocio; Morisseau, Christophe; Braam, Branko; Hammock, Bruce D.; Joles, Jaap A.

    2011-01-01

    Koeners MP, Wesseling S, Ulu A, Sepulveda RL, Morisseau C, Braam B, Hammock BD, Joles JA. Soluble epoxide hydrolase in the generation and maintenance of high blood pressure in spontaneously hypertensive rats. Am J Physiol Endocrinol Metab 300: E691-E698, 2011. First published January 25, 2011; doi:

  16. Prunasin hydrolases localization during fruit development in sweet and bitter almonds

    DEFF Research Database (Denmark)

    Sánchez Pérez, Raquel; Belmonte, Fara Sáez; Borch-Jensen, Jonas;

    2012-01-01

    , and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal...

  17. Bile Acids Reduce Endocytosis of High-Density Lipoprotein (HDL) in HepG2 Cells

    OpenAIRE

    Clemens Röhrl; Karin Eigner; Stefanie Fruhwürth; Herbert Stangl

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence...

  18. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis

    OpenAIRE

    Peggy P. Ho; Steinman, Lawrence

    2016-01-01

    Bile acids bind to the nuclear hormone receptor, farnesoid X receptor (FXR). This bile acid–FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, drugs targeting FXR activation have been reported to treat both liver and intestinal inflammatory diseases in both animal models and human clinical trials. Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system and serves as an animal model for ...

  19. Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk

    OpenAIRE

    Lien, Fleur; Berthier, Alexandre; Bouchaert, Emmanuel; Gheeraert, Céline; Alexandre, Jeremy; Porez, Geoffrey; Prawitt, Janne; Dehondt, Hélène; Ploton, Maheul; Colin, Sophie; Lucas, Anthony; Patrice, Alexandre; Pattou, François; Diemer, Hélène; Dorsselaer, Alain Van

    2014-01-01

    The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry–based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a cor...

  20. Intraductal papillary mucinous neoplasm of the bile duct with gastric and duodenal fistulas

    OpenAIRE

    Hong, Man Yong; Yu, Dong Wook; Hong, Seung Goun

    2014-01-01

    Intraductal papillary mucinous neoplasm (IPMN) of the bile duct is still rare and not yet understood despite of its increased incidence and similar clinicopathologic characteristics compared with IPMN of the pancreas. The fistula formation into other organs can occur in IPMN, especially the pancreatic type. To our knowledge, only two cases of IPMN of the bile duct with a choledochoduodenal fistula were reported and we have recently experienced a case of IPMN of the bile duct penetrating into ...

  1. A stated preference investigation into the Chinese demand for farmed vs. wild bear bile.

    Directory of Open Access Journals (Sweden)

    Adam J Dutton

    Full Text Available Farming of animals and plants has recently been considered not merely as a more efficient and plentiful supply of their products but also as a means of protecting wild populations from that trade. Amongst these nascent farming products might be listed bear bile. Bear bile has been exploited by traditional Chinese medicinalists for millennia. Since the 1980s consumers have had the options of: illegal wild gall bladders, bile extracted from caged live bears or the acid synthesised chemically. Despite these alternatives bears continue to be harvested from the wild. In this paper we use stated preference techniques using a random sample of the Chinese population to estimate demand functions for wild bear bile with and without competition from farmed bear bile. We find a willingness to pay considerably more for wild bear bile than farmed. Wild bear bile has low own price elasticity and cross price elasticity with farmed bear bile. The ability of farmed bear bile to reduce demand for wild bear bile is at best limited and, at prevailing prices, may be close to zero or have the opposite effect. The demand functions estimated suggest that the own price elasticity of wild bear bile is lower when competing with farmed bear bile than when it is the only option available. This means that the incumbent product may actually sell more items at a higher price when competing than when alone in the market. This finding may be of broader interest to behavioural economists as we argue that one explanation may be that as product choice increases price has less impact on decision making. For the wildlife farming debate this indicates that at some prices the introduction of farmed competition might increase the demand for the wild product.

  2. The effect of Macrotyloma uniflorum seed on bile lithogenicity against diet induced cholelithiasis on mice

    Directory of Open Access Journals (Sweden)

    Papiya Bigoniya

    2014-01-01

    Conclusions: M. uniflorum seed exerted antilithogenic influence by decreasing the cholesterol hyper-secretion into bile and increasing the bile acid output, thus decreasing the formation of LG bile in mice. The effect was maximum in the AE as it also reduced papillary proliferation of gallbladder and fatty degeneration of the liver. The potential antilithogenic effect of the AE of M. uniflorum may be due to antioxidant property of its rich total polyphenol and tannins content.

  3. Cheese intake lowers plasma cholesterol concentrations without increasing bile acid excretion

    OpenAIRE

    Hjerpsted, Julie Bousgaard; Dragsted, Lars Ove; Tholstrup, Tine

    2016-01-01

    Purpose Cheese is a dairy product with high calcium content. It has been suggested that calcium intake may increase fecal excretion of bile acids that would cause a regeneration of bile acids from hepatic cholesterol and thereby result in a lowering of plasma cholesterol concentrations. We aimed to test this hypothesis by assessing bile acid and calcium concentrations in fecal samples from humans after intake of cheese and butter. Methods The study was a randomized, 2 × 6 weeks crossover, die...

  4. Salt Weathering on Mars

    Science.gov (United States)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  5. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases.

    Science.gov (United States)

    Nisha, M; Satyanarayana, T

    2016-07-01

    Pullulan hydrolyzing enzymes are endoacting, classified based on the substrate specificity and hydrolysis products as pullulanases (type I and II) and pullulan hydrolases (type I, II and III). Pullulanases and pullulan hydrolase type I are produced by bacteria and archaea. Among bacteria, many mesophilic, thermophilic and hyperthermophilic bacteria produce pullulanases and neopullulanases. While pullulan hydrolase type II and type III are produced by fungi and archaea, respectively. These are multi-domain proteins with three conserved catalytic acidic residues of the glycosyl hydrolases. The recent advances in molecular biology and protein engineering via mutagenesis and truncation led to improvement in thermostability, catalytic activity and substrate specificity. Pullulanases are debranching enzymes, which are widely employed in starch saccharification that minimizes the use of glucoamylase (approx. 50 %) and reduces the total reaction time of the industrial starch conversion process. The thermostable amylopullulanases are useful in one-step starch liquefaction and saccharification, which replaces amylolytic enzymes like α-amylase and glucoamylase, thus resulting in the reduction in the cost of sugar production. The enzymes also find application in making resistant starches and as an antistale in bread making. Panose and isopanose containing syrups are useful as prebiotics, while panose has also been reported to display anticarcinogenic activity. This review focuses on the distinguishing features of these enzymes based on the analysis of amino acid sequences and domain structure, besides highlighting recent advances in the molecular biology and protein engineering for enhancing their thermostability, catalytic activity and substrate specificity. This review also briefly summarizes the potential applications of pullulanases and pullulan hydrolases. PMID:27142298

  6. THE CYTOTOXIC EFFECTS OF CRUDE BILE ON HUMAN PANCREATIC CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To identify effects of bile acids on pancreatic cancer, The ultrastructure and growth of PANC-1 and MIA PaCa-2 cell lines in crude bile modified medium were studied. Methods The growth of PANC-1 and MIA PaCa-2 cells in RPMI 1640 with or without 1%, 2% and 4% of the purified crude bile (containing total bile acids 10.17mmol/L) was assessed for 2, 4, 6, 8d by using MTT assay to determine inhibitory rate. The cell surface and intracellular ultrastructure of PANC-1 cells was investigated by SEM and TEM at 24h and 48h, respectively. Re sults The proliferation of both cell lines in bile treated medium were greatly retarded (P <0.001). The inhibitory rate of 1%, 2% and 4% bile on Panc-1 cells in 4d were 38%, 60% and 66%, respectively (P <0. 05), on MIA PaCa-2 cells at 4d were 28%, 39% and 52%, respectively (P <0. 05). The cells grown in bile for 48h lost their mi crovilli, their mitochondria and other organelles became vacuolated. Conclusion The bile acids in bile has cytotoxicity on PANC-1 and MIAPACA-2 cells, which may inhibit pancreatic cancer progress in patients clinically.

  7. Effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Zheng Wu; Yi Lüi; Bo Wang; Chang Liu; Zuo-Ren Wang,

    2003-01-01

    AIM: Pancreatic cancer in the head is frequently accompanied by jaundice and high bile acid level in serum. This study focused on the direct effects of bile acids on proliferation and ultrastructural alteration of pancreatic cancer.METHODS: Pancreatic cancer cell lines PANC-1, MIA PaCa2 and PGHAM-1 were explored in this study. The cell lines were cultured in media supplemented with certain bile acids,CA, DCA, LCA, TCDC, TDCA and GCA. Their influence on cell growth was measured with MTT assay after 72 h of incubation. Cell cycles of PANC-1 cells in 40 μM of bile acids media were analyzed by flow cytometry. Ultrastructural alteration of PANC-1 cells induced by DCA was observed using scanning and transmission electron microscope (SEM and TEM).RESULTS: At various concentrations of bile acids and incubation time, no enhanced effects of bile acids on cell proliferation were observed. Significant inhibitory effects were obtained in almost all media with bile acids. DCA and CA increased the percentage of G0+G1 phase cells, while GCA and TDCA elevated the S phase cell number. After 48 h of incubation in DCA medium, PANC-1 cells showed some structural damages such as loss of their microvilli and vacuolization of organelles in cytoplasm.CONCLUSION: Bile acids can reduce proliferation of pancreatic cancer cells due to their direct cytotoxicity. This result implies that elevation of bile acids in jaundiced serum may inhibit pancreatic cancer progression.

  8. Imaging Findings of Intrahepatic Bile Duct Adenoma (Peribiliary Gland Hamartoma): a Case Report and Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, You Sung; Rha, Sung Eun; Oh, Soon Nam; Jung, Seung Eun; Shin, Yu Ri; Choi, Byung Gil; Byun, Jae Young; Jung, Eun Sun; Kim, Dong Goo [Catholic University of Korea, Seoul St.Mary' s Hospital, Seoul (Korea, Republic of)

    2010-10-15

    Intrahepatic bile duct adenoma is a rare benign epithelial hepatic tumor derived from bile duct cells. We report the imaging findings of a patient with bile duct adenoma, which appeared as a small heterogeneously enhancing mass with focal small cystic change on CT and MRI. Follow-up images at seven months showed a slight increase in tumor size, which could be partly explained by intratumoral hemorrhage on pathologic examination. Although rare, bile duct adenoma should be considered as a differential diagnosis of a small hypervascular tumor located in the periphery of liver. Focal cystic change and intratumoral hemorrhage may occur

  9. Changes of gastrointestinal myoelectric activity and bile acid pool size after cholecystectomy in guinea pigs

    Institute of Scientific and Technical Information of China (English)

    Xue-Mei Zhang; Lei Dong; Li-Na Liu; Bi-Xia Chang; Qian He; Qian Li

    2005-01-01

    AIM: To investigate the bile acid pool size after cholecystectomy whether or not correlated to the gastrointestinal migrating myoelectric complex (MMC) in guinea pigs.METHODS: Gallbladder motilities were assessed before cholecystectomy. Furthermore, we continuously monitored interdigestive gastrointestinal motilities using bipolar electrodes in conscious guinea pigs before and after surgery at 4 wk in standard diet group and high cholesterol diet (cholesterol gallstone) group. Total bile acid pool sizes were measured by isotope dilution method at meantime.RESULTS: After cholecystectomy, there were parallel falls in duration of phase Ⅰ, Ⅱ, Ⅲ and MMC cycle duration but increase in amplitude in the guinea pigs with normal gallbladder function, and in the guinea pigs with cholesterol stones. However, There were not significantly differences. On the other hand, the bile acid pool was definitely small in the GS guinea pigs compared to normal guinea pigs and became slightly smaller after cholecystectomy. Similarly, bile acid in gallbladder bile, fecal bile acid was slightly increased in GS guinea pigs after cholecystectomy, to the same degree as normal. These differences, however, were not significant.CONCLUSION: It is concluded that in the guinea pigs with normal gallbladder function, and in the guinea pigs with cholesterol stones: (1) Cholecystectomy produce a similar but less marked trend in bile acid pool; and (2) MMC are linked to enterohepatic circulation of bile acids, rather than surgery, which is consistent with changes of the bile acid pool size. As a result, gastrointestinal dyskinesia is not involved in occurrence of postcholecystectomy syndrome.

  10. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  11. SALT for Language Acquisition.

    Science.gov (United States)

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  12. Salt Tolerance in Soybean

    Institute of Scientific and Technical Information of China (English)

    Tsui-Hung Phang; Guihua Shao; Hon-Ming Lam

    2008-01-01

    Soybean is an Important cash crop and its productivity is significantly hampered by salt stress. High salt Imposes negative impacts on growth, nodulation, agronomy traits, seed quality and quantity, and thus reduces the yield of soybean. To cope with salt stress, soybean has developed several tolerance mechanisms, including: (I) maintenance of ion homeostasis; (ii) adjustment in response to osmotic stress; (iii) restoration of osmotic balance; and (iv) other metabolic and structural adaptations. The regulatory network for abiotic stress responses in higher plants has been studied extensively in model plants such as Arabidopsis thaliana. Some homologous components involved in salt stress responses have been identified in soybean. In this review, we tried to integrate the relevant works on soybean and proposes a working model to descdbe Its salt stress responses at the molecular level.

  13. Geomechanics of bedded salt

    Energy Technology Data Exchange (ETDEWEB)

    Serata, S.; Milnor, S.W.

    1979-06-08

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained.

  14. Geomechanics of bedded salt

    International Nuclear Information System (INIS)

    Creep data from the literature search is reinterpreted by SGI, resulting in a better understanding of the temperature and stress state dependence of the octahedral creep rate and the octahedral shear strength. The concept of a transition strength between the elastic and the plastic states is in agreement with the data. The elastic and rheological properties of salt are described, and a set of constitutive equations is presented. The dependence of material properties on parameters such as temperature is considered. Findings on the permeability of salt are summarized, and the in-situ behavior of openings in bedded salt is described based on extensive engineering experience. A stress measuring system utilizing a finite element computer code is discussed. Geological factors affecting the stability of salt openings are considered, and the Stress Control Technique for designing stable openings in bedded salt formations is explained

  15. Telmisartan attenuates hepatic fibrosis in bile duct-ligated rats

    Institute of Scientific and Technical Information of China (English)

    En-tong YI; Rui-xia LIU; Yan WEN; Cheng-hong YIN

    2012-01-01

    Aim: To evaluate the antifibrotic effect of telmisartan,an angiotensin Ⅱ receptor blocker,in bile duct-ligated rats.Methods: Adult Sprague-Dawley rats were allocated to 3 groups: sham-operated rats,model rats underwent common bile duct ligation (BDL),and BDL rats treated with telmisartan (8 mg/kg,po,for 4 weeks).The animals were sacrificed on d 29,and liver histology was examined,the Knodell and Ishak scores were assigned,and the expression of angiotensin-converting enzyme (ACE) and ACE2 was evaluated with immunohistochemical staining.The mRNAs and proteins associated with liver fibrosis were evaluated using RTQ-PCR and Western blot,respectively.Results: The mean fibrosis score of BDL rats treated with telmisartan was significantly lower than that of the model rats (1.66±0.87 vs 2.13±0.35,P=0.015).However,there was no significant difference in inflammation between the two groups,both of which showed moderate inflammation.Histologically,treatment with telmisartan significantly ameliorated BDL-caused the hepatic fibrosis.Treatment with telmisartan significantly upregulated the mRNA levels of ACE2 and MAS,and decreased the mRNA levels of ACE,angiotensin Ⅱ type 1 receptor (AT1-R),collagen type Ⅲ,and transforming growth factor β1 (TGF-β1).Moreover,treatment with telmisartan significantly increased the expression levels of ACE2 and MAS proteins,and inhibited the expression levels of ACE and AT1-R protein.Conclusion: Telmisartan attenuates liver fibrosis in bile duct-ligated rats via increasing ACE2 expression level.

  16. Repression of Salmonella enterica phoP expression by small molecules from physiological bile.

    Science.gov (United States)

    Antunes, L Caetano M; Wang, Melody; Andersen, Sarah K; Ferreira, Rosana B R; Kappelhoff, Reinhild; Han, Jun; Borchers, Christoph H; Finlay, B Brett

    2012-05-01

    Infection with Salmonella enterica serovar Typhi in humans causes the life-threatening disease typhoid fever. In the laboratory, typhoid fever can be modeled through the inoculation of susceptible mice with Salmonella enterica serovar Typhimurium. Using this murine model, we previously characterized the interactions between Salmonella Typhimurium and host cells in the gallbladder and showed that this pathogen can successfully invade gallbladder epithelial cells and proliferate. Additionally, we showed that Salmonella Typhimurium can use bile phospholipids to grow at high rates. These abilities are likely important for quick colonization of the gallbladder during typhoid fever and further pathogen dissemination through fecal shedding. To further characterize the interactions between Salmonella and the gallbladder environment, we compared the transcriptomes of Salmonella cultures grown in LB broth or physiological murine bile. Our data showed that many genes involved in bacterial central metabolism are affected by bile, with the citric acid cycle being repressed and alternative respiratory systems being activated. Additionally, our study revealed a new aspect of Salmonella interactions with bile through the identification of the global regulator phoP as a bile-responsive gene. Repression of phoP expression could also be achieved using physiological, but not commercial, bovine bile. The biological activity does not involve PhoPQ sensing of a bile component and is not caused by bile acids, the most abundant organic components of bile. Bioactivity-guided purification allowed the identification of a subset of small molecules from bile that can elicit full activity; however, a single compound with phoP inhibitory activity could not be isolated, suggesting that multiple molecules may act in synergy to achieve this effect. Due to the critical role of phoP in Salmonella virulence, further studies in this area will likely reveal aspects of the interaction between Salmonella

  17. Suppression of the HPA Axis During Cholestasis Can Be Attributed to Hypothalamic Bile Acid Signaling.

    Science.gov (United States)

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Divan, Ali; Grant, Stephanie; Patel, Nisha; Newell-Rogers, Karen; DeMorrow, Sharon

    2015-12-01

    Suppression of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to occur during cholestatic liver injury. Furthermore, we have demonstrated that in a model of cholestasis, serum bile acids gain entry into the brain via a leaky blood brain barrier and that hypothalamic bile acid content is increased. Therefore, the aim of the current study was to determine the effects of bile acid signaling on the HPA axis. The data presented show that HPA axis suppression during cholestatic liver injury, specifically circulating corticosterone levels and hypothalamic corticotropin releasing hormone (CRH) expression, can be attenuated by administration of the bile acid sequestrant cholestyramine. Secondly, treatment of hypothalamic neurons with various bile acids suppressed CRH expression and secretion in vitro. However, in vivo HPA axis suppression was only evident after the central injection of the bile acids taurocholic acid or glycochenodeoxycholic acid but not the other bile acids studied. Furthermore, we demonstrate that taurocholic acid and glycochenodeoxycholic acid are exerting their effects on hypothalamic CRH expression after their uptake through the apical sodium-dependent bile acid transporter and subsequent activation of the glucocorticoid receptor. Taken together with previous studies, our data support the hypothesis that during cholestatic liver injury, bile acids gain entry into the brain, are transported into neurons through the apical sodium-dependent bile acid transporter and can activate the glucocorticoid receptor to suppress the HPA axis. These data also lend themselves to the broader hypothesis that bile acids may act as central modulators of hypothalamic peptides that may be altered during liver disease.

  18. Boldine enhances bile production in rats via osmotic and farnesoid X receptor dependent mechanisms.

    Science.gov (United States)

    Cermanova, Jolana; Kadova, Zuzana; Zagorova, Marie; Hroch, Milos; Tomsik, Pavel; Nachtigal, Petr; Kudlackova, Zdenka; Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek; Laho, Tomas; Micuda, Stanislav

    2015-05-15

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. PMID:25771127

  19. Gut microbiota, cirrhosis and alcohol regulate bile acid metabolism in the gut

    Science.gov (United States)

    Ridlon, Jason M.; Kang, Dae-Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic and disease progression in cirrhosis, metabolic syndrome and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of deoxycholic acid (DCA). Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis

  20. Optimum bile acid treatment for rapid gall stone dissolution.

    OpenAIRE

    Jazrawi, R P; Pigozzi, M G; Galatola, G; Lanzini, A; Northfield, T. C.

    1992-01-01

    To determine the optimum bile acid regimen for rapid gall stone dissolution, 48 gall stone patients were divided into four groups of 12 according to stone diameter and were randomly allocated to receive one of four treatment regimens: bedtime or mealtime chenodeoxycholic acid (CDCA, 12 mg/kg/day) and bedtime or mealtime ursodeoxycholic acid (UDCA, 12 mg/kg/day). An additional 10 patients treated with a combination of CDCA plus UDCA (each 6 mg/kg/day) at bedtime were matched with the 10 patien...

  1. Rare bile duct anomaly: B3 duct draining to gallbladder

    Directory of Open Access Journals (Sweden)

    Seung Eun Lee

    2016-01-01

    Full Text Available A 10-year-old girl presented with recurrent right upper abdominal pain and dyspepsia. Magnetic resonance cholangiopancreatography revealed a dilated common channel of intrahepatic bile duct of segment 3 (B3 and segment 4 (B4 drained into the gallbladder directly. The patient underwent laparoscopic cholecystectomy and Roux-en Y hepaticojejunostomy (B3-jejunostomy. Among the anatomical variability of the biliary system, the cholecystohepatic ducts are controversial in existence and incidence. We report a very rare variant of a cholecystohepatic duct in which the B3 duct drained into gallbladder directly and to the best of our knowledge this is the first report.

  2. Treatment of bile duct carcinoma using photodynamic therapy (PDT)

    International Nuclear Information System (INIS)

    Full text: Biliary papillomatosis, is a rare, benign tumour characterised by extensive mucosal involvement of the bile duct with carcinoma in 30% of cases. Treatment has been largely limited to surgical resection and is often accompanied by tumour recurrence. Photodynamic therapy (PDT) was used to treat a 64 year old man with mucous-secreting papillomatosis of the common bile hepatic duct which presented with obstructive jaundice and recurrent cholangitis. The successful use of PDT in treating a case of cholangiocarcinoma and the treatment of similar colonic villous tumours encourage the use of PDT in this patient. Porfimer Sodium (Photofrin), 2 mg/kg was given intravenously 64 hours prior to light exposure. A Spectra Physics argon-ion pumped dye laser was used to provide 50 mW of 630 nm wavelength light at a 3 cm long diffusing tip attached to a 3 m optical fibre. A power density of approximately 15 mW.cm-2 was provided at the tissue surface under illumination at a radial distance of approximately 1.8 mm from the diffusing tip. The dose was designed to give a necrosis depth of 3 mm. A transparent 3.6 mm outer diameter catheter was placed in the duct using fluoroscopy and the fibre and diffusing tip then manoeuvred into position. The transparent catheter was left in place during the treatment and forced a minimum inner diameter on the duct of 3.6 mm and also helped to centre the diffuser within the duct. Repeat endoscopy, 48 hours after treatment revealed little duct mucous; necrosed tissue was removed with a balloon catheter with significant increase in size of the duct lumen. Since then, the patient's bilirubin has remained normal. Repeat endoscopic cholangiography one month later has shown no diminution in the diameter of the bile duct. The use of Photodynamic Therapy in the biliary tree using endoscopic retrograde placement of light source is feasible and the results in this patient encourage a trial of its use in operable bile duct carcinoma

  3. Adenoma of the distal common bile duct -a case report-

    Energy Technology Data Exchange (ETDEWEB)

    Do, Young Soo; Lee, Hyun Gon; Han, Ho Seong; Ko, Gyung Hyuck; Kim, Jae Hyoung; Kim, Hyung Jin; Chung, Sung Hoon [College of Medicine, Gyeongsang National University, Jinju (Korea, Republic of)

    1991-05-15

    On rare occasions, Obstructive Jaundice may be caused by a benign tumor of the biliary tract. We describe a patient in whom the diagnosis of an adenoma of the distal common bile duct (CBD) was established. The CT showed a soft tissue density mass in the distal CBD and diffuse dilatation of the intrahepatic duct, gall the bladder, and CBD. Endoscopic retrograde cholangiopnacreatography showed an irregularly marginated polypoid mass in the distal CBD. The clinical, radiological, and histological features of this neoplasm are reviewed. The clinical, radiological and histological features of this neoplasm are reviewed.

  4. Crushed Salt Constitutive Model

    Energy Technology Data Exchange (ETDEWEB)

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  5. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    Energy Technology Data Exchange (ETDEWEB)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil [Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States); Servinsky, Matthew D. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Gerlach, Elliot S. [Federal Staffing Resources, 2200 Somerville Road, Annapolis, MD 21401 (United States); Sund, Christian J. [US Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783 (United States); Hurley, Margaret M., E-mail: katherine.germane.civ@mail.mil [US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005 (United States); Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017 (United States)

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  6. The cytotoxic activity of Bacillus anthracis lethal factor is inhibited by leukotriene A4 hydrolase and metallopeptidase inhibitors.

    Science.gov (United States)

    Menard, A; Papini, E; Mock, M; Montecucco, C

    1996-01-01

    The lethal factor of Bacillus anthracis is central to the pathogenesis of anthrax. Its mechanism of action is still unknown. Recently, on the basis of sequence similarities, we suggested that lethal factor might act similarly to leukotriene A4 hydrolase (LTA4), a bifunctional enzyme also endowed with a metallopeptidase activity. Here we show that some inhibitors of the LTA4 hydrolase and metallopeptidase activities of LTA4 hydrolase also affect the cytotoxicity of the anthrax lethal factor on macrophage cell lines, without interfering with the ability of the lethal factor to enter cells. These results support the proposal that anthrax lethal factor might display in the cytosol of intoxicated cells a peptidase activity similar to that of LTA4 hydrolase. PMID:8973585

  7. Structure Determination and Characterization of the Vitamin B[superscript 6] Degradative Enzyme (E)-2-(Acetamidomethylene)succinate Hydrolase

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, Kathryn M.; Mukherjee, Tathagata; Begley, Tadhg P.; Ealick, Steven E. (Cornell); (TAM)

    2010-06-22

    The gene identification and kinetic characterization of (E)-2-(acetamidomethylene)succinate (E-2AMS) hydrolase has recently been described. This enzyme catalyzes the final reaction in the degradation of vitamin B{sub 6} and produces succinic semialdehyde, acetate, ammonia, and carbon dioxide from E-2AMS. The structure of E-2AMS hydrolase was determined to 2.3 {angstrom} using SAD phasing. E-2AMS hydrolase is a member of the {alpha}/{beta} hydrolase superfamily and utilizes a serine/histidine/aspartic acid catalytic triad. Mutation of either the nucleophilic serine or the aspartate resulted in inactive enzyme. Mutation of an additional serine residue in the active site causes the enzyme to be unstable and is likely structurally important. The structure also provides insight into the mechanism of hydrolysis of E-2AMS and identifies several potential catalytically important residues.

  8. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  9. Intraductal papillary neoplasm of the bile duct in liver cirrhosis with hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jing Xu; Yasunori Sato; Kenichi Harada; Norihide Yoneda; Teruyuki Ueda; Atsushi Kawashima; Akishi Ooi; Yasuni Nakanuma

    2011-01-01

    A case of intraductal papillary neoplasm of the bile duct (IPNB) arising in a patient with hepatitis B-related liver cirrhosis with hepatocellular carcinoma (HCC) is reported.A 76-year-old man was admitted to our hospital with recurrent HCC.Laboratory data showed that levels of carcinoembryonic antigen and carbohydrate antigen 19-9 were elevated.He died of progressive hepatic failure.At autopsy, in addition to HCCs, an intraductal papillary proliferation of malignant cholangiocytes with fibrovascular cores was found in the dilated large bile ducts in the left lobe, and this papillary carcinoma was associated with an invasive mucinous carcinoma (invasive IPNB).Interestingly, extensive intraductal spread of the cholangiocarcinoma was found from the reactive bile ductular level to the interlobular bile ducts and septal bile ducts and to the large bile ducts in the left lobe.Neural cell adhesion molecule, a hepatic progenitor cell marker, was detected in IPNB cells.It seems possible in this case that hepatic progenitor cells located in reactive bile ductules in liver cirrhosis may have been responsible for the development of the cholangiocarcinoma and HCC, and that the former could have spread in the intrahepatic bile ducts and eventually formed grossly visible IPNB.

  10. Fish oil increases bile acid synthesis in male patients with hypertriglyceridemia

    NARCIS (Netherlands)

    Jonkers, IJAM; Smelt, AHM; Princen, HMG; Kuipers, F; Romijn, JA; Boverhof, R; Masclee, AAM; Stellaard, F

    2006-01-01

    Fibrates are drugs of choice in patients with hypertriglyceridemia (HTG), but may increase the risk for gallstones by decreasing bile acid synthesis. Fish oil might be a therapeutic alternative, but its effect on bile acid metabolism in humans is unknown. We compared the effects of triglyceride-lowe

  11. Metabolic Effects of Bile Acids in the Gut in Health and Disease

    NARCIS (Netherlands)

    Boesjes, Marije; Brufau Dones, Gemma

    2014-01-01

    In the last decade, it became clear that bile acids, in addition to their role in intestinal absorption of lipids and fat-soluble vitamins, are major regulators of metabolism. They activate signal transduction pathways through binding to the specific bile acid receptors TGR5 and FXR. Indirectly, bil

  12. A Multimodal Approach in Coil Embolization of a Bile Leak Following Cholecystectomy

    International Nuclear Information System (INIS)

    Bile leak is a well-known complication of cholecystectomy. Endoscopic drainage and decompression of the biliary system including temporary insertion of a biliary stent is generally considered the treatment of choice. We report the successful obliteration of a bile leak using fibered platinum coils placed under fluoroscopic guidance after stent treatment had failed

  13. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    Science.gov (United States)

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; pacetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  14. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    DEFF Research Database (Denmark)

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett;

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5beta-reductase....

  15. Changing patterns of traumatic bile duct injuries: a review of forty years experience

    Institute of Scientific and Technical Information of China (English)

    Zhi-Qiang Huang; Xiao-Qiang Huang

    2002-01-01

    AIM: To summarize the experiences of treating bile ductinjuries in 40 years of clinical practice.METHODS: Based on the experience of more than 40 yearsof clinical work, 122 cases including a series of 61 bile ductinjuries of the Southwest Hospital, Chongqing, and 42cases (1989-1997) and 19 cases (1998-2001) of the GeneralHospital of PLA, Beijing, cases were reviewed with specialreference to the pattern of injury. A series of cases of theliver and the biliary tract injuries following interventionaltherapy for hepatic tumors, most often hemangioma of theliver, were collected. Chinese medical literature from 1995 to1999 dealing with 2742 traumatic bile duct strictures werereviewed.RESULTS: There was a changing pattern of the bile ductinjury. Although most of the cases of bile duct injuriesresulted from open cholecystectomy. Other types of traumasuch as laparoscopic cholecystectomy (LC) and hepaticsurgery were increased in recent years. Moreover, serioushepato-biliary injuries following HAE using sclerotic agentssuch as sodium morrhuate and absolute ethanol for thetreatment of hepatic hemangiomas were encountered inrecent years. Experiences in how to avoid bile duct injuryand to treat traumatic biliary strictures were presented.CONCLUSION: Traumatic bile duct stricture is one of theserious complications of hepato-biliary surgery, itsprevalence seemed to be increased in recent years. Thepattern of bile duct injury was also changed and has becomemore complicated. Interventional therapy with sclerosingagents may cause serious hepatobiliary complications andshould be avoided.

  16. REVERSIBILITY OF CHOLESTATIC CHANGES FOLLOWING EXPERIMENTAL COMMON BILE-DUCT OBSTRUCTION - FACT OR FANTASY

    NARCIS (Netherlands)

    ARONSON, DC; CHAMULEAU, RAFM; FREDERIKS, WM; GOOSZEN, HG; HEIJMANS, HSA; JAMES, J

    1993-01-01

    In 36 male Wistar rats extrahepatic cholestasis was induced by ligation and transsection of the common bile duct. After 1, 2 and 3 weeks of cholestasis the bile flow was restored by means of a Roux-en-Y choledochojejunostomy. Plasma levels of bilirubin, alkaline phosphatase, GOT and clotting factor

  17. Effects of Bile Acids and the Bile Acid Receptor FXR Agonist on the Respiratory Rhythm in the In Vitro Brainstem Medulla Slice of Neonatal Sprague-Dawley Rats

    OpenAIRE

    Cong Zhao; Xianbao Wang; Yuling Cong; Yi Deng; Yijun Xu; Aihua Chen; Yanru Yin

    2014-01-01

    Intrahepatic cholestasis of pregnancy is always accompanied by adverse fetal outcomes such as malfunctions of respiration. Farnesoid X receptor (FXR) plays a critical role in the homeostasis of bile acids. Thus, we are determined to explore the effects of farnesoid X receptor (FXR) and five bile acids on respiratory rhythm generation and modulation of neonatal rats. Spontaneous periodic respiratory-related rhythmical discharge activity (RRDA) was recorded from hypoglossal nerves during the pe...

  18. Histological Changes in the Bile Duct after Long-Term Placement of a Fully Covered Self-Expandable Metal Stent within a Common Bile Duct: A Canine Study

    OpenAIRE

    Lee, Sang Soo; Song, Tae Jun; Joo, Mee; Park, Do Hyun; Seo, Dong Wan; Lee, Sung Koo; Kim, Myung-Hwan

    2014-01-01

    Background/Aims To date, it has been difficult to determine the optimal stenting duration of a fully covered self-expandable metal stent (FCSEMS) in a benign biliary stricture. The purpose of this study was to identify the histopathological changes in a bile duct resulting from long-term placement of a FCSEMS. Methods An FCSEMS was inserted into the common bile duct of 12 canines, and the animals were divided into four groups. Posteuthanasia, necropsy was performed to examine the histopatholo...

  19. Surgical versus endoscopic management of common bile duct stones.

    Science.gov (United States)

    Miller, B M; Kozarek, R A; Ryan, J A; Ball, T J; Traverso, L W

    1988-01-01

    The charts of all patients with common bile duct (CBD) stones admitted to Virginia Mason Medical Center between January 1, 1981 and July 31, 1986 were reviewed to define current methods of management and results of operative versus endoscopic therapy. Two hundred thirty-seven patients with CBD stones were treated. One hundred thirty patients had intact gallbladders. Of these patients, 76 (59%) underwent cholecystectomy and common bile duct exploration (CBDE) while 54 (41%) underwent endoscopic papillotomy (EP) only. Of the 107 patients admitted with recurrent stones after cholecystectomy, all but five were treated with EP. The overall mortality rate was 3.0%. Complications, success, and death rates were all similar for CBDE and EP, but the complications of EP were often serious and directly related to the procedure (GI hemorrhage, 6; duodenal perforation, 5; biliary sepsis, 4; pancreatitis, 1). Patients undergoing EP required significantly shorter hospitalization than those undergoing CBDE. Multivariate analysis showed that age greater than 70 years, technical failure, and complications increased the risk of death, regardless of procedure performed. Twenty-one per cent of those undergoing EP with gallbladders intact eventually required cholecystectomy. The conclusion is that the results of EP and CBDE are similar, and the use of EP has not reduced the mortality rates of this disease. PMID:3341812

  20. Development of hepatorenal syndrome in bile duct ligated rats

    Institute of Scientific and Technical Information of China (English)

    Regina M Pereira; Ana Cristina Sim(o)es e Silva; Robson AS dos Santos; Eduardo A Oliveira; Virg(i)nia HR Leite; Filipi LC Dias; Alysson S Rezende; Lincoln P Costa; Luciola S Barcelos; Mauro M Teixeira

    2008-01-01

    AIM: To evaluate in bile duct ligated rats whether there were progressive alterations of renal function without changes in histopathology.METHODS: Male Wistar rats were submitted to sham-surgery or bile duct ligation (BDL) and divided according to the post-procedure time (2, 4 and 6-wk).To determine renal function parameters, rats were placed in metabolic cages and, at the end of the experiment, blood and urine samples were obtained.Histology and hydroxyproline content were analyzed in liver and renal tissue.RESULTS: Rats with 2 wk of BDL increased free water clearance (P = 0.02), reduced urinary osmolality (P =0.03) and serum creatinine (P = 0.01) in comparison to the sham group. In contrast, rats at 6 wk of BDL showed features of HRS, including significant increase in serum creatinine and reductions in creatinine clearance,water excretion and urinary sodium concentration. Rats with 4 wk of BDL exhibited an intermediate stage of renal dysfunction. Progressive hepatic fibrosis according to post-procedure time was confirmed by histology.The increased levels of liver hydroxyproline contrasted with the absence of structural changes in the kidney, as assessed by histology and unchanged hydroxyproline content in renal tissue.CONCLUSION: Our data show that BDL produced progressive renal dysfunction without structural changes in the kidney, characterizing HRS. The present model will be useful to understand the pathophysiology of HRS.