Sample records for bilayers interbilayer bridges

  1. Increased adhesion between neutral lipid bilayers: interbilayer bridges formed by tannic acid. (United States)

    Simon, S A; Disalvo, E A; Gawrisch, K; Borovyagin, V; Toone, E; Schiffman, S S; Needham, D; McIntosh, T J


    Tannic acid (TA) is a naturally occurring polyphenolic compound that aggregates membranes and neutral phosolipid vesicles and precipitates many proteins. This study analyzes TA binding to lipid membranes and the ensuing aggregation. The optical density of dispersions of phosphatidylcholine (PC) vesicles increased upon the addition of TA and electron micrographs showed that TA caused the vesicles to aggregate and form stacks of tightly packed disks. Solution calorimetry showed that TA bound to PC bilayers with a molar binding enthalpy of -8.3 kcal/mol and zeta potential measurements revealed that TA imparted a small negative charge to PC vesicles. Monolayer studies showed that TA bound to PC with a dissociation constant of 1.5 microM and reduced the dipole potential by up to 250 mV. Both the increase in optical density and decrease in dipole potential produced by TA could be reversed by the addition of polyvinylpyrrolidone, a compound that chelates TA by providing H-bond acceptor groups. NMR, micropipette aspiration, and x-ray diffraction experiments showed that TA incorporated into liquid crystalline PC membranes, increasing the area per lipid molecule and decreasing the bilayer thickness by 2 to 4%. 2H-NMR quadrupole splitting measurements also showed that TA associated with a PC molecule for times much less than 10(-4) s. In gel phase bilayers, TA caused the hydrocarbon chains from apposing monolayers to fully interdigitate. X-ray diffraction measurements of both gel and liquid crystalline dispersions showed that TA, at a critical concentration of about 1 mM, reduced the fluid spacing between adjacent bilayers by 8-10 A. These data place severe constraints on how TA can pack between adjacent bilayers and cause vesicles to adhere. We conclude that TA promotes vesicle aggregation by reducing the fluid spacing between bilayers by the formation of transient interbilayer bridges by inserting its digallic acid residues into the interfacial regions of adjacent bilayers

  2. Interbilayer repulsion forces between tension-free lipid bilayers from simulation

    NARCIS (Netherlands)

    Smirnova, Y. G.; Aeffner, S.; Risselada, H. J.; Salditt, T.; Marrink, S. J.; Mueller, M.; Knecht, V.


    Here we report studies on biologically important intermembrane repulsion forces using molecular dynamics (MD) simulations and experimental (osmotic stress) investigations of repulsion forces between 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine bilayers. We show that the repulsion between tension-

  3. Cochleates bridged by drug molecules. (United States)

    Syed, Uwais M; Woo, Amy F; Plakogiannis, Fotios; Jin, Tuo; Zhu, Hua


    A new type of cochleate, able to microencapsulate water-soluble cationic drugs or peptides into its inter-lipid bi-layer space, was formed through interaction between negatively charged lipids and drugs or peptides acting as the inter-bi-layer bridges instead of multi-cationic metal ions. This new type of cochleate opened up to form large liposomes when treated with EDTA, suggesting that cationic organic molecules can be extracted from these cochleates in a way similar to multivalent metal ions from metal ion-bridged cochleates. Cochleates can be produced in sub-micron size using a method known as "hydrogel isolated cochleation" or simply by increasing the ratio of multivalent cationic peptides over negatively charged liposomes. When nanometer-sized cochleates and liposomes containing the same fluorescent labeled lipid component were incubated with human fibroblasts cells under identical conditions, cells exposed to cochleates showed bright fluorescent cell surfaces, whereas those incubated with liposomes did not. This result suggests that cochleates' edges made them fuse with the cell surfaces as compared to edge free liposomes. This mechanism of cochleates' fusion with cell membrane was supported by a bactericidal activity assay using tobramycin cochleates, which act by inhibiting intracellular ribosomes. Tobramycin bridged cochleates in nanometer size showed improved antibacterial activity than the drug's solution.

  4. X-Ray Kinematography of Temperature-Jump Relaxation Probes the Elastic Properties of Fluid Bilayers

    CERN Document Server

    Pabst, G; Amenitsch, H; Bernstorff, S; Laggner, P; Pabst, Georg; Rappolt, Michael; Amenitsch, Heinz; Bernstorff, Sigrid; Laggner, Peter


    The response kinetics of liquid crystalline phosphatidylcholine bilayerstacks to rapid, IR-laser induced temperature jumps has been studied bymillisecond time-resolved x-ray diffraction. The system reacts on the fasttemperature change by a discrete bilayer compression normal to its surface anda lateral bilayer expansion. Since water cannot diffuse from the excess phaseinto the interbilayer water region within the 2 ms duration of the laser pulse,the water layer has to follow the bilayer expansion, by an anomalous thinning.Structural analysis of a 20 ms diffraction pattern from the intermediate phaseindicates that the bilayer thickness remains within the limits of isothermalequilibrium values. Both, the intermediate structure and its relaxation intothe original equilibrium L_(alpha)-phase, depend on the visco-elasticproperties of the bilayer/water system. We present an analysis of therelaxation process by an overdamped one-dimensional oscillation model revealingthe concepts of Hooke's law for phospholipid bila...

  5. Structural Effects of Small Molecules on Phospholipid Bilayers Investigated by Molecular Simulations

    CERN Document Server

    Lee, B W; Sum, A K; Vattulainen, I; Patra, M; Karttunen, M; Lee, Bryan W; Faller, Roland; Sum, Amadeu K; Vattulainen, Ilpo; Patra, Michael; Karttunen, Mikko


    We summarize and compare recent Molecular Dynamics simulations on the interactions of dipalmitoylphosphatidylcholine (DPPC) bilayers in the liquid crystalline phase with a number of small molecules including trehalose, a disaccharide of glucose, alcohols, and dimethylsulfoxide (DMSO). The sugar molecules tend to stabilize the structure of the bilayer as they bridge adjacent lipid headgroups. They do not strongly change the structure of the bilayer. Alcohols and DMSO destabilize the bilayer as they increase its area per molecule in the bilayer plane and decrease the order parameter. Alcohols have a stronger detrimental effect than DMSO. The observables which we compare are the area per molecule in the plane of the bilayer, the membrane thickness, and the NMR order parameter of DPPC hydrocarbon tails. The area per molecule and the order parameter are very well correlated whereas the bilayer thickness is not necessarily correlated with them.

  6. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita


    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  7. Railroad Bridges (United States)

    Department of Homeland Security — Bridges-Rail in the United States According to The National Bridge Inspection Standards published in the Code of Federal Regulations (23 CFR 650.3), a bridge isA...

  8. Multiscale Modeling of Supported Lipid Bilayers (United States)

    Hoopes, Matthew I.; Xing, Chenyue; Faller, Roland

    Cell membranes consist of a multitude of lipid molecules that serve as a framework for the even greater variety of membrane associated proteins [1-4]. As this highly complex (nonequilibrium) system cannot easily be understood and studied in a controlled way, a wide variety of model systems have been devised to understand the dynamics, structure, and thermodynamics in biological membranes. One such model system is a supported lipid bilayer (SLB), a two-dimensional membrane suspended on a surface. SLBs have been realized to be manageable experimentally while reproducing many of the key features of real biological membranes [5,6]. One of the main advantages of supported bilayers is the physical stability due to the solid support that enables a wide range of surface characterization techniques not available to free or unsupported membranes. As SLBs maintain some of the crucial structural and dynamic properties of biological membranes, they provide an important bridge to natural systems. In order to mimic cell membranes reliably, certain structural and dynamic features have to be reliably reproduced in the artificially constructed lipid bilayers. SLBs should display lateral mobility as in living cells, because many membrane activities involve transport, recruitment, or assembly of specific components. It is also critical for membranes to exhibit the correct thermodynamic phase, namely, a fluid lipid bilayer, to respond to environmental stress such as temperature and pressure changes [7]. There are several ways to fabricate supported lipid bilayers (SLBs) on planar substrates. One can use vesicle fusion on solid substrates [5,8-10] as well as Langmuir-Blodgett deposition [11,12]. Proteoliposome adsorption and subsequent membrane formation on a mica surface was first demonstrated by Brian and McConnell [13]. Because of its simplicity and reproducibility, this is one of the most common approaches to prepare supported membranes. A diverse range of different solid substrates

  9. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays (United States)

    Lu, Bin; Smith, Tyler; Schmidt, Jacob J.


    The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which can provide insight into the nature of the particle-membrane interaction through variation of membrane and solution properties not possible with cell-based assays. However, the scope of these studies can be limited because of the low throughput characteristic of lipid bilayer platforms. We have recently described an easy to use, parallel lipid bilayer platform which we have used to electrically investigate the activity of 60 nm diameter amine and carboxyl modified polystyrene nanoparticles (NH2-NP and COOH-NP) with over 1000 lipid bilayers while varying lipid composition, bilayer charge, ionic strength, pH, voltage, serum, particle concentration, and particle charge. Our results confirm recent studies finding activity of NH2-NP but not COOH-NP. Detailed analysis shows that NH2-NP formed pores 0.3-2.3 nm in radius, dependent on bilayer and solution composition. These interactions appear to be electrostatic, as they are regulated by NH2-NP surface charge, solution ionic strength, and bilayer charge. The ability to rapidly measure a large number of nanoparticle and membrane parameters indicates strong potential of this bilayer array platform for additional nanoparticle bilayer studies.The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which

  10. Molecular Dynamics of Lipid Bilayers (United States)


    The aim of this work is to study, by molecular dynamics simulations, the properties of lipid bilayers. We have applied the vectorizable, angle-dependent force/potential algorithms to treat angle bending and torsion. Keywords: Molecular dynamics , Lipid bilayers.

  11. Bursting Bubbles and Bilayers

    Directory of Open Access Journals (Sweden)

    Steven P. Wrenn, Stephen M. Dicker, Eleanor F. Small, Nily R. Dan, Michał Mleczko, Georg Schmitz, Peter A. Lewin


    Full Text Available This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol (PEG - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented

  12. Myocardial Bridging

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan


    Full Text Available Abstract Myocardial bridging is rare. Myocardial bridges are most commonly localized in the middle segment of the left anterior descending coronary artery. The anatomic features of the bridges vary significantly. Alterations of the endothelial morphology and the vasoactive agents impact on the progression of atherosclerosis of myocardial bridging. Patients may present with chest pain, myocardial infarction, arrhythmia and even sudden death. Patients who respond poorly to the medical treatment with β-blockers warrant a surgical intervention. Myotomy is a preferred surgical procedure for the symptomatic patients. Coronary stent deployment has been in limited use due to the unsatisfactory long-term results.

  13. Lipid bilayers on nano-templates (United States)

    Noy, Aleksandr; Artyukhin, Alexander B.; Bakajin, Olgica; Stoeve, Pieter


    A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents

  14. Bridge Management Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper bridge management systems are discussed with special emphasis on management systems for reinforced concrete bridges. Management systems for prestressed concrete bridges, steel bridges, or composite bridges can be developed in a similar way....

  15. National Bridge Inventory (NBI) Bridges (United States)

    Department of Homeland Security — The NBI is a collection of information (database) describing the more than 600,000 of the Nation's bridges located on public roads, including Interstate Highways,...

  16. Bridged graphite oxide materials (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)


    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  17. Building Bridges

    DEFF Research Database (Denmark)

    The report Building Bridges adresses the questions why, how and for whom academic audience research has public value, from the different points of view of the four working groups in the COST Action IS0906 Transforming Audiences, Transforming Societies – “New Media Genres, Media Literacy and Trust...... in the Media”, “Audience Interactivity and Participation”, “The Role of Media and ICT Use for Evolving Social Relationships” and “Audience Transformations and Social Integration”. Building Bridges is the result of an ongoing dialogue between the Action and non-academic stakeholders in the field of audience...... Belgrade), Leo Pekkala (Finnish Centre for Media Education and Audiovisual Media/MEKU), Julie Uldam (Network on Civic Engagement and Social Innovation) and Gabriella Velics (Community Media Forum Europe)....

  18. Mathematical bridges

    CERN Document Server

    Andreescu, Titu; Tetiva, Marian


    Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...

  19. Plastic Bridge

    Institute of Scientific and Technical Information of China (English)



    Already ubiquitous in homes and cars, plastic is now appearing inbridges. An academic-industrial consortium based at the University ofCalifornia in San Diego is launching a three-year research program aimed atdeveloping the world’s first plastic highway bridge, a 450-foot span madeentirely from glass-,carbon,and polymer-fiber-reinforced composite mate-rials, the stuff of military aircraft. It will cross Interstate 5 to connect thetwo sides of the school’s campus.

  20. Bilayer Effects of Antimalarial Compounds.

    Directory of Open Access Journals (Sweden)

    Nicole B Ramsey

    Full Text Available Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05; MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all.

  1. Horizontal Bilayer for Electrical and Optical Recordings

    Directory of Open Access Journals (Sweden)

    Alf Honigmann


    Full Text Available Artificial bilayer containing reconstituted ion channels, transporters and pumps serve as a well-defined model system for electrophysiological investigations of membrane protein structure–function relationship. Appropriately constructed microchips containing horizontally oriented bilayers with easy solution access to both sides provide, in addition, the possibility to investigate these model bilayer membranes and the membrane proteins therein with high resolution fluorescence techniques up to the single-molecule level. Here, we describe a bilayer microchip system in which long-term stable horizontal free-standing and hydrogel-supported bilayers can be formed and demonstrate its prospects particularly for single-molecule fluorescence spectroscopy and high resolution fluorescence microscopy in probing the physicochemical properties like phase behavior of the bilayer-forming lipids, as well as in functional studies of membrane proteins.

  2. Superdiffusion in supported lipid bilayers

    CERN Document Server

    Campagnola, Grace; Schroder, Bryce W; Peersen, Olve B; Krapf, Diego


    We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behavior. However, the time-averaged MSD of individual trajectories is found to be linear with respect to lag time, as in Brownian diffusion. These observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. Our experimental results are shown to agree with analytical models of bulk-mediated diffusion and with numerical simulations.

  3. Pseudocritical Behavior and Unbinding of Phospholipid Bilayers

    DEFF Research Database (Denmark)

    Lemmich, Jesper; Mortensen, Kell; Ipsen, John Hjorth;


    The temperature dependence of the small-angle neutron scattering from fully hydrated multilamellar phospholipid bilayers near the main phase transition is analyzed by means of a simple geometric model which yields both the lamellar repeat distance as well as the hydrophobic thickness of the bilayer...

  4. Butterfly micro bilayer thermal energy harvester geometry with improved performances (United States)

    Trioux, E.; Monfray, S.; Basrour, S.


    This paper reports the recent progress of a new technology to scavenge thermal energy, implying a double-step transduction through thermal buckling of a bilayer aluminum nitride / aluminum bridge and piezoelectric transduction. A completely new scavenger design is presented, improving greatly its final performance. The butterfly shape reduces the overall device mechanical rigidity, which leads to a decrease of buckling temperatures compared to previously studied rectangular plates. In a first time we compared performances of rectangular and butterfly plates with an equal thickness of Al and AlN. In a second time, with a thicker Al layer than AlN layer, we will study only butterfly structure in terms of output power and buckling temperatures, and compare it to the previous stack.

  5. Planar bilayer membranes from photoactivable phospholipids. (United States)

    Borle, F; Sänger, M; Sigrist, H


    Planar bilayer membranes formed from photoactivable phospholipids have been characterized by low frequency voltametry. Cyclic voltametric measurements were applied for simultaneous registration of planar membrane conductivity and capacitance. The procedure has been utilized to characterize the formation and stability of planar bilayer membranes. Bilayer membranes were formed from N'-(1,2-dimyristoyl-sn-glycero-3-phosphoethyl)-N-((m-3- trifluoromethyldiazirine)phenyl)thiourea (C14-PED), a head-group photosensitive phospholipid. In situ photoactivation of C14-PED at wavelengths greater than or equal to 320 nm altered neither the mean conductivity nor the capacitance of the bilayer. Ionophore (valinomycin) and ion channel (gramicidin) activities were not impaired upon photoactivation. In contrast, bilayer membranes formed from 1,2-bis(hexadeca-2,4-dienoyl)-sn- glycero-3-phosphocholine (C16-DENPC) revealed short life times. In situ photopolymerization of the diene fatty acids significantly increased the membrane conductivity or led to membrane rupture.

  6. Multiscale Modeling of supported bilayers (United States)

    Faller, Roland; Xing, Chenyue; Hoopes, Matthew I.


    Supported Lipid Bilayers are an abundant research platform for understanding the behavior of real cell membranes as they allow for additional mechanical stability. We studied systematically the changes that a support induces on a phospholipid bilayer using coarse-grained molecular modeling on different levels. We characterize the density and pressure profiles as well as the density imbalance inflicted on the membrane by the support. We also determine the diffusion coefficients and characterize the influence of different corrugations of the support. We then determine the free energy of transfer of phospholipids between the proximal and distal leaflet of a supported membrane using the coarse-grained Martini model. It turns out that there is at equilibrium about a 2-3% higher density in the proximal leaflet. These results are in favorable agreement with recent data obtained by very large scale modeling using a water free model where flip-flop can be observed directly. We compare results of the free energy of transfer obtained by pulling the lipid across the membrane in different ways. There are small quantitative differences but the overall picture is consistent. We are additionally characterizing the intermediate states which determine the barrier height and therefore the rate of translocation.

  7. Nanocrystal bilayer for tandem catalysis. (United States)

    Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu; Huo, Ziyang; Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Somorjai, Gabor A; Yang, Peidong


    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO(2)-Pt and Pt-SiO(2), can be used to catalyse two distinct sequential reactions. The CeO(2)-Pt interface catalysed methanol decomposition to produce CO and H(2), which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO(2) interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts.

  8. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong


    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  9. Biotechnology Applications of Tethered Lipid Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Joshua A. Jackman


    Full Text Available The importance of cell membranes in biological systems has prompted the development of model membrane platforms that recapitulate fundamental aspects of membrane biology, especially the lipid bilayer environment. Tethered lipid bilayers represent one of the most promising classes of model membranes and are based on the immobilization of a planar lipid bilayer on a solid support that enables characterization by a wide range of surface-sensitive analytical techniques. Moreover, as the result of molecular engineering inspired by biology, tethered bilayers are increasingly able to mimic fundamental properties of natural cell membranes, including fluidity, electrical sealing and hosting transmembrane proteins. At the same time, new methods have been employed to improve the durability of tethered bilayers, with shelf-lives now reaching the order of weeks and months. Taken together, the capabilities of tethered lipid bilayers have opened the door to biotechnology applications in healthcare, environmental monitoring and energy storage. In this review, several examples of such applications are presented. Beyond the particulars of each example, the focus of this review is on the emerging design and characterization strategies that made these applications possible. By drawing connections between these strategies and promising research results, future opportunities for tethered lipid bilayers within the biotechnology field are discussed.

  10. Cable Supported Bridges

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    Cable supported bridges in the form of suspension bridges and cable-stayed bridges are distinguished by their ability to overcome large spans.The book concentrates on the synthesis of cable supported bridges, covering both design and construction aspects. The analytical part covers simple methods...

  11. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov;


    We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...... chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that gel domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method...

  12. Spin dynamics of bilayer manganites

    Indian Academy of Sciences (India)

    Tapan Chatterji


    The results of inelastic and quasi-elastic neutron scattering investigations on the 40% hole-doped quasi-2D bilayer manganites La1.2Sr1.8Mn2O7 have been reviewed. The complete set of exchange interactions have been determined on the basis of a localized Heisenberg model. However, the spin wave dispersion in La1.2Sr1.8Mn2O7 shows softening close to the zone boundary and are also heavily damped especially close to the zone boundary and deviate from that expected for a simple Heisenberg model. A minimal double exchange model including quantum corrections can reproduce these effects qualitatively but falls short of quantitative agreement.

  13. Fragmented state of lipid bilayers in water

    DEFF Research Database (Denmark)

    Helfrich, W.; Thimmel, J.; Klösgen, Beate Maria


    The bilayers of some typical biological membrane lipids such as PC and DGDG disintegrate in a large excess of water to form an optically invisible dispersive bilayer phase. `Dark bodies' can be reversibly precipitated from it by raising the temperature. The dispersive phase probably consists...... of `knotted sticks', i.e. very thin nodular tubes of bilayer. After reviewing pertinent experimental and theoretical work we report on the discovery of a lower consolute point near room temperature in DGDG/water systems. Its existence shows that the dispersive phase and the dark bodies belong to the same...

  14. Berry phase transition in twisted bilayer graphene (United States)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.


    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  15. Bilayer-thickness-mediated interactions between integral membrane proteins

    CERN Document Server

    Kahraman, Osman; Klug, William S; Haselwandter, Christoph A


    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology al...

  16. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D


    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  17. Bridges in Complex Networks

    CERN Document Server

    Wu, Ang-Kun; Liu, Yang-Yu


    A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real networks typically have more bridges than their completely randomized counterparts, but very similar fraction of bridges as their degree-preserving randomizations. We define a new edge centrality measure, called bridgeness, to differentiate the importance of a bridge in damaging a network. We find that certain real networks have very large average and variance of bridgeness compared to their degree-preserving randomizations and other real networks. Finally, we offer an analytical framework to calculate the bridge fraction and average bridgeness for uncorrelated random networks with arbitrary degree distributions.

  18. Dynamic Morphologies of Microscale Droplet Interface Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Mruetusatorn, Prachya [ORNL; Boreyko, Jonathan B [ORNL; Sarles, Stephen A [ORNL; Venkatesan, Guru [The University of Tennessee; Hayes, Douglas G [ORNL; Collier, Pat [ORNL


    Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers ( DIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the DIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and Fission: When forming DIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayers continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform Shrinking: When using the lipid-in method (lipids in water phase) to form DIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and Unzipping: Finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces.

  19. RKKY interaction in bilayer graphene (United States)

    Mohammadi, Yawar; Moradian, Rostam


    We study the RKKY interaction between two magnetic impurities located on the same layer (intralayer case) or on different layers (interlayer case) in undoped bilayer graphene (BLG) in the four-bands model, by directly calculating the Green functions in the eigenvalues and eigenvectors representation. Our results show that both intra- and interlayer RKKY interactions between two magnetic impurities located on the same (opposite) sublattice are always ferromagnetic (antiferromagnetic). Furthermore we find unusual long-distance decay of the RKKY interaction in BLG. The intralyer RKKY interactions between two magnetic impurities located on the same sublattice, J AnAn(R) and J BnBn(R), decay closely as 1 /R6 and 1 /R2 at large impurity distances respectively, but when they are located on opposite sublattices the RKKY interactions exhibit 1 /R4 decays approximately. In the interlayer case, the RKKY interactions between two magnetic impurities located on the same sublattice show a decay close to 1 /R4 at large impurity distances, but if two magnetic impurities be on opposite sublattices the RKKY interactions, J A1B2(R) and J B1A2(R), decay closely as 1 /R6 and 1 /R2 respectively. Both intra- and interlayer RKKY interactions have anisotropic oscillatory factors which for intralayer case is equal to that for single layer graphene (SLG). Our results at weak and strong interlayer coupling limits reduce to the RKKY interaction of SLG and that of BLG in the two-bands approximation respectively.

  20. Piezoelectricity in asymmetrically strained bilayer graphene (United States)

    Van der Donck, M.; De Beule, C.; Partoens, B.; Peeters, F. M.; Van Duppen, B.


    We study the electronic properties of commensurate faulted bilayer graphene by diagonalizing the one-particle Hamiltonian of the bilayer system in a complete basis of Bloch states of the individual graphene layers. Our novel approach is very general and can be easily extended to any commensurate graphene-based heterostructure. Here, we consider three cases: (i) twisted bilayer graphene, (ii) bilayer graphene where triaxial stress is applied to one layer and (iii) bilayer graphene where uniaxial stress is applied to one layer. We show that the resulting superstructures can be divided into distinct classes, depending on the twist angle or the magnitude of the induced strain. The different classes are distinguished from each other by the interlayer coupling mechanism, resulting in fundamentally different low-energy physics. For the cases of triaxial and uniaxial stress, the individual graphene layers tend to decouple and we find significant charge transfer between the layers. In addition, this piezoelectric effect can be tuned by applying a perpendicular electric field. Finally, we show how our approach can be generalized to multilayer systems.

  1. Magnetoacoustic resonance in magnetoelectric bilayers (United States)

    Filippov, D. A.; Bichurin, M. I.; Petrov, V. M.; Srinivasan, G.


    Layered composites of ferrite and ferroelectric single crystal thin films are of interest for studies on magnetoelectric interactions [1,2]. Such interactions result in unique and novel effects that are absent in single phase materials. For example, in a single crystal composite it is possible to control the ferromagnetic resonance (FMR) parameters for the ferrite by means of hypersonic oscillations induced in the ferroelectric phase. The absorption of acoustic oscillations by the ferrite results in variation in FMR line shape and power absorbed. One anticipates resonance absorption of elastic waves when the frequency of elastic waves coincides with the precession frequency of magnetization vector. This work is concerned with the nature of FMR under the influence of acoustic oscillations with the same frequency as FMR. Bilayers of ferrite and piezoelectric single crystals are considered. Hypersonic waves induced in the piezoelectric phase transmit acoustic power into ferrite due to mechanical connectivity between the phases. That transmission depends strongly on interface coupling [3]. We estimate the resulting variations in ferromagnetic resonance line shape. Estimates of magnetoelectric effect at magnetoacoustic resonance are also given. In addition, dependence of absorption of acoustic power on sample dimensions and compliances, electric and magnetic susceptibilities, piezoelectric and magnetostriction coefficients is discussed. The theory provided here is important for an understanding of interface coupling and the nature of magnetoelastic interactions in the composites. 1. M. I. Bichurin and V. M. Petrov, Zh. Tekh. Fiz. 58, 2277 (1988) [Sov. Phys. Tech. Phys. 33, 1389 (1988)]. 2. M.I. Bichurin, I. A. Kornev, V. M. Petrov, A. S. Tatarenko, Yu. V. Kiliba, and G. Srinivasan. Phys. Rev. B 64, 094409 (2001). 3. M. I. Bichurin, V. M. Petrov, and G. Srinivasan, J. Appl. Phys. 92, 7681 (2002). This work was supported by grants from the Russian Ministry of Education (

  2. Taizhou Yangtze River Bridge

    Institute of Scientific and Technical Information of China (English)


    Taizhou Bridge lies between Taizhou, Zhenjiang and Changzhou City in Jiangsu Province. The total length of Taizhou Bridge is 62.088 kin. The whole line is designed by freeway codes with six lanes in two directions. The wholeinvestment is 9.37 billion RMB and the planned construction duration is 5.5 years. The main bridge crossing the Yangtze River is a continuous three-pylon two-span suspension bridge with the main span of 1 080 m. The bridge system is realized for the first time and ranks first in the world until now.

  3. Possible mechanism of adhesion in a mica supported phospholipid bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Pertsin, Alexander, E-mail: [Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg (Germany); Institute of Organo-Element Compounds, Russian Academy of Sciences, Vavilov Str. 28, 117991 Moscow (Russian Federation); Grunze, Michael [Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg (Germany); Institute for Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von- Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)


    Phospholipid bilayers supported on hydrophilic solids like silica and mica play a substantial role in fundamental studies and technological applications of phospholipid membranes. In both cases the molecular mechanism of adhesion between the bilayer and the support is of primary interest. Since the possibilities of experimental methods in this specific area are rather limited, the methods of computer simulation acquire great importance. In this paper we use the grand canonical Monte Carlo technique and an atomistic force field to simulate the behavior of a mica supported phospholipid bilayer in pure water as a function of the distance between the bilayer and the support. The simulation reveals a possible adhesion mechanism, where the adhesion is due to individual lipid molecules that protrude from the bilayer and form widely spaced links with the support. Simultaneously, the bilayer remains separated from the bilayer by a thin water interlayer which maintains the bilayer fluidity.

  4. Ionic motion in PEDOT and PPy conducting polymer bilayers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Skaarup, Steen


    Conducting polymer bilayers with poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), each containing dodecyl benzenesulfonate (DBS) as immobile dopant species, were synthesized galvanostatically. The electrochemical behaviour of the bilayers was investigated using cyclic voltammetry...

  5. Design of Asymmetric Peptide Bilayer Membranes. (United States)

    Li, Sha; Mehta, Anil K; Sidorov, Anton N; Orlando, Thomas M; Jiang, Zhigang; Anthony, Neil R; Lynn, David G


    Energetic insights emerging from the structural characterization of peptide cross-β assemblies have enabled the design and construction of robust asymmetric bilayer peptide membranes. Two peptides differing only in their N-terminal residue, phosphotyrosine vs lysine, coassemble as stacks of antiparallel β-sheets with precisely patterned charged lattices stabilizing the bilayer leaflet interface. Either homogeneous or mixed leaflet composition is possible, and both create nanotubes with dense negative external and positive internal solvent exposed surfaces. Cross-seeding peptide solutions with a preassembled peptide nanotube seed leads to domains of different leaflet architecture within single nanotubes. Architectural control over these cross-β assemblies, both across the bilayer membrane and along the nanotube length, provides access to highly ordered asymmetric membranes for the further construction of functional mesoscale assemblies.

  6. Capacitance Variation of Electrolyte-Gated Bilayer Graphene Based Transistors


    Hediyeh Karimi; Rubiyah Yusof; Mohammad Taghi Ahmadi; Mehdi Saeidmanesh; Meisam Rahmani; Elnaz Akbari; Wong King Kiat


    Quantum capacitance of electrolyte-gated bilayer graphene field-effect transistors is investigated in this paper. Bilayer graphene has received huge attention due to the fact that an energy gap could be opened by chemical doping or by applying external perpendicular electric field. So, this extraordinary property can be exploited to use bilayer graphene as a channel in electrolyte-gated field-effect transistors. The quantum capacitance of bi-layer graphene with an equivalent circuit is presen...

  7. Temperature effect on plasmons in bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Digish K., E-mail:; Sharma, A. C. [Physics Department, Faculty of Science, The M.S. University of Baroda, Vadodara-390002, Gujarat (India); Ashraf, S. S. Z. [Physics Department, Faculty of Science, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh (India); Ambavale, S. K. [Vishwakarma Government Engineering College Chandkheda, Ahmedabad-382424, Gujarat (India)


    We have theoretically investigated the plasmon dispersion and damping rate of doped bilayer graphene (BLG) at finite temperatures within the random phase approximation. Our computed results on plasmon dispersion show that plasmon frequency enhances with increasing temperatures in contrast to single layer graphene where it is suppressed. This can be attributed to the fact that the dynamic response of the electron gas or screening in bilayer graphene is different from that of single layer graphene. Further the temperature effect on damping rate is also discussed.

  8. Bilayer graphene quantum dot defined by topgates

    Energy Technology Data Exchange (ETDEWEB)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)


    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  9. Bilayered Films Based on Novel Polymer Derivative for Improved Ocular Therapy of Gatifloxacin

    Directory of Open Access Journals (Sweden)

    Naval Dinesh Aher


    Full Text Available Context. Thiomers could prove to be suitable mucoadhesives for fabrication of ocular inserts. Objective. The study intends to explore the application of thiolated sodium alginate (TSA to the preparation of bilayered ocular inserts of gatifloxacin. Methods. Cysteine moieties were grafted onto sodium alginate (SA and the resultant thiomer was characterized for relevant physicochemical properties. Bilayered inserts were fabricated with a mucoadhesive immediate release layer composed of either SA or TSA and a sustained release layer composed of acrylates. Films were prepared by solvent evaporation and evaluated for mechanical properties, drug content, and in vitro release. Results and Discussion. The synthesized TSA possessed 248.80±49.7 μmol thiol groups/gm and its solutions thickened on standing due to disulphide bridging. Its films showed improved mucoadhesion and also a strikingly beneficial property of resisting erosion and remaining as a hydrated adhesive layer for the duration of drug release. The bilayered films were found to be flexible, with good folding endurance, uniform thickness, and appropriate drug content, and showed a release of about 80% of loaded gatifloxacin in 12 h. Conclusion. The study demonstrates promise in employing thiolated polymer in conjunction with acrylates for the design of ocular inserts for twice a day therapy with gatifloxacin.

  10. Nanostructured antireflective bilayers: Optical design and preparation

    Energy Technology Data Exchange (ETDEWEB)

    Detrich, Ádám [Budapest University of Technology and Economics, Department of Physical Chemistry and Materials Science, Centre for Colloid Chemistry, H-1521 Budapest (Hungary); Nagy, Norbert [Research Centre for Natural Sciences (MTA TTK), Institute for Technical Physics and Materials Science (MFA), P.O. Box 49, H-1525 Budapest (Hungary); Nyári, Mária; Albert, Emőke; Zámbó, Dániel [Budapest University of Technology and Economics, Department of Physical Chemistry and Materials Science, Centre for Colloid Chemistry, H-1521 Budapest (Hungary); Hórvölgyi, Zoltán, E-mail: [Budapest University of Technology and Economics, Department of Physical Chemistry and Materials Science, Centre for Colloid Chemistry, H-1521 Budapest (Hungary)


    We show different methods for tailoring and fabrication of various cost-effective antireflective nanocoatings on transparent and non-transparent substrates. The main purpose was to prepare coatings with decreased reflectance in the full visible wavelength range using simple wet layer deposition techniques. Structure of coatings was designed by optical simulations applying simplified calculations. The refractive index of substrates was also considered for the calculations. The advantageous optical properties were achieved by bilayered structures combining compact and porous sol–gel derived oxide layers and nanoparticulate films. The bilayered structures enhance the flexibility of design by not only the selection of the layer thicknesses but also by different ways of adjusting the effective refractive index of the layers. Furthermore, chemical stability of the coatings was also investigated. The optical and structural properties of prepared films and bilayered coatings were studied by UV–vis spectroscopy and scanning electron microscopy, respectively. The transmittance of coated glass substrates was above 97.5%, while the reflectance of coated silicon substrates was below 4% between 450 nm and 900 nm. - Highlights: • Designed antireflective bilayered coatings on glass and silicon. • Simple, colloid chemical approaches to preparation. • Favorable optical properties by combining compact and porous oxide layers. • Different ways for adjusting the effective refractive index. • Strong chemical resistance against acidic effects.

  11. Reversible Polarization Rotation in Epitaxial Ferroelectric Bilayers

    DEFF Research Database (Denmark)

    Liu, Guangqing; Zhang, Qi; Huang, Hsin-Hui


    large-scale polarization rotation switching (≈60 μC cm−2) and an effective d 33 response 500% (≈250 pm V−1) larger than the PZT-R layer alone. Furthermore, this enhancement is stable for more than 107 electrical switching cycles. These bilayers present a simple and highly controllable means to design...

  12. Localized plasmons in bilayer graphene nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Xiao, Sanshui; Mortensen, N. Asger


    We study localized plasmonic excitations in bilayer graphene (BLG) nanodisks, comparing AA-stacked and AB-stacked BLG and contrasting the results to the case of two monolayers without electronic hybridization. The electrodynamic response of the BLG electron gas is described in terms of a spatially...

  13. Capillary wrinkling of thin bilayer polymeric sheets (United States)

    Chang, Jooyoung; Menon, Narayanan; Russell, Thomas

    We have investigated capillary force induced wrinkling on a floated polymeric bilayer thin sheet. The origin of the wrinkle pattern is compressional hoop stress caused by the capillary force of a water droplet placed on the floated polymeric thin sheet afore investigated. Herein, we study the effect of the differences of surface energy arising from the hydrophobicity of Polystyrene (PS Mw: 97 K, Contact Angle: 88 º) and the hydrophilicity of Poly(methylmethacrylate) (PMMA Mw: 99K, Contact Angle: 68 º) on two sides of a bilayer film. We measure the number and the length of the wrinkles by broadly varying the range of thicknesses of top (9 nm to 550 nm) and bottom layer (25 nm to 330 nm). At the same, there is only a small contrast in mechanical properties of the two layers (PS E = 3.4 GPa, and PMMA E = 3 GPa). The number of the wrinkles is not strongly affected by the composition (PS(Top)/PMMA(Bottom) or PMMA(Top)/PS(Bottom)) and the thickness of each and overall bilayer system. However, the length of the wrinkle is governed by the contact angle of the drop on the top layer of bilayer system. We also compare this to the wrinkle pattern obtained in monolayer systems over a wide range of thickness from PS and PMMA (7 nm to 1 μm). W.M. Keck Foundation.

  14. Bilayer Tablet via Microsphere: A Review

    Directory of Open Access Journals (Sweden)

    Piyushkumar Vinubhai Gundaraniya


    Full Text Available The aim of the present work is to develop bilayer tablets containing sustained release microspheres as one layer and immediate release as another layer. The proposed dosage form is intended to decrease the dosing frequency and the combined administration of an anti-diabetic agent. Several pharmaceutical companies are currently developing bi-layer tablets, for a variety of reasons: patent extension, therapeutic, marketing to name a few. To reduce capital investment, quite often existing but modified tablet presses are used to develop and produce such tablets. One such approach is using microspheres as carriers for drugs also known as micro particles. It is the reliable means to deliver the drug to the target site with specificity, if modified, and to maintain the desired concentration at the site of interest. Microspheres received much attention not only for prolonged release, but also for targeting of anti-diabetic drugs. Bilayer tablet via microsphere is new era for the successful development of controlled release formulation along with various features to provide a way of successful drug delivery system. Especially when in addition high production output is required. An attempt has been made in this review article to introduce the society to the current technological developments in bilayer and floating drug delivery system.

  15. Confinement of charge carriers in bilayer graphene

    NARCIS (Netherlands)

    Goossens, A.M.


    In this thesis we investigate the fundamental properties of electronic transport in bilayer graphene. We do this by confining electrons to narrow constrictions and small islands. Our key result is the fabrication and measurement of nanoscale devices that permit confinement with electric fields in b

  16. Electronic properties of a biased graphene bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Eduardo V; Lopes dos Santos, J M B [CFP and Departamento de Fisica, Faculdade de Ciencias Universidade do Porto, P-4169-007 Porto (Portugal); Novoselov, K S; Morozov, S V; Geim, A K [Department of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Peres, N M R [Centre of Physics and Departamento de Fisica, Universidade do Minho, P-4710-057 Braga (Portugal); Nilsson, Johan; Castro Neto, A H [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, MA 02215 (United States); Guinea, F [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid (Spain)


    We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system-a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and {gamma}{sub 4} (inter-layer), and the on-site energy {Delta}.

  17. Electronic properties of a biased graphene bilayer. (United States)

    Castro, Eduardo V; Novoselov, K S; Morozov, S V; Peres, N M R; Lopes dos Santos, J M B; Nilsson, Johan; Guinea, F; Geim, A K; Castro Neto, A H


    We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system-a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and γ(4) (inter-layer), and the on-site energy Δ.

  18. Topological transformation of a surfactant bilayer

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.


    Surfactant lamellar phases are often complicated by the formation of multilamellar (onions) under shear, which can originate simply by shaking the sample. A systematic study has been performed on the C10E3-D2O system in which different bilayer structures under a steady shear flow were investigated...

  19. Electronic properties of graphene-based bilayer systems

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); Sboychakov, A.O. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Rakhmanov, A.L. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); All-Russia Research Institute of Automatics, Moscow, 127055 (Russian Federation); Nori, Franco, E-mail: [CEMS, RIKEN, Saitama 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)


    This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin–orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.

  20. Electronic properties of graphene-based bilayer systems (United States)

    Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.; Nori, Franco


    This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin-orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.

  1. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth


    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two......-component DMPC-DSPC bilayers and a remarkable enhanced hydrolytic activity of the PLA/sub 2/-enzyme for the DMPC-rich phase is seen. Furthermore, in a supported double bilayer system a characteristic ripple structure, most likely related to the formation of the P/sub beta /-ripple phase is observed....

  2. Sustainable Bridge Infrastructure Procurement

    DEFF Research Database (Denmark)

    Safi, Mohammed; Du, Guangli; Simonsson, Peter


    The lack of a flexible but systematic approach for integrating lifecycle aspects into bridge investment decisions is a major obstacle hindering the procurement of sustainable bridge infrastructures. This paper addresses this obstacle by introducing a holistic approach that agencies could use...... to procure the most “sustainable” (lifecycle-efficient) bridge through a fair design-build (D-B) tendering process, considering all the main aspects: life-cycle cost (LCC), service life-span, aesthetic demands and environmental impacts (LCA)....

  3. Bridge Crossing Simulator (United States)


    Requirement BCS Computer-controlled hydraulic actuation system to impart simulated crossing loads on an entire bridge structure undergoing fatigue test ...structure. Bridge test site with prepared embankments corresponding to the span and bank condition requirements of the bridge under test Conduct real...Center (AEC). (5) Sample size and number of crossings required. The number of required simulated crossings to conduct fatigue testing per the

  4. Theoretical studies of lipid bilayer electroporation using molecular dynamics simulations (United States)

    Levine, Zachary Alan

    Computer simulations of physical, chemical, and biological systems have improved tremendously over the past five decades. From simple studies of liquid argon in the 1960s to fully atomistic simulations of entire viruses in the past few years, recent advances in high-performance computing have continuously enabled simulations to bridge the gap between scientific theory and experiment. Molecular dynamics simulations in particular have allowed for the direct observation of spatial and temporal events which are at present inaccessible to experiments. For this dissertation I employ all-atom molecular dynamics simulations to study the transient, electric field-induced poration (or electroporation) of phospholipid bilayers at MV/m electric fields. Phospholipid bilayers are the dominant constituents of cell membranes and act as both a barrier and gatekeeper to the cell interior. This makes their structural integrity and susceptibility to external perturbations an important topic for study, especially as the density of electromagnetic radiation in our environment is increasing steadily. The primary goal of this dissertation is to understand the specific physical and biological mechanisms which facilitate electroporation, and to connect our simulated observations to experiments with live cells and to continuum models which seek to describe the underlying biological processes of electroporation. In Chapter 1 I begin with a brief introduction to phospholipids and phospholipid bilayers, followed by an extensive overview of electroporation and atomistic molecular dynamics simulations. The following chapters will then focus on peer-reviewed and published work we performed, or on existing projects which are currently being prepared for submission. Chapter 2 looks at how external electric fields affect both oxidized and unoxidized lipid bilayers as a function of oxidation concentration and oxidized lipid type. Oxidative damage to cell membranes represents a physiologically relevant

  5. Bridging the Gap


    Kramer Overgaard, Majken; Broeng, Jes; Jensen, Monika Luniewska; Murdock, Karen; Schmidt, Iben Julie


    Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures. Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ve...

  6. Bridging the Gap

    DEFF Research Database (Denmark)

    Kramer Overgaard, Majken; Broeng, Jes; Jensen, Monika Luniewska;

    Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures.......Bridging the Gap (BtG) is a 2-year project funded by The Danish Industry Foundation. The goal of Bridging the Gap has been to create a new innovation model which will increase the rate at which Danish universities can spinout new technology ventures....

  7. Semiconductor bridge (SCB) detonator (United States)

    Bickes, Jr., Robert W.; Grubelich, Mark C.


    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  8. Principles of Bridge Reliability

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Nowak, Andrzej S.

    The paper gives a brief introduction to the basic principles of structural reliability theory and its application to bridge engineering. Fundamental concepts like failure probability and reliability index are introduced. Ultimate as well as serviceability limit states for bridges are formulated...

  9. Fluctuations in lipid bilayers: Are they understood?

    CERN Document Server

    Schmid, Friederike


    We review recent computer simulation studies of undulating lipid bilayers. Theoretical interpretations of such fluctuating membranes are most commonly based on generalized Helfrich-type elastic models, with additional contributions of local "protrusions" and/or density fluctuations. Such models provide an excellent basis for describing the fluctuations of tensionless bilayers in the fluid phase at a quantitative level. However, this description is found to fail for membranes in the gel phase and for membranes subject to high tensions. The fluctuations of tilted gel membranes show a signature of the modulated ripple structure, which is a nearby phase observed in the pretransition regime between the fluid and tilted gel state. This complicates a quantitative analysis on mesoscopic length scales. In the case of fluid membranes under tension, the large-wavelength fluctuation modes are found to be significantly softer than predicted by theory. In the latter context, we also address the general problem of the relat...

  10. Stokesian jellyfish: Viscous locomotion of bilayer vesicles

    CERN Document Server

    Evans, Arthur A; Lauga, Eric


    Motivated by recent advances in vesicle engineering, we consider theoretically the locomotion of shape-changing bilayer vesicles at low Reynolds number. By modulating their volume and membrane composition, the vesicles can be made to change shape quasi-statically in thermal equilibrium. When the control parameters are tuned appropriately to yield periodic shape changes which are not time-reversible, the result is a net swimming motion over one cycle of shape deformation. For two classical vesicle models (spontaneous curvature and bilayer coupling), we determine numerically the sequence of vesicle shapes through an enthalpy minimization, as well as the fluid-body interactions by solving a boundary integral formulation of the Stokes equations. For both models, net locomotion can be obtained either by continuously modulating fore-aft asymmetric vesicle shapes, or by crossing a continuous shape-transition region and alternating between fore-aft asymmetric and fore-aft symmetric shapes. The obtained hydrodynamic e...

  11. Electric Octupole Order in Bilayer Rashba System (United States)

    Hitomi, Takanori; Yanase, Youichi


    The odd-parity multipole is an emergent degree of freedom, leading to spontaneous inversion symmetry breaking. The odd-parity multipole order may occur by forming staggered even-parity multipoles in a unit cell. We focus on a locally noncentrosymmetric bilayer Rashba system, and study an odd-parity electric octupole order caused by the antiferro stacking of local electric quadrupoles. Analyzing the forward scattering model, we show that the electric octupole order is stabilized by a layer-dependent Rashba spin-orbit coupling. The roles of the spin-orbit coupling are clarified on the basis of the analytic formula of multipole susceptibility. The spin texture allowed in the D2d point group symmetry and its magnetic response are revealed. Furthermore, we show that the parity-breaking quantum critical point appears in the magnetic field. The possible realization of the electric octupole order in bilayer high-Tc cuprate superconductors is discussed.

  12. Structure of twisted and buckled bilayer graphene (United States)

    Jain, Sandeep K.; Juričić, Vladimir; Barkema, Gerard T.


    We study the atomic structure of twisted bilayer graphene, with very small mismatch angles (θ ∼ {0.28}0), a topic of intense recent interest. We use simulations, in which we combine a recently presented semi-empirical potential for single-layer graphene, with a new term for out-of-plane deformations, (Jain et al 2015 J. Phys. Chem. C 119 9646) and an often-used interlayer potential (Kolmogorov et al 2005 Phys. Rev. B 71 235415). This combination of potentials is computationally cheap but accurate and precise at the same time, allowing us to study very large samples, which is necessary to reach very small mismatch angles in periodic samples. By performing large scale atomistic simulations, we show that the vortices appearing in the Moiré pattern in the twisted bilayer graphene samples converge to a constant size in the thermodynamic limit. Furthermore, the well known sinusoidal behavior of energy no longer persists once the misorientation angle becomes very small (θ \\lt {1}0). We also show that there is a significant buckling after the relaxation in the samples, with the buckling height proportional to the system size. These structural properties have direct consequences on the electronic and optical properties of bilayer graphene.

  13. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics


    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  14. Self-folding graphene-polymer bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tao [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Yoon, ChangKyu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Jin, Qianru [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Mingen [Department of Physics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Liu, Zewen [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Gracias, David H., E-mail: [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)


    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  15. Self-folding graphene-polymer bilayers (United States)

    Deng, Tao; Yoon, ChangKyu; Jin, Qianru; Li, Mingen; Liu, Zewen; Gracias, David H.


    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  16. Method of fabricating lipid bilayer membranes on solid supports (United States)

    Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Glenn, Jeffrey S. (Inventor); Cheong, Kwang Ho (Inventor)


    The present invention provides a method of producing a planar lipid bilayer on a solid support. With this method, a solution of lipid vesicles is first deposited on the solid support. Next, the lipid vesicles are destabilized by adding an amphipathic peptide solution to the lipid vesicle solution. This destabilization leads to production of a planar lipid bilayer on the solid support. The present invention also provides a supported planar lipid bilayer, where the planar lipid bilayer is made of naturally occurring lipids and the solid support is made of unmodified gold or titanium oxide. Preferably, the supported planar lipid bilayer is continuous. The planar lipid bilayer may be made of any naturally occurring lipid or mixture of lipids, including, but not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinsitol, cardiolipin, cholesterol, and sphingomyelin.

  17. Molecular dynamics modelling of EGCG clusters on ceramide bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 (Singapore)


    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  18. Bridge technology report

    CERN Document Server


    Please note this is a Short Discount publication. As LANs have proliferated, new technologies and system concepts have come to the fore. One of the key issues is how to interconnect networks. One means of interconnection is to use a 'bridge'. Other competing technologies are repeaters, routers, and gateways. Bridges permit traffic isolation, connect network segments together and operate at the MAC layer. Further, because they operate at the MAC layer, they can handle a variety of protocols such as TCP/IP, SNA, and X.25. This report focuses on the specific technology of bridging two netw

  19. Equilibrium insertion of nanoscale objects into phospholipid bilayers

    CERN Document Server

    Pogodin, Sergey


    Certain membrane proteins, peptides, nanoparticles and nanotubes have rigid structure and fixed shape. They are often viewed as spheres and cylinders with certain surface properties. Single Chain Mean Field theory is used to model the equilibrium insertion of nanoscale spheres and rods into the phospholipid bilayer. The equilibrium structures and the resulting free energies of the nano-objects in the bilayer allow to distinguish different orientations in the bilayer and estimate the energy barrier of insertion.

  20. Pair interaction of bilayer-coated nanoscopic particles

    Institute of Scientific and Technical Information of China (English)

    Zhang Qi-Yi


    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placcd on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphilcs, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery.

  1. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)


    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  2. Faraday rotation in bilayer graphene-based integrated microcavity. (United States)

    Da, Hai-Xia; Yan, Xiao-Hong


    Bernal-stacked bilayer graphene has rich ground states with various broken symmetries, allowing the existence of magneto-optical (MO) effects even in the absence of an external magnetic field. Here we report controllable Faraday rotation (FR) of bilayer graphene induced by electrostatic gate voltage, whose value is 10 times smaller than the case of single layer graphene with a magnetic field. A proposed bilayer graphene-based microcavity configuration enables the enhanced FR angle due to the large localized electromagnetic field. Our results offer unique opportunities to apply bilayer graphene for MO devices.

  3. Nanomechanics of phospholipid bilayer failure under strip biaxial stretching using molecular dynamics (United States)

    Murphy, M. A.; Horstemeyer, M. F.; Gwaltney, Steven R.; Stone, Tonya; LaPlaca, Michelle; Liao, Jun; Williams, Lakiesha; Prabhu, R.


    The current study presents a nanoscale in silico investigation of strain rate dependency of membrane (phospholipid bilayer) failure when placed under strip biaxial tension with two planar areas. The nanoscale simulations were conducted in the context of a multiscale modelling framework in which the macroscale damage (pore volume fraction) progression is delineated into pore nucleation (number density of pores), pore growth (size of pores), and pore coalescence (inverse of nearest neighbor distance) mechanisms. As such, the number density, area fraction, and nearest neighbor distances were quantified in association with the stress-strain behavior. Deformations of a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer were performed using molecular dynamics to simulate mechanoporation of a neuronal cell membrane due to injury, which in turn can result in long-term detrimental effects that could ultimately lead to cell death. Structures with 72 and 144 phospholipids were subjected to strip biaxial tensile deformations at multiple strain rates. Formation of a water bridge through the phospholipid bilayer was the metric to indicate structural failure. Both the larger and smaller bilayers had similar behavior regarding pore nucleation and the strain rate effect on pore growth post water penetration. The applied strain rates, planar area, and cross-sectional area had no effect on the von Mises strains at which pores greater than 0.1 nm2 were detected (0.509  ±  7.8%) or the von Mises strain at failure (ɛ failure  =  0.68  ±  4.8%). Additionally, changes in bilayer planar and cross-sectional areas did not affect the stress response. However, as the strain rate increased from 2.0  ×  108 s-1 to 1.0  ×  109 s-1, the yield stress increased from 26.5 MPa to 66.7 MPa and the yield strain increased from 0.056 to 0.226.

  4. Bridged Race Population Estimates (United States)

    U.S. Department of Health & Human Services — Population estimates from "bridging" the 31 race categories used in Census 2000, as specified in the 1997 Office of Management and Budget (OMB) race and ethnicity...

  5. Bridging Humanism and Behaviorism. (United States)

    Chu, Lily


    Humanistic behaviorism may provide the necessary bridge between behaviorism and humanism. Perhaps the most humanistic approach to teaching is to learn how certain changes will help students and how these changes can be accomplished. (Author/MLF)

  6. Germ Cell Intercellular Bridges (United States)

    Greenbaum, Michael P.; Iwamori, Tokuko; Buchold, Gregory M.; Matzuk, Martin M.


    Stable intercellular bridges are a conserved feature of gametogenesis in multicellular animals observed more than 100 years ago, but their function was unknown. Many of the components necessary for this structure have been identified through the study of cytokinesis in Drosophila; however, mammalian intercellular bridges have distinct properties from those of insects. Mammalian germ cell intercellular bridges are composed of general cytokinesis components with additional germ cell–specific factors including TEX14. TEX14 is an inactive kinase essential for the maintenance of stable intercellular bridges in gametes of both sexes but whose loss specifically impairs male meiosis. TEX14 acts to impede the terminal steps of abscission by competing for essential component CEP55, blocking its interaction in nongerm cells with ALIX and TSG101. Additionally, TEX14-interacting protein RBM44, whose localization in stabile intercellular bridges is limited to pachytene and secondary spermatocytes, may participate in processes such as RNA transport but is nonessential to the maintenance of intercellular bridge stability. PMID:21669984

  7. Long Span Bridges in Scandinavia

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen


    The first Scandinavian bridge with a span of more than 500 m was the Lillebælt Suspension Bridge opened to traffic in 1970.Art the end of the 20th century the longest span of any European bridge is found in the Storebælt East Bridge with a main span of 1624 m. Also the third longest span in Europe...... is found in Scandinavia - the 1210 m span of the Höga Kusten Bridge in Sweden.The Kvarnsund Bridge in Norway was at the completion in 1991 the longest cable-stayed bridge in the world, and the span of 530 m is still thge longest for cable-stayed bridges in concrete. The Øresund Bridge with its sapn of 490...... m is the longest among cable-stayed bridges for both road and railway traffic....

  8. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions. (United States)

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng


    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  9. Bilayer-thickness-mediated interactions between integral membrane proteins. (United States)

    Kahraman, Osman; Koch, Peter D; Klug, William S; Haselwandter, Christoph A


    Hydrophobic thickness mismatch between integral membrane proteins and the surrounding lipid bilayer can produce lipid bilayer thickness deformations. Experiment and theory have shown that protein-induced lipid bilayer thickness deformations can yield energetically favorable bilayer-mediated interactions between integral membrane proteins, and large-scale organization of integral membrane proteins into protein clusters in cell membranes. Within the continuum elasticity theory of membranes, the energy cost of protein-induced bilayer thickness deformations can be captured by considering compression and expansion of the bilayer hydrophobic core, membrane tension, and bilayer bending, resulting in biharmonic equilibrium equations describing the shape of lipid bilayers for a given set of bilayer-protein boundary conditions. Here we develop a combined analytic and numerical methodology for the solution of the equilibrium elastic equations associated with protein-induced lipid bilayer deformations. Our methodology allows accurate prediction of thickness-mediated protein interactions for arbitrary protein symmetries at arbitrary protein separations and relative orientations. We provide exact analytic solutions for cylindrical integral membrane proteins with constant and varying hydrophobic thickness, and develop perturbative analytic solutions for noncylindrical protein shapes. We complement these analytic solutions, and assess their accuracy, by developing both finite element and finite difference numerical solution schemes. We provide error estimates of our numerical solution schemes and systematically assess their convergence properties. Taken together, the work presented here puts into place an analytic and numerical framework which allows calculation of bilayer-mediated elastic interactions between integral membrane proteins for the complicated protein shapes suggested by structural biology and at the small protein separations most relevant for the crowded membrane

  10. Vortex dynamics in ferromagnetic/superconducting bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)


    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  11. Bilayer avalanche spin-diode logic

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Joseph S., E-mail:; Querlioz, Damien [Institut d’Electronique Fondamentale, Univ. Paris-Sud, CNRS, 91405 Orsay (France); Fadel, Eric R. [Department of Materials Science, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Wessels, Bruce W. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208 (United States); Sahakian, Alan V. [Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL 60208 (United States); Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 (United States)


    A novel spintronic computing paradigm is proposed and analyzed in which InSb p-n bilayer avalanche spin-diodes are cascaded to efficiently perform complex logic operations. This spin-diode logic family uses control wires to generate magnetic fields that modulate the resistance of the spin-diodes, and currents through these devices control the resistance of cascaded devices. Electromagnetic simulations are performed to demonstrate the cascading mechanism, and guidelines are provided for the development of this innovative computing technology. This cascading scheme permits compact logic circuits with switching speeds determined by electromagnetic wave propagation rather than electron motion, enabling high-performance spintronic computing.

  12. Giant magnetoresistance in bilayer graphene nanoflakes (United States)

    Farghadan, Rouhollah; Farekiyan, Marzieh


    Coherent spin transport through bilayer graphene (BLG) nanoflakes sandwiched between two electrodes made of single-layer zigzag graphene nanoribbon was investigated by means of Landauer-Buttiker formalism. Application of a magnetic field only on BLG structure as a channel produces a perfect spin polarization in a large energy region. Moreover, the conductance could be strongly modulated by magnetization of the zigzag edge of AB-stacked BLG, and the junction, entirely made of carbon, produces a giant magnetoresistance (GMR) up to 100%. Intestinally, GMR and spin polarization could be tuned by varying BLG width and length. Generally, MR in a AB-stacked BLG strongly increases (decreases) with length (width).

  13. Twisted CFT and bilayer Quantum Hall systems

    CERN Document Server

    Cristofano, G; Naddeo, A


    We identify the impurity interactions of the recently proposed CFT description of a bilayer Quantum Hall system at filling nu =m/(pm+2) in Mod. Phys. Lett. A 15 (2000) 1679. Such a CFT is obtained by m-reduction on the one layer system, with a resulting pairing symmetry and presence of quasi-holes. For the m=2 case boundary terms are shown to describe an impurity interaction which allows for a localized tunnel of the Kondo problem type. The presence of an anomalous fixed point is evidenced at finite coupling which is unstable with respect to unbalance and flows to a vacuum state with no quasi-holes.

  14. Rich Polymorphic Behavior of Wigner Bilayers (United States)

    Antlanger, Moritz; Kahl, Gerhard; Mazars, Martial; Šamaj, Ladislav; Trizac, Emmanuel


    Self-assembly into target structures is an efficient material design strategy. Combining analytical calculations and computational techniques of evolutionary and Monte Carlo types, we report about a remarkable structural variability of Wigner bilayer ground states, when charges are confined between parallel charged plates. Changing the interlayer separation, or the plate charge asymmetry, a cascade of ordered patterns emerges. At variance with the symmetric case phenomenology, the competition between commensurability features and charge neutralization leads to long range attraction, appearance of macroscopic charges, exotic phases, and nonconventional phase transitions with distinct critical indices, offering the possibility of a subtle, but precise and convenient control over patterns.

  15. The effects of globotriaosylceramide tail saturation level on bilayer phases

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Chaban, Vitaly V; Johannes, Ludger


    of the Gb3 concentration and its acyl chain saturation on the phase behaviour of a mixed bilayer of dioleoylphosphatidylcholine and Gb3. The simulation results show that: (1) the Gb3 acyl chains (longer tails) from one leaflet interdigitate into the opposing leaflet and lead to significant bilayer...

  16. Cholesterol orientation and tilt modulus in DMPC bilayers


    Khelashvili, George; Pabst, Georg; Harries, Daniel


    We performed molecular dynamics (MD) simulations of hydrated bilayers containing mixtures of dimyristoylphosphatidylcholine (DMPC) and Cholesterol at various ratios, to study the effect of cholesterol concentration on its orientation, and to characterize the link between cholesterol tilt and overall phospholipid membrane organization. The simulations show a substantial probability for cholesterol molecules to transiently orient perpendicular to the bilayer normal, and suggest that cholesterol...

  17. Alpha-tocopherol inhibits pore formation in the oxidized bilayers

    CERN Document Server

    Boonnoy, Phansiri; Wong-ekkabut, Jirasak


    In biological membranes, alpha-tocopherols ({\\alpha}-toc; vitamin E) protect polyunsaturated lipids from free radicals. Although the interactions of {\\alpha}-toc with non-oxidized lipid bilayers have been studied, their on oxidized bilayers remain unknown. In this study, atomistic molecular dynamics (MD) simulations of oxidized lipid bilayers were performed with varying concentrations of {\\alpha}-toc. Bilayers with 1-palmitoyl-2-lauroyl-sn-glycero-3-phosphocholine (PLPC) lipids and its aldehyde derivatives at 1:1 ratio were studied. Our simulations show that oxidized lipids self-assemble into aggregates with a water pore rapidly developing across the lipid bilayer. The free energy of transporting an {\\alpha}-toc molecule in a lipid bilayer suggests that {\\alpha}-tocs can passively adsorb into the bilayer. When {\\alpha}-toc molecules were present at low concentrations in bilayers containing oxidized lipids, the formation of water pores was slowed down. At high {\\alpha}-toc concentra-tions, no pores were observ...

  18. Miniaturization Design for 8 × 8 Butler Matrix Based on Back-to-Back Bilayer Microstrip

    Directory of Open Access Journals (Sweden)

    Yu Zhai


    Full Text Available A low-cost, compact 8 × 8 Butler matrix based on a novel bilayer microstrip configuration is presented and implemented for 4.3 GHz telecommunication application. A back-to-back placed bilayer microstrip structure has been proposed to avoid using crossover. To expand operational bandwidth of the Butler matrix, a three-branch line directional coupler has been employed as 3 dB/90° bridge, and a kind of improved two-order Schiffman phase shifter has been adopted as fixed phase shifter. For application of indoor wireless communication, a compact broadband 8 × 8 Butler matrix has been designed and fabricated. The measured results show that the return loss of the matrix is lower than −10 dB, the isolation is better than 17 dB, the power distribution error is less than ±2.0 dB, the phase error is less than ±15°, and the relative bandwidth is more than 23%.

  19. Regulation of sodium channel function by bilayer elasticity

    DEFF Research Database (Denmark)

    Lundbaek, Jens A; Birn, Pia; Hansen, Anker J


    be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100......, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change...... in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein...

  20. Thermotropic and Barotropic Phase Behavior of Phosphatidylcholine Bilayers

    Directory of Open Access Journals (Sweden)

    Nobutake Tamai


    Full Text Available Bilayers formed by phospholipids are frequently used as model biological membranes in various life science studies. A characteristic feature of phospholipid bilayers is to undergo a structural change called a phase transition in response to environmental changes of their surroundings. In this review, we focus our attention on phase transitions of some major phospholipids contained in biological membranes, phosphatidylcholines (PCs, depending on temperature and pressure. Bilayers of dipalmitoylphosphatidylcholine (DPPC, which is the most representative lipid in model membrane studies, will first be explained. Then, the bilayer phase behavior of various kinds of PCs with different molecular structures is revealed from the temperature–pressure phase diagrams, and the difference in phase stability among these PC bilayers is discussed in connection with the molecular structure of the PC molecules. Furthermore, the solvent effect on the phase behavior is also described briefly.

  1. Asymmetric heat transfer from nanoparticles in lipid bilayers (United States)

    Potdar, Dipti; Sammalkorpi, Maria


    Here, we use molecular dynamics simulations to characterize the heat transfer properties of lipid bilayer - gold nanoparticle systems in which the nanoparticle acts as a heat source. The focus is on dipalmitoylphosphatidylcholine (DPPC) lipid bilayers and thiolated alcohol and alkyl functionalized nanoparticles as prototype hydrophilic and hydrophobic nanoparticles. We find hydrophilic nanoparticles which are partly in contact with the surrounding water environment are more efficient in transferring heat to the system than hydrophobic ones which reside surrounded by the membrane. This is because of the hydrogen bonding capability of the hydroxy pentanethiol and the more efficient heat conductivity through water than the lipid bilayer. Additionally, we find the heat conductance is strongly asymmetric and has a discontinuity between the bilayer leaflets. In total, the findings provide understanding on heat transport from localized heat sources in lipid bilayers and could bear significance, e.g., in engineering and controlling photoactivated triggering of liposomal systems.

  2. Theoretical study on stability of hybrid bilayers (United States)

    Silva, Thiago S.; de Lima Bernardo, Bertúlio; Azevedo, Sèrgio


    Motivated by the recent experimental realization of the hybrid nanostructure of graphene and boron nitride (h-BN) sheet, and studies of gap modulation by strain, we use first principles calculations based on density functional theory to investigate the effects of strain in hybrid bilayers composed of two monolayers of graphene with a nanodomain of {{B}3}{{N}3}. The calculations were made with two different approximations for the functional exchange-correlation, GGA and VDW-DF. We investigate the modification in the electronic structure and structural properties of various configurations of the hybrid bilayers. Among the configurations, those with Bernal stacking are found to be more stable when compared to the others. Studies of the compressive strain influence were made only in the structure that has been shown to be the most stable. We have found that the two approximations used in the calculations exhibit the same results for the electronic properties of all structures. The opening of the energy gap due to strain was possible in the calculations by using the GGA approximation, but the same does not happen in the calculations using the VDW-DF approximation. Our analysis shows that the VDW-DF approximation is better suited for studies involving surfaces.

  3. Theory of skyrmions in bilayer systems (United States)

    Koshibae, Wataru; Nagaosa, Naoto


    Skyrmion is an emergent particle consisting of many spins in magnets, and has many nontrivial features such as (i) nano-scale size, (ii) topological stability, (iii) gyrodynamics, and (iv) highly efficient spin transfer torque, which make skyrmions the promising candidate for the magnetic devices. Earlier works were focusing on the bulk or thin film of Dzyaloshinskii-Moriya (DM) magnets, while recent advances are focusing on the skyrmions induced by the interfaces. Therefore, the superstructures naturally leads to the interacting skyrmions on different interfaces, which has unique dynamics compared with those on the same interface. Here we theoretically study the two skyrmions on bilayer systems employing micromagnetic simulations as well as the analysis based on Thiele equation, revealing the reaction between them such as the collision and bound state formation. The dynamics depends sensitively on the sign of DM interactions, i.e., helicities, and skyrmion numbers of two skyrmions, which can be well described by Thiele equation. Furthermore, we have found the colossal spin-transfer-torque effect of bound skyrmion pair on antiferromagnetically coupled bilayer systems.

  4. The aesthetic composite bridge. (United States)

    Feinman, R A


    New developments are constantly introduced in the search for the optimal treatment modality to restore a single anterior tooth. The patient attention has shifted to aesthetics of the restoration, biocompatibility of the dental materials utilized, conservative preparation of the teeth to be restored, and the retention of intact adjacent dentition. The learning objective of this article is to review the methods currently utilized and to present a recently introduced treatment modality--the two-component bridge, which combines the strength and resiliency of composite resin with the aesthetic advantages of porcelain. The technology of the material is reviewed, the predominantly lingual tooth preparation procedures are outlined, and the bridge try-in is described. The advantages of the two-component bridge are presented along with the contraindications and suggestions of careful case selection. Three cases with congenitally missing maxillary lateral incisors in youthful patients are presented to supplement the theoretical outline and to describe and illustrate the clinical procedure.

  5. Istanbul Bridge Conference 2014

    CERN Document Server

    Gülkan, Polat; Mahmoud, Khaled


      The book includes peer-reviewed contributions selected from presentations given at the Istanbul Bridge Conference 2014, held from August 11 – 13 in Istanbul, Turkey. It reports on the current challenges in bridge engineering faced by professionals around the globe, giving a special emphasis to recently developed techniques, innovations and opportunities. The book covers key topics in the field, including modeling and analysis methods; construction and erection techniques; design for extreme events and condition assessment and structural health monitoring. There is a balanced presentation of theory, research and practice. This book, which provides the readers with a comprehensive and timely reference guide on current practices in bridge engineering, is intended for professionals, academic researchers and students alike.

  6. Active Control of Suspension Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper some recent research on active control of very long suspension bridges, is presented. The presentation is based on research work at Aalborg University, Denmark. The active control system is based on movable flaps attached to the bridge girder. Wind load on bridges with or without...... flaps attached to the girder is briefly presented. A simple active control system is discussed. Results from wind tunnel experiments with a bridge section show that flaps can be used effectively to control bridge girder vibrations. Flutter conditions for suspension bridges with and without flaps...


    The papr describes how, rather than building "bridges" across centuries, quality assurance (QA) personnel have the opportunity to build bridges across technical disciplines, between public and private organizations, and between different QA groups. As reviewers and auditors of a...

  8. Existing Steel Railway Bridges Evaluation (United States)

    Vičan, Josef; Gocál, Jozef; Odrobiňák, Jaroslav; Koteš, Peter


    The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  9. DOE Information Bridge

    CERN Document Server

    United States. Department of Energy. Office of Scientific and Technical Information

    DOE Information Bridge, a component of EnergyFiles, provides free, convenient, and quick access to full-text DOE research and development reports in physics, chemistry, materials, biology, environmental sciences, energy technologies, engineering, computer and information science, renewable energy, and other topics. This vast collection includes over 43,000 reports that have been received and processed by OSTI since January 1995.

  10. Bridging the Technological Gap. (United States)

    Lazow, Robert; And Others

    The aim of "Bridging the Technological Gap" (BTG), a federally funded demonstration project, is to use microcomputer technology in the rehabilitation of the psychiatrically disabled. Through the use of a custom designed microcomputer software package, clients receive remediation in areas of specific cognitive and behavioral deficits. The project…

  11. Bridging a Cultural Gap (United States)

    Leviatan, Talma


    There has been a broad wave of change in tertiary calculus courses in the past decade. However, the much-needed change in tertiary pre-calculus programmes--aimed at bridging the gap between high-school mathematics and tertiary mathematics--is happening at a far slower pace. Following a discussion on the nature of the gap and the objectives of a…

  12. Bridge over troubled water?

    DEFF Research Database (Denmark)

    Svendsen, Gunnar Lind Haase; Nannestad, Peter; Svendsen, Gert Tinggaard


    The problem of integrating non-Western immigrants into Western welfare states is the focus of this paper. To address this issue, we suggest a social capital approach in which we apply the conceptual pair of bridging social capital (BR), which connects an individual to the broader social structure...

  13. Building a Straw Bridge (United States)

    Teaching Science, 2015


    This project is for a team of students (groups of two or three are ideal) to design and construct a model of a single-span bridge, using plastic drinking straws as the building material. All steps of the design, construction, testing and critiquing stages should be recorded by students in a journal. Students may like to include labelled diagrams,…

  14. Building Bridges to China. (United States)

    Wasta, Stephanie; Scott, Margaret


    Describes a theme cycle called "Building Bridges to China" developed for third grade students that focuses on the similarities between the lives of children and families in China and the United States. Explains that the theme cycle addresses the National Geography Standards and three of the National Council for the Social Studies standards. (CMK)

  15. The Bridges of Taishun County

    Institute of Scientific and Technical Information of China (English)



    The American film The Bridges of Madison County captured the imagination of many Chinese moviegoers with its bittersweet love story and scenes of rustic covered bridges. But the U.S. can't lay sole claim to such spectacular rural sights:China has its own county worldrenowned for unforgettable bridges.

  16. Revised Rules for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C.;

    This paper is based on research performed for the Highway Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges" It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....... These WL reliability profiles may be used to establish revised rules for Concrete Bridges....

  17. Combinatorics of giant hexagonal bilayer hemoglobins. (United States)

    Hanin, L G; Vinogradov, S N


    The paper discusses combinatorial and probabilistic models allowing to characterize various aspects of spacial symmetry and structural heterogeneity of the giant hexagonal bilayer hemoglobins (HBL Hb). Linker-dodecamer configurations of HBL are described for two and four linker types (occurring in the two most studied HBL Hb of Arenicola and Lumbricus, respectively), and the most probable configurations are found. It is shown that, for HBL with marked dodecamers, the number of 'normal-marked' pairs of dodecamers in homological position follows a binomial distribution. The group of symmetries of the dodecamer substructure of HBL is identified with the dihedral group D6. Under natural symmetry assumptions, the total dipole moment of the dodecamer substructure of HBL is shown to be zero. Biological implications of the mathematical findings are discussed.

  18. Interaction of neurotransmitters with a phospholipid bilayer

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Werge, Mikkel; Elf-Lind, Maria Northved


    We have performed a series of molecular dynamics simulations to study the interactions between the neurotransmitters (NTs) γ-aminobutyrate (GABA), glycine (GLY), acetylcholine (ACH) and glutamate (GLU) as well as the amidated/acetylated γ-aminobutyrate (GABAneu) and the osmolyte molecule glycerol...... in the vicinity of the lipid glycerol backbone. The most important interaction of NTs with the bilayer is the charged amino group of NTs with the lipid phosphate group.......We have performed a series of molecular dynamics simulations to study the interactions between the neurotransmitters (NTs) γ-aminobutyrate (GABA), glycine (GLY), acetylcholine (ACH) and glutamate (GLU) as well as the amidated/acetylated γ-aminobutyrate (GABAneu) and the osmolyte molecule glycerol...

  19. Space charge and screening in bilayer graphene (United States)

    Kolomeisky, Eugene B.; Straley, Joseph P.; Abrams, Daniel L.


    Undoped bilayer graphene is a two-dimensional semimetal with a low-energy excitation spectrum that is parabolic in the momentum. As a result, the screening of an arbitrary external charge Ze is accompanied by a reconstruction of the ground state: valence band electrons (for Z  >  0) are promoted to form a space charge around the charge while the holes leave the physical picture. The outcome is a flat neutral object resembling the regular atom except that for Z\\gg 1 it is described by a strictly linear Thomas-Fermi theory. This theory also predicts that the bilayer’s static dielectric constant is the same as that of a two-dimensional electron gas in the long-wavelength limit.

  20. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti;


    Experiments to quantify oxygen diffusion have been performed on polymer samples in which a film of poly(ethylene-co-norbornene) was cast onto a film of polystyrene which, in turn, was cast onto an oxygen-impermeable substrate. In the technique employed, the time evolution of oxygen transport...... through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...... solutions were obtained for the problem. Moreover, the numerical solution is sufficiently general that it can be used to simulate oxygen concentration profiles in films consisting of more than two layers. Data obtained from the bilayer films yield a diffusion coefficient for oxygen in poly...

  1. Multiscale molecular modeling of tertiary supported lipid bilayers (United States)

    Ranz, Holden T.; Faller, Roland


    Ternary lipid bilayer systems assembled from mixtures of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol have been studied using coarse-grained molecular dynamics at biologically relevant temperatures (280 K to 310 K), which are between the chain melting temperatures of the pure lipid component. Free lipid bilayers were simulated using the MARTINI model (Stage I) and a variant with water-water interactions reduced to 76% (Stage II). The latter was subsequently used for preparing supported lipid bilayer simulations (Stage III). Clustering of like lipids was observed, but the simulation timescale did not yield larger phaseseparated domains.

  2. Charge detection in a bilayer graphene quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Fringes, Stefan; Norda, Caroline; Dauber, Jan; Engels, Stephan [JARA-FIT and II, Institute of Physics B, RWTH Aachen University, 52074 Aachen (Germany); Volk, Christian; Terres, Bernat; Stampfer, Christoph [JARA-FIT and II, Institute of Physics B, RWTH Aachen University, 52074 Aachen (Germany); Peter Gruenberg Institute (PGI-8/9), Forschungszentrum Juelich, 52425 Juelich (Germany); Trellenkamp, Stefan [Peter Gruenberg Institute (PGI-8/9), Forschungszentrum Juelich, 52425 Juelich (Germany)


    We show measurements on a bilayer graphene quantum dot (QD) with an integrated charge detector. The focus lies on enabling charge detection with a 30 nm wide bilayer graphene nanoribbon located approximately 35 nm next to a bilayer graphene QD with an island diameter of about 100 nm. Local resonances in the nanoribbon can be successfully used to detect individual charging events in the dot even in regimes where the QD Coulomb peaks cannot be measured by conventional techniques. False color atomic force microscope image of the investigated device. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien


    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  4. Modeling liquid crystal bilayer structures with minimal surfaces. (United States)

    Enlow, J D; Enlow, R L; McGrath, K M; Tate, M W


    This paper describes a new convenient and accurate method of calculating x-ray diffraction integrated intensities from detailed cubic bilayer structures. The method is employed to investigate the structure of a particular surfactant system (didodecyldimethylammonium bromide in a solution of oil and heavy water), for which single-crystal experimental data have recently been collected. The diffracted peak intensities correlate well with theoretical structures based on mathematical minimal surfaces. Optimized electron density profiles of the bilayer are presented, providing new insight into key features of the bilayer structure.

  5. Dynamic Bridge Response for a Bridge-friendly Truck

    Directory of Open Access Journals (Sweden)

    V. Šmilauer


    Full Text Available A truck with controlled semi-active suspensions traversing a bridge is examined for benefits to the bridge structure. The original concept of a road-friendly truck was extended to a bridge-friendly vehicle, using the same optimization tools. A half-car model with two independently driven axles is coupled with simply supported bridges (beam, slab model with the span range from 5 m to 50 m. Surface profile of the bridge deck is either stochastic or in the shape of a bump or a pot in the mid-span. Numerical integration in the MATLAB/SIMULINK environment solves coupled dynamic equations of motion with optimized truck suspensions. The rear axle generates the prevailing load and to a great extent determines the bridge response. A significant decrease in contact road-tire forces is observed and the mid-span bridge deflections are on average smaller, when compared to commercial passive suspensions. 

  6. The use of virtual ground to control transmembrane voltages and measure bilayer currents in serial arrays of droplet interface bilayers (United States)

    Sarles, Stephen A.


    The droplet interface bilayer (DIB) is a simple technique for constructing a stable lipid bilayer at the interface of two lipid-encased water droplets submerged in oil. Networks of DIBs formed by connecting more than two droplets constitute a new form of modular biomolecular smart material, where the transduction properties of a single lipid bilayer can affect the actions performed at other interface bilayers in the network via diffusion through the aqueous environments of shared droplet connections. The passive electrical properties of a lipid bilayer and the arrangement of droplets that determine the paths for transport in the network require specific electrical control to stimulate and interrogate each bilayer. Here, we explore the use of virtual ground for electrodes inserted into specific droplets in the network and employ a multichannel patch clamp amplifier to characterize bilayer formation and ion-channel activity in a serial DIB array. Analysis of serial connections of DIBs is discussed to understand how assigning electrode connections to the measurement device can be used to measure activity across all lipid membranes within a network. Serial arrays of DIBs are assembled using the regulated attachment method within a multi-compartment flexible substrate, and wire-type electrodes inserted into each droplet compartment of the substrate enable the application of voltage and measurement of current in each droplet in the array.

  7. Simulation of multivariate diffusion bridges

    DEFF Research Database (Denmark)

    Bladt, Mogens; Finch, Samuel; Sørensen, Michael

    We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously...... proposed simulation method for one-dimensional bridges to the mulit-variate setting. First a method of simulating approzimate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposal for easily implementable MCMC algorithms that produce exact diffusion bridges...

  8. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson


    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  9. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka


    We claim that (1) cholesterol protects bilayers from disruption caused by lipid oxidation by sequestering conical shaped oxidized lipid species such as 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PZPC) away from phospholipid, because cholesterol and the oxidized lipid have complementary...... shapes and (2) mixtures of cholesterol and oxidized lipids can self-assemble into bilayers much like lysolipid–cholesterol mixtures. The evidence for bilayer protection comes from molecular dynamics (MD) simulations and dynamic light scattering (DLS) measurements. Unimodal size distributions of extruded...... vesicles (LUVETs) made up of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PZPC containing high amounts of PZPC are only obtained when cholesterol is present in high concentrations. In simulations, bilayers containing high amounts of PZPC become porous, unless cholesterol is also present...

  10. Lipid peroxidation and water penetration in lipid bilayers

    DEFF Research Database (Denmark)

    Conte, Elena; Megli, Francesco Maria; Khandelia, Himanshu


    changes in the acyl chain order in the sub-polar region and at the methyl-terminal induced by lipid peroxidation were detected by X-band EPR. Concomitantly, the polarity and proticity of the membrane bilayer in those regions were investigated at W band in frozen samples. Analysis of the g(xx) and A......(zz) parameters revealed that OHPLPC, but mostly HpPLPC, induced a measurable increase in polarity and H-bonding propensity in the central region of the bilayer. Molecular dynamics simulation performed on 16-DSA in the PLPC-HpPLPC bilayer revealed that water molecules are statistically favored with respect...... to the hydroperoxide groups to interact with the nitroxide at the methyl-terminal, confirming that the H-bonds experimentally observed are due to increased water penetration in the bilayer. The EPR and MD data on model membranes demonstrate that cell membrane damage by oxidative stress cause alteration of water...

  11. Electronic properties of asymmetrically doped twisted graphene bilayers (United States)

    Trambly de Laissardière, Guy; Namarvar, Omid Faizy; Mayou, Didier; Magaud, Laurence


    Rotated graphene bilayers form an exotic class of nanomaterials with fascinating electronic properties governed by the rotation angle θ . For large rotation angles, the electron eigenstates are restricted to one layer and the bilayer behaves like two decoupled graphene layers. At intermediate angles, Dirac cones are preserved but with a lower velocity and van Hove singularities are induced at energies where the two Dirac cones intersect. At very small angles, eigenstates become localized in peculiar moiré zones. We analyze here the effect of an asymmetric doping for a series of commensurate rotated bilayers on the basis of tight-binding calculations of their band dispersions, density of states, participation ratio, and diffusive properties. While a small doping level preserves the θ dependence of the rotated bilayer electronic structure, larger doping induces a further reduction of the band velocity in the same way as a further reduction of the rotation angle.

  12. Sub-wavelength antenna enhanced bilayer graphene tunable photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Beechem, III, Thomas Edwin; Howell, Stephen W.; Peters, David W.; Davids, Paul; Ohta, Taisuke


    The integration of bilayer graphene with an absorption enhancing sub-wavelength antenna provides an infrared photodetector capable of real-time spectral tuning without filters at nanosecond timescales.

  13. Capacitance Variation of Electrolyte-Gated Bilayer Graphene Based Transistors

    Directory of Open Access Journals (Sweden)

    Hediyeh Karimi


    Full Text Available Quantum capacitance of electrolyte-gated bilayer graphene field-effect transistors is investigated in this paper. Bilayer graphene has received huge attention due to the fact that an energy gap could be opened by chemical doping or by applying external perpendicular electric field. So, this extraordinary property can be exploited to use bilayer graphene as a channel in electrolyte-gated field-effect transistors. The quantum capacitance of bi-layer graphene with an equivalent circuit is presented, and also based on the analytical model a numerical solution is reported. We begin by modeling the DOS, followed by carrier concentration as a function V in degenerate and nondegenerate regimes. To further confirm this viewpoint, the presented analytical model is compared with experimental data, and acceptable agreement is reported.

  14. Bilayer properties of hydroxytyrosol- and tyrosol-phosphatidylcholine lipids (United States)

    Tyrosol and hydroxytyrosol are the phytochemicals abundantly found in olive oil. Transphosphatidylation of tyrosol and hydroxytyrosol with dioleoylphosphocholine resulted in phospholipids with antioxidant properties. The ability of these phyto-phospholipids to form liposomes and supported bilayers w...

  15. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo


    mixture of cationic dimyristoyltrimethylammoniumpropane (DMTAP) and zwitterionic (neutral) dimyristoylphosphatidylcholine (DMPC) lipids. Using atomistic molecular dynamics simulations, we address the effects of bilayer composition (cationic to zwitterionic lipid fraction) and of NaCl electrolyte...

  16. Bridging Classroom Language Ethnography




    PUBLISHED Paper #5: Bridging Classroom Language Ethnography, New Literacy Studies and Bourdieu?s Social Philosophy: Principles and Practice The purpose of this paper is to analyze and synthesize the various ways that classroom language ethnography, NLS, and Bourdieu?s social philosophy, were integrated. The goal of the analysis and synthesis is to provide a fresh perspective and fruitful insights on literacy in all its manifestations that provides the foundations for a more robust...

  17. Bridging as Coercive Accommodation

    CERN Document Server

    Bos, J W; Mineur, A M; Bos, Johan; Buitelaar, Paul; Mineur, Anne-Marie


    In this paper we discuss the notion of "bridging" in Discourse Representation Theory as a tool to account for discourse referents that have only been established implicitly, through the lexical semantics of other referents. In doing so, we use ideas from Generative Lexicon theory, to introduce antecedents for anaphoric expressions that cannot be "linked" to a proper antecedent, but that do not need to be "accommodated" because they have some connection to the network of discourse referents that is already established.

  18. Molecular Dynamics of a Water-Lipid Bilayer Interface (United States)

    Wilson, Michael A.; Pohorille, Andrew


    We present results of molecular dynamics simulations of a glycerol 1-monooleate bilayer in water. The total length of analyzed trajectories is 5ns. The calculated width of the bilayer agrees well with the experimentally measured value. The interior of the membrane is in a highly disordered fluid state. Atomic density profile, orientational and conformational distribution functions, and order parameters indicate that disorder increases toward the center of the bilayer. Analysis of out-of-plane thermal fluctuations of the bilayer surfaces occurring at the time scale of the present calculations reveals that the distribution of modes agrees with predictions of the capillary wave model. Fluctuations of both bilayer surfaces are uncorrelated, yielding Gaussian distribution of instantaneous widths of the membrane. Fluctuations of the width produce transient thinning defects in the bilayer which occasionally span almost half of the membrane. The leading mechanism of these fluctuations is the orientational and conformational motion of head groups rather than vertical motion of the whole molecules. Water considerably penetrates the head group region of the bilayer but not its hydrocarbon core. The total net excess dipole moment of the interfacial water points toward the aqueous phase, but the water polarization profile is non-monotonic. Both water and head groups significantly contribute to the surface potential across the interface. The calculated sign of the surface potential is in agreement with that from experimental measurements, but the value is markedly overestimated. The structural and electrical properties of the water-bilayer system are discussed in relation to membrane functions, in particular transport of ions and nonelectrolytes across membranes.

  19. A generic model for lipid monolayers, bilayers, and membranes

    CERN Document Server

    Schmid, F; Lenz, O; West, B


    We describe a simple coarse-grained model which is suited to study lipid layers and their phase transitions. Lipids are modeled by short semiflexible chains of beads with a solvophilic head and a solvophobic tail component. They are forced to self-assemble into bilayers by a computationally cheap `phantom solvent' environment. The model reproduces the most important phases and phase transitions of monolayers and bilayers. Technical issues such as Monte Carlo parallelization schemes are briefly discussed.

  20. Gates controlled parallel-coupled bilayer graphene double quantum dot

    CERN Document Server

    Wang, Lin-Jun; Wei, Da; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Chang, A M


    Here we report the fabrication and quantum transport measurements of gates controlled parallel-coupled bilayer graphene double quantum dot. It is shown that the interdot coupling strength of the parallel double dots can be effectively tuned from weak to strong regime by both the in-plane plunger gates and back gate. All the relevant energy scales and parameters of the bilayer graphene parallel-coupled double dot can be extracted from the honeycomb charge stability diagrams revealed through the transport measurements.

  1. Molecular doping and band-gap opening of bilayer graphene.


    Samuels, AJ; Carey, JD


    The ability to induce an energy band gap in bilayer graphene is an important development in graphene science and opens up potential applications in electronics and photonics. Here we report the emergence of permanent electronic and optical band gaps in bilayer graphene upon adsorption of π electron containing molecules. Adsorption of n- or p-type dopant molecules on one layer results in an asymmetric charge distribution between the top and bottom layers and in the formation of an energy gap. ...

  2. Tunable Fermi surface topology and Lifshitz transition in bilayer graphene


    Varlet, Anastasia; Mucha-Kruczyński, Marcin; Bischoff, Dominik; Simonet, Pauline; Taniguchi, Takashi; Watanabe, Kenji; Fal'ko, Vladimir; Ihn, Thomas; Ensslin, Klaus


    Bilayer graphene is a highly tunable material: not only can one tune the Fermi energy using standard gates, as in single-layer graphene, but the band structure can also be modified by external perturbations such as transverse electric fields or strain. We review the theoretical basics of the band structure of bilayer graphene and study the evolution of the band structure under the influence of these two external parameters. We highlight their key role concerning the ease to experimentally pro...

  3. Characteristics of the Energetic Igniters Through Integrating Al/NiO Nanolaminates on Cr Film Bridge. (United States)

    Yan, YiChao; Shi, Wei; Jiang, HongChuan; Xiong, Jie; Zhang, WanLi; Li, Yanrong


    The energetic igniters through integrating Al/NiO nanolaminates on Cr film bridges have been investigated in this study. The microstructures demonstrate well-defined geometry and sharp interfaces. The depth profiles of the X-ray photoelectron spectroscopy of Al/NiO nanolaminates annealed at 550 °C with a bilayer thickness of 250 nm show that the interdiffusion between the Al layer and NiO layer has happened and the annealing temperature cannot provide enough energy to make the diffusion process much more complete. The electrical explosion characteristics employing a capacitor discharge firing set at the optimized charging voltage of 40 V show that the flame duration time is about 700 μs, and an excellent explosion performance is obtained for (Al/NiO)n/Cr igniters with a bilayer thickness of 1000 nm.

  4. Mechanism of unassisted ion transport across membrane bilayers (United States)

    Wilson, M. A.; Pohorille, A.


    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  5. PI3 kinase enzymology on fluid lipid bilayers. (United States)

    Dutta, Debjit; Pulsipher, Abigail; Luo, Wei; Yousaf, Muhammad N


    We report the use of fluid lipid bilayer membrane as a model platform to study the influence of the bilayer microenvironment and composition on the enzymology in membrane. As a model system we determined the enzyme kinetics on membranes for the transformation of bilayers containing phosphoinositol(4,5)-bisphosphate (PI(4,5)P2) to phosphoinositol(3,4,5)-trisphosphate (PI(3,4,5)P3) by the enzyme phosphoinositol-3-kinase (PI3K) using radiolabeled ATP. The activity of the enzyme was monitored as a function of the radioactivity incorporated within the bilayer. The transformation of PI(4,5)P2 to PI(3,4,5)P3 was determined using a mass strip assay. The fluidity of the bilayer was confirmed by Fluorescence Recovery After Photobleaching (FRAP) experiments. Kinetic simulations were performed based on Langmuir adsorption and Michaelis-Menton kinetics equations to generate the rate constants for the enzymatic reaction. The effect of cholesterol on the enzyme kinetics was studied by doping the bilayer with 1% cholesterol. This leads to significant reduction in reaction rate due to change in membrane microenvironment. This strategy provides a method to study the enzymology of various kinases and phosphatases occurring at the membrane and also how these reactions are affected by the membrane composition and surface microenvironment.

  6. Different oxidized phospholipid molecules unequally affect bilayer packing. (United States)

    Megli, Francesco M; Russo, Luciana


    The aim of this study was to gain more detailed knowledge about the effect of the presence of defined oxidized phospholipid molecules in phospholipid bilayers. After chromatographic and mass spectrometry analysis, the previously used product of the Fenton reaction with unsaturated lecithins proved to consist of a plethora of oxidatively modified lecithins, useless either for the detailed study of the effects brought about in the bilayer or as the source of defined oxidized phospholipid molecules. The latter, particularly 2-(omega-carboxyacyl)- and 2-(n-hydroperoxyacyl)-lecithins, can be more conveniently prepared by chemical or enzymatic synthesis rather than by chemical or physical oxidation. The effect of those molecules and of commercially available 12-hydroxy-stearic and dodecanedioic acid was studied in planar supported phospholipid bilayers (SPBs) by use of EPR spectrometry. The SPBs also contained 2-(5-doxylstearoyl)-lecithin as the spin probe, and the EPR spectral anisotropy loss, indicative of bilayer disordering, was measured as a function of the molar percentage of oxidized lipid. Most oxidized lipid molecules examined in this study were able to induce bilayer disordering, while hydroperoxyl group-bearing acyl chains appeared to be much less effective. It is concluded that the effects of different oxidized phospholipids on phospholipid bilayer structure cannot be generalized, as happens with batch-oxidized phospholipids, and that the use of defined oxidized phospholipid molecular species for membrane oxidative stress guarantees a more reliable and detailed response.

  7. Thermodynamic study of benzocaine insertion into different lipid bilayers (United States)

    Cascales, J. J. López; Costa, S. D. Oliveira; Porasso, R. D.


    Despite the general consensus concerning the role played by sodium channels in the molecular mechanism of local anesthetics, the potency of anaesthetic drugs also seems to be related with their solubility in lipid bilayers. In this respect, this work represents a thermodynamic study of benzocaine insertion into lipid bilayers of different compositions by means of molecular dynamics simulation. Thus, the free energy profiles associated with benzocaine insertion into symmetric lipid bilayers composed of different proportions of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine were studied. From the simulation results, a maximum in the free energy (ΔG) profile was measured in the region of the lipid/solution interface. This free energy barrier appears to be very much dependent on the lipid composition of the membrane. On the other hand, the minimum free energy (ΔG) within the bilayer remained almost independent of the lipid composition of the bilayer. By repeating the study at different temperatures, it was seen how the spontaneity of benzocaine insertion into the lipid bilayer is due to an increase in the entropy associated with the process.

  8. Predicting proton titration in cationic micelle and bilayer environments

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Brian H.; Shen, Jana K. [Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201 (United States); Eike, David M.; Murch, Bruce P.; Koenig, Peter H. [Computational Chemistry, Modeling and Simulation GCO, Procter and Gamble, Cincinnati, Ohio 45201 (United States)


    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pK{sub a}’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pK{sub a} of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pK{sub a} of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  9. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding. (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming


    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers.

  10. Microporous device for local electric recordings on model lipid bilayers (United States)

    Kaufeld, Theresa; Steinem, Claudia; Schmidt, Christoph F.


    A powerful approach for characterizing lipid membranes and embedded proteins is the reconstitution of model lipid bilayers. The extreme fragility of 5 nm thick bilayers is a challenge for device design and requires a trade off of stability against accessibility. We here present a microporous lab-on-chip device that allows us to form stable, solvent-free lipid bilayers from giant unilamellar vesicles (GUVs) in a geometry that provides a unique set of access possibilities. The device is constructed around a micro-fabricated silicon chip with clusters of 1 µm-diameter pores and provides optical access to the lipid bilayers for high-NA epifluorescence imaging. At the same time, solvent exchange is possible on both sides of the lipid bilayer. Complete coverage can be achieved with GUVs, so that voltages can be applied across the lipid bilayer and single-channel currents can be measured using external or integrated silver/silver chloride electrodes. We describe the micro-fabrication by standard cleanroom techniques and the characterization of the device by atomic force microscopy, scanning electron microscopy and impedance spectroscopy. In proof-of-concept experiments we demonstrate that the device is capable of low-noise, single-ion-channel recordings. Electronic Supplementary Information (ESI) available: See DOI: 10.1039/b000000x/

  11. Condensation energy of the superconducting bilayer cuprates

    Indian Academy of Sciences (India)

    Govind; Ajay; S K Joshi


    In the present work, we report the interplay of single particle and Cooper pair tunnelings on the superconducting state of layered high-c cuprate superconductors. For this we have considered a model Hamiltonian incorporating the intra-planar interactions and the contributions arising due to the coupling between the planes. The interplanar interactions include the single particle tunneling as well as the Josephson tunneling of Cooper pairs between the two layers. The expression of the out-of-plane correlation parameter which describes the hopping of a particle from one layer to another layer in the superconducting state is obtained within a Bardeen–Cooper–Schriefer (BCS) formalism using the Green’s function technique. This correlation is found to be sensitive to the various parameter of the model Hamiltonian. We have calculated the out-of-plane contribution to the superconducting condensation energy. The calculated values of condensation energy are in agreement with those obtained from the specific heat and the -axis penetration depth measurements on bilayer cuprates.

  12. Raman modes in transferred bilayer CVD graphene

    Directory of Open Access Journals (Sweden)

    Niilisk Ahti


    Full Text Available A systematic experimental Raman spectroscopic study of twisted bilayer graphene (tBLG domains localized inside wide-area single layer graphene (SLG produced by low-pressure CVD on Cu foil and transferred onto SiO2/Si substrate has been performed. According to the Raman characterization the tBLG domains had a great variety of twisting angles θ between the bottom and top graphene layers (6° < θ < 25°. The twisting angle θ was estimated from the spectral position of the rotating R and R' modes in the Raman spectrum.Under G band resonance conditions the breathing mode ZO' with a frequency of 95- 97 cm−1 was detected, and a breathing mode ZO was found in the spectra between 804 cm−1 and 836 cm−1, its position depending on the twisting angle θ. An almost linear relationship was found between the frequencies ωZO and ωR. Also a few other spectral peculiarities were found, e.g. a high-energy excitation of the G band resonance, the 2G overtone appearing at 3170-3180 cm−1 by the G band resonance, revealing a linear dispersion of 80 cm−1/eV of the 2D band in tBLG

  13. Vulnerability of bridges to fire

    DEFF Research Database (Denmark)

    Giuliani, Luisa; Crosti, C.; Gentili, F.


    Even if recent effort in developing methodology and measures for design structures against fire and explosions has been mostly focused on buildings, bridges can also be very sensitive to those actions, as witnesses by some recent bridge accidents, which caused major economic losses and also...... endangered people safety in few cases. Purpose of this paper is making a focus on the state of the art of the research and current regulations concerning the response of bridges to fire. Several cases of bridge fires are reported and a focus is made on the occurrence and consequence of bridge fires......, considering both the costs deriving by structural damages and by limited serviceability and other indirect societal aspects. Few cases of recent bridge fire are reviewed in detail and structural consequences are highlighted, distinguishing between damages directly induced by fire and damages induced by local...

  14. Morphological aspects of myocardial bridges. (United States)

    Lujinović, Almira; Kulenović, Amela; Kapur, Eldan; Gojak, Refet


    Although some myocardial bridges can be asymptomatic, their presence often causes coronary disease either through direct compression of the "tunnel" segment or through stimulation and accelerated development of atherosclerosis in the segment proximally to the myocardial bridge. The studied material contained 30 human hearts received from the Department of Anatomy. The hearts were preserved 3 to 5 days in 10% formalin solution. Thereafter, the fatty tissue was removed and arterial blood vessels prepared by careful dissection with special reference to the presence of the myocardial bridges. Length and thickness of the bridges were measured by the precise electronic caliper. The angle between the myocardial bridge fibre axis and other axis of the crossed blood vessel was measured by a goniometer. The presence of the bridges was confirmed in 53.33% of the researched material, most frequently (43.33%) above the anterior interventricular branch. The mean length of the bridges was 14.64 ± 9.03 mm and the mean thickness was 1.23 ± 1.32 mm. Myocardial bridge fibres pass over the descending blood vessel at the angle of 10-90 degrees. The results obtained on a limited sample suggest that the muscular index of myocardial bridge is the highest for bridges located on RIA, but that the difference is not significant in relation to bridges located on other branches. The results obtained suggest that bridges located on other branches, not only those on RIA, could have a great contractive power and, consequently, a great compressive force, which would be exerted on the wall of a crossed blood vessel.

  15. Modular FRP Composite Bridge Deck


    ECT Team, Purdue


    The bridge infrastructure of the United States is in constant need of repair and rehabilitation. It is reported that 43% of the bridges in the USA have been identified as being structurally deficient or functionally obsolete due to corrosion. SuperdeckTM, a non-corrosive fiber reinforced polymer (FRP) composite bridge deck. The Deck is designed and engineered into a lightweight, strong and rigid structure that will not corrode. The deck sections, composed of hexagon and double-trapezoid profi...

  16. Modelling railway bridge asset management


    Le, Bryant Linh Hai


    The UK has a long history in the railway industry with a large number of railway assets. Railway bridges form one of the major asset groups with more than 35,000 bridges. The majority of the bridge population are old being constructed over 100 years ago. Many of the bridges were not designed to meet the current network demand. With an expected increasing rate of deterioration due to the increasing traffic loads and intensities, the management authorities are faced with the difficult task of k...

  17. Enhanced magnetic response and metallicity in AB stacked bilayer graphene via Cr-doping

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Jyoti [Department of Physics, Kurukshetra University, Kurukshetra 136119, Haryana (India); Kashyap, Manish K., E-mail: [Department of Physics, Kurukshetra University, Kurukshetra 136119, Haryana (India); Saini, Hardev S. [Department of Physics, Panjab University, Chandigarh 160014 (India); Reshak, Ali H. [New Technologies – Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia)


    First-principles study for the electronic and magnetic properties of Cr atom doping in lower layer of AB bernal stacked bilayer graphene (BLG) is presented. This doping is analysed in three different configurations; (i) Hollow type (above the centre of C hexagon), (ii) Top-type (directly on the top of any C atom) and (iii) Bridge type (mid point of any C–C bond). It has been observed that the doping of Cr atom enlarges the interlayer spacing in BLG as compared to pure one. The Top-type (T-type) doping is found to be most stable energetically. The doping of Cr atom in all configurations generates the large spin polarization and induces the appreciable magnetic moment. Half metallicity has been obtained in Hollow type (H-type) doping with a suitable band gap of 0.28 eV in minority spin channel. The origin of magnetism has been identified via interactions of 3d-states of doped Cr atom with p-states of inequivalent C atoms present in the vicinity of doping site. The electron densities plots also confirm the metallic nature of Cr-doped BLG. Our results reveal that the resultant BLG has potential for futuristic applications such as high frequency transistors, spintronics, photodetectors and energy resources. - Highlights: • Cr-doping in bilayer graphene induces magnetic channel. • Half metallicity is observed only in H-type Cr-doping in graphene. • T-type doping is most energetically stable among all types (H-type, B-type and T-type). • The strong hybridization of Cr-3d states with C-p states governs the magnetism in BLG.

  18. Pattern Formation in Dewetting Nanoparticle/Polymer Bilayers (United States)

    Esker, Alan; Paul, Rituparna; Karabiyik, Ufuk; Swift, Michael; Hottle, John


    Comprised of inorganic cores and flexible organic coronae with 1 -- 2 nm diameter monodisperse sizes, polyhedral oligomeric silsesquioxanes (POSS) are ideal model nanofillers. Our discovery that one POSS derivative, trisilanolphenyl-POSS (TPP), can form Langmuir-Blodgett (LB) films on hydrophobic substrates, allows us to create thin film bilayers of precisely controlled thickness and architecture. Work with poly(t-butylacrylate) (PtBA)/TPP bilayers reveals a two-step dewetting mechanism in which the upper TPP layer dewets first, followed by the formation of isolated holes with intricate, fractal, nanofiller aggregates. Like the PtBA/TPP bilayers, polystyrene (PS)/TPP bilayers also undergo a two-step dewetting mechanism. However, the upper TPP layer initially forms cracks that may arise from mismatches in thermal expansion coefficients. These cracks then serve as nucleation sites for complete dewetting of the entire bilayer. Understanding the rich diversity of surface patterns that can be formed from relatively simple processes is a key feature of this work.

  19. London Bridge Is Shaking Funny

    Institute of Scientific and Technical Information of China (English)


    Bridges generally don’t fall down without warning;they crack first. Searching for cracks is a tedious business,though, and bridge inspectors bave been known to miss them. Charles Farrar,a civil engineer at Los Alamos Na-

  20. Fatigue tests on aluminium bridges

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Straalen, IJ.J. van


    Traffic bridges are subjected to variable loads and should therefore be checked on fatigue. Especially low weight materials, like aluminium, are sensitive to fatigue, because the variable load is a substantial part of the total load. This paper shows the structural design of an aluminium bridge load

  1. Fatigue tests on aluminium bridges

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Straalen, IJ.J. van


    Traffic bridges are subjected to variable loads and should therefore be checked on fatigue. Especially low weight materials, like aluminium, are sensitive to fatigue, because the variable load is a substantial part of the total load. This paper shows the structural design of an aluminium bridge load

  2. Development of cooperative system bridges

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhe; WAN Qi-bai; SHI Lei


    Cooperative system bridges comprise several basic structures that act jointly to improve structural characteristics. We delved into the historical development of cooperative system bridges. Cooperative systems are classified as different-load cooperative systems and same-load cooperative systems by distinguishing the modes of load distribution. For different-load cooperation, individual basic structures are at different positions in the direction along bridge axis and carry the loads separately. While for same-load cooperation, all basic structures overlap in geometrical locations and support the entire loads conjointly. The choosing of span ratios between basic structures, the design of connections of different-load cooperative systems were discussed as well as optimizations of relative rigidity for same-load cooperative systems which greatly influence structural characteristics. The general situation and several structural measurements of several cooperative bridges were demonstrated. This information can assist engineers in developing their concepts in cooperative systems and can lead to more efficient and economical cooperative bridges.

  3. Lipid bilayer microarray for parallel recording of transmembrane ion currents. (United States)

    Le Pioufle, Bruno; Suzuki, Hiroaki; Tabata, Kazuhito V; Noji, Hiroyuki; Takeuchi, Shoji


    This paper describes a multiwell biochip for simultaneous parallel recording of ion current through transmembrane pores reconstituted in planar lipid bilayer arrays. Use of a thin poly(p-xylylene) (parylene) film having micrometer-sized apertures (phi=15-50 microm, t=20 microm) led to formation of highly stable bilayer lipid membranes (BLMs) for incorporation of transmembrane pores; thus, a large number of BLMs could be arrayed without any skillful technique. We optically confirmed the simultaneous formation of BLMs in a 5x5 matrix, and in our durability test, the BLM lasted more than 15 h. Simultaneous parallel recording of alamethicin and gramicidin transmembrane pores in multiple contiguous recording sites demonstrated the feasibility of high-throughput screening of transmembrane ion currents in artificial lipid bilayers.

  4. Manipulating interface states in monolayer-bilayer graphene planar junctions (United States)

    Zhao, Fang; Xu, Lei; Zhang, Jun


    We report on transport properties of monolayer-bilayer graphene planar junctions in a magnetic field. Due to its unique geometry, the edge and interface states can be independently manipulated by either interlayer potential or Zeeman field, and the conductance exhibits interesting quantized behaviors. In the hybrid graphene junction, the quantum Hall (QH) conductance is no longer antisymmetric with respect to the charge neutrality point. When the Zeeman field is considered, a quantum spin Hall (QSH) phase is found in the monolayer region while the weak-QSH phase stays in the bilayer region. In the presence of both interlayer potential and Zeeman field, the bilayer region hosts a QSH phase, whereas the monolayer region is still in a QH phase, leading to a spin-polarized current in the interface. In particular, the QSH phase remains robust against the disorder.

  5. Laurdan fluorescence senses mechanical strain in the lipid bilayer membrane. (United States)

    Zhang, Yan-Liang; Frangos, John A; Chachisvilis, Mirianas


    The precise molecular mechanisms by which cells transduce a mechanical stimulus into an intracellular biochemical response have not yet been established. Here, we show for the first time that the fluorescence emission of an environment-sensitive membrane probe Laurdan is modulated by mechanical strain of the lipid bilayer membrane. We have measured fluorescence emission of Laurdan in phospholipid vesicles of 30, 50, and 100 nm diameter to show that osmotically induced membrane tension leads to an increase in polarity (hydration depth) of the phospholipid bilayer interior. Our data indicate that the general polarization of Laurdan emission is linearly dependent on membrane tension. We also show that higher membrane curvature leads to higher hydration levels. We anticipate that the proposed method will facilitate future studies of mechanically induced changes in physical properties of lipid bilayer environment both in vitro and in vivo.

  6. Bilayer Deformation, Pores, and Micellation Induced by Oxidized Lipids. (United States)

    Boonnoy, Phansiri; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak


    The influence of different oxidized lipids on lipid bilayers was investigated with 16 individual 1 μs atomistic molecular dynamics (MD) simulations. Binary mixtures of lipid bilayers of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) and its peroxide and aldehyde products were performed at different concentrations. In addition, an asymmetrical short chain lipid, 1-palmitoyl-2-decanoyl-sn-glycero-3-phosphatidylcholine (PDPC), was used to compare the effects of polar/apolar groups in the lipid tail on lipid bilayer. Although water defects occurred with both aldehyde and peroxide lipids, full pore formation was observed only for aldehyde lipids. At medium concentrations the pores were stable. At higher concentrations, however, the pores became unstable and micellation occurred. Data analysis shows that aldehyde lipids' propensity for pore formation is due to their shorter and highly mobile tail. The highly polar peroxide lipids are stabilized by strong hydrogen bonds with interfacial water.

  7. Equilibrium Configurations of Lipid Bilayer Membranes and Carbon Nanostructures

    Institute of Scientific and Technical Information of China (English)

    Iva(i)lo M.Mladenov; Peter A.Djondjorov; Mariana Ts.Hadzhilazova; Vassil M.Vassilev


    The present article concerns the continuum modelling of the mechanical behaviour and equilibrium shapes of two types of nano-scale objects:fluid lipid bilayer membranes and carbon nanostructures.A unified continuum model is used to handle four different case studies.Two of them consist in representing in analytic form cylindrical and axisymmetric equilibrium configurations of single-wall carbon nanotubes and fluid lipid bilayer membranes subjected to uniform hydrostatic pressure.The third one is concerned with determination of possible shapes of junctions between a single-wall carbon nanotube and a fiat graphene sheet or another single-wall carbon nanotube.The last one deals with the mechanical behaviour of closed fluid lipid bilayer membranes (vesicles) adhering onto a fiat homogeneous rigid substrate subjected to micro-injection and uniform hydrostatic pressure.

  8. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, J.P.; Gilchrist, P.J. [Univ. of Edinburgh (United Kingdom); Duff, K.C. [Univ. of Edinburgh Medical School (United Kingdom); Saxena, A.M. [Brookhaven National Laboratory, Upton, NY (United States)


    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  9. Curvatronics with bilayer graphene in an effective $4D$ spacetime

    CERN Document Server

    Cariglia, M; Perali, A


    We show that in AB stacked bilayer graphene low energy excitations around the semimetallic points are described by massless, four dimensional Dirac fermions. There is an effective reconstruction of the 4 dimensional spacetime, including in particular the dimension perpendicular to the sheet, that arises dynamically from the physical graphene sheet and the interactions experienced by the carriers. The effective spacetime is the Eisenhart-Duval lift of the dynamics experienced by Galilei invariant L\\'evy-Leblond spin $\\frac{1}{2}$ particles near the Dirac points. We find that changing the intrinsic curvature of the bilayer sheet induces a change in the energy level of the electronic bands, switching from a conducting regime for negative curvature to an insulating one when curvature is positive. In particular, curving graphene bilayers allows opening or closing the energy gap between conduction and valence bands, a key effect for electronic devices. Thus using curvature as a tunable parameter opens the way for t...

  10. Molecular-dynamics simulation of a ceramide bilayer (United States)

    Pandit, Sagar A.; Scott, H. Larry


    Ceramide is the simplest lipid in the biologically important class of glycosphingolipids. Ceramide is an important signaling molecule and a major component of the strateum corneum layer in the skin. In order to begin to understand the biophysical properties of ceramide, we have carried out a molecular-dynamics simulation of a hydrated 16:0 ceramide lipid bilayer at 368K (5° above the main phase transition). In this paper we describe the simulation and present the resulting properties of the bilayer. We compare the properties of the simulated ceramide bilayer to an earlier simulation of 18:0 sphingomyelin, and we discuss the results as they relate to experimental data for ceramide and other sphingolipids. The most significant differences arise at the lipid/water interface, where the lack of a large ceramide polar group leads to a different electron density and a different electrostatic potential but, surprisingly, not a different overall "dipole potential," when ceramide is compared to sphingomyelin.

  11. Meron-Pair Excitations in Bilayer Quantum Hall System (United States)

    Moon, Kyungsun

    Bilayer two-dimensional electron gas systems can form unusual broken symmetry states with spontaneous inter-layer phase coherence at certain filling factors. At total filling factor νT = 1, the lowest energy charged excitation of the system is theoretically suggested to be a linearly-confined meron-pair, which is topologically identical to a single skyrmion. We will review how this remarkable excitation arises and can help unravel various experimental results demonstrated in bilayer quantum Hall system. In order to detect the linearly-confined meron-pair excitation directly, we propose a gated bilayer Hall bar experiment, where the magnitude and orientation of magnetic field B‖ applied parallel to the 2D plane can be controlled. We demonstrate a strong angle-dependent transport due to the anisotropic nature of linearly-confined meron-pairs and discuss how it would be manifested in experiment.

  12. Electro-absorption of silicene and bilayer graphene quantum dots (United States)

    Abdelsalam, Hazem; Talaat, Mohamed H.; Lukyanchuk, Igor; Portnoi, M. E.; Saroka, V. A.


    We study numerically the optical properties of low-buckled silicene and AB-stacked bilayer graphene quantum dots subjected to an external electric field, which is normal to their surface. Within the tight-binding model, the optical absorption is calculated for quantum dots, of triangular and hexagonal shapes, with zigzag and armchair edge terminations. We show that in triangular silicene clusters with zigzag edges a rich and widely tunable infrared absorption peak structure originates from transitions involving zero energy states. The edge of absorption in silicene quantum dots undergoes red shift in the external electric field for triangular clusters, whereas blue shift takes place for hexagonal ones. In small clusters of bilayer graphene with zigzag edges the edge of absorption undergoes blue/red shift for triangular/hexagonal geometry. In armchair clusters of silicene blue shift of the absorption edge takes place for both cluster shapes, while red shift is inherent for both shapes of the bilayer graphene quantum dots.

  13. Linguistic Barriers and Bridges

    DEFF Research Database (Denmark)

    Thuesen, Frederik


    and intercultural communication, this article analyses interviews with 31 employees from two highly ethnically diverse Danish workplaces. The article shows how linguistic barriers such as different levels of majority language competence and their consequent misunderstandings breed mistrust and hostility, whilst......The influence of language on social capital in low-skill and ethnically diverse workplaces has thus far received very limited attention within the sociology of work. As the ethnically diverse workplace is an important social space for the construction of social relations bridging different social...... groups, the sociology of work needs to develop a better understanding of the way in which linguistic diversity influences the formation of social capital, i.e. resources such as the trust and reciprocity inherent in social relations in such workplaces. Drawing on theories about intergroup contact...

  14. Looking Beyond the Bridge

    DEFF Research Database (Denmark)

    Jahn, Elke; Rosholm, Michael

    We perform a comprehensive analysis of the stepping-stone effect of temporary agency employment on unemployed workers. Using the timing-of-events approach, we not only investigate whether agency employment is a bridge into regular employment but also analyze its effect on post-unemployment wages ...... is even more effective in tight labor markets, where firms use agency employment primarily to screen po-tential candidates for permanent posts. Finally, our results suggest that agency employment may improve subsequent match quality in terms of wages and job duration....... and job stability for unemployed Danish workers. We find evidence of large positive treatment effects, particularly for immigrants. There is also some indication that higher treatment intensity increases the likelihood of leav-ing unemployment for regular jobs. Our results show that agency employment...

  15. Cascaded resonant bridge converters (United States)

    Stuart, Thomas A. (Inventor)


    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  16. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice (United States)

    Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya; van Zadel, Marc-Jan; Mezger, Markus; Jochum, Mara N.; Cyran, Jenée D.; Smit, Wilbert J.; Bakker, Huib J.; Shultz, Mary Jane; Morita, Akihiro; Donadio, Davide; Nagata, Yuki; Bonn, Mischa; Backus, Ellen H. G.


    On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature. PMID:27956637

  17. Phospholipid bilayer formation at a bare Si surface

    DEFF Research Database (Denmark)

    Gutberlet, T.; Steitz, R.; Fragneto, G.;


    Neutron reflectivity was applied to monitor in situ the adsorption of small unilamellar phospholipid vesicles on a solid bare hydrophilic Si interface. The obtained reflectivity curves are consistent with the rupture and fusion model for the adsorption of phosphatidylcholine vesicles to solid...... interfaces. The results show details of the adsorbed bilayer system at ångström resolution and indicate the presence of a thin ∼6 Å thick water leaflet that separates the bilayer from the Si surface. The resolved structural details provide the basis for further investigation of processes such as adsorption...

  18. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)


    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  19. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.


    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  20. Bilayer polymer/oxide coating for electroluminescent organic semiconductors

    DEFF Research Database (Denmark)

    Tavares, Luciana

    Organic materials have been given much attention due to their intriguing properties that can be tailored via synthetic chemistry for specific applications combined with their low price and fairly straight-forward large-scale synthesis. Para-hexaphenylene (p6P) nanofibers emit polarized light...... of the fibers with oxygen. We have developed a bilayer coating that does not change significantly the p6P spectrum but strongly reduces bleaching. This bilayer coating consists of a first layer of a stable polymer (PMMA) on top of the organic nanofibers as a protecting layer for avoiding modifications of the p6...

  1. Torsional instability in suspension bridges: The Tacoma Narrows Bridge case (United States)

    Arioli, Gianni; Gazzola, Filippo


    All attempts of aeroelastic explanations for the torsional instability of suspension bridges have been somehow criticised and none of them is unanimously accepted by the scientific community. We suggest a new nonlinear model for a suspension bridge and we perform numerical experiments with the parameters corresponding to the collapsed Tacoma Narrows Bridge. We show that the thresholds of instability are in line with those observed the day of the collapse. Our analysis enables us to give a new explanation for the torsional instability, only based on the nonlinear behavior of the structure.

  2. Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers (United States)

    Chegel, Raad


    By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB1- and AB2- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.

  3. Displacement sensor based on an amorphous bilayer including a magnetostrictive component

    Energy Technology Data Exchange (ETDEWEB)

    Mehnen, L. E-mail:; Svec, P.; Pfuetzner, H.; Duhaj, P


    The present study concerns a novel type of bilayer material for displacement sensors based on the detection of curvature changes through the magnetoelastic effect. For increased bilayer stability, attempts were made to use a double-nozzle melt spinning technique (DNT) for direct flow-cast of bilayers. Compared to an agglutination technique, DNT yielded much lower sensitivity but improved long-term stability.

  4. Cationic Dimyristoylphosphatidylcholine and Dioleoyloxytrimethylammonium Propane Lipid Bilayers: Atomistic Insight for Structure and Dynamics

    DEFF Research Database (Denmark)

    Zhao, W.; Gurtovenko, A. A.; Vattulainen, I.


    of 0.4, that is, at lower TAP fractions compared with saturated PC/TAP bilayers. Adding unsaturated DOTAP lipids into DMPC bilayers was found to promote lipid chain interdigitation and to fluidize lipid bilayers, as seen through enhanced lateral lipid diffusion. The speed-up in lateral diffusion...

  5. National Bridge Inventory - National Geospatial Data Asset (NGDA) Bridges (United States)

    Department of Transportation — The NBI (NTAD 2015) is a collection of information (database) describing the more than 610,000 of the Nation's bridges located on public roads, including Interstate...

  6. Bridge Creek IMW database - Bridge Creek Restoration and Monitoring Project (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The incised and degraded habitat of Bridge Creek is thought to be limiting a population of ESA-listed steelhead (Oncorhynchus mykiss). A logical restoration approach...

  7. General design of Sutong Bridge

    Institute of Scientific and Technical Information of China (English)

    Zhang Xigang; Yuan Hong; Pei Minshan; Dai Jie; Xu Lin


    The main span of Sutong Bridge is a double-pylon, double-plane cable-stayed bridge with steel box girder, which has the world's longest central span of 1 088 m within cable-stayed bridges. To overcome problems caused by severe meteorological conditions, perplexing hydrological conditions, deep buried bedrock and higher navigation level, many new technics and methods were created. Keys including structural system, steel box girder, stayed cable, tower, pier, tower foundation, collision avoidance system, wind-resistance, seismic-resistance, structural nonlinear response and structural static stability were presented individually in this paper.

  8. Reliability Assessment of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Middleton, C. R.

    This paper is partly based on research performed for the Highways Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: concrete bridges". It contains the details of a methodology which can be used to generate Whole Life (WL) reliability...... profiles. These WL reliability profiles may be used to establish revised rules for concrete bridges. This paper is to some extend based on Thoft-Christensen et. al. [1996], Thoft-Christensen [1996] et. al. and Thoft-Christensen [1996]....

  9. Inducing morphological changes in lipid bilayer membranes with microfabricated substrates (United States)

    Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick


    Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.

  10. Super-Sensitive and Robust Biosensors from Supported Polymer Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Walter F. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)


    Biological organisms are potentially the most sensitive and selective biological detection systems known, yet we are currently severely limited in our ability to exploit biological interactions in sensory devices, due in part to the limited stability of biological systems and derived materials. This proposal addresses an important aspect of integrating biological sensory materials in a solid state device. If successful, such technology could enable entirely new classes of robust biosensors that could be miniaturized and deployed in the field. The critical aims of the proposed work were 1) the calibration of a more versatile approach to measuring pH, 2) the use of this method to monitor pH changes caused by the light-induced pumping of protons across vesicles with bacteriorhodopsin integrated into the membranes (either polymer or lipid); 3) the preparation of bilayer assemblies on platinum surfaces; 4) the enhanced detection of lightinduced pH changes driven by bR-loaded supported bilayers. I have developed a methodology that may enable that at interfaces and developed a methodology to characterize the functionality of bilayer membranes with reconstituted membrane proteins. The integrity of the supported bilayer films however must be optimized prior to the full realization of the work originally envisioned in the original proposal. Nevertheless, the work performed on this project and the encouraging results it has produced has demonstrated that these goals are challenging yet within reach.

  11. Berry phase and pseudospin winding number in bilayer graphene (United States)

    Park, Cheol-Hwan; Marzari, Nicola


    In 2006, two seminal studies on the novel quantum Hall effect of bilayer graphene [K. S. Novoselov et al., Nat. Phys. 2, 177 (2006); E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, 086805 (2006)] appeared. Those papers claim that a non-trivial Berry phase of 2π in bilayer graphene is responsible for the novel quantum Hall effect described. Since then, it has become widely accepted by people working on the novel physics of graphene nanostructures that bilayer graphene has a non-trivial Berry phase of 2π (different from 0, as for conventional two-dimensional electron gas). In this talk, we show that (i) the relevant Berry phase for bilayer graphene is the same as that for a conventional two-dimensional electron gas and especially that (ii) what is actually obtained in the quantum Hall measurements is not the absolute value of the Berry phase of graphene multilayers but the pseudospin winding number. The results of our study ask for a re-interpretation of the numerous works related to the Berry phase in graphene multilayers.

  12. Anthrax toxin-induced rupture of artificial lipid bilayer membranes (United States)

    Nablo, Brian J.; Panchal, Rekha G.; Bavari, Sina; Nguyen, Tam L.; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E.; Robertson, Joseph W. F.; Balijepalli, Arvind; Halverson, Kelly M.; Kasianowicz, John J.


    We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.

  13. Forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces. (United States)

    Zhang, Ying; Wang, Lei; Wang, Xuejing; Qi, Guodong; Han, Xiaojun


    A novel method of forming lipid bilayer membrane arrays on micropatterned polyelectrolyte film surfaces is introduced. Polyelectrolyte films were fabricated by the layer-by-layer technique on a silicon oxide surface modified with a 3-aminopropyltriethoxysilane (APTES) monolayer. The surface pK(a) value of the APTES monolayer was determined by cyclic voltammetry to be approximately 5.61, on the basis of which a pH value of 2.0 was chosen for layer-by-layer assembly. Micropatterned polyelectrolyte films were obtained by deep-UV (254 nm) photolysis though a mask. Absorbed fluorescent latex beads were used to visualize the patterned surfaces. Lipid bilayer arrays were fabricated on the micropatterned surfaces by immersing the patterned substrates into a solution containing egg phosphatidylcholine vesicles. Fluorescence recovery after photobleaching studies yielded a lateral diffusion coefficient for probe molecules of 1.31±0.17 μm(2) s(-1) in the bilayer region, and migration of the lipid NBD PE in bilayer lipid membrane arrays was observed in an electric field.

  14. Single lipid bilayer deposition on polymer surfaces using bicelles. (United States)

    Saleem, Qasim; Zhang, Zhenfu; Petretic, Amy; Gradinaru, Claudiu C; Macdonald, Peter M


    A lipid bilayer was deposited on a 3 μm diameter polystyrene (PS) bead via hydrophobic anchoring of bicelles containing oxyamine-bearing cholesteric moieties reacting with the aldehyde functionalized bead surface. Discoidal bicelles were formed by mixing dimyristoylphosphatidylcholine (DMPC), dihexanoylphosphatidylcholine (DHPC), dimyristoyltrimethylammonium propane (DMTAP), and the oxyamine-terminated cholesterol derivative, cholest-5-en-3β-oxy-oct-3,6-oxa-an-8-oxyamine (CHOLOA), in the molar ratio DMPC/DHCP/DMTAP/CHOLOA (1/0.5/0.01/0.05) in water. Upon exposure to aldehyde-bearing PS beads, a stable single lipid bilayer coating rapidly formed at the bead surface. Fluorescence recovery after photobleaching demonstrated that the deposited lipids fused into an encapsulating lipid bilayer. Electrospray ionization mass spectrometry showed that the short chain lipid DHPC was entirely absent from the PS adherent lipid coating. Fluorescence quenching measurements proved that the coating was a single lipid bilayer. The bicelle coating method is thus simple and robust, can be modified to include membrane-associated species, and can be adapted to coat any number of different surfaces.

  15. Electronic transport of bilayer graphene with asymmetry line defects (United States)

    Zhao, Xiao-Ming; Wu, Ya-Jie; Chen, Chan; Liang, Ying; Kou, Su-Peng


    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer-Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921803 and 2012CB921704), the National Natural Science Foundation of China (Grant Nos. 11174035, 11474025, 11504285, and 11404090), the Specialized Research Fund for the Doctoral Program of Higher Education, China, the Fundamental Research Funds for the Central Universities, China, the Scientific Research Program Fund of the Shaanxi Provincial Education Department, China (Grant No. 15JK1363), and the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China.

  16. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei;


    . Furthermore, the model is validated using densification results from sintering of bi-layered tubular ceramic oxygen membrane based on porous MgO and Ce0.9Gd0.1O1.95-d layers. Model input parameters, such as the shrinkage kinetics and viscous parameters are obtained experimentally using optical dilatometry...

  17. Plasmons in metallic monolayer and bilayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Thygesen, Kristian S.


    We study the collective electronic excitations in metallic single-layer and bilayer transition metal dichalcogenides (TMDCs) using time dependent density functional theory in the random phase approximation. For very small momentum transfers (below q≈0.02 Å−1), the plasmon dispersion follows the √q...

  18. Indole Localization in an Explicit Bilayer Revealed via Molecular Dynamics (United States)

    Norman, Kristen


    It is well known that the amino-acid tryptophan is particularly stable in the interfacial region of biological membranes, and this preference is a property of the tryptophan side-chain. Analogues of this side-chain, such as indole, strongly localize in the interfacial region, especially near the glycerol moiety of the lipids in the bilayer. Using molecular dynamics calculations, we determine the potential of mean force (PMF) for indoles in the bilayer. We compare the calculated PMF for indole with that of benzene to show that exclusion from the center of the lipid bilayer does not occur in all aromatics, but is strong in indoles. We find three minima in the PMF. Indole is most stabilized near the glycerol moiety. A weaker binding location is found near the choline groups of the lipid molecules. An even weaker binding side is found near the center of the lipid hydrocarbon core. Comparisions between uncharged, weakly charged, and highly charged indoles demonstrate that the exclusion is caused by the charge distribution on the indole rather than the ``lipo-phobic'' effect. High temperature simulations are used to determine the relative contribution of enthalpy and entropy to indole localization. The orientation of indole is found to be largely charge independent and is a strong function of depth within the bilayer. We find good agreement between simulated SCD order parameters for indole and experimentally determined order parameters.

  19. Electronic and optical studies of pulse laser deposited ZnO/NiO bilayer film (United States)

    Baraskar, P.; Dar, T. A.; Choudhary, R. J.; Sen, P. K.; Sen, P.


    We report the structural, optical and electronic properties of polycrystalline ZnO and NiO thin films and amorphous ZnO/NiO bilayer film, prepared by pulsed laser deposition technique. Despite of the presence of both Zn and Ni in +2 state in the bilayer film, the grown bilayer shows no reflections (in XRD) corresponding to ZnO or NiO. The difference in crystal structure of ZnO and NiO leads to the strain in the grown bilayer film. An increase in the band gap has been observed in bilayer film which can be attributed to the amorphous nature of the structure.

  20. Efficient tunable generic model for self-assembling fluid bilayer membranes (United States)

    Deserno, Markus


    We present a new model for the simulation of generic lipid bilayers in the mesoscopic regime (between a few nanometers and many tens of nanometers), which is very robust, versatile, and extremely efficient, since it avoids the need for an embedding solvent. Based entirely on simple pair potentials, it features a wide region of unassisted self assembly into fluid bilayers without the need for careful parameter tuning. The resulting membranes display the correct continuum elastic behavior with bending constants in the experimentally relevant range. It can be readily used to study events like bilayer fusion, bilayer melting, lipid mixtures, rafts, and protein-bilayer interactions.

  1. The Higgs Bridge

    CERN Document Server

    Allen, Roland E


    The particle recently discovered at the Large Hadron Collider near Geneva is almost certainly a Higgs boson, the long-sought completion of the Standard Model of particle physics. But this discovery, an achievement by more than six thousand scientists (including students), is actually much more than a mere capstone of the Standard Model. It instead represents a bridge from the Standard Model to exciting discoveries of the future, at higher energies or in other experiments, and to the properties of matter at very low temperatures. The mere existence of a particle with zero spin implies a need for new physics, with the most likely candidate being supersymmetry, which requires that every known particle has a superpartner yet to be discovered. And phenomena similar to the Higgs are seen in superconducting metals and superfluid gases at low temperatures, which extend down to a millionth or even a billionth of a degree Kelvin. So the discovery of a Higgs boson has a central place in our attempts both to achieve a tr...

  2. Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle (United States)

    Gajbhiye, Sachin O.; Singh, S. P.


    Due to strong van der Waals (vdW) interactions, the graphene sheets and nanotubes stick to each other and form clusters of these corresponding nanostructures, viz. bi-layered graphene sheet (BLGS), double-walled carbon nanotube (DWCNT) and nanotube bundle (NB) or ropes. This research work is concerned with the study of nonlinear dynamics of BLGS, DWCNT and NB due to nonlinear interlayer vdW forces using multiscale atomistic finite element method. The energy between two adjacent carbon atoms is represented by the multibody interatomic Tersoff-Brenner potential, whereas the nonlinear interlayer vdW forces are represented by Lennard-Jones 6-12 potential function. The equivalent nonlinear material model of carbon-carbon bond is used to model it based on its force-deflection relation. Newmark's algorithm is used to solve the nonlinear matrix equation governing the motion of the BLGS, DWCNT and NB. An impulse and harmonic excitations are used to excite these nanostructures under cantilevered, bridged and clamped boundary conditions. The frequency responses of these nanostructures are computed, and the dominant resonant frequencies are identified. Along with the forced vibration of these structures, the eigenvalue extraction problem of armchair and zigzag NB is also considered. The natural frequencies and corresponding mode shapes are extracted for the different length and boundary conditions of the nanotube bundle.

  3. Mineral bridges in nacre revisited

    CERN Document Server

    Checa, Antonio G; Willinger, Marc-Georg


    We confirm with high-resolution techniques the existence of mineral bridges between superposed nacre tablets. In the towered nacre of both gastropods and the cephalopod Nautilus there are large bridges aligned along the tower axes, corresponding to gaps (150-200 nm) in the interlamellar membranes. Gaps are produced by the interaction of the nascent tablets with a surface membrane that covers the nacre compartment. In the terraced nacre of bivalves bridges associated with elongated gaps in the interlamellar membrane (> 100 nm) have mainly been found at or close to the edges of superposed parental tablets. To explain this placement, we hypothesize that the interlamellar membrane breaks due to differences in osmotic pressure across it when the interlamellar space below becomes reduced at an advanced stage of calcification. In no cases are the minor connections between superimposed tablets (< 60 nm), earlier reported to be mineral bridges, found to be such.

  4. Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains. (United States)

    Lee, Hwankyu


    Imidazolium-based ionic surfactants of different sizes were simulated with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Regardless of the phospholipid type, larger surfactants at higher concentrations more significantly insert into the bilayer and increase the bilayer-surface size, in agreement with experiments and previous simulations. Insertion of surfactants only slightly decreases the bilayer thickness, as also observed in experiments. Although the surfactant insertion and its effect on the bilayer size and thickness are similar in different types of bilayers, the volume fractions of surfactants in the bilayer are higher for DMPC bilayers than for POPC and DOPC bilayers. In particular, ionic surfactants with four hydrocarbons yield their volume fractions of 4.6% and 8.7%, respectively, in POPC and DMPC bilayers, in quantitative agreement with experimental values of ∼5% and ∼10%. Also, the inserted surfactants increase the lateral diffusivity of the bilayer, which depends on the bilayer type. These findings indicate that although the surfactant insertion does not depend on the bilayer type, the effects of surfactants on the volume fraction and bilayer dynamics occur more significantly in the DMPC bilayer because of the smaller area per lipid and shorter saturated tails, which helps explain the experimental observations regarding different volume fractions of surfactants in POPC and DMPC bilayers.

  5. The stories of two bridges in Ghana

    DEFF Research Database (Denmark)

    Andreasen, Jørgen


    Public participation in bridge building was promoted by un habitat in the village of Mankrong. The neighbouring village did not participate in the construction of their bridge. The first flooding washed the second bridge down while the "participative bridge" stood up....

  6. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)


    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  7. Evaporation-Induced Buckling and Fission of Microscale Droplet Interface Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Boreyko, Jonathan B [ORNL; Mruetusatorn, Prachya [ORNL; Sarles, Stephen A [ORNL; Retterer, Scott T [ORNL; Collier, Pat [ORNL


    Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers ( DIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemi-spherical volumes. In the second regime, the combined effects of the shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a bending moment corresponding to a critical shear stress, the buckling bilayer fissions a vesicle to regulate its shape and stress. The DIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo- and exocytosis in cells.

  8. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Collingwood, S.A.; Ingolfsson, H.I.;


    Membrane protein function is regulated by the host lipid bilayer composition. This regulation may depend on specific chemical interactions between proteins and individual molecules in the bilayer, as well as on non-specific interactions between proteins and the bilayer behaving as a physical entity...... with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated...... physical properties. This advance is because of the introduction of new tools for studying lipid bilayer regulation of protein function. The present review provides an introduction to the regulation of membrane protein function by the bilayer physical properties. We further describe the use of gramicidin...

  9. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics. (United States)

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep


    Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.

  10. Redundancy Evaluation of Fracture Critical Bridges


    Bapat, Amey Vivek


    Cases of brittle fractures in major bridges prompted AASHTO to publish its first fracture control plan in 1978. It focused on material and fabrication standards, and required periodic 24-month hands-on inspection of bridges with fracture critical members. The practical result of this plan was to significantly increase the life cycle cost of these bridges, rendering them uneconomical. Apart from the Point Pleasant Bridge that failed in 1967, no other bridge has collapsed in the USA following a...

  11. Environmental life cycle assessment comparison between two bridge types: reinforced concrete bridge and steel composite bridge

    DEFF Research Database (Denmark)

    Du, Guangli; Karoumi, Raid


    not been integrated into the decision-making process. This paper presents a systematic LCA method for quantifying the environmental impacts for bridges. The comparison study is performed between a reinforced concrete bridge and a steel bridge as an alternative design, with several key maintenance and EOL...... scenarios outlined. LCA study is performed with the ReCiPe methodology with life cycle inventories data from public database. Five selected mid-point level impact categories and the energy consumption are presented. The result shows that the steel bridge has a better environmental performance due...... to the recycling strategy, while the initial material manufacture is the most dominant phase that contributes large environmental impact in both design solutions....

  12. Aqueous solutions at the interface with phospholipid bilayers. (United States)

    Berkowitz, Max L; Vácha, Robert


    In a sense, life is defined by membranes, because they delineate the barrier between the living cell and its surroundings. Membranes are also essential for regulating the machinery of life throughout many interfaces within the cell's interior. A large number of experimental, computational, and theoretical studies have demonstrated how the properties of water and ionic aqueous solutions change due to the vicinity of membranes and, in turn, how the properties of membranes depend on the presence of aqueous solutions. Consequently, understanding the character of aqueous solutions at their interface with biological membranes is critical to research progress on many fronts. The importance of incorporating a molecular-level description of water into the study of biomembrane surfaces was demonstrated by an examination of the interaction between phospholipid bilayers that can serve as model biological membranes. The results showed that, in addition to well-known forces, such as van der Waals and screened Coulomb, one has to consider a repulsion force due to the removal of water between surfaces. It was also known that physicochemical properties of biological membranes are strongly influenced by the specific character of the ions in the surrounding aqueous solutions because of the observation that different anions produce different effects on muscle twitch tension. In this Account, we describe the interaction of pure water, and also of aqueous ionic solutions, with model membranes. We show that a symbiosis of experimental and computational work over the past few years has resulted in substantial progress in the field. We now better understand the origin of the hydration force, the structural properties of water at the interface with phospholipid bilayers, and the influence of phospholipid headgroups on the dynamics of water. We also improved our knowledge of the ion-specific effect, which is observed at the interface of the phospholipid bilayer and aqueous solution, and its

  13. The Akashi Kaikyo Bridge and the Storebælt Bridge

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen


    With the completion of the Akashi Kaikyo Bridge and the Storebælt East Bridge the development of the suspension bridge technology in the 20th century has manifested itself in two impressive structures. With the present echnology may bridges of similar (and also more modest) dimensions...... will undoubtedly be built far into the next century. For bridges going beyond the spans of existing bridges it is, however, likely that new concepts will be developed....

  14. Amphiphile regulation of ion channel function by changes in the bilayer spring constant

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Koeppe, R.E.; Andersen, Oluf Sten


    Many drugs are amphiphiles that, in addition to binding to a particular target protein, adsorb to cell membrane lipid bilayers and alter intrinsic bilayer physical properties (e. g., bilayer thickness, monolayer curvature, and elastic moduli). Such changes can modulate membrane protein function b......-dependent sodium channels in living cells. The use of gA channels as molecular force probes provides a tool for quantitative, predictive studies of bilayer-mediated regulation of membrane protein function by amphiphiles....... by altering the energetic cost (Delta G(bilayer)) of bilayer deformations associated with protein conformational changes that involve the protein-bilayer interface. But amphiphiles have complex effects on the physical properties of lipid bilayers, meaning that the net change in Delta G(bilayer) cannot...... be predicted from measurements of isolated changes in such properties. Thus, the bilayer contribution to the promiscuous regulation of membrane proteins by drugs and other amphiphiles remains unknown. To overcome this problem, we use gramicidin A (gA) channels as molecular force probes to measure the net...

  15. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng


    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  16. The Mechanical Aspects of Formation and Application of PDMS Bilayers Rolled into a Cylindrical Structure

    Directory of Open Access Journals (Sweden)

    Dongwon Kang


    Full Text Available A polydimethylsiloxane (PDMS film with its surface being oxidized by a plasma treatment or a UV-ozone (UVO treatment, that is, a bilayer made of PDMS and its oxidized surface layer, is known to roll into a cylindrical structure upon exposure to the chloroform vapor due to the mismatch in the swelling ratio between PDMS and the oxidized layer by the chloroform vapor. Here we analyzed the formation of the rolled bilayer with the mechanical aspects: how the mismatch in the swelling ratio of the bilayer induces rolling of the bilayer, why any form of trigger that breaks the symmetry in the in-plane stress level is needed to roll the bilayer uniaxially, why the rolled bilayer does not unroll in the dry state when there is no more mismatch in the swelling ratio, and how the measured curvature of rolled bilayer matches well with the prediction by the theory. Moreover, for the use of the rolled bilayer as the channel of the microfluidic device, we examined whether the rolled bilayer deforms or unrolls by the flow of the aqueous solution that exerts the circumferential stress on the rolled bilayer.

  17. River ice jams at bridges

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D. [New Brunswick Dept. of Transportation, Fredericton, NB (Canada); Beltaos, S. [National Water Research Institute, Burlington, ON (Canada)


    Ice jamming, known to cause high water levels at even moderate river flows, is described as both the main and least understood source of ice-related bridge damages. This paper describes a joint study by the New Brunswick Department of Transportation, the Department of the Environment, local governments, and the National Water Research Institute, designed to address problems associated with the interaction of ice jams and bridges. The study consists of collecting information at each of four sites in New Brunswick including: historical data on ice jam locations, causes, and water levels; channel bathymetry, width and slope within each study centred at the respective bridge; and documentation of ice conditions throughout the ice season, including measurement of ice cover thickness, observation of breakup mechanisms, times, causes, characteristics and possible impacts of ice jam release. Data analysis will include determination of high stages due to ice jams or surges caused by upstream ice jam releases, scour potential of surges, and quantification of the structure's capacity to restrain ice movement and to cause jams. The principal objective of the study is to advance beyond empiricism and to develop rational design criteria for bridges by anticipating the effects of climate changes and by incorporating local meteorological and hydrometric records into bridge design for added safety.

  18. Floating liquid bridge charge dynamics (United States)

    Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz


    The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.

  19. A strange bridge by Leonardo

    CERN Document Server

    Huylebrouck, Dirk


    On folio 855 recto of the Codex Atlanticus, Leonardo da Vinci drew three 'easily movable' bridges, but one of them is enigmatic: all 'replicas' in Leonardo museums and exhibitions come as a surprise, to say the least, to any engineer or architect whose attention is drawn to it. This is the case for models in Amboise (France), Chicago and Portland (USA), Florence (Italy) and for the one of the traveling exhibition by the Australian company 'Grande Exhibitions' that already visited 40 major cities in the world. All 'replicas' of the bridge model attributed to Leonardo have pillars standing on the deck of the bridge, while the deck is suspended by cables attached on these pillars. At first sight this problem does not catch the attention of the observer, as the bridge seems to be a mixed form of a beam and a suspension bridge, but it was not overlooked by my colleague architect-engineer Dr. Laurens Luyten (Gent, Belgium). Yet, after a TV-interview in Brussels so much pressure was exerted by some of the museum col...

  20. Dynamics and stability of lipid bilayers modulated by thermosensitive polypeptides, cholesterols, and PEGylated lipids. (United States)

    Lee, Hwankyu; Kim, Hyun Ryoung; Park, Jae Chan


    Lipid bilayers, which consist of dipalmitoylglycerophosphocholines (DPPCs), PEGylated lipids, cholesterols, and elastin-like polypeptides (ELPs; [VPGVG]3) at different molar ratios, were simulated. Simulations were carried out for 2 μs using the coarse-grained (CG) model that had captured the experimentally observed phase behavior of PEGylated lipids and lateral diffusivity of DPPC bilayers. Starting with the initial position of ELPs on the bilayer surface, ELPs insert into the hydrophobic region of the bilayer because of their interaction with lipid tails, consistent with previous all-atom simulations. Lateral diffusion coefficients of DPPCs significantly increase in the bilayer composed of more ELPs and less cholesterols, showing their opposite effects on the bilayer dynamics. In particular, ELPs modulate the dynamics and phase for the disordered liquid bilayer, but not for the ordered gel bilayer, indicating that ELPs can destabilize only the disordered bilayer. In the ordered bilayer, ELP chains tend to have a spherical shape and slowly diffuse, while they are extended and diffuse faster in the disordered bilayer, indicating the effect of the bilayer phase on the conformation and diffusivity of ELPs. These findings explain the experimental observation that the ELP-conjugated liposomes are stable at 310 K (ordered phase) but become unstable and release the encapsulated drugs at 315 K (disordered phase), which suggests the effects of ELPs and cholesterols. Since the cholesterol-stabilized bilayer can be destabilized by the extended shaped ELPs only in the disordered phase (not in the ordered phase), the inclusion of cholesterols is required to safely shield drugs at 310 K as well as allow ELPs to disrupt lipids and destabilize the liposomes at 315 K.

  1. A large scale molecular dynamics calculation of a lipid bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Susumu [Tokyo Inst. of Tech. (Japan)


    Long time molecular dynamics simulations for the dipalmitoylphosphatidylcholine lipid bilayer in the liquid crystal phase could successfully be performed in the isothermal-isobaric ensemble using the Nose-Parrinello-Rahman extended system method. Three independent 2 ns calculations show excellent convergence to the same equilibrium state of the system in about 0.5 ns. Various structural properties such a atomic distribution, order parameter, gauche fraction in the alkyl chains, and bent structure of the head group and sn-2 chain were satisfactorily reproduced. Dynamic quantities such as trans-gauche transition were qualitatively in good correspondence the experiment. The calculations presented a microscopic picture of the whole molecular conformations, including the finding that there is not a collective tilt in bilayer. Some interesting dynamical observations concerning large structural fluctuations and pendulum motion of the alkyl chains were also made. (author)

  2. Bilayer thickness mismatch controls domain size in biomimetic membranes (United States)

    Heberle, Frederick A.; Petruzielo, Robin S.; Pan, Jianjun; Drazba, Paul; Kučerka, Norbert; Standaert, Robert F.; Feigenson, Gerald W.; Katsara, John


    In order to promote functionality, cells may alter the spatial organization of membrane lipids and proteins, including separation of liquid phases into distinct domains. In model membranes, domain size and morphology depend strongly on composition and temperature, but the physicochemical mechanisms controlling them are poorly understood. Theoretical work suggests a role for interfacial energy at domain boundaries, which may be driven in part by thickness mismatch between a domain and its surrounding bilayer. However, no direct evidence linking thickness mismatch to domain size in free-standing bilayers has been reported. We describe the use of Small Angle Neutron Scattering (SANS) to detect domains in simplified lipid-only models that mimic the composition of plasma membrane. We find that domain size is controlled by the degree of acyl chain unsaturation of low-melting temperature lipids, and that this size transition is correlated to changes in the thickness mismatch between coexisting liquid phases.

  3. Elliptical structure of phospholipid bilayer nanodiscs encapsulated by scaffold proteins

    DEFF Research Database (Denmark)

    Skar-Gislinge, Nicholas; Simonsen, Jens Bæk; Mortensen, Kell


    -angle neutron scattering in combination with variable-temperature studies of synchrotron small-angle X-ray scattering on nanodiscs in solution, we show that the fundamental nanodisc unit, consisting of a lipid bilayer surrounded by amphiphilic scaffold proteins, possesses intrinsically an elliptical shape....... The temperature dependence of the curvature of the nanodiscs prepared with two different phospholipid types (DLPC and POPC) shows that it is the scaffold protein that determines the overall elliptical shape and that the nanodiscs become more circular with increasing temperature. Our data also show...... that the hydrophobic bilayer thickness is, to a large extent, dictated by the scaffolding protein and adjusted to minimize the hydrophobic mismatch between protein and phospholipid. Our conclusions result from a new comprehensive and molecular-based model of the nanodisc structure and the use of this to analyze...

  4. First-principles modeling hydrogenation of bilayered boron nitride (United States)

    Jing, Wang; Peng, Zhang; Xiang-Mei, Duan


    We have investigated the structural and electronic characteristics of hydrogenated boron-nitride bilayer (H-BNBN-H) using first-principles calculations. The results show that hydrogenation can significantly reduce the energy gap of the BN-BN into the visible-light region. Interestingly, the electric field induced by the interface dipoles helps to promote the formation of well-separated electron-hole pairs, as demonstrated by the charge distribution of the VBM and CBM. Moreover, the applied bias voltage on the vertical direction of the bilayer could modulate the band gap, resulting in transition from semiconductor to metal. We conclude that H-BNBN-H could improve the solar energy conversion efficiency, which may provide a new way for tuning the electronic devices to meet different environments and demands. Project supported by the National Natural Science Foundation of China (Grant No. 11574167).

  5. Polyglutamine expansion in huntingtin increases its insertion into lipid bilayers. (United States)

    Kegel, Kimberly B; Schewkunow, Vitali; Sapp, Ellen; Masso, Nicholas; Wanker, Erich E; DiFiglia, Marian; Goldmann, Wolfgang H


    An expanded polyglutamine (Q) tract (>37Q) in huntingtin (htt) causes Huntington disease. Htt associates with membranes and polyglutamine expansion in htt may alter membrane function in Huntington disease through a mechanism that is not known. Here we used differential scanning calorimetry to examine the effects of polyQ expansion in htt on its insertion into lipid bilayers. We prepared synthetic lipid vesicles composed of phosphatidylcholine and phosphatidylethanolamine and tested interactions of htt amino acids 1-89 with 20Q, 32Q or 53Q with the vesicles. GST-htt1-89 with 53Q inserted into synthetic lipid vesicles significantly more than GST-htt1-89 with 20Q or 32Q. We speculate that by inserting more into cell membranes, mutant huntingtin could increase disorder within the lipid bilayer and thereby disturb cellular membrane function.

  6. Phase-separation transitions in asymmetric lipid bilayers

    CERN Document Server

    Shimobayashi, Shunsuke F; Taniguchi, Takashi


    Morphological transitions of phase separation associated with the asymmetry of lipid composition were investigated using micrometer-sized vesicles of lipid bilayers made from a lipid mixture. The complete macro-phase-separated morphology undergoes a transition to a micro-phase-separation-like morphology via a lorate morphology as a metastable state. The transition leads to the emergence of monodisperse nanosized domains through repeated domain scission events. Moreover, we have numerically confirmed the transitions using the time-dependent Ginzburg-Landau model describing phase separation and the bending elastic membrane, which is quantitatively consistent with experimental results by fixing one free parameter. Our findings suggest that the local spontaneous curvature due to the asymmetric composition plays an essential role in the thermodynamic stabilization of micro-phase separation in lipid bilayers.

  7. Formation of droplet interface bilayers in a Teflon tube. (United States)

    Walsh, Edmond; Feuerborn, Alexander; Cook, Peter R


    Droplet-interface bilayers (DIBs) have applications in disciplines ranging from biology to computing. We present a method for forming them manually using a Teflon tube attached to a syringe pump; this method is simple enough it should be accessible to those without expertise in microfluidics. It exploits the properties of interfaces between three immiscible liquids, and uses fluid flow through the tube to pack together drops coated with lipid monolayers to create bilayers at points of contact. It is used to create functional nanopores in DIBs composed of phosphocholine using the protein α-hemolysin (αHL), to demonstrate osmotically-driven mass transfer of fluid across surfactant-based DIBs, and to create arrays of DIBs. The approach is scalable, and thousands of DIBs can be prepared using a robot in one hour; therefore, it is feasible to use it for high throughput applications.

  8. Formation of droplet interface bilayers in a Teflon tube (United States)

    Walsh, Edmond; Feuerborn, Alexander; Cook, Peter R.


    Droplet-interface bilayers (DIBs) have applications in disciplines ranging from biology to computing. We present a method for forming them manually using a Teflon tube attached to a syringe pump; this method is simple enough it should be accessible to those without expertise in microfluidics. It exploits the properties of interfaces between three immiscible liquids, and uses fluid flow through the tube to pack together drops coated with lipid monolayers to create bilayers at points of contact. It is used to create functional nanopores in DIBs composed of phosphocholine using the protein α-hemolysin (αHL), to demonstrate osmotically-driven mass transfer of fluid across surfactant-based DIBs, and to create arrays of DIBs. The approach is scalable, and thousands of DIBs can be prepared using a robot in one hour; therefore, it is feasible to use it for high throughput applications. PMID:27681313

  9. Model for magnetostrictive performance in soft/hard coupled bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jianjun, Li, E-mail: [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China); Laboratoire de Magnétisme de Bretagne, Université de Bretagne Occidentale, 29238 Brest Cedex 3 (France); Beibei, Duan; Minglun, Li [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China)


    A model is set up to investigate the magnetostrictive performance and spin response in soft/hard magnetostrictive coupled bilayers. Direct coupling between soft ferromagnet and hard TbFe{sub 2} at the interface is assumed. The magnetostriction results from the rotation of ferromagnetic vector and TbFe{sub 2} vectors from the easy axis driven by applied magnetic field. Dependence of magnetostriction on TbFe{sub 2} layer thickness and interfacial exchange interaction is studied. The simulated results reveal the compromise between interfacial exchange interaction and anisotropy of TbFe{sub 2} hard layer. - Highlights: • A model for magnetostrictive performance in soft/hard coupled bilayers. • Simulated magnetostriction loop and corresponding spin response. • Competition and compromise between interfacial interaction and TbFe{sub 2} anisotropy. • Dependence of saturated magnetostriction on different parameters.

  10. Dipolar bilayer with antiparallel polarization: A self-bound liquid (United States)

    Hebenstreit, Martin; Rader, Michael; Zillich, Robert E.


    Dipolar bilayers with antiparallel polarization, i.e., opposite polarization in the two layers, exhibit liquidlike rather than gaslike behavior. In particular, even without external pressure, a self-bound liquid droplet of constant density will form. We investigate the symmetric case of two identical layers, corresponding to a two-component Bose system with equal partial densities. The zero-temperature equation of state E (ρ )/N , where ρ is the total density, has a minimum, with an equilibrium density that can be adjusted by the distance d between the layers (decreasing with increasing d ). The attraction necessary for a self-bound liquid comes from the interlayer dipole-dipole interaction that leads to a mediated intralayer attraction. We investigate the regime of negative pressure towards the spinodal instability, where the bilayer is unstable against infinitesimal fluctuations of the total density, confirmed by calculations of the speed of sound of total density fluctuations.

  11. Asymmetric bilayer graphene nanoribbon MOSFETs for analog and digital electronics (United States)

    Dinarvand, A.; Ahmadi, V.; Darvish, Gh.


    In this paper, a new structure was proposed for bilayer graphene nanoribbon field-effect transistor (BGNFET) mainly to enhance the electrical characteristics in analog and digital applications. The proposed device uses two metallic gates on the top and bottom of a bilayer graphene nanoribbon, which is surrounded by SiO2 and connected to heavily doped source/drain contacts. Electrical properties of the proposed device were explored using fully self-consistent solution of Poisson and Schrödinger equations based on the nonequilibrium Green's function (NEGF) formalism. Significant improvements in the electrical behavior was seen in the simulation results for gates asymmetrically biased. The comparison with graphene nanoribbon FET showed that the proposed structure benefited from higher intrinsic voltage gain and cut-off frequency and improved switching characteristics such as delay and Ion/Ioff ratio.

  12. Bilayer graphene: physics and application outlook in photonics

    Directory of Open Access Journals (Sweden)

    Yan Hugen


    Full Text Available Layered materials, such as graphene, transition metal dichacogenides and black phosphorus have attracted lots of attention recently. They are emerging novel materials in electronics and photonics, with tremendous potential in revolutionizing the traditional electronics and photonics industry. Marrying layered material to the nanophotonics is being proved fruitful. With the recent emphasis and development of metasurfaces in nanophotonics, atomically thin materials can find their unique position and strength in this field. In this article, I will focus on one specific two dimensional material: bilayer graphene. Basic physics will be reviewed, such as band-gap opening, electron-phonon interaction, phonon-plasmon interaction and Fano resonances in the optical response. Moreover, I will review the application of bilayer graphene as a sensitive and fast photodetector. An outlook will be given in the final part of the paper.

  13. Formation of droplet interface bilayers in a Teflon tube (United States)

    Walsh, Edmond; Feuerborn, Alexander; Cook, Peter R.


    Droplet-interface bilayers (DIBs) have applications in disciplines ranging from biology to computing. We present a method for forming them manually using a Teflon tube attached to a syringe pump; this method is simple enough it should be accessible to those without expertise in microfluidics. It exploits the properties of interfaces between three immiscible liquids, and uses fluid flow through the tube to pack together drops coated with lipid monolayers to create bilayers at points of contact. It is used to create functional nanopores in DIBs composed of phosphocholine using the protein α-hemolysin (αHL), to demonstrate osmotically-driven mass transfer of fluid across surfactant-based DIBs, and to create arrays of DIBs. The approach is scalable, and thousands of DIBs can be prepared using a robot in one hour; therefore, it is feasible to use it for high throughput applications.

  14. Thermal bridges of modern windows

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.; Nielsen, Anker


    With its focus on reduced energy consumption, contemporary housing construction requires a highly insulated and airtight building envelope with as few thermal bridges as possible.Windows must be carefully designed, as thermal bridges can lead to surface condensation or mold growth, even...... if the window has an U-factor of 1 W/(m2·K) or lower. This paper describes the development of modern, energy efficient Danish windows with reduced thermal bridges. It focuses on materials, geometry, and sealing of window panes based on a literature review. Examples of modern windows are presented. Experience...... with the minimum acceptable surface temperature regarding surface condensation or mold growth, implemented in the Danish Building Regulations in 2010, and the calculation method for this temperature based on international standards is discussed. The introduction of the minimum acceptable surface temperature has...

  15. Coherence and Optical Emission from Bilayer Exciton Condensates

    Directory of Open Access Journals (Sweden)

    D. W. Snoke


    Full Text Available Experiments aimed at demonstrating Bose-Einstein condensation of excitons in two types of experiments with bilayer structures (coupled quantum wells are reviewed, with an emphasis on the basic effects. Bose-Einstein condensation implies the existence of a macroscopic coherence, also known as off-diagonal long-range order, and proposed tests and past claims for coherence in these excitonic systems are discussed.

  16. Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers

    CERN Document Server

    Prados, C; Hernando, A; Montone, A


    The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores.

  17. Molecular doping and band-gap opening of bilayer graphene. (United States)

    Samuels, Alexander J; Carey, J David


    The ability to induce an energy band gap in bilayer graphene is an important development in graphene science and opens up potential applications in electronics and photonics. Here we report the emergence of permanent electronic and optical band gaps in bilayer graphene upon adsorption of π electron containing molecules. Adsorption of n- or p-type dopant molecules on one layer results in an asymmetric charge distribution between the top and bottom layers and in the formation of an energy gap. The resultant band gap scales linearly with induced carrier density though a slight asymmetry is found between n-type dopants, where the band gap varies as 47 meV/10(13) cm(-2), and p-type dopants where it varies as 40 meV/10(13) cm(-2). Decamethylcobaltocene (DMC, n-type) and 3,6-difluoro-2,5,7,7,8,8-hexacyano-quinodimethane (F2-HCNQ, p-type) are found to be the best molecules at inducing the largest electronic band gaps up to 0.15 eV. Optical adsorption transitions in the 2.8-4 μm region of the spectrum can result between states that are not Pauli blocked. Comparison is made between the band gaps calculated from adsorbate-induced electric fields and from average displacement fields found in dual gate bilayer graphene devices. A key advantage of using molecular adsorption with π electron containing molecules is that the high binding energy can induce a permanent band gap and open up possible uses of bilayer graphene in mid-infrared photonic or electronic device applications.

  18. A defect mediated lamellar to isotropic transition of amphiphile bilayers


    Pal, Antara; Pabst, Georg; Raghunathan, V. A.


    We report the observation of a novel isotropic phase of amphiphile bilayers in a mixed system consisting of the ionic surfactant, sodium docecylsulphate (SDS), and the organic salt p-toludine hydrochloride (PTHC). This system forms a collapsed lamellar ($L_\\alpha$) phase over a wide range of water content, which transforms into an isotropic phase on heating. This transition is not observed in samples without excess water, where the $L_\\alpha$ phase is stable at higher temperatures. Our observ...

  19. Optimizing non-Pb radiation shielding materials using bilayers

    Energy Technology Data Exchange (ETDEWEB)

    McCaffrey, J. P.; Mainegra-Hing, E.; Shen, H. [Institute for National Measurement Standards, National Research Council of Canada, Building M-35, 1200 Montreal Road, Ottawa K1A 0R6 (Canada)


    Purpose: The objective of this study was to demonstrate that the weight of non-Pb radiation shielding materials can be minimized by structuring the material as a bilayer composed of different metal-powder-embedded elastomer layers. Methods: Measurements and Monte Carlo (MC) calculations were performed to study the attenuation properties of several non-Pb metal bilayers over the x-ray energy range 30-150 keV. Metals for the layers were chosen on the basis of low cost, nontoxicity, and complementary photoelectric absorption characteristics. The EGSnrc user code cavity.cpp was used to calculate the resultant x-ray fluence spectra after attenuation by these metal layers. Air kerma attenuation was measured using commercially manufactured metal/elastomer test layers. These layers were irradiated using the primary standard calibration beams at the Institute for National Measurement Standards in Ottawa, Canada utilizing the six x-ray beam qualities recommended in the German Standard DIN 6857. Both the measurements and the calculations were designed to approximate surface irradiation as well as penetrating radiation at 10 mm depth in soft tissue. The MC modeling point and the position of the measurement detector for surface irradiation were both directly against the downstream face of the attenuating material, as recommended in DIN 6857. Results: The low-Z upstream/high-Z downstream ordering of the metal bilayers provided substantially more attenuation than the reverse order. Optimal percentages of each metal in each bilayer were determined for each x-ray radiation beam quality. Conclusions: Depending on the x-ray quality, appropriate choices of two complementary metal-embedded elastomer layers can decrease the weight of radiation shielding garments by up to 25% compared to Pb-based elastomer garments while providing equivalent attenuation.

  20. Bending elastic moduli of lipid bilayers : modulation by solutes


    Duwe, H.P.; Kaes, J.; Sackmann, E.


    We present high precision measurements of the bending elastic moduli for bilayers of a variety of different lipids and of modifications of the flexural rigidity by solutes. The measurements are based on the Fourier analysis of thermally excited membrane undulations (vesicle shape fluctuations) using a recently developed dynamic image processing method. Measurements of the bending modulus as a function of the undulation wave vector provide information on the limitation of the excitations by th...

  1. Bilayer Thickness Mismatch Controls Domain Size in Model Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Heberle, Frederick A [ORNL; Petruzielo, Robin S [ORNL; Pan, Jianjun [ORNL; Drazba, Paul [ORNL; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Feigenson, Gerald [Cornell University; Katsaras, John [ORNL


    The observation of lateral phase separation in lipid bilayers has received considerable attention, especially in connection to lipid raft phenomena in cells. It is widely accepted that rafts play a central role in cellular processes, notably signal transduction. While micrometer-sized domains are observed with some model membrane mixtures, rafts much smaller than 100 nm beyond the reach of optical microscopy are now thought to exist, both in vitro and in vivo. We have used small-angle neutron scattering, a probe free technique, to measure the size of nanoscopic membrane domains in unilamellar vesicles with unprecedented accuracy. These experiments were performed using a four-component model system containing fixed proportions of cholesterol and the saturated phospholipid 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), mixed with varying amounts of the unsaturated phospholipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoylsn- glycero-3-phosphocholine (DOPC). We find that liquid domain size increases with the extent of acyl chain unsaturation (DOPC:POPC ratio). Furthermore, we find a direct correlation between domain size and the mismatch in bilayer thickness of the coexisting liquid-ordered and liquid-disordered phases, suggesting a dominant role for line tension in controlling domain size. While this result is expected from line tension theories, we provide the first experimental verification in free-floating bilayers. Importantly, we also find that changes in bilayer thickness, which accompany changes in the degree of lipid chain unsaturation, are entirely confined to the disordered phase. Together, these results suggest how the size of functional domains in homeothermic cells may be regulated through changes in lipid composition.

  2. Pedot and PPy Conducting Polymer Bilayer and Trilayer Actuators

    DEFF Research Database (Denmark)

    Zainudeen, Umer Lebbe; Careem, Mohamed Abdul; Skaarup, Steen


    Actuators based on conducting polymers are attracting increasing interest due to their desirable features such as large mechanical stress generated, sufficient maximum strain values, high reversibility, good safety properties and the possibility of precise control using small voltages. Many...... attempts have been made to improve the actuator performance. We report electromechanical measurements on actuators of bilayer and trilayer free standing films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers. Both types of conducting polymer are pre...

  3. Self-assembling bilayers of palladiumthiolates in organic media

    Indian Academy of Sciences (India)

    P John Thomas; A Lavanya; V Sabareesh; G U Kulkarni


    Alkylthiolates of palladium forming a homologous series (butyl to octadecyl) have been prepared and characterized using X-ray diffraction and STM. The thiolates adopt an unusual bilayered lamellar structure, whose thickness is governed by the length of the alkyl chain. These mesophases melt in the temperature range, 60° to 100°C, with the melting point increasing linearly with the thiol chain length. There is evidence to suggest that the alkyl chains are orientationally disordered especially prior to melting.

  4. Comment on "Raman spectra of misoriented bilayer graphene"


    Ni, Zhenhua; Wang, Yingying; Yu, Ting; You, Yumeng; Shen, Zexiang


    In a recent paper [Phys. Rev. B 78, 113407 (2008)], Poncharal et al. studied the Raman spectra of misoriented bilayer graphene. They found that the blueshift of 2D band of misoriented graphene relative to that of single layer graphene shows a strong dependence on the excitation laser energy. The blueshift increases with decreasing excitation energy. This finding contradicts our explanation of reduction of Fermi velocity of folded/misoriented graphene [Ni et al. Phys. Rev. B 77, 235403 (2008)]...

  5. An Expert System for Concrete Bridge Management

    DEFF Research Database (Denmark)

    Brito, J. de; Branco, F. A.; Thoft-Christensen, Palle


    management systems are presently being implemented by bridge authorities in several countries. The prototype of an expert system for concrete bridge management is presented in this paper, with its functionality relying on two modules. The inspection module relies on a periodic acquisition of field......The importance of bridge repair versus new bridge construction has risen in recent decades due to high deterioration rates that have been observed in these structures. Budgets both for building new bridges and keeping the existing ones are always limited. To help rational decision-making, bridge...

  6. Influence of silybin on biophysical properties of phospholipid bilayers

    Institute of Scientific and Technical Information of China (English)

    Olga WESO(L)OWSKA; Krystyna MICHALAK; Barbara (L)ANIA-PIETRZAK; Micha(l) KU(Z)D(Z)A(L); Kamila STA(N)CZAK; Daniela MOSI(A)DZ; Piotr DOBRYSZYCKI; Andrzej O(Z)YHAR; Ma(l)gorzata KOMOROWSKA; Andrzej B HENDRICH


    Aim: Silybin (silibinin)is major biologically active flavonolignan extracted from milk thistle (Sylibum marianum). Its biological activities include hepato-protection, anticancer properties, and antioxidant- and membrane-stabilizing functions. Al-though membranes are postulated to be one of the cellular targets for silybin, little is known about its interaction with phospholipid bilayers. Methods: In the present work, the interactions of silybin with phosphatidylcholine bilayers were studied in detail using fluorescence spectroscopy, microcalorimetry and electron spin resonance techniques. Results: The results showed that silybin interacted with the surface of lipid bilayers. It affected the generalized polarization of the fluores-cent probe Prodan, while not influencing the more deeplylocated Laurdan. Silybin lowered the main phospholipid phase transition temperature as judged by microcalorimetry, and caused the immobilization of spin probe Tempo-palmitate located on the surface of membranes. The mobility of spin probes 5-and 16-doxylstearic acid was not affected by silybin. Silybin-induced quenching of 1,6-diphe-nyl-1,3,5-hexatriene fluorescence indicated that some flavonoid molecules parti-tioned into the hydrophobic region of membranes, which did not change signifi-cantly the biophysical properties of the deeper membrane regions. Conclusion: Such a behavior of silybin in membranes is in accordance with its postulated biological functions and neglectable side effects of therapies using silybin.

  7. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating. (United States)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li


    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  8. Photon-assisted transport in bilayer graphene flakes (United States)

    Zambrano, D.; Rosales, L.; Latgé, A.; Pacheco, M.; Orellana, P. A.


    The electronic conductance of graphene-based bilayer flake systems reveals different quantum interference effects, such as Fabry-Pérot resonances and sharp Fano antiresonances on account of competing electronic paths through the device. These properties may be exploited to obtain spin-polarized currents when the same nanostructure is deposited above a ferromagnetic insulator. Here, we study how the spin-dependent conductance is affected when a time-dependent gate potential is applied to the bilayer flake. Following a Tien-Gordon formalism, we explore how to modulate the transport properties of such systems via appropriate choices of the ac-field gate parameters. The presence of an oscillating field opens the possibility of tuning the original antiresonances for a large set of field parameters. We show that interference patterns can be partially or fully removed by the time-dependent gate voltage. The results are reflected in the corresponding weighted spin polarization, which can reach maximum values for a given spin component. We found that differential conductance maps as functions of bias and gate potentials show interference patterns for different ac-field parameter configurations. The proposed bilayer graphene flake systems may be used as a frequency detector in the THz range.

  9. Optical rectification at visible frequency in biased bilayer graphene (United States)

    Hipolito, F.; Pereira, Vitor M.


    The second order response of the electrical current to an electromagnetic field is analyzed within the framework of non-equilibrium many-body perturbation theory for the case of a two-dimensional electronic system such as graphene and its bilayer. The absence of inversion symmetry in a biased graphene bilayer allows a finite DC response in second order to an AC electromagnetic wave. The induced DC current is evaluated for biased bilayer at finite temperature, and its tunability is analyzed as a function of electron density, which can be experimentally varied by means of a global gate voltage applied to the sample. Both intrinsic and photon drag microscopic processes are considered, as they contribute on similar footing to the photocurrent in general. However, the dependencies of these two contributions on the polarization state of the incident light are different, which allows the manipulation of the relative contribution of intrinsic versus photon drag contributions by tuning the experimental parameters. For example, the photocurrent emerging from circularly polarized light stems entirely from photon drag, as the circular photogalvanic effect is forbidden by the C3 rotation symmetry of the honeycomb lattice.

  10. Amphotericin B induced interdigitation of apolipoprotein stabilized nanodisk bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T; Weers, P M; Sulchek, T; Hoeprich, P D; Ryan, R O


    Amphotericin B nanodisks (AMB-ND) are ternary complexes of AMB, phospholipid (PL) and apolipoprotein organized as discrete nanometer scale disk-shaped bilayers. In gel filtration chromatography experiments, empty ND lacking AMB elute as a single population of particles with a molecular weight in the range of 200 kDa. AMB-ND formulated at a 4:1 PL:AMB weight ratio, separated into two peaks. Peak 1 eluted at the position of control ND lacking AMB while the second peak, containing all of the AMB present in the original sample, eluted in the void volume. When ND prepared with increased AMB (1:1 phospholipid:AMB molar ratio) were subjected to gel filtration chromatography, an increased proportion of phospholipid and apolipoprotein were recovered in the void volume with the AMB. Prior to gel filtration the AMB-ND sample could be passed through a 0.22 {micro}m filter without loss of AMB while the voided material was lost. Native gel electrophoresis studies corroborated the gel permeation chromatography data. Far UV circular dichroism analyses revealed that apoA-I associated with AMB-ND denatures at a lower guanidine HCl concentration than apoA-I associated with ND lacking AMB. Atomic force microscopy revealed that AMB induces compression of the ND bilayer thickness consistent with bilayer interdigitation, a phenomenon that is likely related to the ability of AMB to induce pore formation in susceptible membranes.

  11. Excitation Methods for Bridge Structures

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Duffy, T.A.; Cornwell, P.J.; Doebling, S.W.


    This paper summarizes the various methods that have been used to excited bridge structures during dynamic testing. The excitation methods fall into the general categories of ambient excitation methods and measured-input excitation methods. During ambient excitation the input to the bridge is not directly measured. In contrast, as the category label implies, measured-input excitations are usually applied at a single location where the force input to the structure can be monitored. Issues associated with using these various types of measurements are discussed along with a general description of the various excitation methods.

  12. Balanced bridge feedback control system (United States)

    Lurie, Boris J. (Inventor)


    In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.

  13. Optimum selection on bridge erection with floating crane in East China Sea Bridge and Hangzhou Bay Bridge

    Institute of Scientific and Technical Information of China (English)

    Shunquan Qin; Pu Zhou; Youheng Hua


    @@ Introduction With the rapid development of China′s economy, many bridges will be built over the Chinese coastal waters of Pacific Ocean. Among them, construction of East China Sea Bridge has been commenced in June 2001, and will be completed at the end of 2005, Hangzhou Bay Bridge was also started to construct in June 2003(Fig. 1). These two ultralong bridges are designed as twin expressway bridges standing side by side each carries a 3-lane one-way carriageway. The total width is 31.5m and 33.0m respectively. East China Sea Bridge starts from Nanhui District, Shanghai and extends to the Yangshan Deep Water Port Area, which is located at one of the Qiqu Islands. The total length of the bridge is about 31.0 km, in which 25 km are on the sea, and 22 km is in the unnavigable region. Hangzhou Bay Bridge across the mouth of Qiantang River.

  14. Is myocardial bridging a bridge connecting to cardiovascular events?

    Institute of Scientific and Technical Information of China (English)

    LI Jian-jun


    @@ Coronary arteries and their major branches usually course on the surface of the heart in the subepicardial tissue. However, a muscle hber overlying the intramyocardial segment of an epicardial coronary artery was defined as myocardial bridging (MB), and subsequently the artery coursing within the myocardium is called a tunneled artery.

  15. Performance projection of bilayer graphene nanoribbon FET through quantum mechanical simulation (United States)

    Rawat, Brajesh; Paily, Roy


    A quantum transport simulator based on a self-consistent solution of the Schrödinger equation within non-equilibrium Green’s function formalism and 2D Poisson equation for a bilayer graphene nanoribbon (bilayer GNR) field-effect transistor (FET) has been developed to examine the ballistic performance of a device. It is found that the lateral confinement employed in bilayer graphene to form the bilayer GNR largely increases the ON/OFF current ({I}{{ON}}/{I}{{OFF}}) ratios of FET without significantly degrading its ON current ({I}{{ON}}). On the other hand, the interlayer coupling considerably decreases the confinement-induced energy gap of the bilayer GNR and largely increases the {I}{{ON}} of the narrow bilayer GNR FET at the cost of lower {I}{{ON}}/{I}{{OFF}} ratios in comparison with the GNR FET.

  16. Time-resolved photoresponse of nanometer-thick Nb/NiCu bilayers (United States)

    Parlato, L.; Pepe, G. P.; Latempa, R.; De Lisio, C.; Altucci, C.; D'Acunto, P.; Peluso, G.; Barone, A.; Taneda, T.; Sobolewski, R.


    We present femtosecond optical time-resolved pump-probe investigations of superconducting hybrids structures consisting of Nb/NiCu bilayers with various thickness. Measurements performed on pure Nb and NiCu films are also given. The photoresponse experiments provide the quasiparticle relaxation times in bilayers of different thickness ratios. The study of the photoresponse as a function of the temperature reveals the spatial evolution of the superconductor order parameter across the bilayers.

  17. Study of annealing effects in Al–Sb bilayer thin films

    Indian Academy of Sciences (India)

    R K Mangal; B Tripathi; M Singh; Y K Vijay


    In this paper, we present preparation and characterization of Al–Sb bilayer thin films. Thin films of thicknesses, 3000/1000 Å and 3000/1500 Å, were obtained by the thermal evaporation (resistive heating) method. Vacuum annealing and rapid thermal annealing methods were used to mix bilayer thin film structure. Results obtained from optical band gap data and Rutherford back scattering spectrometry showed mixing of Al–Sb bilayer system.

  18. The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance


    Meisam Rahmani; Razali Ismail; Mohammad Taghi Ahmadi; Mohammad Javad Kiani; Mehdi Saeidmanesh; F. A. Hediyeh Karimi; Elnaz Akbari; Komeil Rahmani


    Bilayer graphene nanoribbon is a promising material with outstanding physical and electrical properties that offers a wide range of opportunities for advanced applications in future nanoelectronics. In this study, the application of bilayer graphene nanoribbon in schottky-barrier diode is explored due to its different stacking arrangements. In other words, bilayer graphene nanoribbon schottky-barrier diode is proposed as a result of contact between a semiconductor (AB stacking) and metal (AA ...

  19. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism (United States)

    Paula, S.; Volkov, A. G.; Deamer, D. W.


    Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.

  20. The effect of calcium on the properties of charged phospholipid bilayers

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Leidy, Chad; Westh, P.


    We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosph......We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di...

  1. Architectural engineering of FRP bridges


    Smits, J.E.P.


    This paper deals with the use of Fibre Reinforced Polymers (FRP's) in architectural and structural bridge design. The challenges and opportunities that come with this relatively new material are discussed. An inventory is made of recent engineers' solutions in FRP, followed by a discussion on architectural application of FRP's derived from the authors architectural practice.

  2. Bridge Aesthetics and Structural Honesty

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen


    In bridges the overall form must be chosen with due respect to the transmission of forces if efficient structures shall be created, The design must therefore be governed by experienced structural engineers - in some cases assisted by aesthetic advisers on specific issues. Some basic requirements...

  3. Intercellular bridges in vertebrate gastrulation.

    Directory of Open Access Journals (Sweden)

    Luca Caneparo

    Full Text Available The developing zebrafish embryo has been the subject of many studies of regional patterning, stereotypical cell movements and changes in cell shape. To better study the morphological features of cells during gastrulation, we generated mosaic embryos expressing membrane attached Dendra2 to highlight cellular boundaries. We find that intercellular bridges join a significant fraction of epiblast cells in the zebrafish embryo, reaching several cell diameters in length and spanning across different regions of the developing embryos. These intercellular bridges are distinct from the cellular protrusions previously reported as extending from hypoblast cells (1-2 cellular diameters in length or epiblast cells (which were shorter. Most of the intercellular bridges were formed at pre-gastrula stages by the daughters of a dividing cell maintaining a membrane tether as they move apart after mitosis. These intercellular bridges persist during gastrulation and can mediate the transfer of proteins between distant cells. These findings reveal a surprising feature of the cellular landscape in zebrafish embryos and open new possibilities for cell-cell communication during gastrulation, with implications for modeling, cellular mechanics, and morphogenetic signaling.

  4. Noise Considerations in Resistance Bridges

    DEFF Research Database (Denmark)

    Diamond, Joseph M.


    A signal-to-noise analysis is made of the Wheatstone bridge, where the unknown and standard resistors may be at different temperatures, a situation which occurs in resistance thermometry. The limiting condition is assumed to be dissipation in the unknown resistor. It is shown that the ratio arms ...

  5. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik


    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  6. Architectural engineering of FRP bridges

    NARCIS (Netherlands)

    Smits, J.E.P.


    This paper deals with the use of Fibre Reinforced Polymers (FRP's) in architectural and structural bridge design. The challenges and opportunities that come with this relatively new material are discussed. An inventory is made of recent engineers' solutions in FRP, followed by a discussion on archit

  7. History of cable-stayed bridges

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen


    The principle of supporting a bridge deck by inclined tension members leading to towers on either side of the span has been known for centuries. However, the real development of cable-stayed bridges did not begin before the 1950s. Since then the free span has been increased from 183 m...... in the Strömsund Bridge (from 1955) to 890 m in the Tatara Bridge (from 1999)....

  8. Building Bridges One Line at a Time (United States)

    Grigsby, Cathy Murray


    In this article, first-grade students were taught the different kinds of lines that were part of the construction of various bridges--the curved lines of the arches of stone bridges, straight lines connecting the cables of a suspension bridge, vertical lines, horizontal lines, and so on. They gained practice in drawing structures and in fine brush…

  9. Comparison between Modern Violin Bridge and Baroque Violin Bridge by Photoelastic Observation and Frequency Analysis (United States)

    Matsutani, Akihiro


    A comparison between the modern bridge and the baroque bridge of the violin by photoelastic observation was carried out. The relationship between the stress part and the hole is symmetric in the modern and baroque bridges. The measured spectral envelopes of baroque bridges are similar to those of modern bridges in D- or G-strings, and have peaks at a frequency higher than those of modern bridges in E-string. The visualization method as used in this study may provide hints for the design of violin bridges.

  10. Molecular dynamics of leucine and dopamine transporter proteins in a model cell membrane lipid bilayer. (United States)

    Gedeon, Patrick C; Indarte, Martín; Surratt, Christopher K; Madura, Jeffry D


    The dopamine transporter (DAT) operates via facilitated diffusion, harnessing an inward Na(+) gradient to drive dopamine from the extracellular synaptic cleft to the neuron interior. The DAT is relevant to central nervous system disorders such as Parkinson disease and attention-deficit hyperactivity disorder and is the primary site of action for the abused psychostimulants cocaine and amphetamines. Crystallization of a DAT homolog, the bacterial leucine transporter LeuT, provided the first reliable 3-D DAT template. Here, the LeuT crystal structure and the DAT molecular model have been combined with their respective substrates, leucine and dopamine, in lipid bilayer molecular dynamics simulations toward tracking substrate movement along the protein's substrate/ion permeation pathway. Specifically, movement of residue pairs that comprise the "external gate" was followed as a function of substrate presence. The transmembrane (TM) 1 arginine-TM 10 aspartate strut formed less readily in DAT compared with LeuT, with or without substrate present. For LeuT but not DAT, the addition of substrate enhanced the chances of forming the TM 1-10 bridge. Also, movement of the fourth extracellular loop EL-4 in the presence of substrate was more pronounced for DAT, the EL-4 unwinding to a degree. The overall similarity between the LeuT and DAT molecular dynamics simulations indicated that LeuT was a legitimate model to guide DAT structure-function predictions. There were, nevertheless, differences significant enough to allow for DAT-unique insights, which may include how cocaine, methylphenidate (Ritalin, NIDA Drug Supply, Rockville, MD), and other DAT blockers are not recognized as substrates even though they can access the primary substrate binding pocket. Proteins 2010. (c) 2009 Wiley-Liss, Inc.

  11. Beginning Course Surveys: Bridges for Knowing and Bridges for Being

    Directory of Open Access Journals (Sweden)

    David Starr-Glass


    Full Text Available The use of a participant survey, administered at the outset of an online course, can provide information useful in the management of the learning environment and in its subsequent redesign. Such information can clarify participants’ prior experience, expectations, and demographics. But the very act of enquiring about the learner also signals the instructor’s social presence, relational interest, and desire to enter into an authentic dialogue. This study examines the use of participant surveys in online management courses. The first section discusses the informational bridges that this instrument provides. The second section considers survey responses to open-ended questions dealing with student sentiments. This analysis suggests that the survey plays a valuable part in accentuating social presence and in initiating relational bridges with participants.


    Directory of Open Access Journals (Sweden)

    A. A. Lapko


    Full Text Available The paper considers principles that form «Bridge-Pre-Bridge Territory» system. The method is proposed for calculation of expenses on technical research for development of projects on usage of pre-bridge territories. Usage of site class number for natural conditions makes it possible to estimate investment attractiveness of «Bridge-Pre-Bridge Territory» system.

  13. 33 CFR 115.70 - Advance approval of bridges. (United States)


    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Advance approval of bridges. 115... BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.70 Advance approval of bridges. (a) The General Bridge Act of 1946 requires the approval of the location and plans of bridges...

  14. Performance analysis of LAN bridges and routers (United States)

    Hajare, Ankur R.


    Bridges and routers are used to interconnect Local Area Networks (LANs). The performance of these devices is important since they can become bottlenecks in large multi-segment networks. Performance metrics and test methodology for bridges and routers were not standardized. Performance data reported by vendors is not applicable to the actual scenarios encountered in an operational network. However, vendor-provided data can be used to calibrate models of bridges and routers that, along with other models, yield performance data for a network. Several tools are available for modeling bridges and routers - Network II.5 was used. The results of the analysis of some bridges and routers are presented.

  15. Interaction of curcumin with lipid monolayers and liposomal bilayers. (United States)

    Karewicz, Anna; Bielska, Dorota; Gzyl-Malcher, Barbara; Kepczynski, Mariusz; Lach, Radosław; Nowakowska, Maria


    Curcumin shows huge potential as an anticancer and anti-inflammatory agent. However, to achieve a satisfactory bioavailability and stability of this compound, its liposomal form is preferable. Our detailed studies on the curcumin interaction with lipid membranes are aimed to obtain better understanding of the mechanism and eventually to improve the efficiency of curcumin delivery to cells. Egg yolk phosphatidylcholine (EYPC) one-component monolayers and bilayers, as well as mixed systems containing additionally dihexadecyl phosphate (DHP) and cholesterol, were studied. Curcumin binding constant to EYPC liposomes was determined based on two different methods: UV/Vis absorption and fluorescence measurements to be 4.26×10(4)M(-1) and 3.79×10(4)M(-1), respectively. The fluorescence quenching experiment revealed that curcumin locates in the hydrophobic region of EYPC liposomal bilayer. It was shown that curcumin impacts the size and stability of the liposomal carriers significantly. Loaded into the EYPC/DPH/cholesterol liposomal bilayer curcumin stabilizes the system proportionally to its content, while the EYPC/DPH system is destabilized upon drug loading. The three-component lipid composition of the liposome seems to be the most promising system for curcumin delivery. An interaction of free and liposomal curcumin with EYPC and mixed monolayers was also studied using Langmuir balance measurements. Monolayer systems were treated as a simple model of cell membrane. Condensing effect of curcumin on EYPC and EYPC/DHP monolayers and loosening influence on EYPC/DHP/chol ones were observed. It was also demonstrated that curcumin-loaded EYPC liposomes are more stable upon interaction with the model lipid membrane than the unloaded ones.

  16. Problems associated with nondestructive evaluation of bridges (United States)

    Prine, David W.


    The US has 542,000 bridges that consume billions of dollars per year in construction, rehabilitation, and maintenance funds and which are the lifelines of US commerce. The 1992 ISTEA (Intermodal Surface Transportation Efficiency Act) mandates the implementation of a quantitative computerized bridge management system by 1996. A prime need of such a system are quantitative bridge inspection methods to feed accurate reliable condition information to the huge database of bridges. Nondestructive evaluation (NDE) will fill a critical need in the implementation of effective bridge management. However, many serious barriers exist to the widespread routine application of this technology to bridges. This paper provides an overview of the typical problems associated with applying NDE to bridges.

  17. Band Structure Asymmetry of Bilayer Graphene Revealed by Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.Q.; Henriksen, E.A.; Jiang, Z.; Hao, Zhao; Martin, Michael C.; Kim, P.; Stormer, H.L.; Basov, Dimitri N.


    We report on infrared spectroscopy of bilayer graphene integrated in gated structures. We observe a significant asymmetry in the optical conductivity upon electrostatic doping of electrons and holes. We show that this finding arises from a marked asymmetry between the valence and conduction bands, which is mainly due to the inequivalence of the two sublattices within the graphene layer and the next-nearest-neighbor interlayer coupling. From the conductivity data, the energy difference of the two sublattices and the interlayer coupling energy are directly determined.

  18. Photoinduced electron transfer of chlorophyll in lipid bilayer system

    Indian Academy of Sciences (India)

    D K Lee; K W Seo; Y S Kang


    Photoinduced electron transfer from chlorophyll- through the interface of dipalmitoylphosphatidylcholine (DPPC) headgroup of the lipid bilayers was studied with electron magnetic resonance (EMR). The photoproduced radicals were identified with electron spin resonance (ESR) and radical yields of chlorophyll- were determined by double integration ESR spectra. The formation of vesicles was identified by changes in measured max values from diethyl ether solutions to vesicles solutions indirectly, and observed directly with SEM and TEM images. The efficiency of photosynthesis in model system was determined by measuring the amount of chlorophyll-a radical yields which were obtained from integration of ESR spectra.

  19. Inverse Proximity Effect in Superconductor-ferromagnet Bilayer Structures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Jing


    Measurements of the polar Kerr effect using a zero-area-loop Sagnac magnetometer on Pb/Ni and Al/(Co-Pd) proximity-effect bilayers show unambiguous evidence for the 'inverse proximity effect,' in which the ferromagnet (F) induces a finite magnetization in the superconducting (S) layer. To avoid probing the magnetic effects in the ferromagnet, the superconducting layer was prepared much thicker than the light's optical penetration depth. The sign and size of the effect, as well as its temperature dependence agree with recent predictions by Bergeret et al.[1].

  20. Electronic Bloch oscillation in bilayer graphene gradient superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hemeng; Li, Changan; Song, Yun [Department of Physics, Beijing Normal University, Beijing 100875 (China); Ma, Tianxing, E-mail: [Department of Physics, Beijing Normal University, Beijing 100875 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Wang, Li-Gang, E-mail: [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Lin, Hai-Qing [Beijing Computational Science Research Center, Beijing 100084 (China)


    We investigate the electronic Bloch oscillation in bilayer graphene gradient superlattices using transfer matrix method. By introducing two kinds of gradient potentials of square barriers along electrons propagation direction, we find that Bloch oscillations up to terahertz can occur. Wannier-Stark ladders, as the counterpart of Bloch oscillation, are obtained as a series of equidistant transmission peaks, and the localization of the electronic wave function is also signature of Bloch oscillation. Furthermore, the period of Bloch oscillation decreases linearly with increasing gradient of barrier potentials.

  1. Affinity of four polar neurotransmitters for lipid bilayer membranes

    DEFF Research Database (Denmark)

    Wang, Chunhua; Ye, Fengbin; Valardez, Gustavo F.


    interacts unfavorably with DMPC and is thus preferentially excluded from the membrane's hydration layer. Conversely, the zwitterionic neurotransmitters are attracted to membranes with 10% anionic lipid and their local concentration at the interface is 5-10 times larger than in the aqueous bulk....... The simulations suggest that this attraction mainly relies on electrostatic interactions of the amino group of the neurotransmitter and the lipid phosphate. We conclude that moderate attraction to lipid membranes occurs for some polar neurotransmitters and hence that one premise for a theory of bilayer...

  2. Phase Diagram of Antiferromagnetically Exchange-Coupled Bilayer

    Institute of Scientific and Technical Information of China (English)

    GUO Guang-Hua; ZHANG Guang-Fu; SUN Li-Yuan; Peter A. J. de Groot


    Magnetic hysteresis properties of antiferromagnetically exchange-coupled bilayer structures, in which the two magnetic layers have different magnetic parameters and thicknesses, are studied within the framework of the Stoner-Wohifarth model. Analytical expressions for the switching fields corresponding to the linear magnetic states are obtained. By adjusting the magnetic parameters or thicknesses of layers, nine different types of easyaxis hysteresis loops may exist. The phase diagram of easy-axis hysteresis loops is mapped in the k,1 and k,2 plane, where k,1 and k,2 are the ratios of magnetic anisotropy to the interlayer exchange coupling of the two magnetic layers, respectively.

  3. Giant Frictional Drag in Double Bilayer Graphene Heterostructures (United States)

    Lee, Kayoung; Xue, Jiamin; Dillen, David C.; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel


    We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T ) lower than ˜10 K , we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T , and becomes comparable to the layer resistivity at the lowest T =1.5 K . At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.

  4. Multicritical point in a diluted bilayer Heisenberg quantum antiferromagnet. (United States)

    Sandvik, Anders W


    The S=1/2 Heisenberg bilayer antiferromagnet with randomly removed interlayer dimers is studied using quantum Monte Carlo simulations. A zero-temperature multicritical point (p(*),g(*)) at the classical percolation density p=p(*) and interlayer coupling g(*) approximately equal 0.16 is demonstrated. The quantum critical exponents of the percolating cluster are determined using finite-size scaling. It is argued that the associated finite-temperature quantum critical regime extends to zero interlayer coupling and could be relevant for antiferromagnetic cuprates doped with nonmagnetic impurities.

  5. Ultraviolet-induced erasable photochromism in bilayer metal oxide films (United States)

    Terakado, Nobuaki; Tanaka, Keiji; Nakazawa, Akira


    We demonstrate that the optical transmittance of bilayer samples consisting of pyrolytically coated amorphous Mg-Sn-O and metal oxide films such as In 2O 3 and SnO 2 decreases upon ultraviolet illumination, but can be recovered by annealing in air at ˜300 ∘C. Spectral, structural, and compositional studies suggest that this photochromic phenomenon is induced by photoelectronic excitation in the Mg-Sn-O film, electron injection into the metal oxide, which becomes negatively charged, and subsequent formation of metallic particles, which absorb and/or scatter visible light.

  6. Negative terahertz conductivity in remotely doped graphene bilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute of Ultra High Frequency Semiconductor Electronics of RAS, and Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 111005 (Russian Federation); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, V. [Department of Electrical Engineering, University at Buffalo, SUNY, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Departments of Electrical, Electronics, and Systems Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Otsuji, T. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan)


    Injection or optical generation of electrons and holes in graphene bilayers (GBLs) can result in the interband population inversion enabling the terahertz (THz) radiation lasing. The intraband radiative processes compete with the interband transitions. We demonstrate that remote doping enhances the indirect interband generation of photons in the proposed GBL heterostructures. Therefore, such remote doping helps to surpass the intraband (Drude) absorption, and results in large absolute values of the negative dynamic THz conductivity in a wide range of frequencies at elevated (including room) temperatures. The remotely doped GBL heterostructure THz lasers are expected to achieve higher THz gain compared with previously proposed GBL-based THz lasers.

  7. Interaction of S-methyl methanethiosulfonate with DPPC bilayer (United States)

    Defonsi Lestard, María E.; Díaz, Sonia B.; Tuttolomondo, María E.; Sánchez Cortez, Santiago; Puiatti, Marcelo; Pierini, Adriana B.; Ben Altabef, Aida


    The present study is a first step towards the investigation of S-methyl methanethiosulfonate (MMTS) interaction with membrane model systems like liposomes. In this paper, the interaction of MMTS with dipalmitoylphosphatidylcholine (DPPC) bilayers was studied by FTIR and SERS spectroscopy. Lysolipid effect on vesicle stability was studied. The results show that MMTS interacts to different extents with the phosphate and carbonyl groups of membranes in the gel and the liquid crystalline states. To gain a deeper insight into MMTS properties that may be potentially helpful in the design of new drugs with therapeutic effects, we performed theoretical studies that may be the basis for the design of their mode of action.

  8. Tailored sequential drug release from bilayered calcium sulfate composites

    Energy Technology Data Exchange (ETDEWEB)

    Orellana, Bryan R.; Puleo, David A., E-mail:


    The current standard for treating infected bony defects, such as those caused by periodontal disease, requires multiple time-consuming steps and often multiple procedures to fight the infection and recover lost tissue. Releasing an antibiotic followed by an osteogenic agent from a synthetic bone graft substitute could allow for a streamlined treatment, reducing the need for multiple surgeries and thereby shortening recovery time. Tailorable bilayered calcium sulfate (CS) bone graft substitutes were developed with the ability to sequentially release multiple therapeutic agents. Bilayered composite samples having a shell and core geometry were fabricated with varying amounts (1 or 10 wt.%) of metronidazole-loaded poly(lactic-co-glycolic acid) (PLGA) particles embedded in the shell and simvastatin directly loaded into either the shell, core, or both. Microcomputed tomography showed the overall layered geometry as well as the uniform distribution of PLGA within the shells. Dissolution studies demonstrated that the amount of PLGA particles (i.e., 1 vs. 10 wt.%) had a small but significant effect on the erosion rate (3% vs. 3.4%/d). Mechanical testing determined that introducing a layered geometry had a significant effect on the compressive strength, with an average reduction of 35%, but properties were comparable to those of mandibular trabecular bone. Sustained release of simvastatin directly loaded into CS demonstrated that changing the shell to core volume ratio dictates the duration of drug release from each layer. When loaded together in the shell or in separate layers, sequential release of metronidazole and simvastatin was achieved. By introducing a tunable, layered geometry capable of releasing multiple drugs, CS-based bone graft substitutes could be tailored in order to help streamline the multiple steps needed to regenerate tissue in infected defects. - Highlights: • Bilayered CS composites were fabricated as potential bone graft substitutes. • The shell

  9. Monte Carlo simulation of charge mediated magnetoelectricity in multiferroic bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Álvarez, H.H. [Universidad de Caldas, Manizales (Colombia); Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Bedoya-Hincapié, C.M. [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia); Universidad Santo Tomás, Bogotá (Colombia); Restrepo-Parra, E., E-mail: [Universidad Nacional de Colombia Sede Manizales, Manizales, Caldas (Colombia)


    Simulations of a bilayer ferroelectric/ferromagnetic multiferroic system were carried out, based on the Monte Carlo method and Metropolis dynamics. A generic model was implemented with a Janssen-like Hamiltonian, taking into account magnetoelectric interactions due to charge accumulation at the interface. Two different magnetic exchange constants were considered for accumulation and depletion states. Several screening lengths were also included. Simulations exhibit considerable magnetoelectric effects not only at low temperature, but also at temperature near to the transition point of the ferromagnetic layer. The results match experimental observations for this kind of structure and mechanism.

  10. Parabolic metamaterials and Dirac bridges (United States)

    Colquitt, D. J.; Movchan, N. V.; Movchan, A. B.


    A new class of multi-scale structures, referred to as `parabolic metamaterials' is introduced and studied in this paper. For an elastic two-dimensional triangular lattice, we identify dynamic regimes, which corresponds to so-called `Dirac Bridges' on the dispersion surfaces. Such regimes lead to a highly localised and focussed unidirectional beam when the lattice is excited. We also show that the flexural rigidities of elastic ligaments are essential in establishing the `parabolic metamaterial' regimes.

  11. Severe ASR damaged concrete bridges

    DEFF Research Database (Denmark)

    Antonio Barbosa, Ricardo; Gustenhoff Hansen, Søren


    Technical University of Denmark (DTU) and University of Southern Denmark (SDU) have conducted several full-scale experiments with severe ASR deteriorated bridges. This paper presents few and preliminary results from both the shear tests and the measuring of the material properties. The shear test...... show that the shear capacity is almost unaffected of ASR despite significant reduction in compressive concrete strength. Furthermore, measurements show a significant tensile reinforcement strain developed due to ASR expansion....

  12. Inspection Strategies for Concrete Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle


    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented....... The optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  13. Regulation of membrane protein function by lipid bilayer elasticity—a single molecule technology to measure the bilayer properties experienced by an embedded protein

    DEFF Research Database (Denmark)

    Lundbæk, Jens August


    , in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein...... and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this ‘hydrophobic coupling mechanism’ has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage...... properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established....

  14. Molecular dynamics simulations and free energy profile of Paracetamol in DPPC and DMPC lipid bilayers

    Indian Academy of Sciences (India)

    Yousef Nademi; Sepideh Amjad Iranagh; Abbas Yousefpour; Seyedeh Zahra Mousavi; Hamid Modarress


    Molecular dynamics (MD) simulations and biased MD simulation were carried out for the neutral form of Paracetamol inserted in fully hydrated dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) lipid bilayers. For comparison, fully hydrated DMPC and DPPC lipid bilayers were also simulated separately without Paracetamol. The simulation time for each system was 50 ns. At two concentrations of Paracetamol, various properties of the lipid bilayer such as area per lipid, order parameter, diffusion coefficient, radial distribution function, electrostatic potential, mass density and hydrogen bonds have been calculated. Also, the convergence in time of the free energy profile of the Paracetamol along a DPPC bilayer normal was calculated by umbrella sampling method. From the obtained results, it can be concluded that neutral form of Paracetamol shows a generally similar behaviour in DPPC and DMPC lipid bilayers. It was shown that the addition of Paracetamol causes a decrease in tail order parameter of both DPPC and DMPC lipid bilayers and the tail of Paracetamol adopts an inward orientation in the lipid bilayers. Also from the free energy profile, the high penetration barrier in the bilayer centre was determined.

  15. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. (United States)

    Thu, Hnin-Ei; Zulfakar, Mohd Hanif; Ng, Shiow-Fern


    The aims of this research were to develop a novel bilayer hydrocolloid film based on alginate and to investigate its potential as slow-release wound healing vehicle. The bilayer is composed of an upper layer impregnated with model drug (ibuprofen) and a drug-free lower layer, which acted as a rate-controlling membrane. The thickness uniformity, solvent loss, moisture vapour transmission rate (MVTR), hydration rate, morphology, rheology, mechanical properties, in vitro drug release and in vivo wound healing profiles were investigated. A smooth bilayer film with two homogenous distinct layers was produced. The characterisation results showed that bilayer has superior mechanical and rheological properties than the single layer films. The bilayers also showed low MVTR, slower hydration rate and lower drug flux in vitro compared to single layer inferring that bilayer may be useful for treating low suppurating wounds and suitable for slow release application on wound surfaces. The bilayers also provided a significant higher healing rate in vivo, with well-formed epidermis with faster granulation tissue formation when compared to the controls. In conclusions, a novel alginate-based bilayer hydrocolloid film was developed and results suggested that they can be exploited as slow-release wound dressings.

  16. Lindane Suppresses the Lipid-bilayer Permeability in Main Transition Region

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Jørgensen, Kent; Mouritsen, Ole G.


    %) of lindane. Fluorescence spectroscopy was used to measure the passive permeability of unilamellar DMPC bilayers to Co2+ ions. The data show that lindane seals the bilayer for Co2+ penetration and that this effect increases with increasing lindane concentration. The results are discussed in relation...... to the effects on the permeability of other small molecules, e.g., anesthetics....

  17. Sign reversal of drag in bilayer systems with in-plane periodic potential modulation

    DEFF Research Database (Denmark)

    Alkauskas, A.; Flensberg, Karsten; Hu, Ben Yu-Kuang;


    We develop a theory for describing frictional drag in bilayer systems with in-plane periodic potential modulations, and use it to investigate the drag between bilayer systems in which one of the layers is modulated in one direction. At low temperatures, as the density of carriers in the modulated...

  18. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation

    Energy Technology Data Exchange (ETDEWEB)

    Auth, Thorsten [Department of Materials and Interfaces, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel); Safran, S A [Department of Materials and Interfaces, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel); Gov, Nir S [Department of Chemical Physics, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel)


    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton.

  19. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension (United States)

    Cox, Charles D.; Bae, Chilman; Ziegler, Lynn; Hartley, Silas; Nikolova-Krstevski, Vesna; Rohde, Paul R.; Ng, Chai-Ann; Sachs, Frederick; Gottlieb, Philip A.; Martinac, Boris


    Mechanosensitive ion channels are force-transducing enzymes that couple mechanical stimuli to ion flux. Understanding the gating mechanism of mechanosensitive channels is challenging because the stimulus seen by the channel reflects forces shared between the membrane, cytoskeleton and extracellular matrix. Here we examine whether the mechanosensitive channel PIEZO1 is activated by force-transmission through the bilayer. To achieve this, we generate HEK293 cell membrane blebs largely free of cytoskeleton. Using the bacterial channel MscL, we calibrate the bilayer tension demonstrating that activation of MscL in blebs is identical to that in reconstituted bilayers. Utilizing a novel PIEZO1-GFP fusion, we then show PIEZO1 is activated by bilayer tension in bleb membranes, gating at lower pressures indicative of removal of the cortical cytoskeleton and the mechanoprotection it provides. Thus, PIEZO1 channels must sense force directly transmitted through the bilayer.

  20. Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene. (United States)

    Wang, Xinquan; Wu, Zhigang


    It has been long sought to create magnetism out of simple non-magnetic materials, such as silicon and germanium. Here we show that intrinsic magnetism exists in bilayer silicene and germanene with no need to cut, etch, or dope. Unlike bilayer graphene, strong covalent interlayer bonding formed in bilayer silicene and germanene breaks the original π-bonding network of each layer, leaving the unbonded electrons unpaired and localized to carry magnetic moments. These magnetic moments then couple ferromagnetically within each layer while antiferromagnetically across two layers, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. Furthermore, this unique magnetic ordering results in fundamental band gaps of 0.55 eV and 0.32 eV for bilayer silicene and germanene, respectively. The integration of intrinsic magnetism and spontaneous band gap opening makes bilayer silicene and germanene attractive for future nanoelectronics as well as spin-based computation and data storage.

  1. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation (United States)

    Auth, Thorsten; Safran, S. A.; Gov, Nir S.


    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton.

  2. Ground states of bilayered and extended t-J-U models

    Energy Technology Data Exchange (ETDEWEB)

    Voo, Khee-Kyun, E-mail:


    The ground states of bilayered and extended t-J-U models are investigated with renormalized mean field theory. The trial wave functions are Gutzwiller projected Hartree–Fock states, and the site double occupancies are variational parameters. It is found that a spontaneous interlayer phase separation (PS) may arise in bilayers. In electron–hole doping asymmetric systems, the propensity for PS is stronger in electron doped bands. Via a PS, superconductivity can survive to lower doping densities, and antiferromagnetism in electron doped systems may survive to higher doping densities. The result is related to the superconducting cuprates. - Highlights: • Ground states in doped bilayered t-J-U models are studied. • Variational wave functions are Gutzwiller projected wave functions. • Site double occupancies are variational parameters. • Spontaneous interlayer phase separation may occur in bilayers. • Stronger tendency toward phase separation in electron doped bilayers.

  3. Specific heat of twisted bilayer graphene: Engineering phonons by atomic plane rotations

    Energy Technology Data Exchange (ETDEWEB)

    Nika, Denis L. [E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Republic of Moldova (Moldova, Republic of); Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California—Riverside, Riverside, California, 92521 (United States); Cocemasov, Alexandr I. [E. Pokatilov Laboratory of Physics and Engineering of Nanomaterials, Department of Physics and Engineering, Moldova State University, Chisinau MD-2009, Republic of Moldova (Moldova, Republic of); Balandin, Alexander A., E-mail: [Nano-Device Laboratory, Department of Electrical Engineering and Materials Science and Engineering Program, Bourns College of Engineering, University of California—Riverside, Riverside, California, 92521 (United States)


    We have studied the phonon specific heat in single-layer, bilayer, and twisted bilayer graphene. The calculations were performed using the Born-von Karman model of lattice dynamics for intralayer atomic interactions and spherically symmetric interatomic potential for interlayer interactions. We found that at temperature T < 15 K, specific heat varies with temperature as T{sup n}, where n = 1 for graphene, n = 1.6 for bilayer graphene, and n = 1.3 for the twisted bilayer graphene. The phonon specific heat reveals an intriguing dependence on the twist angle in bilayer graphene, which is particularly pronounced at low temperature. The results suggest a possibility of phonon engineering of thermal properties of layered materials by twisting the atomic planes.


    Directory of Open Access Journals (Sweden)

    Rishikesh*, M. A. Bhuiyan, S. M. Ashraful Islam, I. Dewan, Md. A. Islam and Md. S.- Ul H. Miah


    Full Text Available ABSTRACT: Bi-layer tablet technology for bimodal release of drug and co-administration of drugs via oral route has been engaged a significant place in the field of drug delivery technology. At present, several pharmaceutical companies are developing bilayer tablet for co-administration of drugs to improve the therapeutic efficacy as well as to reduce the chances of drug-drug interaction. This review indicates the different aspects of drug release mechanism, different strategies of drug release, various techniques for bilayer tablet, and the influence of different process and formulation parameters must be considered during the development of bilayer tablet. Bi-layer tablet is suitable for sequential release of two drugs in combination, separate two incompatible substances, and also for sustained release tablet in which one layer is immediate release as initial dose and second layer is maintenance dose.

  5. Growth and characterization of the ZnO/ZnS bilayer obtained by chemical spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, M.C. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Dptos Fisica Aplicada and Dpto Ingenieria Quimica, Facultad de Ciencias, Universidad de Malaga, E29071 Malaga (Spain); Espinos, J.P. [Instituto de Ciencias de Materiales de Sevilla (CSIC), Avda. Americo Vespucio s/n, E41092 Sevilla (Spain); Leinen, D.; Martin, F. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Dptos Fisica Aplicada and Dpto Ingenieria Quimica, Facultad de Ciencias, Universidad de Malaga, E29071 Malaga (Spain); Centeno, S.P. [Departamento de Quimica-Fisica, Facultad de Ciencias, Universidad de Malaga, E29071 Malaga (Spain); Romero, R. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Dptos Fisica Aplicada and Dpto Ingenieria Quimica, Facultad de Ciencias, Universidad de Malaga, E29071 Malaga (Spain); Ramos-Barrado, J.R. [Laboratorio de Materiales y Superficie (Unidad Asociada al CSIC), Dptos Fisica Aplicada and Dpto Ingenieria Quimica, Facultad de Ciencias, Universidad de Malaga, E29071 Malaga (Spain)], E-mail:


    ZnO/ZnS bilayer antireflection coatings have been prepared by spray pyrolysis using aqueous solutions of zinc acetate and thiourea or zinc chloride and thiourea. The structure, surface morphology, chemical composition and optical transmittance of the bilayer have been examined as a function of the composition of the initial solution. X-ray photoelectron spectroscopy analysis and Ar ion-beam sputter etching was carried out to obtain a depth profile of bilayer. Neither carbon nor other by-products, which could alter the optical transmittance of the bilayer were found in either the interface or bulk. The differences between the bilayers arise from the annealing of the ZnS underlayer, as well as the precursor used to prepare it.

  6. One-dimensional Topological Edge States of Bismuth Bilayers (United States)

    Drozdov, Ilya; Alexandradinata, Aris; Jeon, Sangjun; Nadj-Perge, Stevan; Ji, Huiwen; Cava, Robert; Bernevig, B. Andrei; Yazdani, Ali


    The hallmark of a time-reversal symmetry protected topologically insulating state of matter in two-dimensions (2D) is the existence of chiral edge modes propagating along the perimeter of the sample. Bilayers of bismuth (Bi), an elemental system theoretically predicted to be a Quantum Spin Hall (QSH) insulator1, has been studied with Scanning Tunneling Microscopy (STM) and the electronic structure of its bulk and edge modes has been experimentally investigated. Spectroscopic mapping with STM reveals the presence of the state bound to the edges of the Bi-bilayer. By visualizing quantum interference of the edge state quasi-particles in confined geometries we characterize their dispersion and demonstrate that their properties are consistent with the absence of backscattering. Hybridization of the edge modes to the underlying substrate will be discussed. [1] Shuichi Murakami, Phys. Rev. Lett. 97, 236805 (2006). The work at Princeton and the Princeton Nanoscale Microscopy Laboratory was supported by ARO MURI program W911NF-12-1-0461, DARPA-SPWAR Meso program N6601-11-1-4110, NSF-DMR1104612, and NSF-MRSEC programs through the Princeton Center for Complex Materials (DMR-0819860)

  7. Interlayer thermal conductance within a phosphorene and graphene bilayer. (United States)

    Hong, Yang; Zhang, Jingchao; Zeng, Xiao Cheng


    Monolayer graphene possesses unusual thermal properties, and is often considered as a prototype system for the study of thermal physics of low-dimensional electronic/thermal materials, despite the absence of a direct bandgap. Another two-dimensional (2D) atomic layered material, phosphorene, is a natural p-type semiconductor and it has attracted growing interest in recent years. When a graphene monolayer is overlaid on phosphorene, the hybrid van der Waals (vdW) bilayer becomes a potential candidate for high-performance thermal/electronic applications, owing to the combination of the direct-bandgap properties of phosphorene with the exceptional thermal properties of graphene. In this work, the interlayer thermal conductance at the phosphorene/graphene interface is systematically investigated using classical molecular dynamics (MD) simulation. The transient pump-probe heating method is employed to compute the interfacial thermal resistance (R) of the bilayer. The predicted R value at the phosphorene/graphene interface is 8.41 × 10(-8) K m(2) W(-1) at room temperature. Different external and internal conditions, i.e., temperature, contact pressure, vacancy defect, and chemical functionalization, can all effectively reduce R at the interface. Numerical results of R reduction as a function of temperature, interfacial coupling strength, defect ratio, or hydrogen coverage are reported with the most R reduction amounting to 56.5%, 70.4%, 34.8% and 84.5%, respectively.

  8. Unexpected bilayer formation in Langmuir films of nucleolipids. (United States)

    Desbat, Bernard; Arazam, Nessim; Khiati, Salim; Tonelli, Giovanni; Neri, Wilfrid; Barthélémy, Philippe; Navailles, Laurence


    Langmuir monolayers have been extensively investigated by various experimental techniques. These studies allowed an in-depth understanding of the molecular conformation in the layer, phase transitions, and the structure of the multilayer. As the monolayer is compressed and the surface pressure is increased beyond a critical value, usually occurring in the minimal closely packed molecular area, the monolayer fractures and/or folds, forming multilayers in a process referred to as collapse. Various mechanisms for monolayer collapse and the resulting reorganization of the film have been proposed, and only a few studies have demonstrated the formation of a bilayer after collapse and with the use of a Ca(2+) solution. In this work, Langmuir isotherms coupled with imaging ellipsometry and polarization modulation infrared reflection absorption spectroscopy were recorded to investigate the air-water interface properties of Langmuir films of anionic nucleolipids. We report for these new molecules the formation of a quasi-hexagonal packing of bilayer domains at a low compression rate, a singular behavior for lipids at the air-water interface that has not yet been documented.

  9. Fibonacci anyons from Abelian bilayer quantum Hall states. (United States)

    Vaezi, Abolhassan; Barkeshli, Maissam


    The possibility of realizing non-Abelian statistics and utilizing it for topological quantum computation (TQC) has generated widespread interest. However, the non-Abelian statistics that can be realized in most accessible proposals is not powerful enough for universal TQC. In this Letter, we consider a simple bilayer fractional quantum Hall system with the 1/3 Laughlin state in each layer. We show that interlayer tunneling can drive a transition to an exotic non-Abelian state that contains the famous "Fibonacci" anyon, whose non-Abelian statistics is powerful enough for universal TQC. Our analysis rests on startling agreements from a variety of distinct methods, including thin torus limits, effective field theories, and coupled wire constructions. We provide evidence that the transition can be continuous, at which point the charge gap remains open while the neutral gap closes. This raises the question of whether these exotic phases may have already been realized at ν=2/3 in bilayers, as past experiments may not have definitively ruled them out.

  10. Bi-layer functionally gradient thick film semiconducting methane sensors

    Indian Academy of Sciences (India)

    A Banerjee; A K Haldar; J Mondal; A Sen; H S Maiti


    Gas sensors based on metal oxide semiconductors like tin dioxide are widely used for the detection of toxic and combustible gases like carbon monoxide, methane and LPG. One of the problems of such sensors is their lack of sensitivity, which to some extent, can be circumvented by using different catalysts. However, highly reactive volatile organic compounds (VOC) coming from different industrial and domestic products (e.g. paints, lacquers, varnishes etc) can play havoc on such sensors and can give rise to false alarms. Any attempt to adsorb such VOCs (e.g. by using activated charcoal) results in sorption of the detecting gases (e.g. methane) too. To get round the problem, bi-layer sensors have been developed. Such tin oxide based functionally gradient bi-layer sensors have different compositions at the top and bottom layers. Here, instead of adsorbing the VOCs, they are allowed to interact and are consumed on the top layer of the sensors and a combustible gas like methane being less reactive, penetrates the top layer and interacts with the bottom layer. By modifying the chemical compositions of the top and bottom layers and by designing the electrode-lead wire arrangement properly, the top layer can be kept electrically shunted from the bottom layer and the electrical signal generated at the bottom layer from the combustible gas is collected. Such functionally gradient sensors, being very reliable, can find applications in domestic, industrial and strategic sectors.

  11. Nonlocal Drag of Magnons in a Ferromagnetic Bilayer (United States)

    Liu, Tianyu; Vignale, G.; Flatté, Michael E.


    Quantized spin waves, or magnons, in a magnetic insulator are assumed to interact weakly with the surroundings, and to flow with little dissipation or drag, producing exceptionally long diffusion lengths and relaxation times. In analogy to Coulomb drag in bilayer two-dimensional electron gases, in which the contribution of the Coulomb interaction to the electric resistivity is studied by measuring the interlayer resistivity (transresistivity), we predict a nonlocal drag of magnons in a ferromagnetic bilayer structure based on semiclassical Boltzmann equations. Nonlocal magnon drag depends on magnetic dipolar interactions between the layers and manifests in the magnon current transresistivity and the magnon thermal transresistivity, whereby a magnon current in one layer induces a chemical potential gradient and/or a temperature gradient in the other layer. The largest drag effect occurs when the magnon current flows parallel to the magnetization; however, for oblique magnon currents a large transverse current of magnons emerges. We examine the effect for practical parameters, and find that the predicted induced temperature gradient is readily observable.

  12. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers (United States)

    Avci, Can Onur; Garello, Kevin; Ghosh, Abhijit; Gabureac, Mihai; Alvarado, Santos F.; Gambardella, Pietro


    Magnetoresistive effects are usually invariant on inversion of the magnetization direction. In non-centrosymmetric conductors, however, nonlinear resistive terms can give rise to a current dependence that is quadratic in the applied voltage and linear in the magnetization. Here we demonstrate that such conditions are realized in simple bilayer metal films where the spin-orbit interaction and spin-dependent scattering couple the current-induced spin accumulation to the electrical conductivity. We show that the longitudinal resistance of Ta|Co and Pt|Co bilayers changes when reversing the polarity of the current or the sign of the magnetization. This unidirectional magnetoresistance scales linearly with current density and has opposite sign in Ta and Pt, which we associate with the modification of the interface scattering potential induced by the spin Hall effect in these materials. Our results suggest a route to control the resistance and detect magnetization switching in spintronic devices using a two-terminal geometry, which applies also to heterostructures including topological insulators.

  13. Embedding Ba Monolayers and Bilayers in Boron Carbide Nanowires (United States)

    Yu, Zhiyang; Luo, Jian; Shi, Baiou; Zhao, Jiong; Harmer, Martin P.; Zhu, Jing


    Aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was employed to study the distribution of barium atoms on the surfaces and in the interiors of boron carbide based nanowires. Barium based dopants, which were used to control the crystal growth, adsorbed to the surfaces of the boron-rich crystals in the form of nanometer-thick surficial films (a type of surface complexion). During the crystal growth, these dopant-based surface complexions became embedded inside the single crystalline segments of fivefold boron-rich nanowires collectively, where they were converted to more ordered monolayer and bilayer modified complexions. Another form of bilayer complexion stabilized at stacking faults has also been identified. Numerous previous works suggested that dopants/impurities tended to segregate at the stacking faults or twinned boundaries. In contrast, our study revealed the previously-unrecognized possibility of incorporating dopants and impurities inside an otherwise perfect crystal without the association to any twin boundary or stacking fault. Moreover, we revealed the amount of barium dopants incorporated was non-equilibrium and far beyond the bulk solubility, which might lead to unique properties.

  14. Multiscale modeling of droplet interface bilayer membrane networks. (United States)

    Freeman, Eric C; Farimani, Amir B; Aluru, Narayana R; Philen, Michael K


    Droplet interface bilayer (DIB) networks are considered for the development of stimuli-responsive membrane-based materials inspired by cellular mechanics. These DIB networks are often modeled as combinations of electrical circuit analogues, creating complex networks of capacitors and resistors that mimic the biomolecular structures. These empirical models are capable of replicating data from electrophysiology experiments, but these models do not accurately capture the underlying physical phenomena and consequently do not allow for simulations of material functionalities beyond the voltage-clamp or current-clamp conditions. The work presented here provides a more robust description of DIB network behavior through the development of a hierarchical multiscale model, recognizing that the macroscopic network properties are functions of their underlying molecular structure. The result of this research is a modeling methodology based on controlled exchanges across the interfaces of neighboring droplets. This methodology is validated against experimental data, and an extension case is provided to demonstrate possible future applications of droplet interface bilayer networks.

  15. Modeling the Elastic Properties of Lipid Bilayer Membranes (United States)

    Barry, Edward; Gibaud, Thomas; Zakhary, Mark; Dogic, Zvonimir


    Model membranes such as lipid bilayers have been indispensable tools for our understanding of the elastic properties of biological membranes. In this talk, I will introduce a colloidal model for membranes and demonstrate that the physical properties of these colloidal membranes are identical to lipid bilayers. The model system is unique in that the constituent molecules are homogenous and non-amphiphilic, yet their self-assembly into membranes and other hierarchical assemblages, such as a lamellar type phases and chiral ribbons, proceeds spontaneously in solution. Owing to the large size of the constituent molecules, individual molecules can be directly visualized and simultaneous observations at the continuum and molecular lengthscales are used to characterize the behavior of model membranes with unprecedented detail. Moreover, once assembled in solution, molecular interactions can be controlled in situ. In particular, the strength of chiral interactions can be varied, leading to fascinating transitions in behavior that resembles the formation of starfish vesicles. These observations point towards the important role of line tension, and have potential implications for phase separated lipid mixtures or lipid rafts.

  16. Surface and interfacial creases in a bilayer tubular soft tissue (United States)

    Razavi, Mir Jalil; Pidaparti, Ramana; Wang, Xianqiao


    Surface and interfacial creases induced by biological growth are common types of instability in soft biological tissues. This study focuses on the criteria for the onset of surface and interfacial creases as well as their morphological evolution in a growing bilayer soft tube within a confined environment. Critical growth ratios for triggering surface and interfacial creases are investigated both analytically and numerically. Analytical interpretations provide preliminary insights into critical stretches and growth ratios for the onset of instability and formation of both surface and interfacial creases. However, the analytical approach cannot predict the evolution pattern of the model after instability; therefore nonlinear finite element simulations are carried out to replicate the poststability morphological patterns of the structure. Analytical and computational simulation results demonstrate that the initial geometry, growth ratio, and shear modulus ratio of the layers are the most influential factors to control surface and interfacial crease formation in this soft tubular bilayer. The competition between the stretch ratios in the free and interfacial surfaces is one of the key driving factors to determine the location of the first crease initiation. These findings may provide some fundamental understanding in the growth modeling of tubular biological tissues such as esophagi and airways as well as offering useful clues into normal and pathological functions of these tissues.

  17. Entrenched metal lift-off using a novel bilayer process (United States)

    Dubois, Thomas D.; Tranjan, Farid M.; Jones, Susan K.; Bobbio, Stephen M.; Kellam, Mark D.; Frieser, Rudolph G.; Jones, A. D.


    This paper will discuss the preparation and characterization of a modified photoresist and describe its use in a novel bilayer process. The modified photoresist solutions are prepared by dissolving enough cyclic phosphonitrilic chloride trimer, PNCT, in commercially available photoresist solutions to achieve phosphorus concentrations of 10 to 12 weight percent in the resulting films. FTNMR and FTIR data will be presented which demonstrate that the cyclic phosphonitrilic chloride trimer does not undergo chemical reaction with the components of the photoresist in the photoresist solutions or photoresist films. The exposure threshold of the PNCT modified photoresist films is 1.5 times greater than that of the unmodified films. Experimental data will be discussed which suggests the decrease in exposure threshold is the result of a relatively lower concentration of photoactive compound in the PNCT modified films. The PNCT modified films will be shown to provide resolution comparable to that of the unmodified photoresist films and yield a process window of better than 20%. A mechanism for the formation of the 02/N2 plasma resistant etch barrier formed during 02/N2 plasma etching will be discussed. Finally, a bilayer process which uses the PNCT modified photoresist in generating metal features entrenched in polyimide will be presented.

  18. Embedding Ba Monolayers and Bilayers in Boron Carbide Nanowires. (United States)

    Yu, Zhiyang; Luo, Jian; Shi, Baiou; Zhao, Jiong; Harmer, Martin P; Zhu, Jing


    Aberration corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was employed to study the distribution of barium atoms on the surfaces and in the interiors of boron carbide based nanowires. Barium based dopants, which were used to control the crystal growth, adsorbed to the surfaces of the boron-rich crystals in the form of nanometer-thick surficial films (a type of surface complexion). During the crystal growth, these dopant-based surface complexions became embedded inside the single crystalline segments of fivefold boron-rich nanowires collectively, where they were converted to more ordered monolayer and bilayer modified complexions. Another form of bilayer complexion stabilized at stacking faults has also been identified. Numerous previous works suggested that dopants/impurities tended to segregate at the stacking faults or twinned boundaries. In contrast, our study revealed the previously-unrecognized possibility of incorporating dopants and impurities inside an otherwise perfect crystal without the association to any twin boundary or stacking fault. Moreover, we revealed the amount of barium dopants incorporated was non-equilibrium and far beyond the bulk solubility, which might lead to unique properties.

  19. Salt bridges: geometrically specific, designable interactions. (United States)

    Donald, Jason E; Kulp, Daniel W; DeGrado, William F


    Salt bridges occur frequently in proteins, providing conformational specificity and contributing to molecular recognition and catalysis. We present a comprehensive analysis of these interactions in protein structures by surveying a large database of protein structures. Salt bridges between Asp or Glu and His, Arg, or Lys display extremely well-defined geometric preferences. Several previously observed preferences are confirmed, and others that were previously unrecognized are discovered. Salt bridges are explored for their preferences for different separations in sequence and in space, geometric preferences within proteins and at protein-protein interfaces, co-operativity in networked salt bridges, inclusion within metal-binding sites, preference for acidic electrons, apparent conformational side chain entropy reduction on formation, and degree of burial. Salt bridges occur far more frequently between residues at close than distant sequence separations, but, at close distances, there remain strong preferences for salt bridges at specific separations. Specific types of complex salt bridges, involving three or more members, are also discovered. As we observe a strong relationship between the propensity to form a salt bridge and the placement of salt-bridging residues in protein sequences, we discuss the role that salt bridges might play in kinetically influencing protein folding and thermodynamically stabilizing the native conformation. We also develop a quantitative method to select appropriate crystal structure resolution and B-factor cutoffs. Detailed knowledge of these geometric and sequence dependences should aid de novo design and prediction algorithms.

  20. Evaluation method research on prestressed concrete bridges

    Institute of Scientific and Technical Information of China (English)

    HUANG Qiao; LIN Yang-zi; REN Yuan


    Considering the construction features of prestressed concrete bridge, the comprehensive evaluation method about the bridge damage conditions are studied. Particular attentions are paid on establishing a multi-level evaluation model for damaged prestressed concrete bridge, and the evaluation indices of the model as well as the rating standards are defined in the model. A normal relative function about the evaluation indices of each element is developed to calculate the relative degree, and for each element which is no sub-level elements. When evaluating the elements in sub-item level or index level of the model, the weights of elements that are pertained to one element are adopted, taking account of their deterioration degree. At the same time, the dam-age conditions of bridge are characterized by relative degree, element evaluation scale and structural technology mark of bridge ,so it agrees with Code for Maintenance of Highway Bridges and Culvers.

  1. Study on structural system of Sutong Bridge

    Institute of Scientific and Technical Information of China (English)

    Zhang Xigang; Pei Minshan; Yuan Hong; Xu Liping; Zhu Bin


    Sutong Bridge, whose layout is [ (100 + 100 + 300) + 1 088 + ( 300 + 100 + 100) ] m, marks the largest span of cable-stayed bridges in the world. The complex natural condition at the bridge site and the strict requirements for resistance of wind and seismic action make it crucial to choose a favorable structural system to assure the function and safety of the bridge. The comparison among several optional structural systems for Sutong Bridge is illustrated. After detailed analysis is carried out for viscous damper and hydraulic buffer, super liquid viscous damper with additional displacement limitation is designed for the first application in bridge engineering. The parameters for the damper is analyzed and studied and the dampers are installed suecessfuUy after quality tests.

  2. Bridge engineering handbook construction and maintenance

    CERN Document Server

    Chen, Wai-Fah


    Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of the Bridge Engineering Handbook. This extensive collection highlights bridge engineering specimens from around the world, contains detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subject.Published in five books: Fundamentals, Superstructure Design, Substructure Design, Seismic Design, and Construction and Maintenance, this new edition provides numerous worked-out examples that give readers step-by-step design procedures, includes c

  3. Analysis of liquid bridge between spherical particles

    Institute of Scientific and Technical Information of China (English)


    A pair of central moving spherical particles connected by a pendular liquid bridge with interstitial Newtonian fluid is often encountered in pariculate coalescence process. In this paper, by assuming perfect-wet condition, the effects of liquid volume and separation distance on static liquid bridge are analyzed, and the relation between rupture energy and liquid bridge volume is also studied. These points would be of significance in industrial processes related to adhesive particles.

  4. Bridge Engineering-Oriented Parametric Model

    Institute of Scientific and Technical Information of China (English)

    周凌远; 李乔


    A new model is proposed to improve the efficiency of structural modeling. In this model, the bridge structural components are expressed with component description, parametric description and geometric description in a software system. This model provides both convenience and flexibility for users in structural modeling process. The object-oriented method is applied in the model implementation. A bridge analysis preprocessor is developed on the basis of this model. It provides an effective way for bridge modeling.

  5. Dynamics and Statics of Nonaxisymmetric Liquid Bridges (United States)

    Alexander, J. Iwan D.; Resnick, Andrew H.; Slobozhanin, L. A.


    Theoretical and experimental investigation of the stability of nonaxisymmetric and nonaxisymmetric bridges contained between equal and unequal radii disks as a function of Bond and Weber number with emphasis on the transition from unstable axisymmetric to stable nonaxisymmetric shapes, are conducted. Numerical analysis of the stability of nonaxisymmetric bridges between unequal disks for various orientations of the gravity vector is performed. Experimental and theoretical investigation of large (nonaxisymmetric) oscillations and breaking of liquid bridges are also conducted.

  6. Mathematical Modelling of Bridges with SAP2000


    Maraž, Miha


    The present work describes a relatively new programme module, which is enhanced in the recently released versions of SAP2000 software. The new module, called Bridge Modeler, is intended for simple, parametric mathematical modelling of bridges. The modelling procedure is explained on a test case through the steps of a user-friendly Bridge Wizard. For each step, we described the basic principles and the application possibilities as well as some limitations. We also explained two types of analys...

  7. Buddha and the bridging relations. (United States)

    Banerjee, Rahul


    The chapter reviews a classical Indian model of consciousness found in the Abhidhamma, a collection of seven treatises in the Pali Canon Tipitaka. The model was based on observations made during advanced vipassana practice, a first-person method taught by the Buddha. The climax of the model consists in the elucidation of 24 'Bridging Relations' causally linking the stream of consciousness, its contents and associated physical events. Review of such a model based on a specialized first-person technique could prove to be a resource of useful ideas providing directions for further research.

  8. Family Medicine: Bridge to Life. (United States)

    Luz, Clare


    Reflecting on the suicide of a close friend, this essay explores what comprises, and inspires a will to live, and how those in Family Medicine can address suicide risk even in the face of debilitating or terminal illness. Research indicates that the will to live is a measurable indicator of general well-being, distinct from depression, and an important predictor of a person's motivation to "hold on to life". As such, understanding what is at the heart of a desire to live should alter clinical practice. This essay offers ideas for ways in which to create bridges for patients that could help sustain life.

  9. Nanoclusters a bridge across disciplines

    CERN Document Server

    Jena, Purusottam


    This comprehensive book on Nanoclusters comprises sixteen authoritative chapters written by leading researchers in the field. It provides insight into topics that are currently at the cutting edge of cluster science, with the main focus on metal and metal compound systems that are of particular interest in materials science, and also on aspects related to biology and medicine. While there are numerous books on clusters, the focus on clusters as a bridge across disciplines sets this book apart from others. Delivers cutting edge coverage of cluster science Covers a broad range of topics in

  10. A bridge to advanced mathematics

    CERN Document Server

    Sentilles, Dennis


    This helpful workbook-style ""bridge"" book introduces students to the foundations of advanced mathematics, spanning the gap between a practically oriented calculus sequence and subsequent courses in algebra and analysis with a more theoretical slant. Part 1 focuses on logic and number systems, providing the most basic tools, examples, and motivation for the manner, method, and concerns of higher mathematics. Part 2 covers sets, relations, functions, infinite sets, and mathematical proofs and reasoning. Author Dennis Sentilles also discusses the history and development of mathematics as well a

  11. Review of Energy Harvesters Utilizing Bridge Vibrations

    Directory of Open Access Journals (Sweden)

    Farid Ullah Khan


    Full Text Available For health monitoring of bridges, wireless acceleration sensor nodes (WASNs are normally used. In bridge environment, several forms of energy are available for operating WASNs that include wind, solar, acoustic, and vibration energy. However, only bridge vibration has the tendency to be utilized for embedded WASNs application in bridge structures. This paper reports on the recent advancements in the area of vibration energy harvesters (VEHs utilizing bridge oscillations. The bridge vibration is narrowband (1 to 40 Hz with low acceleration levels (0.01 to 3.8 g. For utilization of bridge vibration, electromagnetic based vibration energy harvesters (EM-VEHs and piezoelectric based vibration energy harvesters (PE-VEHs have been developed. The power generation of the reported EM-VEHs is in the range from 0.7 to 1450000 μW. However, the power production by the developed PE-VEHs ranges from 0.6 to 7700 μW. The overall size of most of the bridge VEHs is quite comparable and is in mesoscale. The resonant frequencies of EM-VEHs are on the lower side (0.13 to 27 Hz in comparison to PE-VEHs (1 to 120 Hz. The power densities reported for these bridge VEHs range from 0.01 to 9539.5 μW/cm3 and are quite enough to operate most of the commercial WASNs.


    Directory of Open Access Journals (Sweden)

    Bonaventure H.W. Hadikusumo


    Full Text Available The Bridge Management System is designed to maximise use of available data and determine the optimal strategy to perform necessary improvements to bridges in the most cost-effective manner. This paper provides a condition rating system to meet the requirements of Thailand’s Department of Highways (DOH. A rating system to assess the existing condition of bridges is proposed. Segmental inspection is developed to execute efficient element-level evaluations and collect data that demonstrate deterioration patterns in bridge elements. The paper also describes inspection procedures for field survey execution, which enables observed distresses at the level of sub-elements or members to be allocated. Recommendations from bridge experts reveal that the proposed rating system is robust, implementable in actual practice, and suitable for efficient application in evaluating the nation’s concrete highway bridges. Although the bridge condition rating was developed in response to the specific characteristics of Thailand’s bridges, the proposed methodology can easily be extended to other bridge agencies.

  13. A data management infrastructure for bridge monitoring (United States)

    Jeong, Seongwoon; Byun, Jaewook; Kim, Daeyoung; Sohn, Hoon; Bae, In Hwan; Law, Kincho H.


    This paper discusses a data management infrastructure framework for bridge monitoring applications. As sensor technologies mature and become economically affordable, their deployment for bridge monitoring will continue to grow. Data management becomes a critical issue not only for storing the sensor data but also for integrating with the bridge model to support other functions, such as management, maintenance and inspection. The focus of this study is on the effective data management of bridge information and sensor data, which is crucial to structural health monitoring and life cycle management of bridge structures. We review the state-of-the-art of bridge information modeling and sensor data management, and propose a data management framework for bridge monitoring based on NoSQL database technologies that have been shown useful in handling high volume, time-series data and to flexibly deal with unstructured data schema. Specifically, Apache Cassandra and Mongo DB are deployed for the prototype implementation of the framework. This paper describes the database design for an XML-based Bridge Information Modeling (BrIM) schema, and the representation of sensor data using Sensor Model Language (SensorML). The proposed prototype data management framework is validated using data collected from the Yeongjong Bridge in Incheon, Korea.

  14. Assessment of the Reliability of Concrete Bridges

    DEFF Research Database (Denmark)

    Middleton, C. R.; Thoft-Christensen, Palle

    a significant shift in emphasis for the highways authorities around the world away from the design of new structures over to maintaining the existing infrastructure. As a result, bridge owners are seeking improved ways of inspecting, assessing, maintaining and repairing their existing stock of bridges...... in the wake of ever increasing traffic loads and volumes, and an ageing population of bridges subject to various mechanisms of deterioration. The goal is to optimise the allocation of limited resources whilst maintaining their bridges in a safe and serviceable condition. Reliability analysis is one tool being...

  15. Chain elongation of diacylphosphatidylcholine induces fully bilayer interdigitation under atmospheric pressure. (United States)

    Goto, Masaki; Wilk, Agnieszka; Kazama, Akira; Chodankar, Shirish; Kohlbrecher, Joachim; Matsuki, Hitoshi


    The phase transitions of dibehenoylphosphatidylcholine (C22PC) bilayer membrane were observed by differential scanning calorimetry under atmospheric pressure and light-transmittance measurements under high pressure. The constructed temperature-pressure phase diagram suggests that the gel phase at low temperatures is the interdigitated gel phase. To confirm the phase state, we performed small-angle neutron scattering and fluorescence measurements using a polarity-sensitive probe Prodan for the C22PC bilayer membrane under atmospheric pressure. The peaks obtained in both measurements clearly showed the characteristic patterns of the fully interdigitated gel phase. Taking into account of previous studies on the gel phase for long-chain PC bilayers under atmospheric pressure and our studies on the pressure-induced bilayer interdigitaion of diacyl-PCs, it turned out that the interdigitation of diacyl-PC bilayer membranes occurs when the carbon number of acyl chain reaches at least 22. The present study revealed that the interdigitation of PC bilayer membranes occurs not only by weakening the attractive force of polar head groups but also by strengthening the cohesive force of acyl chains. When dominating the force of acyl chains, the interdigitation can be induced even in a diacyl-PC bilayer membrane by only hydration under atmospheric pressure.

  16. Lepromatous leprosy patients produce antibodies that recognise non-bilayer lipid arrangements containing mycolic acids

    Directory of Open Access Journals (Sweden)

    Isabel Baeza


    Full Text Available Non-bilayer phospholipid arrangements are three-dimensional structures that form when anionic phospholipids with an intermediate structure of the tubular hexagonal phase II are present in a bilayer of lipids. Antibodies that recognise these arrangements have been described in patients with antiphospholipid syndrome and/or systemic lupus erythematosus and in those with preeclampsia; these antibodies have also been documented in an experimental murine model of lupus, in which they are associated with immunopathology. Here, we demonstrate the presence of antibodies against non-bilayer phospholipid arrangements containing mycolic acids in the sera of lepromatous leprosy (LL patients, but not those of healthy volunteers. The presence of antibodies that recognise these non-bilayer lipid arrangements may contribute to the hypergammaglobulinaemia observed in LL patients. We also found IgM and IgG anti-cardiolipin antibodies in 77% of the patients. This positive correlation between the anti-mycolic-non-bilayer arrangements and anti-cardiolipin antibodies suggests that both types of antibodies are produced by a common mechanism, as was demonstrated in the experimental murine model of lupus, in which there was a correlation between the anti-non-bilayer phospholipid arrangements and anti-cardiolipin antibodies. Antibodies to non-bilayer lipid arrangements may represent a previously unrecognised pathogenic mechanism in LL and the detection of these antibodies may be a tool for the early diagnosis of LL patients.

  17. Interplay between alkyl chain asymmetry and cholesterol addition in the rigid ion pair amphiphile bilayer systems (United States)

    Huang, Fong-yin; Chiu, Chi-cheng


    Ion pair amphiphile (IPA), a molecular complex composed of a pair of cationic and anionic surfactants, has been proposed as a novel phospholipid substitute. Controlling the physical stability of IPA vesicles is important for its application developments such as cosmetic and drug deliveries. To investigate the effects of IPA alkyl chain combinations and the cholesterol additive on the structural and mechanical properties of IPA vesicular bilayers, we conducted a series of molecular dynamics studies on the hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS) and dodecyltrimethylammonium-hexadecylsulfate (DTMA-HS) IPA bilayers with cholesterol. We found that both IPA bilayers are in the gel phase at 298 K, consistent with experimental observations. Compared with the HTMA-DS system, the DTMA-HS bilayer has more disordered alkyl chains in the hydrophobic region. When adding cholesterol, it induces alkyl chain ordering around its rigid sterol ring. Yet, cholesterol increases the molecular areas for all species and disturbs the molecular packing near the hydrophilic region and the bilayer core. Cholesterol also promotes the alkyl chain mismatch between the IPA moieties, especially for the DTMA-HS bilayer. The combined effects lead to non-monotonically enhancement of the membrane mechanical moduli for both IPA-cholesterol systems. Furthermore, cholesterol can form H-bonds with the alkylsulfate and thus enhance the contribution of alkylsulfate to the overall mechanical moduli. Combined results provide valuable molecular insights into the roles of each IPA component and the cholesterol on modulating the IPA bilayer properties.

  18. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study. (United States)

    Saito, Hiroaki; Shinoda, Wataru


    Water permeability of two different lipid bilayers of dipalmitoylphosphatidylcholine (DPPC) and palmitoylsphingomyelin (PSM) in the absence and presence of cholesterol (0-50 mol %) have been studied by molecular dynamics simulations to elucidate the molecular mechanism of the reduction in water leakage across the membranes by the addition of cholesterol. An enhanced free energy barrier was observed in these membranes with increased cholesterol concentration, and this was explained by the reduced cavity density around the cholesterol in the hydrophobic membrane core. There was an increase of trans conformers in the hydrophobic lipid chains adjacent to the cholesterol, which reduced the cavity density. The enhanced free energy barrier was found to be the main reason to reduce the water permeability with increased cholesterol concentration. At low cholesterol concentrations the PSM bilayer exhibited a higher free energy barrier than the DPPC bilayer for water permeation, while at greater than 30 mol % of cholesterol the difference became minor. This tendency for the PSM and DPPC bilayers to resemble each other at higher cholesterol concentrations was similar to commonly observed trends in several structural properties, such as order parameters, cross-sectional area per molecule, and cavity density profiles in the hydrophobic regions of bilayer membranes. These results demonstrate that DPPC and PSM bilayers with high cholesterol contents possess similar physical properties, which suggests that the solubility of cholesterol in these lipid bilayers has importance for an understanding of multicomponent lipid membranes with cholesterol.

  19. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L


    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  20. Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off

    Directory of Open Access Journals (Sweden)

    Yujie Zhu


    Full Text Available Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspired materials or devices. Although the ability to pattern stacked lipid bilayers at the micron scale is of importance for these purposes, limited work has been done in developing such patterning techniques. Here, we present a simple and direct approach to pattern stacked supported lipid bilayers (SLBs using polymer stencil lift-off and the electrostatic interactions between cationic and anionic lipids. Both homogeneous and phase-segregated stacked SLB patterns were produced, demonstrating that the stacked lipid bilayers retain lateral diffusivity. We demonstrate patterned SLB stacks of up to four bilayers, where fluorescence resonance energy transfer (FRET and quenching was used to probe the interactions between lipid bilayers. Furthermore, the study of lipid phase behaviour showed that gel phase domains align between adjacent layers. The proposed stacked SLB pattern platform provides a robust model for studying lipid behaviour with a controlled number of bilayers, and an attractive means towards building functional bioinspired materials or devices.

  1. Molecular dynamics simulation of the partitioning of benzocaine and phenytoin into a lipid bilayer. (United States)

    Martin, Lewis J; Chao, Rebecca; Corry, Ben


    Molecular dynamics simulations were used to examine the partitioning behaviour of the local anaesthetic benzocaine and the anti-epileptic phenytoin into lipid bilayers, a factor that is critical to their mode of action. Free energy methods are used to quantify the thermodynamics of drug movement between water and octanol as well as for permeation across a POPC membrane. Both drugs are shown to favourably partition into the lipid bilayer from water and are likely to accumulate just inside the lipid headgroups where they may alter bilayer properties or interact with target proteins. Phenytoin experiences a large barrier to cross the centre of the bilayer due to less favourable energetic interactions in this less dense region of the bilayer. Remarkably, in our simulations both drugs are able to pull water into the bilayer, creating water chains that extend back to bulk, and which may modify the local bilayer properties. We find that the choice of atomic partial charges can have a significant impact on the quantitative results, meaning that careful validation of parameters for new drugs, such as performed here, should be performed prior to their use in biomolecular simulations.

  2. The effect of temperature on supported dipalmitoylphosphatidylcholine (DPPC) bilayers: structure and lubrication performance. (United States)

    Wang, Min; Zander, Thomas; Liu, Xiaoyan; Liu, Chao; Raj, Akanksha; Wieland, D C Florian; Garamus, Vasil M; Willumeit-Römer, Regine; Claesson, Per Martin; Dėdinaitė, Andra


    Phospholipids fulfill an important role in joint lubrication. They, together with hyaluronan and glycoproteins, are the biolubricants that sustain low friction between cartilage surfaces bathed in synovial fluid. In this work we have investigated how the friction force and load bearing capacity of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers on silica surfaces are affected by temperature, covering the temperature range 25-52°C. Friction forces have been determined utilizing the AFM colloidal probe technique, which showed that DPPC bilayers are able to provide low friction forces over the whole temperature interval. However, the load bearing capacity is improved at higher temperatures. We interpret this finding as being a consequence of lower rigidity and higher self-healing capacity of the DPPC bilayer in the liquid disordered state compared to the gel state. The corresponding structure of solid supported DPPC bilayers at the silica-liquid interface has been followed using X-ray reflectivity measurements, which suggests that the DPPC bilayer is in the gel phase at 25°C and 39°C and in the liquid disordered state at 55°C. Well-defined bilayer structures were observed for both phases. The deposited DPPC bilayers were also imaged using AFM PeakForce Tapping mode, and these measurements indicated a less homogeneous layer at temperatures below 37°C.

  3. Role of substrate induced electron-phonon interactions in biased graphitic bilayers (United States)

    Davenport, A. R.; Hague, J. P.


    Bilayers of graphitic materials have potential applications in field effect transistors (FETs). A potential difference applied between certain ionic bilayers made from insulating graphitic materials such as BN, ZnO and AlN could reduce gap sizes, turning them into useful semiconductors. On the other hand, opening of a small semiconducting gap occurs in graphene bilayers under applied field. The aim here is to investigate to what extent substrate induced electron-phonon interactions (EPIs) modify this gap change. We examine EPIs in several lattice configurations of graphitic bilayers, using a perturbative approach. The typical effect of EPIs on the ionic bilayers is an undesirable gap widening. The size of this gap change varies considerably with lattice structure and the magnitude of the bias. When bias is larger than the non-interacting gap size, EPIs have the smallest effect on the bandgap, especially in configurations with A{{A}\\prime} and AB structures. Thus careful selection of substrate, lattice configuration and bias strength to minimise the effects of EPIs could be important for optimising the properties of electronic devices. We use parameters related to BN in this article. In practice, the results presented here are broadly applicable to other graphitic bilayers, and are likely to be qualitatively similar in metal dichalcogenide bilayers such as MoS2, which are already of high interest for their use in FETs.

  4. Effect of monoglyceride structure and cholesterol content on water permeability of the droplet bilayer. (United States)

    Michalak, Zuzanna; Muzzio, Michelle; Milianta, Peter J; Giacomini, Rosario; Lee, Sunghee


    The process of water permeation across lipid membranes has significant implications for cellular physiology and homeostasis, and its study may lead to a greater understanding of the relationship between the structure of lipid bilayer and the role that lipid structure plays in water permeation. In this study, we formed a droplet interface bilayer (DIB) by contacting two aqueous droplets together in an immiscible solvent (squalane) containing bilayer-forming surfactant (monoglycerides). Using the DIB model, we present our results on osmotic water permeabilities and activation energy for water permeation of an associated series of unsaturated monoglycerides as the principal component of droplet bilayers, each having the same chain length but differing in the position and number of double bonds, in the absence and presence of a varying concentration of cholesterol. Our findings suggest that the tailgroup structure in a series of monoglyceride bilayers is seen to affect the permeability and activation energy for the water permeation process. Moreover, we have also established the insertion of cholesterol into the droplet bilayer, and have detected its presence via its effect on water permeability. The effect of cholesterol differs depending on the type of monoglyceride. We demonstrate that the DIB can be employed as a convenient model membrane to rapidly explore subtle structural effects on bilayer water permeability.

  5. Studying the lateral chain packing in a ceramide bilayer with molecular dynamics simulations (United States)

    Papadimitriou, N. I.; Karozis, S. N.; Kainourgiakis, M. E.; Charalambopoulou, G. Ch


    In this work, we present a novel technique, based on molecular dynamics simulations, that allows the study of the lateral chain packing in a lipid bilayer. It utilizes the radial distribution function of the alkyl chains to determine the arrangement of the chains along the bilayer plane. The positions of the mass centres of the chains are projected onto the bilayer plane and a 2D radial distribution function is calculated for these projections. The proposed technique can be particularly useful for lipid bilayers in the gel (solid) phase where the chains present a limited degree of mobility. As a case study, we have examined a bilayer that consists of ceramide NS 24:0. Ceramide bilayers can be found in the lipid domain of the skin where they have a significant role in its barrier function. The specific bilayer was found (at 300 K) to adopt a strictly hexagonal chain packing with a separation distance between the chains of 0.466 nm, in good agreement with the available experimental data.

  6. Fluorescence of Supported Phospholipid Bilayers Recorded in a Conventional Horizontal-Beam Spectrofluorometer. (United States)

    Kovrigina, Elizaveta A; Kovrigin, Evgenii L


    Supported phospholipid bilayers are a convenient model of cellular membranes in studies of membrane biophysics and protein-lipid interactions. Traditionally, supported lipid bilayers are formed on a flat surface of a glass slide to be observed through fluorescence microscopes. This paper describes a method to enable fluorescence detection from the supported lipid bilayers using standard horizontal-beam spectrofluorometers instead of the microscopes. In the proposed approach, the supported lipid bilayers are formed on the inner optical surfaces of the standard fluorescence microcell. To enable observation of the bilayer absorbed on the cell wall, the microcell is placed in a standard fluorometer cell holder and specifically oriented to expose the inner cell walls to both excitation and emission channels with a help of the custom cell adaptor. The signal intensity from supported bilayers doped with 1 % (mol) of rhodamine-labeled lipid in the standard 3-mm optical microcell was equivalent to fluorescence of the 70-80 nM reference solution of rhodamine recorded in a commercial microcell adaptor. Because no modifications to the instruments are required in this method, a variety of steady-state and time-domain fluorescence measurements of the supported phospholipid bilayers may be performed with the spectral resolution using standard horizontal-beam spectrofluorometers.

  7. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates

    Institute of Scientific and Technical Information of China (English)

    Ze-Zhao He; Ke-Wu Yang; Cui Yu; Qing-Bin Liu; Jing-Jing Wang; Xu-Bo Song; Ting-Ting Han


    Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features.We report on monolayer and bilayer epitaxial graphene field-effect transistors (GFETs) fabricated on SiC substrates.Compared with monolayer GFETs,the bilayer GFETs exhibit a significant improvement in dc characteristics,including increasing current density IDS,improved transconductance gm,reduced sheet resistance Ron,and current saturation.The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs.Furthermore,the improved dc characteristics enhance a better rf performance for bilayer graphene devices,demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics.

  8. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers. (United States)

    Michel, Roger; Subramaniam, Varuni; McArthur, Sally L; Bondurant, Bruce; D'Ambruoso, Gemma D; Hall, Henry K; Brown, Michael F; Ross, Eric E; Saavedra, S Scott; Castner, David G


    Planar supported lipid bilayers that are stable under ambient atmospheric and ultra-high-vacuum conditions were prepared by cross-linking polymerization of bis-sorbylphosphatidylcholine (bis-SorbPC). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to investigate bilayers that were cross-linked using either redox-initiated radical polymerization or ultraviolet photopolymerization. The redox method yields a more structurally intact bilayer; however, the UV method is more compatible with incorporation of transmembrane proteins. UV polymerization was therefore used to prepare cross-linked bilayers with incorporated bovine rhodopsin, a light-activated, G-protein-coupled receptor (GPCR). A previous study (Subramaniam, V.; Alves, I. D.; Salgado, G. F. J.; Lau, P. W.; Wysocki, R. J.; Salamon, Z.; Tollin, G.; Hruby, V. J.; Brown, M. F.; Saavedra, S. S. J. Am. Chem. Soc. 2005, 127, 5320-5321) showed that rhodopsin retains photoactivity after incorporation into UV-polymerized bis-SorbPC, but did not address how the protein is associated with the bilayer. In this study, we show that rhodopsin is retained in supported bilayers of poly(bis-SorbPC) under ultra-high-vacuum conditions, on the basis of the increase in the XPS nitrogen concentration and the presence of characteristic amino acid peaks in the ToF-SIMS data. Angle-resolved XPS data show that the protein is inserted into the bilayer, rather than adsorbed on the bilayer surface. This is the first study to demonstrate the use of ultra-high-vacuum techniques for structural studies of supported proteolipid bilayers.

  9. 23 CFR 650.409 - Evaluation of bridge inventory. (United States)


    ... 23 Highways 1 2010-04-01 2010-04-01 false Evaluation of bridge inventory. 650.409 Section 650.409... Evaluation of bridge inventory. (a) Sufficiency rating of bridges. Upon receipt and evaluation of the bridge inventory, a sufficiency rating will be assigned to each bridge by the Secretary in accordance with...

  10. 23 CFR 650.807 - Bridges requiring a USCG permit. (United States)


    ... 23 Highways 1 2010-04-01 2010-04-01 false Bridges requiring a USCG permit. 650.807 Section 650.807... BRIDGES, STRUCTURES, AND HYDRAULICS Navigational Clearances for Bridges § 650.807 Bridges requiring a USCG... improvement or construction of a bridge over navigable waters except for the exemption exercised by FHWA...

  11. 33 CFR 118.65 - Lights on fixed bridges. (United States)


    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on fixed bridges. 118.65 Section 118.65 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.65 Lights on fixed bridges. (a) Each fixed bridge span over a...

  12. 33 CFR 118.70 - Lights on swing bridges. (United States)


    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on swing bridges. 118.70 Section 118.70 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.70 Lights on swing bridges. (a) Swing span lights on through bridges....

  13. 33 CFR 118.85 - Lights on vertical lift bridges. (United States)


    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of...

  14. Finite element of multilayer surfacing systems on orthotropic steel bridges

    NARCIS (Netherlands)

    Li, J.; Liu, X.; Scarpas, A.; Tzimiris, G.


    Light weight orthotropic steel bridge decks have been widely utilized for bridges in seismic zones, movable bridges and long span bridges. In the last three decades, severe problems were reported in relation to asphaltic surfacing materials on orthotropic steel deck bridges. Earlier investigations h

  15. Light-weight aluminium bridges and bridge decks. An overview of recent applications

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Kluyver, D. de


    The last decades have shown a large increase in the application of aluminium alloys for light-weight bridges. For bridge construction, aluminium alloys have some specific advantages, but also some points of attention. This paper deals with some recent projects of aluminium bridges, and for these pro

  16. The Bridge of Mandolin County (United States)

    Lantz, Juliette M.; Feindt, Jenny E.; Lewellyn, Eric P. B.; Walczak, Mary M.


    The Bridge of Mandolin County is a case designed to teach the general chemistry principles of molar mass, ions and aqueous reactions, solubility rules, and inorganic nomenclature. Through the instructor-facilitated class discussion, students consider the options before the Mandolin Town Council regarding deicing the newly constructed bridge connecting Mandolin with a large nearby city. The students must decipher contradictory claims made on behalf of sodium chloride, the traditional deicer, and calcium magnesium acetate, a new environmentally friendly deicer, to arrive at the most cost-effective and environmentally appropriate deicing product. As they work through the analysis they raise questions that can be addressed in a laboratory setting. Four optional role-playing experiments are included, which can be used by the students to gather information helpful to resolution of the case. The case is intended to be used over two class periods, with a laboratory period in between, though suggestions for other models are provided. Laboratory procedures include an EDTA titration for Ca2+ and Mg2+, a gravimetric analysis, a qualitative examination of ions and solubility, an introduction to freezing point depression and measurement, and an experimental design activity. This case can also successfully be used without alteration in non-majors chemistry or environmental chemistry courses, or upper-level analytical or environmental chemistry courses.

  17. Global monitoring concept for bridges (United States)

    Bergmeister, Konrad; Santa, Ulrich


    Knowledge of the integrity of in-service structures on a continuous time basis is an ultimate objective for owners and maintenance authorities. The development of a life extension and/or replacement strategy for highway structures is a crucial point in an effective bridge management system. A key component of such a bridge management system is a means of surveillance techniques and determining the condition of an existing structure within the normative and budgetary constraints. Recent advances in sensing technologies and material/structure damage characterization combined with current developments in computations and communications have resulted in a significant interest in developing diagnostic technologies for monitoring the integrity of and for the detection of damages of structures. To identify anomalies and deterioration processes, it is essential to understand the relationships between the signal measurements and the real occurred phenomena. Therefore, the comparison of measured and calculated data in order to tune and validate the mechanical and numerical model assumptions is an integral part of any system analysis. Finally, the interpreted results of all measurements should be the basis for the condition assessment and the safety evaluation of a structure to facilitate replacement and repair decisions.

  18. Bridging history and social psychology

    DEFF Research Database (Denmark)

    Glaveanu, Vlad Petre; Yamamoto, Koji


    This special issue aims to bridge history and social psychology by bringing together historians and social psychologists in an exercise of reading and learning from each other’s work. This interdisciplinary exercise is not only timely but of great importance for both disciplines. Social psycholog......This special issue aims to bridge history and social psychology by bringing together historians and social psychologists in an exercise of reading and learning from each other’s work. This interdisciplinary exercise is not only timely but of great importance for both disciplines. Social...... psychologists can benefit from engaging with historical sources by being able to contextualise their findings and enrich their theoretical models. It is not only that all social and psychological phenomena have a history but this history is very much part of present-day and future developments. On the other...... hand historians can enhance their analysis of historical sources by drawing upon the conceptual tools developed in social psychology. They can “test” these tools and contribute to their validation and enrichment from completely different perspectives. Most important, as contributions to this special...

  19. Ghost Fano Resonance of Excitons in Twisted Bilayer Graphene (United States)

    Liang, Yufeng


    Metallic systems are generally considered to be unable to harbor tightly bound excitons because of the strong screening effect as well as the absence of a finite band gap. Previously, exception has only been found in one-dimensional metallic carbon nanotubes due to the depressed screening effects and the symmetry gap. We explore the exciton spectra of twisted bilayer graphene (tBLG) and predict the existence of even more strongly bound exciton (with binding energy as large as 0.5eV) in this system despite of its higher dimensionality. Based on our results from first-principles simulations and effective model calculations, a mechanism known as the ghost Fano resonance is proposed for the bound exciton formation in metallic systems beyond the dimensonality-related argument. Our results shed light on engineering the e-h excitations in the few-layer van der Waals heterojunction. NSF Grant No. DMR-1207141.

  20. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers (United States)

    Saidaoui, Hamed Ben Mohamed; Manchon, A.


    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ . While the spin Hall effect dominates in the diffusive limit (d ≫λ ), spin swapping dominates in the Knudsen regime (d ≲λ ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  1. Effects of butanol isomers on dipalmitoylphosphatidylcholine bilayer membranes. (United States)

    Reeves, Megan D; Schawel, Adam K; Wang, Weidong; Dea, Phoebe


    Differential scanning calorimetry and (31)P-NMR were used to study the effects of butanol isomers on the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers. The threshold concentration for the onset of interdigitation for each isomer was determined by the disappearance of the pretransition and the onset of a large hysteresis between the heating and cooling scans of the gel-to-liquid main transition. The threshold concentration was found to correlate with increased solubility of the isomers in the aqueous phase, led by tert-butanol. However, as the solution concentration of tert-butanol increased, there was an abrupt shrinking of the hysteresis, initially with well-resolved shoulder peaks indicating mixed phases. The eventual disappearance of the shoulder peaks was correlated with a breakdown of the multilamellar structure identified using (31)P-NMR.

  2. Stacking transition in bilayer graphene caused by thermally activated rotation (United States)

    Zhu, Mengjian; Ghazaryan, Davit; Son, Seok-Kyun; Woods, Colin R.; Misra, Abhishek; He, Lin; Taniguchi, Takashi; Watanabe, Kenji; Novoselov, Kostya S.; Cao, Yang; Mishchenko, Artem


    Crystallographic alignment between two-dimensional crystals in van der Waals heterostructures brought a number of profound physical phenomena, including observation of Hofstadter butterfly and topological currents, and promising novel applications, such as resonant tunnelling transistors. Here, by probing the electronic density of states in graphene using graphene-hexagonal boron nitride-graphene tunnelling transistors, we demonstrate a structural transition of bilayer graphene from incommensurate twisted stacking state into a commensurate AB stacking due to a macroscopic graphene self-rotation. This structural transition is accompanied by a topological transition in the reciprocal space and by pseudospin texturing. The stacking transition is driven by van der Waals interaction energy of the two graphene layers and is thermally activated by unpinning the microscopic chemical adsorbents which are then removed by the self-cleaning of graphene.

  3. Lipid Bilayer Composition Affects Transmembrane Protein Orientation and Function

    Directory of Open Access Journals (Sweden)

    Katie D. Hickey


    Full Text Available Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or -amylase. Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.

  4. A Bilayer Resource Model for Cloud Manufacturing Services

    Directory of Open Access Journals (Sweden)

    Linan Zhu


    Full Text Available Cloud Manufacturing and Cloud Service is currently one of the main directions of development in the manufacturing industry. Under the Cloud Manufacturing environment, the characteristics of publishing, updating, searching, and accessing manufacturing resources are massive, complex, heterogeneous, and so forth. A bilayer manufacturing resource model with separation of Cloud End and Cloud Manufacturing Platform is proposed in this paper. In Cloud End, manufacturing resources are divided into single resource and complex resource, and a basic data model of manufacturing resources oriented to enterprise interior is established to store the physical characteristics. In Cloud Manufacturing Platform, a resource service attribute model oriented to actual users is established to store the service characteristics. This model is described in detail and realized with stateful Web Service Description Language (WSDL document. An example is provided for illustrating the implementation of the concept.

  5. Magnetic bilayer-skyrmions without skyrmion Hall effect (United States)

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko


    Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed.

  6. Supported lipid bilayers as templates to design manganese oxide nanoparticles

    Indian Academy of Sciences (India)

    J Maheshkumar; B Sreedhar; B U Nair; A Dhathathreyan


    This work reports on the preparation of nanoclusters of manganese oxide using biotemplating techniques. Supported lipid bilayers (SLBs) on quartz using cationic lipid [Dioctadecyldimethylammonium bromide (DOMA)] and mixed systems with neutral phospholipids dipalmitoyl phosphatidylcholine (DPPC) and dioleoyl phosphatidylcholine (DOPC) have been used as templates to synthesize these nanoparticles in a waterbased medium at room temperature. The Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) show manganese oxide nanostructures that are composed of crystals or small clusters in the size range of 20-50 nm in diameter. Small angle XRD showed that template removal through calcining process results in nanostructures of the manganese oxide in sizes from 30 to 50 nm. Using these organized assemblies it is possible to control the nano and mesoscopic morphologies of particles and both rod-like and spherical particles can be synthesized.

  7. The enhancement of vortex pinning in ferromagnet/superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Marta Z.; Adamus, Z.; Abal' oshev, A.; Abal' osheva, I.; Berkowski, M. [Polish Academy of Sciences, Al. Lotnikw 32/46, 02668 Warsaw (Poland); Cheng, X.M.; Sang, Hai; Chien, C.L. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Md 21218 (United States)


    The magnetic-domain induced vortex pinning is studied in the ferromagnet/superconductor bilayers (FSB's), in which the F layers are Co/Pt multilayers with perpendicular magnetic anisotropy, and the S layers are either niobium or high temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO). The magnetization measurements reveal the enhancement of the flux pinning in both types of FSB's during the reversal of the magnetization of the F layer, but the details of the behavior depend on the type of the S layer. In the case of niobium FSB the maximum of pinning appears when the F layer is in the final stage of the magnetic reversal process, while the FSB with YBCO shows the maximum when the F layer is saturated. The possible origins of these differences are discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Probing the position of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    de Ghellinck, Alexis; Shen, Chen; Fragneto, Giovanna;


    The effect of the natural antioxidant resveratrol on the structure of solid supported di-palmitoyl-phosphatidyl-choline (DPPC) bilayers in their fluid state was investigated by neutron reflectometry. Results reveal an accumulation of resveratrol (up to 25%, mol/mol) inside the headgroups...... and they exclude its presence in the hydrophobic core. The presence of resveratrol induces an increase of the average thickness and of the interfacial roughness of the headgroup layer. This may be due to a change of the tilt angle of the phosphocholine headgroups residing next to the resveratrol to a more upright...... orientation and leading to a reduction of the projected area per headgroup. This effect is propagated into the hydrophobic core, where the chain packing is modified despite the absence of resveratrol. When interacting with a DPPC/cholesterol membrane, resveratrol has a similar effect on the neighboring PC...

  9. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed


    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ. While the spin Hall effect dominates in the diffusive limit (d≫λ), spin swapping dominates in the Knudsen regime (d≲λ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  10. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers

    CERN Document Server

    Meinhardt, Sebastian; Schmid, Friederike


    According to the lipid raft hypothesis, biological lipid membranes are laterally heterogeneous and filled with nanoscale ordered "raft" domains, which are believed to play an important role for the organization of proteins in membranes. However, the mechanisms stabilizing such small rafts are not clear, and even their existence is sometimes questioned. Here we report the observation of raft-like structures in a coarse-grained molecular model for multicomponent lipid bilayers. On small scales, our membranes demix into a liquid ordered (lo) and a liquid disordered (ld) phase. On large scales, phase separation is suppressed and gives way to a microemulsion-type state that contains nanometer size lo domains in a ld environment. Furthermore, we introduce a mechanism that generates rafts of finite size by a coupling between monolayer curvature and local composition. We show that mismatch between the spontaneous curvatures of monolayers in the lo and ld phase induces elastic interactions, which reduce the line tensi...

  11. Topological states in two-dimensional hexagon lattice bilayers (United States)

    Zhang, Ming-Ming; Xu, Lei; Zhang, Jun


    We investigate the topological states of the two-dimensional hexagon lattice bilayer. The system exhibits a quantum valley Hall (QVH) state when the interlayer interaction t⊥ is smaller than the nearest neighbor hopping energy t, and then translates to a trivial band insulator state when t⊥ / t > 1. Interestingly, the system is found to be a single-edge QVH state with t⊥ / t = 1. The topological phase transition also can be presented via changing bias voltage and sublattice potential in the system. The QVH states have different edge modes carrying valley current but no net charge current. The bias voltage and external electric field can be tuned easily in experiments, so the present results will provide potential application in valleytronics based on the two-dimensional hexagon lattice.

  12. Modeling Kinetics of Distortion in Porous Bi-layered Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Bjørk, Rasmus;


    Shape distortions during constrained sintering experiment of bi-layer porous and dense cerium gadolinium oxide (CGO) structures have been modeled. Technologies like solid oxide fuel cells require co-firing thin layers with different green densities, which often exhibit differential shrinkage...... because of different sintering rates of the materials resulting in undesired distortions of the component. An analytical model based on the continuum theory of sintering has been developed to describe the kinetics of densification and distortion in the sintering processes. A new approach is used...... to extract the material parameters controlling shape distortion through optimizing the model to experimental data of free shrinkage strains. The significant influence of weight of the sample (gravity) on the kinetics of distortion is taken in to consideration. The modeling predictions indicate good agreement...

  13. Superconducting properties of lithium-decorated bilayer graphene (United States)

    Szczȩśniak, Dominik


    The present study provides a comprehensive theoretical analysis of the superconducting phase in selected lithium-decorated bilayer graphene nanostructures. The numerical calculations, conducted within the Eliashberg formalism, give quantitative estimations of the most important thermodynamic properties such as the critical temperature, specific heat, critical field and others. It is shown that discussed lithium-graphene systems present enhancement of their thermodynamic properties comparing to the monolayer case, e.g., the critical temperature can be raised to ∼15 \\text{K} . Furthermore, estimated characteristic thermodynamic ratios exceed predictions of the Bardeen-Cooper-Schrieffer theory suggesting that the considered lithium-graphene systems can be properly analyzed only within the strong-coupling regime.

  14. Resonant tunnelling in a Fibonacci bilayer graphene superlattice

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.; Sinha, C. [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal (India); Biswas, R. [Department of Physics, PK College, Contai, Purba Medinipur, West Bengal (India)


    The transmission coefficients (TCs) and angularly averaged conductance for quasi-particle transport are studied for a bilayer graphene superlattice arranged according to the Fibonacci sequence. The transmission is found to be symmetric around the superlattice growth direction and highly sensitive to the direction of the quasi-particle incidence. The transmission spectra are fragmented and appear in groups due to the quasi-periodicity of the system. The average conductance shows interesting structures sharply dependent on the height of the potential barriers between two graphene strips. The low-energy conductance due to Klein transmission is substantially modified by the inclusion of quasi-periodicity in the system. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. Protein-induced bilayer Perturbations: Lipid ordering and hydrophobic coupling

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Laursen, Ib; Bohr, Henrik;


    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction...... and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid ↔ gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few Å results...... in up to 10-fold increased exchange rates as compared to the ‘optimal’ match situation pointing to the regulatory role of hydrophobic coupling in lipid–protein interactions....

  16. Phosphatidyl-hydroxytyrosol and phosphatidyl-tyrosol bilayer properties. (United States)

    Evans, Kervin O; Compton, David L


    Hydroxytyrosol and tyrosol phospholipids were enzymatically synthesized and investigated for their bilayer properties. Dynamic light scattering demonstrated that hand extrusion at 100nm consistently resulted in liposomes of nearly 85nm diameter for both phosphatidyl-hydroxytyrosol (DOPHT) and phosphatidyl-tyrosol (DOPT). Transmission electron microscopy showed DOPT and DOPHT liposomes extruded at 100-nm to be spherical and non-distinctive from one another. Zeta potential measurements resulted in surface charges<-25mV, demonstrating both DOPT and DOPHT form highly stable liposomes. Quartz crystal microbalance with dissipation monitoring measurements demonstrated that liposomal adsorption was dependent on a combination of DOPT (or DOPHT) mole-percent and calcium ions concentration. Fluorescence anisotropy measurements indicated that melting temperatures of DOPT and DOPHT were below 4°C, suggesting that adsorption behavior and liposome formation was limited by electrostatic interactions and not gel-state formation.

  17. Thickness dependence of the exchange bias in epitaxial manganite bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Kobrinskii, A. L. [University of Minnesota; Goldman, A. M. [University of Minnesota; Varela del Arco, Maria [ORNL


    Exchange bias has been studied in a series of La{sub 2/3}Ca{sub 1/3}MnO{sub 3}/La{sub 1/3}Ca{sub 2/3}MnO{sub 3} bilayers grown on (001) SrTiO{sub 3} substrates by ozone-assisted molecular-beam epitaxy. The high crystalline quality of the samples and interfaces has been verified using high-resolution x-ray diffractometry and Z-contrast scanning transmission electron microscopy with electron-energy-loss spectroscopy. The dependence of exchange bias on the thickness of the antiferromagnetic layer has been investigated. A critical value for the onset of the hysteresis loop shift has been determined. An antiferromagnetic anisotropy constant has been obtained by fitting the results to the generalized Meiklejohn-Bean model.

  18. Thickness dependence of the exchange bias in epitaxial manganite bilayers (United States)

    Kobrinskii, A. L.; Goldman, A. M.; Varela, Maria; Pennycook, S. J.


    Exchange bias has been studied in a series of La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers grown on (001) SrTiO3 substrates by ozone-assisted molecular-beam epitaxy. The high crystalline quality of the samples and interfaces has been verified using high-resolution x-ray diffractometry and Z -contrast scanning transmission electron microscopy with electron-energy-loss spectroscopy. The dependence of exchange bias on the thickness of the antiferromagnetic layer has been investigated. A critical value for the onset of the hysteresis loop shift has been determined. An antiferromagnetic anisotropy constant has been obtained by fitting the results to the generalized Meiklejohn-Bean model.

  19. Bilayer fractal structure with multiband left-handed characteristics. (United States)

    Du, Qiujiao; Liu, Jinsong; Yang, Hongwu; Yi, Xunong


    We present a bilayer fractal structure for the realization of multiband left-handed metamaterial at terahertz frequencies. The structure is composed of metallic H-fractal pairs separated by a dielectric layer. The electromagnetic properties of periodic H-fractal pairs have been investigated by numerical simulation. The period in the propagation direction is extremely small as compared to the wavelength at the operational frequency. Under the electromagnetic wave normal incidence, the material exhibits negative refraction simultaneously around the frequencies of 0.10 and 0.15 THz for parallel polarization, and around the frequencies of 0.19 and 0.38 THz for perpendicular polarization. The design provides a left-handed metamaterial suitable for multiband and compact devices at terahertz frequencies.

  20. Phase Transition of MoS2 Bilayer Structures

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Bothra, Pallavi; Pati, Swapan K.


    In the present study, using density functional calculations we have investigated a possible mechanism for the structural phase transition of the semiconducting bilayer 2H-MoS2 via lithiation. The results indicate that the addition of lithium to the bilayer 2H-MoS2 transforms the bilayer to a hete...... microscopic mechanism of the phase transition in MoS2 and enriches the atomic scale understanding of the interaction of MoS2 with the alkali ions and other transition metal dichalcogenides manifesting a similar phase transition....

  1. The interaction of new piroxicam analogues with lipid bilayers--a calorimetric and fluorescence spectroscopic study. (United States)

    Maniewska, Jadwiga; Szczęśniak-Sięga, Berenika; Poła, Andrzej; Sroda-Pomianek, Kamila; Malinka, Wiesław; Michalak, Krystyna


    The purpose of the present paper was to assess the ability of new piroxicam analogues to interact with the lipid bilayers. The results of calorimetric and fluorescence spectroscopic experiments of two new synthesized analogues of piroxicam, named PR17 and PR18 on the phase behavior of phospholipid bilayers and fluorescence quenching of fluorescent probes (Laurdan and Prodan), which molecular location within membranes is known with certainty, are shown in present work. The presented results revealed that, depending on the details of chemical structure, the studied compounds penetrated the lipid bilayers.

  2. Failure modes and fracture origins of porcelain veneers on bilayer dental crowns. (United States)

    Liu, Yihong; Liu, Guanghua; Wang, Yong; Shen, James Zhijian; Feng, Hailan


    The aims of this study were to determine the fracture origins and crack paths in the porcelain of clinically failed bilayer ceramic restorations and to reveal the correlation between the porcelain failures and material properties. Three clinically failed crowns of each material (bilayer zirconia crowns, galvano-ceramic crowns, and porcelain-fused-to-metal crowns) were collected and underwent failure analysis. The fractures found in porcelain veneers showed several characteristics including wear, Hertzian cone crack, chipping off, and delamination. The results indicated that the fracture origins and features of the porcelain in bilayer ceramic restorations might be affected by the rigidity of core materials and thickness of copings.

  3. Finite element modeling of camber evolution during sintering of bi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Ni, De Wei; Bulatova, Regina;


    The need for understanding the mechanisms and optimization of shape distortions during sintering of bilayers is necessary while producing structures with functionally graded architectures. A finite element model based on the continuum theory of sintering was developed to understand the camber...... and friction as well as the initial geometric parameters of the bilayers were made using optical dilatometry experiments and the model. The developed models were able to capture the observed behaviors of the bilayers’ distortions during sintering. Finally, we present the importance of understanding and hence...... making use of the effect of gravity and friction to minimize the shape distortions during sintering of bilayers....

  4. Addressing Raman features of individual layers in isotopically labeled Bernal stacked bilayer graphene (United States)

    Costa, Sara D.; Weis, Johan Ek; Frank, Otakar; Fridrichová, Michaela; Kalbac, Martin


    In this report important Raman modes for the evaluation of strain in graphene (the 2D and 2D‧) are analyzed. The isotope labeling is used to disentangle contribution of individual graphene layers of graphene bilayer to the studied Raman modes. It is shown that for Bernal-stacked bilayers, the 2D and the 2D‧ Raman modes have three distinct components that can be assigned to processes originating solely from the top graphene layer, bottom graphene layer, and from a combination of processes originating both from the top and bottom layers. The reported results thus enable addressing the properties of individual graphene layers in graphene bilayer by Raman spectroscopy.

  5. Hydroxytyrosol and tyrosol esters partitioning into, location within, and effect on DOPC liposome bilayer behavior. (United States)

    Evans, Kervin O; Laszlo, Joseph A; Compton, David L


    The phenols hydroxytyrosol and tyrosol made abundantly available through olive oil processing were enzymatically transesterified into effective lipophilic antioxidants with cuphea oil. The hydroxytyrosyl and tyrosyl esters made from cuphea oil were assessed for their ability to partition into, locate within and effect the bilayer behavior of 1,2-dioloeoylphosphatidylcholine liposomes and compared to their counterparts made from decanoic acid. Partitioning into liposomes was on the same scale for both hydroxytyrosyl derivatives and both tyrosyl derivatives. All were found to locate nearly at the same depth within the bilayer. Each was found to affect bilayer behavior in a distinct manner.

  6. Hexagonal-shaped monolayer-bilayer quantum disks in graphene: A tight-binding approach (United States)

    da Costa, D. R.; Zarenia, M.; Chaves, Andrey; Pereira, J. M.; Farias, G. A.; Peeters, F. M.


    Using the tight-binding approach, we investigate confined states in two different hybrid monolayer-bilayer systems: (i) a hexagonal monolayer area surrounded by bilayer graphene in the presence of a perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by monolayer graphene. The dependence of the energy levels on dot size and external magnetic field is calculated. We find that the energy spectrum for quantum dots with zigzag edges consists of states inside the gap which range from dot-localized states, edge states, to mixed states coexisting together, whereas for dots with armchair edges, only dot-localized states are observed.

  7. Boundary potential of lipid bilayers: methods and interpretations (United States)

    Ermakov, Yu A.; Nesterenko, A. M.


    The electric field distribution at the boundaries of cell membrane consists of diffuse part of the electrical double layer and the potential drop over polar area inside the membrane itself. The latter is generally attributed to the dipole effect, which depends on the lipid hydration and phase state. This report focuses on the experimental approaches developed to detect the relation between dipole effects and the bilayer structure, and to study their molecular nature. The total boundary potential (BP) of planar bilayer lipid membranes (BLM) can be controlled by Intramembranous Field Compensation (IFC) method developed in our laboratory. When combined with electrokinetic measurements in liposome suspension it allows detecting the changes of the dipole potential due to adsorption of inorganic cations and charged molecules. Multivalent inorganic cations increase the dipole potential up to 100-150 mV and make the membrane rigid. Most of these observations were simulated by Molecular Dynamics (MD) in order to visualize the relationship of electric field with the different structural factors (lipid structure, water orientation, ion adsorption etc.) responsible for its dipole component. Two principal contributors to BP – water and lipid molecules – create the opposite effects. The negative contribution with respect to the bulk is due to lipid itself and the inorganic cation penetration into the polar area of membrane. The positive contribution is caused by water orientation. Particularly, in the case of lysine adsorption, the contribution of water includes the rearrangement of H-bonds with the lipid phosphate group. This fact explains well the unusual kinetic phenomena registered by IFC in the case of polylysine adsorption at the BLM surface.

  8. Hydrocarbon chain conformation in an intercalated surfactant monolayer and bilayer

    Indian Academy of Sciences (India)

    N V Venkataraman; S Vasudevan


    Cetyl trimethyl ammonium (CTA) ions have been confined within galleries of layered CdPS3 at two different grafting densities. Low grafting densities are obtained on direct intercalation of CTA ions into CdPS3 to give Cd0.93PS3(CTA)0.14. Intercalation occurs with a lattice expansion of 4.8 Å with the interlamellar surfactant ion lying flat forming a monolayer. Intercalation at higher grafting densities was effected by a two-step ion-exchange process to give Cd0.83PS3(CTA)0.34, with a lattice expansion of 26.5 Å. At higher grafting densities the interlamellar surfactant ions adopt a tilted bilayer structure. 13C NMR and orientation-dependent IR vibrational spectroscopy on single crystals have been used to probe the conformation and orientation of the methylene ‘tail’ of the intercalated surfactant in the two phases. In the monolayer phase, the confined methylene chain adopts an essentially all-trans conformation with most of the trans chain aligned parallel to the gallery walls. On lowering the temperature, molecular plane aligns parallel, so that the methylene chain lies flat, rigid and aligned to the confining surface. In the bilayer phase, most bonds in the methylene chain are in trans conformation. It is possible to identify specific conformational sequences containing a gauche bond, in the interior and termini of the intercalated methylene. These high energy conformers disappear on cooling leaving all fifteen methylene units of the intercalated cetyl trimethyl ammonium ion in trans conformational registry at 40 K.

  9. Salt-bridge energetics in halophilic proteins.

    Directory of Open Access Journals (Sweden)

    Arnab Nayek

    Full Text Available Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are -3.0 kcal mol-1. Majority (78% of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46% with a net contribution of -5.0 kcal mol-1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (-10 kcal mol-1 exceeds than that of bridge term (-7 kcal mol-1. Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic

  10. A Statistical Observation of Crowns and Bridges in 1988 Part 2 : Bridge


    小林, 賢一; 小坂, 茂; 柳田, 史城; 稲生, 衡樹; 大島, 俊明; 高橋, 喜博; 岩井, 啓三; 甘利, 光治; 中根, 卓


    A study was made of 207 bridges which had been fabricated for patients at the Prosthodontic Clinic of Matsumoto Dental College during 1988. Some of results were as follows; 1) 47.3% of the patients were males and 52.7% were females. 2) 92.8% of the patients were between 20 and 69 years old. 3) 65.2%of the bridges were fabricated as 3-unit bridges. 4) 77.8% were fabricated as 1-pontic bridges. 5) There were fewer bridge retainers for the lower anterior segment than for other segments. 6) 52.3%...

  11. Heavy Vehicles on Minor Highway Bridges

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Enevoldsen, I.

    the results obtained using the numerical models given in details in "Heavy Vehicles on Minor Highway Bridges : dynamic modelling of vehicles and bridges". The models are established using a ordinary vehicle which consists of a 48 t Scania with a 3 axle tractor and a 3 axle trailer, joined in a flexible hinge...

  12. Passing the Einstein-Rosen bridge

    CERN Document Server

    Katanaev, M O


    We relax the requirement of geodesic completeness of a space-time. Instead, we require test particles trajectories to be smooth only in the physical sector. Test particles trajectories for Einstein--Rosen bridge are proved to be smooth in the physical sector, and particles can freely penetrate the bridge in both directions.


    Institute of Scientific and Technical Information of China (English)

    陈炎; 黄小清; 马友发


    By applying the sinusoidal wave mode to simulate the rugged surface of bridge deck,accounting for vehicle-bridge interaction and using Euler-Bernoulli beam theory, a coupling vibration model of vehicle-bridge system was developed. The model was solved by mode analyzing method and Runge-Kutta method, and the dynamic response and the resonance curve of the bridge were obtained. It is found that there are two resonance regions, one represents the main resonance while the other the minor resonance, in the resonance curve. The influence due to the rugged surface, the vibration mode of bridge, and the interaction between vehicle and bridge on vibration of the system were discussed. Numerical results show that the influence due to these parameters is so significant that the effect of roughness of the bridge deck and the mode shape of the bridge can't be ignored and the vehicle velocity should be kept away from the critical speed of the vehicle.

  14. Active aerodynamic stabilisation of long suspension bridges

    DEFF Research Database (Denmark)

    Nissen, Henrik Ditlev; Sørensen, Paul Haase; Jannerup, Ole Erik


    The paper describes the addition of actively controlled appendages (flaps) attached along the length of the bridge deck to dampen wind-induced oscillations in long suppension bridges. A novel approach using control systems methods for the analysis of dynamic stability is presented. In order to ma...

  15. General framework for bridge life cycle design

    Institute of Scientific and Technical Information of China (English)

    Junhai MA; Airong CHEN; Jun HE


    Based on a detailed illustration for bridge life cycle design which comprises the processes of service life design, aesthetics design, performance design, environ-mental and ecological design, inspection, maintenance and repair design as well as cost analysis, this paper presented a general framework for bridge life cycle design comprising three design phases and six design processes.

  16. Re-Assessment of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper two aspects of re-assessment of the reliability of concrete bridges are discussed namely modelling of the corrosion of reinforcement and updating of uncertain variables. The main reason for deterioration of concrete bridges is corrosion of the reinforcement. Therefore, modelling...

  17. Lifetime Reliability Assessment of Concrete Slab Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    A procedure for lifetime assesment of the reliability of short concrete slab bridges is presented in the paper. Corrosion of the reinforcement is the deterioration mechanism used for estimating the reliability profiles for such bridges. The importance of using sensitivity measures is stressed. Fi...

  18. Precast Pearl-Chain concrete arch bridges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup


    A Pearl-Chain Bridge is a closed-spandrel arch bridge consisting of a number of straight pre-fabricated so called Super-Light Deck elements put together in an arch shape by post-tensioning cables. Several Pearl-Chain arches can be positioned adjacent to each other by a crane to achieve a bridge...... the technology was used. We also study other important components and details in the Pearl-Chain Bridge concept and review the effects of different types of loads. A theoretical case study of a circular 30 m span Pearl-Chain Bridge is presented showing the influence of a number of parameters: The number of post-tensioning......, and gives a large positive bending moment below the load and a smaller negative bending moment in the unloaded side. When the Pearl-Chain Bridge concept is compared to other pre-fabricated arch bridge solutions we find a number of advantages when using Pearl-Chain Bridges: Straight elements, combination...

  19. The I-35W bridge Project Website

    DEFF Research Database (Denmark)

    Kampf, Constance

    How can websites be used to rebuild trust?  In August 2007, the Interstate Highway 35-W bridge in Minneapolis, MN collapsed during rush hour.  Although many people were rescued and casualties were as limited as could be expected due to quick and effective intervention, the image of a major bridge...... collapsing during rush hour damaged the Minnesota Department of Transportation's reputation and resulted in the loss of public trust for the organization.  The ensuing bridge reconstruction project included a project website intended to rebuild this trust through transparency, community involvement......, and the use of multimodal features.  This paper looks at the I35-W bridge reconstruction project in Minneapolis through web-based communication by the Minnesota Department of Transportation (MnDOT) about the project. The MnDOT bridge reconstruction website will be examined using a combination of 1). Weick...

  20. Seismic response of steel suspension bridge

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, D.B. [Lawrence Livermore National Lab., CA (United States); Astaneh-Asl, A. [California Univ., Berkeley, CA (United States). Dept. of Civil and Environmental Engineering


    Performing accurate, realistic numerical simulations of the seismic response of long-span bridges presents a significant challenge to the fields of earthquake engineering and seismology. Suspension bridges in particular represent some of the largest and most important man-made structures and ensuring the seismic integrity of these mega-structures is contingent on accurate estimations of earthquake ground motions and accurate computational simulations of the structure/foundation system response. A cooperative, multi-year research project between the Univ. of California and LLNL was recently initiated to study engineering and seismological issues essential for simulating the response of major structures. Part of this research project is focused on the response of the long-span bridges with the San Francisco-Oakland Bay Bridge serving as a case study. This paper reports on the status of this multi-disciplinary research project with emphasis on the numerical simulation of the transient seismic response of the Bay Bridge.

  1. Optimum Maintenance Strategies for Highway Bridges

    DEFF Research Database (Denmark)

    Frangopol, Dan M.; Thoft-Christensen, Palle; Das, Parag C.;

    As bridges become older and maintenance costs become higher, transportation agencies are facing challenges related to implementation of optimal bridge management programs based on life cycle cost considerations. A reliability-based approach is necessary to find optimal solutions based on minimum...... expected life-cycle costs or maximum life-cycle benefits. This is because many maintenance activities can be associated with significant costs, but their effects on bridge safety can be minor. In this paper, the program of an investigation on optimum maintenance strategies for different bridge types...... is described. The end result of this investigation will be a general reliability-based framework to be used by the UK Highways Agency in order to plan optimal strategies for the maintenance of its bridge network so as to optimize whole-life costs....

  2. Electrostatic interactions at the microscale modulate dynamics and distribution of lipids in bilayers. (United States)

    Mangiarotti, Agustín; Wilke, Natalia


    For decades, it has been assumed that electrostatic long-range (micron distances) repulsions in lipid bilayers are negligible due to screening from the aqueous milieu. This concept, mostly derived from theoretical calculations, is broadly accepted in the biophysical community. Here we present experimental evidence showing that domain-domain electrostatic repulsions in charged and also in neutral lipid bilayers regulate the diffusion, in-plane structuring and merging of lipid domains in the micron range. All the experiments were performed on both, lipid monolayers and bilayers, and the remarkable similarity in the results found in bilayers compared to monolayers led us to propose that inter-domain repulsions occur mainly within the plane of the membrane. Finally, our results indicate that electrostatic interactions between the species inserted in a cell membrane are not negligible, not only at nanometric but also at larger distances, suggesting another manner for regulating the membrane properties.

  3. Quantifying the Relationship Between Curvature and Electric Potential in Lipid Bilayers

    DEFF Research Database (Denmark)

    Bruhn, Dennis Skjøth; Lomholt, Michael Andersen; Khandelia, Himanshu


    Cellular membranes mediate vital cellular processes by being subject to curvature and transmembrane electrical potentials. Here we build upon the existing theory for flexoelectricity in liquid crystals to quantify the coupling between lipid bilayer curvature and membrane potentials. Using molecular...

  4. Formation, Stability, and Mobility of One-Dimensional Lipid Bilayer on High Curvature Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J; Martinez, J; Artyukhin, A; Sirbuly, D; Wang, Y; Ju, J W; Stroeve, P; Noy, A


    Curved lipid membranes are ubiquitous in living systems and play an important role in many biological processes. To understand how curvature and lipid composition affect membrane formation and fluidity we have assembled and studied mixed 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (DOPC) and 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine (DOPE) supported lipid bilayers on amorphous silicon nanowires with controlled diameters ranging from 20 nm to 200 nm. Addition of cone-shaped DOPE molecules to cylindrical DOPC molecules promotes vesicle fusion and bilayer formation on smaller diameter nanowires. Our experiments demonstrate that nanowire-supported bilayers are mobile, exhibit fast recovery after photobleaching, and have low concentration of defects. Lipid diffusion coefficients in these high-curvature tubular membranes are comparable to the values reported for flat supported bilayers and increase with decreasing nanowire diameter.

  5. Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firing

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings;


    Camber evolution and stress development during co-firing of asymmetric bilayer laminates, consisting of porous Ce0.9Gd0.1O1.95 gadolinium-doped cerium oxide (CGO) and La0.85Sr0.15MnO3 lanthanum strontium manganate (LSM)-CGO were investigated. Individual layer shrinkage was measured by optical...... dilatometer, and the uniaxial viscosities were determined as a function of layer density using a vertical sintering approach. The camber evolution in the bilayer laminates was recorded in situ during co-firing and it was found to correspond well with the one predicted by the theoretical model. The estimated...... sintering mismatch stress in co-fired CGO-LSM/CGO bilayer laminates was significantly lower than general sintering stresses expected for free sintering conditions. As a result, no co-firing defects were observed in the bilayer laminates, illustrating an acceptable sintering compatibility of the ceramic...

  6. Enhanced sensitivity of a microfabricated resonator using a graphene-polystyrene bilayer membrane (United States)

    Yun, Minhyuk; Lee, Eunho; Cho, Kilwon; Jeon, Sangmin


    A graphene layer was synthesized using chemical vapor deposition methods and a polystyrene solution was spin-cast onto the graphene film. The graphene-polystyrene bilayer membrane was attached between the two tines of a microfabricated quartz tuning fork (QTF). The modulus of the graphene-polystyrene bilayer was measured to be twice that of a pristine polystyrene membrane. Exposure of the membrane-coated QTF to ethanol vapor decreased the resonance frequency of the microresonator. The bilayer membrane-coated QTF produced a frequency change that was three times the change obtained using a polystyrene membrane-coated QTF, with a lower degree of degradation in the Q factor. The limit of detection of the bilayer membrane-coated QTF to ethanol vapor was determined to be 20 ppm.

  7. Enhanced sensitivity of a microfabricated resonator using a graphene-polystyrene bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Minhyuk; Lee, Eunho; Cho, Kilwon; Jeon, Sangmin, E-mail: [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of)


    A graphene layer was synthesized using chemical vapor deposition methods and a polystyrene solution was spin-cast onto the graphene film. The graphene-polystyrene bilayer membrane was attached between the two tines of a microfabricated quartz tuning fork (QTF). The modulus of the graphene-polystyrene bilayer was measured to be twice that of a pristine polystyrene membrane. Exposure of the membrane-coated QTF to ethanol vapor decreased the resonance frequency of the microresonator. The bilayer membrane-coated QTF produced a frequency change that was three times the change obtained using a polystyrene membrane-coated QTF, with a lower degree of degradation in the Q factor. The limit of detection of the bilayer membrane-coated QTF to ethanol vapor was determined to be 20 ppm.

  8. Lipid-Bilayer Dynamics Probed by a Carbon Dot-Phospholipid Conjugate. (United States)

    Nandi, Sukhendu; Malishev, Ravit; Bhunia, Susanta Kumar; Kolusheva, Sofiya; Jopp, Jürgen; Jelinek, Raz


    Elucidating the dynamic properties of membranes is important for understanding fundamental cellular processes and for shedding light on the interactions of proteins, drugs, and viruses with the cell surface. Dynamic studies of lipid bilayers have been constrained, however, by the relatively small number of pertinent molecular probes and the limited physicochemical properties of the probes. We show that a lipid conjugate comprised of a fluorescent carbon dot (C-dot) covalently attached to a phospholipid constitutes a versatile and effective vehicle for studying bilayer dynamics. The C-dot-modified phospholipids readily incorporated within biomimetic membranes, including solid-supported bilayers and small and giant vesicles, and inserted into actual cellular membranes. We employed the C-dot-phospholipid probe to elucidate the effects of polymyxin-B (a cytolytic peptide), valproic acid (a lipophilic drug), and amyloid-β (a peptide associated with Alzheimer's disease) upon bilayer fluidity and lipid dynamics through the application of various biophysical techniques.

  9. Correlation effects in (111) bilayers of perovskite transition-metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Satoshi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhu, Wenguang [Univ. of Science and Technology of China, Hefei (China); Nomura, Yusuke [Univ. of Tokyo (Japan); Arita, R. [Univ. of Tokyo (Japan); Xiao, Di [Carnegie Mellon Univ., Pittsburgh, PA (United States); Nagaosa, Naoto [Univ. of Tokyo (Japan); RIKEN Center for Emergent Matter Science (CEMS), Saitama (Japan)


    We investigate the correlation-induced Mott, magnetic, and topological phase transitions in artificial (111) bilayers of perovskite transition-metal oxides LaAuO3 and SrIrO3 for which the previous density-functional theory calculations predicted topological insulating states. Using the dynamical-mean-field theory with realistic band structures and Coulomb interactions, LaAuO3 bilayer is shown to be far away from a Mott insulating regime, and a topological-insulating state is robust. On the other hand, SrIrO3 bilayer is on the verge of an orbital-selective topological Mott transition and turns to a trivial insulator by an antiferromagnetic ordering. Oxide bilayers thus provide a novel class of topological materials for which the interplay between the spin-orbit coupling and electron-electron interactions is a fundamental ingredient.

  10. Electric gating induced bandgaps and enhanced Seebeck effect in zigzag bilayer graphene ribbons (United States)

    Vu, Thanh-Tra; Tran, Van-Truong


    We theoretically investigate the effect of a transverse electric field generated by side gates and a vertical electric field generated by top/back gates on energy bands and transport properties of zigzag bilayer graphene ribbons (Bernal stacking). Using atomistic tight binding calculations and Green’s function formalism we demonstrate that a bandgap is opened when either field is applied and even enlarged under simultaneous influence of the two fields. Interestingly, although vertical electric fields are widely used to control the bandgap in bilayer graphene, here we show that transverse fields exhibit a more positive effect in terms of modulating a larger range of bandgap and retaining good electrical conductance. The Seebeck effect is also demonstrated to be enhanced strongly—by about 13 times for a zigzag bilayer graphene ribbon with 16 chain lines. These results may motivate new designs of devices made of bilayer graphene ribbons using electric gates.

  11. Role of interlayer spacing in electrical transport of bilayer graphene nanoribbon: Perpendicular and armchair direction (United States)

    Jamaati, Maryam; Namiranian, Afshin


    The electrical conductance of bilayer zigzag graphene nanoribbon is numerically investigated taking advantage of Green's function. The calculations are performed within the tight binding model, which describes the interaction between carbon atoms within a layer via nearest neighbor and carbon atoms of different layers using continuum model. Our findings reveal sensitivity of the bilayer graphene conductance to changes in its relative displacement of two layers in perpendicular and armchair directions. We find that the conductance oscillates as a function of system width, and finally reduces rapidly as the relative distance of two layers becomes larger than half the system width. The results show that the conductance of the bilayer graphene could be tuned via displacement of two layers. Moreover, we obtain different results for conductance of narrow and wide bilayer nanoribbon.

  12. Building bridges … and accelerators

    CERN Multimedia


    Lyn Evans, the LHC project leader, was awarded an honorary doctorate from the University of Geneva (UNIGE) to celebrate his role not just in building accelerators, but also in building bridges between nations. He was one of four notables honoured at the event on Friday 5 June, coinciding with the University’s 450th Anniversary. Lyn Evans arriving at the ceremony with Archbishop Desmond Tutu. "It was a big surprise when I found out I’d been nominated," recounts Evans, "but it was an even bigger surprise to find out with whom I’d been nominated". At the ceremony Evans was awarded the honorary doctorate along with three others: Archbishop Desmond Tutu, who was acclaimed for his fight against apartheid in South Africa, Mary Robinson, first woman president of Ireland and former United Nations’ high commissioner of human rights, and Pascal Lamy, Director-General of the World Trade Organization. The award ceremony, known as the �...

  13. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene. (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng


    Bernal-stacked (AB-stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electric field. Mechanical exfoliation can be used to produce AB-stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB- and randomly stacked structures. Herein we report a rational approach to produce large-area high-quality AB-stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H(2)/CH(4) ratio in a low-pressure CVD process to enable the continued growth of bilayer graphene. A high-temperature and low-pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90%) and high coverage (up to 99%). The electrical transport studies demonstrate that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB-stacked bilayer graphene with the highest carrier mobility exceeding 4000 cm(2)/V · s at room temperature, comparable to that of the exfoliated bilayer graphene.

  14. Dynamic Response of Metal-Polymer Bilayers - Viscoelasticity, Adhesion and Failure (United States)


    stretch of two at a strain rate of 103 s_1 a pulse duration of 2 ms is required! Recently, Youssef and Gupta [8] have developed a laser ablation based...Dynamic Response of Metal -Polymer Bilayers and Failure Viscoelasticity, Adhesion Sa. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0541 5c...Contract Number N00014-09-1-0541 Title of Research Dynamic Response of Metal -Polymer Bilayers - Viscoelasticity, Adhesion and Failure Principal

  15. Bimodal Distribution and Fluorescence Response of Environment-Sensitive Probes in Lipid Bilayers


    Klymchenko, Andrey S; Duportail, Guy; Demchenko, Alexander P.; Mély, Yves


    A remarkable heterogeneity is often observed in the spectroscopic properties of environment-sensitive fluorescence probes in phospholipid bilayers. To explain its origin, we provided a detailed investigation of the fluorescence excitation and emission spectra of 4′-dimethylamino-3-hydroxyflavone (probe F) in bilayer vesicles with the variations of fatty acid composition, polar heads, temperature, and cholesterol content. Probe F, due to excited-state intramolecular proton transfer, exhibits t...

  16. Quantum transport in bilayer graphene. Fabry-Perot interferences and proximity-induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Du, Renjun


    Bilayer graphene (BLG) p-n junctions made of hBN-BLG-hBN (hexagonal boron nitride) heterostructures enable ballistic transport over long distances. We investigate Fabry-Perot interferences, and detect that the bilayer-like anti-Klein tunneling transits into single-layer-like Klein tunneling when tuning the Fermi level towards the band edges. Furthermore, the proximity-induced superconductivity has been studied in these devices with Al leads.

  17. Imaging and Analysis of OT1 T Cell Activation on Lipid Bilayers




    Authors: Peter Beemiller, Jordan Jacobelli & Matthew Krummel ### Abstract Supported lipid bilayers are frequently used to study cell membrane protein dynamics during immune synapse formation by T cells. Here we describe methods for the imaging and analysis of OT1+ T cell activation and T-cell receptor (TCR) dynamics on lipid bilayers. ### Introduction T cells are activated at immune synapses when TCRs bind agonist ligands on antigen presenting cells (APCs). Glass cover...

  18. Structure and Dynamics in Amphiphilic Bilayers: NMR and MD simulation Studies



    Solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) simulations were employed to study molecular structure and dynamics in amphiphilic bilayers. This thesis reports on method development and practical applications to two types of bilayer systems: simple cell membrane models composed of phosphatidylcholine lipids and cholesterol; and liquid crystals composed of ethyleneoxide-based surfactants often used in technological applications and in fundamental studies ...

  19. Origin of the hysteresis in bilayer 2D systems in the quantum Hall regime


    Ho, L. H.; Taskinen, L. J.; Micolich, A.P.; Hamilton, A. R.; Atkinson, P.; Ritchie, D. A.


    The hysteresis observed in the magnetoresistance of bilayer 2D systems in the quantum Hall regime is generally attributed to the long time constant for charge transfer between the 2D systems due to the very low conductivity of the quantum Hall bulk states. We report electrometry measurements of a bilayer 2D system that demonstrate that the hysteresis is instead due to non-equilibrium induced current. This finding is consistent with magnetometry and electrometry measurements of single 2D syste...

  20. Micromachined glass apertures for artificial lipid bilayer formation in a microfluidic system


    Sandison, M.E.; Zagnoni, M.; Abu-Hantash, M.; Morgan, H


    The use of spark assisted chemical engraving (SACE) to produce glass apertures that are suitable for the formation of artificial bilayer lipid membranes is described. Prior to use, the glass apertures were rendered hydrophobic by a silanization process and were then incorporated into a simple microfluidic device. Successful bilayer lipid membrane (BLM) formation and the subsequent acquisition of single-channel recordings are demonstrated. Due to the simplicity and rapidity of the SACE process...

  1. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins

    DEFF Research Database (Denmark)

    Venturoli, M.; Smit, B.; Sperotto, Maria Maddalena


    for positive values of mismatch; a dependence on the protein size appears as well. In the case of large model proteins experiencing extreme mismatch conditions, in the region next to the so-called lipid annulus, there appears an undershooting ( or overshooting) region where the bilayer hydrophobic thickness...... a small size, the main mechanism to compensate for a large hydrophobic mismatch is the tilt, whereas large proteins react to negative mismatch by causing an increase of the hydrophobic thickness of the nearby bilayer. Furthermore, for the case of small, peptidelike proteins, we found the same type...

  2. Formation of individual protein channels in lipid bilayers suspended in nanopores. (United States)

    Studer, André; Han, Xiaojun; Winkler, Fritz K; Tiefenauer, Louis X


    Free-standing lipid bilayers are formed in regularly arranged nanopores of 200, 400 and 800 nm in a 300 nm thin hydrophobic silicon nitride membrane separating two fluid compartments. The extraordinary stability of the lipid bilayers allows us to monitor channel formation of the model peptide melittin and alpha-hemolysin from Staphylococcus aureus using electrochemical impedance spectroscopy and chronoamperometry. We observed that melittin channel formation is voltage-dependent and transient, whereas transmembrane heptameric alpha-hemolysin channels in nano-BLMs persist for hours. The onset of alpha-hemolysin-mediated conduction depends on the applied protein concentration and strongly on the diameter of the nanopores. Heptameric channel formation from adsorbed alpha-hemolysin monomers needs more time in bilayers suspended in 200 nm pores compared to bilayers in pores of 400 and 800 nm diameters. Diffusion of sodium ions across alpha-hemolysin channels present in a sufficiently high number in the bilayers was quantitatively and specifically determined using ion selective electrodes. The results demonstrate that relatively small variations of nano-dimensions have a tremendous effect on observable dynamic biomolecular processes. Such nanopore chips are potentially useful as supports for stable lipid bilayers to establish functional assays of membrane proteins needed in basic research and drug discovery.

  3. Topological phase transition in hexagonal boron-nitride bilayers modulated by gate voltage (United States)

    Jin, Guojun; Zhai, Xuechao


    We study the gate-voltage modulated electronic properties of hexagonal boron-nitride bilayers with two different stacking structures in the presence of intrinsic and Rashba spin-orbit interactions. Our analytical results show that there are striking cooperation effects arising from the spin-orbit interactions and the interlayer bias voltage. For realizing topological phase transition, in contrast to a gated graphene bilayer for increasing its energy gap, the energy gap of a boron-nitride bilayer is significantly reduced by an applied gate voltage. For the AA stacking-bilayer which has the inversion symmetry, a strong topological phase is found, and there is an interesting reentrant behavior from a normal phase to a topological phase and then to a normal phase again, characterized by the topological index. Therefore, the gate voltage modulated AA-boron nitride bilayer can be taken as a newcomer of the topological insulator family. For the AB stacking-bilayer which is lack of the inversion symmetry, it is always topologically trivial, but exhibits an unusual quantum Hall phase with four degenerate low-energy states localized at a single edge. It is suggested that these theoretical findings could be verified experimentally in the transport properties of boron-nitride bylayers. This research was supported by the NSFC (Nos. 60876065, 11074108), PAPD, and NBRPC (Nos. 2009CB929504, 2011CB922102).

  4. The Role of Atomic Polarization in the Thermodynamics of Chloroform Partitioning to Lipid Bilayers. (United States)

    Vorobyov, Igor; Bennett, W F Drew; Tieleman, D Peter; Allen, Toby W; Noskov, Sergei


    In spite of extensive research and use in medical practice, the precise molecular mechanism of volatile anesthetic action remains unknown. The distribution of anesthetics within lipid bilayers and potential targeting to membrane proteins is thought to be central to therapeutic function. Therefore, obtaining a molecular level understanding of volatile anesthetic partitioning into lipid bilayers is of vital importance to modern pharmacology. In this study we investigate the partitioning of the prototypical anesthetic, chloroform, into lipid bilayers and different organic solvents using molecular dynamics simulations with potential models ranging from simplified coarse-grained MARTINI to additive and polarizable CHARMM all-atom force fields. Many volatile anesthetics display significant inducible dipole moments, which correlate with their potency, yet the exact role of molecular polarizability in their stabilization within lipid bilayers remains unknown. We observe that explicit treatment of atomic polarizability makes it possible to accurately reproduce solvation free energies in solvents with different polarities, allowing for quantitative studies in heterogeneous molecular distributions, such as lipid bilayers. We calculate the free energy profiles for chloroform crossing lipid bilayers to reveal a role of polarizability in modulating chloroform partitioning thermodynamics via the chloroform-induced dipole moment and highlight competitive binding to the membrane core and toward the glycerol backbone that may have significant implications for understanding anesthetic action.

  5. Influence of membrane surface charge on adsorption of complement proteins onto supported lipid bilayers. (United States)

    Yorulmaz, Saziye; Jackman, Joshua A; Hunziker, Walter; Cho, Nam-Joon


    The complement system is an important part of the innate immune response, and there is great interest in understanding how complement proteins interact with lipid membrane interfaces, especially in the context of recognizing foreign particulates (e.g., liposomal nanomedicines). Herein, a supported lipid bilayer platform was employed in order to investigate the effect of membrane surface charge (positive, negative, or neutral) on the adsorption of three complement proteins. Quartz crystal microbalance-dissipation (QCM-D) experiments measured the real-time kinetics and total uptake of protein adsorption onto supported lipid bilayers. The results demonstrate that all three proteins exhibit preferential, mainly irreversible adsorption onto negatively charged lipid bilayers, yet there was also significant variation in total uptake and the relative degree of adsorption onto negatively charged bilayers versus neutral and positively charged bilayers. The total uptake was also observed to strongly depend on the bulk protein concentration. Taken together, our findings contribute to a broader understanding of the factors which influence adsorption of complement proteins onto lipid membranes and offer guidance towards the design of synthetic lipid bilayers with immunocompetent features.

  6. Self-assembly of Asymmetric Dimer Particles in Supported Copolymer Bilayer

    Institute of Scientific and Technical Information of China (English)

    Xiao-chun Qin; Chun-lai Ren


    Using self-consistent field and density functional theories, we investigate the self-assembly behavior of asymmetric dimer particles in a supported AB block copolymer bilayer. Asymmetric dimer particles are amphiphilic molecules composed by two different spheres. One prefers to A block of copolymers and the other likes B block when they are introduced into the copolymer bilayer. The two layer structure of the dimer particles is formed within the bilayer.Due to the presence of the substrate surface, the symmetry of the two leaflets of the bilayer is broken, which may lead to two different layer structures of dimer particles within each leaflet of the bilayer. With the increasing concentration of the asymmetric dimer particles,in-plane structure of the dimer particles undergoes sparse square, hexagonal, dense square, and cylindrical structures. In a further condensed packing, a bending cylindrical structure comes into being. Here we verify that the entropic effect of copolymers, the enthalpy of the system and the steric repulsion of the dimer particles are three important factors determing the self-assembly of dimer particles within the supported copolymer bilayer.

  7. The induced nontrivial Z 2 topological phase in graphene sandwiched by pnictogen bilayers. (United States)

    Shu, Cheng; Qu, Jinfeng; Peng, Xiangyang; Yang, Hong; Liu, Wenliang; Wei, Xiaolin; Zhang, Kaiwang; Zhong, Jianxin


    By performing first-principles calculations, we find that graphene with nearly zero spin orbit coupling can be turned into a topological insulator after being sandwiched between pnictogen bilayers. It is found that a dipole field is induced between graphene and pnictogen bilayers, which will significantly pull down the Dirac point of graphene. Depending on the initial position of the Dirac point of graphene with respect to the energy gap of the pnictogen bilayers, Bi/graphene/Bi is found to be a metallic system while Sb/graphene/Sb a topological insulator. In Sb/graphene/Sb, a sizable gap is opened at the Dirac point of graphene. The strong spin-orbit coupling in Sb bilayers leads to a band inversion in the gapped Dirac cones of graphene via the proximity effect and the calculated Z 2 topological index further confirms that a nontrivial topological phase is induced in graphene. By applying longitudinal or lateral strains to Sb/graphene/Sb, topological phase transition occurs based on the change of the thickness of the Sb bilayer instead of the change of the separation between graphene and Sb bilayers.

  8. Kinetics and Thermodynamics of Peptide (pHLIP) insertion and folding in a lipid bilayer (United States)

    Andreev, Oleg; Karabadzhak, Alexander; Weerakkody, Dhammika; Markin, Vladislav; Engelman, Donald; Reshetnyak, Yana


    We study spontaneous insertion and folding across a lipid bilayer of moderately polar membrane peptide pHLIP - pH Low Insertion Peptide. pHLIP has three major states: soluble in water or bound to the surface of a lipid bilayer as an unstructured monomer, and inserted across the bilayer as a monomeric α-helix. We used fluorescence spectroscopy and isothermal titration calorimetry to calculate the transition energies between states. The free energy of binding to a surface of lipid bilayer is about -7 kcal/mol and the free energy of insertion and folding across a lipid bilayer at low pH is nearly -2 kcal/mol. We performed stopped-flow fluorescence and CD measurements to elucidate molecular mechanism of pHLIP insertion and folding within a lipid bilayer and to calculate the activation energy of formation of transmembrane helix. pHLIP also has utility as an agent to target diseased tissues and translocate molecules through the membrane into the cytoplasm of cells in environments with elevated levels of extracellular acidity, as in cancer and inflammation. We plan to discuss a number of related kinetics and thermodynamic parameters from our measurements.

  9. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering. (United States)

    Pu, Juan; Komvopoulos, Kyriakos


    Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications.

  10. Dissipative particle dynamics simulation study of the bilayer-vesicle transition

    Institute of Scientific and Technical Information of China (English)


    A bilayer structure is an important immediate for the vesicle formation. However,the mechanism for the bilayer-vesicle transition remains unclear. In this work,a dissipative particle dynamics(DPD) simulation method was employed to study the mechanism of the bilayer-vesicle transition. A coarse-grained model was built based on a lipid molecule termed dimyristoylphosphatidylcholine(DMPC). Simulations were performed from two different initial configurations:a random dispersed solution and a tensionless bilayer. It was found that the bilayer-vesicle transition was driven by the minimization of the water-tail hydrophobic interaction energy,and was accompanied with the increase of the position entropy due to the redistribution of water molecules. The bulk pressure was reduced during the bilayer-vesicle transition,suggesting the evolved vesicle morphology was at the relatively low free energy state. The membrane in the product vesicle was a two-dimensional fluid. It can be concluded that the membrane of a vesicle is not interdigitated and most of the bonds in lipid chains are inclined to orient along the radical axis of the vesicle.

  11. Evaluation and biological characterization of bilayer gelatin/chondroitin-6-sulphate/hyaluronic acid membrane. (United States)

    Wang, Tzu-Wei; Sun, Jui-Sheng; Wu, Hsi-Chin; Huang, Yi-Chau; Lin, Feng-Huei


    A biodegradable polymer scaffold was developed using gelatin, chondroitin-6-sulphate, and hyaluronic acid in the form of bilayer network. The bilayer porous structure of gelatin-chondroitin-6-sulphate-hyaluronic acid (G-C6S-HA) membrane was fabricated using different freezing temperatures followed by lyophilization. 1-Ethyl-3(3-dimethylaminopropyl) carbodiimide was used as crosslinking agent to improve the biological stability of the scaffold. The morphology, physical-chemical properties, and biocompatibility of bilayer G-C6S-HA membrane were evaluated in this study. The functional groups change in crosslinked G-C6S-HA scaffold was characterized by fourier transform infrared spectroscopy. The retention of glycosaminoglycan contents and matrix degradation rate were also examined by p-dimethylamino benzaldehyde and 2,4,6-trinitrobenzene sulphonic acid, respectively. Water absorption capacity was carried out to study G-C6S-HA membrane water containing characteristics. The morphology of the bilayer G-C6S-HA membrane was investigated under scanning electron microscope and light microscopy. In vitro biocompatibility was conducted with MTT test, LDH assay, as well as histological analysis. The results showed that the morphology of bilayer G-C6S-HA membrane was well reserved. The physical-chemical properties were also adequate. With good biocompatibility, this bilayer G-C6S-HA membrane would be suitable as a matrix in the application of tissue engineering.

  12. Design and evaluation of lornoxicam bilayered tablets for biphasic release

    Directory of Open Access Journals (Sweden)

    Songa Ambedkar Sunil


    Full Text Available The objective of the present investigation was to develop bilayered tablets of lornoxicam to achieve biphasic release pattern. A bilayered tablet, consisting of an immediate and controlled release layer, was prepared by direct compression technique. The controlled release effect was achieved by using various hydrophilic natural, semi synthetic and synthetic controlled release polymers such as xanthan gum, hydroxypropyl methylcellulose (HPMC and polyethylene oxide (PEO to modulate the release of the drug. The in vitro drug release profiles showed the biphasic release behavior in which the immediate release (IR layer containing the lornoxicam was released within 15 minutes, whereas the controlled release (CR layer controlled the drug release for up to 24 h. All the bilayered tablets formulated have followed the zero order release with non-Fickian diffusion controlled release mechanism after the initial burst release. FTIR studies revealed that there was no interaction between the drug and polymers used in the study. Statistical analysis (ANOVA showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p O objetivo do presente trabalho foi desenvolver comprimidos bicamada de lornoxicam para atingir padrão de liberação bifásica. Preparou-se, por compressão direta, comprimido bicamada, consistindo de uma camada de liberação imediata e uma de liberação controlada. A liberação controlada foi obtida pelo uso de vários polímeros naturais hidrofílicos, semi-sintéticos e sintéticos, tais como goma xantana, hidroxipropilmetil celulose (HPMC e óxido de polietileno (PEO para modular a liberação do fármaco. Os perfis de liberação in vitro mostraram comportamento bifásico em que a camada de liberação imediata (IR contendo lornoxicam foi liberada em 15 minutos, enquanto a camada de liberação controlada (CR liberou o fármaco em mais de 24 horas, Todos os comprimidos bicamada

  13. Simulated microgravity impacts the plant plasmalemma lipid bilayer (United States)

    Nedukha, Olena; Berkovich, Yuliy A.; Vorobyeva, Tamara; Grakhov, Volodimir; Klimenko, Elena; Zhupanov, Ivan; Jadko, Sergiy

    Biological membranes, especially the plasmalemma, and their properties and functions can be considered one of the most sensitive indicators of gravity interaction or alteration of gravity, respectively. Studies on the molecular basis of cellular signal perception and transduction are very important in order to understand signal responses at the cellular and organism level. The plasmalemma lipid bilayer is the boundary between the cell internal and external environment and mediates communication between them. Therefore, we studied the content and composition of lipids, saturated and unsaturated fatty acids, sterols, and microviscosity in the plasmalemma isolated from pea seedling roots and epicotyls grown in the stationary conditions and under slow horizontal clinorotation. In addition, lipid peroxidation intensity of intact roots was also identified. The plasmalemma fraction was isolated by the two-phase aquatic-polymer system optimized for pea using a centrifuge Optima L-90K. Lipid bilayer components were determined by using highly effective liquid chromatography with a system Angilent 1100 (Germany). Spontaneous chemiluminescence intensity was measured with a chemiluminometer ChLMTS-01. The obtained data showed that plasmalemma investigated parameters are sensitive to clinorotation, namely: increasing or decreasing the different lipids content, among which, phospho- and glycolipids were dominated, as well as changes in the content of saturated and unsaturated fatty acids and sterols. A degree of plasmalemma sensitivity to clinorotation was higher for the root plasmalemma than epicocotyl ones. This distinguish may be naturally explained by the differences in the structure, cell types, growth, and specific functions of a root and an epicotyl, those are the most complicated in roots. An index of unsaturation under clinorotation was similar to that in the stationary conditions as a result of the certain balance between changes in the content of saturated and

  14. Evidence that bilayer bending rigidity affects membrane protein folding. (United States)

    Booth, P J; Riley, M L; Flitsch, S L; Templer, R H; Farooq, A; Curran, A R; Chadborn, N; Wright, P


    The regeneration kinetics of the integral membrane protein bacteriorhodopsin have been investigated in a lipid-based refolding system. Previous studies on bacteriorhodopsin regeneration have involved detergent-based systems, and in particular mixed dimyristoylphosphatidylcholine (DMPC)/CHAPS micelles. Here, we show that the short chain lipid dihexanoylphosphatidylcholine (DHPC) can be substituted for the detergent CHAPS and that bacteriorhodopsin can be regenerated to high yield in mixed DMPC/DHPC micelles. Bacteriorhodopsin refolding kinetics are measured in the mixed DMPC/DHPC micelles. Rapid, stopped flow mixing is employed to initiate refolding of denatured bacterioopsin in SDS micelles with mixed DMPC/DHPC micelles and time-resolved fluorescence spectroscopy to follow changes in protein fluorescence during folding. Essentially identical refolding kinetics are observed for mixed DMPC/CHAPS and mixed DMPC/DHPC micelles. Only one second-order retinal/apoprotein reaction is identified, in which retinal binds to a partially folded apoprotein intermediate, and the free energy of this retinal binding reaction is found to be the same in both types of mixed micelles. Formation of the partially folded apoprotein intermediate is a rate-limiting step in protein folding and appears to be biexponential. Both apparent rate constants are found to be dependent on the relative proportion of DMPC present in the mixed DMPC/DHPC micelles as well as on the pH of the aqueous phase. Increasing the DMPC concentration should increase the bending rigidity of the amphiphilic bilayer, and this is found to slow the rate of formation of the partially folded apoprotein intermediate. Increasing the mole fraction of DMPC from 0.3 to 0.6 slows the two apparent rate constants associated with formation of this intermediate from 0.29 and 0.031 to 0.11 and 0.013 s-1, respectively. Formation of the intermediate also slows with increasing pH, from 0.11 and 0.013 s-1 at pH 6 to 0.033 and 0.0053 s-1 at

  15. Oscillations in a sunspot with light bridges

    CERN Document Server

    Yuan, Ding; Huang, Zhenghua; Li, Bo; Su, Jiangtao; Yan, Yihua; Tan, Baolin


    Solar Optical Telescope onboard Hinode observed a sunspot (AR 11836) with two light bridges (LBs) on 31 Aug 2013. We analysed a 2-hour \\ion{Ca}{2} H emission intensity data set and detected strong 5-min oscillation power on both LBs and in the inner penumbra. The time-distance plot reveals that 5-min oscillation phase does not vary significantly along the thin bridge, indicating that the oscillations are likely to originate from the underneath. The slit taken along the central axis of the wide light bridge exhibits a standing wave feature. However, at the centre of the wide bridge, the 5-min oscillation power is found to be stronger than at its sides. Moreover, the time-distance plot across the wide bridge exhibits a herringbone pattern that indicates a counter-stream of two running waves originated at the bridge sides. Thus, the 5-min oscillations on the wide bridge also resemble the properties of running penumbral waves. The 5-min oscillations are suppressed in the umbra, while the 3-min oscillations occupy...

  16. Signal and noise in bridging PCR

    Directory of Open Access Journals (Sweden)

    Thaler David S


    Full Text Available Abstract Background In a variant of the standard PCR reaction termed bridging, or jumping, PCR the primer-bound sequences are originally on separate template molecules. Bridging can occur if, and only if, the templates contain a region of sequence similarity. A 3' end of synthesis in one round of synthesis that terminates in this region of similarity can prime on the other. In principle, Bridging PCR (BPCR can detect a subpopulation of one template that terminates synthesis in the region of sequence shared by the other template. This study considers the sensitivity and noise of BPCR as a quantitative assay for backbone interruptions. Bridging synthesis is also important to some methods for computing with DNA. Results In this study, BPCR was tested over a 328 base pair segment of the E. coli lac operon and a signal to noise ratio (S/N of approximately 10 was obtained under normal PCR conditions with Taq polymerase. With special precautions in the case of Taq or by using the Stoffel fragment the S/N was improved to 100, i.e. 1 part of cut input DNA yielded the same output as 100 parts of intact input DNA. Conclusions In the E. coli lac operator region studied here, depending on details of protocol, between 3 and 30% per kilobase of final PCR product resulted from bridging. Other systems are expected to differ in the proportion of product that is bridged consequent to PCR protocol and the sequence analyzed. In many cases physical bridging during PCR will have no informational consequence because the bridged templates are of identical sequence, but in a number of special cases bridging creates, or, destroys, information.

  17. Building the clinical bridge: an Australian success. (United States)

    Wallis, Marianne; Chaboyer, Wendy


    Nursing effectiveness science includes primary, secondary, and translational, clinically focused research activities which aim to improve patient or client outcomes. It is imperative, for the successful conduct of a program of nursing effectiveness science, that a clinical bridge is established between academic and healthcare service facilities. An Australian example of the development of a robust clinical bridge through the use of jointly funded positions at the professorial level is outlined. In addition, an analysis of the practical application of Lewin's model of change management and the contribution of both servant and transformational leadership styles to the bridge building process is provided.

  18. Building the Clinical Bridge: An Australian Success

    Directory of Open Access Journals (Sweden)

    Marianne Wallis


    Full Text Available Nursing effectiveness science includes primary, secondary, and translational, clinically focused research activities which aim to improve patient or client outcomes. It is imperative, for the successful conduct of a program of nursing effectiveness science, that a clinical bridge is established between academic and healthcare service facilities. An Australian example of the development of a robust clinical bridge through the use of jointly funded positions at the professorial level is outlined. In addition, an analysis of the practical application of Lewin’s model of change management and the contribution of both servant and transformational leadership styles to the bridge building process is provided.

  19. Asymptotics of a horizontal liquid bridge (United States)

    Haynes, M.; O'Brien, S. B. G.; Benilov, E. S.


    This paper uses asymptotic techniques to find the shape of a two dimensional liquid bridge suspended between two vertical walls. We model the equilibrium bridge shape using the Laplace-Young equation. We use the Bond number as a small parameter to deduce an asymptotic solution which is then compared with numerical solutions. The perturbation approach demonstrates that equilibrium is only possible if the contact angle lies within a hysteresis interval and the analysis relates the width of this interval to the Bond number. This result is verified by comparison with a global force balance. In addition, we examine the quasi-static evolution of such a two dimensional bridge.

  20. Calculations in bridge aeroelasticity via CFD

    Energy Technology Data Exchange (ETDEWEB)

    Brar, P.S.; Raul, R.; Scanlan, R.H. [Johns Hopkins Univ., Baltimore, MD (United States)


    The central focus of the present study is the numerical calculation of flutter derivatives. These aeroelastic coefficients play an important role in determining the stability or instability of long, flexible structures under ambient wind loading. A class of Civil Engineering structures most susceptible to such an instability are long-span bridges of the cable-stayed or suspended-span variety. The disastrous collapse of the Tacoma Narrows suspension bridge in the recent past, due to a flutter instability, has been a big impetus in motivating studies in flutter of bridge decks.

  1. Gust loading on streamlined bridge decks

    DEFF Research Database (Denmark)

    Larose, Guy; Mann, Jakob


    The current analytical description of the buffeting action of wind on long-span bridges is based on the strip assumption. However, recent experiments on closed-box girder bridge decks have shown that this assumption is not valid and is the source of an important part of the error margin...... of the analytical prediction methods. In this paper, an analytical model that departs from the strip assumption is used to describe the gust loading on a thin airfoil. A parallel is drawn between the analytical model and direct measurements of gust loading on motionless closed-box girder bridge decks. Empirical...

  2. Transformation of the bridge during drop separation (United States)

    Chashechkin, Yu. D.; Prokhorov, V. E.


    The geometry of flows during separation of pendant drops of liquids with significantly different physical properties (alcohol, water, glycerin, oil) has been studied by high-speed video recording. The dynamics of the processes involving the formation of bridges of two characteristic shapes—slightly nonuniform in thickness and with thinning of the upper and lower ends—has been investigated. It has been shown that the shape change of the separated bridge has a number of stages determined by the properties of the liquid. As a result, the bridge is transformed into a small drop—a satellite drop.

  3. Effect of ionic strength on dynamics of supported phosphatidylcholine lipid bilayer revealed by FRAPP and Langmuir-Blodgett transfer ratios. (United States)

    Harb, Frédéric F; Tinland, Bernard


    To determine how lipid bilayer/support interactions are affected by ionic strength, we carried out lipid diffusion coefficient measurements by fluorescence recovery after patterned photobleaching (FRAPP) and transfer ratio measurements using a Langmuir balance on supported bilayers of phosphatidylcholine lipids. The main effect of increasing ionic strength is shown to be enhanced diffusion of the lipids due to a decrease in the electrostatic interaction between the bilayer and the support. We experimentally confirm that the two main parameters governing bilayer behavior are electrostatic interaction and bilayer/support distance. Both these parameters can therefore be used to vary the potential that acts on the bilayer. Additionally, our findings show that FRAPP is an extremely sensitive tool to study interaction effects: here, variations in diffusion coefficient as well as the presence or absence of leaflet decoupling.

  4. Thermal response of domains in cardiolipin content bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Oscar [Departament de Quimica-Fisica, Facultat de Quimica, U.B. 08028 (Spain); Morros, Antoni [Unitat de Biofisica, Departament de Bioquimica i Biologia Molecular, Facultat de Medicina (Spain); Servei de Ressonancia Magnetica Nuclear (SeRMN), U.A.B., 08193 Bellaterra, Barcelona (Spain); Cabanas, Miquel E. [Servei de Ressonancia Magnetica Nuclear (SeRMN), U.A.B., 08193 Bellaterra, Barcelona (Spain); Montero, M. Teresa [Departament de Fisicoquimica, Facultat de Farmacia, U.B. 08028 (Spain); Hernandez-Borrell, Jordi [Departament de Fisicoquimica, Facultat de Farmacia, U.B. 08028 (Spain)], E-mail:


    In the study described here, supported planar bilayers (SPBs) of 1-palmitoy-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE):cardiolipin (CL) (0.8:0.2, mol/mol) were examined using atomic force microscopy (AFM). SPBs were formed from suspensions of POPE:CL (0.8:0.2, mol/mol) in inverted hexagonal (H{sub II}) phases (buffer containing Ca{sup 2+}). Three laterally segregated domains which differ in height were observed at 24 degC. Based on the area accounted for each domain and the nominal composition of the mixture, we interpret that the higher domain is formed by CL, while the intermediate and lower domains (LDs) are formed by POPE. The three domains respond to temperature increase with relative changes in their area. At 37 degC, we observed that the increase in the area of the intermediate domain occurs at the expense of the LD. {sup 31}P-nuclear magnetic resonance ({sup 31}P-NMR) and Differential scanning calorimetry (DSC) were used in combination with AFM to characterize the phase behavior of the suspensions and to elucidate the nature of the structures observed.

  5. Unassisted translocation of large polypeptide domains across phospholipid bilayers. (United States)

    Brambillasca, Silvia; Yabal, Monica; Makarow, Marja; Borgese, Nica


    Although transmembrane proteins generally require membrane-embedded machinery for integration, a few can insert spontaneously into liposomes. Previously, we established that the tail-anchored (TA) protein cytochrome b(5) (b5) can posttranslationally translocate 28 residues downstream to its transmembrane domain (TMD) across protein-free bilayers (Brambillasca, S., M. Yabal, P. Soffientini, S. Stefanovic, M. Makarow, R.S. Hegde, and N. Borgese. 2005. EMBO J. 24:2533-2542). In the present study, we investigated the limits of this unassisted translocation and report that surprisingly long (85 residues) domains of different sequence and charge placed downstream of b5's TMD can posttranslationally translocate into mammalian microsomes and liposomes at nanomolar nucleotide concentrations. Furthermore, integration of these constructs occurred in vivo in translocon-defective yeast strains. Unassisted translocation was not unique to b5 but was also observed for another TA protein (protein tyrosine phosphatase 1B) whose TMD, like the one of b5, is only moderately hydrophobic. In contrast, more hydrophobic TMDs, like synaptobrevin's, were incapable of supporting unassisted integration, possibly because of their tendency to aggregate in aqueous solution. Our data resolve long-standing discrepancies on TA protein insertion and are relevant to membrane evolution, biogenesis, and physiology.

  6. Power losses in bilayer inverted small molecule organic solar cells

    KAUST Repository

    Trinh, Cong


    Inverted bilayer organic solar cells using copper phthalocyanine (CuPc) as a donor and C60 as an acceptor with the structure: glass/indium tin oxide (ITO)/ZnO/C60/CuPc/MoO3/Al, in which the zinc oxide (ZnO) was deposited by atomic layer deposition, are compared with a conventional device: glass/ITO/CuPc/C60/bathocuproine/Al. These inverted and conventional devices give short circuit currents of 3.7 and 4.8 mA/cm 2, respectively. However, the inverted device gives a reduced photoresponse from the CuPc donor compared to that of the conventional device. Optical field models show that the arrangement of organic layers in the inverted devices leads to lower absorption of long wavelengths by the CuPc donor; the low energy portion of the spectrum is concentrated near the metal oxide electrode in both devices. © 2012 American Institute of Physics.

  7. Bilayer Beams and Relay Sharing based OFDMA Cellular Architecture

    Directory of Open Access Journals (Sweden)

    Yanxiong Pan


    Full Text Available Over the past decade, researchers have been putting a lot of energy on co-channel interference suppression in the forthcoming fourth generation (4G wireless networks. Existing approaches to interference suppression are mainly based on signal processing, cooperative communication or coordination techniques. Though good performance has been attained already, a more complex receiver is needed, and there is still room for improvement through other ways.Considering spatial frequency reuse, which provides an easier way to cope with the co-channel interference, this paper proposed a bilayer beams and relay sharing based (BBRS OFDMA cellular architecture and corresponding frequency planning scheme. The main features of the novel architecture are as follows. Firstly, the base station (BS uses two beams, one composed of six wide beams providing coverage to mobile stations (MSs that access to the BS, and the other composed of six narrow beams communicating with fixed relay stations (FRSs. Secondly, in the corresponding frequency planning scheme, soft frequency reuse is considered on all FRSs further. System-level simulation results demonstrate that better coverage performance is obtained and the mean data rate of MSs near the cell edge is improved significantly. The BBRS cellular architecture provides a practical method to interference suppression in 4G networks since a better tradeoff between performance and complexity is achieved.

  8. Pressure effects on the equilibrium configurations of bilayer lipid membranes (United States)

    DeVita, Raffaella; Stewart, Iain W.; Leo, Donald J.


    Planar bilayer lipid membranes (BLMs) are currently employed to construct many bio-inspired material systems and structures. In order to characterize the pressure effects on the equilibrium configurations of these biological membranes, a novel continuum model is proposed. The BLM is assumed to be a two-layer smectic A liquid crystal. The mean orientation of the amphiphilic molecules comprising the membrane is postulated to be perpendicular to the layers and each layer is idealized as a two-dimensional liquid. Moreover, the BLM is modeled as a simply supported plate undergoing small deformations. It is subjected to a pressure load that acts perpendicularly to the layers. The equilibrium equations and boundary conditions are derived from the bulk elastic energy for smectic A liquid crystals as described by de Gennes and Prost (1993 The Physics of Liquid Crystals 2nd edn (Oxford Science Publications)) by using variational methods. The resulting fourth-order linear partial differential equation is solved by employing cylindrical functions and the series solution is proved to be convergent. The solution is numerically computed for values of the model parameters that are reported in the literature. This paper is dedicated to the memory of our colleagues, Professors Kevin P Granata and Liviu Librescv, who lost their lives during the sensless tragedy on 16 April, 2007 at Virginia Tech.

  9. Detergent interaction with tethered bilayer lipid membranes for protein reconstitution (United States)

    Broccio, Matteo; Zan Goh, Haw; Loesche, Mathias


    Tethered bilayer lipid membranes (tBLMs) are self-assembled biomimetic structures in which the membrane is separated from a solid substrate by a nm-thick hydrated submembrane space. These model systems are being used in binding studies of peripheral proteins and exotoxins. Here we aim at their application for the reconstitution of water-insoluble integral membrane proteins. As an alternative to fusion of preformed proteoliposomes we study the direct reconstitution of such proteins for applications in biosensing and pharmaceutical screening. For reconstitution, highly insulating tBLMs (R˜10^5-10^6 φ) were temporarily incubated with a detergent to screen for conditions that keep the detergent-saturated membranestable and ready to incorporate detergent-solubilized proteins. We assess the electrical characteristics, i.e. specific resistance and capacitance, by means of electrochemical impedance spectroscopy (EIS) under timed incubation with decylmaltoside and dodecylmaltoside detergents in a regime around their critical micelle concentration, 1.8 mM and 0.17 mM respectively and demonstrate the restoration of the tBLM upon detergent removal. Thereby a range of concentration and incubation times was identified, that represents optimal conditions for the subsequent membrane protein reconstitution.

  10. Mott glass phase in a diluted bilayer Heisenberg quantum antiferromagnet (United States)

    Ma, Nv-Sen; Sandvik, Anders W.; Yao, Dao-Xin


    We use quantum Monte Carlo simulations to study a dimer-diluted S = 1/2 Heisenberg model on a bilayer square lattice with intralayer interaction J1 and interlayer interaction J2. Below the classical percolation threshold pc, the system has three phases reachable by tuning the interaction ratio g = J2/J1: a Néel ordered phase, a gapless quantum glass phase, and a gapped quantum paramagnetic phase. We present the ground-state phase diagram in the plane of dilution p and interaction ratio g. The quantum glass phase is certified to be of the gapless Mott glass type, having a uniform susceptibility vanishing at zero temperature T and following a stretched exponential form at T > 0; χu exp(-b/Tα) with α < 1. At the phase transition point from Neel ordered to Mott glass, we find that the critical exponents are different from those of the clean system described by the standard O(3) universality class in 2+1 dimensions.

  11. Epitaxial nucleation of CVD bilayer graphene on copper. (United States)

    Song, Yenan; Zhuang, Jianing; Song, Meng; Yin, Shaoqian; Cheng, Yu; Zhang, Xuewei; Wang, Miao; Xiang, Rong; Xia, Yang; Maruyama, Shigeo; Zhao, Pei; Ding, Feng; Wang, Hongtao


    Bilayer graphene (BLG) has emerged as a promising candidate for next-generation electronic applications, especially when it exists in the Bernal-stacked form, but its large-scale production remains a challenge. Here we present an experimental and first-principles calculation study of the epitaxial chemical vapor deposition (CVD) nucleation process for Bernal-stacked BLG growth on Cu using ethanol as a precursor. Results show that a carefully adjusted flow rate of ethanol can yield a uniform BLG film with a surface coverage of nearly 90% and a Bernal-stacking ratio of nearly 100% on ordinary flat Cu substrates, and its epitaxial nucleation of the second layer is mainly due to the active CH3 radicals with the presence of a monolayer-graphene-covered Cu surface. We believe that this nucleation mechanism will help clarify the formation of BLG by the epitaxial CVD process, and lead to many new strategies for scalable synthesis of graphene with more controllable structures and numbers of layers.

  12. Optimal design of a new multipole bilayer magnetorheological brake (United States)

    Shiao, Yaojung; Ngoc, Nguyen Anh; Lai, Chien-Hung


    This article presents a new high-torque multipole bilayer magneto-rheological brake (MRB). This MRB has a unique structural design with multiple electromagnetic poles and multiple media layers of magnetorheological fluid (MRF). The MRB has two rotors located on the outer and inner sides of a six-pole stator, and therefore, it can provide higher torque and a larger torque-to-volume ratio (TVR) than conventional single- or multipole single-layer MRBs can. Moreover, the problem of potential MRF leakage is solved by using cylindrical separator rings around the stator. In this study, first, the structure of the proposed MRB is introduced. An analog magnetic circuit was built for the MRB to investigate the effects of the MRB parameters on the magnetic field intensity of the MRF layers. In addition, a 3D electromagnetic model of the MRB was developed to simulate and examine the magnetic flux intensity and corresponding braking torque. An approximate optimization method was then applied to obtain the optimal geometric dimensions for the major dimensional parameters of the MRB. The MRB was manufactured and tested to validate its torque and dynamic characteristics. The results showed that the proposed MRB exhibited great enhancement of the braking torque and TVR.

  13. Topologically-Mediated Membrane Dynamics in Supported Lipid Bilayers (United States)

    Gilmore, Sean Fitzpatrick


    This thesis is primarily design driven. It describes the development and application of dynamically tunable class of solid-fluid interfaces, which serves as a test-bed configuration for fundamental studies of soft condensed matter in reduced dimension. My specific focus is in developing these interfaces to recapitulate topology-mediated phenomenon in biological lipid membranes. The phenomena that the interfacial topology manifest in diffusional characteristics in model membranes are probed using wide-area epifluorescence microscopy and a semi-quantitative analysis of dynamic recovery following photobleaching. Furthermore, real-time remodeling of the membrane-substrate interface topology is shown to provide fundamental information regarding curvature-dependent molecular sorting and resorting. Specifically our experiments using putative raft composition mixtures confirm the conformation-dependent alignment of liquid-ordered domains and moreover reveal domain-domain interactions for the first time in model bilayers. Ongoing work aimed at delineating these inter-domain interactions in terms of membrane elastic properties is being performed. Future work that includes peptide-driven membrane deformation and sorting, as well large-scale, curvature-driven in vivo sorting of lipids is proposed and discussed.

  14. Acyl chain composition and coexisting fluid phases in lipid bilayers (United States)

    Gu, Yongwen; Bradley, Miranda; Mitchell, Drake


    At room temperature phospholipid bilayers enriched in sphingolipids and cholesterol may form a solid phase as well as two coexisting fluid phases. These are the standard fluid phase, or the liquid-disordered phase, ld, and the liquid-ordered phase, lo, which is commonly associated with lipid rafts. Ternary mixtures of palmitoyl-oleoyl-phosphocholine (POPC; 16:0,18:1 PC), sphingomyelin (SPM), and cholesterol (Chol) form coexisting lo, ld and solid phases over a wide range of molar ratios. We are examining the ability of two fluorescent probes to detect these 2 phases: NBD linked to di-16:0 PE which partitions strongly into the lo phase and NBD linked to di-18:1 PE which partitions strongly into the ld phase. We are also examining the effect of the highly polyunsaturated phospholipid stearoyl-docosahexanoyl-phosphocholine (SDPC; 18:0, 22:6 PC) on the ternary phase diagram of POPC/SPM/Chol with particular focus on the functionally important lo/ld coexistence region. We report on the fluorescence lifetime and anisotropy decay dynamics of these two fluorescent probes.

  15. Crossover from retro to specular Andreev reflections in bilayer graphene (United States)

    Efetov, Dmitri K.; Efetov, Konstantin B.


    Ongoing experimental progress in the preparation of ultraclean graphene/superconductor (SC) interfaces enabled the recent observation of specular interband Andreev reflections (ARs) at bilayer graphene (BLG )/NbSe2 van der Waals interfaces [Efetov et al., Nat. Phys. 12, 328 (2016), 10.1038/nphys3583]. Motivated by this experiment we theoretically study the differential conductance across a BLG/SC interface at the continuous transition from high to ultralow Fermi energies EF in BLG. Using the Bogoliubov-de Gennes equations and the Blonder-Tinkham-Klapwijk formalism we derive analytical expressions for the differential conductance across the BLG/SC interface. We find a characteristic signature of the crossover from intraband retro (high EF) to interband specular (low EF) ARs that manifests itself in a strongly suppressed interfacial conductance when the excitation energy |ɛ |=| EF|<Δ (the SC gap). The sharpness of these conductance dips is strongly dependent on the size of the potential step at the BLG/SC interface U0.

  16. Insitu CCVD grown bilayer graphene transistors for applications in nanoelectronics (United States)

    Wessely, Pia Juliane; Schwalke, Udo


    We invented a method to fabricate graphene field effect transistors (GFETs) on oxidized silicon wafers in a Silicon CMOS compatible process. The graphene layers needed are grown in situ by means of a transfer-free catalytic chemical vapor deposition (CCVD) process directly on silicon dioxide. Depending on the process parameters the fabrication of single, double or multi-layer graphene FETs (GFETs) is possible. The produced graphene layers have been characterized by SEM, TEM, TEM-lattice analysis as well as Raman-Spectroscopy. Directly after growth, the fabricated GFETs are electrically functional and can be electrically characterized via the catalyst metals which are used as contact electrodes. In contrast to monolayer graphene FETs, the fabricated bilayer graphene FETs (BiLGFETs) exhibit unipolar p-type MOSFET behavior. Furthermore, the on/off current-ratio of 104 up to several 107 at room temperature of the fabricated BiLGFETs allows their use in digital logic applications [1]. In addition, a stable hysteresis of the GFETs enables their use as memory devices without the need of storage capacitors and therefore very high memory device-densities are possible. The whole fabrication process is fully Si-CMOS compatible, enabling the use of hybrid silicon/graphene electronics.

  17. The possibility of superconductivity in twisted bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Manaf, Muhamad Nasruddin, E-mail:; Santoso, Iman, E-mail:; Hermanto, Arief [Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Bulaksumur 55281, Yogyakarta (Indonesia); Yayasan Hikmah Teknosains, Jl. Kaliurang Km 5,3 Gg. Pamungkas No. 16 A, Yogyakarta (Indonesia)


    We discuss the possibility of superconductivity in Twisted Bilayer Graphene (TBG). In this study we use TBG model with commensurate rotation θ=1.16° in which the van-Hove singularities (VHS) arise at 6 meV from the Fermi level. We use BCS standard formula that include Density of States (DOS) to calculate the critical temperature (T{sub C}). Based on our calculation we predict that superconductivity will not arise in Pristine TBG because pairing potential has infinity value. In this situation, Dirac Fermions do not interact with each other since they do not form the bound states. Superconductvity may arise when the Fermi level is shifted towards the VHS. Based on this calculation, we predict that T{sub C} has value between 0.04 K and 0.12 K. The low value of T{sub C} is due to highly energetic of in plane phonon vibration which reduce the effective electron-phonon coupling. We conclude that doped TBG is candidate for Dirac Fermion superconductor.

  18. Microfluidic droplet sorting using integrated bilayer micro-valves (United States)

    Chen, Yuncong; Tian, Yang; Xu, Zhen; Wang, Xinran; Yu, Sicong; Dong, Liang


    This paper reports on a microfluidic device capable of sorting microfluidic droplets utilizing conventional bilayer pneumatic micro-valves as sorting controllers. The device consists of two micro-valves placed symmetrically on two sides of a sorting area, each on top of a branching channel at an inclined angle with respect to the main channel. Changes in transmitted light intensity, induced by varying light absorbance by each droplet, are used to divert the droplet from the sorting area into one of the three outlet channels. When no valve is activated, the droplet flows into the outlet channel in the direction of the main channel. When one of the valves is triggered, the flexible membrane of valve will first be deflected. Once the droplet leaves the detection point, the deflected membrane will immediately return to its default flattened position, thereby exerting a drawing pressure on the droplet and deviating it from its original streamline to the outlet on the same side as the valve. This sorting method will be particularly suitable for numerous large-scale integrated microfluidic systems, where pneumatic micro-valves are already used. Only few structural modifications are needed to achieve droplet sorting capabilities in these systems. Due to the mechanical nature of diverting energy applied to droplets, the proposed sorting method may induce only minimal interference to biological species or microorganisms encapsulated inside the droplets that may accompany electrical, optical and magnetic-based techniques.

  19. Insitu CCVD grown bilayer graphene transistors for applications in nanoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wessely, Pia Juliane, E-mail:; Schwalke, Udo


    We invented a method to fabricate graphene field effect transistors (GFETs) on oxidized silicon wafers in a Silicon CMOS compatible process. The graphene layers needed are grown in situ by means of a transfer-free catalytic chemical vapor deposition (CCVD) process directly on silicon dioxide. Depending on the process parameters the fabrication of single, double or multi-layer graphene FETs (GFETs) is possible. The produced graphene layers have been characterized by SEM, TEM, TEM-lattice analysis as well as Raman-Spectroscopy. Directly after growth, the fabricated GFETs are electrically functional and can be electrically characterized via the catalyst metals which are used as contact electrodes. In contrast to monolayer graphene FETs, the fabricated bilayer graphene FETs (BiLGFETs) exhibit unipolar p-type MOSFET behavior. Furthermore, the on/off current-ratio of 10{sup 4} up to several 10{sup 7} at room temperature of the fabricated BiLGFETs allows their use in digital logic applications [1]. In addition, a stable hysteresis of the GFETs enables their use as memory devices without the need of storage capacitors and therefore very high memory device-densities are possible. The whole fabrication process is fully Si-CMOS compatible, enabling the use of hybrid silicon/graphene electronics.

  20. Conductance fluctuations in chaotic bilayer graphene quantum dots. (United States)

    Bao, Rui; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso


    Previous studies of quantum chaotic scattering established a connection between classical dynamics and quantum transport properties: Integrable or mixed classical dynamics can lead to sharp conductance fluctuations but chaos is capable of smoothing out the conductance variations. Relativistic quantum transport through single-layer graphene systems, for which the quasiparticles are massless Dirac fermions, exhibits, due to scarring, this classical-quantum correspondence, but sharp conductance fluctuations persist to a certain extent even when the classical system is fully chaotic. There is an open issue regarding the effect of finite mass on relativistic quantum transport. To address this issue, we study quantum transport in chaotic bilayer graphene quantum dots for which the quasiparticles have a finite mass. An interesting phenomenon is that, when traveling along the classical ballistic orbit, the quasiparticle tends to hop back and forth between the two layers, exhibiting a Zitterbewegung-like effect. We find signatures of abrupt conductance variations, indicating that the mass has little effect on relativistic quantum transport. In solid-state electronic devices based on Dirac materials, sharp conductance fluctuations are thus expected, regardless of whether the quasiparticle is massless or massive and whether there is chaos in the classical limit.

  1. Application of pressure perturbation calorimetry to lipid bilayers. (United States)

    Heerklotz, Heiko; Seelig, Joachim


    Pressure perturbation calorimetry (PPC) is a new method that measures the heat consumed or released by a sample after a sudden pressure jump. The heat change can be used to derive the thermal volume expansion coefficient, alpha(V), as a function of temperature and, in the case of phase transitions, the volume change, DeltaV, occurring at the phase transition. Here we present the first report on the application of PPC to determine these quantities for lipid bilayers. We measure the volume changes of the pretransition and main transition of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and the thermal expansivity of the fluid phase of DMPC and of two unsaturated lipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine. The high sensitivity of PPC instrumentation gives accurate data for alpha(V) and DeltaV even upon the application of relatively low pressures of approximately 5 bar.

  2. Channel morphology effect on water transport through graphene bilayers (United States)

    Liu, Bo; Wu, Renbing; Law, Adrian Wing-Keung; Feng, Xi-Qiao; Bai, Lichun; Zhou, Kun


    The application of few-layered graphene-derived functional thin films for molecular filtration and separation has recently attracted intensive interests. In practice, the morphology of the nanochannel formed by the graphene (GE) layers is not ideally flat and can be affected by various factors. This work investigates the effect of channel morphology on the water transport behaviors through the GE bilayers via molecular dynamics simulations. The simulation results show that the water flow velocity and transport resistance highly depend on the curvature of the graphene layers, particularly when they are curved in non-synergic patterns. To understand the channel morphology effect, the distributions of water density, dipole moment orientation and hydrogen bonds inside the channel are investigated, and the potential energy surface with different distances to the basal GE layer is analyzed. It shows that the channel morphology significantly changes the distribution of the water molecules and their orientation and interaction inside the channel. The energy barrier for water molecules transport through the channel also significantly depends on the channel morphology.

  3. Bilayer Graphene Application on NO2 Sensor Modelling

    Directory of Open Access Journals (Sweden)

    Elnaz Akbari


    Full Text Available Graphene is one of the carbon allotropes which is a single atom thin layer with sp2 hybridized and two-dimensional (2D honeycomb structure of carbon. As an outstanding material exhibiting unique mechanical, electrical, and chemical characteristics including high strength, high conductivity, and high surface area, graphene has earned a remarkable position in today’s experimental and theoretical studies as well as industrial applications. One such application incorporates the idea of using graphene to achieve accuracy and higher speed in detection devices utilized in cases where gas sensing is required. Although there are plenty of experimental studies in this field, the lack of analytical models is felt deeply. To start with modelling, the field effect transistor- (FET- based structure has been chosen to serve as the platform and bilayer graphene density of state variation effect by NO2 injection has been discussed. The chemical reaction between graphene and gas creates new carriers in graphene which cause density changes and eventually cause changes in the carrier velocity. In the presence of NO2 gas, electrons are donated to the FET channel which is employed as a sensing mechanism. In order to evaluate the accuracy of the proposed models, the results obtained are compared with the existing experimental data and acceptable agreement is reported.

  4. Rapid Prototyping of Nanofluidic Slits in a Silicone Bilayer. (United States)

    Kole, Thomas P; Liao, Kuo-Tang; Schiffels, Daniel; Ilic, B Robert; Strychalski, Elizabeth A; Kralj, Jason G; Liddle, J Alexander; Dritschilo, Anatoly; Stavis, Samuel M


    This article reports a process for rapidly prototyping nanofluidic devices, particularly those comprising slits with microscale widths and nanoscale depths, in silicone. This process consists of designing a nanofluidic device, fabricating a photomask, fabricating a device mold in epoxy photoresist, molding a device in silicone, cutting and punching a molded silicone device, bonding a silicone device to a glass substrate, and filling the device with aqueous solution. By using a bilayer of hard and soft silicone, we have formed and filled nanofluidic slits with depths of less than 400 nm and aspect ratios of width to depth exceeding 250 without collapse of the slits. An important attribute of this article is that the description of this rapid prototyping process is very comprehensive, presenting context and details which are highly relevant to the rational implementation and reliable repetition of the process. Moreover, this process makes use of equipment commonly found in nanofabrication facilities and research laboratories, facilitating the broad adaptation and application of the process. Therefore, while this article specifically informs users of the Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST), we anticipate that this information will be generally useful for the nanofabrication and nanofluidics research communities at large, and particularly useful for neophyte nanofabricators and nanofluidicists.

  5. Desktop 3D printing of controlled release pharmaceutical bilayer tablets. (United States)

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Roberts, Clive J


    Three dimensional (3D) printing was used as a novel medicine formulation technique for production of viable tablets capable of satisfying regulatory tests and matching the release of standard commercial tablets. Hydroxypropyl methylcellulose (HPMC 2208) (Methocel™ K100M Premium) and poly(acrylic acid) (PAA) (Carbopol(®) 974P NF) were used as a hydrophilic matrix for a sustained release (SR) layer. Hypromellose(®) (HPMC 2910) was used as a binder while microcrystalline cellulose (MCC) (Pharmacel(®) 102) and sodium starch glycolate (SSG) (Primojel(®)) were used as disintegrants for an immediate release (IR) layer. Commercial guaifenesin bi-layer tablets (GBT) were used as a model drug (Mucinex(®)) for this study. There was a favourable comparison of release of the active guaifenesin from the printed hydrophilic matrix compared with the commercially available GBT. The printed formulations were also evaluated for physical and mechanical properties such as weight variation, friability, hardness and thickness as a comparison to the commercial tablet and were within acceptable range as defined by the international standards stated in the United States Pharmacopoeia (USP). All formulations (standard tablets and 3D printed tablets) showed Korsmeyer-Peppas n values between 0.27 and 0.44 which indicates Fickian diffusion drug release through a hydrated HPMC gel layer.

  6. Coulomb drag and tunneling studies in quantum Hall bilayers (United States)

    Nandi, Debaleena

    The bilayer quantum Hall state at total filling factor νT=1, where the total electron density matches the degeneracy of the lowest Landau level, is a prominent example of Bose-Einstein condensation of excitons. A macroscopically ordered state is realized where an electron in one layer is tightly bound to a "hole" in the other layer. If exciton transport were the only bulk transportmechanism, a current driven in one layer would spontaneously generate a current of equal magnitude and opposite sign in the other layer. The Corbino Coulomb drag measurements presented in this thesis demonstrate precisely this phenomenon. Excitonic superfluidity has been long sought in the νT=1 state. The tunneling between the two electron gas layers exihibit a dc Josephson-like effect. A simple model of an over-damped voltage biased Josephson junction is in reasonable agreement with the observed tunneling I -- V. At small tunneling biases, it exhibits a tunneling "supercurrent". The dissipation is carefully studied in this tunneling "supercurrent" and found to remain small but finite.

  7. Signaling of Escherichia coli enterotoxin on supramolecular redox bilayer vesicles

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Q.; Peng, T.; Stevens, R.C.


    Electron transport in supramolecular assemblies containing redox centers has been a subject of great interest. Depending on spatial arrangement of redox moieties in macromolecular structures, transport of electrons may occur via a diffusion mechanism or electron hopping between the neighboring redox sites. While research has largely dealt with 3-D redox polymers, some 2-D systems such as self-assembled and Langmuir-Blodgett monolayers have been exploited as well. The authors describe here a new interfacial architecture that combines the high redox concentration in 3-D polymers and controllable structure and functionality of the 2-D monolayer systems. The new interface utilizes structurally defined redox liposomes engineered with biomolecular recognition capability by incorporating cell surface receptor G{sub M1} into the bilayer membrane. The design allows for direct inspection of the dependency of electron transport on the state and extent of biomolecular recognition that has taken place on the vesicles and, thus, provides a method for direct measurement of E. coli heat-labile enterotoxin binding by electrochemistry.

  8. Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion (United States)

    Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim


    Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials.


    Directory of Open Access Journals (Sweden)

    Mohammad Jawaid,


    Full Text Available Bi-layer hybrid biocomposites were fabricated by hand lay-up technique by reinforcing oil palm empty fruit bunch (EFB and jute fibre mats with epoxy matrix. Hybrid composites were prepared by varying the relative weight fraction of the two fibres. The physical (void content, density, dimensional stability, and chemical resistant properties of hybrid composites were evaluated. When the jute fibre loading increased in hybrid composites, physical and chemical resistant properties of hybrid composites were enhanced. Void content of hybrid composites decreased with an increase in jute fibre loading because jute fibres showed better fibre/matrix interface bonding, which leads to a reduction in voids. The density of hybrid composite increased as the quantity of jute fibre loading increased. The hybridization of the jute fibres with EFB composite improved the dimensional stability of the hybrid composites. The performance of hybrid composites towards chemical reagents improved with an increase in jute fibre loading as compared to the EFB composite. The combination of oil palm EFB/jute fibres with epoxy matrix produced hybrid biocomposites material that is competitive to synthetic composites.

  10. Analytical investigation of bilayer lipid biosensor based on graphene. (United States)

    Akbari, Elnaz; Buntat, Zolkafle; Shahraki, Elmira; Parvaz, Ramtin; Kiani, Mohammad Javad


    Graphene is another allotrope of carbon with two-dimensional monolayer honeycomb. Owing to its special characteristics including electrical, physical and optical properties, graphene is known as a more suitable candidate compared to other materials to be used in the sensor application. It is possible, moreover, to use biosensor by using electrolyte-gated field effect transistor based on graphene (GFET) to identify the alterations in charged lipid membrane properties. The current article aims to show how thickness and charges of a membrane electric can result in a monolayer graphene-based GFET while the emphasis is on the conductance variation. It is proposed that the thickness and electric charge of the lipid bilayer (LLP and QLP) are functions of carrier density, and to find the equation relating these suitable control parameters are introduced. Artificial neural network algorithm as well as support vector regression has also been incorporated to obtain other models for conductance characteristic. The results comparison between analytical models, artificial neural network and support vector regression with the experimental data extracted from previous work show an acceptable agreement.

  11. Closure technique for the hybrid girder cable stayed bridge of Edong Bridge

    Institute of Scientific and Technical Information of China (English)

    Liu Minghu; Tan Hao; Xu GuoPing; Zhao Canhui


    Based on Edong Yangtze River Bridge, which is the second longest hybrid girder cable stayed bridge with 926 m long main span, the influencing factors and crucial techniques of the main span closure method for long span hybrid girder cable stayed bridge are studied. After theoretical analysis, numerical evaluation and practical test, the loading assistant closure method is employed in Edong Yangtze River Bridge. The loading assistant closure method, with better thermal adaptability and less influence on bridge line and the forced status, can meet the requirements of the unstressed state control method. Based on the mentioned advantages, the loading assistant closure method is applicable to long span hybrid girder cable stayed bridges. The conclusion can provide a reference for the further design of the similar brid~es.

  12. Dynamics, Surface Electrostatics and Phase Properties of Nanoscale Curved Lipid Bilayers (United States)

    Koolivand, Amir

    Surface electrostatic potential of a lipid bilayer governs many vital functions of living cells. Several classes of proteins are known of exhibiting strong binding preferences to curved lipid bilayer surfaces. In this project we employed electron paramagnetic resonance (EPR) of a recently introduced phospholipid (IMTSL-PTE) bearing a pH-sensitive nitroxide covalently attached to the lipid head group to measure the surface electrostatics of the lipid membrane and nanopore-confined lipid bilayers as a function of the bilayer curvature. The pKa of the ionizable group of this lipid-based spin probe is reporting on the bilayer surface electrostatics potential by changes in the EPR spectra. Specifically, both rotational dynamics and magnetic parameters of the nitroxide are affected by the probe protonation. Effect of curvature on the surface electrostatic potential and dynamics of lipid bilayer was studied for POPG and DMPG unilamellar vesicles (ULVs). It was found that the magnitude of the negative surface electrostatic potential increased upon decrease in the vesicle diameter for the bilayers in the fluid phase; however, no significant changes were observed for DMPG ULVs in a gel phase. We speculate that biologically relevant fluid bilayer phase allows for a larger variability in the lipid packing density in the lipid polar head group region than a more ordered gel phase and it is likely that the lipid flip-flop is responsible for pH equilibration of IMTSL-PTE. The kinetic EPR study of nitroxide reduction showed that the rate of flip-flop is in the order of 10-5 s-1. The flip-flop rate constant increases when vesicle size deceases. Oxygen permeability measured by X-ban EPR decreases in higher curved vesicles---an observation that is consistent with a tighter packing in smaller vesicles. Partitioning of a small nitroxide molecule TEMPO into ULVs was measured by X-band (9 GHz) and W-band (95 GHz) EPR spectroscopy. The partitioning coefficient of this probe in the lipid

  13. Effect of cholesterol on behavior of 5-fluorouracil (5-FU) in a DMPC lipid bilayer, a molecular dynamics study. (United States)

    Khajeh, Aboozar; Modarress, Hamid


    In this work, molecular dynamics (MD) simulations were performed to investigate the effects of cholesterol on the interaction between the hydrophilic anticancer drug, 5-FU, and fully hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer. Several structural and dynamical parameters of DMPC bilayers with varying amounts of cholesterol (0, 25, and 50mol%) in the presence and absence of drug molecules were calculated. Moreover, the free energy barriers for translocation of one 5-FU molecule from water to the lipid bilayer were determined by using the potential of mean force (PMF). PMF studies indicated that the location of the maximum free energy barrier was in the hydrophobic middle region of bilayer, while the minimums of the barrier were located at the hydrophilic part of bilayer at the interface with water. The minimum and maximum of the free energy profiles were independent of cholesterol concentration and suggested that the drug molecules 5-FU were accumulated in the vicinity of the polar head group of lipid bilayers. Moreover, the results showed that with increasing cholesterol concentration in the bilayer, the free energy barrier for translocation of 5-FU across the bilayer also increases which can be attributed to the condensing effect of the cholesterol on the bilayer.

  14. Theoretical study on strain induced variations in electronic properties of 2H-MoS{sub 2} bilayer sheets

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Dongare, Avinash M., E-mail: [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Namburu, Raju R. [Computational and Information Sciences Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); O' Regan, Terrance P.; Dubey, Madan [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States)


    The strain dependence of the electronic properties of bilayer sheets of 2H-MoS{sub 2} is studied using ab initio simulations based on density functional theory. An indirect band gap for bilayer MoS{sub 2} is observed for all variations of strain along the basal plane. Several transitions for the indirect band gap are observed for various strains for the bilayer structure. The variation of the band gap and the carrier effective masses for the holes and the electrons for the bilayer MoS{sub 2} structure under conditions of uniaxial strain, biaxial strain, as well as uniaxial stress is investigated.

  15. Neutrons in studies of phospholipid bilayers and bilayer–drug interaction. I. Basic principles and neutron diffraction

    Directory of Open Access Journals (Sweden)

    Belička M.


    Full Text Available In our paper, we demonstrate several possibilities of using neutrons in pharmaceutical research with the help of examples of scientific results achieved at our University. In this first part, basic properties of neutrons and elementary principles of elastic scattering of thermal neutrons are described. Results of contrast variation neutron diffraction on oriented phospholipid bilayers with intercalated local anaesthetic or cholesterol demonstrate the potential of this method at determination of their position in bilayers. Diffraction experiments with alkan-1-ols located in the bilayers revealed their influence on bilayer thickness as a function of their alkyl chain length.

  16. Adsorption of beryllium atoms and clusters both on graphene and in a bilayer of graphite investigated by DFT. (United States)

    Ferro, Yves; Fernandez, Nicolas; Allouche, Alain; Linsmeier, Christian


    We herein investigate the interaction of beryllium with a graphene sheet and in a bilayer of graphite by means of periodic DFT calculations. In all cases, we find the beryllium atoms to be more weakly bonded on graphene than in the bilayer. Be(2) forms both magnetic and non-magnetic structures on graphene depending on the geometrical configuration of adsorption. We find that the stability of the Be/bilayer system increases with the size of the beryllium clusters inserted into the bilayer of graphite. We also find a charge transfer from beryllium to the graphite layers. All these results are analysed in terms of electronic structure.

  17. Transformation from AA to AB-Stacked Bilayer Graphene on α-SiO2 under an Electric Field

    Institute of Scientific and Technical Information of China (English)

    LIU Yan; AO Zhi-Min; WANG Tao; WANG Wen-Bo; SHENG Kuang; YU Bin


    @@ The energetic and electronic structure of bilayered graphene(BLG) with AA stacking arrangement on a SiO2 substrate is investigated in the presence of an electric field F of different intensities by ab initio density functional calculations.The AA-stacked bilayer graphene is stable on the SiO2 substrate in the absence of an electric field.However, as F increases, the AA-stacked bilayer graphenes are gradually shifted with each other and finally transfers into AB-stacked bilayer graphenes.The bandgap is accordingly changed.

  18. Diode-quad bridge circuit means (United States)

    Harrison, D. R.; Dimeff, J. (Inventor)


    A transducer and frequency discriminator circuit is described including a four-terminal circulating diode bridge, a first pair of capacitors connected in series across two terminals of the bridge, and a second pair of capacitors, or other impedance elements, connected in series across the other two terminals of the bridge. A source of balanced alternating electrical energy for energizing the circuit is coupled between the commonly connected plates of the first pair of capacitors and the commonly connected plates of the second pair of capacitors. Due to the operation of the diode bridge, the sum of the resultant charges developed on the first pair of capacitors is proportional to the relationship between the respective capacitors of the second pair, and consequently, an output voltage taken across the first pair of capacitors will be proportional to that relationship.

  19. Allegheny County-Owned Bridges Points (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the location of bridges owned by Allegheny County as centroids. If viewing this description on the Western Pennsylvania Regional Data Center’s...

  20. Allegheny County-Owned Bridges Centerlines (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset shows the bridges owned by Allegheny County. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  1. Relaxation of liquid bridge after droplets coalescence

    Directory of Open Access Journals (Sweden)

    Jiangen Zheng


    Full Text Available We investigate the relaxation of liquid bridge after the coalescence of two sessile droplets resting on an organic glass substrate both experimentally and theoretically. The liquid bridge is found to relax to its equilibrium shape via two distinct approaches: damped oscillation relaxation and underdamped relaxation. When the viscosity is low, damped oscillation shows up, in this approach, the liquid bridge undergoes a damped oscillation process until it reaches its stable shape. However, if the viscous effects become significant, underdamped relaxation occurs. In this case, the liquid bridge relaxes to its equilibrium state in a non-periodic decay mode. In depth analysis indicates that the damping rate and oscillation period of damped oscillation are related to an inertial-capillary time scale τc. These experimental results are also testified by our numerical simulations with COMSOL Multiphysics.

  2. Wheatstone bridge technique for magnetostriction measurements. (United States)

    Sullivan, M


    A basic Wheatstone bridge, with additional electronic instrumentation, has been used in the measurement of magnetostriction. This method allows a resolution of approximately 10% on measurements of magnetostrictions less than 0.75 parts per million.

  3. VT Short Structures - Bridges and Culverts (United States)

    Vermont Center for Geographic Information — Inspection data for structures (bridge and culvert) between 6 feet and 20 feet in length inspected on State road system. Stewards: Information Technology, Data...

  4. VT Long Structures - Bridges and Culverts (United States)

    Vermont Center for Geographic Information — Inspection data for structures (bridge and culvert) greater than 20 feet in length inspected on both State and local road systems. Stewards: Information Technology,...

  5. Active Control of Long Bridges Using Flaps

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle

    The main problem in designing ultra-long span suspension bridges is flutter. A solution to this problem might be to introduce an active flap control system to increase the flutter wind velocity. The investigated flap control system consists of flaps integrated in the bridge girder so each flap...... is the streamlined part of the edge of the girder. Additional aerodynamic derivatives are shown for the flaps and it is shown how methods already developed can be used to estimate the flutter wind velocity for a bridge section with flaps. As an example, the flutter wind velocity is calculated for different flap...... configurations for a bridge section model by using aerodynamic derivatives for a flat plate. The example shows that different flap configurations can either increase or decrease the flutter wind velocity. for optimal flap configurations flutter will not occur....

  6. Pilot testing of a hydraulic bridge exciter

    Directory of Open Access Journals (Sweden)

    Andersson Andreas


    Full Text Available This paper describes the development of a hydraulic bridge exciter and its first pilot testing on a full scale railway bridge in service. The exciter is based on a hydraulic load cylinder with a capacity of 50 kN and is intended for controlled dynamic loading up to at least 50 Hz. The load is applied from underneath the bridge, enabling testing while the railway line is in service. The system is shown to produce constant load amplitude even at resonance. The exciter is used to experimentally determine frequency response functions at all sensor locations, which serve as valuable input for model updating and verification. An FE-model of the case study bridge has been developed that is in good agreement with the experimental results.

  7. Practical Approach to Fragility Analysis of Bridges

    Directory of Open Access Journals (Sweden)

    Yasamin Rafie Nazari


    Full Text Available Damages during past earthquakes reveal seismic vulnerability of bridge structures and the necessity of probabilistic approach toward seismic performance evaluation of bridges and its interpretation in terms of decision variables such as repair cost, downtime and life loss. This Procedure involves hazard analysis, structural analysis, damage analysis and loss analysis. The purpose of present study is reviewing different methods developed to derive fragility curves for damage analysis of bridges and demonstrating a simple procedure for fragility analysis using Microsoft Office Excel worksheet to reach probability of occurring predefined level of damage due to different levels of seismic demand parameters. The input of this procedure is the intensity of ground motion and the output is an appropriate estimate of the expected damage. Different observed damages of the bridges are discussed and compared the practical definition of damage states. Different methods of fragility analyses are discussed and a practical step by step example is illustrated.

  8. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Benedetto, Antonio [School of Physics, University College Dublin, Dublin 4 (Ireland); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen (Switzerland); Bingham, Richard J. [York Centre for Complex Systems Analysis, University of York, York YO10 5GE (United Kingdom); Ballone, Pietro [Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia (IIT), 00185 Roma (Italy); Department of Physics, Università di Roma “La Sapienza,” 00185 Roma (Italy)


    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF{sub 6}]) salts of the 1-buthyl-3-methylimidazolium ([bmim]{sup +}) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim]{sup +} into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim]{sup +} and of POPC. The [bmim]{sup +} absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (D{sub POPC}) does not reveal a clearly identifiable trend, since D{sub POPC} increases upon addition of [bmim][Cl] and decreases in the [bmim][PF{sub 6}] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers.

  9. Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications. (United States)

    Lee, Jung Woo; Moon, Jun Hyuk


    Multilayer structures in which the layers are both electrically and physically connected are critical to be used as high-performance electrodes for photovoltaic devices. We present the first multiscale bilayer inverse opal (IO) structures for application as electrodes in dye-sensitized solar cells (DSCs). A bilayer of a mesoscopic IO layer (70 nm pore diameter) and a top macroporous IO layer (215 nm and 250 nm pore diameters) was fabricated as the high-specific-area electrode and the light-harvesting enhancing layer, respectively. The mesoscopic IO layer exhibits a dye-adsorption density, which is approximately 4 times greater than that of the macroporous IO structure because of its small pore size. The macroporous IO layer exhibits a photonic bandgap reflection in the visible-light wavelength range. We incorporated the bilayer IO electrodes into DSCs and compared the effects of the pore sizes of the macroporous layers on the photocurrent densities of the DSCs. We observed that the bilayer IO electrode DSCs that contained a 250 nm IO layer exhibited photocurrent densities greater than those of 215 nm IO DSCs. This enhanced photocurrent density was achieved because the photonic bandgap (PBG) reflection wavelength matches the wavelength range in which the N719 dye has a small light-absorption coefficient. The fabrication of this structurally homogeneous IO bilayer allows a strong contact between the layers, and the resulting bilayer, therefore, exhibits a high photovoltaic performance. We believe that this bilayer structure provides an alternative approach to the development of optimized electrode structures for various devices.

  10. Identifying hidden sexual bridging communities in Chicago. (United States)

    Youm, Yoosik; Mackesy-Amiti, Mary Ellen; Williams, Chyvette T; Ouellet, Lawrence J


    Bridge populations can play a central role in the spread of human immunodeficiency virus (HIV) by providing transmission links between higher and lower prevalence populations. While social network methods are well suited to the study of bridge populations, analyses tend to focus on dyads (i.e., risk between drug and/or sex partners) and ignore bridges between distinct subpopulations. This study takes initial steps toward moving the analysis of sexual network linkages beyond individual and risk group levels to a community level in which Chicago's 77 community areas are examined as subpopulations for the purpose of identifying potential bridging communities. Of particular interest are "hidden" bridging communities; that is, areas with above-average levels of sexual ties with other areas but whose below-average AIDS prevalence may hide their potential importance for HIV prevention. Data for this analysis came from the first wave of recruiting at the Chicago Sexual Acquisition and Transmission of HIV Cooperative Agreement Program site. Between August 2005 through October 2006, respondent-driven sampling was used to recruit users of heroin, cocaine, or methamphetamine, men who have sex with men regardless of drug use, the sex partners of these two groups, and sex partners of the sex partners. In this cross-sectional study of the sexual transmission of HIV, participants completed a network-focused computer-assisted self-administered interview, which included questions about the geographic locations of sexual contacts with up to six recent partners. Bridging scores for each area were determined using a matrix representing Chicago's 77 community areas and were assessed using two measures: non-redundant ties and flow betweenness. Bridging measures and acquired immunodeficiency syndrome (AIDS) case prevalence rates were plotted for each community area on charts representing four conditions: below-average bridging and AIDS prevalence, below-average bridging and above

  11. 49 CFR 237.33 - Content of bridge management programs. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Content of bridge management programs. 237.33... Content of bridge management programs. Each bridge management program adopted in compliance with this part... spans, span lengths, and all other information necessary to provide for the management of bridge...

  12. 23 CFR 650.705 - Application for discretionary bridge funds. (United States)


    ... TRAFFIC OPERATIONS BRIDGES, STRUCTURES, AND HYDRAULICS Discretionary Bridge Candidate Rating Factor § 650... cost, current average daily truck traffic and a narrative describing the existing bridge, the proposed new or rehabilitated bridge and other relevant factors which the State believes may warrant...

  13. 33 CFR 118.80 - Lights on bascule bridges. (United States)


    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on bascule bridges. 118.80 Section 118.80 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.80 Lights on bascule bridges. (a) Lift span lights. Each lift span...

  14. 33 CFR 118.90 - Bridges crossing channel obliquely. (United States)


    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely....

  15. 23 CFR 650.809 - Movable span bridges. (United States)


    ... 23 Highways 1 2010-04-01 2010-04-01 false Movable span bridges. 650.809 Section 650.809 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS BRIDGES, STRUCTURES, AND HYDRAULICS Navigational Clearances for Bridges § 650.809 Movable span bridges. A fixed...

  16. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.


    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  17. Inspection Based Evaluation of a Danish Road Bridge

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper it is shown how an inspection-based evaluation of a Danish road bridge may be performed using the BRIDGE1 and BRIDGE2 bridge management systems produced within the EC-supported research programme "Assessment of Performance and Optimal Strategies for Inspection and Maintenance...

  18. Micromechanical model of cross-over fibre bridging - Prediction of mixed mode bridging laws

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Gamstedt, E.K.; Østergaard, Rasmus Christian;


    on the observed bridging mechanism, a micromechanical model is developed for the prediction of macroscopic mixed mode bridging laws (stress-opening laws). The model predicts a high normal stress for very small openings, decreasing rapidly with increasing normal and tangential crack opening displacements......The fracture resistance of fibre composites can be greatly enhanced by crack bridging. In situ observations of mixed mode crack growth in a unidirectional carbon-fibre/epoxy composite reveal crack bridging by single fibres and by beam-like ligaments consisting of several fibres. Based...

  19. Thermal Bridge Effects in Walls Separating Rowhouses

    DEFF Research Database (Denmark)

    Rose, Jørgen


    In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures.......In this report the thermal bridge effects at internal wall/roof junctions in rowhouses are evaluated. The analysis is performed using a numerical calculation programme, and different solutions are evaluated with respect to extra heat loss and internal surface temperatures....

  20. Heavy Vehicles on Minor Highway Bridges

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Kirkegaard, Poul Henning; Enevoldsen, I.

    The present paper worked out as a part of a research project on "Dynamic amplification factor of vehicle loadings on smaller bridges" establishes a two-dimensional spectral description of the road roughness surface based on measurements from a Danish road using so-called Profilograph used by Danish...... to the bridge and the stochastic nature of the surface roughness are included into the model....