WorldWideScience

Sample records for bilayer submicron thick

  1. Fluorescence lifetime, dipole orientation and bilayer polymer films

    Science.gov (United States)

    Ho, Xuan Long; Chen, Po-Jui; Woon, Wei-Yen; White, Jonathon David

    2017-10-01

    Bilayer films consisting of the optically transparent polymers, polystyrene (PS) and poly(methyl methacrylate) (PMMA) were spin-cast on glass substrates. The upper 13.5 nm layer (PS) was lightly doped with Rhodamine-6 G (RH6G) or MEH-PPV. While the fluorescence of MEH-PPV was independent of PMMA thickness, the lifetime of RH6G increased 3-fold as the underlying PMMA thickness increased from 0 to 500 nm while the collected flux decreased suggesting a reorientation of the smaller molecule's dipole with respect to the air-polymer interface with PMMA thickness. This suggests lifetime may find application for nondestructive thickness measurements of transparent films with sub-micron lateral resolution and large range.

  2. Characterization of in-situ annealed sub-micron thick Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Byoung-Soo; Sung, Shi-Joon; Hwang, Dae-Kue, E-mail: dkhwang@dgist.ac.kr

    2015-09-01

    Sub-micron thick Cu(In,Ga)Se{sub 2} (CIGS) thin films were deposited on Mo-coated soda-lime glass substrates under various conditions by single-stage co-evaporation. Generally, the short circuit current (J{sub sc}) decreased with the decreasing thickness of the absorber layer. However, in this study, J{sub sc} was nearly unchanged with decreasing thickness, while the open circuit voltage (V{sub oc}) and fill factor (FF) decreased by 31.9 and 31.1%, respectively. We believe that the remarkable change of V{sub oc} and FF can be attributed to the difference in the total amount of injected thermal energy. Using scanning electron microscopy, we confirmed that the surface morphology becomes smooth and the grain size increased after the annealing process. In the X-ray diffraction patterns, the CIGS thin film also showed an improved crystal quality. We observed that the electric properties were improved by the in-situ annealing of CIGS thin films. The reverse saturation current density of the annealed CIGS solar cell was 100 times smaller than that of reference solar cell. Thus, sub-micron CIGS thin films annealed under a constant Se rate showed a 64.7% improvement in efficiency. - Highlights: • The effects of in-situ annealing the sub-micron CIGS film have been investigated. • The surface morphology and the grain size were improved by in-situ annealing. • The V{sub oc} and FF of the films were increased by about 30% after in-situ annealing. • In-situ annealing of sub-micron thick CIGS films can be improved an efficiency.

  3. Thickness dependencies of structural and magnetic properties of cubic and tetragonal Heusler alloy bilayer films

    Science.gov (United States)

    Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.

    2017-07-01

    The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .

  4. Fluid Phase Lipid Areas and Bilayer Thicknesses of Commonly Used Phosphatidylcholines as a Function of Temperature

    International Nuclear Information System (INIS)

    Kucerka, Norbert; Nieh, Mu-Ping; Katsaras, John

    2011-01-01

    The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains.

  5. Laterally structured ripple and square phases with one and two dimensional thickness modulations in a model bilayer system.

    Science.gov (United States)

    Debnath, Ananya; Thakkar, Foram M; Maiti, Prabal K; Kumaran, V; Ayappa, K G

    2014-10-14

    Molecular dynamics simulations of bilayers in a surfactant/co-surfactant/water system with explicit solvent molecules show formation of topologically distinct gel phases depending upon the bilayer composition. At low temperatures, the bilayers transform from the tilted gel phase, Lβ', to the one dimensional (1D) rippled, Pβ' phase as the surfactant concentration is increased. More interestingly, we observe a two dimensional (2D) square phase at higher surfactant concentration which, upon heating, transforms to the gel Lβ' phase. The thickness modulations in the 1D rippled and square phases are asymmetric in two surfactant leaflets and the bilayer thickness varies by a factor of ∼2 between maximum and minimum. The 1D ripple consists of a thinner interdigitated region of smaller extent alternating with a thicker non-interdigitated region. The 2D ripple phase is made up of two superimposed square lattices of maximum and minimum thicknesses with molecules of high tilt forming a square lattice translated from the lattice formed with the thickness minima. Using Voronoi diagrams we analyze the intricate interplay between the area-per-head-group, height modulations and chain tilt for the different ripple symmetries. Our simulations indicate that composition plays an important role in controlling the formation of low temperature gel phase symmetries and rippling accommodates the increased area-per-head-group of the surfactant molecules.

  6. Fatigue crack closure in submicron-thick freestanding copper films

    International Nuclear Information System (INIS)

    Kondo, Toshiyuki; Ishii, Takaki; Hirakata, Hiroyuki; Minoshima, Kohji

    2015-01-01

    The fatigue crack closure in approximately 500-nm-thick freestanding copper films were investigated by in situ field emission scanning electron microscope (FESEM) observations of the fatigue crack opening/closing behavior at three stress ratios of R=0.1, 0.5, and 0.8 in the low–K max (maximum stress intensity factor) region of K max <4.5 MPam 1/2 . The direct observation of fatigue cracks clarified that crack closure occurred at R=0.1 and 0.5, while the fatigue crack was always open at R=0.8. Changes in the gage distance across the fatigue crack during a fatigue cycle were measured from the FESEM images, and the crack opening stress intensity factor K op was evaluated on the basis of the stress intensity factor K vs. the gage distance relationship. The effective stress intensity factor range ΔK eff =K max −K op was then evaluated. The R-dependence of the da/dN vs. ΔK eff relationship was smaller than that of the da/dN vs. ΔK relationship. This suggests that ΔK eff is a dominating parameter rather than ΔK in the fatigue crack propagation in the films. This paper is the first report on the presence of the fatigue crack closure in submicron-thick freestanding metallic films

  7. Randomized Clinical Trial of the Innovative Bilayered Wound Dressing Made of Silk and Gelatin: Safety and Efficacy Tests Using a Split-Thickness Skin Graft Model

    Science.gov (United States)

    Hasatsri, Sukhontha; Angspatt, Apichai

    2015-01-01

    We developed the novel silk fibroin-based bilayered wound dressing for the treatment of partial thickness wounds. And it showed relevant characteristics and accelerated the healing of full-thickness wounds in a rat model. This study is the clinical evaluation of the bilayered wound dressing to confirm its safety and efficacy for the treatment of split-thickness skin donor sites. The safety test was performed using a patch model and no evidence of marked and severe cutaneous reactions was found. The efficacy test of the bilayered wound dressing was conducted on 23 patients with 30 split-thickness skin graft donor sites to evaluate healing time, pain score, skin barrier function, and systemic reaction in comparison to Bactigras. We found that the healing time of donor site wounds treated with the bilayered wound dressing (11 ± 6 days) was significantly faster than those treated with Bactigras (14 ± 6 days) (p = 10−6). The wound sites treated with the bilayered wound dressing showed significantly less pain and more rapid skin functional barrier recovery than those treated with Bactigras (p = 10−5). Therefore, these results confirmed the clinical safety and efficacy of the bilayered wound dressing for the treatment of split-thickness skin graft donor sites. PMID:26221170

  8. Solid-state dewetting of Au-Ni bi-layer films mediated through individual layer thickness and stacking sequence

    Science.gov (United States)

    Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter

    2018-06-01

    In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.

  9. Small-angle neutron scattering study of the n-decane effect on the bilayer thickness in extruded unilamellar dioleoylphosphatidylcholine liposomes.

    Science.gov (United States)

    Uhríková, D; Balgavý, P; Kucerka, N; Islamov, A; Gordeliy, V; Kuklin, A

    2000-12-15

    Dioleoylphosphatidylcholine (DOPC) and n-decane were mixed and hydrated afterwards in an excess of heavy water at 1 wt.% of DOPC. From this dispersion, unilamellar liposomes were prepared by extrusion through polycarbonate filter with 500-A pores. Small-angle neutron scattering (SANS) was conducted on these liposomes. From the Kratky-Porod plot ln[I(Q)Q2] vs. Q2 of SANS intensity I(Q) in the range of scattering vectors Q corresponding to the interval 0.001 A(-2) < or = Q2 < or = 0.006 A(-2), the liposome bilayer radius of gyration Rg and the bilayer thickness parameter d(g) = 12(0.5)Rg were obtained. The values of d(g) indicated that the bilayer thickness is within the experimental error constant up to n-decane/DOPC approximately 0.5 molar ratio, and then increases by 2.4 +/- 1.3 A up to n-decane/DOPC = 1.2 molar ratio.

  10. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.

    2014-11-11

    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films as the lower layer we built a matrix of bottom-gate Cu2O/SnO bilayer thin-film transistors of different thickness. We found that the thickness of the Cu2O layer is of major importance in oxidation of the SnO layer underneath. The thicker the Cu2O layer, the more the underlying SnO layer is oxidized, and, hence, the more transistor mobility is enhanced at a specific temperature. Both device performance and the annealing temperature required could be adjusted by controlling the thickness of each layer of Cu2O/SnO bilayer thin-film transistors.

  11. Nonmonotonic behaviour of superconducting critical temperature of Nb/CuNi bilayers with a nanometer range of layer thickness

    International Nuclear Information System (INIS)

    Morari, R.; Antropov, E.; Socrovisciuc, A.; Prepelitsa, A.; Zdravkov, V.I.; Tagirov, L.R.; Kupriyanov, M.Yu.; Sidorenko, A.S.

    2009-01-01

    Present work reports the result of the proximity effect investigation for superconducting Nb/CuNi-bilayers with the thickness of the ferromagnetic layer (Cu x Ni 1-x ) being in the sub-nanometer range. It was found a non-monotonic behavior of the critical temperature T c , i.e. its growth with the increasing of the ferromagnetic layer thickness dF, for the series of the samples with constant thickness of Nb layer, (d Nb = const). (authors)

  12. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins

    DEFF Research Database (Denmark)

    Venturoli, M.; Smit, B.; Sperotto, Maria Maddalena

    2005-01-01

    membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions......-induced protein tilt, with the hydrophobic mismatch ( positive and negative) between the protein hydrophobic length and the pure lipid bilayer hydrophobic thickness. The protein-induced bilayer perturbation was quantified in terms of a coherence length, xi(P), of the lipid bilayer hydrophobic thickness pro. le...... for positive values of mismatch; a dependence on the protein size appears as well. In the case of large model proteins experiencing extreme mismatch conditions, in the region next to the so-called lipid annulus, there appears an undershooting ( or overshooting) region where the bilayer hydrophobic thickness...

  13. High density submicron magnetoresistive random access memory (invited)

    Science.gov (United States)

    Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.

    1999-04-01

    Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.

  14. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    Science.gov (United States)

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  15. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    Science.gov (United States)

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  16. Conformational Plasticity of the Influenza A M2 Transmembrane Helix in Lipid Bilayers Under Varying pH, Drug Binding and Membrane Thickness

    Science.gov (United States)

    Hu, Fanghao; Luo, Wenbin; Cady, Sarah D.; Hong, Mei

    2010-01-01

    Membrane proteins change their conformations to respond to environmental cues, thus conformational plasticity is important for function. The influenza A M2 protein forms an acid-activated proton channel important for the virus lifecycle. Here we have used solid-state NMR spectroscopy to examine the conformational plasticity of membrane-bound transmembrane domain of M2 (M2TM). 13C and 15N chemical shifts indicate coupled conformational changes of several pore-facing residues due to changes in bilayer thickness, drug binding and pH. The structural changes are attributed to the formation of a well-defined helical kink at G34 in the drug-bound state and in thick lipid bilayers, non-ideal backbone conformation of the secondary-gate residue V27 in the presence of drug, and non-ideal conformation of the proton-sensing residue H37 at high pH. The chemical shifts constrained the (ϕ, ψ) torsion angles for three basis states, the equilibrium among which explains the multiple resonances per site in the NMR spectra under different combinations of bilayer thickness, drug binding and pH conditions. Thus, conformational plasticity is important for the proton conduction and inhibition of M2TM. The study illustrates the utility of NMR chemical shifts for probing the structural plasticity and folding of membrane proteins. PMID:20883664

  17. Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury

    DEFF Research Database (Denmark)

    Owen, Michael C; Kulig, Waldemar; Rog, Tomasz

    2018-01-01

    In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC...... in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also...... resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does...

  18. Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness.

    Science.gov (United States)

    Cybulski, Larisa Estefanía; Ballering, Joost; Moussatova, Anastassiia; Inda, Maria Eugenia; Vazquez, Daniela B; Wassenaar, Tsjerk A; de Mendoza, Diego; Tieleman, D Peter; Killian, J Antoinette

    2015-05-19

    DesK is a bacterial thermosensor protein involved in maintaining membrane fluidity in response to changes in environmental temperature. Most likely, the protein is activated by changes in membrane thickness, but the molecular mechanism of sensing and signaling is still poorly understood. Here we aimed to elucidate the mode of action of DesK by studying the so-called "minimal sensor DesK" (MS-DesK), in which sensing and signaling are captured in a single transmembrane segment. This simplified version of the sensor allows investigation of membrane thickness-dependent protein-lipid interactions simply by using synthetic peptides, corresponding to the membrane-spanning parts of functional and nonfunctional mutants of MS-DesK incorporated in lipid bilayers with varying thicknesses. The lipid-dependent behavior of the peptides was investigated by circular dichroism, tryptophan fluorescence, and molecular modeling. These experiments were complemented with in vivo functional studies on MS-DesK mutants. Based on the results, we constructed a model that suggests a new mechanism for sensing in which the protein is present as a dimer and responds to an increase in bilayer thickness by membrane incorporation of a C-terminal hydrophilic motif. This results in exposure of three serines on the same side of the transmembrane helices of MS-DesK, triggering a switching of the dimerization interface to allow the formation of a serine zipper. The final result is activation of the kinase state of MS-DesK.

  19. Improvement of the effective work function and transmittance of thick indium tin oxide/ultrathin ruthenium doped indium oxide bilayers as transparent conductive oxide

    International Nuclear Information System (INIS)

    Taweesup, Kattareeya; Yamamoto, Ippei; Chikyow, Toyohiro; Lothongkum, Gobboon; Tsukagoshi, Kazutoshi; Ohishi, Tomoji; Tungasmita, Sukkaneste; Visuttipitukul, Patama; Ito, Kazuhiro; Takahashi, Makoto; Nabatame, Toshihide

    2016-01-01

    Ruthenium doped indium oxide (In_1_−_xRu_xO_y) films fabricated using DC magnetron co-sputtering with In_2O_3 and Ru targets were investigated for use as transparent conductive oxides. The In_1_−_xRu_xO_y films had an amorphous structure in the wide compositional range of x = 0.3–0.8 and had an extremely smooth surface. The transmittance and resistivity of the In_1_−_xRu_xO_y films increased as the Ru content increased. The transmittance of the In_0_._3_8Ru_0_._6_2O_y film improved to over 80% when the film thickness was less than 5 nm, while the specific resistivity (ρ) was kept to a low value of 1.6 × 10"−"4 Ω cm. Based on these experimental data, we demonstrated that thick indium tin oxide (In_0_._9Sn_0_._1O_y, ITO) (150 nm)/ultrathin In_0_._3_8Ru_0_._6_2O_y (3 nm) bilayers have a high effective work function of 5.3 eV, transmittance of 86%, and low ρ of 9.2 × 10"−"5 Ω cm. This ITO/In_0_._3_8Ru_0_._6_2O_y bilayer is a candidate for use as an anode for organic electroluminescent devices. - Highlights: • We investigated characteristics of thick ITO/ultrathin Ru doped In_2O_3 bilayers. • Effect of Ru addition in In_2O_3 results in smooth surface because of an amorphous structure. • The In_0_._3_8Ru_0_._6_2O_y film with less than 5 nm improves to high transmittance over 80%. • ITO/In_0_._3_8Ru_0_._6_2O_y bilayer has a high effective work function of 5.3 eV. • We conclude that ITO/ultrathin In_0_._3_8Ru_0_._6_2O_y bilayer is a candidate as an anode of OEL.

  20. Improved Bilayer Resist System Using Contrast-Enhanced Lithography With Water-Soluble Photopolymer

    Science.gov (United States)

    Sasago, Masaru; Endo, Masayuki; Hirai, Yoshihiko; Ogawa, Kazufurni; Ishihara, Takeshi

    1986-07-01

    A new water-soluble contract enhanced material, WSP (Water-soluble Photopolymer), has been developed. The WSP is composed of a mainpolymer and a photobleachable reagents. The mainpolymer is a water-soluble polymer mixed with pullulan (refined through biotechnological process) and polyvinyl-pyrolidone (PVP). The photo-bleachable reagent is of a diazonium compound gorup. The introduction of the mainpolymer and photobleach-able reagent mixture has improved filmity, gas transparency, photobleaching characteristics and solubility in alkaline which are essential to the device fabrication. Submicron photoresist patterns are successfully fabricated by a simple sequence of photolithography process. The WSP layer has been applied to the bilayer resist system--deep-UV portable conformable masking (PCM)--that is not affected by VLSI's topography, and is able to fabricate highly accurate pattern. The aqueous developable layer, PMGI, with high organic solvent resistance is used in the bottom layer. Therefore, no interfacial mixing with conventional positive resist top layer is observed. Furthermore, deep-UV exposure method has been used for the KrF excimer laser optical system in order to increase high throughput. From the experiments, it has been confirmed that good resist transfer profile can be realized by the use of WSP, and that the submicron resist patterns with high aspect-ratio can be developed on the nonplaner wafer with steps of up to 41m by the combination of the WSP with the PCM system. By this technology, has been improved the weak point: variation in the line width due to the thickness of contrast-enhanced layer when the CEL technology is applied, and dependency of both the finished resist profile and the line-width accuracy on the thickness of the top layer resist when the PCM system is adopted.

  1. Tunable resistive switching behaviour in ferroelectric–ZnO bilayer films

    International Nuclear Information System (INIS)

    Zhou Mingxiu; Li Ziwei; Chen Bo; Wan Jianguo; Liu Junming

    2013-01-01

    Pb(Zr 0.52 Ti 0.48 )O 3 /ZnO bilayer films with various ZnO-layer thicknesses were prepared by a sol–gel process, and their phase structures, electric conduction and polarization behaviour were measured. The results showed that the preferential crystal orientation of the ZnO layer changed with a change in its thickness. The strong dependence of both asymmetric current–voltage and polarization–voltage characteristics on the ZnO-layer thickness was observed. The resistance ratio of the high-resistance state (HRS) to the low-resistance state (LRS) increased with increasing ZnO-layer thickness, and a high rectification ratio was obtained in the bilayer film with an optimized ZnO-layer thickness. The combined effects of interface polarization coupling and energy band structure on the resistive switching behaviour of the bilayer films were revealed, and the electric conduction mechanisms of the bilayer films at both HRS and LRS were analysed in detail. This work presents an effective method to modulate the resistive switching behaviour of ferroelectric–ZnO heterostructures, which is significant in designing high-performance ferroelectric–semiconductor heterostructures for actual applications. (paper)

  2. Study of Sb/SnO{sub 2} bi-layer films prepared by ion beam sputtering deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-Min [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Chun-Chieh [Department of Electrical Engineering, Cheng Shiu University, No. 840, Chengcing Road, Niaosong Township, Kaohsiung 833, Taiwan, ROC (China); Kuo, Jui-Chao [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Huang, Jow-Lay, E-mail: jlh888@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan, ROC (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2014-11-03

    In the present work, bi-layer thin films of Sb/SnO{sub 2} were produced on unheated glass substrates using ion beam sputtering (IBS) technique without post annealing treatment. The thickness of Sb layers was varied from 2 to 10 nm and the Sb layers were deposited on SnO{sub 2} layers having thicknesses of 40 nm to 115 nm. The effect of thickness was studied on the morphological, electrical and optical properties. The Sb/SnO{sub 2} bi-layer resulted in lowering the electrical resistivity as well as reducing the optical transmittance. However, the optical and electrical properties of the bi-layer films were mainly influenced by the thickness of Sb layers due to progressive transfer in structures from aggregate to continuous films. The bi-layer films show the electrical resistivity of 1.4 × 10{sup −3} Ω cm and an optical transmittance of 26% for Sb film having 10 nm thickness. - Highlights: • Bi-layer Sb/SnO{sub 2} structures were synthesized by ion beam sputtering (IBS) technique. • The 6 nm-thick Sb film is a transition region in this study. • The conductivity of the bi-layer films is increased as Sb thickness increases. • The transmittance of the bi-layer films is decreased as Sb thickness increases.

  3. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D

    2008-11-01

    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  4. Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers

    DEFF Research Database (Denmark)

    Xu, Zhang-Cheng; Zhang, Ya-Ting; Hvam, Jørn Märcher

    2009-01-01

    The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which...

  5. Solid-state dewetting of single- and bilayer Au-W thin films: Unraveling the role of individual layer thickness, stacking sequence and oxidation on morphology evolution

    Directory of Open Access Journals (Sweden)

    A. Herz

    2016-03-01

    Full Text Available Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO2 evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI oxide (WO3 which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to the presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO3 is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO3 nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.

  6. Solid-state dewetting of single- and bilayer Au-W thin films: Unraveling the role of individual layer thickness, stacking sequence and oxidation on morphology evolution

    Energy Technology Data Exchange (ETDEWEB)

    Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Franz, A.; Theska, F.; Hentschel, M.; Kups, Th.; Wang, D., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Schaaf, P. [Department of Materials for Electronics and Electrical Engineering, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, D-98693 Ilmenau (Germany)

    2016-03-15

    Self-assembly of ultrathin Au, W, and Au-W bilayer thin films is investigated using a rapid thermal annealing technique in an inert ambient. The solid-state dewetting of Au films is briefly revisited in order to emphasize the role of initial film thickness. W films deposited onto SiO{sub 2} evolve into needle-like nanocrystals rather than forming particle-like agglomerates upon annealing at elevated temperatures. Transmission electron microscopy reveals that such nanocrystals actually consist of tungsten (VI) oxide (WO{sub 3}) which is related to an anisotropic oxide crystal growth out of the thin film. The evolution of W films is highly sensitive to the presence of any residual oxygen. Combination of both the dewetting of Au and the oxide crystal growth of WO{sub 3} is realized by using various bilayer film configurations of the immiscible Au and W. At low temperature, Au dewetting is initiated while oxide crystal growth is still suppressed. Depending on the stacking sequence of the Au-W bilayer thin film, W acts either as a substrate or as a passivation layer for the dewetting of Au. Being the ground layer, W changes the wettability of Au which clearly modifies its initial state for the dewetting. Being the top layer, W prevents Au from dewetting regardless of Au film thickness. Moreover, regular pattern formation of Au-WO{sub 3} nanoparticles is observed at high temperature demonstrating how bilayer thin film dewetting can create unique nanostructure arrangements.

  7. Self-assembly of bimetallic AuxPd1-x alloy nanoparticles via dewetting of bilayers through the systematic control of temperature, thickness, composition and stacking sequence

    Science.gov (United States)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-03-01

    Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.

  8. Using synchrotron-based FT-IR microspectroscopy to study erucamide migration in 50-micron-thick bilayer linear low-density polyethylene and polyolefin plastomer films.

    Science.gov (United States)

    Sankhe, Shilpa Y; Hirt, Douglas E

    2003-01-01

    The diffusion of additives in thick (approximately 500 microns) single layer and multilayer films has been characterized using FT-IR microspectroscopy. The objective of this research was to investigate additive migration and concentration profiles in coextruded multilayer films of industrially relevant thicknesses. In particular, the investigation focused on the migration of an erucamide slip agent in 50-micron-thick coextruded bilayer films of linear low-density polyethylene (LLDPE) and a polyolefin plastomer (POP). Erucamide concentration profiles were successfully mapped using synchrotron-based FT-IR microspectroscopy. The synchrotron radiation helped to achieve a higher spatial resolution for the thin films. Meticulous sample preparation was needed to map the thin film samples. Results with FT-IR microspectroscopy showed that the additive-concentration profiles were relatively uniform across the multilayer-film thickness irrespective of the intended initial additive distribution. For example, a bilayer planned for 1 wt % erucamide in an LLDPE layer and no erucamide in a POP layer showed significant additive migration into the POP layer at the extrusion rates used. FT-IR microspectroscopy results also showed that more erucamide migrated to the surface of a POP layer than an LLDPE layer. Attenuated total reflectance (ATR) FT-IR spectroscopy was used to confirm the time-dependent increase of erucamide surface concentration and that the increase was more pronounced at the surface of the POP layers.

  9. Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model, and experiment

    DEFF Research Database (Denmark)

    Lemmich, Jesper; Mortensen, Kell; Ipsen, John Hjorth

    1996-01-01

    Small-angle neutron scattering data obtained from fully hydrated, multilamellar phospholipid bilayers with deuterated acyl chains of different length are presented and analyzed within a paracrystalline theory and a geometric model that permit the bilayer structure to be determined under conditions...... of temperature for the lamellar repeat distance, the hydrophobic bilayer thickness, as well as the thickness of the aqueous and polar head group region. In addition to these geometric parameters the analysis permits determination of molecular cross-sectional area, number of interlamellar water molecules, as well...

  10. Molecular dynamics modelling of EGCG clusters on ceramide bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 (Singapore)

    2015-12-31

    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  11. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.; Caraveo-Frescas, Jesus Alfonso; Hedhili, Mohamed N.

    2014-01-01

    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films

  12. Molecular packing and area compressibility of lipid bilayers

    International Nuclear Information System (INIS)

    White, S.H.; King, G.I.

    1985-01-01

    Knowledge of the molecular packing of lipids and water in lipid bilayers is important for understanding bilayer mechanics and thermodynamics. Information on packing is most often obtained from x-ray or neutron diffraction measurements. Given the d spacing, composition, and partial specific volumes of the lipid and water, it is a simple matter to calculate the area per lipid molecule, bilayer thickness, and bilayer mass density. The partial specific volumes are commonly assumed to be those of bulk water and of lipid in excess water regardless of the degree of bilayer hydration. The authors present evidence here that these assumptions should be seriously questioned. At low hydrations, they find the head groups of egg and dioleoyl lecithin to be much less tightly packed than previously thought and the partial specific volume of water to be considerably smaller than 1 ml/g. Because the molecular packing affects the mechanical properties of bilayers, they use the results to reevaluate published experiments concerning the elastic area compressibility modulus of egg lecithin bilayers and the repulsive hydration force between bilayers

  13. In Vivo Assessment of Printed Microvasculature in a Bilayer Skin Graft to Treat Full-Thickness Wounds

    Science.gov (United States)

    Yanez, Maria; Rincon, Julio; Dones, Aracely; De Maria, Carmelo; Gonzales, Raoul

    2015-01-01

    Chronic wounds such as diabetic foot ulcers and venous leg ulcers are common problems in people suffering from type 2 diabetes. These can cause pain, and nerve damage, eventually leading to foot or leg amputation. These types of wounds are very difficult to treat and sometimes take months or even years to heal because of many possible complications during the process. Allogeneic skin grafting has been used to improve wound healing, but the majority of grafts do not survive several days after being implanted. We have been studying the behavior of fibroblasts and keratinocytes in engineered capillary-like endothelial networks. A dermo-epidermal graft has been implanted in an athymic nude mouse model to assess the integration with the host tissue as well as the wound healing process. To build these networks into a skin graft, a modified inkjet printer was used, which allowed the deposit of human microvascular endothelial cells. Neonatal human dermal fibroblast cells and neonatal human epidermal keratinocytes were manually mixed in the collagen matrix while endothelial cells printed. A full-thickness wound was created at the top of the back of athymic nude mice and the area was covered by the bilayered graft. Mice of the different groups were followed until completion of the specified experimental time line, at which time the animals were humanely euthanized and tissue samples were collected. Wound contraction improved by up to 10% when compared with the control groups. Histological analysis showed the neoskin having similar appearance to the normal skin. Both layers, dermis and epidermis, were present with thicknesses resembling normal skin. Immunohistochemistry analysis showed favorable results proving survival of the implanted cells, and confocal images showed the human cells' location in the samples that were collocated with the bilayer printed skin graft. PMID:25051339

  14. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    International Nuclear Information System (INIS)

    Richter, Andrew; Dergunov, Sergey; Ganus, Bill; Thomas, Zachary; Pingali, Sai Venkatesh; Urban, Volker S.; Liu, Yun; Porcar, Lionel; Pinkhassik, Eugene

    2011-01-01

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.

  15. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.

    Science.gov (United States)

    Lee, Hye Jin; Jung, Dae-Han; Kil, Tae-Hyeon; Kim, Sang Hyeon; Lee, Ki-Suk; Baek, Seung-Hyub; Choi, Won Jun; Baik, Jeong Min

    2017-05-31

    A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 μm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m 2 , the output power significantly increased to 24 mW/cm 2 because of the increase in the surface temperature to 141 °C.

  16. Controlling the alloy composition of PtNi nanocrystals using solid-state dewetting of bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Okkyun; Oh, Se An; Lee, Ji Yeon; Ha, Sung Soo; Kim, Jae Myung; Choi, Jung Won; Kim, Jin-Woo [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of); Kang, Hyon Chol [Department of Materials and Science Engineering, Chosun University, Gwangju 61542 (Korea, Republic of); Noh, Do Young, E-mail: dynoh@gist.ac.kr [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of)

    2016-05-15

    We demonstrate that solid-state dewetting of bilayer films is an effective way for obtaining bimetallic alloy nanocrystals of controlled composition. When a Pt–Ni bilayer film were annealed near 700 °C, Pt and Ni atoms inter-diffused to form a PtNi bimetallic alloy film. Upon annealing at higher temperatures, the bilayer films transformed into <111> oriented PtNi alloy nanocrystals in small-rhombicuboctahedron shape through solid-state dewetting process. The Pt content of the nanocrystals and the alloy films, estimated by applying the Vegard's law to the relaxed lattice constant, was closely related to the thickness of each layer in the as-grown bilayer films which can be readily controlled during bilayer deposition. - Highlights: • Composition control of PtNi nanoparticles using solid state dewetting is proposed. • PtNi alloy composition was controlled by thickness ratio of Pt–Ni bilayer films. • PtNi alloy nanocrystals were obtained in small-rhombicuboctahedron shape.

  17. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, Daniel J.; Buranda, T. (University of New Mexico, Albuquerque, NM); Burns, Alan Richard

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.

  18. Submicron superconducting structures

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.

    1986-01-01

    An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field

  19. Bilayer lift-off process for aluminum metallization

    Science.gov (United States)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  20. Alamethicin in lipid bilayers: combined use of X-ray scattering and MD simulations.

    Science.gov (United States)

    Pan, Jianjun; Tieleman, D Peter; Nagle, John F; Kucerka, Norbert; Tristram-Nagle, Stephanie

    2009-06-01

    We study fully hydrated bilayers of two di-monounsaturated phospholipids diC18:1PC (DOPC) and diC22:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering and molecular dynamics simulations to determine the orientation of alamethicin in model lipids. Comparison of the experimental and simulated form factors shows that Alm helices are inserted transmembrane at high humidity and high concentrations, in agreement with earlier results. The X-ray scattering data and the MD simulations agree that membrane thickness changes very little up to 1/10 Alm/DOPC. In contrast, the X-ray data indicate that the thicker diC22:1PC membrane thins with added Alm, a total decrease in thickness of 4 A at 1/10 Alm/diC22:1PC. The different effect of Alm on the thickness changes of the two bilayers is consistent with Alm having a hydrophobic thickness close to the hydrophobic thickness of 27 A for DOPC; Alm is then mismatched with the 7 A thicker diC22:1PC bilayer. The X-ray data indicate that Alm decreases the bending modulus (K(C)) by a factor of approximately 2 in DOPC and a factor of approximately 10 in diC22:1PC membranes (P/L approximately 1/10). The van der Waals and fluctuational interactions between bilayers are also evaluated through determination of the anisotropic B compressibility modulus.

  1. Raman Spectroscopy of DLC/a-Si Bilayer Film Prepared by Pulsed Filtered Cathodic Arc

    Directory of Open Access Journals (Sweden)

    C. Srisang

    2012-01-01

    Full Text Available DLC/a-Si bilayer film was deposited on germanium substrate. The a-Si layer, a seed layer, was firstly deposited on the substrate using DC magnetron sputtering and DLC layer was then deposited on the a-Si layer using pulsed filtered cathodic arc method. The bilayer films were deposited with different DLC/a-Si thickness ratios, including 2/2, 2/6, 4/4, 6/2, and 9/6. The effect of DLC/a-Si thickness ratios on the sp3 content of DLC was analyzed by Raman spectroscopy. The results show that a-Si layer has no effect on the structure of DLC film. Furthermore, the upper shift in G wavenumber and the decrease in ID/IG inform that sp3 content of the film is directly proportional to DLC thickness. The plot modified from the three-stage model informed that the structural characteristics of DLC/a-Si bilayer films are located close to the tetrahedral amorphous carbon. This information may be important for analyzing and developing bilayer protective films for future hard disk drive.

  2. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte

    International Nuclear Information System (INIS)

    Cho, Sungmee; Kim, YoungNam; Kim, Jung-Hyun; Manthiram, Arumugam; Wang Haiyan

    2011-01-01

    Graphical abstract: . A: Cross-sectional TEM images show a GDC single layer and YSZ/GDC bilayer electrolyte structures. As clearly observed from TEM images, the YSZ interlayer thickness varies from ∼330 nm to ∼1 μm. B: The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. Display Omitted Highlights: → YSZ/ GDC bilayer thin film electrolytes were deposited by a pulsed laser deposition (PLD) technique. → Thin YSZ film as a blocking layer effectively suppresses the cell voltage drop without reducing the ionic conductivity of the electrolyte layer. → The YSZ/ GDC bilayer structure presents a feasible architecture for enhancing the overall power density and enabling chemical, mechanical, and structural stability in the cells. - Abstract: Bilayer electrolytes composed of a gadolinium-doped CeO 2 (GDC) layer (∼6 μm thickness) and an yttria-stabilized ZrO 2 (YSZ) layer with various thicknesses (∼330 nm, ∼440 nm, and ∼1 μm) were deposited by a pulsed laser deposition (PLD) technique for thin film solid oxide fuel cells (TFSOFCs). The bilayer electrolytes were prepared between a NiO-YSZ (60:40 wt.% with 7.5 wt.% carbon) anode and La 0.5 Sr 0.5 CoO 3 -Ce 0.9 Gd 0.1 O 1.95 (50:50 wt.%) composite cathode for anode-supported single cells. Significantly enhanced maximum power density was achieved, i.e., a maximum power density of 188, 430, and 587 mW cm -2 was measured in a bilayer electrolyte single cell with ∼330 nm thin YSZ at 650, 700, and 750 deg. C, respectively. The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. This signifies that the YSZ thin film serves as a blocking layer for preventing electrical current leakage in the GDC layer and also provides chemical, mechanical, and structural integrity in the cell, which leads to the overall enhanced

  3. Influence of ferroelectric layer on artificial multiferroic LSMO/BTO bilayers deposited by Dc and RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, J. E.; Gomez, M. E.; Lopera, W. [Universidad del Valle, Department of Physics, A. A. 25360 Cali (Colombia)

    2016-11-01

    La{sub 2/3}Sr{sub 1/3}MnO{sub 3} (LSMO)/BaTiO{sub 3} (BTO) bilayers were deposited on (001) SrTiO{sub 3} substrates via Dc and RF sputtering at pure oxygen atmosphere at a substrate temperature of 830 degrees Celsius. We studied the structural, electrical and magnetic properties on LSMO/BTO bilayers, when LSMO thickness is fixed at nm and BTO thickness is varied from 20 to 100 nm. Reciprocal Space Maps in LSMO show a strained growth for all samples, while BTO layers are always relaxed. Magnetization and electrical measurements indicate the influence of the ferroelectric layer, due to saturation magnetization increases from 500 to 590 emu/cm{sup 3} and coercive field decreases from 178 to 82 Oe with BTO thickness. Mean Field mechanism is identified on all samples with critical exponent β between 0.42 and 0.54. Resistivity measurements show electron-electron and magnon-magnon scattering conduction mechanisms. The influence on magnetic and electrical properties of bilayers with BTO thickness is attributed to crystallographic strains at the interface and the corresponding relaxation with increasing BTO layer thickness. The thickness of the individual layers were obtained by X-ray reflectivity measurements in the bilayers, not shown. X-ray diffraction and Reciprocal Space Maps measurements show highly textured layers with preferential growth in the c-axis direction. (Author)

  4. Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute.

    Science.gov (United States)

    Idrus, Ruszymah Bt Hj; Rameli, Mohd Adha bin P; Low, Kiat Cheong; Law, Jia Xian; Chua, Kien Hui; Latiff, Mazlyzam Bin Abdul; Saim, Aminuddin Bin

    2014-04-01

    Split-skin grafting (SSG) is the gold standard treatment for full-thickness skin defects. For certain patients, however, an extensive skin lesion resulted in inadequacies of the donor site. Tissue engineering offers an alternative approach by using a very small portion of an individual's skin to harvest cells for propagation and biomaterials to support the cells for implantation. The objective of this study was to determine the effectiveness of autologous bilayered tissue-engineered skin (BTES) and single-layer tissue-engineered skin composed of only keratinocytes (SLTES-K) or fibroblasts (SLTES-F) as alternatives for full-thickness wound healing in a sheep model. Full-thickness skin biopsies were harvested from adult sheep. Isolated fibroblasts were cultured using medium Ham's F12: Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum, whereas the keratinocytes were cultured using Define Keratinocytes Serum Free Medium. The BTES, SLTES-K, and SLTES-F were constructed using autologous fibrin as a biomaterial. Eight full-thickness wounds were created on the dorsum of the body of the sheep. On 4 wounds, polyvinyl chloride rings were used as chambers to prevent cell migration at the edge. The wounds were observed at days 7, 14, and 21. After 3 weeks of implantation, the sheep were euthanized and the skins were harvested. The excised tissues were fixed in formalin for histological examination via hematoxylin-eosin, Masson trichrome, and elastin van Gieson staining. The results showed that BTES, SLTES-K, and SLTES-F promote wound healing in nonchambered and chambered wounds, and BTES demonstrated the best healing potential. In conclusion, BTES proved to be an effective tissue-engineered construct that can promote the healing of full-thickness skin lesions. With the support of further clinical trials, this procedure could be an alternative to SSG for patients with partial- and full-thickness burns.

  5. P-type Cu2O/SnO bilayer thin film transistors processed at low temperatures

    KAUST Repository

    Al-Jawhari, Hala A.

    2013-10-09

    P-type Cu2O/SnO bilayer thin film transistors (TFTs) with tunable performance were fabricated using room temperature sputtered copper and tin oxides. Using Cu2O film as capping layer on top of a SnO film to control its stoichiometry, we have optimized the performance of the resulting bilayer transistor. A transistor with 10 nm/15 nm Cu2O to SnO thickness ratio (25 nm total thickness) showed the best performance using a maximum process temperature of 170 C. The bilayer transistor exhibited p-type behavior with field-effect mobility, on-to-off current ratio, and threshold voltage of 0.66 cm2 V-1 s-1, 1.5×10 2, and -5.2 V, respectively. The advantages of the bilayer structure relative to single layer transistor are discussed. © 2013 American Chemical Society.

  6. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins.

    Science.gov (United States)

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang

    2017-01-01

    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  7. Thickness Measurement of Surface Attachment on Plate with Lamb Wave

    Science.gov (United States)

    Ma, Xianglong; Zhang, Yinghong; Wen, Lichao; He, Yehu

    2017-12-01

    Aiming at the thickness detection of the plate surface attachment, a nondestructive testing method based on the Lamb wave is presented. This method utilizes Lamb wave propagation characteristics of signals in a bi-layer medium to measure the surface attachment plate thickness. Propagation of Lamb wave in bi-layer elastic is modeled and analyzed. The two-dimensional simulation model of electromagnetic ultrasonic plate - scale is established. The simulation is conducted by software COMSOL for simulation analysis under different boiler scale thickness wave form curve. Through this study, the thickness of the attached material can be judged by analyzing the characteristics of the received signal when the thickness of the surface of the plate is measured.

  8. Fabrication of oriented wrinkles on polydopamine/polystyrene bilayer films.

    Science.gov (United States)

    Wang, Rong; Long, Yuhua; Zhu, Tang; Guo, Jing; Cai, Chao; Zhao, Ning; Xu, Jian

    2017-07-15

    Wrinkles exist widely in nature and our life. In this paper, wrinkles on polydopamine (PDA)/polystyrene (PS) bilayer films were formed by thermal annealing due to the different thermal coefficients of expansion of each layer. The factors that influenced the dimensions of wrinkles were studied. We found that oriented wrinkles could be formed if the bilayer films were patterned with micro-grooves, and the degree of the orientation depended on the thickness of the PDA and the dimensions of the grooves. Combined with the strong adhesion, biocompatibility and reactivity of PDA, the oriented wrinkles on PDA/PS patterned bilayers may find potential application in diffraction gratings, optical sensors and microfluidic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Influence of PEG Stoichiometry on Structure-Tuned Formation of Self-Assembled Submicron Nickel Particles

    Directory of Open Access Journals (Sweden)

    Bingxue Pu

    2018-01-01

    Full Text Available Self-assembled submicron nickel particles were successfully synthesized via the one-step surfactant-assisted solvothermal method. The impact of surfactant and reducing agent stoichiometry is investigated in this manuscript. Different morphologies and structures of Ni particles, including flower-like nanoflakes, hydrangea-like structures, chain structures, sphere-like structures, and hollow structures were prepared through different processing conditions with two parameters such as temperature and time. Based on scanning electron microscopy (SEM, X-ray diffraction (XRD, thermal gravimetric analysis (TGA and vibrating sample magnetometry (VSM, the submicron nickel particles show good saturation magnetization and excellent thermal stabilities with a possible growth mechanism for the variety of the structure-tuned formation. Importantly, the microwave absorption properties of the submicron nickel particles were studied. The lowest reflection loss of Ni-P9/T200/H15 with a thin layer thickness of 1.7 mm can reach −42.6 dB at 17.3 GHz.

  10. Submicron X-ray diffraction

    International Nuclear Information System (INIS)

    MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

    2000-01-01

    At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample

  11. A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures

    Directory of Open Access Journals (Sweden)

    Yun Cui

    2018-02-01

    Full Text Available The bilayer structure consisting of thermal-responsive liquid crystal elastomers (LCEs and other polymer materials with stretchable heaters has attracted much attention in applications of soft actuators and soft robots due to its ability to generate large deformations when subjected to heat stimuli. A simple analytical thermo-mechanical model, accounting for the non-uniform feature of the temperature/strain distribution along the thickness direction, is established for this type of bilayer structure. The analytical predictions of the temperature and bending curvature radius agree well with finite element analysis and experiments. The influences of the LCE thickness and the heat generation power on the bending deformation of the bilayer structure are fully investigated. It is shown that a thinner LCE layer and a higher heat generation power could yield more bending deformation. These results may help the design of soft actuators and soft robots involving thermal responsive LCEs.

  12. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Collingwood, S.A.; Ingolfsson, H.I.

    2010-01-01

    with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated...... with a protein conformational change. This type of regulation is well characterized, and its mechanistic elucidation is an interdisciplinary field bordering on physics, chemistry and biology. Changes in lipid composition that alter bilayer physical properties (including cholesterol, polyunsaturated fatty acids...... channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli....

  13. Theory of Kinetics of Registration and Anti-Registration in Lipid Bilayers

    Science.gov (United States)

    Olmsted, Peter; Williamson, John

    Lipid bilayer leaflets are often treated as if they are coupled; i.e., that the two leaflets undergo simultaneous transitions between phases, and that domains involve both leaflets together in a registered fashion. We present theory and simulation showing how interleaflet couplings and hydrophobic mismatch can lead to a complex phase diagram with multiple metastable two-phase and three-phase states. Many of these states can be discerned in the experimental literature, and are expected in the early stages of coarsening when domains are sub-micron (and thus perhaps of significance to lipid rafts). We present different kinetic scenarios for transitions between these state, and show how lipid flip flop can surprisingly lead to non-symmetric anti-registered patterns.

  14. Thickness-dependent surface plasmon resonance of ITO nanoparticles for ITO/In-Sn bilayer structure.

    Science.gov (United States)

    Wei, Wenzuo; Hong, Ruijin; Jing, Ming; Shao, Wen; Tao, Chunxian; Zhang, Dawei

    2018-01-05

    Tuning the localized surface plasmon resonance (LSPR) in doped semiconductor nanoparticles (NPs), which represents an important characteristic in LSPR sensor applications, still remains a challenge. Here, indium tin oxide/indium tin alloy (ITO/In-Sn) bilayer films were deposited by electron beam evaporation and the properties, such as the LSPR and surface morphology, were investigated by UV-VIS-NIR double beam spectrophotometer and atomic force microscopy (AFM), respectively. By simply engineering the thickness of ITO/In-Sn NPs without any microstructure fabrications, the LSPR wavelength of ITO NPs can be tuned by a large amount from 858 to 1758 nm. AFM images show that the strong LSPR of ITO NPs is closely related to the enhanced coupling between ITO and In-Sn NPs. Blue shifts of ITO LSPR from 1256 to 1104 nm are also observed in the as-annealed samples due to the higher free carrier concentration. Meanwhile, we also demonstrated that the ITO LSPR in ITO/In-Sn NPs structures has good sensitivity to the surrounding media and stability after 30 d exposure in air, enabling its application prospects in many biosensing devices.

  15. Regulation of membrane protein function by lipid bilayer elasticity—a single molecule technology to measure the bilayer properties experienced by an embedded protein

    DEFF Research Database (Denmark)

    Lundbæk, Jens August

    2008-01-01

    , regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes......-dependent sodium channels, N-type calcium channels and GABAA receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic...... properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established....

  16. Nonmonotonic critical temperature in superconductor ferromagnet bilayers

    NARCIS (Netherlands)

    Fominov, Ya. V.; Fominov, I.V.; Chtchelkatchev, N.M.; Golubov, Alexandre Avraamovitch

    2002-01-01

    The critical temperature Tc of a superconductor/ferromagnet (SF) bilayer can exhibit nonmonotonic dependence on the thickness df of the F layer. SF systems have been studied for a long time; according to the experimental situation, a ¿dirty¿ limit is often considered which implies that the mean free

  17. Bilayer formation in thin films of a binary solution

    International Nuclear Information System (INIS)

    Govor, L.V.; Reiter, G.; Bauer, G.H.; Parisi, J.

    2006-01-01

    We consider the formation of a pattern of micrometer-size droplets formed by phase separation in a binary solution composed of a nitrocellulose (NC) solution in amyl acetate and a hexadecylamine (HDA) solution in hexane. Spreading of this solution on a water surface leads to the formation of a bilayer with a top HDA and a lower NC solution layer. The formation of the bilayer was confirmed via spin-coating a similar binary solution on a Si substrate and an HDA solution in hexane on a NC/Si substrate. The subsequent evaporation of the solvents from both layers gives rise to a fast thickness decrease of the top HDA solution layer that decomposes into droplets. The discretely developing increase of the thickness of the HDA droplets can be explained only with the formation of HDA micelles in solution during solvent evaporation

  18. Bilayer formation in thin films of a binary solution

    Energy Technology Data Exchange (ETDEWEB)

    Govor, L.V. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany)]. E-mail: leonid.govor@uni-oldenburg.de; Reiter, G. [Institut de Chimie des Surfaces et Interfaces, CNRS-UHA, F-8057 Mulhouse cedex (France); Bauer, G.H. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany); Parisi, J. [Institute of Physics, University of Oldenburg, D-26111 Oldenburg (Germany)

    2006-04-24

    We consider the formation of a pattern of micrometer-size droplets formed by phase separation in a binary solution composed of a nitrocellulose (NC) solution in amyl acetate and a hexadecylamine (HDA) solution in hexane. Spreading of this solution on a water surface leads to the formation of a bilayer with a top HDA and a lower NC solution layer. The formation of the bilayer was confirmed via spin-coating a similar binary solution on a Si substrate and an HDA solution in hexane on a NC/Si substrate. The subsequent evaporation of the solvents from both layers gives rise to a fast thickness decrease of the top HDA solution layer that decomposes into droplets. The discretely developing increase of the thickness of the HDA droplets can be explained only with the formation of HDA micelles in solution during solvent evaporation.

  19. Porous Materials to Support Bilayer Lipid Membranes for Ion Channel Biosensors

    Directory of Open Access Journals (Sweden)

    Thai Phung

    2011-01-01

    Full Text Available To identify materials suitable as membrane supports for ion channel biosensors, six filter materials of varying hydrophobicity, tortuosity, and thickness were examined for their ability to support bilayer lipid membranes as determined by electrical impedance spectroscopy. Bilayers supported by hydrophobic materials (PTFE, polycarbonate, nylon, and silanised silver had optimal resistance (14–19 GΩ and capacitance (0.8–1.6 μF values whereas those with low hydrophobicity did not form BLMs (PVDF or were short-lived (unsilanised silver. The ability of ion channels to function in BLMs was assessed using a method recently reported to improve the efficiency of proteoliposome incorporation into PTFE-supported bilayers. Voltage-gated sodium channel activation by veratridine and inhibition by saxitoxin showed activity for PTFE, nylon, and silanised silver, but not polycarbonate. Bilayers on thicker, more tortuous, and hydrophobic materials produced higher current levels. Bilayers that self-assembled on PTFE filters were the longest lived and produced the most channel activity using this method.

  20. Study of annealing effects in In–Sb bilayer thin films

    Indian Academy of Sciences (India)

    TECS

    Jaipur Engineering College and Research Centre, Jaipur 303 905, India ... variation in optical band gap with thickness was also observed. Rutherford back scattering and X-ray diffraction analysis confirms mixing of bilayer system.

  1. Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein

    International Nuclear Information System (INIS)

    Lundbaek, Jens August

    2006-01-01

    Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes, in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this 'hydrophobic coupling mechanism' has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage-dependent sodium channels, N-type calcium channels and GABA A receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established

  2. Multiferroic behavior on nanometric La2/3Ca1/3MnO3 / BaTiO3 bilayers

    Science.gov (United States)

    Prieto, Pedro; Ordoñez, John Edward; Gomez, Maria Elena; Lopera, Wilson

    2014-03-01

    We have deposited bilayers of the FM La2/3Ca1/3MnO3 and FE BaTiO3 as a route to design systems with artificial magnetoelectric coupling on LCMO/BTO/Nb:STO system. We maintain a fixed magnetic layer thickness (tLCMO = 48 nm) and varying the thickness of the ferroelectric layer (tBTO = 20, 50, 100 nm). We analyze the influence of the thickness ratio (tBTO/ tLCMO) in electrical and magnetic properties of manganite. From X-ray diffraction analysis we observed that the samples grew textured. Magnetization and transport measurements indicate a possible multiferroic behavior in the bilayer. We found an increase in the Curie and metal-insulator transition temperature in the bilayer in comparison with those for LCMO (48nm)/STO. Hysteresis loops on bilayers show ferromagnetic behavior. This work has been supported by the ``El Patrimonio Autónomo Fondo Nacional de Financiamiento para CT&I FJC'' Colciencias-CENM Research Projects: No. 1106-48-925531 and CI7917-CC 10510 contract 0002-2013 COLCIENCIAS-UNIVALLE.

  3. Exchange bias in diluted-antiferromagnet/antiferromagnet bilayers

    International Nuclear Information System (INIS)

    Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi

    2015-01-01

    The hysteresis-loop properties of a diluted-antiferromagnetic (DAF) layer exchange coupling to an antiferromagnetic (AF) layer are investigated by means of numerical simulations. Remarkable loop shift and coercivity enhancement are observed in such DAF/AF bilayers, while they are absent in the uncoupled DAF single layer. The influences of pinned domains, dilution, cooling field and DAF layer thickness on the loop shift are investigated systematically. The result unambiguously confirms an exchange bias (EB) effect in the DAF/AF bilayers. It also reveals that the EB effect originates from the pinned AF domains within the DAF layer. In contrast to conventional EB systems, frozen uncompensated spins are not found at the interface of the AF pinning layer. (paper)

  4. Laser direct writing using submicron-diameter fibers.

    Science.gov (United States)

    Tian, Feng; Yang, Guoguang; Bai, Jian; Xu, Jianfeng; Hou, Changlun; Liang, Yiyong; Wang, Kaiwei

    2009-10-26

    In this paper, a novel direct writing technique using submicron-diameter fibers is presented. The submicron-diameter fiber probe serves as a tightly confined point source and it adopts micro touch mode in the process of writing. The energy distribution of direct writing model is analyzed by Three-Dimension Finite-Difference Time-Domain method. Experiments demonstrate that submicron-diameter fiber direct writing has some advantages: simple process, 350-nm-resolution (lower than 442-nm-wavelength), large writing area, and controllable width of lines. In addition, by altering writing direction of lines, complex submicron patterns can be fabricated.

  5. [Effect of core: dentin thickness ratio on the flexure strength of IPS Empress II heat-pressed all-ceramic restorative material].

    Science.gov (United States)

    Liu, Yi-hong; Feng, Hai-lan; Bao, Yi-wang; Qiu, Yan

    2007-02-18

    To evaluate the effect of core:dentin thickness ratio on the flexure strength, fracture mode and origin of bilayered IPS Empress II ceramic composite specimens. IPS Empress II core ceramic, dentin porcelain and bilayered composite specimens with core:dentin thickness ratio of 2:1 and 1:1 were tested in three-point flexure strength. Mean strengths and standard deviations were determined. The optical microscopy was employed for identification of the fracture mode and origin. The flexure strength of dentin porcelain was the smallest(62.7 MPa), and the strength of bilayered composite specimens was smaller than single-layered core ceramic(190.2 MPa). The core: dentin ratio did not influence the strength of bilayered composite specimens. The frequency of occurrence of bilayered specimen delaminations was higher in the group of core: dentin thickness ratio of 1:1 than in the group of 2:1. IPS Empress II core ceramic was significantly stronger than veneering dentin porcelain. Core:dentin thickness ratio could significantly influence the fracture mode and origin, and bilayered IPS Empress II ceramic composite specimens showed little influence in the fracture strength.

  6. Limitation and suppression of hot electron fluctuations in submicron semiconductor structures

    International Nuclear Information System (INIS)

    Kochelap, V.A.; Zahleniuk, N.A.; Sokolov, V.N.

    1992-09-01

    We present theoretical investigations of fluctuations of hot electrons in submicron active regions, where the dimensions 2 d of the region is comparable to the electron energy relaxation length L ε . The new physical phenomenon is reported; the fluctuations depend on the sample thickness, with 2d ε a suppression of fluctuations arises in the range of fluctuation frequencies ω much less than T -1 ε , T ε is the electron energy relaxation time. (author). 12 refs, 7 figs

  7. Hierarchical TiO{sub 2} submicron-sized spheres for enhanced power conversion efficiency in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo, Zhiguang, E-mail: zguo@licp.cas.cn [Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2015-10-15

    Hierarchical TiO{sub 2} submicron-sized sphere scattering layer, with relatively large surface area and effective light scattering, shows enhanced power conversion efficiency in dye-sensitized solar cells. - Highlights: • Hierarchical TiO{sub 2} submicron-sized spheres (TiO{sub 2} HSSs) with diameters of 400–600 nm were synthesized. • The HSSs composed of nanoparticles of ∼14 nm have a relatively large surface area of ∼35 m{sup 2}/g. • DSC exhibited the highest cell efficiency (6.23%) compared with ones with pure P25 (5.50%) or HSS (2.00%) photoanodes. - Abstract: Hierarchical TiO{sub 2} submicron-sized spheres (TiO{sub 2} HSSs) with diameters of 400–600 nm were synthesized by a facile one-step solvothermal method in ethanol solvent. The HSSs composed of nanoparticles of ∼14 nm have a relatively large surface area of ∼35 m{sup 2}/g. When applied as the scattering overlayer in dye-sensitized solar cells (DSCs), such TiO{sub 2} HSSs effectively improved light harvesting and led to the increase of photocurrent in DSCs. Furthermore, bilayer-structured photoanode also provided fast electron transportation and long electron lifetime as confirmed by electrochemical impedance spectra. As a result, DSC based on P25 nanoparticle underlayer and HSS-2 overlayer exhibited the highest cell efficiency (6.23%) compared with ones with pure P25 (5.50%) or HSS-2 (2.00%) photoanodes.

  8. Local electric field screening in bi-layer graphene devices

    Directory of Open Access Journals (Sweden)

    Vishal ePanchal

    2014-02-01

    Full Text Available We present experimental studies of both local and macroscopic electrical effects in uniform single- (1LG and bi-layer graphene (2LG devices as well as in devices with non-uniform graphene coverage, under ambient conditions. DC transport measurements on sub-micron scale Hall bar devices were used to show a linear rise in carrier density with increasing amounts of 2LG coverage. Electrical scanning gate microscopy was used to locally top gate uniform and non-uniform devices in order to observe the effect of local electrical gating. We experimentally show a significant level of electric field screening by 2LG. We demonstrate that SGM technique is an extremely useful research tool for studies of local screening effects, which provides a complementary view on phenomena that are usually considered only within a macroscopic experimental scheme.

  9. Multinuclear NMR studies of single lipid bilayers supported in cylindrical aluminum oxide nanopores.

    Science.gov (United States)

    Gaede, Holly C; Luckett, Keith M; Polozov, Ivan V; Gawrisch, Klaus

    2004-08-31

    Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.

  10. Analytical model for the photocurrent-voltage characteristics of bilayer MEH-PPV/TiO2 photovoltaic devices

    Directory of Open Access Journals (Sweden)

    Chen Chong

    2011-01-01

    Full Text Available Abstract The photocurrent in bilayer polymer photovoltaic cells is dominated by the exciton dissociation efficiency at donor/acceptor interface. An analytical model is developed for the photocurrent-voltage characteristics of the bilayer polymer/TiO2 photovoltaic cells. The model gives an analytical expression for the exciton dissociation efficiency at the interface, and explains the dependence of the photocurrent of the devices on the internal electric field, the polymer and TiO2 layer thicknesses. Bilayer polymer/TiO2 cells consisting of poly[2-methoxy-5-(2-ethylhexyloxy-1,4-phenylenevinylene] (MEH-PPV and TiO2, with different thicknesses of the polymer and TiO2 films, were prepared for experimental purposes. The experimental results for the prepared bilayer MEH-PPV/TiO2 cells under different conditions are satisfactorily fitted to the model. Results show that increasing TiO2 or the polymer layer in thickness will reduce the exciton dissociation efficiency in the device and further the photocurrent. It is found that the photocurrent is determined by the competition between the exciton dissociation and charge recombination at the donor/acceptor interface, and the increase in photocurrent under a higher incident light intensity is due to the increased exciton density rather than the increase in the exciton dissociation efficiency.

  11. Neutrons in studies of phospholipid bilayers and bilayer–drug interaction. I. Basic principles and neutron diffraction

    Directory of Open Access Journals (Sweden)

    Belička M.

    2014-12-01

    Full Text Available In our paper, we demonstrate several possibilities of using neutrons in pharmaceutical research with the help of examples of scientific results achieved at our University. In this first part, basic properties of neutrons and elementary principles of elastic scattering of thermal neutrons are described. Results of contrast variation neutron diffraction on oriented phospholipid bilayers with intercalated local anaesthetic or cholesterol demonstrate the potential of this method at determination of their position in bilayers. Diffraction experiments with alkan-1-ols located in the bilayers revealed their influence on bilayer thickness as a function of their alkyl chain length.

  12. Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates

    Science.gov (United States)

    Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun

    2013-03-01

    We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.

  13. Adhesion Improvement and Characterization of Magnetron Sputter Deposited Bilayer Molybdenum Thin Films for Rear Contact Application in CIGS Solar Cells

    Directory of Open Access Journals (Sweden)

    Weimin Li

    2016-01-01

    Full Text Available Molybdenum (Mo thin films are widely used as rear electrodes in copper indium gallium diselenide (CIGS solar cells. The challenge in Mo deposition by magnetron sputtering lies in simultaneously achieving good adhesion to the substrates while retaining the electrical and optical properties. Bilayer Mo films, comprising five different thickness ratios of a high pressure (HP deposited bottom layer and a low pressure (LP deposited top layer, were deposited on 40 cm × 30 cm soda-lime glass substrates by DC magnetron sputtering. We focus on understanding the effects of the individual layer properties on the resulting bilayer Mo films, such as microstructure, surface morphology, and surface oxidation. We show that the thickness of the bottom HP Mo layer plays a major role in determining the micromechanical and physical properties of the bilayer Mo stack. Our studies reveal that a thicker HP Mo bottom layer not only improves the adhesion of the bilayer Mo, but also helps to improve the film crystallinity along the preferred [110] direction. However, the surface roughness and the porosity of the bilayer Mo films are found to increase with increasing bottom layer thickness, which leads to lower optical reflectance and a higher probability for oxidation at the Mo surface.

  14. Transport measurements in superconductor/Heusler bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Imort, Inga-Mareen; Fabretti, Savio; Thomas, Patrick; Reiss, Guenter; Thomas, Andy [Fakultaet fuer Physik, Universitaet Bielefeld, Bielefeld (Germany)

    2012-07-01

    Superconductivity and ferromagnetism are two contrary phenomena due to their electronic properties. The investigation of superconductor (S)/ferromagnet (F) heterostructures has attracted a lot of scientific interest since they allow studying the interplay between superconductivity and ferromagnetism. Additionally, applications seem possible such as F/S/F spin valves and S/F/S π-junctions. Using transport- and magnetotransport-measurements, we investigate the behavior of the superconducting transition temperature T{sub c} in NbTi/Co{sub 2}FeSi bilayers as a function of different layer thicknesses and for varying magnetic moments of the Co{sub 2}FeSi layers. Using rf-magnetron sputtering, NbTi/Co{sub 2}FeSi bilayers were grown on single-crystalline MgO(001) substrates and in-situ annealed at different temperatures. The layered character of our samples has been tested by X-ray diffraction (XRD) scans. The electronic and magnetic transport measurements have been performed between 3 and 300 K with the magnetic field up to 4 T oriented in the film plane. The dependence of T{sub c} on the NbTi- and Co{sub 2}FeSi-layer thickness enables an estimation of the interface transparency of the NbTi/Co{sub 2}FeSi barrier in the framework of recent theoretical models.

  15. Influence of ceramic dental crown coating substrate thickness ratio on strain energy release rate

    Science.gov (United States)

    Khasnulhadi, K.; Daud, R.; Mat, F.; Noor, S. N. F. M.; Basaruddin, K. S.; Sulaiman, M. H.

    2017-10-01

    This paper presents the analysis of coating substrate thickness ratio effect on the crown coating fracture behaviour. The bi-layer material is examined under four point bending with pre-crack at the bottom of the core material by using finite element. Three different coating thickness of core/substrate was tested which is 1:1, 1:2 and 2:1. The fracture parameters are analysed based on bilayer and homogenous elastic interaction. The result shows that the ratio thickness of core/veneer provided a significant effect on energy release rate.

  16. The impact of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    Shen, Chen; de Ghellinck, Alexis; Fragneto, Giovanna

    The natural antioxidant resveratrol, contained in the skin of red grape and accordingly in their wines, is hold liable for health impacts such as cardiovascular protection and anti-oxidative effect. Clinical trials of resveratrol as prophylactic or even therapeutic drug are ongoing. However, basic...... knowledge on its probable working mechanism is rare. In this biophysical study, neutron reflectometry was used to investigate the direct impact of resveratrol on lipid membranes with solid supported bilayers. When interacting with di- palmitoyl-phosphatidyl-choline (DPPC) bilayers, resveratrol accumulates...... in between the headgroups but is absent in the hydrophobic core. Without a biogenic removal mechanism, the headgroup region may host up to ~25 mol% of resveratrol. The average thickness and the interfacial roughness of the headgroup layer are increased. From the structural results, the average tilting...

  17. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  18. Ultrahigh-strength submicron-sized metallic glass wires

    International Nuclear Information System (INIS)

    Wang, Y.B.; Lee, C.C.; Yi, J.; An, X.H.; Pan, M.X.; Xie, K.Y.; Liao, X.Z.; Cairney, J.M.; Ringer, S.P.; Wang, W.H.

    2014-01-01

    In situ deformation experiments were performed in a transmission electron microscope to investigate the mechanical properties of submicron-sized Pd 40 Cu 30 Ni 10 P 20 metallic glass (MG) wires. Results show that the submicron-sized MG wires exhibit intrinsic ultrahigh tensile strength of ∼2.8 GPa, which is nearly twice as high as that in their bulk counterpart, and ∼5% elastic strain approaching the elastic limits. The tensile strength, engineering strain at failure and deformation mode of the submicron-sized MG wires depend on the diameter of the wires

  19. Water distribution function across the curved lipid bilayer: SANS study

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Zemlyanaya, E.V.; Ryabova, N.Y.; Hauss, T.; Dante, S.; Lombardo, D.

    2008-01-01

    The neutron scattering length density across the membrane is simulated on the basis of fluctuated model of lipid bilayer. The use of a separated form factors method has been applied for the identification of the structural features of the polydispersed unilamellar DMPC vesicle system. The hydration of vesicle is described by sigmoid distribution function of the water molecules. The application of the model to the obtained SANS spectra allow the determination of the main parameters of the system, such as the average vesicle radius (and its polydispersity), the membrane thickness, the thickness of hydrocarbon chain region, the number of water molecules located per lipid molecule, and the phospholipid surface area. Moreover the approach allow the calculation of some relevant parameters connected with the water distribution function across the bilayer system. The main features of the obtained results furnish an explanation of why lipid membrane is easily penetrated by the water molecules of the solution

  20. Influence of residual stress on diffusion-induced bending in bilayered microcantilever sensors

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Shao Shanshan; Wang Zhengdong; Tu Shantung

    2010-01-01

    The influence of residual stress on diffusion-induced bending in bilayered microcantilever sensors has been analyzed under the framework of thermodynamic theory and Fick's second law. A self-consistent diffusion equation involving the coupling effects of residual stress and diffusion-induced stress is developed. Effects of thickness ratio, modulus ratio, diffusivity ratio and residual stress gradient of film and substrate on the curvature of bilayered cantilever are then discussed with the help of finite difference method. Results reveal that the curvature of bilayered cantilever increases with decreasing the diffusivity ratio and modulus ratio of substrate to film at a given time. Case study of the polysilicon/palladium hydrogen sensor has been finally carried out using the above developed bending theory.

  1. Submicron Emulsions and Their Applications in Oral Delivery.

    Science.gov (United States)

    Mundada, Veenu; Patel, Mitali; Sawant, Krutika

    2016-01-01

    A "submicron emulsion" is an isotropic mixture of drug, lipids, and surfactants, usually with hydrophilic cosolvents and with droplet diameters ranging from 10 to 500 nm. Submicron emulsions are of increasing interest in medicine due to their kinetic stability, high solubilizing capacity, and tiny globule size. Because of these properties, they have been applied in various fields, such as personal care, cosmetics, health care, pharmaceuticals, and agrochemicals. Submicron emulsions are by far the most advanced nanoparticulate systems for the systemic delivery of biologically active agents for controlled drug delivery and targeting. They are designed mainly for pharmaceutical formulations suitable for various routes of administration like parenteral, ocular, transdermal, and oral. This review article describes the marked potential of submicron emulsions for oral drug delivery owing to their numerous advantages like reduced first pass metabolism, inhibition of P-glycoprotein efflux system, and enhanced absorption via intestinal lymphatic pathway. To overcome the limitations of liquid dosage forms, submicron emulsions can be formulated into solid dosage forms such as solid self-emulsifying systems. This article covers various types of submicron emulsions like microemulsion, nanoemulsion, and self-emulsifying drug delivery system (SEDDS), and their potential pharmaceutical applications in oral delivery with emphasis on their advantages, limitations, and advancements.

  2. Modelling of magneto-acoustic resonance in ferrite-piezoelectric bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bichurin, M I; Petrov, V M; Averkin, S V; Filippov, A V [Institute for Electronic Information Systems, Novgorod State University, Veliky Novgorod 173003 (Russian Federation); Liverts, E [Department of Physics, Ben-Gurion University of the Negev, Beersheva 84105 (Israel); Mandal, S; Srinivasan, G [Physics Department, Oakland University, Rochester, MI 48309 (United States)

    2009-11-07

    A model is discussed for magnetoelectric (ME) effects in a single-crystal ferrite-piezoelectric bilayer on a substrate. The specific focus is on coupling at magneto-acoustic resonance (MAR) at the coincidence of ferromagnetic resonance in the ferrite and thickness modes of the electromechanical resonance in the piezoelectric. The clamping effect of the substrate has been considered in determining the ME voltage coefficient and applied to a model system of a bilayer of lead zirconate titanate (PZT) and yttrium iron garnet (YIG) on a gadolinium gallium garnet substrate. The theory predicts a giant ME effect at MAR due to interaction and transfer of energy between elastic modes and the uniform precession spin-wave mode. It is shown that the ME coupling strength decreases with increasing substrate thickness. Estimates for YIG-PZT for nominal film parameters predict MAR at 5 GHz and ME coefficients on the order of 5-70 V cm{sup -1} Oe{sup -1}. The phenomenon is of importance for the realization of multifunctional ME sensors and transducers operating at microwave frequencies.

  3. Cholesterol Perturbs Lipid Bilayers Nonuniversally

    International Nuclear Information System (INIS)

    Pan Jianjun; Mills, Thalia T.; Tristram-Nagle, Stephanie; Nagle, John F.

    2008-01-01

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K C , the thickness D HH , and the orientational order parameter S xray of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K C when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains

  4. Optical and structural investigations of self-assembled Ge/Si bi-layer containing Ge QDs

    Energy Technology Data Exchange (ETDEWEB)

    Samavati, Alireza, E-mail: alireza.samavati@yahoo.com [Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Othaman, Z., E-mail: zulothaman@gmail.com [Ibn Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, Skudai 81310, Johor (Malaysia); Ghoshal, S.K.; Dousti, M.R. [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2014-10-15

    We report the influence of Si spacer thickness variation (10–40 nm) on structural and optical properties of Ge quantum dots (QDs) in Ge/Si(1 0 0) bi-layer grown by radio frequency magnetron sputtering. AFM images reveal the spacer dependent width, height, root mean square roughness and number density of QDs vary in the range of ∼12–25 nm, ∼2–6 nm, ∼1.95–1.05 nm and ∼0.55×10{sup 11}–2.1×10{sup 11} cm{sup −2}, respectively. XRD patterns exhibit the presence of poly-oriented structures of Ge with preferred growth along (1 1 1) direction accompanied by a reduction in strain from 4.9% to 1.2% (estimated from Williamson–Hall plot) due to bi-layering. The room temperature luminescence displays strong blue–violet peak associated with a blue shift as much as 0.05 eV upon increasing the thickness of Si spacer. This shift is attributed to the quantum size effect, the material intermixing and the strain mediation. Raman spectra for both mono and bi-layer samples show intense Ge–Ge optical phonon mode that is shifted towards higher frequency. Furthermore, the first order features of Raman spectra affirm the occurrence of interfacial intermixing and phase formation during deposition. The excellent features of the results suggest that our systematic method may constitute a basis for the tunable growth of Ge QDs suitable in nanophotonics. - Highlights: • High quality bilayered hetero-structure Ge/Si using economic and easy rf magnetron sputtering fabrication method. • The role of phonon-confinement and strain relaxation mechanisms. • Influence of bilayering on evolutionary growth dynamics. • Band gap shift of visible PL upon bilayering.

  5. Stress evolution during growth of bilayer self-assembled InAs/GaAs quantum dots

    International Nuclear Information System (INIS)

    Schaadt, D.M.; Krauss, S.; Koch, R.; Ploog, K.H.

    2006-01-01

    We investigated the stress evolution during molecular-beam epitaxy of bilayer InAs/GaAs(001) quantum dot (QD) structures in real time and with sub-monolayer precision using an in-situ cantilever beam setup. During growth of the InAs at 470 C a stress of 5.1 GPa develops in the wetting layer, in good agreement with the theoretical misfit stress. At a critical thickness of 1.5 monolayers the strain is relieved by the QD formation. In the case of InAs/GaAs bilayer structures, the second InAs layer grows identical to the first for GaAs spacer thicknesses exceeding ∝13 nm. For thinner spacers the critical thickness for the 2D/3D transition in the second layer decreases. The stress of the second InAs layer does not reach the value of the first, indicating that InAs QDs grow on partially strained areas due to the strain field of the previous InAs layer. (orig.)

  6. SiO2/ZnO Composite Hollow Sub-Micron Fibers: Fabrication from Facile Single Capillary Electrospinning and Their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Guanying Song

    2017-02-01

    Full Text Available In this work, SiO2/ZnO composite hollow sub-micron fibers were fabricated by a facile single capillary electrospinning technique followed by calcination, using tetraethyl orthosilicate (TEOS, polyvinylpyrrolidone (PVP and ZnO nanoparticles as raw materials. The characterization results of the scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FT-IR spectra indicated that the asprepared composite hollow fibers consisted of amorphous SiO2 and hexagonal wurtzite ZnO. The products revealed uniform tubular structure with outer diameters of 400–500 nm and wall thickness of 50–60 nm. The gases generated and the directional escaped mechanism was proposed to illustrate the formation of SiO2/ZnO composite hollow sub-micron fibers. Furthermore, a broad blue emission band was observed in the photoluminescence (PL of SiO2/ZnO composite hollow sub-micron fibers, exhibiting great potential applications as blue light-emitting candidate materials.

  7. Lipid bilayers suspended on microfabricated supports

    Science.gov (United States)

    Ogier, Simon D.; Bushby, Richard J.; Cheng, Yaling; Cox, Tim I.; Evans, Stephen D.; Knowles, Peter F.; Miles, Robert E.; Pattison, Ian

    2001-03-01

    The plasma membrane, that exists as part of many animal and plant cells, is a regulator for the transport of ions and small molecules across cell boundaries. Two main components involved are the phospholipid bilayer and the transport proteins. This paper details the construction of a micromachined support for bilayers (MSB) as a first step towards the development of highly selective and highly sensitive ion-channel based biosensors. The device consists of a ~100 micrometer hole in a polymeric support above a cavity that can hold ~25 nL of electrolyte. Electrodes attached to the structure allow the resistance of the membranes to be measured using d.c. conductivity. The MSB is made in two halves, using SU8 ultra-thick resist, which are subsequently bonded together to make the final structure. A layer of gold, surrounding the aperture, enables self-assembled monolayers of alkanethiols to be used to make the polymeric structure biocompatible. Lipid membranes have been formed over these holes with resistances comparable with those of natural membranes >10 MOhmcm^2. The ion-channel gramicidin has successfully been incorporated into the bilayer and its activity monitored. It is proposed that this type of device could be used not only for studying membrane transport phenomena but also as part of an ion-channel based biosensor.

  8. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  9. The evaluation of Young's modulus and residual stress of Cu films by NiFe/Cu bilayer film microbridge tests

    International Nuclear Information System (INIS)

    Zhou Zhimin; Zhou Yong; Cao Ying; Ding Wen; Mao Haiping

    2008-01-01

    This paper proposes a method to estimate the thickness limit for single-layer microbridge tests and also the thickness limit of one film on another film with known thickness for bilayer microbridge tests. To evaluate the mechanical properties of the Cu film, which could not be measured by single-layer microbridge tests, the NiFe single-layer film and NiFe/Cu bilayer film on silicon substrate are fabricated onto the microbridge by the MEMS technique. A load–deflection experiment is conducted upon the ceramic shaft adhered to the microbridge center by means of the XP nanoindenter system. From single-layer microbridge theory, Young's modulus and the residual stress of the NiFe film are deduced to be 192.74 ± 8.10 GPa and 287.75 ± 16.18 MPa, respectively. The data are introduced into bilayer microbridge theory and Young's modulus and the residual stress of the copper film are calculated to be 118.71 ± 6.54 GPa and 41.34 ± 4.42 MPa, respectively. The experimental results correspond well with those of nanoindentation

  10. Inversion of exchange bias and complex magnetization reversal in full-nitride epitaxial γ′-Fe{sub 4}N/CoN bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.R. [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China); Mi, W.B., E-mail: miwenbo@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China); Wang, X.C. [Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384, China (China); Bai, H.L. [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China)

    2015-04-01

    Exchange bias has been observed in the full-nitride epitaxial γ′-Fe{sub 4}N/CoN bilayers. With the increase of temperature, the sign of exchange bias (EB) is inverse, which is independent on the cooling field and training effect. This novel behavior appears in the bilayers with different CoN and γ′-Fe{sub 4}N thicknesses. The inversion of EB sign not only occurs at low temperatures, but also takes place even at 200 K for the 10 and 12 nm thick CoN layer. With the decreased γ′-Fe{sub 4}N layer thickness, the inversion temperature of EB sign shows a roughly increased tendency. For the bilayer with a 4 nm-thick γ′-Fe{sub 4}N, the interfacial magnetization reversal presents a complex trend, which is considered as the combined actions of the disordered ferromagnetic spins and various competed magnetic structures. This new manifestation of EB has been discussed in terms of the complicated interfacial spin structures and frustration effects due to the competition between the ferromagnetic and antiferromagnetic exchange interactions at the interface. - Highlights: • Exchange bias (EB) sign reverses from negative to positive with increasing temperature in epitaxial γ′-Fe{sub 4}N/CoN bilayers. • The positive EB can be attributed to the antiferromagnetic interfacial coupling and frustrated interfacial spin structures. • The EB transition temperature is not monotonically dependent on CoN thickness t{sub CoN}. • For a 4-nm γ′-Fe{sub 4}N, the unusual hysteresis loops are observed.

  11. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-01-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  12. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yiqin [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Li, Heqin, E-mail: lhqjs@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zuo, Min; Tao, Lei; Wang, Wei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Jing; Tang, Qiong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China); Bai, Peiwen [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China)

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB. - Highlights: • The same thick Al, SiC and SiC/Al films are deposited on NdFeB by magnetron sputtering. • 510 nm SiC/Al bilayer films can improve the corrosion resistance of the NdFeB evidently. • Al buffer layer improves effectively the surface roughness of the SiC thin film. • SiC/Al bilayer films do not deteriorate the magnetic properties of NdFeB.

  13. SANS study of the unilamellar DMPC vesicles. The fluctuation model of lipid bilayer

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Zemlyanaya, E.V.; Vinod, A.

    2003-01-01

    On the basis of the separated form-factors model, parameters of the polydispersed unilamellar DMPC vesicle population are analyzed. The neutron scattering length density across the membrane is simulated on the basis of fluctuated model of lipid bilayer. The hydration of vesicle is described by sigmoid distribution function of the water molecules. The results of fitting of the experimental data obtained at the small angle spectrometer SANS-I, PSI (Switzerland) are: average vesicle radius 272±0.4 Armstrong, polydispersity of the radius 27 %, membrane thickness 50.6± Armstrong, thickness of hydrocarbon chain region 21.4±2.8 Armstrong, number of water molecules located per lipid molecule 13±1, and DMPC surface area 59±2 Armstrong 2 . The calculated water distribution function across the bilayer directly explains why lipid membrane is easy penetrated by water molecules

  14. Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700098 (India)

    2014-04-07

    Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidths shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.

  15. Spin-orbit torque opposing the Oersted torque in ultrathin Co/Pt bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, T. D., E-mail: tds32@cam.ac.uk; Irvine, A. C.; Heiss, D.; Kurebayashi, H.; Ferguson, A. J., E-mail: ajf1006@cam.ac.uk [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Wang, M.; Hindmarch, A. T.; Rushforth, A. W. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2014-02-10

    Current-induced torques in ultrathin Co/Pt bilayers were investigated using an electrically driven ferromagnetic resonance technique. The angle dependence of the resonances, detected by a rectification effect as a voltage, was analysed to determine the symmetries and relative magnitudes of the spin-orbit torques. Both anti-damping (Slonczewski) and field-like torques were observed. As the ferromagnet thickness was reduced from 3 to 1 nm, the sign of the sum of the field-like torque and Oersted torque reversed. This observation is consistent with the emergence of a Rashba spin orbit torque in ultra-thin bilayers.

  16. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    Science.gov (United States)

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  17. A novel design of submicron thin film point contacts

    International Nuclear Information System (INIS)

    Koch, H.

    1986-01-01

    A thin film point contact design applicable to SIS-, SNS-, and microbridge-type Josephson junctions is presented, which offers potentially advanced junction characteristics (low capacitance, low stray inductance, increased quasi-particle resistance). The design philosophy is based on the fact that a point contact results if two planes having a common symmetry axis but oriented perpendicular to each other are brought into contact with each other. For the case of thin films, instead of two-dimensional planes, the cross section of the resulting ''point''-contact is defined by the thicknesses of the two thin films. Film thicknesses can be controlled much more precisely than lateral dimensions created by lithography. Hence, submicron junction geometries can be achieved using only conventional fabrication techniques. Following this idea, Josephson weak links of the ultrashort microbridge-type have been fabricated by an all-Nb technique having a 0.3-μm X 0.2-μm cross section with a R /SUB q/ I /SUB c/ product (R /SUB q/ = quasiparticle resistance, I /SUB c/ = critical current) of more than 20 mV

  18. Molecular dynamics simulations of the effects of sodium dodecyl sulfate on lipid bilayer

    International Nuclear Information System (INIS)

    Xu Bin; Lin Wen-Qiang; Wang Xiao-Gang; Zhou Guo-Quan; Chen Jun-Lang; Zeng Song-wei

    2017-01-01

    Molecular dynamics simulations have been performed on the fully hydrated lipid bilayer with different concentrations of sodium dodecyl sulfate (SDS). SDS can readily penetrate into the membrane. The insertion of SDS causes a decrease in the bilayer area and increases in the bilayer thickness and lipid tail order, when the fraction of SDS is less than 28%. Through calculating the binding energy, we confirm that the presence of SDS strengthens the interactions among the DPPC lipids, while SDS molecules act as intermedia. Both the strong hydrophilic interactions between sulfate and phosphocholine groups and the hydrophobic interactions between SDS and DPPC hydrocarbon chains contribute to the tight packing and ordered alignment of the lipids. These results are in good agreement with the experimental observations and provide atomic level information that complements the experiments. (paper)

  19. Surface and grain boundary interdiffusion in nanometer-scale LSMO/BFO bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Virendra [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Gaur, Anurag, E-mail: anuragdph@gmail.com [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Choudhary, R.J.; Gupta, Mukul [UGC-DAE Consortium for Scientific Research, Indore 452 001 (India)

    2016-05-01

    Epitaxial 150 nm thick LSMO/BFO bilayer is deposited on STO (100) substrate by pulsed laser deposition, to study magnetoelectric effect. Unexpected low value of room temperature magnetization in bilayer indicates towards the possibility of interdiffusion. Further, sharp fall in the value of T{sub C} (53 K) also added our anxiety towards possible interdiffusion in BFO/LSMO system. Low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena, and the temperature-dependent interdiffusivity is obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. It has been found that the diffusivity at different temperatures follows Arrhenius-type behavior. X-ray reflection (XRR) pattern obtained for the bilayer could not be fitted in the Parratt’s formalism, which confirms the interdiffusion in it. Depth profiles of {sup 209}Bi, {sup 56}Fe ions measured by secondary ion mass spectroscope (SIMS) further substantiate the diffusion of these ions from upper BFO layer into lower LSMO layer. - Highlights: • The LSMO/BFO bilayer is deposited by PLD method. • Structural, magnetic and interfacial properties of deposited films were studied. • In this article, we have raised the problem of interdiffusion in this bilayer, which can hinder its application in devices. Therefore, we feel that our article presents important finding in the area of ceramics research.

  20. Upper critical field and vortices in S/F bilayers exhibiting the quasi-onedimensional FFLO-like state

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Hemmida, Mamoun; Kehrle, Jan; Zdravkov, Vladimir I.; Ullrich, Aladin; Obermeier, Guenther; Mueller, Claus; Loidl, Alois; Krug von Nidda, Hans-Albrecht; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Kishinev (Moldova, Republic of); Sidorenko, Anatolie S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Kishinev (Moldova, Republic of); Tagirov, Lenar [Institut fuer Physik, Universitaet Augsburg (Germany); Solid State Physics Department, Kazan Federal University (Russian Federation)

    2015-07-01

    We investigate the temperature dependence of the upper critical field, B{sub c2}, in superconductor/ferromagnet (S/F) bilayers as a function of the F-layer thickness, d{sub F}, by resistance measurements. We extracted GL coherence lengths and estimated an effective thickness of the superconducting layer by evaluating the perpendicular coherence length at the 3D-2D crossover temperature in the parallel B{sub c2}. We found an unexpected non-monotonous behavior of the effective thickness as a function of d{sub F}. Moreover, we investigated the anisotropy of B{sub c2} by microwave absorption. The results show a deviation from Tinkham's prediction for thin films, which we attribute to the additional anisotropy induced by the quasi-1D FFLO-like state. Thus, we propose a new type of vortex, developing in the S/F bilayer in magnetic fields applied close to parallel.

  1. Enhanced Optical and Electrical Properties of TiO_2 Buffered IGZO/TiO_2 Bi-Layered Films

    International Nuclear Information System (INIS)

    Moon, Hyun-Joo; Kim, Daeil

    2016-01-01

    In and Ga doped ZnO (IGZO, 100-nm thick) thin films were deposited by radio frequency magnetron sputtering without intentional substrate heating on a bare glass substrate and a TiO_2-deposited glass substrate to determine the effect of the thickness of a thin TiO_2 buffer layer on the structural, optical, and electrical properties of the films. The thicknesses of the TiO_2 buffer layers were 5, 10 and 15 nm, respectively. As-deposited IGZO films with a 10 nm-thick TiO_2 buffer layer had an average optical transmittance of 85.0% with lower resistivity (1.83×10-2 Ω cm) than that of IGZO single layer films. The figure of merit (FOM) reached a maximum of 1.44×10-4 Ω-1 for IGZO/10 nm-thick TiO_2 bi-layered films, which is higher than the FOM of 6.85×10-5 Ω-1 for IGZO single layer films. Because a higher FOM value indicates better quality transparent conducting oxide (TCO) films, the IGZO/10 nm-thick TiO_2 bi-layered films are likely to perform better in TCO applications than IGZO single layer films.

  2. Protein-induced bilayer Perturbations: Lipid ordering and hydrophobic coupling

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Laursen, Ib; Bohr, Henrik

    2009-01-01

    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction...... between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to −6 kJ/mol; thus not strongly favored over lipid–lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration...... and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid ↔ gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few Å results...

  3. Magnetic field-induced elastic bending in bilayers of Tb1−xDyxFe2−y and Pb(Zr1−zTiz)O3

    International Nuclear Information System (INIS)

    Jin, Tao; Qichao, Wu; Ning, Zhang

    2014-01-01

    Magnetic field-induced strain in the magnetoelectric bilayers of Tb 1−x Dy x Fe 2−y and Pb(Zr 1−z Ti z )O 3 was studied. A butterfly shaped strain curve was observed on the surface of Pb(Zr 1−z Ti z )O 3 . The shape of the strain curve was found to be related to the sample thickness and the volume fraction occupied by the ferroelectrics in the bilayer. Theoretical analysis and experimental results showed that magnetoelastic bending in the bilayer composites was largely responsible for the butterfly strain curve. - Highlights: • Butterfly strain curves were observed on the PZT surface for bilayers of TDF and PZT. • The strain curve is related to the sample thickness and the volume fraction of the PZT. • A physics model depicting the field-controlled bending of the bilayers was developed. • The magnetoelastic bending was found to account for the butterfly strain curve

  4. Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses

    Science.gov (United States)

    Fukuda, Kenjiro; Sekine, Tomohito; Shiwaku, Rei; Morimoto, Takuya; Kumaki, Daisuke; Tokito, Shizuo

    2016-01-01

    The realization of wearable electronic devices with extremely thin and flexible form factors has been a major technological challenge. While substrates typically limit the thickness of thin-film electronic devices, they are usually necessary for their fabrication and functionality. Here we report on ultra-thin organic transistors and integrated circuits using device components whose substrates that have been removed. The fabricated organic circuits with total device thicknesses down to 350 nm have electrical performance levels close to those fabricated on conventional flexible substrates. Moreover, they exhibit excellent mechanical robustness, whereby their static and dynamic electrical characteristics do not change even under 50% compressive strain. Tests using systematically applied compressive strains reveal that these free-standing organic transistors possess anisotropic mechanical stability, and a strain model for a multilayer stack can be used to describe the strain in this sort of ultra-thin device. These results show the feasibility of ultimate-thin organic electronic devices using free-standing constructions. PMID:27278828

  5. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light

    Science.gov (United States)

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195

  6. Lipid bilayers and interfaces

    NARCIS (Netherlands)

    Kik, R.A.

    2007-01-01

    In biological systems lipid bilayers are subject to many different interactions with other entities. These can range from proteins that are attached to the hydrophilic region of the bilayer or transmembrane proteins that interact with the hydrophobic region of the lipid bilayer. Interaction between

  7. Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques

    International Nuclear Information System (INIS)

    Doerner, M.F.; Gardner, D.S.; Nix, W.D.

    1986-01-01

    Substrate curvature and submicron indentation measurements have been used recently to study plastic deformation in thin films on substrates. In the present work both of these techniques have been employed to study the strength of aluminum and tungsten thin films on silicon substrates. In the case of aluminum films on silicon substrates, the film strength is found to increase with decreasing thickness. Grain size variations with film thickness do not account for the variations in strength. Wafer curvature measurements give strengths higher than those predicted from hardness measurements suggesting the substrate plays a role in strengthening the film. The observed strengthening effect with decreased thickness may be due to image forces on dislocations in the film due to the elastically stiffer silicon substrate. For sputtered tungsten films, where the substrate is less stiff than the film, the film strength decreases with decreasing film thickness

  8. Residual stress analysis in thick uranium films

    International Nuclear Information System (INIS)

    Hodge, A.M.; Foreman, R.J.; Gallegos, G.F.

    2005-01-01

    Residual stress analysis was performed on thick, 1-25 μm, depleted uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0, -200, -300 V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses

  9. Possible influence of the ferromagnetic/antiferromagnetic interface on the effective critical behavior of bilayers based on La{sub 1−x}Sr{sub x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Miño, Lucero, E-mail: lalvarezm@unal.edu.co [Universidad Nacional de Colombia, Sede Manizales, Cra. 27 #64-60, Manizales (Colombia); Grupo de Superconductividad y Nuevos Materiales, Universidad Nacional de Colombia, Sede Bogotá, Avenida Carrera 30 #45, Bogotá (Colombia); Mulcué-Nieto, Luis Fernando, E-mail: lfmulcuen@unal.edu.co [Laboratorio de Magnetismo y Materiales Avanzados, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Cra. 27 #64-60, Manizales (Colombia)

    2015-03-01

    In this work, the effective critical exponent of the spontaneous magnetization, β, and the transition temperature, T{sub C}, were calculated from magnetization measurements of three bilayers based on La{sub 1−x}Sr{sub x}MnO{sub 3} (LSMO). The bilayers structure is a ferromagnetic (FM) LSMO film grown on top of an antiferromagnetic (AF) LSMO film. The value of the antiferromagnetic film thickness was kept the same for the three samples, while the ferromagnetic film had different thickness for each bilayer. Applying a method of calculation based on a linear superposition of the magnetization close to the critical temperature, a β value corresponding to the 3D Ising model was found for the bilayer with the thinnest ferromagnetic film. This result, and the other obtained values are explained taking into account the possible influence of the FM/AF interface on the magnetic and crystal orderings. - Highlights: • The critical exponent β of three LSMO bilayers was determined. • Two bilayers with the thinner FM layer have very similar transition temperature. • Two bilayers with the thinner FM layer have very similar width values. • We have found values of β of the 3D Ising model. • Interface also seems to be responsible for some structural disorder.

  10. Vectors and submicron precision: redundancy and 3D stacking in silicon pixel detectors

    CERN Document Server

    Heijne, E H M; Wong, W; Idarraga, J; Visser, J; Jakubek, J; Leroy, C; Turecek, D; Visschers, J; Pospisil, S; Ballabriga, R; Vykydal, Z; Vermeulen, J; Plackett, R; Heijne, E H M; Llopart, X; Boltje, D; Campbell, M

    2010-01-01

    Measurements are shown of GeV pions and muons in two 300 mu m thick, Si Medipix pixel detector assemblies that are stacked on top of each other, with a 25 mu m thick brass foil in between. In such a radiation imaging semiconductor matrix with a large number of pixels along the particle trail, one can determine local space vectors for the particle trajectory instead of points. This improves pattern recognition and track reconstruction, especially in a crowded environment. Stacking of sensor planes is essential for resolving directional ambiguities. Signal charge sharing can be employed for measuring positions with submicron precision. In the measurements one notices accompanying `delta' electrons that emerge outside the particle trail, far beyond the boundaries of the 55 mu m pixel cells. The frequency of such corrupted position measurements is similar to one per 2.5mm of traversed Si.

  11. Micromagnetic simulations of submicron cobalt dots

    International Nuclear Information System (INIS)

    Parker, G. J.; Cerjan, C.

    2000-01-01

    Numerical simulations of submicron Co extruded elliptical dots were performed to illustrate the relative importance of different physical parameters on the switching behavior in the easy direction. Shape, size, magnetic moment magnitude, and the magnitude and distribution of the crystalline anisotropicity were varied. The simulation represents magnetostatic, exchange, and crystalline anisotropicity fields on a structured mesh using finite difference techniques. The smooth boundary of the dots is accurately represented by use of the embedded curve boundary method. Agreement with experimental hysteresis measurements of submicron dot arrays is obtained when an appropriate angular distribution of the grain anisotropicity axes is invoked. (c) 2000 American Institute of Physics

  12. The influence of interface on spin pumping effect in Ni80Fe20 /Tb bilayer

    Directory of Open Access Journals (Sweden)

    Jinjin Yue

    2016-05-01

    Full Text Available Focusing on the interface effect of the Ni80Fe20 (Py/terbium (Tb bilayer, the influence of interface on the magnetization dynamic damping is investigated systematically. Two series of Py (12 nm/Tb (d nm films with and without copper (Cu (1 nm interlayer are deposited on silicon (Si substrates by DC magnetron sputtering at room temperature. From vibrating sample magnetometer (VSM measurements, the saturation magnetization (Ms decreases with increasing Tb thickness in Py/Tb bilayer while the decrease of Ms is suppressed efficiently by inserting a Cu layer with even 1 nm of thickness. From the frequency dependence of ferromagnetic resonance (FMR linewidth, we can obtain the Gilbert damping coefficient (α, α is found to exhibit an extreme enhancement in comparison to the single Py layer and shows an increasing trend with increasing Tb thickness. By inserting the Cu layer, α decreases significantly. From theoretical fitting, the spin diffusion length (λSD and spin mixing conductance (g↑↓ are determined. It shows that the interface structure influences the spin mixing conductance but not the spin diffusion length.

  13. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Directory of Open Access Journals (Sweden)

    Deborah Pacheco Lameira

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP crowns in monolithic (1.5 mm thickness and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n=10: Polished monolithic zirconia crowns (PM; Glazed monolithic zirconia crowns (GM; Bi-layer crowns (BL. Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C, and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey’s test (P=.05 indicated that monolithic zirconia crowns presented similar fracture strength (PM=3476.2 N ± 791.7; GM=3561.5 N ± 991.6, which was higher than bilayer crowns (2060.4 N ± 810.6. There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  14. Vortex dynamics in ferromagnetic/superconducting bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)

    2008-07-01

    The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)

  15. Numerical study of the light output intensity of the bilayer organic light-emitting diodes

    Science.gov (United States)

    Lu, Feiping

    2017-02-01

    The structure of organic light-emitting diodes (OLEDs) is one of most important issues that influence the light output intensity (LOI) of OLEDs. In this paper, based on a simple but accurate optical model, the influences of hole and electron transport layer thickness on the LOI of bilayer OLEDs, which with N,N0- bis(naphthalen-1-yl)-N,N0- bis(phenyl)- benzidine (NPB) or N,N'- diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4-diamine (TPD) as hole transport layer, with tris(8-hydroxyquinoline) aluminum (Alq3) as electron transport and light emitting layers, were investigated. The laws of LOI for OLEDs under different organic layer thickness values were obtained. The results show that the LOI of devices varies in accordance with damped cosine or sine function as the increasing of organic layer thickness, and the results show that the bilayer OLEDs with the structure of Glass/ITO/NPB (55 nm)/Alq3 (75 nm)/Al and Glass/ITO/TPB (60 nm)/Alq3 (75 nm)/Al have most largest LOI. When the thickness of Alq3 is less than 105 nm, the OLEDs with TPD as hole transport layer have larger LOI than that with NPB as hole transport layer. The results obtained in this paper can present an in-depth understanding of the working mechanism of OLEDs and help ones fabricate high efficiency OLEDs.

  16. Magnetic and exchange bias properties of YCo thin films and IrMn/YCo bilayers

    Science.gov (United States)

    Venkat Narayana, M.; Manivel Raja, M.; Jammalamadaka, S. Narayana

    2018-02-01

    We report on the structural and magnetic properties of YCo thin films and IrMn/YCo bilayers. X-ray diffraction infer that all the films are amorphous in nature. Magnetization versus magnetic field measurements reveal room temperature soft ferromagnetism in all the YCo films. Thin films which were grown at 100 W sputter power with growth rates of 0.677, 0.694 and 0.711 Å/sec show better morphology and composition than 50 W (0.333, 0.444 and 0.277 Å/sec) grown films. Perpendicular exchange bias in as deposited bilayers is evident for IrMn/YCo bilayers. Exchange bias (EB) decreases in case of in plane measurements and enhances for out of plane measurements after perpendicular field annealing. EB is more in case of out of plane direction due to large perpendicular anisotropy in comparison with in plane direction. Above the critical thickness, EB variation is explained on the basis of random field model in the Heisenberg regime, which has been proposed by Malozemoff. Indeed there exists an inverse relationship between EB and IrMn layer thickness. Evidenced vertical shift apart from the horizontal shift for magnetization loops is attributed to frozen magnetic moments in one of the layers at the interface. Present results would prove to be helpful in spintronic device applications.

  17. Cavity cooling of an optically levitated submicron particle

    Science.gov (United States)

    Kiesel, Nikolai; Blaser, Florian; Delić, Uroš; Grass, David; Kaltenbaek, Rainer; Aspelmeyer, Markus

    2013-01-01

    The coupling of a levitated submicron particle and an optical cavity field promises access to a unique parameter regime both for macroscopic quantum experiments and for high-precision force sensing. We report a demonstration of such controlled interactions by cavity cooling the center-of-mass motion of an optically trapped submicron particle. This paves the way for a light–matter interface that can enable room-temperature quantum experiments with mesoscopic mechanical systems. PMID:23940352

  18. Enhanced Optical and Electrical Properties of TiO{sub 2} Buffered IGZO/TiO{sub 2} Bi-Layered Films

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hyun-Joo; Kim, Daeil [University of Ulsan, Ulsan (Korea, Republic of)

    2016-08-15

    In and Ga doped ZnO (IGZO, 100-nm thick) thin films were deposited by radio frequency magnetron sputtering without intentional substrate heating on a bare glass substrate and a TiO{sub 2}-deposited glass substrate to determine the effect of the thickness of a thin TiO{sub 2} buffer layer on the structural, optical, and electrical properties of the films. The thicknesses of the TiO{sub 2} buffer layers were 5, 10 and 15 nm, respectively. As-deposited IGZO films with a 10 nm-thick TiO{sub 2} buffer layer had an average optical transmittance of 85.0% with lower resistivity (1.83×10-2 Ω cm) than that of IGZO single layer films. The figure of merit (FOM) reached a maximum of 1.44×10-4 Ω-1 for IGZO/10 nm-thick TiO{sub 2} bi-layered films, which is higher than the FOM of 6.85×10-5 Ω-1 for IGZO single layer films. Because a higher FOM value indicates better quality transparent conducting oxide (TCO) films, the IGZO/10 nm-thick TiO{sub 2} bi-layered films are likely to perform better in TCO applications than IGZO single layer films.

  19. [The effect of core veneer thickness ratio on the flexural strength of diatomite-based dental ceramic].

    Science.gov (United States)

    Jiang, Jie; Zhang, Xin; Gao, Mei-qin; Zhang, Fei-min; Lu, Xiao-li

    2015-06-01

    To evaluate the effect of different core veneer thickness ratios on the flexural strength and failure mode of bilayered diatomite-based dental ceramics. Diatomite-based dental ceramics blocks (16 mm×5.4 mm×1 mm) were sintered with different thickness of veneer porcelains: 0 mm (group A), 0.6 mm (group B), 0.8 mm (group C) and 1.0 mm (group D). Flexural strength was detected and scanning electron microscope was used to observe the interface microstructure. Statistical analysis was performed using SPSS 17.0 software package. With the increase of the thickness of the veneer porcelain, flexural strength of group C showed highest flexural strength up to (277.24±5.47) MPa. Different core veneer thickness ratios can significantly influence the flexural strength of bilayered diatomite-based dental ceramics. Supported by Science and Technology Projects of Nantong City (HS2013010).

  20. Giant exchange bias in MnPd/Co bilayers

    International Nuclear Information System (INIS)

    Nguyen Thanh Nam; Nguyen Phu Thuy; Nguyen Anh Tuan; Nguyen Nguyen Phuoc; Suzuki, Takao

    2007-01-01

    A systematic study of exchange bias in MnPd/Co bilayers has been carried out, where the dependences of exchange bias, unidirectional anisotropy constant and coercivity on the thicknesses of MnPd and Co layers were investigated. A huge unidirectional anisotropy constant, J K =2.5erg/cm 2 was observed, which is in reasonable agreement with the theoretical prediction based on the model by Meiklejohn and Bean. The angular dependences of exchange bias field and coercivity have also been examined showing that both exchange bias and coercivity follow 1/cosα rule

  1. Analysis of optical thickness determination of materials by THz-TDS

    International Nuclear Information System (INIS)

    Sushko, O; Dubrovka, R; Donnan, R S

    2013-01-01

    Terahertz time-domain spectrometry (THz TDS) is a sensitive probe of the complex dielectric response of materials. Methods vary for converting time-domain response into final material optical parameters together with estimation of associated uncertainties. Here we point out the importance of using an accurate extraction procedure with particular emphasis on the error introduced by associated inaccuracy in thickness determination of a sample. The Total Variation (TV) method is used to estimate sample thickness to sub-micron accuracy, by constructively using the phenomena of multiple internal reflections ('ringing') within a sample. The applicability and performance of the TV methodology is discussed

  2. Antireflective bilayer coatings based on Al2O3 film for UV region

    OpenAIRE

    Marszałek Konstanty; Winkowski Paweł; Marszałek Marta

    2015-01-01

    Bilayer antireflective coatings consisting of aluminium oxide Al2O3/MgF2 and Al2O3/SiO2 are presented in this paper. Oxide films were deposited by means of e-gun evaporation in vacuum of 5 × 10-3 Pa in the presence of oxygen, and magnesium fluoride was prepared by thermal evaporation on heated optical lenses made from quartz glass (Corning HPFS). Substrate temperature was maintained at 250 _C during the deposition. Thickness and deposition rate were controlled with a thickness measuring syste...

  3. Spin wave isolator based on frequency displacement nonreciprocity in ferromagnetic bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Shichi, Shinsuke, E-mail: shinsuke-shichi@murata.com; Matsuda, Kenji; Okajima, Shingo; Hasegawa, Takashi; Okada, Takekazu [Murata Manufacturing Co., Ltd., Kyoto 617-8555 (Japan); Kanazawa, Naoki; Goto, Taichi, E-mail: goto@ee.tut.ac.jp; Takagi, Hiroyuki; Inoue, Mitsuteru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibari-Ga-Oka, Tempaku, Toyohashi, Aichi 441-8580 (Japan)

    2015-05-07

    We demonstrated the spin wave isolator using bilayer ferromagnetic media comprising single crystalline and poly-crystalline yttrium iron garnet films, which can control the propagation frequency of magnetostatic waves by the direction of applied magnetic field. This isolator's property does not depend on their thickness then this can be downsized and integrated for nano-scale magnonic circuits. Calculated dispersion relationship shows good agreement with measured one.

  4. Giant moving vortex mass in thick magnetic nanodots.

    Science.gov (United States)

    Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O

    2015-09-10

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.

  5. Amphotericin B induced interdigitation of apolipoprotein stabilized nanodisk bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, T; Weers, P M; Sulchek, T; Hoeprich, P D; Ryan, R O

    2006-12-07

    Amphotericin B nanodisks (AMB-ND) are ternary complexes of AMB, phospholipid (PL) and apolipoprotein organized as discrete nanometer scale disk-shaped bilayers. In gel filtration chromatography experiments, empty ND lacking AMB elute as a single population of particles with a molecular weight in the range of 200 kDa. AMB-ND formulated at a 4:1 PL:AMB weight ratio, separated into two peaks. Peak 1 eluted at the position of control ND lacking AMB while the second peak, containing all of the AMB present in the original sample, eluted in the void volume. When ND prepared with increased AMB (1:1 phospholipid:AMB molar ratio) were subjected to gel filtration chromatography, an increased proportion of phospholipid and apolipoprotein were recovered in the void volume with the AMB. Prior to gel filtration the AMB-ND sample could be passed through a 0.22 {micro}m filter without loss of AMB while the voided material was lost. Native gel electrophoresis studies corroborated the gel permeation chromatography data. Far UV circular dichroism analyses revealed that apoA-I associated with AMB-ND denatures at a lower guanidine HCl concentration than apoA-I associated with ND lacking AMB. Atomic force microscopy revealed that AMB induces compression of the ND bilayer thickness consistent with bilayer interdigitation, a phenomenon that is likely related to the ability of AMB to induce pore formation in susceptible membranes.

  6. Ferroelectric domain inversion and its stability in lithium niobate thin film on insulator with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guang-hao; Bai, Yu-hang; Cui, Guo-xin; Li, Chen; Qiu, Xiang-biao; Wu, Di; Lu, Yan-qing, E-mail: yqlu@nju.edu.cn [National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Geng, De-qiang [Jinan Jingzheng Electronics Co., Ltd., Jinan 250100 (China)

    2016-07-15

    Ferroelectric domain inversion and its effect on the stability of lithium niobate thin films on insulator (LNOI) are experimentally characterized. Two sets of specimens with different thicknesses varying from submicron to microns are selected. For micron thick samples (∼28 μm), domain structures are achieved by pulsed electric field poling with electrodes patterned via photolithography. No domain structure deterioration has been observed for a month as inspected using polarizing optical microscopy and etching. As for submicron (540 nm) films, large-area domain inversion is realized by scanning a biased conductive tip in a piezoelectric force microscope. A graphic processing method is taken to evaluate the domain retention. A domain life time of 25.0 h is obtained and possible mechanisms are discussed. Our study gives a direct reference for domain structure-related applications of LNOI, including guiding wave nonlinear frequency conversion, nonlinear wavefront tailoring, electro-optic modulation, and piezoelectric devices.

  7. A QCM-D study of the concentration- and time-dependent interactions of human LL37 with model mammalian lipid bilayers.

    Science.gov (United States)

    Lozeau, Lindsay D; Rolle, Marsha W; Camesano, Terri A

    2018-07-01

    The human antimicrobial peptide LL37 is promising as an alternative to antibiotics due to its biophysical interactions with charged bacterial lipids. However, its clinical potential is limited due to its interactions with zwitterionic mammalian lipids leading to cytotoxicity. Mechanistic insight into the LL37 interactions with mammalian lipids may enable rational design of less toxic LL37-based therapeutics. To this end, we studied concentration- and time-dependent interactions of LL37 with zwitterionic model phosphatidylcholine (PC) bilayers with quartz crystal microbalance with dissipation (QCM-D). LL37 mass adsorption and PC bilayer viscoelasticity changes were monitored by measuring changes in frequency (Δf) and dissipation (ΔD), respectively. The Voigt-Kelvin viscoelastic model was applied to Δf and ΔD to study changes in bilayer thickness and density with LL37 concentration. At low concentrations (0.10-1.00 μM), LL37 adsorbed onto bilayers in a concentration-dependent manner. Further analyses of Δf, ΔD and thickness revealed that peptide saturation on the bilayers was a threshold for interactions observed above 2.00 μM, interactions that were rapid, multi-step, and reached equilibrium in a concentration- and time-dependent manner. Based on these data, we proposed a model of stable transmembrane pore formation at 2.00-10.0 μM, or transition from a primarily lipid to a primarily protein film with a transmembrane pore formation intermediate state at concentrations of LL37 > 10 μM. The concentration-dependent interactions between LL37 and PC bilayers correlated with the observed concentration-dependent biological activities of LL37 (antimicrobial, immunomodulatory and non-cytotoxic at 0.1-1.0 μM, hemolytic and some cytotoxicity at 2.0-13 μM and cytotoxic at >13 μM). Copyright © 2018 Elsevier B.V. All rights reserved.

  8. A Novel Submicron Emulsion System Loaded with Doxorubicin Overcome Multi-Drug Resistance in MCF-7/ADR Cells.

    Science.gov (United States)

    Zhou, W P; Hua, H Y; Sun, P C; Zhao, Y X

    2015-01-01

    The purpose of the present study was to develop the Solutol HS15-based doxorubicin submicron emulsion with good stability and overcoming multi-drug resistance. In this study, we prepared doxorubicin submicron emulsion, and examined the stability after autoclaving, the in vitro cytotoxic activity, the intracellular accumulation and apoptpsis of doxorubicin submicron emulsion in MCF-7/ADR cells. The physicochemical properties of doxorubicin submicron emulsion were not significantly affected after autoclaving. The doxorubicin submicron emulsion significantly increased the intracellular accumulation of doxorubicin submicron emulsion and enhanced cytotoxic activity and apoptotic effects of doxorubicin. These results may be correlated to doxorubicin submicron emulsion inhibitory effects on efflux pumps through the progressive release of intracellular free Solutol HS15 from doxorubicin submicron emulsion. Furthermore, these in vitro results suggest that the Solutol HS15-based submicron emulsion may be a potentially useful drug delivery system to circumvent multi-drug resistance of tumor cells.

  9. Pattern zoology in biaxially pre-stretched elastic bilayers: from wrinkles and creases to fracture-like ridges

    Science.gov (United States)

    Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro

    The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.

  10. Enhanced resistive switching and multilevel behavior in bilayered HfAlO/HfAlO{sub x} structures for non-volatile memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Faita, F. L., E-mail: fabriciofaita@gmail.com [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Departamento de Física, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Silva, J. P. B., E-mail: josesilva@fisica.uminho.pt [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal); IFIMUP and IN-Institute of Nanoscience and Nanotechnology, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto (Portugal); Pereira, M.; Gomes, M. J. M. [Centre of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-12-14

    In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlO{sub x} layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlO{sub x}(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlO{sub x} thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are ≈10{sup 2} and ≈5 × 10{sup 5}, respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.

  11. Alcohol's Effects on Lipid Bilayer Properties

    Science.gov (United States)

    Ingólfsson, Helgi I.; Andersen, Olaf S.

    2011-01-01

    Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475

  12. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    Science.gov (United States)

    Novaković, M.; Zhang, K.; Popović, M.; Bibić, N.; Hofsäss, H.; Lieb, K. P.

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 × 10 16 cm -2. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 °C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δ σ2/ Φ = 3.0(4) nm 4, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 °C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2Si → CoSi → CoSi 2.

  13. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    International Nuclear Information System (INIS)

    Novakovic, M.; Zhang, K.; Popovic, M.; Bibic, N.; Hofsaess, H.; Lieb, K.P.

    2011-01-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 x 10 16 cm -2 . We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 o C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δσ 2 /Φ = 3.0(4) nm 4 , is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 o C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2 Si → CoSi → CoSi 2 .

  14. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    Energy Technology Data Exchange (ETDEWEB)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M., E-mail: Frans.leermakers@wur.nl [Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6307 HB Wageningen (Netherlands)

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k{sub c} and k{sup ¯} and the preferred monolayer curvature J{sub 0}{sup m}, and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k{sub c} and the area compression modulus k{sub A} are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k{sup ¯} and J{sub 0}{sup m} can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k{sup ¯} and J{sub 0}{sup m} change sign with relevant parameter changes. Although typically k{sup ¯}<0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J{sub 0}{sup m}≫0, especially at low ionic

  15. Tunneling Plasmonics in Bilayer Graphene.

    Science.gov (United States)

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  16. NATO Advanced Study Institute on Physics of Submicron Semiconductor Devices

    CERN Document Server

    Ferry, David; Jacoboni, C

    1988-01-01

    The papers contained in the volume represent lectures delivered as a 1983 NATO ASI, held at Urbino, Italy. The lecture series was designed to identify the key submicron and ultrasubmicron device physics, transport, materials and contact issues. Nonequilibrium transport, quantum transport, interfacial and size constraints issues were also highlighted. The ASI was supported by NATO and the European Research Office. H. L. Grubin D. K. Ferry C. Jacoboni v CONTENTS MODELLING OF SUB-MICRON DEVICES.................. .......... 1 E. Constant BOLTZMANN TRANSPORT EQUATION... ... ...... .................... 33 K. Hess TRANSPORT AND MATERIAL CONSIDERATIONS FOR SUBMICRON DEVICES. . .. . . . . .. . . . .. . .. . .... ... .. . . . .. . . . .. . . . . . . . . . . 45 H. L. Grubin EPITAXIAL GROWTH FOR SUB MICRON STRUCTURES.................. 179 C. E. C. Wood INSULATOR/SEMICONDUCTOR INTERFACES.......................... 195 C. W. Wilms en THEORY OF THE ELECTRONIC STRUCTURE OF SEMICONDUCTOR SURFACES AND INTERFACES...................

  17. Potassium-doped n-type bilayer graphene

    Science.gov (United States)

    Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka

    2018-01-01

    Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.

  18. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    Science.gov (United States)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  19. Bloch-Wave Engineered Submicron Diameter Micropillars with Quality Factors Exceeding 10,000

    DEFF Research Database (Denmark)

    Hofling, S.; Lermer, M.; Gregersen, Niels

    2011-01-01

    Adiabatic design submicron diameter quantum-dot micropillars have been designed and implemented for cavity quantum electrodynamics experiments. Ultra-high experimental quality factors (>10,000) are obtained for submicron diameters and strong light-matter interaction is observed....

  20. Energy gap of ferromagnet-superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Halterman, Klaus; Valls, Oriol T

    2003-10-15

    The excitation spectrum of clean ferromagnet-superconductor bilayers is calculated within the framework of the self-consistent Bogoliubov-de Gennes theory. Because of the proximity effect, the superconductor induces a gap in the ferromagnet spectrum, for thin ferromagnetic layers. The effect depends strongly on the exchange field in the ferromagnet. We find that as the thickness of the ferromagnetic layer increases, the gap disappears, and that its destruction arises from those quasiparticle excitations with wave vectors mainly along the interface. We discuss the influence that the interface quality and Fermi energy mismatch between the ferromagnet and superconductor have on the calculated energy gap. We also evaluate the density of states in the ferromagnet, and we find it in all cases consistent with the gap results.

  1. Theory of in-plane current induced spin torque in metal/ferromagnet bilayers

    Science.gov (United States)

    Sakanashi, Kohei; Sigrist, Manfred; Chen, Wei

    2018-05-01

    Using a semiclassical approach that simultaneously incorporates the spin Hall effect (SHE), spin diffusion, quantum well states, and interface spin–orbit coupling (SOC), we address the interplay of these mechanisms as the origin of the spin–orbit torque (SOT) induced by in-plane currents, as observed in the normal metal/ferromagnetic metal bilayer thin films. Focusing on the bilayers with a ferromagnet much thinner than its spin diffusion length, such as Pt/Co with  ∼10 nm thickness, our approach addresses simultaneously the two contributions to the SOT, namely the spin-transfer torque (SHE-STT) due to SHE-induced spin injection, and the inverse spin Galvanic effect spin–orbit torque (ISGE-SOT) due to SOC-induced spin accumulation. The SOC produces an effective magnetic field at the interface, hence it modifies the angular momentum conservation expected for the SHE-STT. The SHE-induced spin voltage and the interface spin current are mutually dependent and, hence, are solved in a self-consistent manner. The result suggests that the SHE-STT and ISGE-SOT are of the same order of magnitude, and the spin transport mediated by the quantum well states may be an important mechanism for the experimentally observed rapid variation of the SOT with respect to the thickness of the ferromagnet.

  2. Electronic properties of graphene-based bilayer systems

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.com [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); Sboychakov, A.O. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Rakhmanov, A.L. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); All-Russia Research Institute of Automatics, Moscow, 127055 (Russian Federation); Nori, Franco, E-mail: fnori@riken.jp [CEMS, RIKEN, Saitama 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2016-08-23

    This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin–orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.

  3. Dispersion of fullerenes in phospholipid bilayers and the subsequent phase changes in the host bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, U-S. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)]. E-mail: usjeng@nsrrc.org.tw; Hsu, C.-H. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China); Lin, T.-L. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, C.-M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, H.-L. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tai, L.-A. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hwang, K.-C. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2005-02-28

    We have studied the structure and phase transition characteristics of the fullerenes (C{sub 60})-embedded lipid bilayers. With small-angle neutron scattering (SANS), we have observed a degradation of bilayer ordering and a suppression effect on the phase transitions of the host vesicle bilayers of dipalmitoylphosphatidylcholine (DPPC), due to the embedment of fullerenes. The fullerene-embedded lipid system with substrate-oriented bilayers is also investigated using X-ray reflectivity and grazing incident small-angle X-ray scattering (GISAXS). In the depth direction, the multilamellar peaks observed in the X-ray reflectivity profile for the oriented DPPC/C{sub 60} bilayers reveal a larger head-to-head distance D{sub HH} of 50.6 A and a bilayer spacing D of 59.8 A, compared to the D{sub HH}=47.7 A and D=59.5 A for a pure DPPC membrane measured at the same conditions. Furthermore, the lipid head layers and water layers in the extracted electron density profile for the complex system are highly smeared, implying a fluctuating or corrugated structure in this zone. Correspondingly, GISAXS for the oriented DPPC/C{sub 60} membrane reveals stronger diffuse scatterings along the membrane plane than that for the pure DPPC system, indicating a higher in-plane correlation associated with the embedded fullerenes.

  4. General model of phospholipid bilayers in fluid phase within the single chain mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yachong; Baulin, Vladimir A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain); Pogodin, Sergey [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)

    2014-05-07

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  5. Magnetic field-induced elastic bending in bilayers of Tb{sub 1−x}Dy{sub x}Fe{sub 2−y} and Pb(Zr{sub 1−z}Ti{sub z})O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tao; Qichao, Wu; Ning, Zhang, E-mail: zhangning@njnu.edu.cn

    2014-09-01

    Magnetic field-induced strain in the magnetoelectric bilayers of Tb{sub 1−x}Dy{sub x}Fe{sub 2−y} and Pb(Zr{sub 1−z}Ti{sub z})O{sub 3} was studied. A butterfly shaped strain curve was observed on the surface of Pb(Zr{sub 1−z}Ti{sub z})O{sub 3}. The shape of the strain curve was found to be related to the sample thickness and the volume fraction occupied by the ferroelectrics in the bilayer. Theoretical analysis and experimental results showed that magnetoelastic bending in the bilayer composites was largely responsible for the butterfly strain curve. - Highlights: • Butterfly strain curves were observed on the PZT surface for bilayers of TDF and PZT. • The strain curve is related to the sample thickness and the volume fraction of the PZT. • A physics model depicting the field-controlled bending of the bilayers was developed. • The magnetoelastic bending was found to account for the butterfly strain curve.

  6. CrN/AlN superlattice coatings synthesized by pulsed closed field unbalanced magnetron sputtering with different CrN layer thicknesses

    International Nuclear Information System (INIS)

    Lin Jianliang; Moore, John J.; Mishra, Brajendra; Pinkas, Malki; Zhang Xuhai; Sproul, William D.

    2009-01-01

    CrN/AlN superlattice coatings with different CrN layer thicknesses were prepared using a pulsed closed field unbalanced magnetron sputtering system. A decrease in the bilayer period from 12.4 to 3.0 nm and simultaneously an increase in the Al/(Cr + Al) ratio from 19.1 to 68.7 at.% were obtained in the CrN/AlN coatings when the Cr target power was decreased from 1200 to 200 W. The bilayer period and the structure of the coatings were characterized by means of low angle and high angle X-ray diffraction and transmission electron microscopy. The mechanical and tribological properties of the coatings were studied using the nanoindentation and ball-on-disc wear tests. It was found that CrN/AlN superlattice coatings synthesized in the current study exhibited a single phase face-centered cubic structure with well defined interfaces between CrN and AlN nanolayers. Decreases in the residual stress and the lattice parameter were identified with a decrease in the CrN layer thickness. The hardness of the coatings increased with a decrease in the bilayer period and the CrN layer thickness, and reached the highest value of 42 GPa at a bilayer period of 4.1 nm (CrN layer thickness of 1.5 nm, AlN layer thickness of 2.5 nm) and an Al/(Cr + Al) ratio of 59.3 at.% in the coatings. A low coefficient of friction of 0.35 and correspondingly low wear rate of 7 x 10 -7 mm 3 N -1 m -1 were also identified in this optimized CrN/AlN coating when sliding against a WC-6%Co ball.

  7. Hydrophobic thickness of fluid planar monooleylglycerol membran maximally thinned by inversed micellisation

    DEFF Research Database (Denmark)

    Knudsen, P. J.; Mouritsen, Ole G.

    1999-01-01

    be measured by a capacitance technique assuming the relative permittivity of the hydrophobic part of the bilayer. Introduction of an AC microvolt technique allowed manufacture of stable thick membranes by quenching the electroconstriction observed when DC electrical potentials in the millivolt range are used...

  8. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    International Nuclear Information System (INIS)

    Chao-Yang, Duan; Bin, Ma; Zong-Zhi, Zhang; Qing-Yuan, Jin; Fu-Lin, Wei

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L1 0 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe 49 Pt 51 /Fe bi-layers by their exchange coupling

  9. An introduction to deep submicron CMOS for vertex applications

    CERN Document Server

    Campbell, M; Cantatore, E; Faccio, F; Heijne, Erik H M; Jarron, P; Santiard, Jean-Claude; Snoeys, W; Wyllie, K

    2001-01-01

    Microelectronics has become a key enabling technology in the development of tracking detectors for High Energy Physics. Deep submicron CMOS is likely to be extensively used in all future tracking systems. Radiation tolerance in the Mrad region has been achieved and complete readout chips comprising many millions of transistors now exist. The choice of technology is dictated by market forces but the adoption of deep submicron CMOS for tracking applications still poses some challenges. The techniques used are reviewed and some of the future challenges are discussed.

  10. Multicaloric effect in bi-layer multiferroic composites

    International Nuclear Information System (INIS)

    Vopson, M. M.; Zhou, D.; Caruntu, G.

    2015-01-01

    The multicaloric effect was theoretically proposed in 2012 and, despite numerous follow up studies, the effect still awaits experimental confirmation. The main limitation is the fact that the multicaloric effect is only observed at a temperature equal to the transition temperature of the magnetic and electric phases coexisting within a multiferroic (MF) (i.e., T ≈ T c m  ≈ T c e ). Such condition is hard to fulfill in single phase MFs and a solution is to develop suitable composite MF materials. Here, we examine the multicaloric effect in a bi-layer laminated composite MF in order to determine the optimal design parameters for best caloric response. We show that magnetically induced multicaloric effect requires magnetic component of heat capacity smaller than that of the electric phase, while the layer thickness of the magnetic phase must be at least 5 times the thickness of the electric phase. The electrically induced multicaloric effect requires the magnetic layer to be 10% of the electric phase thickness, while its heat capacity must be larger than that of the electric phase. These selection rules are generally applicable to bulk as well as thin film MF composites for optimal multicaloric effect

  11. Cost-effectiveness of Low-dose Submicron Diclofenac Compared With Generic Diclofenac.

    Science.gov (United States)

    Mladsi, Deirdre; Ronquest, Naoko; Odom, Dawn; Miles, LaStella; Saag, Kenneth

    2016-11-01

    NSAIDs are commonly prescribed for the treatment of pain and inflammation. Despite the effectiveness of NSAIDs, concerns exist regarding their tolerability. Worldwide health authorities, including the European Medicines Agency, Health Canada, and the US Food and Drug Administration, have advised that NSAIDs be prescribed at the lowest effective dosage and for the shortest duration. Effective lowering of NSAID dosage without compromising pain relief has been demonstrated in randomized, controlled trials of the recently approved NSAID lower-dose submicron diclofenac. Building on previously published work from an independently published systematic review and meta-analysis, a linear dose-toxicity relationship between diclofenac dose and serious gastrointestinal (GI) events was recently demonstrated, indicating that reductions in adverse events (AEs) may be seen even with modest dose reductions in many patients. The objective of the present study was to estimate the potential reduction in risk for NSAID dose-related AEs, corresponding savings in health care costs, and the incremental cost-effectiveness of submicron diclofenac compared with generic diclofenac in the United States. Our decision-analytic cost-effectiveness model considered a subset of potential AEs that may be avoided by lowering NSAID dosage. To estimate the expected reductions in upper GI bleeding/perforation and major cardiovascular events with submicron diclofenac, our model used prediction equations estimated by meta-regressions using data from systematic literature reviews. Utilities, lifetime costs, and health outcomes associated with AEs were estimated using data from the literature. The face validity of the model structure and inputs was confirmed by clinical experts in the United States. Results were evaluated in 1-way and probabilistic sensitivity analyses. The model predicted that submicron diclofenac versus generic diclofenac could reduce the occurrence of modeled GI events (by 18

  12. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  13. Scanning SQUID susceptometers with sub-micron spatial resolution

    International Nuclear Information System (INIS)

    Kirtley, John R.; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-01-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ_0/Hz"1"/"2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  14. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Padilla, J. L.; Alper, C.; Ionescu, A. M.; Medina-Bailón, C.; Gámiz, F.

    2015-01-01

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I ON levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures

  15. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Medina-Bailón, C.; Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.

  16. Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, M. [VINCA Institute of Nuclear Sciences, 11001 Belgrade (Serbia); II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Zhang, K. [II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Popovic, M.; Bibic, N. [VINCA Institute of Nuclear Sciences, 11001 Belgrade (Serbia); II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Hofsaess, H. [II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany); Lieb, K.P., E-mail: plieb@gwdg.d [II. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2011-05-01

    Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe{sup +} ions at fluences of up to 3 x 10{sup 16} cm{sup -2}. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 {sup o}C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, {Delta}{sigma}{sup 2}/{Phi} = 3.0(4) nm{sup 4}, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 {sup o}C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co{sub 2}Si {yields} CoSi {yields} CoSi{sub 2}.

  17. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki; Jabbour, Ghassan

    2013-01-01

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu

  18. Application To Bilayer System With Water-Soluble Contrast Enhancing Material

    Science.gov (United States)

    Yabuta, Mitsuo; Ito, Naoki; Yamazaki, Hiroyuki; Nakayama, Toshimasa

    1987-09-01

    We have developed ,a water-soluble contrast enhancing material, TAD-436 ( Tokyo Ohka. Anti-Defocus Material ) which is consisted of a water-soluble diazonium salt as bleaching compounds and a water-soluble anion type polymer as binder polymers. Needless to say that water is used as solvent in TAD; therefore, it can be spincoated directly on a positive photoresist layer of a quinonediazide-novolak resin type without causing intermixing and furtheremore the bilayer can be developed without stripping TAD immediately after exposure. TAD shows a satisfactory bleaching characteristics on g-line, increases r-value of underlying photoresist and reduces the thickness loss of photoresist layer in unexposed area. Application to bilayer system with TAD will raise the resolution of underlying photoresist and when the focus depth is changed it will make the change in the resist profile small. As the result of it, the notches in the resist patterns on steps is reduced, making the difference in the linewidth between the top and the bottom of steps small.

  19. Development of Bilayer Tablets with Modified Release of Selected Incompatible Drugs.

    Science.gov (United States)

    Dhiman, Neha; Awasthi, Rajendra; Jindal, Shammy; Khatri, Smriti; Dua, Kamal

    2016-01-01

    The oral route is considered to be the most convenient and commonly-employed route for drug delivery. When two incompatible drugs need to be administered at the same time and in a single formulation, bilayer tablets are the most appropriate dosage form to administer such incompatible drugs in a single dose. The aim of the present investigation was to develop bilayered tablets of two incompatible drugs; telmisartan and simvastatin. The bilayer tablets were prepared containing telmisartan in a conventional release layer using croscarmellose sodium as a super disintegrant and simvastatin in a slow-release layer using HPMC K15M, Carbopol 934P and PVP K 30 as matrix forming polymers. The tablets were evaluated for various physical properties, drug-excipient interactions using FTIR spectroscopy and in vitro drug release using 0.1M HCl (pH 1.2) for the first hour and phosphate buffer (pH 6.8) for the remaining period of time. The release kinetics of simvastatin from the slow release layer were evaluated using the zero order, first order, Higuchi equation and Peppas equation. All the physical parameters (such as hardness, thickness, disintegration, friability and layer separation tests) were found to be satisfactory. The FTIR studies indicated the absence of interactions between the components within the individual layers, suggesting drug-excipient compatibility in all the formulations. No drug release from the slow-release layer was observed during the first hour of the dissolution study in 0.1M HCl. The release-controlling polymers had a significant effect on the release of simvastatin from the slow-release layer. Thus, the formulated bilayer tablets avoided incompatibility issues and proved the conventional release of telmisartan (85% in 45 min) and slow release of simvastatin (80% in 8 h). Stable and compatible bilayer tablets containing telmisartan and simvastatin were developed with better patient compliance as an alternative to existing conventional dosage forms.

  20. Magnetization reversal dynamics in exchange-coupled NiO - Co bilayers

    International Nuclear Information System (INIS)

    Camarero, J.; Pennec, Y.; Bonfim, M.; Vogel, J.; Pizzini, S.; Fontaine, A.; Cartier, M.; Fettar, F.; Dieny, B.

    2001-01-01

    We performed a detailed study of the magnetization reversal in polycrystalline exchange-coupled NiO/Co bilayers over 10 decades of field sweep rate dH/dt for different NiO and Co thicknesses. For all sweep rates and thicknesses, the symmetry of the hysteresis loops shows that an identical pinning strength has to be overcome in both directions of the reversal. At low dH/dt the reversal is governed by domain wall displacement while domain nucleation is dominant at higher ones. The dH/dt at which the transition between the two regimes takes place depends on the relative thickness of the NiO and Co layers. It increases (decreases) when the Co (NiO) thickness is increased. Experimentally, it was found that the energy barrier varies linearly with the square root of the area corresponding to the activation (Barkhausen) volume which is consistent with a random walk model of the coupling between antiferromagnetic and ferromagnetic layers. The results can be explained in terms of a thermally activated switching of the NiO magnetization dragged by the Co reversal. [copyright] 2001 American Institute of Physics

  1. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Masashi [Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580 (Japan); Noda, Kei, E-mail: nodakei@elec.keio.ac.jp [Department of Electronics and Electrical Engineering, Keio University, Hiyoshi, Yokohama 223-8522 (Japan)

    2015-12-01

    Graphical abstract: - Highlights: • A bilayer membrane composed of TiO{sub 2} nanotube array and palladium was fabricated. • The TiO{sub 2}/Pd bilayer membrane was prepared with an all-electrochemical process. • The membrane consists of pure Pd and anatase TiO{sub 2} nanotubes with no alloy formation. • Photocatalytic H{sub 2} production and concomitant separation were demonstrated. • High-purity H{sub 2} production rate and apparent quantum yield were evaluated. - Abstract: We developed an all-electrochemical technique for fabricating a bilayer structure of a titanium dioxide (TiO{sub 2}) nanotube array (TNA) and a palladium film (TNA/Pd membrane), which works for photocatalytic high-purity hydrogen production. Electroless plating was used for depositing the Pd film on the TNA surface prepared by anodizing a titanium foil. A 3-μm-thick TNA/Pd membrane without any pinholes in a 1.5-cm-diameter area was fabricated by transferring a 1-μm-thick TNA onto an electroless-plated 2-μm-thick Pd film with a mechanical peel-off process. This ultrathin membrane with sufficient mechanical robustness showed photocatalytic H{sub 2} production via methanol reforming under ultraviolet illumination on the TNA side, immediately followed by the purification of the generated H{sub 2} gas through the Pd layer. The hydrogen production rate and the apparent quantum yield for high-purity H{sub 2} production from methanol/water mixture with the TNA/Pd membrane were also examined. This work suggests that palladium electroless plating is more suitable and practical for preparing a well-organized TNA/Pd heterointerface than palladium sputter deposition.

  2. Mechanical and tribological properties of a-C/a-C:Ti multilayer films with various bilayer periods

    Energy Technology Data Exchange (ETDEWEB)

    Bai, W.Q.; Cai, J.B.; Wang, X.L., E-mail: wangxl@zju.edu.cn; Wang, D.H.; Gu, C.D.; Tu, J.P., E-mail: tujp@zju.edu.cn

    2014-05-02

    Thick a-C/a-C:Ti multilayer films with bilayer periods of 12–70 nm were deposited on Ti6Al4V alloy substrate by means of closed field unbalance magnetron sputtering. The morphology and microstructure of the multilayer films were investigated by scanning electron microscopy, high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Nanocrystalline TiC was distributed in the a-C:Ti layer and at the interface between the two adjacent layers. The mechanical and tribological properties were evaluated by Rockwell and scratch tests, a nanoindentor and a ball-on-disk tribometer. The multilayer film with a bilayer period of 12 nm showed the highest adhesion strength, hardness (26 GPa) and elastic modulus (232 GPa); it also had the lowest average coefficient of friction (0.09) and a wear rate of 8.06 × 10{sup −17} m{sup 3} N{sup −1} m{sup −1}. - Highlights: • a-C/a-C:Ti multilayers with various bilayer periods were prepared. • Nanocrystalline TiCs were confirmed in the a-C:Ti layer and at the interface. • These multilayers show fine ability to comply with substrate deformation. • The multilayer with a bilayer period of 12 nm exhibits the best properties.

  3. Use of metallic glasses for fabrication of structures with submicron dimensions

    Science.gov (United States)

    Wiley, John D.; Perepezko, John H.

    1986-01-01

    Patterned structures of submicron dimension formed of supported or unsupported amorphous metals having submicron feature sizes characterized by etching behavior sufficient to allow delineation of sharp edges and smooth flat flanks, resistance to time-dependent dimensional changes caused by creep, flow, in-diffusion of unwanted impurities, out-diffusion of constituent atoms, void formation, grain growth or phase separation and resistance to phase transformations or compound formation.

  4. Spin-Coating and Characterization of Multiferroic MFe2O4 (M=Co, Ni) / BaTiO3 Bilayers

    Science.gov (United States)

    Quandt, Norman; Roth, Robert; Syrowatka, Frank; Steimecke, Matthias; Ebbinghaus, Stefan G.

    2016-01-01

    Bilayer films of MFe2O4 (M=Co, Ni) and BaTiO3 were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO3. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm-3 for the CoFe2O4/BaTiO3 and 188 emu cm-3 for the NiFe2O4/BaTiO3 bilayer, respectively were found. For the CoFe2O4/BaTiO3 bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe2O4/BaTiO3 bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems.

  5. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    International Nuclear Information System (INIS)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag

    2015-01-01

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions

  6. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag, E-mail: mehra@iitb.ac.in [Indian Institute of Technology Bombay, Department of Chemical Engineering (India)

    2015-01-15

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions.

  7. Electrosprayed Polyvinylpyrrolidone (PVP) Submicron Particles Loaded by Green Tea Extracts

    Science.gov (United States)

    Kamaruddin; Sriyanti, I.; Edikresnha, D.; Munir, M. M.; Khairurrijal, K.

    2018-05-01

    Electrospraying technique has been successfully used to synthesize composite submicron particles of polyvinylpyrrolidone (PVP) and green tea extract (GTE). The precursor solutions were PVP in ethanol (15 wt%) and GTE in ethanol (10 wt%), which were then mixed at varying ratio. The mixed solution then underwent electrospraying process at an applied voltage of 15 kV, a distance of collector to the nozzle at 15 cm, and a flow rate of 3 µL/min. The composite submicron particles of PVP-GTE showed smooth and fine spherical morphology without fibers or beaded fibers. To a certain degree, the increase of GTE content in the PVP-GTE mixed solution decreased the average diameter of PVP-GTE composite particles. Moreover, the analysis of the FTIR spectra confirmed the existing molecular interaction between PVP and GTE in the composite submicron particles as shown by the shift of PVP wavenumber towards GTE, which has typically smaller wavenumber.

  8. Fabrication, microstructure, and mechanical properties of high strength cobalt sub-micron structures

    International Nuclear Information System (INIS)

    Jin Sumin; Burek, Michael J.; Evans, Robert D.; Jahed, Zeinab; Leung, Michael C.; Evans, Neal D.; Tsui, Ting Y.

    2012-01-01

    The mechanical properties exhibited by sub-micron scale columnar structures of cobalt, fabricated by electron beam lithography and electroplating techniques, were investigated through uniaxial compression. Transmission electron microscopy analyses show these specimens possess a microstructure with sub-micron grains which are elongated and aligned near to the pillar loading axis. In addition, small nanocrystalline cobalt crystals are also present within the columnar structure. These specimens display exceptional mechanical strength comparable with both bulk polycrystalline and nanocrystalline cobalt deposited by electroplating. Size-dependent softening with shrinking sample dimensions is also observed in this work. Additionally, the strength of these sub-micron structures appears to be strain rate sensitive and comparable with bulk nanocrystalline cobalt specimens.

  9. Bilayered Films Based on Novel Polymer Derivative for Improved Ocular Therapy of Gatifloxacin

    Directory of Open Access Journals (Sweden)

    Naval Dinesh Aher

    2014-01-01

    Full Text Available Context. Thiomers could prove to be suitable mucoadhesives for fabrication of ocular inserts. Objective. The study intends to explore the application of thiolated sodium alginate (TSA to the preparation of bilayered ocular inserts of gatifloxacin. Methods. Cysteine moieties were grafted onto sodium alginate (SA and the resultant thiomer was characterized for relevant physicochemical properties. Bilayered inserts were fabricated with a mucoadhesive immediate release layer composed of either SA or TSA and a sustained release layer composed of acrylates. Films were prepared by solvent evaporation and evaluated for mechanical properties, drug content, and in vitro release. Results and Discussion. The synthesized TSA possessed 248.80±49.7 μmol thiol groups/gm and its solutions thickened on standing due to disulphide bridging. Its films showed improved mucoadhesion and also a strikingly beneficial property of resisting erosion and remaining as a hydrated adhesive layer for the duration of drug release. The bilayered films were found to be flexible, with good folding endurance, uniform thickness, and appropriate drug content, and showed a release of about 80% of loaded gatifloxacin in 12 h. Conclusion. The study demonstrates promise in employing thiolated polymer in conjunction with acrylates for the design of ocular inserts for twice a day therapy with gatifloxacin.

  10. Bilayered Films Based on Novel Polymer Derivative for Improved Ocular Therapy of Gatifloxacin

    Science.gov (United States)

    Aher, Naval Dinesh; Nair, Hema Ajit

    2014-01-01

    Context. Thiomers could prove to be suitable mucoadhesives for fabrication of ocular inserts. Objective. The study intends to explore the application of thiolated sodium alginate (TSA) to the preparation of bilayered ocular inserts of gatifloxacin. Methods. Cysteine moieties were grafted onto sodium alginate (SA) and the resultant thiomer was characterized for relevant physicochemical properties. Bilayered inserts were fabricated with a mucoadhesive immediate release layer composed of either SA or TSA and a sustained release layer composed of acrylates. Films were prepared by solvent evaporation and evaluated for mechanical properties, drug content, and in vitro release. Results and Discussion. The synthesized TSA possessed 248.80 ± 49.7 μmol thiol groups/gm and its solutions thickened on standing due to disulphide bridging. Its films showed improved mucoadhesion and also a strikingly beneficial property of resisting erosion and remaining as a hydrated adhesive layer for the duration of drug release. The bilayered films were found to be flexible, with good folding endurance, uniform thickness, and appropriate drug content, and showed a release of about 80% of loaded gatifloxacin in 12 h. Conclusion. The study demonstrates promise in employing thiolated polymer in conjunction with acrylates for the design of ocular inserts for twice a day therapy with gatifloxacin. PMID:24516362

  11. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed

    2016-07-12

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ. While the spin Hall effect dominates in the diffusive limit (d≫λ), spin swapping dominates in the Knudsen regime (d≲λ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  12. Spin-Swapping Transport and Torques in Ultrathin Magnetic Bilayers

    KAUST Repository

    Saidaoui, Hamed Ben Mohamed; Manchon, Aurelien

    2016-01-01

    Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ. While the spin Hall effect dominates in the diffusive limit (d≫λ), spin swapping dominates in the Knudsen regime (d≲λ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

  13. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    Science.gov (United States)

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-01-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm−1K−1(+141 Wm−1K−1/ −24 Wm−1K−1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN. PMID:27142571

  14. Edge states in gated bilayer-monolayer graphene ribbons and bilayer domain walls

    Science.gov (United States)

    Mirzakhani, M.; Zarenia, M.; Peeters, F. M.

    2018-05-01

    Using the effective continuum model, the electron energy spectrum of gated bilayer graphene with a step-like region of decoupled graphene layers at the edge of the sample is studied. Different types of coupled-decoupled interfaces are considered, i.e., zigzag (ZZ) and armchair junctions, which result in significant different propagating states. Two non-valley-polarized conducting edge states are observed for ZZ type, which are mainly located around the ZZ-ended graphene layers. Additionally, we investigated both BA-BA and BA-AB domain walls in the gated bilayer graphene within the continuum approximation. Unlike the BA-BA domain wall, which exhibits gapped insulating behaviour, the domain walls surrounded by different stackings of bilayer regions feature valley-polarized edge states. Our findings are consistent with other theoretical calculations, such as from the tight-binding model and first-principles calculations, and agree with experimental observations.

  15. Reactions of radicals with lecithin bilayers

    International Nuclear Information System (INIS)

    Barber, D.J.W.; Thomas, J.K.

    1978-01-01

    The kinetics of reaction of .OH and e/sub aq/ - with lecithin bilayers have been measured. The rate for .OH + lecithin is 5.1 +- 0.9 x 10 8 M -1 sec -1 while the e/sub aq/ - + lecithin rate is very slow. When a solute such as pyrene is solubilized in the bilayer, .OH and e/sub aq/ - may react with the solute; rates of 1.65 +- 0.12 x 10 9 M -1 sec -1 and 7 x 10 7 M -1 sec -1 have been measured for reaction of .OH and e/sub aq/ - , respectively, with pyrene in lecithin. These rates are lower than those observed for similar reactions in homogeneous systems. This is explained in terms of (a) the protective effect of the bilayer, this being especially true for e/sub aq/ - which does not readily leave the aqueous phase, and (b) in terms of the restricted diffusion imposed on the reactive species by the bilayer. The kinetics in these model systems are relevant to reactions of radicals with membranes. Long-term alteration in the model membrane following .OH attack is manifested in terms of damage to the head group, increasing water penetration of the bilayer, and of cross-linking with the membrane, thereby restricting motion in the interior of the bilayer. Increased rigidity and leakiness of membranes is an expected consequence of radiation damage

  16. Crystallization of silicon films of submicron thickness by blue-multi-laser-diode annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mugiraneza, Jean de Dieu; Shirai, Katsuya; Suzuki, Toshiharu; Okada, Tatsuya; Noguchi, Takashi [University of the Ryukyus, Okinawa (Japan); Matsushima, Hideki; Hashimoto, Takao; Ogino, Yoshiaki; Sahota, Eiji [Hitachi Computer Peripherals Co. Ltd, Kanagawa (Japan)

    2012-01-15

    Blue-Multi-Laser-Diode Annealing (BLDA) was performed in the continuous wave (CW) mode on Si films as thick as 0.5 {mu}m and 1 {mu}m deposited by rf sputtering. As a result of controlling the laser power from 4.0 to 4.8 W, a whole Si layer of 0.5 {mu}m in thickness was completely crystallized and consisted of a columnar structure of fine grains beneath a partially melted Si surface owing to the high temperature gradient along the depth in the Si layer. After additional hydrogenation in a furnace ambient, the ratio of the photo/dark current under AM 1.5 illumination distinctly improved to 6 times higher than that of as-deposited condition. The BLDA is expected to be applied to thin-film solar cells and/or to thin film transistor (TFT) photo-sensor systems on panels as a new low-temperature poly-silicon (LTPS) fabrication technique.

  17. Integration of finite element analysis and design of experiments to analyse the geometrical factors in bi-layered tube hydroforming

    International Nuclear Information System (INIS)

    Alaswad, A.; Olabi, A.G.; Benyounis, K.Y.

    2011-01-01

    Tube hydroforming (THF) is a type of unconventional metal forming process in which high fluid pressure and axial feed are used to deform a tube blank in the desired shape. Bi-layered tube hydroforming is suitable to produce bi-layered joints to be used in special applications such as aerospace, oil production and nuclear power plants. In this work, a finite element study along with response surface methodology (RSM) for design of experiment (DOE) has been used to construct models for three responses namely: bulge height, thickness reduction, and wrinkle height as a function of geometrical factors for X shape bi-layered tube hydroforming. A finite element model was built and experimentally validated. The models developed using finite element analysis (FEA) and RSM was found to be educated. The factors effect and their interactions on the three responses were determined and discussed. Such integration was proved to be a successful technique that can be used to predict the geometry of the hydroformed part.

  18. Diffusion-induced grain boundary migration during ion beam mixing of Au/Cu bilayers

    International Nuclear Information System (INIS)

    Alexander, D.E.; Baldo, P.M.; Rehn, L.E.

    1992-09-01

    Experiments were performed to evaluate the effect of 1.5 MeV Kr irradiation on diffusion-induced grain boundary migration (DIGM) in Au/Cu bilayers in the temperature range of 300≤T≤050K. The experimental results were consistent with DIGM occurring in bilayers both during irradiation and during annealing treatments. Rutherford backscattering spectrometry showed a nearly uniform distribution of Cu present through the entire thickness of appropriately prepared polycrystalline Au films irradiated or annealed at temperatures ≥400K. No parallel effect was seen in similarly treated single-crystal films. In each polycrystalline sample studied, irradiation resulted in greater amounts of Cu present uniformly in the Au compared to annealing-only. The magnitudes of measured Cu compositions were substantially greater than that expected solely from grain boundary diffusion. A simple analysis of the process indicated that ion irradiation affects DIGM by increasing the composition of Cu present in alloyed zones and/or by increasing the grain boundary velocity in the Au

  19. Mixed Mechanism of Lubrication by Lipid Bilayer Stacks.

    Science.gov (United States)

    Boţan, Alexandru; Joly, Laurent; Fillot, Nicolas; Loison, Claire

    2015-11-10

    Although the key role of lipid bilayer stacks in biological lubrication is generally accepted, the mechanisms underlying their extreme efficiency remain elusive. In this article, we report molecular dynamics simulations of lipid bilayer stacks undergoing load and shear. When the hydration level is reduced, the velocity accommodation mechanism changes from viscous shear in hydration water to interlayer sliding in the bilayers. This enables stacks of hydrated lipid bilayers to act as efficient boundary lubricants for various hydration conditions, structures, and mechanical loads. We also propose an estimation for the friction coefficient; thanks to the strong hydration forces between lipid bilayers, the high local viscosity is not in contradiction with low friction coefficients.

  20. Peierls instability and optical properties of bilayer polyacene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longlong, E-mail: zhanglonglong@tyut.edu.cn [The College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Shijie [School of Physics, Shandong University, Jinan 250100 (China)

    2017-05-03

    Highlights: • The Peierls instability of bilayer polyacene is discussed. • The external electric field effect on bilayer polyacene is discussed. • The pressure effect on bilayer polyacene is discussed. • The optical properties of bilayer polyacene are discussed. - Abstract: We reveal that bilayer polyacene can be the gapped state due to the intralayer Peierls instability. There are six topologically inequivalent Peierls-distorted structures and they are degenerate in energy. The external electric field can tune the Peierls gap and induce the semiconductor-to-metallic phase transitions. The optical conductivity spectra are calculated in an attempt to categorize the Peierls-distorted structures. The strength of the interlayer coupling essentially affects the electronic properties and the optical selection rules.

  1. Infrared spectroscopy of fluid lipid bilayers.

    Science.gov (United States)

    Hull, Marshall C; Cambrea, Lee R; Hovis, Jennifer S

    2005-09-15

    Infrared spectroscopy is a powerful technique for examining lipid bilayers; however, it says little about the fluidity of the bilayer-a key physical aspect. It is shown here that it is possible to both acquire spectroscopic data of supported lipid bilayer samples and make measurements of the membrane fluidity. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR) is used to obtain the spectroscopic information and fluorescence recovery after photobleaching (FRAP) is used to determine the fluidity of the samples. In the infrared spectra of lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, the following major peaks were observed; nu(as)(CH3) 2954 cm(-1), nu(s)(CH3) 2870 cm(-1), nu(as)(CH2) 2924 cm(-1), nu(s)(CH2) 2852 cm(-1), nu(C=O) 1734 cm(-1), delta(CH2) 1463-1473 cm(-1), nu(as)(PO2-) 1226 cm(-1), nu(s)(PO2-) 1084 cm(-1), and nu(as)(N+(CH3)3) 973 cm(-1). The diffusion coefficient of the same lipid bilayer was measured to be 3.5 +/- 0.5 micom(2)/s with visual recovery also noted through use of epifluorescence microscopy. FRAP and visual data confirm the formation of a uniform, mobile supported lipid bilayer. The combination of ATR-FT-IR and FRAP provides complementary data giving a more complete picture of fully hydrated model membrane systems.

  2. Viscoelastic deformation of lipid bilayer vesicles.

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  3. Magnetization reversal and exchange bias effects in hard/soft ferromagnetic bilayers with orthogonal anisotropies

    International Nuclear Information System (INIS)

    Navas, D; Ross, C A; Torrejon, J; Béron, F; Pirota, K R; Redondo, C; Sierra, B; Castaño, F; Batallan, F; Toperverg, B P; Devishvili, A

    2012-01-01

    The magnetization reversal processes are discussed for exchange-coupled ferromagnetic hard/soft bilayers made from Co 0.66 Cr 0.22 Pt 0.12 (10 and 20 nm)/Ni (from 0 to 40 nm) films with out-of-plane and in-plane magnetic easy axes respectively, based on room temperature hysteresis loops and first-order reversal curve analysis. On increasing the Ni layer thicknesses, the easy axis of the bilayer reorients from out-of-plane to in-plane. An exchange bias effect, consisting of a shift of the in-plane minor hysteresis loops along the field axis, was observed at room temperature after in-plane saturation. This effect was associated with specific ferromagnetic domain configurations experimentally determined by polarized neutron reflectivity. On the other hand, perpendicular exchange bias effect was revealed from the out-of-plane hysteresis loops and it was attributed to residual domains in the magnetically hard layer. (paper)

  4. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct.

    Science.gov (United States)

    Carlo Reis, Emily C; Borges, Andréa P B; Araújo, Michel V F; Mendes, Vanessa C; Guan, Limin; Davies, John E

    2011-12-01

    The regeneration of tissues affected by periodontal disease is a complex process; it encompasses the formation of bone, cementum and periodontal ligament. We developed a semi-rigid PLGA (polylactide-co-glycolide acid)/CaP (calcium phosphate) bilayered biomaterial construct to promote periodontal regeneration, which has a continuous outer barrier membrane and an inner topographically complex component. Our experimental model compared periodontal prophylaxis alone with prophylaxis and biomaterial implantation in the treatment of class II furcation defects in dogs. Clinical evaluation, micro-computed tomography, histology and backscattered electron imaging were used for data analysis. Healing occurred uneventfully and bone volumetric values, trabecular number and trabecular thickness were all significantly greater in the treated group; while trabecular separation was significantly greater in the control group. New cementum, bone, and periodontal ligament with Sharpey fibre insertions were only seen in the treated group. Although periodontal regeneration has been reported elsewhere, the advantages of employing our bilayered PLGA + CaP construct are twofold: 1)it did not collapse into the defect; and, 2) its inner side was able to retain the blood clot throughout the buccal defect. The result was greater periodontal regeneration than has previously been reported with traditional flexible membranes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Engineering plant membranes using droplet interface bilayers.

    Science.gov (United States)

    Barlow, N E; Smpokou, E; Friddin, M S; Macey, R; Gould, I R; Turnbull, C; Flemming, A J; Brooks, N J; Ces, O; Barter, L M C

    2017-03-01

    Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana , tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.

  6. Interaction of elaiophylin with model bilayer membrane

    Science.gov (United States)

    Genova, J.; Dencheva-Zarkova, M.

    2017-01-01

    Elaiophylin is a new macrodiolide antibiotic, which is produced by the Streptomyces strains [1]. It displays biological activities against Gram-positive bacteria and fungi. The mode of action of this antibiotic has been attributed to an alteration of the membrane permeability. When this antibiotic is inserted into the bilayer membranes destabilization of the membrane and formation of ion-penetrable channels is observed. The macrodiolide antibiotic forms stable cation selective ion channels in synthetic lipid bilayer membranes. The aim of this work was to study the interactions of Elaiophylin with model bilayer membranes and to get information on the mechanical properties of lipid bilayers in presence of this antibiotic. Patch-clamp technique [2] were used in the study

  7. Pair interaction of bilayer-coated nanoscopic particles

    International Nuclear Information System (INIS)

    Qi-Yi, Zhang

    2009-01-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery. (condensed matter: structure, thermal and mechanical properties)

  8. Cu-Si bilayers as storage medium in optical recording

    International Nuclear Information System (INIS)

    Kuiper, A.E. T.; Vullers, R.J.M.; Pasquariello, D.; Naburgh, E.P.

    2005-01-01

    Instead of a phase change or a dye layer, a Cu/Si bilayer can be applied as the recording medium in a write-once Blu-ray Disc. The write process basically comprises the formation of a CuSi alloy containing 25-30 at. % Si, while any excess of Si is left behind as unreacted film. Auger analyses of the laser-written layers indicate that recording consists primarily of the diffusion of Si into Cu. The data allow for discrimination between the various models presented in literature for Cu/Si-based recording and to optimize the stack. Very low jitter levels of typically 4% proved to be achievable with equally thick films of Cu and Si as recording medium

  9. Possible mechanism of adhesion in a mica supported phospholipid bilayer

    International Nuclear Information System (INIS)

    Pertsin, Alexander; Grunze, Michael

    2014-01-01

    Phospholipid bilayers supported on hydrophilic solids like silica and mica play a substantial role in fundamental studies and technological applications of phospholipid membranes. In both cases the molecular mechanism of adhesion between the bilayer and the support is of primary interest. Since the possibilities of experimental methods in this specific area are rather limited, the methods of computer simulation acquire great importance. In this paper we use the grand canonical Monte Carlo technique and an atomistic force field to simulate the behavior of a mica supported phospholipid bilayer in pure water as a function of the distance between the bilayer and the support. The simulation reveals a possible adhesion mechanism, where the adhesion is due to individual lipid molecules that protrude from the bilayer and form widely spaced links with the support. Simultaneously, the bilayer remains separated from the bilayer by a thin water interlayer which maintains the bilayer fluidity

  10. SUBMICRON PARTICLES EMISSION CONTROL BY ELECTROSTATIC AGGLOMERATION

    Directory of Open Access Journals (Sweden)

    Andrzej Krupa

    2017-04-01

    Full Text Available The aim of the study was to develop a device for more effective treatment of flue gases from submicron particles emitted by power plants burning bituminous coal and by this way the reduction of environment pollution. Electrostatic processes were employed to this goal, as the most effective solution. The solutions hitherto applied in electrostatic precipitation techniques were designed for large particles, typically with sizes> 5 µm, which are easily removed by the action of electrostatic force on the electrically charged particles. In submicron size range (0.1-1 µm the collection efficiency of an ESP is minimal, because of the low value of electric charge on such particles. In order to avoid problems with the removal of submicron particles of fly ash from the flue gases electrostatic agglomeration has been used. In this process, by applying an alternating electric field, larger charged particles (> 1 µm oscillate, and the particles "collect" smaller uncharged particles. In the developed agglomerator with alternating electric field, the charging of particles and the coagulation takes place in one stage that greatly simplified the construction of the device, compared to other solutions. The scope of this study included measurements of fractional collection efficiency of particles in the system comprising of agglomerator and ESP for PM1 and PM2.5 ranges, in device made in pilot scale. The collection efficiency for PM2.5 was greater than 90% and PM1 slightly dropped below 90%. The mass collection efficiency for PM2.5 was greater than 95%. The agglomerator stage increases the collection efficiency for PM1 at a level of 5-10%.

  11. Viscoelastic deformation of lipid bilayer vesicles†

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L.

    2015-01-01

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic. PMID:26268612

  12. Band-gap tunability and dynamical instability in strained monolayer and bilayer phosphorenes

    International Nuclear Information System (INIS)

    Huang, G Q; Xing, Z W

    2015-01-01

    Very recently, field-effect transistors based on few-layer phosphorene crystals with a thickness of down to a few nanometres were successfully fabricated, triggering interest in this new functional two-dimensional material. In this work, we apply first-principles calculations to studying the evolution of electronic and phononic structures with out-of-plane strain for monolayer and bilayer phosphorenes. It is found that the vertical stress can be used to tune the band gap of a semiconducting phosphorene in a wide range. On the other hand, the vertical stress can make the phosphorene lattice become dynamically unstable and surface reconstruction or structural phase transition may occur. Due to the interlayer van der Waals coupling, the dynamically stable range of bilayer phosphorene under vertical stress is wider than that of monolayer phosphorene. It is proposed whether or not a semiconductor-semimetal transition occurring in a strained phosphorene is determined not only by its band gap closing, but also by its lattice stability against strain. This information is essential for the strain engineering of phosphorene and future device fabrication. (paper)

  13. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria

    Science.gov (United States)

    2013-01-01

    Background Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. Results Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 μm to 0.8 μm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. Conclusions We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design. PMID:23575419

  14. Interface properties of bilayer structure Alq{sub 3}/Fe{sub 65}Co{sub 35}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: wangzhen@chd.edu.cn [Department of Applied Physics, Chang’an University, Xi’an 710064 (China); Xu, Chunlong; Wang, Jinguo; Chang, Qiaoli [Department of Applied Physics, Chang’an University, Xi’an 710064 (China); Zuo, Yalu; Xi, Li [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2015-04-01

    Highlights: • Bilayer structure of Alq{sub 3}/FeCo was fabricated in a dual ultra high vacuum chamber. • Organic layer reacts partially with the FeCo film. • Electronic injection barrier is 0.76 eV in the interface. • The induced uniaxial anisotropy appears in Alq{sub 3}/FeCo. - Abstract: The interface between the organic and magnetic electrodes is a fundamental problem in organic spintronics devices. Therefore, bilayer structure of Alq{sub 3}/FeCo was fabricated in a dual ultra high vacuum chamber. The electronic structure of Alq{sub 3}–FeCo interface has been studied by X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy with Argon ion etching technique. It was found that organic layer reacts partially with the FeCo film, forming complex binding of metallic carbide and/or oxidation state in the interfacial region. Electronic injection barrier is 0.76 eV in the interface. The structural variation of the contact region is proposed to be one of the possible factors resulting in spin-injection failure. The magnetic properties of FeCo film with different thicknesses on glass substrate and Alq{sub 3} layer are also investigated. The induced uniaxial anisotropy only presents in 3 nm FeCo thickness for glass/FeCo, while it appears in 3–5 nm FeCo for Alq{sub 3}/FeCo.

  15. Photonic bandpass filter characteristics of multimode SOI waveguides integrated with submicron gratings.

    Science.gov (United States)

    Sah, Parimal; Das, Bijoy Krishna

    2018-03-20

    It has been shown that a fundamental mode adiabatically launched into a multimode SOI waveguide with submicron grating offers well-defined flat-top bandpass filter characteristics in transmission. The transmitted spectral bandwidth is controlled by adjusting both waveguide and grating design parameters. The bandwidth is further narrowed down by cascading two gratings with detuned parameters. A semi-analytical model is used to analyze the filter characteristics (1500  nm≤λ≤1650  nm) of the device operating in transverse-electric polarization. The proposed devices were fabricated with an optimized set of design parameters in a SOI substrate with a device layer thickness of 250 nm. The pass bandwidth of waveguide devices integrated with single-stage gratings are measured to be ∼24  nm, whereas the device with two cascaded gratings with slightly detuned periods (ΔΛ=2  nm) exhibits a pass bandwidth down to ∼10  nm.

  16. Thermotropic and Barotropic Phase Behavior of Phosphatidylcholine Bilayers

    Directory of Open Access Journals (Sweden)

    Nobutake Tamai

    2013-01-01

    Full Text Available Bilayers formed by phospholipids are frequently used as model biological membranes in various life science studies. A characteristic feature of phospholipid bilayers is to undergo a structural change called a phase transition in response to environmental changes of their surroundings. In this review, we focus our attention on phase transitions of some major phospholipids contained in biological membranes, phosphatidylcholines (PCs, depending on temperature and pressure. Bilayers of dipalmitoylphosphatidylcholine (DPPC, which is the most representative lipid in model membrane studies, will first be explained. Then, the bilayer phase behavior of various kinds of PCs with different molecular structures is revealed from the temperature–pressure phase diagrams, and the difference in phase stability among these PC bilayers is discussed in connection with the molecular structure of the PC molecules. Furthermore, the solvent effect on the phase behavior is also described briefly.

  17. Unidirectional Spin-Wave-Propagation-Induced Seebeck Voltage in a PEDOT:PSS/YIG Bilayer

    Science.gov (United States)

    Wang, P.; Zhou, L. F.; Jiang, S. W.; Luan, Z. Z.; Shu, D. J.; Ding, H. F.; Wu, D.

    2018-01-01

    We clarify the physical origin of the dc voltage generation in a bilayer of a conducting polymer film and a micrometer-thick magnetic insulator Y3Fe5O12 (YIG) film under ferromagnetic resonance and/or spin wave excitation conditions. The previous attributed mechanism, the inverse spin Hall effect in the polymer [Nat. Mater. 12, 622 (2013), 10.1038/nmat3634], is excluded by two control experiments. We find an in-plane temperature gradient in YIG which has the same angular dependence with the generated voltage. Both vanish when the YIG thickness is reduced to a few nanometers. Thus, we argue that the dc voltage is governed by the Seebeck effect in the polymer, where the temperature gradient is created by the nonreciprocal magnetostatic surface spin wave propagation in YIG.

  18. Transport Asymmetry of Novel Bi-Layer Hybrid Perfluorinated Membranes on the Base of MF-4SC Modified by Halloysite Nanotubes with Platinum

    Directory of Open Access Journals (Sweden)

    Anatoly Filippov

    2018-03-01

    Full Text Available Three types of bi-layer hybrid nanocomposites on the base of perfluorinated cation-exchange membrane MF-4SC (Russian analogue of Nafion®-117 were synthesized and characterized. It was found that two membranes possess the noticeable asymmetry of the current–voltage curve (CVC under changing their orientation towards the applied electric field, despite the absence of asymmetry of diffusion permeability. These phenomena were explained in the frame of the “fine-porous model” expanded for bi-layer membranes. A special procedure to calculate the real values of the diffusion layers thickness and the limiting current density was proposed. Due to asymmetry effects of the current voltage curves of bi-layer hybrid membranes on the base of MF-4SC, halloysite nanotubes and platinum nanoparticles, it is prospective to assemble membrane switches (membrane relays or diodes with predictable transport properties, founded upon the theory developed here.

  19. Comparison study of transparent RF-sputtered ITO/AZO and ITO/ZnO bilayers for near UV-OLED applications

    Science.gov (United States)

    Rezaie, Mahdiyar Nouri; Manavizadeh, Negin; Abadi, Ehsan Mohammadi Nasr; Nadimi, Ebrahim; Boroumand, Farhad Akbari

    2017-01-01

    Hybrid inorganic/organic light-emitting diodes have attracted much attention in the field of luminescent electronics due to the desired incorporation of high optoelectronic features of inorganic materials with the processability and variety of organic polymers. To generate and emit a near ultraviolet (N-UV) ray, wide band gap semiconductors can be applied in the organic light-emitting diodes (OLEDs). In this paper, zinc oxide (ZnO) and aluminum-doped ZnO (AZO) thin films are deposited by radio frequency (RF) sputtering above the ITO electrode and poly [2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) conjugated polymer is utilized as a complementary p-type semiconductor in OLED structure. The impact of ZnO and AZO thickness on the structural, electrical, optical and morphological properties of ITO/AZO and ITO/ZnO bilayers are scrutinized and compared. Results show that with the enlargement of both ZnO and AZO film thickness, the physical properties are gradually improved resulting in the better quality of transparent conducting thin film. The average electrical resistivity of 8.4 × 10-4 and 1.1 × 10-3 Ω-cm, average sheet resistance of 32.9 and 42.3 Ω/sq, average transmittance of 88.3 and 87.3% and average FOM of 1.0 × 104 and 7.4 × 103 (Ω-cm)-1 are obtained for ITO/AZO and ITO/ZnO bilayers, respectively. Moreover, comparing the results indicates that the strain and the stress within the ITO/AZO bilayer are decreased nearly 19% with respect to ITO/ZnO bilayer which yield higher quality of crystal. Consequently, the physical properties of ITO/AZO bilayer is found to be superior regarding ITO/ZnO bilayer. For fabricated UV-OLEDs, the turn-on voltages, the characteristic energy (Et) and the total concentration of traps (Nt) for the devices with the structures of ITO/ZnO/MEH-PPV/Al and ITO/AZO/MEH-PPV/Al are obtained 12 and 14 V, 0.108 and 0.191 eV, 9.33 × 1016 and 5.22 × 1016 cm-3, respectively. Furthermore, according to the electroluminescence

  20. The effect of arsenic thermal diffusion on the morphology and photoluminescence properties of sub-micron ZnO rods

    Energy Technology Data Exchange (ETDEWEB)

    Ding Meng [Department of Physics, Jilin University, Changchun 130023 (China); Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China); Yao Bin, E-mail: binyao@jlu.edu.c [Department of Physics, Jilin University, Changchun 130023 (China); Zhao Dongxu, E-mail: dxzhao2000@yahoo.com.c [Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China); Fang Fang; Shen Dezhen; Zhang Zhenzhong [Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130021 (China)

    2010-05-31

    As-doped sub-micron ZnO rods were realized by a simple thermal diffusion process using a GaAs wafer as an arsenic resource. The surface of the sub-micron ZnO rods became rough and the morphology of As-doped sub-micron ZnO rods changed markedly with increasing diffusion temperature. From the results of energy-dispersive X-ray spectroscopy, X-ray diffraction and photoluminescence, arsenic elements were confirmed to be introduced into the sub-micron ZnO rods. The acceptor ionization energy was deduced to be about 110 meV based on the temperature-dependent PL spectra.

  1. The effect of arsenic thermal diffusion on the morphology and photoluminescence properties of sub-micron ZnO rods

    International Nuclear Information System (INIS)

    Ding Meng; Yao Bin; Zhao Dongxu; Fang Fang; Shen Dezhen; Zhang Zhenzhong

    2010-01-01

    As-doped sub-micron ZnO rods were realized by a simple thermal diffusion process using a GaAs wafer as an arsenic resource. The surface of the sub-micron ZnO rods became rough and the morphology of As-doped sub-micron ZnO rods changed markedly with increasing diffusion temperature. From the results of energy-dispersive X-ray spectroscopy, X-ray diffraction and photoluminescence, arsenic elements were confirmed to be introduced into the sub-micron ZnO rods. The acceptor ionization energy was deduced to be about 110 meV based on the temperature-dependent PL spectra.

  2. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  3. Interface-mediation of lipid bilayer organization and dynamics.

    Science.gov (United States)

    Mize, Hannah E; Blanchard, G J

    2016-06-22

    We report on the morphology and dynamics of planar supported lipid bilayer structures as a function of pH and ionic strength of the aqueous overlayer. Supported lipid bilayers composed of three components (phosphocholine, sphingomyelin and cholesterol) are known to exhibit phase segregation, with the characteristic domain sizes dependent on the amount and identity of each constituent, and the composition of the aqueous overlayer in contact with the bilayer. We report on fluorescence anisotropy decay imaging measurements of a rhodamine chromophore tethered to the headgroup of a phosphoethanolamine, where anisotropy decay images were acquired as a function of solution overlayer pH and ionic strength. The data reveal a two-component anisotropy decay under all conditions, with the faster time constant being largely independent of pH and ionic strength and the slower component depending on pH and ionic strength in different manners. For liposomes of the same composition, a single exponential anisotropy decay was seen. We interpret this difference in terms of bilayer curvature and support surface-bilayer interactions, and the pH and ionic strength dependencies in terms of ionic screening and protonation in the bilayer headgroup region.

  4. Fabrication of sub-micron whole waffer SIS tunnel junctions for millimeter wave mixers

    International Nuclear Information System (INIS)

    Huq, S.E.; Blamire, M.G.; Evetts, J.E.; Hasko, D.G.; Ahmed, H.

    1991-01-01

    As a part of a programme for the development of a space-qualified sub-mm-wave mixer operating in the region of one terahertz we have been developing the processes required for the fabrication of submicron whole wafer tunnel junctions. Using the self-aligned whole-wafer process (SAWW) with electron beam lithography we have been able to reliably fabricate high quality (V m > 20 mV) submicron tunnel junctions from whole wafer Nb/AlO x /Nb structures. In particular we show that the junction quality is independent of size down to 0.3 μm 2 junction area. The problems of film stress, anodization, registration for electron beam lithography and lift-off, which limit the yield of good quality sub-micron scale junctions are addressed in this paper

  5. Probing Lipid Bilayers under Ionic Imbalance.

    Science.gov (United States)

    Lin, Jiaqi; Alexander-Katz, Alfredo

    2016-12-06

    Biological membranes are normally under a resting transmembrane potential (TMP), which originates from the ionic imbalance between extracellular fluids and cytosols, and serves as electric power storage for cells. In cell electroporation, the ionic imbalance builds up a high TMP, resulting in the poration of cell membranes. However, the relationship between ionic imbalance and TMP is not clearly understood, and little is known about the effect of ionic imbalance on the structure and dynamics of biological membranes. In this study, we used coarse-grained molecular dynamics to characterize a dipalmitoylphosphatidylcholine bilayer system under ionic imbalances ranging from 0 to ∼0.06 e charges per lipid (e/Lip). We found that the TMP displayed three distinct regimes: 1) a linear regime between 0 and 0.045 e/Lip, where the TMP increased linearly with ionic imbalance; 2) a yielding regime between ∼0.045 and 0.060 e/Lip, where the TMP displayed a plateau; and 3) a poration regime above ∼0.060 e/Lip, where we observed pore formation within the sampling time (80 ns). We found no structural changes in the linear regime, apart from a nonlinear increase in the area per lipid, whereas in the yielding regime the bilayer exhibited substantial thinning, leading to an excess of water and Na + within the bilayer, as well as significant misalignment of the lipid tails. In the poration regime, lipid molecules diffused slightly faster. We also found that the fluid-to-gel phase transition temperature of the bilayer dropped below the normal value with increased ionic imbalances. Our results show that a high ionic imbalance can substantially alter the essential properties of the bilayer, making the bilayer more fluid like, or conversely, depolarization of a cell could in principle lead to membrane stiffening. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Bilayer graphene: gap tunability and edge properties

    International Nuclear Information System (INIS)

    Castro, Eduardo V; Santos, J M B Lopes dos; Peres, N M R; Guinea, F; Castro Neto, A H

    2008-01-01

    Bilayer graphene - two coupled single graphene layers stacked as in graphite - provides the only known semiconductor with a gap that can be tuned externally through electric field effect. Here we use a tight binding approach to study how the gap changes with the applied electric field. Within a parallel plate capacitor model and taking into account screening of the external field, we describe real back gated and/or chemically doped bilayer devices. We show that a gap between zero and midinfrared energies can be induced and externally tuned in these devices, making bilayer graphene very appealing from the point of view of applications. However, applications to nanotechnology require careful treatment of the effect of sample boundaries. This being particularly true in graphene, where the presence of edge states at zero energy - the Fermi level of the undoped system - has been extensively reported. Here we show that also bilayer graphene supports surface states localized at zigzag edges. The presence of two layers, however, allows for a new type of edge state which shows an enhanced penetration into the bulk and gives rise to band crossing phenomenon inside the gap of the biased bilayer system.

  7. Effects of carotenoids on lipid bilayers.

    Science.gov (United States)

    Johnson, Quentin R; Mostofian, Barmak; Fuente Gomez, Gabriel; Smith, Jeremy C; Cheng, Xiaolin

    2018-01-31

    Carotenoids have been found to be important in improving the integrity of biomembranes in eukaryotes. However, the molecular details of how carotenoids modulate the physical properties of biomembranes are unknown. To this end, we have conducted a series of molecular dynamics simulations of different biologically-relevant membranes in the presence of carotenoids. The carotenoid effect on the membrane was found to be specific to the identity of the carotenoid and the composition of the membrane itself. Therefore, different classes of carotenoids produce a different effect on the membrane, and different membrane phases are affected differently by carotenoids. It is apparent from our data that carotenoids do trigger the bilayer to become thinner. The mechanism by which this occurs depends on two competing factors, the ability of the lipid tails of opposing monolayers to either (1) compress or (2) interdigitate as the bilayer condenses. Indeed, carotenoids directly influence the physical properties via these two mechanisms, thus compacting the bilayer. However, the degree to which these competing mechanisms are utilized depends on the bilayer phase and the carotenoid identity.

  8. Nanometer, submicron and micron sized aluminum powder prepared by semi-solid mechanical stirring method with addition of ceramic particles

    International Nuclear Information System (INIS)

    Qin, X.H.; Jiang, D.L.; Dong, S.M.

    2004-01-01

    Composite powder, which is a mixture of Al/Al 2 O 3 composite particles and nanometer, submicron and micron sized aluminum powder, was prepared by semi-solid mechanical stirring method with addition of Al 2 O 3 ceramic particles. The ceramic particles have an average diameter of 80 μm and a volume fraction of 15% in the slurry. The methods used to measure the size distribution of particles greater than 50 μm and less than 50 μm were sieve analysis and photosedimentation, respectively. The surface morphology and transverse sections of the composite powder of different sizes were examined by scanning electron microscope (SEM), optical microscope and auger electron spectroscopy (AES). The results indicate that the composite powder prepared in present work have a wide size distribution ranging from less than 50-900 μm, and the aluminum particles and Al/Al 2 O 3 composite particles are separated and isolated. The particles greater than 200 μm and less than 50 μm are almost pure aluminum powder. The rate of conversion of ingot aluminum into particles less than 1 μm containing nanometer and submicron sizes is 1.777 wt.% in this work. The aluminum powder of different sizes has different shape and surface morphology, quasi-spherical in shape with rough surface for aluminum particles of micron scale, irregular in shape for aluminum particles of submicron scale, and quite close to a globular or an excellent globular in shape for aluminum particles of nanometer size. On the other hand, the surface of ceramic particle was coated by aluminum particles with maximum thickness less than 10 μm containing nanometer and submicron sizes as a single layer. It is suggested that the surface of ceramic particles can provide more nucleation sites for solidification of liquid aluminum and the nucleation of liquid aluminum can take place readily, grow and adhere on the surface of ceramic particles, although it is poorly wetted by the liquid aluminum and the semi-solid slurry can

  9. Computer Simulations of Lipid Bilayers and Proteins

    DEFF Research Database (Denmark)

    Sonne, Jacob

    2006-01-01

    The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short...... in the succeeding chapters is presented. Details on system setups, simulation parameters and other technicalities can be found in the relevant chapters. Chapter 3, DPPC lipid parameters: The quality of MD simulations is intimately dependent on the empirical potential energy function and its parameters, i...

  10. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  11. Monte Carlo study of the magnetic properties in a bilayer dendrimer structure with non-magnetic layers

    Science.gov (United States)

    Jabar, A.; Masrour, R.

    2017-12-01

    In this paper, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions and magnetic layer effects on the bilayer transitions of a spin-5/2 Blume-Capel model formed by two magnetic blocs separated by a non-magnetic spacer of finite thickness. The thermalization process of magnetization for systems sizes has been given. We have shown that the magnetic order in the two magnetic blocs depend on the thickness of the magnetic layer. In the total magnetization profiles, the susceptibility peaks correspond to the reduced critical temperature. This critical temperature is displaced towards higher temperatures when increasing the number of magnetic layers. In addition, we have discussed and interpreted the behaviors of the magnetic hysteresis loops.

  12. Laser plasmas as x-ray sources for lithographic imaging of submicron structures

    International Nuclear Information System (INIS)

    Bijkerk, F.; van Dorssen, G.E.; van der Wiel, M.J.

    1988-01-01

    Laser radiation can be used efficiently to generate x-rays for lithographic imaging of submicron patterns, e.g., for VLSI device fabrication. Due to their short wavelength and high average power, excimer lasers show much potential for this application. Results are presented of scaling studies for high repetition rate excimer laser application, using the frequency doubled output of a low repetition rate Nd:YAG/Glass laser. Spectral and spatial characteristics of x-ray emission of the laser plasma are shown. The power density in the laser focus was 3 x 10 12 W/cm 2 . With this source Si x-ray masks with submicron Au absorber profiles are imaged into high sensitivity x-ray photoresist. For the exposures 80 laser shots sufficed to yield high quality submicron structures. Extrapolation of the results to a high power excimer laser reduces the exposure time of the photoresists to several seconds, enabling a wafer throughput at an industrial level

  13. A new route for the synthesis of submicron-sized LaB6

    International Nuclear Information System (INIS)

    Lihong, Bao; Wurentuya,; Wei, Wei; Tegus, O.

    2014-01-01

    Submicron crystalline LaB 6 has been successfully synthesized by a solid-state reaction of La 2 O 3 with NaBH 4 at 1200 °C. The effects of reaction temperature on the crystal structure, grain size and morphology were investigated by X-ray diffraction, scanning electron microscope and transmission electron microscope. It is found that when the reaction temperature is in the range of 1000–1100 °C, there are ultrafine nanoparticles and nanocrystals that coexist. When the reaction temperature elevated to 1200 °C, the grain morphology transformed from ultrafine nanoparticle to submicron crystals completely. High resolution transmission electron microscope images fully confirm the formation of LaB 6 cubic structure. - Highlights: • Single-phased LaB 6 have been synthesized by a solid-state reaction in a continuous evacuating process. • The reaction temperature has a important effect on the phase composition. • The grain size increase from nano-size to submicron with increasing reaction temperature

  14. Nanomechanical testing of circular freestanding polymer films with sub-micron thickness

    International Nuclear Information System (INIS)

    Maner, Kyle C.; Begley, Matthew R.; Oliver, Warren C.

    2004-01-01

    This paper describes techniques to create freestanding films over perfectly circular spans (windows) and measure their mechanical properties using instrumented nanoindentation. Test samples were created by spin-casting polymer films over glass plates with embedded fibers, which were subsequently etched using a relatively weak acid to leave freestanding circular spans. The freestanding spans were tested using an instrumented nanoindenter over a wide range of applied loads and displacements. Material properties can be extracted from measured load-deflection responses using straightforward models for point-loads on circular plates or membranes. Results are presented for poly(methyl methacrylate) and poly(2,6,dimethyl,1,4,phenylene ether) films with thickness ranging from 350 to 750 nm. The properties derived from freestanding tests are compared with traditional nanoindentation of films on intact substrates. The freestanding approach has key advantages for characterizing micron-scale behavior of compliant materials, notably greater ease and applicability of sample preparation over other micro-fabrication techniques and straightforward analytical or numerical models

  15. Observation of undulation motion of lipid bilayers by neutron spin echo

    International Nuclear Information System (INIS)

    Yamada, Norifumi L.; Seto, Hideki; Hishida, Mafumi

    2010-01-01

    Aqueous solutions of synthesized phospholipids have been well investigated as model biomembranes. These lipids usually self-assemble into regular stacks of bilayers with a characteristic repeat distance on the order of nm, whereas real biomembrane exist as single bilayers. The key phenomenon in understanding the formation of single isolated bilayers in 'unbinding' of lipid bilayers, in which the inter-bilayer distance of lipid bilayers diverges by the steric interaction due to the membrane undulation. In this paper, we show some results of neutron spin-echo (NSE) experiments to investigate the effect of the steric interaction on unbinding and related phenomena. (author)

  16. Manufacturing a submicron structure using a liquid precursor

    NARCIS (Netherlands)

    Ishihara, R.; Van de Zwan, M.; Trifunovic, M.

    2014-01-01

    Methods for manufacture of a submicron semiconductor structure on a substrate are described. The method may comprise: forming at least one template layer over a support substrate; forming one or more template structures, preferably one or more recesses and/or mesas, in said template layer, said one

  17. A metastable HCP intermetallic phase in Cu-Al bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Limei

    2006-07-01

    For the present study, three kinds of layered Cu/Al films have been fabricated. The first kind of samples were multilayered Cu/Al films deposited by sputtering on (001)Si. The individual layer thicknesses were 100 nm, 200 nm and 400 nm, while the total film thickness of 800 nm was kept constant, thus leading to multilayer systems with 8, 4 and 2 layers, respectively. The second type of samples were Cu/Al bilayer films grown on (0001) sapphire by sputtering, with individual layer thicknesses of 400 nm. The third type of samples were bilayer films (100 nm Cu and 100 nm Al) deposited on (0001)sapphire by MBE at room temperature. Applying conventional transmission electron microscopy and X-ray diffraction, different epitaxial growth behaviors were found in these films. All multilayer films from the first type were polycrystalline. The second type of films show a (111) FCC texture and possess intermetallic phases at the interfaces. HRTEM investigations displayed that along [111]FCC, the atomic structure of the interlayer has an ABAB stacking sequence, which is identical with a hexagonal close-packed (HCP) structure in [0001] direction, but not with the ABCABC stacking sequence of Cu and Al in [111]FCC. The lattice parameters of the HCP structure at the interlayer were determined from a model which gave the best agreement between the experimental and simulated images. The parameters are: a=b=0.256 nm, c=0.419 nm, ?=120 , with the space group of P6m2. Furthermore, lattice distortion analysis revealed that the lattice parameters of the HCP phase are increasing from the near-Cu-side to the near-Al-side. The chemical composition of the interlayer was investigated by energy dispersive X-ray spectroscopy (EDS). EDS linescans were performed from pure Al to pure Cu layers. In order to examine the stability of this HCP phase, in-situ heating experiments were performed in the HRTEM at {proportional_to}600 C. Ex-situ heating experiments were performed at different temperatures to

  18. Thickness-Dependent Surfactant Behavior in Trilayer Polymer Films

    Science.gov (United States)

    Sun, Yan; Shull, Kenneth; Wang, Jin

    2010-03-01

    The ability for thin liquid films to wet and remain thermodynamically stable on top of one another is a fundamental challenge in developing high quality paints, coatings, adhesives, and other industrial products. Since intermolecular interactions and interfacial energies dominate in the film thickness regime from tens to hundreds of nanometers, it is desirable to tune these long-range and short-range forces in a simple, controllable manner. Starting from an unstable model homopolymer bilayer (poly(styrene)/poly(4-vinylpyridine)), we demonstrate that sandwiching an additional homopolymer layer (poly(4-bromostyrene)) between the two layers can provide needed surfactancy. As the thickness of this center layer is increased, the full trilayer transitions from unstable (thin) to stable (moderate) to unstable (thick). We experimentally show using x-ray standing waves generated via total external reflection (TER-XSW), atomic force microscopy (AFM), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) that this behavior can be directly attributed to the autophobic dewetting phenomenon, in which the surfactant layer is thin enough to remain stable but thick enough to shield the neighboring layers, highlighting a general approach to stabilizing multilayer systems.

  19. Fragmented state of lipid bilayers in water

    DEFF Research Database (Denmark)

    Helfrich, W.; Thimmel, J.; Klösgen, Beate Maria

    1999-01-01

    The bilayers of some typical biological membrane lipids such as PC and DGDG disintegrate in a large excess of water to form an optically invisible dispersive bilayer phase. `Dark bodies' can be reversibly precipitated from it by raising the temperature. The dispersive phase probably consists...

  20. Cluster Formation of Polyphilic Molecules Solvated in a DPPC Bilayer

    Directory of Open Access Journals (Sweden)

    Xiang-Yang Guo

    2017-10-01

    Full Text Available We analyse the initial stages of cluster formation of polyphilic additive molecules which are solvated in a dipalmitoylphosphatidylcholine (DPPC lipid bilayer. Our polyphilic molecules comprise an aromatic (trans-bilayer core domain with (out-of-bilayer glycerol terminations, complemented with a fluorophilic and an alkyl side chain, both of which are confined within the aliphatic segment of the bilayer. Large-scale molecular dynamics simulations (1 μ s total duration of a set of six of such polyphilic additives reveal the initial steps towards supramolecular aggregation induced by the specific philicity properties of the molecules. For our intermediate system size of six polyphiles, the transient but recurrent formation of a trimer is observed on a characteristic timescale of about 100 ns. The alkane/perfluoroalkane side chains show a very distinct conformational distribution inside the bilayer thanks to their different philicity, despite their identical anchoring in the trans-bilayer segment of the polyphile. The diffusive mobility of the polyphilic additives is about the same as that of the surrounding lipids, although it crosses both bilayer leaflets and tends to self-associate.

  1. Self-folding graphene-polymer bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tao [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Yoon, ChangKyu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Jin, Qianru [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Mingen [Department of Physics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Liu, Zewen [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Gracias, David H., E-mail: dgracias@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-05-18

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  2. Characterization of the transverse relaxation rates in lipid bilayers

    International Nuclear Information System (INIS)

    Watnick, P.I.; Dea, P.; Chan, S.I.

    1990-01-01

    The 2H NMR transverse relaxation rates of a deuterated phospholipid bilayer reflect slow motions in the bilayer membrane. A study of dimyristoyl lecithin specifically deuterated at several positions of the hydrocarbon chains indicates that these motions are cooperative and are confined to the hydrocarbon chains of the lipid bilayer. However, lipid head group interactions do play an important role in modulating the properties of the cooperative fluctuations of the hydrocarbon chains (director fluctuations), as evidenced by the effects of various lipid additives on the 2H NMR transverse relaxation rates of the dimyristoyl lecithin bilayer

  3. DNA nanotechnology: Bringing lipid bilayers into shape

    Science.gov (United States)

    Howorka, Stefan

    2017-07-01

    Lipid bilayers form the thin and floppy membranes that define the boundary of compartments such as cells. Now, a method to control the shape and size of bilayers using DNA nanoscaffolds has been developed. Such designer materials advance synthetic biology and could find use in membrane research.

  4. Probing the position of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    de Ghellinck, Alexis; Shen, Chen; Fragneto, Giovanna

    2015-01-01

    The effect of the natural antioxidant resveratrol on the structure of solid supported di-palmitoyl-phosphatidyl-choline (DPPC) bilayers in their fluid state was investigated by neutron reflectometry. Results reveal an accumulation of resveratrol (up to 25%, mol/mol) inside the headgroups...... and they exclude its presence in the hydrophobic core. The presence of resveratrol induces an increase of the average thickness and of the interfacial roughness of the headgroup layer. This may be due to a change of the tilt angle of the phosphocholine headgroups residing next to the resveratrol to a more upright...... orientation and leading to a reduction of the projected area per headgroup. This effect is propagated into the hydrophobic core, where the chain packing is modified despite the absence of resveratrol. When interacting with a DPPC/cholesterol membrane, resveratrol has a similar effect on the neighboring PC...

  5. Effect of Ceramide Tail Length on the Structure of Model Stratum Corneum Lipid Bilayers.

    Science.gov (United States)

    Moore, Timothy C; Hartkamp, Remco; Iacovella, Christopher R; Bunge, Annette L; McCabe, Clare

    2018-01-09

    Lipid bilayers composed of non-hydroxy sphingosine ceramide (CER NS), cholesterol (CHOL), and free fatty acids (FFAs), which are components of the human skin barrier, are studied via molecular dynamics simulations. Since mixtures of these lipids exist in dense gel phases with little molecular mobility at physiological conditions, care must be taken to ensure that the simulations become decorrelated from the initial conditions. Thus, we propose and validate an equilibration protocol based on simulated tempering, in which the simulation takes a random walk through temperature space, allowing the system to break out of metastable configurations and hence become decorrelated from its initial configuration. After validating the equilibration protocol, which we refer to as random-walk molecular dynamics, the effects of the lipid composition and ceramide tail length on bilayer properties are studied. Systems containing pure CER NS, CER NS + CHOL, and CER NS + CHOL + FFA, with the CER NS fatty acid tail length varied within each CER NS-CHOL-FFA composition, are simulated. The bilayer thickness is found to depend on the structure of the center of the bilayer, which arises as a result of the tail-length asymmetry between the lipids studied. The hydrogen bonding between the lipid headgroups and with water is found to change with the overall lipid composition, but is mostly independent of the CER fatty acid tail length. Subtle differences in the lateral packing of the lipid tails are also found as a function of CER tail length. Overall, these results provide insight into the experimentally observed trend of altered barrier properties in skin systems where there are more CERs with shorter tails present. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators.

    Science.gov (United States)

    Lee, Ju-Hyuck; Park, Jae Young; Cho, Eun Bi; Kim, Tae Yun; Han, Sang A; Kim, Tae-Ho; Liu, Yanan; Kim, Sung Kyun; Roh, Chang Jae; Yoon, Hong-Joon; Ryu, Hanjun; Seung, Wanchul; Lee, Jong Seok; Lee, Jaichan; Kim, Sang-Woo

    2017-08-01

    Recently, piezoelectricity has been observed in 2D atomically thin materials, such as hexagonal-boron nitride, graphene, and transition metal dichalcogenides (TMDs). Specifically, exfoliated monolayer MoS 2 exhibits a high piezoelectricity that is comparable to that of traditional piezoelectric materials. However, monolayer TMD materials are not regarded as suitable for actual piezoelectric devices due to their insufficient mechanical durability for sustained operation while Bernal-stacked bilayer TMD materials lose noncentrosymmetry and consequently piezoelectricity. Here, it is shown that WSe 2 bilayers fabricated via turbostratic stacking have reliable piezoelectric properties that cannot be obtained from a mechanically exfoliated WSe 2 bilayer with Bernal stacking. Turbostratic stacking refers to the transfer of each chemical vapor deposition (CVD)-grown WSe 2 monolayer to allow for an increase in degrees of freedom in the bilayer symmetry, leading to noncentrosymmetry in the bilayers. In contrast, CVD-grown WSe 2 bilayers exhibit very weak piezoelectricity because of the energetics and crystallographic orientation. The flexible piezoelectric WSe 2 bilayers exhibit a prominent mechanical durability of up to 0.95% of strain as well as reliable energy harvesting performance, which is adequate to drive a small liquid crystal display without external energy sources, in contrast to monolayer WSe 2 for which the device performance becomes degraded above a strain of 0.63%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mechanisms of Current Transfer in Electrodeposited Layers of Submicron Semiconductor Particles

    Science.gov (United States)

    Zhukov, N. D.; Mosiyash, D. S.; Sinev, I. V.; Khazanov, A. A.; Smirnov, A. V.; Lapshin, I. V.

    2017-12-01

    Current-voltage ( I- V) characteristics of conductance in multigrain layers of submicron particles of silicon, gallium arsenide, indium arsenide, and indium antimonide have been studied. Nanoparticles of all semiconductors were obtained by processing initial single crystals in a ball mill and applied after sedimentation onto substrates by means of electrodeposition. Detailed analysis of the I- V curves of electrodeposited layers shows that their behavior is determined by the mechanism of intergranular tunneling emission from near-surface electron states of submicron particles. Parameters of this emission process have been determined. The proposed multigrain semiconductor structures can be used in gas sensors, optical detectors, IR imagers, etc.

  8. Spin pumping in ion-beam sputtered C o2FeAl /Mo bilayers: Interfacial Gilbert damping

    Science.gov (United States)

    Husain, Sajid; Kumar, Ankit; Barwal, Vineet; Behera, Nilamani; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2018-02-01

    The spin-pumping mechanism and associated interfacial Gilbert damping are demonstrated in ion-beam sputtered C o2FeAl (CFA)/Mo bilayer thin films employing ferromagnetic resonance spectroscopy. The dependence of the net spin-current transportation on Mo layer thickness, 0 to 10 nm, and the enhancement of the net effective Gilbert damping are reported. The experimental data have been analyzed using spin-pumping theory in terms of spin current pumped through the ferromagnet/nonmagnetic metal interface to deduce the real spin-mixing conductance and the spin-diffusion length, which are estimated to be 1.56 (±0.30 ) ×1019m-2 and 2.61 (±0.15 )nm , respectively. The damping constant is found to be 8.8 (±0.2 ) ×10-3 in the Mo(3.5 nm)-capped CFA(8 nm) sample corresponding to an ˜69 % enhancement of the original Gilbert damping 5.2 (±0.6 ) ×10-3 in the Al-capped CFA thin film. This is further confirmed by inserting the Cu dusting layer which reduces the spin transport across the CFA/Mo interface. The Mo layer thickness-dependent net spin-current density is found to lie in the range of 1 -4 MA m-2 , which also provides additional quantitative evidence of spin pumping in this bilayer thin-film system.

  9. Fabrication of Li-intercalated bilayer graphene

    Directory of Open Access Journals (Sweden)

    K. Sugawara

    2011-06-01

    Full Text Available We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3×3R30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

  10. Submicron Resolution Spectral-Domain Optical Coherence Tomography

    KAUST Repository

    Alarousu, Erkki

    2013-11-14

    Apparatuses and systems for submicron resolution spectral-domain optical coherence tomography (OCT) are disclosed. The system may use white light sources having wavelengths within 400-1000 nanometers, and achieve resolution below 1 .mu.m. The apparatus is aggregated into a unitary piece, and a user can connect the apparatus to a user provided controller and/or light source. The light source may be a supercontinuum source.

  11. Electronic transport of bilayer graphene with asymmetry line defects

    International Nuclear Information System (INIS)

    Zhao Xiao-Ming; Chen Chan; Liang Ying; Kou Su-Peng; Wu Ya-Jie

    2016-01-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer–Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. (paper)

  12. Exchange bias coupling in NiO/Ni bilayer tubular nanostructures synthetized by electrodeposition and thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, T., E-mail: work_tian@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhang, Z.W.; Xu, Y.H. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Liu, Y. [Analytical & Testing Center, Sichuan University, Chengdu 610064 (China); Li, W.J. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190 (China); Nie, Y.; Zhang, X. [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Xiang, G., E-mail: gxiang@scu.edu.cn [College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-05-01

    In this paper, we reported the synthesis of NiO/Ni bilayer nanotubes by electrodeposition and thermal oxidation using anodic aluminum oxide templates. The morphology, structure, chemical composition and magnetic properties, especially magnetic exchange bias induced by subsequent magnetic field cooling, in this one-dimensional antiferromagnetic/ferromagnetic hybrid system were investigated. It was found that the effect of the annealing temperature, which mainly dominated the thickness of the NiO layer, and the annealing time, which mainly dominated the grain size of the NiO, on the exchange bias field showed competitive relationship. The optimized exchange bias field was achieved by the combination of the shorter annealing time and higher annealing temperature. - Highlights: • NiO-Ni bilayer tubular nanotubes were fabricated by electrodeposition and thermal oxidation. • The exchange bias effect in NiO-Ni nanotubes was induced by magnetic field cooling. • The competitive effect of annealing temperature and annealing time on the exchange bias coupling was analyzed.

  13. Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers.

    Science.gov (United States)

    Kim, Dong-Jun; Jeon, Chul-Yeon; Choi, Jong-Guk; Lee, Jae Wook; Surabhi, Srivathsava; Jeong, Jong-Ryul; Lee, Kyung-Jin; Park, Byong-Guk

    2017-11-09

    Electric generation of spin current via spin Hall effect is of great interest as it allows an efficient manipulation of magnetization in spintronic devices. Theoretically, pure spin current can be also created by a temperature gradient, which is known as spin Nernst effect. Here, we report spin Nernst effect-induced transverse magnetoresistance in ferromagnet/non-magnetic heavy metal bilayers. We observe that the magnitude of transverse magnetoresistance in the bilayers is significantly modified by heavy metal and its thickness. This strong dependence of transverse magnetoresistance on heavy metal evidences the generation of thermally induced pure spin current in heavy metal. Our analysis shows that spin Nernst angles of W and Pt have the opposite sign to their spin Hall angles. Moreover, our estimate implies that the magnitude of spin Nernst angle would be comparable to that of spin Hall angle, suggesting an efficient generation of spin current by the spin Nernst effect.

  14. Lipid Bilayer Formation on Organic Electronic Materials

    KAUST Repository

    Zhang, Yi

    2018-04-23

    The lipid bilayer is the elemental structure of cell membrane, forming a stable barrier between the interior and exterior of the cell while hosting membrane proteins that enable selective transport of biologically important compounds and cellular recognition. Monitoring the quality and function of lipid bilayers is thus essential and can be performed using electrically active substrates that allow for transduction of signals. Such a promising electronic transducer material is the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) which has provided a plethora of novel bio transducing architectures. The challenge is however in assembling a bilayer on the conducting polymer surface, which is defect-free and has high mobility. Herein, we investigate the fusion of zwitterionic vesicles on a variety of PEDOT:PSS films, but also on an electron transporting, negatively charged organic semiconductor, in order to understand the surface properties that trigger vesicle fusion. The PEDOT:PSS films are prepared from dispersions containing different concentrations of ethylene glycol included as a formulation additive, which gives a handle to modulate surface physicochemical properties without a compromise on the chemical composition. The strong correlation between the polarity of the surface, the fusion of vesicles and the mobility of the resulting bilayer aides extracting design principles for the development of future conducting polymers that will enable the formation of lipid bilayers.

  15. Effects of strain and thickness on the electronic and optical behaviors of two-dimensional hexagonal gallium nitride

    Science.gov (United States)

    Behzad, Somayeh

    2017-06-01

    The full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory has been used to study effects of strain and thickness on the electronic and optical properties of two-dimensional GaN. The band gap of monolayer and bilayer GaN under compressive in-plane strain change from indirect to direct with bond length shortening. Also, the semiconductor to semimetal transition occurs for monolayer and bilayer GaN under in-plane tensile strain with bond length elongation. It is found that the tensile and compressive strains cause the red and blue shifts in the optical spectra, respectively, for both monolayer and bilayer GaN. Applying the perpendicular strain on the bilayer GaN by decreasing the inter layer distance leads to the shift of valence band maximum towards the Γ point in the band structure and shift of peak positions and variation of peak intensities in ε2(ω) spectrum. The results show that the n-layer GaN has an indirect band gap for n < 16. The results suggest that monolayer and multilayer GaN are good candidates for application in optoelectronics and flexible electronics.

  16. Interdiffusion and grain-boundary migration in Au-Cu bilayers during ion-irradiation

    International Nuclear Information System (INIS)

    Alexander, D.E.; Rehn, L.E.; Baldo, P.M.

    1991-11-01

    Ion irradiation and annealing experiments have been conducted on Au/Cu bilayer films to evaluate the effect of irradiation on diffusion-induced grain boundary migration (DIGM). The Au films were prepared with a large-grained microstructure with grain boundaries perpendicular to the film surface and extending through the film thickness. Irradiations were conducted with 1.5 MeV Kr at 228 degree C. Rutherford backscattering spectrometry of the samples revealed that interdiffusion was substantially enhanced in the irradiated area relative to the unirradiated area. Both irradiated and annealed-only areas were characterized by a nearly uniform composition of 14 at.% and 7 at.% Cu respectively through the entire thickness of the underlying Au film. Small probe X-ray energy dispersive spectroscopy showed significant lateral compositional homogeneities in both irradiated and annealed areas. These two results are consistent with previous observations of DIGM in the Au/Cu system, suggesting that this previously unexamined mechanism contributes to ion beam mixing

  17. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth

    2001-01-01

    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two-co...

  18. Sub-micron filter

    Science.gov (United States)

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  19. Submicron particle monitoring of paving and related road construction operations.

    Science.gov (United States)

    Freund, Alice; Zuckerman, Norman; Baum, Lisa; Milek, Debra

    2012-01-01

    This study identified activities and sources that contribute to ultrafine and other submicron particle exposure that could trigger respiratory symptoms in highway repair workers. Submicron particle monitoring was conducted for paving, milling, and pothole repair operations in a major metropolitan area where several highway repair workers were identified as symptomatic for respiratory illness following exposures at the 2001 World Trade Center disaster site. Exposure assessments were conducted for eight trades involved in road construction using a TSI P-Trak portable condensation particle counter. Direct readings near the workers' breathing zones and observations of activities and potential sources were logged on 7 days on 27 workers using four different models of pavers and two types of millers. Average worker exposure levels ranged from 2 to 3 times background during paving and from 1 to 4 times background during milling. During asphalt paving, average personal exposures to submicron particulates were 25,000-60,000, 28,000-70,000, and 23,000-37,000 particles/ cm(3) for paver operators, screed operators, and rakers, respectively. Average personal exposures during milling were 19,000-111,000, 28,000-81,000, and 19,000 particles/cm(3) for the large miller operators, miller screed operators, and raker, respectively. Personal peak exposures were measured up to 467,000 and 455,000 particles/cm(3) in paving and milling, respectively. Several sources of submicron particles were identified. These included the diesel and electric fired screed heaters; engine exhaust from diesel powered construction vehicles passing by or idling; raking, dumping, and paving of asphalt; exhaust from the hotbox heater; pavement dust or fumes from milling operations, especially when the large miller started and stopped; and secondhand cigarette smoke. To reduce the potential for health effects in workers, over 40 recommendations were made to control exposures, including improved maintenance of

  20. Anomalous conductivity noise in gapped bilayer graphene heterostructure

    Science.gov (United States)

    Aamir, Mohammed Ali; Karnatak, Paritosh; Sai, T. Phanindra; Ghosh, Arindam

    Bilayer graphene has unique electronic properties - it has a tunable band gap and also, valley symmetry and pseudospin degree of freedom like its single layer counterpart. In this work, we present a study of conductance fluctuations in dual gated bilayer graphene heterostructures by varying the Fermi energy and the band gap independently. At a fixed band gap, we find that the conductance fluctuations obtained by Fermi energy ensemble sampling increase rapidly as the Fermi energy is tuned to charge neutrality point (CNP) whereas the time-dependent conductance fluctuations diminish rapidly. This discrepancy is completely absent at higher number densities, where the transport is expected to be through the 2D bulk of the bilayer system. This observation indicates that near the CNP, electrical transport is highly sensitive to Fermi energy, but becomes progressively immune to time-varying disorder. A possible explanation may involve transport via edge states which becomes the dominant conduction mechanism when the bilayer graphene is gapped and Fermi energy is situated close to the CNP, thereby causing a dimensional crossover from 2D to 1D transport. Our experiment outlines a possible experimental protocol to probe intrinsic topological states in gapped bilayer graphene.

  1. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.

    Science.gov (United States)

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  2. Bifurcation of self-folded polygonal bilayers

    Science.gov (United States)

    Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy

    2017-09-01

    Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.

  3. Magnetic flux distributions in chiral helimagnet/superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masaru, E-mail: kato@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan); Fukui, Saoto [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan); Sato, Osamu [Osaka Prefecture University College of Technology, 26-12, Saiwaicho, Neyagawa, Osaka 572-8572 (Japan); Togawa, Yoshihiko [Department of Physics and Electronics, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan)

    2017-02-15

    Highlights: • Vortex states in a chiral helimagnet/superconductor bilayer are investigated. • Vortex and anti-vortex appears depending on strength of helimagnet. • Vortex is elongated under a gradient field. • Vortices form a undulated triangular lattice. - Abstarct: Vortex states in a chiral helimagnet/superconductor bilayer are investigated numerically, using the Ginzburg–Landau equations with the finite element method. In this bilayer, effect of the chiral helimagnet on the superconductor is taken as an external field. Magnetic field distribution can be controlled by an applied field to the bilayer. It is shown that a single vortex in a gradient field is elongated along the field gradient. In zero applied field, there are up- and down vortices which are parallel or antiparallel to the z-axis, respectively. But increasing the applied field, down-vortices disappear and up-vortices form undulated triangular lattices.

  4. Interfacial exciplex formation in bilayers of conjugated polymers

    Science.gov (United States)

    Nobuyasu, R. S.; Araujo, K. A. S.; Cury, L. A.; Jarrosson, T.; Serein-Spirau, F.; Lère-Porte, J.-P.; Dias, F. B.; Monkman, A. P.

    2013-10-01

    The donor-acceptor interactions in sequential bilayer and blend films are investigated. Steady-state and time-resolved photoluminescence (PL) were measured to characterize the samples at different geometries of photoluminescence collection. At standard excitation, with the laser incidence at 45° of the normal direction of the sample surface, a band related to the aggregate states of donor molecules appears for both blend and bilayer at around 540 nm. For the PL spectra acquired from the edge of the bilayer, with the laser incidence made at normal direction of the sample surface (90° geometry), a new featureless band emission, red-shifted from donor and acceptor emission regions was observed and assigned as the emission from interfacial exciplex states. The conformational complexity coming from donor/acceptor interactions at the heterojunction interface of the bilayer is at the origin of this interfacial exciplex emission.

  5. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  6. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  7. Electrostatic double-layer interaction between stacked charged bilayers

    Science.gov (United States)

    Hishida, Mafumi; Nomura, Yoko; Akiyama, Ryo; Yamamura, Yasuhisa; Saito, Kazuya

    2017-10-01

    The inapplicability of the DLVO theory to multilayered anionic bilayers is found in terms of the co-ion-valence dependence of the lamellar repeat distance. Most of the added salt is expelled from the interlamellar space to the bulk due to the Gibbs-Donnan effect on multiple bilayers with the bulk. The electrostatic double-layer interaction is well expressed by the formula recently proposed by Trefalt. The osmotic pressure due to the expelled ions, rather than the van der Waals interaction, is the main origin of the attractive force between the bilayers.

  8. Magnetically assisted bilayer composites for soft bending actuators

    NARCIS (Netherlands)

    Jang, S.H.; Na, Seon Hong; Park, Yong Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically

  9. Fatigue properties of piezoelectric-electrostrictive Pb(Mg1/3,Nb2/3)O3-PbTiO3 monolithic bilayer composites

    Science.gov (United States)

    Hall, A.; Akdogan, E. K.; Safari, A.

    2006-11-01

    The fatigue response of monolithic piezoelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3-electrostrictive 0.90Pb(Mg1/3Nb2/3)O3-0.10PbTiO3 bilayer composites was investigated experimentally. The monomorph bilayers were cosintered at 1150°C, and the polarization hysteresis, relative permittivity, displacement, and cyclic fatigue (107cycles) were measured as a function of piezoelectric-electrostrictive volume fraction (PEVF) ratio. The highest tip displacement of bilayers was found in the 3:1 PEVF monolith, reaching 40μm at 5kV/cm applied field strength. By minimizing the electrostrictive layer thickness, tip displacement substantially increased, while maintaining a lower hysteresis than the purely piezoelectric counterpart. Fatigue measurements indicated a 31% decrease in displacement after 107cycles in 3:1 monoliths, whereas the 1:3 PEVF only showed a 12% decrease under the same conditions. There is a 30% increase in polarization after 107cycles for 1:1 PEVF bilayers, which is attributed to self-poling due to a diffuse transition layer in the vicinity of the interface. It was found that partial 90° domain switching occurred prior to poling because of the residual stresses in the composite, imposed by the electrostrictive layer and the spontaneous strain associated with the cubic-tetragonal transition in the ferroelectric layer. The results indicate that the electrostrictive layer, which is electrically in series with the piezoelectric one, enhances the fatigue resistance of the monolithic bilayer composites in addition to the increase in tip displacement.

  10. Predicting proton titration in cationic micelle and bilayer environments

    Science.gov (United States)

    Morrow, Brian H.; Eike, David M.; Murch, Bruce P.; Koenig, Peter H.; Shen, Jana K.

    2014-08-01

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pKa's in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pKa of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pKa of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  11. Predicting proton titration in cationic micelle and bilayer environments

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Brian H.; Shen, Jana K. [Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201 (United States); Eike, David M.; Murch, Bruce P.; Koenig, Peter H. [Computational Chemistry, Modeling and Simulation GCO, Procter and Gamble, Cincinnati, Ohio 45201 (United States)

    2014-08-28

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pK{sub a}’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pK{sub a} of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pK{sub a} of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  12. Determination of the lateral size and thickness of solution-processed graphene flakes

    Science.gov (United States)

    Lin, Li-Shang; Bin-Tay, Wei; Aslam, Zabeada; Westwood, A. V. K.; Brydson, R.

    2017-09-01

    We present a method to determine the lateral size distribution of solution…processed graphene via direct image analysis techniques. Initially transmission electron microscopy (TEM) and optical microscopy (OM) were correlated and used to provide a reliable benchmark. A rapid, automated OM method was then developed to obtain the distribution from thousands of flakes, avoiding statistical uncertainties and providing high accuracy. Dynamic light scattering (DLS) was further employed to develop an in-situ method to derive the number particle size distribution (PSD) for a dispersion, with a deviation lower than 22% in the sub-micron regime. Methods for determining flake thickness are also discussed.

  13. Poly(amidoamine) dendrimers on lipid bilayers II: Effects of bilayer phase and dendrimer termination.

    Science.gov (United States)

    Kelly, Christopher V; Leroueil, Pascale R; Orr, Bradford G; Banaszak Holl, Mark M; Andricioaei, Ioan

    2008-08-07

    The molecular structures and enthalpy release of poly(amidoamine) (PAMAM) dendrimers binding to 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers were explored through atomistic molecular dynamics. Three PAMAM dendrimer terminations were examined: protonated primary amine, neutral acetamide, and deprotonated carboxylic acid. Fluid and gel lipid phases were examined to extract the effects of lipid tail mobility on the binding of generation-3 dendrimers, which are directly relevant to the nanoparticle interactions involving lipid rafts, endocytosis, lipid removal, and/or membrane pores. Upon binding to gel phase lipids, dendrimers remained spherical, had a constant radius of gyration, and approximately one-quarter of the terminal groups were in close proximity to the lipids. In contrast, upon binding to fluid phase bilayers, dendrimers flattened out with a large increase in their asphericity and radii of gyration. Although over twice as many dendrimer-lipid contacts were formed on fluid versus gel phase lipids, the dendrimer-lipid interaction energy was only 20% stronger. The greatest enthalpy release upon binding was between the charged dendrimers and the lipid bilayer. However, the stronger binding to fluid versus gel phase lipids was driven by the hydrophobic interactions between the inner dendrimer and lipid tails.

  14. SFG studies on interactions between antimicrobial peptides and supported lipid bilayers.

    Science.gov (United States)

    Chen, Xiaoyun; Chen, Zhan

    2006-09-01

    The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.

  15. Alpha-tocopherol inhibits pore formation in oxidized bilayers

    NARCIS (Netherlands)

    Boonnoy, P.; Karttunen, M.; Wong-Ekkabut, J.

    2017-01-01

    In biological membranes, alpha-tocopherols (α-toc; vitamin E) protect polyunsaturated lipids from free radicals. Although the interactions of α-toc with non-oxidized lipid bilayers have been studied, their effects on oxidized bilayers remain unknown. In this study, atomistic molecular dynamics (MD)

  16. Slaved diffusion in phospholipid bilayers

    Science.gov (United States)

    Zhang, Liangfang; Granick, Steve

    2005-01-01

    The translational diffusion of phospholipids in supported fluid bilayers splits into two populations when polyelectrolytes adsorb at incomplete surface coverage. Spatially resolved measurements using fluorescence correlation spectroscopy show that a slow mode, whose magnitude scales inversely with the degree of polymerization of the adsorbate, coexists with a fast mode characteristic of naked lipid diffusion. Inner and outer leaflets of the bilayer are affected nearly equally. Mobility may vary from spot to spot on the membrane surface, despite the lipid composition being the same. This work offers a mechanism to explain how nanosized domains with reduced mobility arise in lipid membranes. PMID:15967988

  17. Chiral Tunnelling in Twisted Graphene Bilayer

    OpenAIRE

    He, Wen-Yu; Chu, Zhao-Dong; He, Lin

    2013-01-01

    The perfect transmission in graphene monolayer and the perfect reflection in Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in twisted graphene bilayer shows adjustable probability of chiral tunnelling for normal incidence: they can be changed fr...

  18. Magnetoresistance and magnetization in submicron ferromagnetic gratings

    Science.gov (United States)

    Shearwood, C.; Blundell, S. J.; Baird, M. J.; Bland, J. A. C.; Gester, M.; Ahmed, H.; Hughes, H. P.

    1994-05-01

    A technique for engineering micron and submicron scale structures from magnetic films of transition metals has been developed using a combination of electron- and ion-beam lithography enabling high-quality arrays of submicron magnetic Fe wires to be fabricated. This process can be used to fabricate novel devices from a variety of metal combinations which would not be possible by the usual liftoff metallization method. The structure and magnetic properties are reported of an epitaxial 25 nm Fe(001)/GaAs(001) film and the wire gratings which are fabricated from it. The width of the wires in the grating is 0.5 μm for all structures studied, but the separation of each wire is varied in the range 0.5 to 16 μm. An artificially induced shape anisotropy field of around 1 kG, consistent with a magnetostatic calculation, was observed for all separations studied. The field dependence of the magneto-optic Kerr effect and magnetoresistance (MR) data is consistent with a twisted magnetization configuration across the width of the sample beneath saturation for transverse applied fields. In this case, the detailed form of the field dependence of the MR is strikingly modified from that observed in the continuous film and is consistent with coherent rotation of the magnetization.

  19. Development and scintigraphic evaluation of submicron sized dry powder inhalation formulation of fluticasone propionate in healthy human volunteers

    International Nuclear Information System (INIS)

    Ali, Sultana S.; Ahmad, F.J.; Khar, R.K.; Rathore, V.P.; Ali, Rashid; Rawat, H.S.; Chopra, M.K.; Mittal, G.; Bhatnagar, A.

    2010-01-01

    Full text: Objective of the present study concerns formulation and evaluation of submicron sized dry powder inhalation formulation of Fluticasone propionate for the treatment of bronchial asthma, COPD and a new life saving treatment option in restrictive lung diseases such as Interstitial Lung Disease (ILD), toxic and non-cardiogenic pulmonary inflammations or pulmonary edema, which have no effective treatment presently. Materials and Methods: The submicron sized particles were prepared by precipitation method using acetone as solvent and water as antisolvent. Poloxamer F127 was used as stabilizer. Both submicronized and micronized particles were characterized using FTIR, XRD, DSC, SEM and TEM. The mass median aerodynamic diameter (MMAD) of the submicronized and micronized API was calculated using Andersen cascade impactor. The prepared particles and micronized Active Pharmaceutical Ingredient (API) were radiolabeled with 99m Tc. Size3 HPMC capsules were filled with the 12.5 mg radiolabeled blend (100μg Fluticasone propionate and 12.4mg inhalable lactose) and given to healthy volunteers to assess the comparative pulmonary deposition. Results: The prepared formulation has shown better lung deposition as compared to micronized API. The MMAD of submicronized particles was in the range of 1 - 5 μm while the MMAD of micronized API was in the range of 5 - 15μm. Conclusion: The developed submicron sized dry powder inhalation formulation has better lung deposition as compared to micron sized API and it will become a better treatment option for the bronchial asthma, COPD and ILDs

  20. GABA_A receptor function is regulated by lipid bilayer elasticity

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Werge, Thomas; Berthelsen, Camilla

    2006-01-01

    ( s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABAA receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown...... reduced the peak amplitude of the GABA-induced currents and increased the rate of receptor desensitization. The effects of the amphiphiles did not correlate with the expected changes in monolayer spontaneous curvature. We conclude that GABAA receptor function is regulated by lipid bilayer elasticity....... PUFAs may generally regulate membrane protein function by affecting the elasticity of the host lipid bilayer....

  1. Lipid peroxidation and water penetration in lipid bilayers

    DEFF Research Database (Denmark)

    Conte, Elena; Megli, Francesco Maria; Khandelia, Himanshu

    2012-01-01

    to the hydroperoxide groups to interact with the nitroxide at the methyl-terminal, confirming that the H-bonds experimentally observed are due to increased water penetration in the bilayer. The EPR and MD data on model membranes demonstrate that cell membrane damage by oxidative stress cause alteration of water......(zz) parameters revealed that OHPLPC, but mostly HpPLPC, induced a measurable increase in polarity and H-bonding propensity in the central region of the bilayer. Molecular dynamics simulation performed on 16-DSA in the PLPC-HpPLPC bilayer revealed that water molecules are statistically favored with respect...

  2. Hybrid matrix method for stable numerical analysis of the propagation of Dirac electrons in gapless bilayer graphene superlattices

    Science.gov (United States)

    Briones-Torres, J. A.; Pernas-Salomón, R.; Pérez-Álvarez, R.; Rodríguez-Vargas, I.

    2016-05-01

    Gapless bilayer graphene (GBG), like monolayer graphene, is a material system with unique properties, such as anti-Klein tunneling and intrinsic Fano resonances. These properties rely on the gapless parabolic dispersion relation and the chiral nature of bilayer graphene electrons. In addition, propagating and evanescent electron states coexist inherently in this material, giving rise to these exotic properties. In this sense, bilayer graphene is unique, since in most material systems in which Fano resonance phenomena are manifested an external source that provides extended states is required. However, from a numerical standpoint, the presence of evanescent-divergent states in the eigenfunctions linear superposition representing the Dirac spinors, leads to a numerical degradation (the so called Ωd problem) in the practical applications of the standard Coefficient Transfer Matrix (K) method used to study charge transport properties in Bilayer Graphene based multi-barrier systems. We present here a straightforward procedure based in the hybrid compliance-stiffness matrix method (H) that can overcome this numerical degradation. Our results show that in contrast to standard matrix method, the proposed H method is suitable to study the transmission and transport properties of electrons in GBG superlattice since it remains numerically stable regardless the size of the superlattice and the range of values taken by the input parameters: the energy and angle of the incident electrons, the barrier height and the thickness and number of barriers. We show that the matrix determinant can be used as a test of the numerical accuracy in real calculations.

  3. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    Energy Technology Data Exchange (ETDEWEB)

    Othmani, Cherif, E-mail: othmanicheriffss@gmail.com; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-09-01

    The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  4. Study of the influence of semiconductor material parameters on acoustic wave propagation modes in GaSb/AlSb bi-layered structures by Legendre polynomial method

    International Nuclear Information System (INIS)

    Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi

    2016-01-01

    The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.

  5. Strain, stabilities and electronic properties of hexagonal BN bilayers

    Science.gov (United States)

    Fujimoto, Yoshitaka; Saito, Susumu

    Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.

  6. Molecular Interaction of a New Antibacterial Polymer with a Supported Lipid Bilayer Measured by an in situ Label-Free Optical Technique

    Directory of Open Access Journals (Sweden)

    Robert Horvath

    2013-05-01

    Full Text Available The interaction of the antibacterial polymer–branched poly(ethylene imine substituted with quaternary ammonium groups, PEO and alkyl chains, PEI25QI5J5A815–with a solid supported lipid bilayer was investigated using surface sensitive optical waveguide spectroscopy. The analysis of the optogeometrical parameters was extended developing a new composite layer model in which the structural and optical anisotropy of the molecular layers was taken into consideration. Following in situ the change of optical birefringence we were able to determine the composition of the lipid/polymer surface layer as well as the displacement of lipid bilayer by the antibacterial polymer without using additional labeling. Comparative assessment of the data of layer thickness and optical anisotropy helps to reveal the molecular mechanism of antibacterial effect of the polymer investigated.

  7. Electronic properties of a biased graphene bilayer

    International Nuclear Information System (INIS)

    Castro, Eduardo V; Lopes dos Santos, J M B; Novoselov, K S; Morozov, S V; Geim, A K; Peres, N M R; Nilsson, Johan; Castro Neto, A H; Guinea, F

    2010-01-01

    We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system-a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and γ 4 (inter-layer), and the on-site energy Δ.

  8. Influence of locational states of submicron fibers added into matrix on mechanical properties of plain-woven Carbon Fiber Composite

    Directory of Open Access Journals (Sweden)

    Kumamoto Soichiro

    2016-01-01

    Full Text Available The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP. To change the locational states of submicron fibers, two kinds of fabrication processes were applied in preparing specimen by hand lay-up method. Submicron fibers were simply added into epoxy resin with ethanol after they were stirred by a dispersion process using homogenizer to be located far from the interface between reinforcement and matrix. In contrast, submicron fibers were attached onto the carbon fibers by injecting from a spray nozzle accompanying with ethanol to be located near the interface, after they were tentatively contained in ethanol. The plain-woven CFRP plates were fabricated by hand lay-up method and cured at 80 degree-C for 1 hour and then at 150 degree-C for 3 hours. After curing, the plain-woven CFRP plates were cut into the dimension of specimen. Tensile shear strength and Mode-II fracture toughness of CFRP were determined by tensile lap-shear test and End-notched flexure(ENF test, respectively. When submicron fibers were located far from the interface between carbon fibers and epoxy resin, tensile shear strength and Mode-II fracture toughness of CFRP were improved 30% and 18% compared with those of unmodified case. The improvement ratio in modified case was rather low (about few percentages in the case where submicron fibers were located near the interface. The result suggested that crack propagation should be prevented when submicron fibers were existed far from the interface due to the effective stress state around the crack tip.

  9. Degradation of CMOS image sensors in deep-submicron technology due to γ-irradiation

    Science.gov (United States)

    Rao, Padmakumar R.; Wang, Xinyang; Theuwissen, Albert J. P.

    2008-09-01

    In this work, radiation induced damage mechanisms in deep submicron technology is resolved using finger gated-diodes (FGDs) as a radiation sensitive tool. It is found that these structures are simple yet efficient structures to resolve radiation induced damage in advanced CMOS processes. The degradation of the CMOS image sensors in deep-submicron technology due to γ-ray irradiation is studied by developing a model for the spectral response of the sensor and also by the dark-signal degradation as a function of STI (shallow-trench isolation) parameters. It is found that threshold shifts in the gate-oxide/silicon interface as well as minority carrier life-time variations in the silicon bulk are minimal. The top-layer material properties and the photodiode Si-SiO2 interface quality are degraded due to γ-ray irradiation. Results further suggest that p-well passivated structures are inevitable for radiation-hard designs. It was found that high electrical fields in submicron technologies pose a threat to high quality imaging in harsh environments.

  10. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  11. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C J [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M J [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1994-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  12. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  13. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    International Nuclear Information System (INIS)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-01-01

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer

  14. Ionic motion in PEDOT and PPy conducting polymer bilayers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    2006-01-01

    Conducting polymer bilayers with poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), each containing dodecyl benzenesulfonate (DBS) as immobile dopant species, were synthesized galvanostatically. The electrochemical behaviour of the bilayers was investigated using cyclic voltammetry...

  15. [Nasal submicron emulsion of Scutellariae Radix extract preparation technology research based on phase transfer of solute technology].

    Science.gov (United States)

    Shi, Ya-jun; Shi, Jun-hui; Chen, Shi-bin; Yang, Ming

    2015-07-01

    Based on the demand of nasal drug delivery high drug loadings, using the unique phase transfer of solute, integrating the phospholipid complex preparation and submicron emulsion molding process of Scutellariae Radix extract, the study obtained the preparation of the high drug loadings submicron emulsion of Scutellariae Radix extract. In the study of drug solution dispersion method, the uniformity of drug dispersed as the evaluation index, the traditional mixing method, grinding, homogenate and solute phase transfer technology were investigated, and the solute phase transfer technology was adopted in the last. With the adoption of new technology, the drug loading capacity reached 1.33% (phospholipid complex was 4%). The drug loading capacity was improved significantly. The transfer of solute method and timing were studied as follows,join the oil phase when the volume of phospholipid complex anhydrous ethanol solution remaining 30%, the solute phase transfer was completed with the continued recycling of anhydrous ethanol. After drug dissolved away to oil phase, the preparation technology of colostrum was determined with the evaluation index of emulsion droplet form. The particle size of submicron emulsion, PDI and stability parameters were used as evaluation index, orthogonal methodology were adopted to optimize the submicron emulsion ingredient and main influential factors of high pressure homogenization technology. The optimized preparation technology of Scutellariae Radix extract nasal submicron emulsion is practical and stable.

  16. Hot carrier degradation and a new lifetime prediction model in ultra-deep sub-micron pMOSFET

    International Nuclear Information System (INIS)

    Lei Xiao-Yi; Liu Hong-Xia; Zhang Kai; Zhang Yue; Zheng Xue-Feng; Ma Xiao-Hua; Hao Yue

    2013-01-01

    The hot carrier effect (HCE) of an ultra-deep sub-micron p-channel metal—oxide semiconductor field-effect transistor (pMOSFET) is investigated in this paper. Experiments indicate that the generation of positively charged interface states is the predominant mechanism in the case of the ultra-deep sub-micron pMOSFET. The relation of the pMOSFET hot carrier degradation to stress time (t), channel width (W), channel length (L), and stress voltage (V d ) is then discussed. Based on the relation, a lifetime prediction model is proposed, which can predict the lifetime of the ultra-deep sub-micron pMOSFET accurately and reflect the influence of the factors on hot carrier degradation directly. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    Science.gov (United States)

    Zheng, Qi-Wen; Yu, Xue-Feng; Cui, Jiang-Wei; Guo, Qi; Ren, Di-Yuan; Cong, Zhong-Chao; Zhou, Hang

    2014-10-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device.

  18. Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Badgujar, Amol C.; Dhage, Sanjay R., E-mail: dhage@arci.res.in; Joshi, Shrikant V.

    2015-08-31

    Copper indium gallium selenide (CIGS) has emerged as a promising candidate for thin film solar cells, with efficiencies approaching those of silicon-based solar cells. To achieve optimum performance in CIGS solar cells, uniform, conductive, stress-free, well-adherent, reflective, crystalline molybdenum (Mo) thin films with preferred orientation (110) are desirable as a back contact on large area glass substrates. The present study focuses on cylindrical rotating DC magnetron sputtered bilayer Mo thin films on 300 mm × 300 mm soda lime glass (SLG) substrates. Key sputtering variables, namely power and Ar gas flow rates, were optimized to achieve best structural, electrical and optical properties. The Mo films were comprehensively characterized and found to possess high degree of thickness uniformity over large area. Best crystallinity, reflectance and sheet resistance was obtained at high sputtering powers and low argon gas flow rates, while mechanical properties like adhesion and residual stress were found to be best at low sputtering power and high argon gas flow rate, thereby indicating a need to arrive at a suitable trade-off during processing. - Highlights: • Sputtering of bilayer molybdenum thin films on soda lime glass • Large area deposition using rotating cylindrical direct current magnetron • Trade of sputter process parameters power and pressure • High uniformity of thickness and best electrical properties obtained • Suitable mechanical and optical properties of molybdenum are achieved for CIGS application.

  19. Biomimetic Cationic Nanoparticles Based on Silica: Optimizing Bilayer Deposition from Lipid Films

    Directory of Open Access Journals (Sweden)

    Rodrigo T. Ribeiro

    2017-10-01

    Full Text Available The optimization of bilayer coverage on particles is important for a variety of biomedical applications, such as drug, vaccine, and genetic material delivery. This work aims at optimizing the deposition of cationic bilayers on silica over a range of experimental conditions for the intervening medium and two different assemblies for the cationic lipid, namely, lipid films or pre-formed lipid bilayer fragments. The lipid adsorption on silica in situ over a range of added lipid concentrations was determined from elemental analysis of carbon, hydrogen, and nitrogen and related to the colloidal stability, sizing, zeta potential, and polydispersity of the silica/lipid nanoparticles. Superior bilayer deposition took place from lipid films, whereas adsorption from pre-formed bilayer fragments yielded limiting adsorption below the levels expected for bilayer adsorption.

  20. Proceedings of submicron multiphase materials

    International Nuclear Information System (INIS)

    Baney, R.; Gilliom, L.; Hirano, S.I.; Schmidt, H.

    1992-01-01

    This book contains the papers presented at Symposium R of the spring 1992 Materials Research Society meeting held in San Francisco, California. The title of the symposium, Submicron Multiphase Materials, was selected by the organizers to encompass the realm of composite materials from those smaller than conventional fiber matrix composites to those with phase separation dimensions approaching molecular dimensions. The development of composite materials is as old as the development of materials. Humans quickly learned that, by combining materials, the best properties of each can be realized and that, in fact, synergistic effects often arise. For example, chopped straw was used by the Israelites to limit cracking in bricks. The famed Japanese samurai swords were multilayers of hard oxide and tough ductile materials. One also finds in nature examples of composite materials. These range form bone to wood, consisting of a hard phase which provides strength and stiffness and a softer phase for toughness. Advanced composites are generally thought of as those which are based on a high modulus, discontinuous, chopped or woven fiber phase and a continuous polymer phase. In multiphase composites, dimensions can range from meters in materials such as steel rod-reinforced concrete structures to angstroms. In macrophase separated composite materials, properties frequently follow the rule of mixtures with the properties approximating the arithmetic mean of the properties of each individual phase, if there is good coupling between the phases. As the phases become smaller, the surface to volume ratio grows in importance with respect to properties. Interfacial and interphase phenomena being to dominate. Surface free energies play an ever increasing role in controlling properties. In recent years, much research in materials science has been directed at multiphase systems where phase separations are submicron in at least some dimension

  1. Conformal bi-layered perovskite/spinel coating on a metallic wire network for solid oxide fuel cells via an electrodeposition-based route

    Science.gov (United States)

    Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won

    2017-04-01

    Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.

  2. Formulation of bi-layer matrix tablets of tramadol hydrochloride: Comparison of rate retarding ability of the incorporated hydrophilic polymers.

    Science.gov (United States)

    Arif, Hasanul; Al-Masum, Abdullah; Sharmin, Florida; Reza, Selim; Sm Islam, Sm Ashraful

    2015-05-01

    Bi-layer tablets of tramadol hydrochloride were prepared by direct compression technique. Each tablet contains an instant release layer with a sustained release layer. The instant release layer was found to release the initial dose immediately within minutes. The instant release layer was combined with sustained release matrix made of varying quantity of Methocel K4M, Methocel K15MCR and Carbomer 974P. Bi-layer tablets were evaluated for various physical tests including weight variation, thickness and diameter, hardness and percent friability. Drug release from bi-layer tablet was studied in acidic medium and buffer medium for two and six hours respectively. Sustained release of tramadol hydrochloride was observed with a controlled fashion that was characteristic to the type and extent of polymer used. % Drug release from eight-hour dissolution study was fitted with several kinetic models. Mean dissolution time (MDT) and fractional dissolution values (T25%, T50% and T80%) were also calculated as well, to compare the retarding ability of the polymers. Methocel K15MCR was found to be the most effective in rate retardation of freely water-soluble tramadol hydrochloride compared to Methocel K4M and Capbomer 974P, when incorporated at equal ratio in the formulation.

  3. Impact of AlO x layer on resistive switching characteristics and device-to-device uniformity of bilayered HfO x -based resistive random access memory devices

    Science.gov (United States)

    Chuang, Kai-Chi; Chung, Hao-Tung; Chu, Chi-Yan; Luo, Jun-Dao; Li, Wei-Shuo; Li, Yi-Shao; Cheng, Huang-Chung

    2018-06-01

    An AlO x layer was deposited on HfO x , and bilayered dielectric films were found to confine the formation locations of conductive filaments (CFs) during the forming process and then improve device-to-device uniformity. In addition, the Ti interposing layer was also adopted to facilitate the formation of oxygen vacancies. As a result, the resistive random access memory (RRAM) device with TiN/Ti/AlO x (1 nm)/HfO x (6 nm)/TiN stack layers demonstrated excellent device-to-device uniformity although it achieved slightly larger resistive switching characteristics, which were forming voltage (V Forming) of 2.08 V, set voltage (V Set) of 1.96 V, and reset voltage (V Reset) of ‑1.02 V, than the device with TiN/Ti/HfO x (6 nm)/TiN stack layers. However, the device with a thicker 2-nm-thick AlO x layer showed worse uniformity than the 1-nm-thick one. It was attributed to the increased oxygen atomic percentage in the bilayered dielectric films of the 2-nm-thick one. The difference in oxygen content showed that there would be less oxygen vacancies to form CFs. Therefore, the random growth of CFs would become severe and the device-to-device uniformity would degrade.

  4. Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off

    Directory of Open Access Journals (Sweden)

    Yujie Zhu

    2015-08-01

    Full Text Available Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspired materials or devices. Although the ability to pattern stacked lipid bilayers at the micron scale is of importance for these purposes, limited work has been done in developing such patterning techniques. Here, we present a simple and direct approach to pattern stacked supported lipid bilayers (SLBs using polymer stencil lift-off and the electrostatic interactions between cationic and anionic lipids. Both homogeneous and phase-segregated stacked SLB patterns were produced, demonstrating that the stacked lipid bilayers retain lateral diffusivity. We demonstrate patterned SLB stacks of up to four bilayers, where fluorescence resonance energy transfer (FRET and quenching was used to probe the interactions between lipid bilayers. Furthermore, the study of lipid phase behaviour showed that gel phase domains align between adjacent layers. The proposed stacked SLB pattern platform provides a robust model for studying lipid behaviour with a controlled number of bilayers, and an attractive means towards building functional bioinspired materials or devices.

  5. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859

  6. An electrochemical investigation on the dissolution of bilayered porous anodic alumina

    International Nuclear Information System (INIS)

    Liao, Jinfu; Ling, Zhiyuan; Li, Yi; Hu, Xing

    2015-01-01

    Highlights: • Pulse polarization was introduced to investigate the dissolution of PAA. • Electric field within the bilayers was estimated. • The formation of the barrier layer involves mainly solid-state processes. • The structure should be the determining factor in the dissolution of the bilayers. - Abstract: Anodic alumina attracts much research interest in many disciplines for its versatility. Meanwhile, some aspects regarding its growth are still not well-understood, such as the formation and properties of its bilayer structure. In this paper, along with capacitance measurement, pulse polarization is introduced to study the dissolution of bilayered porous anodic alumina (PAA). Combined with electron microscope observation, the electric field in the outer layer is estimated to be slightly higher than that in the inner layer. By comparing with (oxy-)hydroxide layers, the electric field distribution within barrier layer of PAA confirms that the bilayers are compact and are formed mainly by solid-state ionic migration. The changes of dissolution rates after annealing and application of electric pulses suggest that structure may be a determining factor for the dissolution behaviors of the bilayers.

  7. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  8. The Integrin Receptor in Biologically Relevant Bilayers

    DEFF Research Database (Denmark)

    Kalli, Antreas C.; Róg, Tomasz; Vattulainen, Ilpo

    2017-01-01

    /talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study...... demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin....../talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2–F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction...

  9. Chiral tunneling in a twisted graphene bilayer.

    Science.gov (United States)

    He, Wen-Yu; Chu, Zhao-Dong; He, Lin

    2013-08-09

    The perfect transmission in a graphene monolayer and the perfect reflection in a Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in a twisted graphene bilayer show an adjustable probability of chiral tunneling for normal incidence: they can be changed from perfect tunneling to partial or perfect reflection, or vice versa, by controlling either the height of the barrier or the incident energy. As well as addressing basic physics about how the chiral fermions with different chiralities tunnel through a barrier, our results provide a facile route to tune the electronic properties of the twisted graphene bilayer.

  10. Pattern imprinting in deep sub-micron static random access memories induced by total dose irradiation

    International Nuclear Information System (INIS)

    Zheng Qi-Wen; Yu Xue-Feng; Cui Jiang-Wei; Guo Qi; Ren Di-Yuan; Cong Zhong-Chao; Zhou Hang

    2014-01-01

    Pattern imprinting in deep sub-micron static random access memories (SRAMs) during total dose irradiation is investigated in detail. As the dose accumulates, the data pattern of memory cells loading during irradiation is gradually imprinted on their background data pattern. We build a relationship between the memory cell's static noise margin (SNM) and the background data, and study the influence of irradiation on the probability density function of ΔSNM, which is the difference between two data sides' SNMs, to discuss the reason for pattern imprinting. Finally, we demonstrate that, for micron and deep sub-micron devices, the mechanism of pattern imprinting is the bias-dependent threshold shift of the transistor, but for a deep sub-micron device the shift results from charge trapping in the shallow trench isolation (STI) oxide rather than from the gate oxide of the micron-device. (condensed matter: structural, mechanical, and thermal properties)

  11. Cyclotron resonance in bilayer graphene.

    Science.gov (United States)

    Henriksen, E A; Jiang, Z; Tung, L-C; Schwartz, M E; Takita, M; Wang, Y-J; Kim, P; Stormer, H L

    2008-02-29

    We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B=18 T, we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies are roughly linear in B between the lowest Landau levels, whereas they follow square root[B] for the higher transitions. This highly unusual behavior represents a change from a parabolic to a linear energy dispersion. The density of states derived from our data generally agrees with the existing lowest order tight binding calculation for bilayer graphene. However, in comparing data to theory, a single set of fitting parameters fails to describe the experimental results.

  12. Electronic and Optical Properties of Twisted Bilayer Graphene

    Science.gov (United States)

    Huang, Shengqiang

    The ability to isolate single atomic layers of van der Waals materials has led to renewed interest in the electronic and optical properties of these materials as they can be fundamentally different at the monolayer limit. Moreover, these 2D crystals can be assembled together layer by layer, with controllable sequence and orientation, to form artificial materials that exhibit new features that are not found in monolayers nor bulk. Twisted bilayer graphene is one such prototype system formed by two monolayer graphene layers placed on top of each other with a twist angle between their lattices, whose electronic band structure depends on the twist angle. This thesis presents the efforts to explore the electronic and optical properties of twisted bilayer graphene by Raman spectroscopy and scanning tunneling microscopy measurements. We first synthesize twisted bilayer graphene with various twist angles via chemical vapor deposition. Using a combination of scanning tunneling microscopy and Raman spectroscopy, the twist angles are determined. The strength of the Raman G peak is sensitive to the electronic band structure of twisted bilayer graphene and therefore we use this peak to monitor changes upon doping. Our results demonstrate the ability to modify the electronic and optical properties of twisted bilayer graphene with doping. We also fabricate twisted bilayer graphene by controllable stacking of two graphene monolayers with a dry transfer technique. For twist angles smaller than one degree, many body interactions play an important role. It requires eight electrons per moire unit cell to fill up each band instead of four electrons in the case of a larger twist angle. For twist angles smaller than 0.4 degree, a network of domain walls separating AB and BA stacking regions forms, which are predicted to host topologically protected helical states. Using scanning tunneling microscopy and spectroscopy, these states are confirmed to appear on the domain walls when inversion

  13. Decoupling of bilayer leaflets under gas supersaturation: nitrogen nanobubbles in a membrane and their implication in decompression sickness

    Science.gov (United States)

    Li, Jing; Zhang, Xianren; Cao, Dapeng

    2018-05-01

    Decompression sickness (also known as diver’s sickness) is a disease that arises from the formation of a bubble inside the body caused by rapid decompression from high atmospheric pressures. However, the nature of pre-existing micronuclei that are proposed for interpreting the formation and growth of the bubble, as well as their very existence, is still highly controversial. In this work, atomistic molecular dynamics simulations are employed to investigate the nucleation of gas bubbles under the condition of nitrogen supersaturation, in the presence of a lipid bilayer and lipid micelle representing other macromolecules with a smaller hydrophobic region. Our simulation results demonstrate that by crossing a small energy barrier, excess nitrogen molecules can enter the lipid bilayer nearly spontaneously, for which the hydrophobic core serves as a potential well for gas enrichment. At a rather low nitrogen supersaturation, gas molecules in the membrane are dispersed in the hydrophobic region of the bilayer, with a slight increase in membrane thickness. But as the level of gas supersaturation reaches a threshold, the accumulation of N2 molecules in the bilayer center causes the two leaflets to be decoupled and the formation of nanobubbles. Therefore, we propose a nucleation mechanism for bubble formation in a supersaturated solution of inert gas: a cell membrane acts as a potential well for gas enrichment, being an ideal location for forming nanobubbles that induce membrane damage at a high level of gas supersaturation. As opposed to previous models, the new mechanism involves forming gas nuclei in a very low-tension hydrophobic environment, and thus a rather low energy barrier is required and pre-existing bubble micronuclei are not needed.

  14. Tungsten Trioxide/Zinc Tungstate Bilayers: Electrochromic Behaviors, Energy Storage and Electron Transfer

    International Nuclear Information System (INIS)

    Wei, Huige; Ding, Daowei; Yan, Xingru; Guo, Jiang; Shao, Lu; Chen, Haoran; Sun, Luyi; Colorado, Henry A.; Wei, Suying; Guo, Zhanhu

    2014-01-01

    Highlights: • Tungsten oxide and zinc tungstate bilayers have been prepared via a facile sol-gel method for integrated applications of electrochromic behaviors and energy storage;. • Electron transfer behaviors between the semiconductor bilayer films have been found dependent on the bilayer assembly sequence;. • Methylene blue (MB) has been employed for the first time as an indicator to study the electron transfer phenomenon in the bilayer films. - Abstract: Pair-sequentially spin-coated tungsten trioxide (WO 3 ) and zinc tungstate (ZnWO 4 ) bilayer films onto indium tin oxide (ITO) coated glass slides have been prepared via sol-gel methods followed by annealing. The bilayers (ZnWO 4 /WO 3 denoting the bilayer film with the inner layer of ZnWO 4 and the outer layer of WO 3 on the ITO while WO 3 /ZnWO 4 standing for the bilayer film with the inner layer of WO 3 and the outer layer of ZnWO 4 on the ITO) exhibit integrated functions of electrochromic and energy storage behaviors as indicated by the in situ spectroelectrochemistry and cyclic voltammetry (CV) results. Accordingly, blue color was observed for the bilayer films at -1 V in 0.5 M H 2 SO 4 solution. An areal capacitance of 140 and 230 μF/cm 2 was obtained for the ZnWO 4 /WO 3 , and WO 3 /ZnWO 4 film, respectively, at a scan rate of 0.05 V/s in the CV measurements. The CV results also unveiled the electron transfer behavior between the semiconductor films in the oxidation process, suggesting a sequence-dependent electrochemical response in the bilayer films. Meanwhile, methylene blue (MB) was used as an indicator to study the electron transfer phenomenon during the reduction process at negative potentials of -0.4 and -0.8 V, in 0.5 M Na 2 SO 4 . The results indicated that the electrons transfer across the bilayers was enhanced at more negative potentials

  15. A simple method to tune graphene growth between monolayer and bilayer

    Directory of Open Access Journals (Sweden)

    Xiaozhi Xu

    2016-02-01

    Full Text Available Selective growth of either monolayer or bilayer graphene is of great importance. We developed a method to readily tune large area graphene growth from complete monolayer to complete bilayer. In an ambient pressure chemical vapor deposition process, we used the sample temperature at which to start the H2 flow as the control parameter and realized the change from monolayer to bilayer growth of graphene on Cu foil. When the H2 starting temperature was above 700°C, continuous monolayer graphene films were obtained. When the H2 starting temperature was below 350°C, continuous bilayer films were obtained. Detailed characterization of the samples treated under various conditions revealed that heating without the H2 flow caused Cu oxidation. The more the Cu substrate oxidized, the less graphene bilayer could form.

  16. Influence of ester-modified lipids on bilayer structure.

    Science.gov (United States)

    Villanueva, Diana Y; Lim, Joseph B; Klauda, Jeffery B

    2013-11-19

    Lipid membranes function as barriers for cells to prevent unwanted chemicals from entering the cell and wanted chemicals from leaving. Because of their hydrophobic interior, membranes do not allow water to penetrate beyond the headgroup region. We performed molecular simulations to examine the effects of ester-modified lipids, which contain ester groups along their hydrocarbon chains, on bilayer structure. We chose two lipids from those presented in Menger et al. [J. Am. Chem. Soc. 2006, 128, 14034] with ester groups in (1) the upper half of the lipid chain (MEPC) and (2) the middle and end of the lipid chain (MGPC). MGPC (30%)/POPC bilayers formed stable water pores of diameter 5-7 Å, but MGPC (22%)/POPC and MEPC (30%)/POPC bilayers did not form these defects. These pores were similar to those formed during electroporation; i.e., the head groups lined the pore and allowed water and ions to transport across the bilayer. However, we found that lateral organization of the MGPC lipids into clusters, instead of an electric field or charge disparity as in electroporation, was essential for pore formation. On the basis of this, we propose an overall mechanism for pore formation. The similarities between the ester-modified lipids and byproducts of lipid peroxidation with multiple hydrophilic groups in the middle of the chain suggest that free radical reactions with unsaturated lipids and sterols result in fundamental changes that may be similar to what is seen in bilayers with ester-modified lipids.

  17. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson

    2016-05-01

    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  18. Ultrafast lithium diffusion in bilayer graphene

    Science.gov (United States)

    Kühne, Matthias; Paolucci, Federico; Popovic, Jelena; Ostrovsky, Pavel M.; Maier, Joachim; Smet, Jurgen H.

    2017-09-01

    Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7 × 10-5 cm2 s-1.

  19. Hot-carrier effects on irradiated deep submicron NMOSFET

    International Nuclear Information System (INIS)

    Cui Jiangwei; Zheng Qiwen; Yu Xuefeng; Cong Zhongchao; Zhou Hang; Guo Qi; Wen Lin; Wei Ying; Ren Diyuan

    2014-01-01

    We investigate how γ exposure impacts the hot-carrier degradation in deep submicron NMOSFET with different technologies and device geometries for the first time. The results show that hot-carrier degradations on irradiated devices are greater than those without irradiation, especially for narrow channel device. The reason is attributed to charge traps in STI, which then induce different electric field and impact ionization rates during hot-carrier stress. (semiconductor devices)

  20. Evaluation of the performance characteristics of bilayer tablets: Part II. Impact of environmental conditions on the strength of bilayer tablets.

    Science.gov (United States)

    Kottala, Niranjan; Abebe, Admassu; Sprockel, Omar; Bergum, James; Nikfar, Faranak; Cuitiño, Alberto M

    2012-12-01

    Ambient air humidity and temperature are known to influence the mechanical strength of tablets. The objective of this work is to understand the influence of processing parameters and environmental conditions (humidity and temperature) on the strength of bilayer tablets. As part of this study, bilayer tablets were compressed with different layer ratios, dwell times, layer sequences, material properties (plastic and brittle), first and second layer forces, and lubricant concentrations. Compressed tablets were stored in stability chambers controlled at predetermined conditions (40C/45%RH, 40C/75%RH) for 1, 3, and 5 days. The axial strength of the stored tablets was measured and a statistical model was developed to determine the effects of the aforementioned factors on the strength of bilayer tablets. As part of this endeavor, a full 3 × 2(4) factorial design was executed. Responses of the experiments were analyzed using PROC GLM of SAS (SAS Institute Inc, Cary, North Carolina, USA). A model was fit using all the responses to determine the significant interactions (p < 0.05). Results of this study indicated that storage conditions and storage time have significant impact on the strength of bilayer tablets. For Avicel-lactose and lactose-Avicel tablets, tablet strength decreased with the increasing humidity and storage time. But for lactose-lactose tablets, due to the formation of solid bridges upon storage, an increase in tablet strength was observed. Significant interactions were observed between processing parameters and storage conditions on the strength of bilayer tablets.

  1. Interaction between U/UO2 bilayers and hydrogen studied by in-situ X-ray diffraction

    Science.gov (United States)

    Darnbrough, J. E.; Harker, R. M.; Griffiths, I.; Wermeille, D.; Lander, G. H.; Springell, R.

    2018-04-01

    This paper reports experiments investigating the reaction of H2 with uranium metal-oxide bilayers. The bilayers consist of ≤ 100 nm of epitaxial α-U (grown on a Nb buffer deposited on sapphire) with a UO2 overlayer of thicknesses of between 20 and 80 nm. The oxides were made either by depositing via reactive magnetron sputtering, or allowing the uranium metal to oxidise in air at room temperature. The bilayers were exposed to hydrogen, with sample temperatures between 80 and 200 C, and monitored via in-situ x-ray diffraction and complimentary experiments conducted using Scanning Transmission Electron Microscopy - Electron Energy Loss Spectroscopy (STEM-EELS). Small partial pressures of H2 caused rapid consumption of the U metal and lead to changes in the intensity and position of the diffraction peaks from both the UO2 overlayers and the U metal. There is an orientational dependence in the rate of U consumption. From changes in the lattice parameter we deduce that hydrogen enters both the oxide and metal layers, contracting the oxide and expanding the metal. The air-grown oxide overlayers appear to hinder the H2-reaction up to a threshold dose, but then on heating from 80 to 140 C the consumption is more rapid than for the as-deposited overlayers. STEM-EELS establishes that the U-hydride layer lies at the oxide-metal interface, and that the initial formation is at defects or grain boundaries, and involves the formation of amorphous and/or nanocrystalline UH3. This explains why no diffraction peaks from UH3 are observed.

  2. Spin-Coating and Characterization of Multiferroic MFe{sub 2}O{sub 4} (M=Co, Ni) / BaTiO{sub 3} Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Quandt, Norman [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Germany); Roth, Robert [Institute of Physics, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle (Germany); Syrowatka, Frank [Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Straße 4, 06120 Halle (Germany); Steimecke, Matthias [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Germany); Ebbinghaus, Stefan G., E-mail: stefan.ebbinghaus@chemie.uni-halle.de [Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Germany)

    2016-01-15

    Bilayer films of MFe{sub 2}O{sub 4} (M=Co, Ni) and BaTiO{sub 3} were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO{sub 3}. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm{sup −3} for the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} and 188 emu cm{sup −3} for the NiFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer, respectively were found. For the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems. - Graphical abstract: The SEM image of the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer on Pt–Si-substrate (left), magnetization as a function of the magnetic field perpendicular and parallel to the film plane (right top) and P–E and I–V hysteresis loops of the bilayer at room temperature. - Highlights: • Ferrite and perovskite oxides grown on platinum using spin coating technique. • Columnar growth of cobalt ferrite particle on the substrate. • Surface investigation showed a homogenous and smooth surface. • Perpendicular and parallel applied magnetic field revealed a magnetic anisotropy. • Switching peaks and saturated P–E hysteresis loops show ferroelectricity.

  3. Lipids, lipid bilayers and vesicles as seen by neutrons

    International Nuclear Information System (INIS)

    Seto, Hideki

    2011-01-01

    Lipid molecules self-assemble into bilayers in water with their hydrocarbon chains facing inward due to their amphiphilic nature. The structural and dynamical properties of lipids and lipid bilayers have been studied by neutron scattering intensively. In this article, 3 topics are shown as typical examples. 1) a time-resolved small-angle neutron scattering on uni-lamellar vesicles composed of deuterated and protonated lipids to determine lipid kinetics, 2) small-angle neutron scattering to investigate spontaneous formation of nanopores on uni-lamellar vesicles, and 3) neutron spin echo study to determine bending modulus of lipid bilayers. (author)

  4. Bi-layer plate-type acoustic metamaterials with Willis coupling

    Science.gov (United States)

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui

    2018-01-01

    Dynamic effective negative parameters are principal to the representation of the physical properties of metamaterials. In this paper, a bi-layer plate-type unit was proposed with both a negative mass density and a negative bulk modulus; moreover, through analysis of these bi-layer structures, some important problems about acoustic metamaterials were studied. First, dynamic effective mass densities and the bulk modulus of the bi-layer plate-type acoustic structure were clarified through both the direct and the retrieval methods, and, in addition, the intrinsic relationship between the sound transmission (absorption) characteristics and the effective parameters was analyzed. Furthermore, the properties of dynamic effective parameters for an asymmetric bi-layer acoustic structure were further considered through an analysis of experimental data, and the modified effective parameters were then obtained through consideration of the Willis coupling in the asymmetric passive system. In addition, by taking both the clamped and the periodic boundary conditions into consideration in the bi-layer plate-type acoustic system, new perspectives were presented for study on the effective parameters and sound insulation properties in the range below the cut-off frequency. The special acoustic properties established by these effective parameters could enrich our knowledge and provide guidance for the design and installation of acoustic metamaterial structures in future sound engineering practice.

  5. Assessment of Sub-Micron Particles by Exploiting Charge Differences with Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Maria F. Romero-Creel

    2017-08-01

    Full Text Available The analysis, separation, and enrichment of submicron particles are critical steps in many applications, ranging from bio-sensing to disease diagnostics. Microfluidic electrokinetic techniques, such as dielectrophoresis (DEP have proved to be excellent platforms for assessment of submicron particles. DEP is the motion of polarizable particles under the presence of a non-uniform electric field. In this work, the polarization and dielectrophoretic behavior of polystyrene particles with diameters ranging for 100 nm to 1 μm were studied employing microchannels for insulator based DEP (iDEP and low frequency (<1000 Hz AC and DC electric potentials. In particular, the effects of particle surface charge, in terms of magnitude and type of functionalization, were examined. It was found that the magnitude of particle surface charge has a significant impact on the polarization and dielectrophoretic response of the particles, allowing for successful particle assessment. Traditionally, charge differences are exploited employing electrophoretic techniques and particle separation is achieved by differential migration. The present study demonstrates that differences in the particle’s surface charge can also be exploited by means of iDEP; and that distinct types of nanoparticles can be identified by their polarization and dielectrophoretic behavior. These findings open the possibility for iDEP to be employed as a technique for the analysis of submicron biological particles, where subtle differences in surface charge could allow for rapid particle identification and separation.

  6. Tunneling density of states as a function of thickness in superconductor/ strong ferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Reymond, S.

    2010-04-29

    We have made an experimental study of the tunneling density of states (DOS) in strong ferromagnetic thin films (CoFe) in proximity with a thick superconducting film (Nb) as a function of d{sub F}, the ferromagnetic thickness. Remarkably, we find that as d{sub F} increases, the superconducting DOS exhibits a scaling behavior in which the deviations from the normal-state conductance have a universal shape that decreases exponentially in amplitude with characteristic length d* {approx} 0.4 nm. We do not see oscillations in the DOS as a function of d{sub F}, as expected from predictions based on the Usadel equations, although an oscillation in T{sub c}(d{sub F}) has been seen in the same materials.

  7. Determination of manganese interdiffusion parameters in CoFe/IrMn bilayers by X-ray reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Pablo Forlam Ribeiro; Andrade, Leandro Hostalacio Freire; Fernandez-Outon, Luis Eugenio; Macedo, Waldemar Augusto de Almeida, E-mail: pfrb@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2016-07-01

    Full text: Interfacial diffusion is expected to have strong influence on the exchange bias coupling in ferromagnetic/antiferromagnetic bilayers, basic structures for spintronic devices [1]. In this work, X-ray reflectometry (XRR) in combination with the Fick's second law [2] was applied to determine manganese interdiffusion parameters in CoFe/IrMn exchange-biased bilayers prepared by magnetron sputtering. The layer thickness and the interfacial roughness of the samples were obtained by fitting the reflectivity curves and the values confirmed by transmission electron microscopy. The manganese diffusion coefficient at the interfaces is in the range of 10{sup -22} m{sup 2}/s, and the activation energy for the interfacial diffusion of manganese is in the order of a few tens of kJ/mol, based on the values of interfacial roughness for different annealing temperatures. References: [1] L. E. Fernandez-Outon, M. S. Araujo Filho, R. E. Araujo, J. D. Ardisson, and W. A. A. Macedo. J. Appl. Phys. 113, 17D704 (2013). [2] J. Y. Wang, A. Zalar, Y.H. Zhao, E.J. Mittemeijer. Thin Solid Films. 433, 92 (2003). (author)

  8. A Facile Method for Separating and Enriching Nano and Submicron Particles from Titanium Dioxide Found in Food and Pharmaceutical Products

    Science.gov (United States)

    Yang, Yu; Capco, David G.; Westerhoff, Paul

    2016-01-01

    Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles. PMID:27798677

  9. Quantitative Raman microspectroscopy for water permeability parameters at a droplet interface bilayer.

    Science.gov (United States)

    Braziel, S; Sullivan, K; Lee, S

    2018-01-29

    Using confocal Raman microspectroscopy, we derive parameters for bilayer water transport across an isolated nanoliter aqueous droplet pair. For a bilayer formed with two osmotically imbalanced and adherent nanoliter aqueous droplets in a surrounding oil solvent, a droplet interface bilayer (DIB), the water permeability coefficient across the lipid bilayer was determined from monitoring the Raman scattering from the C[triple bond, length as m-dash]N stretching mode of K 3 Fe(CN) 6 as a measure of water uptake into the swelling droplet of a DIB pair. We also derive passive diffusional permeability coefficient for D 2 O transport across a droplet bilayer using O-D Raman signal. This method provides a significant methodological advance in determining water permeability coefficients in a convenient and reliable way.

  10. A Facile Method for Separating and Enriching Nano and Submicron Particles from Titanium Dioxide Found in Food and Pharmaceutical Products.

    Science.gov (United States)

    Faust, James J; Doudrick, Kyle; Yang, Yu; Capco, David G; Westerhoff, Paul

    2016-01-01

    Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles.

  11. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka

    2014-01-01

    We claim that (1) cholesterol protects bilayers from disruption caused by lipid oxidation by sequestering conical shaped oxidized lipid species such as 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PZPC) away from phospholipid, because cholesterol and the oxidized lipid have complementary...... shapes and (2) mixtures of cholesterol and oxidized lipids can self-assemble into bilayers much like lysolipid–cholesterol mixtures. The evidence for bilayer protection comes from molecular dynamics (MD) simulations and dynamic light scattering (DLS) measurements. Unimodal size distributions of extruded...... vesicles (LUVETs) made up of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PZPC containing high amounts of PZPC are only obtained when cholesterol is present in high concentrations. In simulations, bilayers containing high amounts of PZPC become porous, unless cholesterol is also present...

  12. Influence of a ZnO Buffer Layer on the Structural, Optical, and Electrical Properties of ITO/ZnO Bi-Layered Films

    International Nuclear Information System (INIS)

    Heo, Sung-Bo; Moon, Hyun-Joo; Kim, Daeil; Kim, Jun-Ho

    2016-01-01

    Sn-doped indium oxide (ITO) films and ITO/ZnO bi-layered films were prepared on polycarbonate substrates by RF magnetron sputtering without intentional substrate heating. In order to consider the influence of the ZnO thickness on the structural, optical, and electrical properties of ITO/ZnO films, the thickness of the ZnO buffer layer was varied from 5 to 20 nm. As-deposited ITO films show an average optical transmittance of 79.2% in the visible range and an electrical resistivity of 3.0×10"-"4 Ωcm, while films with a 5-nm thick ZnO buffer layer film show an electrical resistivity of 2.6×10"-"4 Ωcm and films with a 20-nm thick ZnO buffer layer show an optical transmittance of 82.0%. Based on the figure of merit, it is concluded that the ZnO buffer layer enhances the optical and electrical performance of ITO films used as transparent conducting oxides in flexible display applications.

  13. Layer configurations comparison of bilayer-films for EGFET pH sensor application

    Science.gov (United States)

    Rahman, R. A.; Zulkefle, M. A.; Yusof, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-05-01

    The comparison between bilayer configurations were presented in this paper. TiO2 and ZnO layer configurations were manipulated in order to investigate which configuration produce highest sensing performance to be applied as EGFET pH sensor. Both of the materials were deposited together as the bilayer film. The configurations were manipulated between TiO2/ZnO and ZnO/TiO2. ITO was used as the substrate in this study and both of the materials were deposited by using sol-gel spin coating technique. After deposition process, these bilayer film then undergone for EGFET pH sensor measurement and physical characterization. The EGFET pH sensor measurement was done by dipping the fabricated bilayer film into three different pH values, which is pH4, pH7 and pH10. Bilayer film act as the pH-sensitive membrane, which connected to the commercial metal-oxide semiconductor FET (MOSFET). This MOSFET was connected to the interfacing circuit. Voltage output obtained were recorded and the graph was plotted by using the data recorded. Based on the EGFET pH sensor measurement, TiO2/ZnO bilayer film exhibit higher sensing performance, compared with ZnO/TiO2. TiO2/ZnO bilayer film produced 53.10 mV/pH with the linearity value of 0.9913. Afterwards, fabricated bilayer films then were characterized with AFM to explore their surface roughness and surface topography behavior.

  14. Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chegel, Raad, E-mail: Raad.chegel@gmail.com

    2017-04-15

    By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB{sub 1}- and AB{sub 2}- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.

  15. Deep sub-micron FD-SOI for front-end application

    International Nuclear Information System (INIS)

    Ikeda, H.; Arai, Y.; Hara, K.; Hayakawa, H.; Hirose, K.; Ikegami, Y.; Ishino, H.; Kasaba, Y.; Kawasaki, T.; Kohriki, T.; Martin, E.; Miyake, H.; Mochizuki, A.; Tajima, H.; Tajima, O.; Takahashi, T.; Takashima, T.; Terada, S.; Tomita, H.; Tsuboyama, T.

    2007-01-01

    In order to confirm benefits of a deep sub-micron FD-SOI and to identify possible issues concerning front-end circuits with the FD-SOI, we have submitted a small design to Oki Electric Industry Co., Ltd. via the multi-chip project service of VDEC, the University of Tokyo. The initial test results and future plans for development are presented

  16. Bilayer graphene quantum dot defined by topgates

    Energy Technology Data Exchange (ETDEWEB)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  17. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    Science.gov (United States)

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  18. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  19. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation

    International Nuclear Information System (INIS)

    Auth, Thorsten; Safran, S A; Gov, Nir S

    2007-01-01

    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton

  20. Assessment of bilayer silicene to probe as quantum spin and valley Hall effect

    Science.gov (United States)

    Rehman, Majeed Ur; Qiao, Zhenhua

    2018-02-01

    Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.

  1. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    International Nuclear Information System (INIS)

    Deen, David A.; Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C.; Gougousi, Theodosia; Evans, Keith R.

    2014-01-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm 2 /V s and sheet resistance of 130 Ω/□ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  2. Impact of barrier thickness on transistor performance in AlN/GaN high electron mobility transistors grown on free-standing GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Deen, David A., E-mail: david.deen@alumni.nd.edu; Storm, David F.; Meyer, David J.; Bass, Robert; Binari, Steven C. [Electronics Science and Technology Division, Naval Research Laboratory, Washington, DC 20375-5347 (United States); Gougousi, Theodosia [Physics Department, University of Maryland Baltimore County, Baltimore, Maryland 21250 (United States); Evans, Keith R. [Kyma Technologies, Raleigh, North Carolina 27617 (United States)

    2014-09-01

    A series of six ultrathin AlN/GaN heterostructures with varied AlN thicknesses from 1.5–6 nm have been grown by molecular beam epitaxy on free-standing hydride vapor phase epitaxy GaN substrates. High electron mobility transistors (HEMTs) were fabricated from the set in order to assess the impact of barrier thickness and homo-epitaxial growth on transistor performance. Room temperature Hall characteristics revealed mobility of 1700 cm{sup 2}/V s and sheet resistance of 130 Ω/□ for a 3 nm thick barrier, ranking amongst the lowest room-temperature sheet resistance values reported for a polarization-doped single heterostructure in the III-Nitride family. DC and small signal HEMT electrical characteristics from submicron gate length HEMTs further elucidated the effect of the AlN barrier thickness on device performance.

  3. Step-wise potential development across the lipid bilayer under external electric fields

    Science.gov (United States)

    Majhi, Amit Kumar

    2018-04-01

    Pore formation across the bilayers under external electric field is an important phenomenon, which has numerous applications in biology and bio-engineering fields. However, it is not a ubiquitous event under all field applications. To initiate a pore in the bilayer a particular threshold electric field is required. The electric field alters the intrinsic potential distribution across the bilayer as we as it enhances total potential drop across the bilayer, which causes the pore formation. The intrinsic potential profile has a maximum peak value, which is 0.8 V and it gets enhanced under application of external field, 0.43 V/nm. The peak value becomes 1.4 V when a pore appears in the bilayer and it continues to evolve as along as the external electric field remains switched on.

  4. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.

    Science.gov (United States)

    Gasanov, Sardar E; Kim, Aleksandr A; Yaguzhinsky, Lev S; Dagda, Ruben K

    2018-02-01

    Cardiolipin (CL) is an anionic phospholipid at the inner mitochondrial membrane (IMM) that facilitates the formation of transient non-bilayer (non-lamellar) structures to maintain mitochondrial integrity. CL modulates mitochondrial functions including ATP synthesis. However, the biophysical mechanisms by which CL generates non-lamellar structures and the extent to which these structures contribute to ATP synthesis remain unknown. We hypothesized that CL and ATP synthase facilitate the formation of non-bilayer structures at the IMM to stimulate ATP synthesis. By using 1 H NMR and 31 P NMR techniques, we observed that increasing the temperature (8°C to 37°C), lowering the pH (3.0), or incubating intact mitochondria with CTII - an IMM-targeted toxin that increases the formation of immobilized non-bilayer structures - elevated the formation of non-bilayer structures to stimulate ATP synthesis. The F 0 sector of the ATP synthase complex can facilitate the formation of non-bilayer structures as incubating model membranes enriched with IMM-specific phospholipids with exogenous DCCD-binding protein of the F 0 sector (DCCD-BPF) elevated the formation of immobilized non-bilayer structures to a similar manner as CTII. Native PAGE assays revealed that CL, but not other anionic phospholipids, specifically binds to DCCD-BPF to promote the formation of stable lipid-protein complexes. Mechanistically, molecular docking studies identified two lipid binding sites for CL in DCCD-BPF. We propose a new model of ATP synthase regulation in which CL mediates the formation of non-bilayer structures that serve to cluster protons and ATP synthase complexes as a mechanism to enhance proton translocation to the F 0 sector, and thereby increase ATP synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Submicron-bubble-enhanced focused ultrasound for blood-brain barrier disruption and improved CNS drug delivery.

    Directory of Open Access Journals (Sweden)

    Ching-Hsiang Fan

    Full Text Available The use of focused ultrasound (FUS with microbubbles has been proven to induce transient blood-brain barrier opening (BBB-opening. However, FUS-induced inertial cavitation of microbubbles can also result in erythrocyte extravasations. Here we investigated whether induction of submicron bubbles to oscillate at their resonant frequency would reduce inertial cavitation during BBB-opening and thereby eliminate erythrocyte extravasations in a rat brain model. FUS was delivered with acoustic pressures of 0.1-4.5 MPa using either in-house manufactured submicron bubbles or standard SonoVue microbubbles. Wideband and subharmonic emissions from bubbles were used to quantify inertial and stable cavitation, respectively. Erythrocyte extravasations were evaluated by in vivo post-treatment magnetic resonance susceptibility-weighted imaging, and finally by histological confirmation. We found that excitation of submicron bubbles with resonant frequency-matched FUS (10 MHz can greatly limit inertial cavitation while enhancing stable cavitation. The BBB-opening was mainly caused by stable cavitation, whereas the erythrocyte extravasation was closely correlated with inertial cavitation. Our technique allows extensive reduction of inertial cavitation to induce safe BBB-opening. Furthermore, the safety issue of BBB-opening was not compromised by prolonging FUS exposure time, and the local drug concentrations in the brain tissues were significantly improved to 60 times (BCNU; 18.6 µg versus 0.3 µg by using chemotherapeutic agent-loaded submicron bubbles with FUS. This study provides important information towards the goal of successfully translating FUS brain drug delivery into clinical use.

  6. Computational Design of Multi-component Bio-Inspired Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Evan Koufos

    2014-04-01

    Full Text Available Our investigation is motivated by the need to design bilayer membranes with tunable interfacial and mechanical properties for use in a range of applications, such as targeted drug delivery, sensing and imaging. We draw inspiration from biological cell membranes and focus on their principal constituents. In this paper, we present our results on the role of molecular architecture on the interfacial, structural and dynamical properties of bio-inspired membranes. We focus on four lipid architectures with variations in the head group shape and the hydrocarbon tail length. Each lipid species is composed of a hydrophilic head group and two hydrophobic tails. In addition, we study a model of the Cholesterol molecule to understand the interfacial properties of a bilayer membrane composed of rigid, single-tail molecular species. We demonstrate the properties of the bilayer membranes to be determined by the molecular architecture and rigidity of the constituent species. Finally, we demonstrate the formation of a stable mixed bilayer membrane composed of Cholesterol and one of the phospholipid species. Our approach can be adopted to design multi-component bilayer membranes with tunable interfacial and mechanical properties. We use a Molecular Dynamics-based mesoscopic simulation technique called Dissipative Particle Dynamics that resolves the molecular details of the components through soft-sphere coarse-grained models and reproduces the hydrodynamic behavior of the system over extended time scales.

  7. Prevention of intra-abdominal adhesion by bi-layer electrospun membrane.

    Science.gov (United States)

    Jiang, Shichao; Wang, Wei; Yan, Hede; Fan, Cunyi

    2013-06-04

    The aim of this study was to compare the anti-adhesion efficacy of a bi-layer electrospun fibrous membrane consisting of hyaluronic acid-loaded poly(ε-caprolactone) (PCL) fibrous membrane as the inner layer and PCL fibrous membrane as the outer layer with a single-layer PCL electrospun fibrous membrane in a rat cecum abrasion model. The rat model utilized a cecal abrasion and abdominal wall insult surgical protocol. The bi-layer and PCL membranes were applied between the cecum and the abdominal wall, respectively. Control animals did not receive any treatment. After postoperative day 14, a visual semiquantitative grading scale was used to grade the extent of adhesion. Histological analysis was performed to reveal the features of adhesion tissues. Bi-layer membrane treated animals showed significantly lower adhesion scores than control animals (p compared with the PCL membrane. Histological analysis of the bi-layer membrane treated rat rarely demonstrated tissue adhesion while that of the PCL membrane treated rat and control rat showed loose and dense adhesion tissues, respectively. Bi-layer membrane can efficiently prevent adhesion formation in abdominal cavity and showed a significantly decreased adhesion tissue formation compared with the control.

  8. Tensile and shear methods for measuring strength of bilayer tablets.

    Science.gov (United States)

    Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin

    2017-05-15

    Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Formulation of Bilayer Benzydamine HCl Patch Targeted For Gingivitis

    Directory of Open Access Journals (Sweden)

    Piyush Sanghai

    2016-01-01

    Full Text Available In the present study bilayer patch of benzydamine HCl was developed using solvent casting method. Different substrates were attempted like Petri dish, glass-and-ring, and teflon-and-ring for selection of the proper option to formulate patch that should give easily peelable film with adequate mechanical properties. HPMC E15 LV was used in different concentrations for obtaining proper viscosity of solution for pouring on to surface and ring, that it should not leak from ring. The second layer was optimized by using different polymer like eudragit RSPO, eudragit RSPO + EC, and eudragit NE30 D for efficient layer bonding. The minimum release from backing membrane was established by diffusion study as compared to from drug loaded layer. The optimized batches were evaluated for folding endurance, weight variation, thickness, drug content, drug release, tensile strength, layer separation, mucoadhesion, moisture uptake, and layer bonding. The novel gingival patch of benzydamine HCl developed would be beneficial in optimizing the therapy.

  10. Fabrication of magnetic and fluorescent chitin and dibutyrylchitin sub-micron particles by oil-in-water emulsification.

    Science.gov (United States)

    Blanco-Fernandez, Barbara; Chakravarty, Shatadru; Nkansah, Michael K; Shapiro, Erik M

    2016-11-01

    Chitin is a carbohydrate polymer with unique pharmacological and immunological properties, however, because of its unwieldy chemistry, the synthesis of discreet sized sub-micron particles has not been well reported. This work describes a facile and flexible method to fabricate biocompatible chitin and dibutyrylchitin sub-micron particles. This technique is based on an oil-in-water emulsification/evaporation method and involves the hydrophobization of chitin by the addition of labile butyryl groups onto chitin, disrupting intermolecular hydrogen bonds and enabling solubility in the organic solvent used as the oil phase during fabrication. The subsequent removal of butyryl groups post-fabrication through alkaline saponification regenerates native chitin while keeping particles morphology intact. Examples of encapsulation of hydrophobic dyes and nanocrystals are demonstrated, specifically using iron oxide nanocrystals and coumarin 6. The prepared particles had diameters between 300-400nm for dibutyrylchitin and 500-600nm for chitin and were highly cytocompatible. Moreover, they were able to encapsulate high amounts of iron oxide nanocrystals and were able to label mammalian cells. We describe a technique to prepare sub-micron particles of highly acetylated chitin (>90%) and dibutyrylchitin and demonstrate their utility as carriers for imaging. Chitin is a polysaccharide capable of stimulating the immune system, a property that depends on the acetamide groups, but its insolubility limits its use. No method for sub-micron particle preparation with highly acetylated chitins have been published. The only approach for the preparation of sub-micron particles uses low acetylation chitins. Dibutyrylchitin, a soluble chitin derivative, was used to prepare particles by oil in water emulsification. Butyryl groups were then removed, forming chitin particles. These particles could be suitable for encapsulation of hydrophobic payloads for drug delivery and cell imaging, as well as

  11. Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study

    Science.gov (United States)

    Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour

    2018-01-01

    Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.

  12. Study of structure of the TiO{sub 2}–MoO{sub 3} bilayer films by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Elias de Barros; Sigoli, Fernando Aparecido; Mazali, Italo Odone, E-mail: mazali@iqm.unicamp.br

    2014-12-15

    Highlights: • TiO{sub 2}–MoO{sub 3} bilayer thin films were easily prepared by dip-coating technique. • Ti and Mo metallo-organic compounds were used as source of its respective oxide. • TiO{sub 2} in anatase phase and orthorhombic phase of α-MoO{sub 3} were identified. • The bilayer structure was investigated by Raman spectroscopy. - Abstract: In this work, TiO{sub 2}–MoO{sub 3} films were easily prepared by dip-coating technique and metallo-organic decomposition process (MOD). Raman analyses indicate the formation of TiO{sub 2} in anatase phase and orthorhombic phase of α-MoO{sub 3}. It was observed that the Raman bands intensities attributed to TiO{sub 2} and MoO{sub 3} oxides were dependent on the number of decomposition–deposition cycles (DDC). The different number of DDC generates films with different thicknesses and the Raman signal was sensitive to this variation. Raman analyses provided qualitative information about the bilayer structure of the bi-component TiO{sub 2}–MoO{sub 3} films, which was confirmed by scanning electron microscopy. In this direction, the dip-coating technique and MOD process can be an efficient strategy to facile preparation of many samples to be used in applications.

  13. Characteristics of scandate-impregnated cathodes with sub-micron scandia-doped matrices

    International Nuclear Information System (INIS)

    Yuan Haiqing; Gu Xin; Pan Kexin; Wang Yiman; Liu Wei; Zhang Ke; Wang Jinshu; Zhou Meiling; Li Ji

    2005-01-01

    We describe in this paper scandate-impregnated cathodes with sub-micron scandia-doped tungsten matrices having an improved uniformity of the Sc distribution. The scandia-doped tungsten powders were made by both liquid-solid doping and liquid-liquid doping methods on the basis of previous research. By improving pressing, sintering and impregnating procedures, we have obtained scandate-impregnated cathodes with a good uniformity of the Sc 2 O 3 - distribution. The porosity of the sub-micron structure matrix and content of impregnants inside the matrix are similar to those of conventionally impregnated cathodes. Space charge limited current densities of more than 30 A/cm 2 at 850 deg. C b have been obtained in a reproducible way. The current density continuously increases during the first 2000 h life test at 950 deg. C b with a dc load of 2 A/cm 2 and are stable for at least 3000 h

  14. Effect of free cholesterol on incorporation of triolein in phospholipid bilayers

    International Nuclear Information System (INIS)

    Spooner, P.J.R.; Small, D.M.

    1987-01-01

    Triacylglycerols are the major substrates for lipolytic enzymes that act at the surface of emulsion-like particles such as triglyceride-rich lipoproteins, chylomicrons, and intracellular lipid droplets. This study examines the effect of cholesterol on the solubility of a triacylglycerol, triolein, in phospholipid surfaces. Solubilities of [carbonyl- 13 C] triolein in phospholipid bilayer vesicles containing between 0 and 50 mol % free cholesterol, prepared by cosonication, were measured by 13 C NMR. The carbonyl resonances from bilayer-incorporated triglyceride were shifted downfield in the 13 C NMR spectra from those corresponding to excess, nonincorporated material. This enabled solubilities to be determined directly from carbonyl peak intensities at most cholesterol concentration. The bilayer solubility of triolein was inversely proportional to the cholesterol/phospholipid mole ratio. In pure phospholipid vesicles the triolein solubility was 2.2 mol %. The triglyceride incorporation decreased to 1.1 mol % at a cholesterol/phospholipid mole ratio of 0.5, and at a mole ratio of 1.0 for the bilayer lipids, the triolein solubility was reduced to just 0.15 mol %. The effects of free cholesterol were more pronounced and progressive than observed previously on the bilayer solubility of cholestery oleate. As with cholesteryl oleate, they suggest that cholesterol also displaces solubilized triglyceride to deeper regions of the bilayer

  15. Composition Dependence of Water Permeation Across Multicomponent Gel-Phase Bilayers

    NARCIS (Netherlands)

    Hartkamp, R.M.; Moore, Timothy C.; Iacovella, Christopher R.; Thompson, Michael A.; Bulsara, Pallav A.; Moore, David J.; McCabe, Clare

    2018-01-01

    The permeability of multicomponent phospholipid bilayers in the gel phase is investigated via molecular dynamics simulation. The physical role of the different molecules is probed by comparing multiple mixed-component bilayers containing distearylphosphatidylcholine (DSPC) with varying amounts of

  16. Sintering mantle mineral aggregates with submicron grains: examples of olivine and clinopyroxene

    Science.gov (United States)

    Tsubokawa, Y.; Ishikawa, M.

    2017-12-01

    Physical property of the major mantle minerals play an important role in the dynamic behavior of the Earth's mantle. Recently, it has been found that nano- to sub-micron scale frictional processes might control faulting processes and earthquake instability, and ultrafine-grained mineral aggregates thus have attracted the growing interest. Here we investigated a method for preparing polycrystalline clinoyproxene and polycrystalline olivine with grain size of sub-micron scale from natural crystals, two main constituents of the upper mantle. Nano-sized powders of both minerals are sintered under argon flow at temperatures ranging from 1130-1350 °C for 0.5-20 h. After sintering at 1180 °C and 1300 °C, we successfully fabricated polycrystalline clinopyroxene and polycrystalline olivine with grain size of physical properties of Earth's mantle.

  17. Formulation, evaluation, and comparison of bilayered and multilayered mucoadhesive buccal devices of propranolol hydrochloride.

    Science.gov (United States)

    Patel, Vishnu M; Prajapati, Bhupendra G; Patel, Madhabhai M

    2007-03-16

    The purpose of this research work was to establish mucoadhesive buccal devices of propranolol hydrochloride (PRH) in the forms of bilayered and multilayered tablets. The tablets were prepared using sodium carboxymethylcellulose (SCMC) and Carbopol-934 (CP) as bioadhesive polymers to impart mucoadhesion and ethyl cellulose (EC) to act as an impermeable backing layer. Buccal devices were evaluated by different parameters such as weight uniformity, content uniformity, thickness, hardness, surface pH, swelling index, ex vivo mucoadhesive strength, ex vivo mucoadhesion time, in vitro drug release, and in vitro drug permeation. As compared with bilayered tablets, multilayered tablets showed slow release rate of drug with improved ex vivo bioadhesive strength and enhanced ex vivo mucoadhesion time. The mechanism of drug release was found to be non-Fickian diffusion (value of n between 0.5 and 1.0) for both the buccal devices. The stability of drug in both the optimized buccal devices was tested for 6 hours in natural human saliva; both the buccal devices were found to be stable in natural human saliva. The present study concludes that mucoadhesive buccal devices of PRH can be a good way to bypass the extensive hepatic first-pass metabolism and to improve the bioavailability of PRH.

  18. Relation between interfacial structure and mechanical properties in AlN/TiN bilayers investigated by EXAFS

    International Nuclear Information System (INIS)

    Ersen, O.; Tuilier, M.-H.; Thobor-Keck, A.; Rousselot, C.; Cortes, R.

    2005-01-01

    The relation between the mechanical properties and the structure of AlN/TiN bilayers prepared by reactive magnetron sputtering in the 600 nm range is investigated. Al and Ti K-edge extended X-ray absorption fine structure is used in order to determine the local order around Al and Ti by comparison with 300 nm thick AlN and TiN single layers. The use of this powerful local probe allows the evidence of intermixing between AlN and TiN deposited layers, which is suggested by glow discharge optical emission spectroscopy experiments. The effect of ionic bombardment applied at various steps of the deposition process is studied. The ionic bombardment applied during the deposit induces substantial changes in the absorption spectra that are assigned to a decrease of intermixing and an improvement of local order. Simulations of (Al, Ti)N ternary alloys Al and Ti K-edge absorption spectra for increasing mean occupation factors C Ti (C Al ) of Ti(Al) substituting Al(Ti) in hexagonal AlN (cubic TiN) lattice are performed in order to determine the initial parameters for the fit of the experimental data. The refinements performed by using FEFFIT software demonstrate that an ionic bombardment applied during the deposition phase results in a significant reduction of the number of Al-Ti pairs within the bilayer and an improvement of the local order around Ti and Al, which is quantified by a decrease of the Debye-Waller parameters. This structural evolution is tentatively correlated with the improvement of mechanical properties of the bilayers

  19. Relation between interfacial structure and mechanical properties in AlN/TiN bilayers investigated by EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Ersen, O. [Equipe de Recherche Mecanique, Materiaux et Procedes de Fabrication, 61, rue Albert Camus, F-68093 Mulhouse (France)]. E-mail: ovidiu.ersen@ipcms.u-strasbg.fr; Tuilier, M.-H. [Equipe de Recherche Mecanique, Materiaux et Procedes de Fabrication, 61, rue Albert Camus, F-68093 Mulhouse (France); Thobor-Keck, A. [Centre de Recherche sur les Ecoulements les Surfaces et les Transferts (UMR CNRS 6000), ITSFC, 4, place Tharradin, BP 71427, F-25211 Montbeliard (France); Rousselot, C. [Centre de Recherche sur les Ecoulements les Surfaces et les Transferts (UMR CNRS 6000), ITSFC, 4, place Tharradin, BP 71427, F-25211 Montbeliard (France); Cortes, R. [Laboratoire de Physique de la Matiere Condensee (UMR CNRS 7643), Ecole Polytechnique, F-91128 Palaiseau cedex (France)

    2005-06-01

    The relation between the mechanical properties and the structure of AlN/TiN bilayers prepared by reactive magnetron sputtering in the 600 nm range is investigated. Al and Ti K-edge extended X-ray absorption fine structure is used in order to determine the local order around Al and Ti by comparison with 300 nm thick AlN and TiN single layers. The use of this powerful local probe allows the evidence of intermixing between AlN and TiN deposited layers, which is suggested by glow discharge optical emission spectroscopy experiments. The effect of ionic bombardment applied at various steps of the deposition process is studied. The ionic bombardment applied during the deposit induces substantial changes in the absorption spectra that are assigned to a decrease of intermixing and an improvement of local order. Simulations of (Al, Ti)N ternary alloys Al and Ti K-edge absorption spectra for increasing mean occupation factors C {sub Ti} (C {sub Al}) of Ti(Al) substituting Al(Ti) in hexagonal AlN (cubic TiN) lattice are performed in order to determine the initial parameters for the fit of the experimental data. The refinements performed by using FEFFIT software demonstrate that an ionic bombardment applied during the deposition phase results in a significant reduction of the number of Al-Ti pairs within the bilayer and an improvement of the local order around Ti and Al, which is quantified by a decrease of the Debye-Waller parameters. This structural evolution is tentatively correlated with the improvement of mechanical properties of the bilayers.

  20. A bilayer diffusion barrier of Ru/WSi{sub x}N{sub y} for advanced Cu interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Tae-Kwang; Sari, Windu [School of Materials Science and Engineering, Yeungnam University 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Cheon, Taehoon [Center for Core Research Facilities, Daegu Gyeongbuk Institute of Science and Technology, Sang-ri, Hyeonpung-myeon, Dalseong-gun, Daegu, 711-873 (Korea, Republic of); Kim, Soo-Hyun, E-mail: soohyun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of); Kim, Woo Kyoung [School of Chemical Engineering, Yeungnam University 214-1, Dae-dong, Gyeongsan-si, Gyeongsangbuk-do, 712-749 (Korea, Republic of)

    2012-10-30

    Bilayers of Ru (7 nm)/WSi{sub x}N{sub y} (8 nm) prepared by sputtering were investigated as diffusion barriers between Cu and Si for direct-platable Cu interconnects. Four different WSi{sub x}N{sub y} films were prepared by using various N{sub 2}/Ar flow rate ratios during sputtering of a WSi{sub 2.7} target. Sheet resistance measurements and X-ray diffractometry analysis showed that Ru/WSi{sub x}N{sub y} bilayer diffusion barriers prevented Cu diffusion during 30 min of annealing at temperatures of up to 550-750 Degree-Sign C, while the Ru single layer of the same thickness (15 nm) failed after annealing at 400 Degree-Sign C by the formation of copper silicide due to the diffusion of Cu into Si. It was shown that the performances of bilayer diffusion barriers were improved as the nitrogen content in the WSi{sub x}N{sub y} films was increased, which can be explained based on the results from transmission electron microscopy and X-ray photoelectron spectroscopy analysis of WSi{sub x}N{sub y} films deposited with different N{sub 2}/Ar flow rate ratios. From the results, the Si-N and W-N chemical bonds are strengthened as the N contents in the WSi{sub x}N{sub y} films are increased by increasing the N{sub 2} flow rate during the deposition. The results indicate that the formation of both Si-N and W-N bonds will give an effective diffusion barrier against Cu diffusion.

  1. Determination of the thickness of chemically removed thin layers on GaAs VPE structures

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K.; Nemeth-Sallay, M.; Nemcsics, A. (Research Inst. for Technical Physics, Hungarian Academy of Sciences, Budapest (Hungary))

    1991-01-01

    Thinning of epitaxial GaAs layers was studied during the surface etching, with a special attention to submicron epitaxial structures, like MESFET or varactor-type structures. Each chemical treatment influences the crystal surface during the device preparation processes, though the possible thinning of the active layer is small. Therefore a method allowing determination of thicknesses as small as at about 20 nm of the layer removed by chemical etching from GaAs VPE structures was applied. Using special multilayered structures and a continuous electrochemical carrier concentration depth profiling, the influence of the layer thickness inhomogeneity and of some measurement errors can be minimized. Some frequently used etchants and the influence of different - so called - non-etching processes were compared in different combinations. It was shown that besides the direct etching a change of the surface conditions occurs, which influences the etch rate in the succeeding etching procedure. (orig.).

  2. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe the densi...... and thermo-mechanical analysis. Results from the analytical model are found to agree well with finite element simulations as well as measurements from sintering experiment....

  3. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating.

    Science.gov (United States)

    Chen, Yanjing; Bose, Arijit; Bothun, Geoffrey D

    2010-06-22

    Nanoscale assemblies that can be activated and controlled through external stimuli represent a next stage in multifunctional therapeutics. We report the formation, characterization, and release properties of bilayer-decorated magnetoliposomes (dMLs) that were prepared by embedding small hydrophobic SPIO nanoparticles at different lipid molecule to nanoparticle ratios within dipalmitoylphosphatidylcholine (DPPC) bilayers. The dML structure was examined by cryogenic transmission electron microscopy and differential scanning calorimetry, and release was examined by carboxyfluorescein leakage. Nanoparticle heating using alternating current electromagnetic fields (EMFs) operating at radio frequencies provided selective release of the encapsulated molecule at low nanoparticle concentrations and under physiologically acceptable EMF conditions. Without radio frequency heating, spontaneous leakage from the dMLs decreased with increasing nanoparticle loading, consistent with greater bilayer stability and a decrease in the effective dML surface area due to aggregation. With radio frequency heating, the initial rate and extent of leakage increased significantly as a function of nanoparticle loading and electromagnetic field strength. The mechanism of release is attributed to a combination of bilayer permeabilization and partial dML rupture.

  4. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Gunawan, Cindy, E-mail: c.gunawan@unsw.edu.au [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Sirimanoonphan, Aunchisa [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia); Teoh, Wey Yang [Clean Energy and Nanotechnology (CLEAN) Laboratory, School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Marquis, Christopher P., E-mail: c.marquis@unsw.edu.au [School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW (Australia); Amal, Rose [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2013-09-15

    Highlights: • Uptake of TiO{sub 2} solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO{sub 2} exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO{sub 2} and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO{sub 2} exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO{sub 2} stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO{sub 2} exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO{sub 2}/L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials.

  5. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Gunawan, Cindy; Sirimanoonphan, Aunchisa; Teoh, Wey Yang; Marquis, Christopher P.; Amal, Rose

    2013-01-01

    Highlights: • Uptake of TiO 2 solids by C. reinhardtii generates ROS as an early stress response. • Submicron and nanoTiO 2 exhibit benign effect on cell proliferation. • Uptake of ZnO solids and leached zinc by C. reinhardtii inhibit the alga growth. • No cellular oxidative stress is detected with submicron and nano ZnO exposure. • The toxicity of particles is not necessarily mediated by cellular oxidative stress. -- Abstract: The work investigates the eco-cytoxicity of submicron and nano TiO 2 and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO 2 exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO 2 stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO 2 exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50 > 100 mg TiO 2 /L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50 ≥ 0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials

  6. Modulated phases of phospholipid bilayers induced by tocopherols.

    Science.gov (United States)

    Kamal, Md Arif; Raghunathan, V A

    2012-11-01

    The influence of α-, γ- and δ-tocopherols on the structure and phase behavior of dipalmitoyl phosphatidylcholine (DPPC) bilayers has been determined from X-ray diffraction studies on oriented multilayers. In all the three cases the main-transition temperature (T(m)) of DPPC was found to decrease with increasing tocopherol concentration up to around 25 mol%. Beyond this the main transition is suppressed in the case of γ-tocopherol, whereas T(m) becomes insensitive to composition in the other two cases. The pre-transition is found to be suppressed over a narrow tocopherol concentration range between 7.5 and 10 mol% in DPPC-γ-tocopherol and DPPC-δ-tocopherol bilayers, and the ripple phase occurs down to the lowest temperature studied. In all the three cases a modulated phase is observed above a tocopherol concentration of about 10 mol%, which is similar to the P(β) phase reported in DPPC-cholesterol bilayers. This phase is found to occur even in excess water conditions at lower tocopherol concentrations, and consists of bilayers with periodic height modulation. These results indicate the ability of tocopherols to induce local curvature in membranes, which could be important for some of their biological functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Twisted Bilayer Graphene. Interlayer configuration and magnetotransport signatures

    Energy Technology Data Exchange (ETDEWEB)

    Rode, Johannes C.; Smirnov, Dmitri; Belke, Christopher; Schmidt, Hennrik; Haug, Rolf J. [Institut fuer Festkoerperphysik, Hannover (Germany)

    2017-11-15

    Twisted Bilayer Graphene may be viewed as very first representative of the now booming class of artificially layered 2D materials. Consisting of two sheets from the same structure and atomic composition, its decisive degree of freedom lies in the rotation between crystallographic axes in the individual graphene monolayers. Geometrical consideration finds angle-dependent Moire patterns as well as commensurate superlattices of opposite sublattice exchange symmetry. Beyond the approach of rigidly interposed lattices, this review takes focus on the evolving topic of lattice corrugation and distortion in response to spatially varying lattice registry. The experimental approach to twisted bilayers requires a basic control over preparation techniques; important methods are summarized and extended on in the case of bilayers folded from monolayer graphene via AFM nanomachining. Central morphological parameters to the twisted bilayer, rotational mismatch and interlayer separation are studied in a broader base of samples. Finally, experimental evidence for a number of theoretically predicted, controversial electronic scenarios are reviewed; magnetotransport signatures are discussed in terms of Fermi velocity, van Hove singularities and Berry phase and assessed with respect to the underlying experimental conditions, thereby referring back to the initially considered variations in relaxed lattice structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Examining the origins of the hydration force between lipid bilayers using all-atom simulations.

    Science.gov (United States)

    Gentilcore, Anastasia N; Michaud-Agrawal, Naveen; Crozier, Paul S; Stevens, Mark J; Woolf, Thomas B

    2010-05-01

    Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together. These studies have found a curious, strongly repulsive force when the bilayers are very close to each other, which has been termed the "hydration force," though the origins of this force are not clearly understood. We computationally reproduce this repulsive, relatively free energy change as bilayers come together and make qualitative conclusions as to the enthalpic and entropic origins of the free energy change. This analysis is supported by data showing structural changes in the waters, lipids and salts that have also been seen in experimental work. Increases in solvent ordering as the bilayers are dehydrated are found to be essential in causing the repulsion as the bilayers come together.

  9. Thickness-Dependent Strain Effect on the Deformation of the Graphene-Encapsulated Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shuangli Ye

    2014-01-01

    Full Text Available The strain effect on graphene-encapsulated Au nanoparticles is investigated. A finite-element calculation is performed to simulate the strain distribution and morphology of the monolayer and multilayer graphene-encapsulated Au nanoparticles, respectively. It can be found that the inhomogeneous strain and deformation are enhanced with the increasing shrinkage of the graphene shell. Moreover, the strain distribution and deformation are very sensitive to the layer number of the graphene shell. Especially, the inhomogeneous strain at the interface between the graphene shell and encapsulated Au nanoparticles is strongly tuned by the graphene thickness. For the mono- and bilayer graphene-encapsulated Au nanoparticles, the dramatic shape transformation can be observed. However, with increasing the graphene thickness further, there is hardly deformation for the encapsulated Au nanoparticles. These simulated results indicate that the strain and deformation can be designed by the graphene layer thickness, which provides an opportunity to engineer the structure and morphology of the graphene-encapsulated nanoparticles.

  10. Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.

    Science.gov (United States)

    Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying

    2016-04-01

    An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.

  11. Kinetics of Sub-Micron Grain Size Refinement in 9310 Steel

    Science.gov (United States)

    Kozmel, Thomas; Chen, Edward Y.; Chen, Charlie C.; Tin, Sammy

    2014-05-01

    Recent efforts have focused on the development of novel manufacturing processes capable of producing microstructures dominated by sub-micron grains. For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermo-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel. Starting with initial bainitic grain sizes of 40 to 50 μm, various levels of grain refinement were observed following hot deformation of 9310 steel samples at temperatures and strain rates ranging from 755 K to 922 K (482 °C and 649 °C) and 1 to 0.001/s, respectively. The resulting deformation microstructures were characterized using scanning electron microscopy and electron backscatter diffraction techniques to quantify the extent of carbide coarsening and grain refinement occurring during deformation. Microstructural models based on the Zener-Holloman parameter were developed and modified to include the effect of the ferrite/carbide interactions within the system. These models were shown to effectively correlate microstructural attributes to the thermal mechanical processing parameters.

  12. Wavepacket revivals in monolayer and bilayer graphene rings.

    Science.gov (United States)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-06-12

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking.

  13. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    OpenAIRE

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward o...

  14. Calculations of the electrostatic potential adjacent to model phospholipid bilayers.

    Science.gov (United States)

    Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S

    1995-03-01

    We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.

  15. Landau levels in biased graphene structures with monolayer-bilayer interfaces

    Science.gov (United States)

    Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Ketabi, S. A.; Peeters, F. M.

    2017-09-01

    The electron energy spectrum in monolayer-bilayer-monolayer and in bilayer-monolayer-bilayer graphene structures is investigated and the effects of a perpendicular magnetic field and electric bias are studied. Different types of monolayer-bilayer interfaces are considered as zigzag (ZZ) or armchair (AC) junctions which modify considerably the bulk Landau levels (LLs) when the spectra are plotted as a function of the center coordinate of the cyclotron orbit. Far away from the two interfaces, one obtains the well-known LLs for extended monolayer or bilayer graphene. The LL structure changes significantly at the two interfaces or junctions where the valley degeneracy is lifted for both types of junctions, especially when the distance between them is approximately equal to the magnetic length. Varying the nonuniform bias and the width of this junction-to-junction region in either structure strongly influence the resulting spectra. Significant differences exist between ZZ and AC junctions in both structures. The densities of states (DOSs) for unbiased structures are symmetric in energy whereas those for biased structures are asymmetric. An external bias creates interface LLs in the gaps between the LLs of the unbiased system in which the DOS can be quite small. Such a pattern of LLs can be probed by scanning tunneling microscopy.

  16. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun; Mi, Wenbo; Wang, Xiaocha; Zhang, Xixiang

    2015-01-01

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  17. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun

    2015-02-02

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  18. Effect of the thickness of Zn(BTZ)2 emitting layer on the electroluminescent spectra of white organic light-emitting diodes

    International Nuclear Information System (INIS)

    Zhu, F.J.; Hua, Y.L.; Yin, S.G.; Deng, J.C.; Wu, K.W.; Niu, X.; Wu, X.M.; Petty, M.C.

    2007-01-01

    White organic light-emitting diodes (OLEDs) are fabricated with a simple bilayer structure: ITO/TPD/ Zn(BTZ) 2 /Al. White emission is composed of two parts: one is 470 nm, which originates from exciton emission in Zn(BTZ) 2 emitting layer; the other is 580 nm, which originates from exciplexes formation at the interface of TPD and Zn(BTZ) 2 . Specially, the thickness of Zn(BTZ) 2 layer effects the relative intensity of two emissions. When the Zn(BTZ) 2 layer becomes thin (or thick), the 470 nm (or 580 nm) emission intensity turns into weak (or strong). Finally, We successfully fabricated pure white OLED when the thickness of Zn(BTZ) 2 layer was 65 nm

  19. Submicron, soft x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    La Fontaine, B.; MacDowell, A.A.; Tan, Z.; White, D.L.; Taylor, G.N.; Wood, O.R. II; Bjorkholm, J.E.; Tennant, D.M.; Hulbert, S.L.

    1995-01-01

    Submicron fluorescence imaging of soft x-ray aerial images, using a high resolution fluorescent crystal is reported. Features as small as 0.1 μm were observed using a commercially available single-crystal phosphor, STI-F10G (Star Tech Instruments Inc. P. O. Box 2536, Danbury, CT 06813-2536), excited with 139 A light. Its quantum efficiency was estimated to be 5--10 times that of sodium salicylate and to be constant over a broad spectral range from 30 to 400 A. A comparison with a terbium-activated yttrium orthosilicate fluorescent crystal is also presented. Several applications, such as the characterization of the aerial images produced by deep ultraviolet or extreme ultraviolet lithographic exposure tools, are envisaged

  20. Lift-off process for deep-submicron-size junctions using supercritical CO2

    International Nuclear Information System (INIS)

    Fukushima, A.; Kubota, H.; Yuasa, S.; Takahachi, T.; Kadoriku, S.; Miyake, K.

    2007-01-01

    Deep-submicron-size (∼100-nm-size) junctions are a key element to investigate spin-torque transfer phenomena such as current induced magnetization reversal or the spin-torque diode effect. In the fabrication of submicron-size junctions using an etching method, the lift-off process after the etching process tends to be difficult as the size of junctions shrinks. In this study, we present a new lift-off process using supercritical CO 2 . In this process, the samples were immersed in solvent (mixture of N-Methyl-2-pyrrolidone and isopropanol), and pressurized by CO 2 gas. The CO 2 gas then went into supercritical phase and the solvent was removed by a continuous flow of CO 2 . We obtained considerable yield rate (success ratio in lift-off process) of more than 50% for the samples down to 100-nm-size junctions

  1. Phase separation in lipid bilayers triggered by low pH

    International Nuclear Information System (INIS)

    Suresh, Swetha; Edwardson, J. Michael

    2010-01-01

    Research highlights: → Lipid bilayers have been imaged by atomic force microscopy (AFM). → At pH 5 phase separation occurs in lipid bilayers containing mixed acyl chains. → Phase separation does not occur when lipids have only unsaturated chains. → Phase separation might drive protein clustering during endocytosis. -- Abstract: Endocytosis involves the capture of membrane from the cell surface in the form of vesicles, which become rapidly acidified to about pH 5. Here we show using atomic force microscopy (AFM) imaging that this degree of acidification triggers phase separation in lipid bilayers containing mixed acyl chains (e.g. palmitoyl/oleoyl) or complex mixtures (e.g. total brain extract) but not in bilayers containing only lipids with unsaturated chains (e.g. dioleoyl). Since mixed-chain lipids are major constituents of the outer leaflet of the plasma membrane, the type of phase separation reported here might support protein clustering and signaling during endocytosis.

  2. Lung deposition of sub-micron aerosols calculated as a function of age and breathing rate

    International Nuclear Information System (INIS)

    James, A.C.

    1978-01-01

    Experimental measurements of lung deposition and especially of regional deposition, of aerosols in the sub-micron size range have been so few that it is worthwhile establishing a method of calculation. A computer routine has therefore been developed to calculate aerosol deposition in successive bronchial and bronchiolar generations of the Weibel 'A' model of human lung for the sub-micron size range where deposition occurs solely by diffusion. This model can be scaled to represent lungs at various ages and vital capacities. Some calculated results are presented here and compared with measurements of lung deposition made under carefully controlled conditions in humans. (author)

  3. Fabrication of submicron structures in nanoparticle/polymer composite by holographic lithography and reactive ion etching

    Science.gov (United States)

    Zhang, A. Ping; He, Sailing; Kim, Kyoung Tae; Yoon, Yong-Kyu; Burzynski, Ryszard; Samoc, Marek; Prasad, Paras N.

    2008-11-01

    We report on the fabrication of nanoparticle/polymer submicron structures by combining holographic lithography and reactive ion etching. Silica nanoparticles are uniformly dispersed in a (SU8) polymer matrix at a high concentration, and in situ polymerization (cross-linking) is used to form a nanoparticle/polymer composite. Another photosensitive SU8 layer cast upon the nanoparticle/SU8 composite layer is structured through holographic lithography, whose pattern is finally transferred to the nanoparticle/SU8 layer by the reactive ion etching process. Honeycomb structures in a submicron scale are experimentally realized in the nanoparticle/SU8 composite.

  4. Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene

    Science.gov (United States)

    Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip

    In the quantum Hall (QH) regime, ballistic conducting paths along the physical edges of a sample appear, leading to quantized Hall conductance and vanishing longitudinal magnetoconductance. These QH edge states are often described as ballistic compressible strips separated by insulating incompressible strips, the spatial profiles of which can be crucial in understanding the stability and emergence of interaction driven QH states. In this work, we present tunneling transport between two QH edge states in bilayer graphene. Employing locally gated device structure, we guide and control the separation between the QH edge states in bilayer graphene. Using resonant Landau level tunneling as a spectroscopy tool, we measure the energy gap in bilayer graphene as a function of displacement field and probe the emergence and evolution of incompressible strips.

  5. Flexural phonon limited phonon drag thermopower in bilayer graphene

    Science.gov (United States)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We investigate the phonon drag thermopower from flexural phonons as a function of electron temperature and carrier concentration in the Bloch-Gruneisen regime in non-strained bilayer graphene using Boltzmann transport equation approach. The flexural phonons are expected to be the major source of intrinsic scattering mechanism in unstrained bilayer graphene due to their large density. The flexural phonon modes dispersion relation is quadratic so these low energy flexural phonons abound at room temperature and as a result deform the bilayer graphene sheet in the out of plane direction and affects the transport properties. We also produce analytical result for phonon-drag thermopower from flexural phonons and find that phonon-drag thermopower depicts T2 dependence on temperature and n-1 on carrier concentration.

  6. Dynamics, Surface Electrostatics and Phase Properties of Nanoscale Curved Lipid Bilayers

    Science.gov (United States)

    Koolivand, Amir

    Surface electrostatic potential of a lipid bilayer governs many vital functions of living cells. Several classes of proteins are known of exhibiting strong binding preferences to curved lipid bilayer surfaces. In this project we employed electron paramagnetic resonance (EPR) of a recently introduced phospholipid (IMTSL-PTE) bearing a pH-sensitive nitroxide covalently attached to the lipid head group to measure the surface electrostatics of the lipid membrane and nanopore-confined lipid bilayers as a function of the bilayer curvature. The pKa of the ionizable group of this lipid-based spin probe is reporting on the bilayer surface electrostatics potential by changes in the EPR spectra. Specifically, both rotational dynamics and magnetic parameters of the nitroxide are affected by the probe protonation. Effect of curvature on the surface electrostatic potential and dynamics of lipid bilayer was studied for POPG and DMPG unilamellar vesicles (ULVs). It was found that the magnitude of the negative surface electrostatic potential increased upon decrease in the vesicle diameter for the bilayers in the fluid phase; however, no significant changes were observed for DMPG ULVs in a gel phase. We speculate that biologically relevant fluid bilayer phase allows for a larger variability in the lipid packing density in the lipid polar head group region than a more ordered gel phase and it is likely that the lipid flip-flop is responsible for pH equilibration of IMTSL-PTE. The kinetic EPR study of nitroxide reduction showed that the rate of flip-flop is in the order of 10-5 s-1. The flip-flop rate constant increases when vesicle size deceases. Oxygen permeability measured by X-ban EPR decreases in higher curved vesicles---an observation that is consistent with a tighter packing in smaller vesicles. Partitioning of a small nitroxide molecule TEMPO into ULVs was measured by X-band (9 GHz) and W-band (95 GHz) EPR spectroscopy. The partitioning coefficient of this probe in the lipid

  7. Wavepacket revivals in monolayer and bilayer graphene rings

    International Nuclear Information System (INIS)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-01-01

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking. (paper)

  8. Submicron hollow spot generation by solid immersion lens and structured illumination

    NARCIS (Netherlands)

    Kim, M.S.; Assafrao, A.C.; Scharf, T.; Wachters, A.J.H.; Pereira, S.F.; Urbach, H.P.; Brun, M.; Olivier, S.; Nicoletti, S.; Herzig, H.P.

    2012-01-01

    We report on the experimental and numerical demonstration of immersed submicron-size hollow focused spots, generated by structuring the polarization state of an incident light beam impinging on a micro-size solid immersion lens (?-SIL) made of SiO2. Such structured focal spots are characterized by a

  9. Model for the structure of the lipid bilayer

    International Nuclear Information System (INIS)

    Pastor, R.W.; Venable, R.M.; Karplus, M.

    1991-01-01

    A detailed model for the structure and dynamics of the interior of the lipid bilayer in the liquid crystal phase is presented. The model includes two classes of motion: (i) the internal dynamics of the chains, determined from Brownian dynamics simulations with a continuous version of the Marcelja mean-field potential, and (ii) noncollective reorientation (axial rotation and wobble) of the entire molecule, introduced by a cone model. The basic unit of the model is a single lipid chain with field parameters adjusted to fit the 2H order parameters and the frequency-dependent 13C NMR T1 relaxation times of dipalmitoyl phosphatidylcholine bilayers. The chain configurations obtained from the trajectory are used to construct a representation of the bilayer. The resulting lipid assembly is consistent with NMR, neutron diffraction, surface area, and density data. It indicates that a high degree of chain disorder and entanglement exists in biological membranes

  10. Extension of the Mott-Gurney Law for a Bilayer Gap

    Science.gov (United States)

    Dubinov, A. E.; Kitayev, I. N.

    2018-04-01

    Steady drift states of an electron flow in a planar gap filled with a bilayer dielectric have been considered. Exact mathematical formulas have been derived that describe the distributions of the electrostatic potential and space charge limited electron flow current (extended Mott-Gurney law for a bilayer diode).

  11. Enhancement in electrical conductivity of pastes containing submicron Ag-coated Cu filler with palmitic acid surface modification

    Science.gov (United States)

    Choi, Eun Byeol; Lee, Jong-Hyun

    2017-09-01

    The fabrication and applied use of submicron Ag-coated Cu (Cu@Ag) particles as a filler material for epoxy-based conductive pastes having the advantages of a lower material cost and antioxidation behavior were studied. Submicron Cu@Ag particles were successfully prepared and surface-modified using palmitic acid. Diffuse reflectance infrared Fourier transform spectroscopy and thermogravimetric differential scanning calorimetry results indicated the formation of an organic layer by the chemical interaction between the Cu@Ag surface and palmitic acid and the survival of the organic layer after treatment at 160 °C for 3 h in air. The printed pastes containing both commercial micron Cu@Ag flakes and the fabricated submicron Cu@Ag particles showed a greatly reduced electrical resistivity (4.68 × 10-4 Ω cm) after surface modification compared to an initial value of 1.85 × 10-3 Ω cm when cured.

  12. Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene.

    Science.gov (United States)

    Wang, Xinquan; Wu, Zhigang

    2017-01-18

    It has been long sought to create magnetism out of simple non-magnetic materials, such as silicon and germanium. Here we show that intrinsic magnetism exists in bilayer silicene and germanene with no need to cut, etch, or dope. Unlike bilayer graphene, strong covalent interlayer bonding formed in bilayer silicene and germanene breaks the original π-bonding network of each layer, leaving the unbonded electrons unpaired and localized to carry magnetic moments. These magnetic moments then couple ferromagnetically within each layer while antiferromagnetically across two layers, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. Furthermore, this unique magnetic ordering results in fundamental band gaps of 0.55 eV and 0.32 eV for bilayer silicene and germanene, respectively. The integration of intrinsic magnetism and spontaneous band gap opening makes bilayer silicene and germanene attractive for future nanoelectronics as well as spin-based computation and data storage.

  13. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  14. Electronic transport of bilayer graphene with asymmetry line defects

    Science.gov (United States)

    Zhao, Xiao-Ming; Wu, Ya-Jie; Chen, Chan; Liang, Ying; Kou, Su-Peng

    2016-11-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer-Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921803 and 2012CB921704), the National Natural Science Foundation of China (Grant Nos. 11174035, 11474025, 11504285, and 11404090), the Specialized Research Fund for the Doctoral Program of Higher Education, China, the Fundamental Research Funds for the Central Universities, China, the Scientific Research Program Fund of the Shaanxi Provincial Education Department, China (Grant No. 15JK1363), and the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China.

  15. Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers.

    Science.gov (United States)

    Ranaghan, Matthew J; Schwall, Christine T; Alder, Nathan N; Birge, Robert R

    2011-11-16

    Over 4000 putative proteorhodopsins (PRs) have been identified throughout the oceans and seas of the Earth. The first of these eubacterial rhodopsins was discovered in 2000 and has expanded the family of microbial proton pumps to all three domains of life. With photophysical properties similar to those of bacteriorhodopsin, an archaeal proton pump, PRs are also generating interest for their potential use in various photonic applications. We perform here the first reconstitution of the minimal photoactive PR structure into nanoscale phospholipid bilayers (nanodiscs) to better understand how protein-protein and protein-lipid interactions influence the photophysical properties of PR. Spectral (steady-state and time-resolved UV-visible spectroscopy) and physical (size-exclusion chromatography and electron microscopy) characterization of these complexes confirms the preparation of a photoactive PR monomer within nanodiscs. Specifically, when embedded within a nanodisc, monomeric PR exhibits a titratable pK(a) (6.5-7.1) and photocycle lifetime (∼100-200 ms) that are comparable to the detergent-solubilized protein. These ndPRs also produce a photoactive blue-shifted absorbance, centered at 377 or 416 nm, that indicates that protein-protein interactions from a PR oligomer are required for a fast photocycle. Moreover, we demonstrate how these model membrane systems allow modulation of the PR photocycle by variation of the discoidal diameter (i.e., 10 or 12 nm), bilayer thickness (i.e., 23 or 26.5 Å), and degree of saturation of the lipid acyl chain. Nanodiscs also offer a highly stable environment of relevance to potential device applications.

  16. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.; Zhang, Bei; Liu, Z. X.; Wang, Z.; Li, W.; Wu, Z. B.; Yu, R. H.; Zhang, Xixiang

    2010-01-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  17. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.

    2010-04-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  18. Unconventional fractional quantum Hall effect in monolayer and bilayer graphene

    Science.gov (United States)

    Jacak, Janusz; Jacak, Lucjan

    2016-01-01

    The commensurability condition is applied to determine the hierarchy of fractional fillings of Landau levels in monolayer and in bilayer graphene. The filling rates for fractional quantum Hall effect (FQHE) in graphene are found in the first three Landau levels in one-to-one agreement with the experimental data. The presence of even denominator filling fractions in the hierarchy for FQHE in bilayer graphene is explained. Experimentally observed hierarchy of FQHE in the first and second Landau levels in monolayer graphene and in the zeroth Landau level in bilayer graphene is beyond the conventional composite fermion interpretation but fits to the presented nonlocal topology commensurability condition. PMID:27877866

  19. The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons

    Science.gov (United States)

    Mohammadi, Amin; Haji-Nasiri, Saeed

    2018-04-01

    By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of perfect and defected bilayer armchair graphene nanoribbons (BAGNRs) under finite bias. Two typical defects which are placed in the middle of top layer (i.e. single vacancy (SV) and stone wale (SW) defects) are examined. The results reveal that in both perfect and defected bilayers, the maximum current refers to β-AB, AA and α-AB stacking orders, respectively, since the intermolecular interactions are stronger in them. Moreover it is observed that a SV decreases the current in all stacking orders, but the effects of a SW defect is nearly unpredictable. Besides, we introduced a sequential switching behavior and the effects of defects on the switching performance is studied as well. We found that a SW defect can significantly improve the switching behavior of a bilayer system. Transmission spectrum, band structure, molecular energy spectrum and molecular projected self-consistent Hamiltonian (MPSH) are analyzed subsequently to understand the electronic transport properties of these bilayer devices which can be used in developing nano-scale bilayer systems.

  20. Improvement of pentathiophene/fullerene planar heterojunction photovoltaic cells by improving the organic films morphology through the anode buffer bilayer

    Science.gov (United States)

    El Jouad, Zouhair; Cattin, Linda; Martinez, Francisco; Neculqueo, Gloria; Louarn, Guy; Addou, Mohammed; Predeep, Padmanabhan; Manuvel, Jayan; Bernède, Jean-Christian

    2016-05-01

    Organic photovoltaic cells (OPVCs) are based on a heterojunction electron donor (ED)/electron acceptor (EA). In the present work, the electron donor which is also the absorber of light is pentathiophene. The typical cells were ITO/HTL/pentathiophene/fullerene/Alq3/Al with HTL (hole transport layer) = MoO3, CuI, MoO3/CuI. After optimisation of the pentathiophene thickness, 70 nm, the highest efficiency, 0.81%, is obtained with the bilayer MoO3/CuI as HTL. In order to understand these results the pentathiophene films deposited onto the different HTLs were characterized by scanning electron microscopy, atomic force microscopy, X-rays diffraction, optical absorption and electrical characterization. It is shown that CuI improves the conductivity of the pentathiophene layer through the modification of the film structure, while MoO3 decreases the leakage current. Using the bilayer MoO3/CuI allows cumulating the advantages of each layer. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  1. Cationic Dimyristoylphosphatidylcholine and Dioleoyloxytrimethylammonium Propane Lipid Bilayers: Atomistic Insight for Structure and Dynamics

    DEFF Research Database (Denmark)

    Zhao, W.; Gurtovenko, A. A.; Vattulainen, I.

    2012-01-01

    We performed atomistic molecular dynamics simulations of lipid bilayers consisting of a mixture of cationic dioleoyloxytrimethylammonium propane (DOTAP) and zwitterionic dimyristoylphosphatidylcholine (DMPC) lipids at different DOTAP fractions. Our primary focus was the specific effects...... of unsaturated lipid chains on structural and dynamic properties of mixed cationic bilayers. The bilayer area, as well as the ordering of lipid tails, shows a pronounced nonmonotonic behavior when TAP lipid fraction increases. The minimum in area (maximum in ordering) was observed for a bilayer with TAP fraction...... lipids, which were found to form PC-PC and PC-TAP pairs, and the formation of lipid clusters....

  2. High-Q submicron-diameter quantum-dot microcavity pillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Dunzer, Florian

    As/AlAs micropillar design where Bloch-wave engineering is employed to significally enhance the cavity mode confinement in the submicron diameter regime. We demonstrate a record-high vacuum Rabi splitting of 85 µeV of the strong coupling for pillars incorporating quantum dots with modest oscillator strength f ≈ 10....... It is well-known that light-matter interaction depends on the photonic environment, and thus proper engineering of the optical mode in microcavity systems is central to obtaining the desired functionality. In the strong coupling regime, the visibility of the Rabi splitting is described by the light...... coupling in micropillars relied on quantum dots with high oscillator strengths f > 50, our advanced design allows for the observation of strong coupling for submicron diameter quantum dot-pillars with standard f ≈ 10 oscillator strength. A quality factor of 13600 and a vacuum Rabi splitting of 85 µe...

  3. Electronic transport in bilayer graphene

    International Nuclear Information System (INIS)

    Koshino, Mikito

    2009-01-01

    We present theoretical studies on the transport properties and localization effects of bilayer graphene. We calculate the conductivity by using the effective mass model with the self-consistent Born approximation, in the presence and absence of an energy gap opened by the interlayer asymmetry. We find that, in the absence of the gap, the minimum conductivity approaches the universal value by increasing the disorder potential, and the value is robust in the strong disorder regime where mixing with high-energy states is considerable. The gap-opening suppresses the conductivity over a wide energy range, even in the region away from the gap.We also study the localization effects in the vicinity of zero energy in bilayer graphene. We find that the states are all localized in the absence of the gap, while the gap-opening causes a phase transition analogous to the quantum Hall transition, which is accompanied by electron delocalization.

  4. A Neutron View of Proteins in Lipid Bilayers

    Science.gov (United States)

    White, Stephen

    2012-02-01

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.

  5. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    Directory of Open Access Journals (Sweden)

    Sung-Hwan Jang

    2017-06-01

    Full Text Available This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.

  6. Magnetically Assisted Bilayer Composites for Soft Bending Actuators.

    Science.gov (United States)

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-06-12

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.

  7. Properties of submicron particles in Atmospheric Brown Clouds

    Science.gov (United States)

    Adushkin, V. V.; Chen, B. B.; Dubovskoi, A. N.; Friedrich, F.; Pernik, L. M.; Popel, S. I.; Weidler, P. G.

    2010-05-01

    The Atmospheric Brown Clouds (ABC) is an important problem of this century. Investigations of last years and satellite data show that the ABC (or brown gas, smog, fog) cover extensive territories including the whole continents and oceans. The brown gas consists of a mixture of particles of anthropogenic sulfates, nitrates, organic origin, black carbon, dust, ashes, and also natural aerosols such as sea salt and mineral dust. The brown color is a result of absorption and scattering of solar radiation by the anthropogenic black carbon, ashes, the particles of salt dust, and nitrogen dioxide. The investigation of the ABC is a fundamental problem for prevention of degradation of the environment. At present in the CIS in-situ investigations of the ABC are carried out on Lidar Station Teplokluchenka (Kyrgyz Republic). Here, we present the results of experimental investigation of submicron (nanoscale) particles originating from the ABC and the properties of the particles. Samples of dust precipitating from the ABC were obtained at the area of Lidar Station Teplokluchenka as well as scientific station of the Russian Academy of Sciences near Bishkek. The data for determination of the grain composition were obtained with the aid of the scanning electron microscopes JEOL 6460 LV and Philips XL 30 FEG. Analysis of the properties of the particles was performed by means of the X-ray diffraction using diffractometer Siemens D5000. The images of the grains were mapped. The investigation allows us to get (after the image processing) the grain composition within the dust particle size range of 60 nm to 700 μm. Distributions of nano- and microscale particles in sizes were constructed using Rozin-Rammler coordinates. Analysis of the distributions shows that the ABC contain submicron (nanoscale) particles; 2) at higher altitudes the concentration of the submicron (nanoscale) particles in the ABC is higher than at lower altitudes. The chemical compositions of the particles are shown to

  8. Enhanced sensitivity of a microfabricated resonator using a graphene-polystyrene bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Minhyuk; Lee, Eunho; Cho, Kilwon; Jeon, Sangmin, E-mail: jeons@postech.ac.kr [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of)

    2014-08-18

    A graphene layer was synthesized using chemical vapor deposition methods and a polystyrene solution was spin-cast onto the graphene film. The graphene-polystyrene bilayer membrane was attached between the two tines of a microfabricated quartz tuning fork (QTF). The modulus of the graphene-polystyrene bilayer was measured to be twice that of a pristine polystyrene membrane. Exposure of the membrane-coated QTF to ethanol vapor decreased the resonance frequency of the microresonator. The bilayer membrane-coated QTF produced a frequency change that was three times the change obtained using a polystyrene membrane-coated QTF, with a lower degree of degradation in the Q factor. The limit of detection of the bilayer membrane-coated QTF to ethanol vapor was determined to be 20 ppm.

  9. Submicron beam X-ray diffraction of nanoheteroepitaxily grown GaN: Experimental challenges and calibration procedures

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, P.L., E-mail: PeterBonanno@gatech.ed [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gautier, S. [Laboratoire Materiaux Optiques, Photonique et Micro-Nano Systemes, UMR CNRS 7132, Universite de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz (France); Sirenko, A.A. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kazimirov, A. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853 (United States); Cai, Z.-H. [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Goh, W.H. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Martin, J. [Laboratoire Materiaux Optiques, Photonique et Micro-Nano Systemes, UMR CNRS 7132, Universite de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz (France); Martinez, A. [Laboratoire de Photonique et de Nanostructures, UPR CNRS 20, Route de Nozay, 91460 Marcoussis (France); Moudakir, T. [Laboratoire Materiaux Optiques, Photonique et Micro-Nano Systemes, UMR CNRS 7132, Universite de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz (France); Maloufi, N. [Laboratoire d' Etude des Textures et Application aux Materiaux, UMR CNRS 7078, Ile du Saulcy, 57045 Metz Cedex 1 (France); Assouar, M.B. [Laboratoire de Physique des Milieux Ionises et Applications, Nancy University, CNRS, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex (France); Ramdane, A.; Gratiet, L. Le [Laboratoire de Photonique et de Nanostructures, UPR CNRS 20, Route de Nozay, 91460 Marcoussis (France); Ougazzaden, A. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France)

    2010-02-15

    Highly relaxed GaN nanodots and submicron ridges have been selectively grown in the NSAG regime using MOVPE on lattice mismatched 6H-SiC and AlN substrates. 2D real space and 3D reciprocal space mapping was performed with a CCD detector using 10.4 keV synchrotron X-ray radiation at the 2-ID-D micro-diffraction beamline at Advanced Photon Source (APS). Calibration procedures have been developed to overcome the unique challenges of analyzing NSAG structures grown on highly mismatched substrates. We studied crystallographic planar bending on the submicron scale and found its correlation with strain relaxation in the NSAG ridges.

  10. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita

    2013-04-01

    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  11. The effect of calcium on the properties of charged phospholipid bilayers

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Leidy, Chad; Westh, P.

    2006-01-01

    We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosph...

  12. Inducing morphological changes in lipid bilayer membranes with microfabricated substrates

    Science.gov (United States)

    Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick

    2016-11-01

    Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.

  13. Energy spectrums of bilayer triangular phosphorene quantum dots and antidots

    Directory of Open Access Journals (Sweden)

    Z. T. Jiang

    2017-04-01

    Full Text Available We theoretically investigate the confined states of the bilayer triangular phosphorene dots and antidots by means of the tight-binding approach. The dependence of the energy levels on the size, the type of the boundary edges, and the orientation of the dots and antidots, and the influences of the electric and magnetic fields on the energy levels, are all completely analyzed. It is found that the energy level numbers of the bilayer dots and antidots are determined by the energy levels in two layers. The external electric field can effectively tune the energy levels of the edge states in both layers to move in opposite directions. With the increase of the magnetic field, the magnetic energy levels can approach the Landau levels of the phosphorene monolayer, the phosphorene bilayer, or both, depending on the specific geometry of the monolayer-bilayer hybrid phosphorene quantum dots. This research should be helpful for the overall understanding of the electronic properties of the multilayer hybrid phosphorene nanostructures and designing the corresponding phosphorene devices.

  14. Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers

    International Nuclear Information System (INIS)

    Semuk, E.Yu.; Berzhansky, V.N.; Prokopov, A.R.; Shaposhnikov, A.N.; Karavainikov, A.V.; Salyuk, O.Yu.; Golub, V.O.

    2015-01-01

    Magnetic properties of Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 (84 nm) and Bi 2.8 Y 0.2 Fe 5 O 12 (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 /Bi 2.8 Y 0.2 Fe 5 O 12 bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction. - Highlights: • Magnetic parameters of epitaxial Bi-YIG films and bilayers on GGG substrate. • Adaptive layers affect on high order magnetic anisotropy. • Magnetic properties of bilayers are result of strong exchange interaction

  15. Characteristic length scale of the magnon accumulation in Fe{sub 3}O{sub 4}/Pt bilayer structures by incoherent thermal excitation

    Energy Technology Data Exchange (ETDEWEB)

    Anadón, A., E-mail: anadonb@unizar.es; Lucas, I.; Morellón, L. [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Ramos, R. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Algarabel, P. A. [Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, 50009 Zaragoza (Spain); Ibarra, M. R.; Aguirre, M. H. [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Laboratorio de Microscopías avanzadas, Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2016-07-04

    The dependence of Spin Seebeck effect (SSE) with the thickness of the magnetic materials is studied by means of incoherent thermal excitation. The SSE voltage signal in Fe{sub 3}O{sub 4}/Pt bilayer structure increases with the magnetic material thickness up to 100 nm, approximately, showing signs of saturation for larger thickness. This dependence is well described in terms of a spin current pumped in the platinum film by the magnon accumulation in the magnetic material. The spin current is generated by a gradient of temperature in the system and detected by the Pt top contact by means of inverse spin Hall effect. Calculations in the frame of the linear response theory adjust with a high degree of accuracy the experimental data, giving a thermal length scale of the magnon accumulation (Λ) of 17 ± 3 nm at 300 K and Λ = 40 ± 10 nm at 70 K.

  16. Bilayer electrolyte-anode for solid oxide fuel cell; Obtencao de bicamadas eletrolito-anodo para pilhas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Crochemore, G.B.; Marcomini, R.F.; Souza, D.P.F. de [Universidade Federal de Sao Carlos (GEMM/UFSCAR), Sao Carlos, SP (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais], Email: dulcina@ufscar.br; Rabelo, A.A. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Fac. de Engenharia de Materiais

    2010-07-01

    Solid oxide fuel cell is a high efficient device hence it plays a very important role in the hydrogen economy. However, the cell operation temperature must be lower than 800 deg C, what is attainable for thin Yttria stabilized zirconia (YSZ) electrolytes. The tape casting process is the most used technique because it allows a very fine tuning of the tape thickness. In this work it were investigated the processing conditions for obtaining electrolyte-anode (YSZ/ YSZ-NiO) bilayers with no lamination after the sintering process. (author)

  17. Current—voltage characteristics of lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composites

    International Nuclear Information System (INIS)

    De-An, Pan; Shen-Gen, Zhang; Jian-Jun, Tian; Li-Jie, Qiao; Jun-Sai, Sun; Volinsky, Alex A.

    2010-01-01

    Current–voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow cylinder circumference induces voltage across the lead zirconate titanate layer thickness. The current–voltage coefficient and the maximum induced voltage in lead zirconate titanate at 1 kHz and resonance (60.1 kHz) frequencies increased linearly with the number of the coil turns and the applied current. The resonance frequency corresponds to the electromechanical resonance frequency. The current–voltage coefficient can be significantly improved by optimizing the magnetoelectric structure geometry and/or increasing the number of coil turns. Hollow cylindrical lead zirconate titanate/nickel structures can be potentially used as current sensors. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Individual domain wall resistance in submicron ferromagnetic structures.

    Science.gov (United States)

    Danneau, R; Warin, P; Attané, J P; Petej, I; Beigné, C; Fermon, C; Klein, O; Marty, A; Ott, F; Samson, Y; Viret, M

    2002-04-15

    The resistance generated by individual domain walls is measured in a FePd nanostructure. Combining transport and magnetic imaging measurements, the intrinsic domain wall resistance is quantified. It is found positive and of a magnitude consistent with that predicted by models based on spin scattering effects within the walls. This magnetoresistance at a nanometer scale allows a direct counting of the number of walls inside the nanostructure. The effect is then used to measure changes in the magnetic configuration of submicron stripes under application of a magnetic field.

  19. Permeability of a Fluid Lipid Bilayer to Short-Chain Alcohols from First Principles.

    Science.gov (United States)

    Comer, Jeffrey; Schulten, Klaus; Chipot, Christophe

    2017-06-13

    Computational prediction of membrane permeability to small molecules requires accurate description of both the thermodynamics and kinetics underlying translocation across the lipid bilayer. In this contribution, well-converged, microsecond-long free-energy calculations are combined with a recently developed subdiffusive kinetics framework to describe the membrane permeation of a homologous series of short-tail alcohols, from methanol to 1-butanol, with unprecedented fidelity to the underlying molecular models. While the free-energy profiles exhibit barriers for passage through the center of the bilayer in all cases, the height of these barriers decreases with the length of the aliphatic chain of the alcohol, in quantitative agreement with experimentally determined differential solvation free energies in water and oil. A unique aspect of the subdiffusive model employed herein, which was developed in a previous article, is the determination of a position-dependent fractional order which quantifies the degree to which the motion of the alcohol deviates from classical diffusion along the thickness of the membrane. In the aqueous medium far from the bilayer, this quantity approaches 1.0, the asymptotic limit for purely classical diffusion, whereas it dips below 0.75 near the center of the membrane irrespective of the permeant. Remarkably, the fractional diffusivity near the center of membrane, where its influence on the permeability is the greatest, is similar among the four permeants despite the large difference in molecular weight and lipophilicity between methanol and 1-butanol. The relative permeabilities, which are estimated from the free-energy and fractional diffusivity profiles, are therefore determined predominantly by differences in the former rather than the latter. The predicted relative permeabilities are highly correlated with existing experimental results, albeit they do not agree quantitatively with them. On the other hand, quite unexpectedly, the

  20. Fabrication of submicron proteinaceous structures by direct laser writing

    Energy Technology Data Exchange (ETDEWEB)

    Serien, Daniela [Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); Takeuchi, Shoji, E-mail: takeuchi@iis.u-tokyo.ac.jp [Center for International Research on Integrative Biomedical Systems, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan); ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, 4-6-1 Komaba, Meguro-ku, 153-8505 Tokyo (Japan)

    2015-07-06

    In this paper, we provide a characterization of truly free-standing proteinaceous structures with submicron feature sizes depending on the fabrication conditions by model-based analysis. Protein cross-linking of bovine serum albumin is performed by direct laser writing and two-photon excitation of flavin adenine dinucleotide. We analyze the obtainable fabrication resolution and required threshold energy for polymerization. The applied polymerization model allows prediction of fabrication conditions and resulting fabrication size, alleviating the application of proteinaceous structure fabrication.

  1. Localization and Orientation of Xanthophylls in a Lipid Bilayer.

    Science.gov (United States)

    Grudzinski, Wojciech; Nierzwicki, Lukasz; Welc, Renata; Reszczynska, Emilia; Luchowski, Rafal; Czub, Jacek; Gruszecki, Wieslaw I

    2017-08-29

    Xanthophylls (polar carotenoids) play diverse biological roles, among which are modulation of the physical properties of lipid membranes and protection of biomembranes against oxidative damage. Molecular mechanisms underlying these functions are intimately related to the localization and orientation of xanthophyll molecules in lipid membranes. In the present work, we address the problem of localization and orientation of two xanthophylls present in the photosynthetic apparatus of plants and in the retina of the human eye, zeaxanthin and lutein, in a single lipid bilayer membrane formed with dimyristoylphosphatidylcholine. By using fluorescence microscopic analysis and Raman imaging of giant unilamellar vesicles, as well as molecular dynamics simulations, we show that lutein and zeaxanthin adopt a very similar transmembrane orientation within a lipid membrane. In experimental and computational approach, the average tilt angle of xanthophylls relative to the membrane normal is independently found to be ~40 deg, and results from hydrophobic mismatch between the membrane thickness and the distance between the terminal hydroxyl groups of the xanthophylls. Consequences of such a localization and orientation for biological activity of xanthophylls are discussed.

  2. Beschrijving van een verdampings-condensatie aerosol generator voor de produktie van submicron aerosol

    NARCIS (Netherlands)

    Feijt; A.*; Meulen; A.van der

    1985-01-01

    Dit rapport is een handleiding voor een bedrijfszeker, routinematig gebruik van een zgn. Evaporation-Condensation aerosol Conditioner. Met deze aerosol generatie apparatuur kunnen op stabiele, reproduceerbare manier zeer hoge concentraties (tot 1 miljoen deeltjes per cc) monodispers submicron

  3. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  4. Structural and electro-optical properties of bilayer graphyne like BN sheet

    Science.gov (United States)

    Behzad, Somayeh

    2016-12-01

    The structural, electronic and optical properties of bilayer graphyne like BN sheet (BNyne) with different stacking manners have been explored by the first-principles calculations. The stabilities of α-BNyne bilayers with different stacking manners are compared. The α-BNyne Bilayers have wide band gaps. Compared to the single α-BNyne, the numbers of energy bands are doubled due to the interlayer interactions and the band gap is reduced. The AB-I configuration has a direct band gap while the band gap becomes indirect for AA-II. The calculated ε2 (ω) of bilayer α-BNyne for (Eǁx) is similar to that of the monolayer α-BNyne, except for the small changes of peak positions and increasing of peak intensities. For (Eǁz), the first absorption peak occures at 3.86 eV, and the prominant peak of monolayer at 9.17 eV becomes broadened. These changes are related to the new transitions resulting from the band splitting.

  5. Temperature-controlled structure and kinetics of ripple phases in one- and two-component supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Crowe, J.H.

    2003-01-01

    Temperature-controlled atomic force microscopy (AFM) has been used to visualize and study the structure and kinetics of ripple phases in one-component dipalmitoylphosphaticlylcholine (DPPC) and two-component dimyristoylphosphatidylcholine-distearoylphosphatidylcholine (DMPC-DSPC) lipid bilayers....... The lipid bilayers are mica-supported double bilayers in which ripple-phase formation occurs in the top bilayer. In one-component DPPC lipid bilayers, the stable and metastable ripple phases were observed. In addition, a third ripple structure with approximately twice the wavelength of the metastable...... ripples was seen. From height profiles of the AFM images, estimates of the amplitudes of the different ripple phases are reported. To elucidate the processes of ripple formation and disappearance, a ripple-phase DPPC lipid bilayer was taken through the pretransition in the cooling and the heating...

  6. CNTs in situ attached to α-Fe2O3 submicron spheres for enhancing lithium storage capacity.

    Science.gov (United States)

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Qiu, Peiyu; Sun, Rongjin; Yin, Ting; Cui, Daxiang

    2015-01-14

    In this work, we developed a facile hydrothermal method for synthesis of hybrid α-Fe2O3-carbon nanotubes (CNTs) architectures (α-Fe2O3-CNTs-1 and α-Fe2O3-CNTs-2). The CNTs are in situ attached to the α-Fe2O3 submicron spheres and form three-dimensional network robust architectures. The increase in the amount of CNTs in the network α-Fe2O3-CNTs architectures will significantly enhance the cycling and rate performance, as the flexible and robust CNTs could ensure the fast electron transport pathways, enhance the electronic conductivity, and improve the structural stability of the electrode. As for pure α-Fe2O3 submicron spheres, the capacity decreased significantly and retained at 377.4 mAh g(-1) after 11 cycles, and the capacity has a slightly increasing trend at the following cycling. In contrast, the network α-Fe2O3-CNTs-2 electrode shows the most remarkable performance. At the 60th cycle, the capacity of network α-Fe2O3-CNTs-2 (764.5 mAh g(-1)) is 1.78 times than that of α-Fe2O3 submicron spheres (428.3 mAh g(-1)). The long-term cycling performance (1000 cycles) of samples at a high current density of 5 C showed that the capacity of α-Fe2O3 submicron spheres fade to ∼37.3 mAh g(-1) at the 400th cycle and gradually increased to ∼116.7 mAh g(-1) at the 1000th cycle. The capacity of network α-Fe2O3-CNTs-2 maintained at ∼220.2 mAh g(-1) before the 400th cycle, arrived at ∼326.5 mAh g(-1) in the 615th, cycle and retained this value until 1000th cycle. The network α-Fe2O3-CNTs-2 composite could significantly enhance the cycling and rate performance than pure α-Fe2O3 submicron spheres composite.

  7. Practical Considerations for Detection and Characterization of Sub-Micron Particles in Protein Solutions by Nanoparticle Tracking Analysis.

    Science.gov (United States)

    Gruia, Flaviu; Parupudi, Arun; Polozova, Alla

    2015-01-01

    Nanoparticle Tracking Analysis (NTA) is an emerging analytical technique developed for detection, sizing, and counting of sub-micron particles in liquid media. Its feasibility for use in biopharmaceutical development was evaluated with particle standards and recombinant protein solutions. Measurements of aqueous suspensions of NIST-traceable polystyrene particle standards showed accurate particle concentration detection between 2 × 10(7) and 5 × 10(9) particles/mL. Sizing was accurate for particle standards up to 200 nm. Smaller than nominal value sizes were detected by NTA for the 300-900 nm particles. Measurements of protein solutions showed that NTA performance is solution-specific. Reduced sensitivity, especially in opalescent solutions, was observed. Measurements in such solutions may require sample dilution; however, common sample manipulations, such as dilution and filtration, may result in particle formation. Dilution and filtration case studies are presented to further illustrate such behavior. To benchmark general performance, NTA was compared against asymmetric flow field flow fractionation coupled with multi-angle light scattering (aF4-MALS) and dynamic light scattering, which are other techniques for sub-micron particles. Data shows that all three methods have limitations and may not work equally well under certain conditions. Nevertheless, the ability of NTA to directly detect and count sub-micron particles is a feature not matched by aF4-MALS or dynamic light scattering. Thorough characterization of particulate matter present in protein therapeutics is limited by the lack of analytical methods for particles in the sub-micron size range. Emerging techniques are being developed to bridge this analytical gap. In this study, Nanoparticle Tracking Analysis is evaluated as a potential tool for biologics development. Our results indicate that method performance is molecule-specific and may not work as well under all solution conditions, especially when

  8. Morphological evolution in dewetting polystyrene/polyhedral oligomeric silsesquioxane thin film bilayers.

    Science.gov (United States)

    Paul, Rituparna; Karabiyik, Ufuk; Swift, Michael C; Hottle, John R; Esker, Alan R

    2008-05-06

    Morphological evolution in dewetting thin film bilayers of polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), was studied as a function of annealing temperature and annealing time. The results demonstrate unique dewetting morphologies in PS/TPP bilayers at elevated temperatures that are significantly different from those typically observed in dewetting polymer/polymer bilayers. During temperature ramp studies by optical microscopy (OM) in the reflection mode, PS/TPP bilayers form cracks with a weak optical contrast at approximately 130 degrees C. The crack formation is attributed to tensile stresses within the upper TPP layer. The weak optical contrast of the cracks observed in the bilayers for annealing temperatures below approximately 160 degrees C is consistent with the cracking and dewetting of only the upper TPP layer from the underlying PS layer. The optical contrast of the morphological features is significantly enhanced at annealing temperatures of >160 degrees C. This observation suggests dewetting of both the upper TPP and the lower PS layers that results in the exposure of the silicon substrate. Upon annealing the PS/TPP bilayers at 200 degrees C in a temperature jump experiment, the upper TPP layer undergoes instantaneous cracking as observed by OM. These cracks in the upper TPP layer serve as nucleation sites for rapid dewetting and aggregation of the TPP layer, as revealed by OM and atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) results indicated that dewetting of the lower PS layer ensued for annealing times >5 min and progressed up to 90 min. For annealing times >90 min, OM, AFM, and XPS results revealed complete dewetting of both the layers with the formation of TPP encapsulated PS droplets.

  9. Growth and characterization of the ZnO/ZnS bilayer obtained by chemical spray pyrolysis

    International Nuclear Information System (INIS)

    Lopez, M.C.; Espinos, J.P.; Leinen, D.; Martin, F.; Centeno, S.P.; Romero, R.; Ramos-Barrado, J.R.

    2008-01-01

    ZnO/ZnS bilayer antireflection coatings have been prepared by spray pyrolysis using aqueous solutions of zinc acetate and thiourea or zinc chloride and thiourea. The structure, surface morphology, chemical composition and optical transmittance of the bilayer have been examined as a function of the composition of the initial solution. X-ray photoelectron spectroscopy analysis and Ar ion-beam sputter etching was carried out to obtain a depth profile of bilayer. Neither carbon nor other by-products, which could alter the optical transmittance of the bilayer were found in either the interface or bulk. The differences between the bilayers arise from the annealing of the ZnS underlayer, as well as the precursor used to prepare it.

  10. High carrier mobility of CoPc wires based field-effect transistors using bi-layer gate dielectric

    Directory of Open Access Journals (Sweden)

    Murali Gedda

    2013-11-01

    Full Text Available Polyvinyl alcohol (PVA and anodized Al2O3 layers were used as bi-layer gate for the fabrication of cobalt phthalocyanine (CoPc wire base field-effect transistors (OFETs. CoPc wires were grown on SiO2 surfaces by organic vapor phase deposition method. These devices exhibit a field-effect carrier mobility (μEF value of 1.11 cm2/Vs. The high carrier mobility for CoPc molecules is attributed to the better capacitive coupling between the channel of CoPc wires and the gate through organic-inorganic dielectric layer. Our measurements also demonstrated the way to determine the thicknesses of the dielectric layers for a better process condition of OFETs.

  11. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, J.P.; Gilchrist, P.J. [Univ. of Edinburgh (United Kingdom); Duff, K.C. [Univ. of Edinburgh Medical School (United Kingdom); Saxena, A.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  12. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    International Nuclear Information System (INIS)

    Bradshaw, J.P.; Gilchrist, P.J.; Duff, K.C.; Saxena, A.M.

    1994-01-01

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein

  13. Effect of the thickness of Zn(BTZ){sub 2} emitting layer on the electroluminescent spectra of white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, F.J. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Hua, Y.L. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China)]. E-mail: yulinhua@tjut.edu.cn; Yin, S.G. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Deng, J.C. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Wu, K.W. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Niu, X. [Institute of Material Physics, Tianjin University of Technology, Tianjin 300191 (China); Wu, X.M. [Institute of Modern Optics, Nankai University, Tianjin 300191 (China); Petty, M.C. [Centre for Molecular and Nanoscale Electronics, University of Durham, Durham DH1 3LE (United Kingdom)

    2007-01-15

    White organic light-emitting diodes (OLEDs) are fabricated with a simple bilayer structure: ITO/TPD/ Zn(BTZ){sub 2}/Al. White emission is composed of two parts: one is 470 nm, which originates from exciton emission in Zn(BTZ){sub 2} emitting layer; the other is 580 nm, which originates from exciplexes formation at the interface of TPD and Zn(BTZ){sub 2}. Specially, the thickness of Zn(BTZ){sub 2} layer effects the relative intensity of two emissions. When the Zn(BTZ){sub 2} layer becomes thin (or thick), the 470 nm (or 580 nm) emission intensity turns into weak (or strong). Finally, We successfully fabricated pure white OLED when the thickness of Zn(BTZ){sub 2} layer was 65 nm.

  14. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc

    2015-01-01

    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  15. Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Semuk, E.Yu.; Berzhansky, V.N.; Prokopov, A.R.; Shaposhnikov, A.N.; Karavainikov, A.V. [Taurida National V.I. Vernadsky University, Vernadsky Avenue, 4, 95007 Simferopol (Ukraine); Salyuk, O.Yu. [Institute of Magnetism NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine); Golub, V.O., E-mail: golub@imag.kiev.ua [Institute of Magnetism NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine)

    2015-11-15

    Magnetic properties of Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} (84 nm) and Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction. - Highlights: • Magnetic parameters of epitaxial Bi-YIG films and bilayers on GGG substrate. • Adaptive layers affect on high order magnetic anisotropy. • Magnetic properties of bilayers are result of strong exchange interaction.

  16. Microstructure and mechanical behavior of a shape memory Ni-Ti bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud, E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Ivanisenko, Julia [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Schwaiger, Ruth [Karlsruhe Institute of Technology, Institute for Applied Materials, 76021 Karlsruhe (Germany); Hahn, Horst; Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-29

    Two different single-layers and a bi-layer Ni-Ti thin films with chemical compositions of Ni{sub 45}Ti{sub 50}Cu{sub 5}, Ni{sub 50.8}Ti{sub 49.2} and Ni{sub 50.8}Ti{sub 49.2}/Ni{sub 45}Ti{sub 50}Cu{sub 5} (numbers indicate at.%) determined by energy dispersive X-ray spectroscopy were deposited on Si (111) substrates using DC magnetron sputtering. The structures, surface morphology and transformation temperatures of annealed thin films at 500 °C for 15 min and 1 h were studied using grazing incidence X-ray diffraction, transmission electron microscopy (TEM), atomic force microscopy and differential scanning calorimetry (DSC), respectively. Nanoindentation was used to characterize the mechanical properties. The DSC and X-ray diffraction results indicated the austenitic structure of the Ni{sub 50.8}Ti{sub 49.2} and martensitic structure of the Ni{sub 45}Ti{sub 50}Cu{sub 5} thin films while the bi-layer was composed of austenitic and martensitic thin films. TEM study revealed that copper encourages crystallization in the bi-layer such that crystal structure containing nano-precipitates in the Ni{sub 45}Ti{sub 50}Cu{sub 5} layer was detected after 15 min annealing while the Ni{sub 50.8}Ti{sub 49.2} layer crystallized after 60 min at 500 °C. Furthermore, after annealing at 500 °C for 15 min, a precipitate free zone and thin layer amorphous were observed closely to the interface in the top layer. The bi-layer was completely crystallized at 500 °C for 1 h and the orientation of the Ni-rich precipitates indicated a stress gradient in the bi-layer. The bi-layer thin film showed different transformation temperatures and mechanical behavior from the single-layers. The developed bi-layer has different phase transformation temperatures, the higher temperatures of shape memory effect and lower temperature of pseudo-elastic behavior compared to the single-layers. Also, the bi-layer thin film exhibited a combined pseudo-elastic behavior and shape memory effect with a reduced

  17. Electrostatically confined quantum rings in bilayer graphene.

    Science.gov (United States)

    Zarenia, M; Pereira, J M; Peeters, F M; Farias, G A

    2009-12-01

    We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B(0) --> -B(0) transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.

  18. Bilayer expurgated LDPC codes with uncoded relaying

    Directory of Open Access Journals (Sweden)

    Md. Noor-A-Rahim

    2017-08-01

    Full Text Available Bilayer low-density parity-check (LDPC codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly. In the existing bilayer coding scheme, these parity bits are protected by an error correcting code and assumed reliably available at the receiver. We propose an uncoded relaying scheme, where the extra parity bits are forwarded to the destination without any protection. Through density evolution analysis and simulation results, we show that our proposed scheme achieves better performance in terms of bit erasure probability than the existing relaying scheme. In addition, our proposed scheme results in lower complexity at the relay.

  19. Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Kim, HoKwon; Renault, Olivier; Rouchon, Denis; Mariolle, Denis; Chevalier, Nicolas [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Tyurnina, Anastasia; Simonato, Jean-Pierre; Dijon, Jean [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LITEN, Minatec Campus, F-38054 Grenoble (France)

    2014-07-07

    We report on the efficiency and thermal stability of p-doping by iodine on single and randomly stacked, weakly coupled bilayer polycrystalline graphene, as directly measured by photoelectron emission microscopy. The doping results in work function value increase of 0.4–0.5 eV, with a higher degree of iodine uptake by the bilayer (2%) as compared to the single layer (1%) suggesting iodine intercalation in the bilayer. The chemistry of iodine is identified accordingly as I{sub 3}{sup −} and I{sub 5}{sup −} poly iodide anionic complexes with slightly higher concentration of I{sub 5}{sup −} in bilayer than monolayer graphene, likely attributed to differences in doping mechanisms. Temperature dependent in-situ annealing of the doped films demonstrated that the doping remains efficient up to 200 °C.

  20. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    Directory of Open Access Journals (Sweden)

    M. J. Alvarado

    2016-07-01

    Full Text Available Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS campaign. The four models are the NASA Global Modeling Initiative (GMI Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT, and the Optical Properties of Aerosol and Clouds (OPAC v3.1 package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1 to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10–23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass

  1. The effects of surface-charged submicron polystyrene particles on the structure and performance of PSF forward osmosis membrane

    Science.gov (United States)

    Zuo, Hao-Ran; Fu, Jia-Bei; Cao, Gui-Ping; Hu, Nian; Lu, Hui; Liu, Hui-Qing; Chen, Peng-Peng; Yu, Jie

    2018-04-01

    Monodisperse surface-charged submicron polystyrene particles were designed, synthesized, and blended into polysulfone (PSF) support layer to prepare forward osmosis (FO) membrane with high performance. The membrane incorporated with particles were characterized with respect to morphology, porosity, and internal osmotic pressure (IOP). Results showed that the polymer particles not only increased the hydrophilicity and porosity of support layer, but also generated considerable IOP, which helped markedly decreasing the structure parameter from 1550 to 670 μm. The measured mass transfer parameters further confirmed the beneficial effects of the surface-charged submicron polymer particles on the performance of FO membrane. For instance, the water permeability coefficient (5.37 L m-2 h-1 bar-1) and water flux (49.7 L m-2 h-1) of the FO membrane incorporated with 5 wt% particles were almost twice as much as that of FO membrane without incorporation. This study suggests that monodisperse surface-charged submicron polymer particles are potential modifiers for improving the performance of FO membranes.

  2. Coexistence of a two-states organization for a cell-penetrating peptide in lipid bilayer.

    Science.gov (United States)

    Plénat, Thomas; Boichot, Sylvie; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2005-12-01

    Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P(alpha), a primary amphipathic cell-penetrating peptide which remains alpha-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers. Addition of P(alpha) at concentrations up to 5 mol % markedly modified the supported bilayers topography. Long and thin filaments lying flat at the membrane surface coexisted with deeply embedded peptides which induced a local thinning of the bilayer. On the other hand, addition of P(alpha) only exerted very limited effects on the corresponding liposome's bilayer physical state, as estimated from differential scanning calorimetry and diphenylhexatriene fluorescence anisotropy experiments. The use of a gel-fluid phase separated supported bilayers made of a dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixture confirmed both the existence of long filaments, which at low peptide concentration were preferentially localized in the fluid phase domains and the membrane disorganizing effects of 5 mol % P(alpha). The simultaneous two-states organization of P(alpha), at the membrane surface and deeply embedded in the bilayer, may be involved in the transmembrane carrier function of this primary amphipathic peptide.

  3. Subterahertz Longitudinal Phonon Modes Propagating in a Lipid Bilayer Immersed in an Aqueous Medium

    Science.gov (United States)

    Zakhvataev, V. E.

    2018-04-01

    The properties of subterahertz longitudinal acoustic phonon modes in the hydrophobic region of a lipid bilayer immersed in a compressible viscous aqueous medium are investigated theoretically. An approximate expression is obtained for the Mandelstam-Brillouin components of the dynamic structure factor of a bilayer. The analysis is based on a generalized hydrodynamic model of the "two-dimensional lipid bilayer + three-dimensional fluid medium" system, as well as on known sharp estimates for the frequencies and lifetimes of long-wavelength longitudinal acoustic phonons in a free hydrated lipid bilayer and in water, obtained from inelastic X-ray scattering experiments and molecular dynamics simulations. It is shown that, for characteristic values of the parameters of the membrane system, subterahertz longitudinal phonon-like excitations in the hydrophobic part of the bilayer are underdamped. In this case, the contribution of the viscous flow of the aqueous medium to the damping of a longitudinal membrane mode is small compared with the contribution of the lipid bilayer. Quantitative estimates of the damping ratio agree well with the experimental results for the vibration mode of the enzyme lysozyme in aqueous solution [1]. It is also shown that a coupling between longitudinal phonon modes of the bilayer and relaxation processes in its fluid environment gives rise to an additional peak in the scattering spectrum, which corresponds to a non-propagating mode.

  4. Lepromatous leprosy patients produce antibodies that recognise non-bilayer lipid arrangements containing mycolic acids

    Directory of Open Access Journals (Sweden)

    Isabel Baeza

    2012-12-01

    Full Text Available Non-bilayer phospholipid arrangements are three-dimensional structures that form when anionic phospholipids with an intermediate structure of the tubular hexagonal phase II are present in a bilayer of lipids. Antibodies that recognise these arrangements have been described in patients with antiphospholipid syndrome and/or systemic lupus erythematosus and in those with preeclampsia; these antibodies have also been documented in an experimental murine model of lupus, in which they are associated with immunopathology. Here, we demonstrate the presence of antibodies against non-bilayer phospholipid arrangements containing mycolic acids in the sera of lepromatous leprosy (LL patients, but not those of healthy volunteers. The presence of antibodies that recognise these non-bilayer lipid arrangements may contribute to the hypergammaglobulinaemia observed in LL patients. We also found IgM and IgG anti-cardiolipin antibodies in 77% of the patients. This positive correlation between the anti-mycolic-non-bilayer arrangements and anti-cardiolipin antibodies suggests that both types of antibodies are produced by a common mechanism, as was demonstrated in the experimental murine model of lupus, in which there was a correlation between the anti-non-bilayer phospholipid arrangements and anti-cardiolipin antibodies. Antibodies to non-bilayer lipid arrangements may represent a previously unrecognised pathogenic mechanism in LL and the detection of these antibodies may be a tool for the early diagnosis of LL patients.

  5. Super-Sensitive and Robust Biosensors from Supported Polymer Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Walter F. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Biological organisms are potentially the most sensitive and selective biological detection systems known, yet we are currently severely limited in our ability to exploit biological interactions in sensory devices, due in part to the limited stability of biological systems and derived materials. This proposal addresses an important aspect of integrating biological sensory materials in a solid state device. If successful, such technology could enable entirely new classes of robust biosensors that could be miniaturized and deployed in the field. The critical aims of the proposed work were 1) the calibration of a more versatile approach to measuring pH, 2) the use of this method to monitor pH changes caused by the light-induced pumping of protons across vesicles with bacteriorhodopsin integrated into the membranes (either polymer or lipid); 3) the preparation of bilayer assemblies on platinum surfaces; 4) the enhanced detection of lightinduced pH changes driven by bR-loaded supported bilayers. I have developed a methodology that may enable that at interfaces and developed a methodology to characterize the functionality of bilayer membranes with reconstituted membrane proteins. The integrity of the supported bilayer films however must be optimized prior to the full realization of the work originally envisioned in the original proposal. Nevertheless, the work performed on this project and the encouraging results it has produced has demonstrated that these goals are challenging yet within reach.

  6. Device model investigation of bilayer organic light emitting diodes

    International Nuclear Information System (INIS)

    Crone, B. K.; Davids, P. S.; Campbell, I. H.; Smith, D. L.

    2000-01-01

    Organic materials that have desirable luminescence properties, such as a favorable emission spectrum and high luminescence efficiency, are not necessarily suitable for single layer organic light-emitting diodes (LEDs) because the material may have unequal carrier mobilities or contact limited injection properties. As a result, single layer LEDs made from such organic materials are inefficient. In this article, we present device model calculations of single layer and bilayer organic LED characteristics that demonstrate the improvements in device performance that can occur in bilayer devices. We first consider an organic material where the mobilities of the electrons and holes are significantly different. The role of the bilayer structure in this case is to move the recombination away from the electrode that injects the low mobility carrier. We then consider an organic material with equal electron and hole mobilities but where it is not possible to make a good contact for one carrier type, say electrons. The role of a bilayer structure in this case is to prevent the holes from traversing the device without recombining. In both cases, single layer device limitations can be overcome by employing a two organic layer structure. The results are discussed using the calculated spatial variation of the carrier densities, electric field, and recombination rate density in the structures. (c) 2000 American Institute of Physics

  7. Atomic Force Microscope Image Contrast Mechanisms on Supported Lipid Bilayers

    OpenAIRE

    Schneider, James; Dufrêne, Yves F.; Barger Jr., William R.; Lee, Gil U.

    2000-01-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures o...

  8. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    Positively charged lipid bilayer systems are a promising class of nonviral vectors for safe and efficient gene and drug delivery. Detailed understanding of these systems is therefore not only of fundamental but also of practical biomedical interest. Here, we study bilayers comprising a binary...... are concluded to be interesting for the physics of the whole membrane, especially considering its interaction dynamics with charged macromolecular surfaces....

  9. Nanoscale Cross-Point Resistive Switching Memory Comprising p-Type SnO Bilayers

    KAUST Repository

    Hota, Mrinal Kanti; Hedhili, Mohamed N.; Wang, Qingxiao; Melnikov, Vasily; Mohammed, Omar F.; Alshareef, Husam N.

    2015-01-01

    Reproducible low-voltage bipolar resistive switching is reported in bilayer structures of p-type SnO films. Specifically, a bilayer homojunction comprising SnOx (oxygen-rich) and SnOy (oxygen-deficient) in nanoscale cross-point (300 × 300 nm2

  10. Electrical measurements on submicronic synthetic conductors : carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Langer, L [Unite de Physico-Chimie et de Physique des Materiaux, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Stockman, L [Lab. voor Vaste Stof-Fysika en Magnetisme, Katholieke Univ. Leuven (Belgium); Heremans, J P [Physics Dept., General Motors Research, Warren, MI (United States); Bayot, V [Unite de Physico-Chimie et de Physique des Materiaux, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Olk, C H [Physics Dept., General Motors Research, Warren, MI (United States); Haesendonck, C van [Lab. voor Vaste Stof-Fysika en Magnetisme, Katholieke Univ. Leuven (Belgium); Bruynseraede, Y [Lab. voor Vaste Stof-Fysika en Magnetisme, Katholieke Univ. Leuven (Belgium); Issi, J P [Unite de Physico-Chimie et de Physique des Materiaux, Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium)

    1995-03-15

    The synthesis of very small samples has raised the need for a drastic miniaturization of the classical four-probe technique in order to realize electrical resistance measurements. Two methods to realize electrical contacts on very small fibers are described here. Using classical photolithography the electrical resistivity of a submicronic catalytic chemical vapour deposited filament is estimated. Scanning tunneling microscopy (STM) lithography allowed to attach small gold contacts to a small bundle (diameter 50 nm) of carbon nanotubes. This bundle is found to exhibit a semimetallic behavior at higher temperature and an unexpected drop of the electrical resistivity at lower temperature. (orig.)

  11. Magnetic properties of a doped graphene-like bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, An-Bang [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Jiang, Wei, E-mail: weijiang.sut.edu@gmail.com [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Zhang, Na [Shenyang Normal University, Shenyang 110034 (China)

    2017-05-15

    A doped graphene-like bilayer is described using a four-sublattice Heisenberg model both ferromagnetic and antiferrimagnetic couplings. The magnetic properties of the bilayer system are studied using the Heisenberg model, retarded Green's function and the linear spin-wave approximation. The spin-wave spectra, energy gap, and the magnetization and quantum fluctuation of the system at the ground state are calculated with various intra- and interlayer couplings. The results indicate that the effect of antiferromagnetic exchange coupling on the magnetic properties of the system is significant. Magnetizations at low temperature show intersection points due to the quantum effects.

  12. Electronic band structure of magnetic bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C. Huy; Nguyen, T. Thuong; Nguyen, V. Lien

    2014-01-01

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  13. Theory of passive proton conductance in lipid bilayers.

    Science.gov (United States)

    Nagle, J F

    1987-10-01

    The large permeability of lipid bilayers to protons compared to other small ions calls for a special proton transport mechanism. At the present time, only mechanisms involving transient hydrogen-bonded chains of water can account for the experimental result that the conductance is nearly independent of pH. Three models involving transient hydrogen-bonded chains are discussed, including an outline of the kinetic calculations that lead to predictions of current versus voltage drop and current versus pH differences. These calculations can be compared to experiment to determine which, if any, of these models pertains to lipid bilayers.

  14. Lamellar-lamellar phase separation of phospholipid bilayers induced by salting-in/-out effects

    Energy Technology Data Exchange (ETDEWEB)

    Hishida, Mafumi [Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501 (Japan); Seto, Hideki, E-mail: hideki.seto@kek.jp [KENS and CMRC, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801 (Japan)

    2011-01-01

    The multilamellar structure of phospholipid bilayers is stabilized by the interactions between bilayers. Although the lamellar repeat distance is uniquely determined at the balance point of interactions between bilayers, a lamellar-lamellar phase separation, where the two phases with different lamellar repeat distance coexist, has been reported in a case of adding a salt to the aqueous solution of lipids. In order to understand the physical mechanism of the lamellar-lamellar phase separation, the effects of adding monovalent salt on the lamellar structure are studied by visual observation and by small-angle X-ray scattering. Further, a theoretical model based on the mean field theory is introduced and it is concluded that the salting-in and -out effects of lipid bilayers trigger the lamellar-lamellar phase separation.

  15. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    International Nuclear Information System (INIS)

    Wang, Yu

    2014-01-01

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  16. Neutron scattering investigations of the lipid bilayer structure pressure dependence

    International Nuclear Information System (INIS)

    Solovjov, D.V.; Gordelyij, V.Yi.; Gorshkova, Yu.Je.; Yivan'kov, O.Yi.; Koval'ov, Yu.S.; Kuklyin, A.Yi.; Solovjov, D.V.; Bulavyin, L.A.; Yivan'kov, O.Yi.; Nyikolajenko, T.Yu.; Kuklyin, A.Yi.; Gordelyij, V.Yi.; Gordelyij, V.Yi.

    2012-01-01

    Lipid bilayer structure investigation results obtained with small angle neutron scattering method at the Joint Institute for Nuclear Research IBR-2M nuclear reactor (Dubna, Russia) are presented. Experiment has been performed with small angle neutron scattering spectrometer YuMO, upgraded with the apparatus for performing PV-T measurements on the substance under investigation. D 2 O-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liquid system, presenting the model of natural live membrane, has been taken as the sample for investigations. The lipid bilayer spatial period was measured in experiment along with isothermal compressibility simultaneously at different pressures. It has been shown, that the bilayer structural transition from ripple (wavelike gel-phase) phase to liquid-crystal phase is accompanied with anomalous rise of isothermal compressibility, indicating occurrence of the phase transition.

  17. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Pair interaction of bilayer-coated nanoscopic particles

    Science.gov (United States)

    Zhang, Qi-Yi

    2009-02-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery.

  18. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices

    International Nuclear Information System (INIS)

    He Ze-Zhao; Yang Ke-Wu; Yu Cui; Li Jia; Liu Qing-Bin; Lu Wei-Li; Feng Zhi-Hong; Cai Shu-Jun

    2015-01-01

    We report on an improved metal-graphene ohmic contact in bilayer epitaxial graphene on a SiC substrate with contact resistance below 0.1 ω·mm. Monolayer and bilayer epitaxial graphenes are prepared on a 4H-SiC substrate in this work. Their contact resistances are measured by a transfer length method. An improved photoresist-free device fabrication method is used and is compared with the conventional device fabrication method. Compared with the monolayer graphene, the contact resistance R c of bilayer graphene improves from an average of 0.24 ω·mm to 0.1 ω·mm. Ohmic contact formation mechanism analysis by Landauer's approach reveals that the obtained low ohmic contact resistance in bilayer epitaxial graphene is due to their high carrier density, high carrier transmission probability, and p-type doping introduced by contact metal Au. (paper)

  19. Hematite/silver nanoparticle bilayers on mica--AFM, SEM and streaming potential studies.

    Science.gov (United States)

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena; Bielańska, Elżbieta

    2014-06-15

    Bilayers of hematite/silver nanoparticles were obtained in the self-assembly process and thoroughly characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and in situ streaming potential measurements. The hematite nanoparticles, forming a supporting layer, were 22 nm in diameter, exhibiting an isoelectric point at pH 8.9. The silver nanoparticles, used to obtain an external layer, were 29 nm in diameter, and remained negative within the pH range 3 to 11. In order to investigate the particle deposition, mica sheets were used as a model solid substrate. The coverage of the supporting layer was adjusted by changing the bulk concentration of the hematite suspension and the deposition time. Afterward, silver nanoparticle monolayers of controlled coverage were deposited under the diffusion-controlled transport. The coverage of bilayers was determined by a direct enumeration of deposited particles from SEM micrographs and AFM images. Additionally, the formation of the hematite/silver bilayers was investigated by streaming potential measurements carried out under in situ conditions. The effect of the mica substrate and the coverage of a supporting layer on the zeta potential of bilayers was systematically studied. It was established that for the coverage exceeding 0.20, the zeta potential of bilayers was independent on the substrate and the supporting layer coverage. This behavior was theoretically interpreted in terms of the 3D electrokinetic model. Beside significance for basic sciences, these measurements allowed to develop a robust method of preparing nanoparticle bilayers of controlled properties, having potential applications in catalytic processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.

    2016-01-01

    The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.

  1. Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-03-01

    The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.

  2. Vesicle fusion observed by content transfer across a tethered lipid bilayer.

    Science.gov (United States)

    Rawle, Robert J; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G

    2011-10-19

    Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Theory for electric dipole superconductivity with an application for bilayer excitons.

    Science.gov (United States)

    Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X C

    2015-07-08

    Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.

  4. The role of jet and film drops in controlling the mixing state of submicron sea spray aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofei; Deane, Grant B.; Moore, Kathryn A.; Ryder, Olivia S.; Stokes, M. Dale; Beall, Charlotte M.; Collins, Douglas B.; Santander, Mitchell V.; Burrows, Susannah M.; Sultana, Camille M.; Prather, Kimberly A.

    2017-06-19

    Covering 71% of the Earth’s surface, oceans represent a significant global source of atmospheric aerosols. The size and composition of sea spray aerosols (SSA) affect their ability to serve as cloud seeds and thus understanding the factors controlling their composition is critical to predicting their impact on clouds and climate. SSA particles have been shown to be an external mixture of particles with different compositions. Film and jet drop production mechanisms ultimately determine the individual particle compositions which are comprised of an array of salt/organic mixtures ranging from pure sea salt to nearly pure organic particles. It is often assumed that the majority of submicron SSA are formed by film drops produced from bursting hydrophobic organic-rich bubble film caps at the sea surface, and in contrast, jet drops are postulated to produce larger supermicron particles from underlying seawater comprised largely of salts and water soluble organic species. However, here we show that jet drops produced by bursting sub-100 m bubbles account for up to 40 % of all submicron particles. They have distinct chemical compositions, organic volume fractions and ice nucleating activities from submicron film drops. Thus a substantial fraction of submicron particles will not necessarily be controlled by the composition of the sea surface microlayer as has been assumed in many studies. This finding has significant ramifications for the size-resolved mixing states of SSA particles which must be taken into consideration when accessing SSA impacts on clouds.

  5. Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firing

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings

    2013-01-01

    sintering mismatch stress in co-fired CGO-LSM/CGO bilayer laminates was significantly lower than general sintering stresses expected for free sintering conditions. As a result, no co-firing defects were observed in the bilayer laminates, illustrating an acceptable sintering compatibility of the ceramic...

  6. Airborne studies of submicron aerosol in the troposphere over West Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Panchenko, M.V.; Zuev, V.E.; Belan, B.D.; Terpugova, S.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    Submicron fraction particles that have the longest lifespan and are included in almost all atmospheric processes are of special importance among the great variety of sizes of particles present in the atmosphere. Submicron particles mainly determine the opticle state of the atmosphere in the visible spectral range, essentially cause the absorption of infrared radiation and, since they are the products and participants in all aerosol-to-gas transformations, accumulate of a lot of various chemical compounds and transfer them to large distances. Investigation of the processes of the spatial-temporal variability of aerosol particles for different climatic zones of the earth is the experimental base for studying their effect on climatically and ecologically significant factors and estimating their unfavorable tendencies. The increasing anthropogenic loading of the earth`s atmosphere is creating an urgency for aerosol research. Regardless of how perfect the analytical and numerical methods of solving radiation problems may be, success in forecasting climatic change is mainly determined by the reliability of the experimental data on optical parameters of the atmosphere and of the description of their variability under the effect of external factors.

  7. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.

    Science.gov (United States)

    Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa

    2013-02-26

    We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.

  8. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  9. Self-assembled PCBM bilayers on graphene and HOPG examined by AFM and STM

    Science.gov (United States)

    Li, Yanlong; Chen, Chuanhui; Burton, John; Park, Kyungwha; Heflin, James R.; Tao, Chenggang

    2018-05-01

    In this work we report fabrication and characterization of phenyl-C61-butyric acid methyl ester (PCBM) bilayer structures on graphene and highly oriented pyrolytic graphite (HOPG). Through careful control of the PCBM solution concentration (from 0.1 to 2 mg ml-1) and the deposition conditions, we demonstrate that PCBM molecules self-assemble into bilayer structures on graphene and HOPG substrates. Interestingly, the PCBM bilayers are formed with two distinct heights on HOPG, but only one unique representative height on graphene. At elevated annealing temperatures, edge diffusion allows neighboring vacancies to merge into a more ordered structure. This is, to the best of our knowledge, the first experimental realization of PCBM bilayer structures on graphene. This work could provide valuable insight into fabrication of new hybrid, ordered structures for applications to organic solar cells.

  10. Nondestructive mapping of chemical composition and structural qualities of group III-nitride nanowires using submicron beam synchrotron-based X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, P.L., E-mail: plb2@njit.edu [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gautier, S. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gmili, Y.El.; Moudakir, T. [UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Sirenko, A.A. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kazimirov, A. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Cai, Z.-H. [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Martin, J. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Goh, W.H. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Martinez, A.; Ramdane, A.; Le Gratiet, L. [Laboratoire de Photonique et de Nanostructures, UPR CNRS 20, Route de Nozay, 91460 Marcoussis (France); Maloufi, N. [Laboratoire d' Etude des Textures et Application aux Matériaux UMR CNRS 7078 Ile du Saulcy 57045 METZ cedex 1 (France); Assouar, M.B. [Laboratoire de Physique des Milieux Ionisés et Applications, Nancy University, CNRS, BP 239, F-54506 Vandoeuvre-lès-Nancy Cédex (France); Ougazzaden, A. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France)

    2013-08-31

    Submicron beam synchrotron-based X-ray diffraction (XRD) techniques have been developed and used to accurately and nondestructively map chemical composition and material quality of selectively grown group III-nitride nanowires. GaN, AlGaN, and InGaN multi-quantum-well nanowires have been selectively grown on lattice matched and mismatched substrates, and the challenges associated with obtaining and interpreting submicron beam XRD results are addressed and solved. Nanoscale cathodoluminescence is used to examine exciton behavior, and energy-dispersive X-ray spectroscopy is used to verify chemical composition. Scanning transmission electron microscopy is later used to paint a more complete picture. The advantages of submicron beam XRD over other techniques are discussed in the context of this challenging material system. - Highlights: ► We used nano selective area growth to create nanowires of GaN, AlGaN and InGaN/GaN. ► We characterized them by synchrotron-based submicron beam X-ray diffraction (XRD). ► This technique accurately determined chemical and crystallographic properties. ► Challenges of XRD are addressed in the context of this challenging material system. ► Advantages of XRD over other characterization methods are discussed.

  11. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    Science.gov (United States)

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Neutron scattering investigations of the lipid bilayer structure pressure dependence

    Directory of Open Access Journals (Sweden)

    D. V. Soloviov

    2012-03-01

    Full Text Available Lipid bilayer structure investigation results obtained with small angle neutron scattering method at the Joint Institute for Nuclear Research IBR-2M nuclear reactor (Dubna, Russia are presented. Experiment has been per-formed with small angle neutron scattering spectrometer YuMO, upgraded with the apparatus for performing P-V-T measurements on the substance under investigation. D2O-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC liquid system, presenting the model of natural live membrane, has been taken as the sample for investiga-tions. The lipid bilayer spatial period was measured in experiment along with isothermal compressibility simulta-neously at different pressures. It has been shown, that the bilayer structural transition from ripple (wavelike gel-phase phase to liquid-crystal phase is accompanied with anomalous rise of isothermal compressibility, indicat-ing occurrence of the phase transition.

  13. Submicron x-ray diffraction and its applications to problems in materials and environmental science

    Science.gov (United States)

    Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.

    2002-03-01

    The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  14. Submicron X-Ray Diffraction and its Applications to Problems in Materials and Environmental Science

    Energy Technology Data Exchange (ETDEWEB)

    Patel, J. R.

    2002-08-16

    The availability of high brilliance 3rd generation synchrotron sources together with progress in achromatic focusing optics allow to add submicron spatial resolution to the conventional century-old X-ray diffraction technique. The new capabilities include the possibility to map in-situ, grain orientations, crystalline phase distribution and full strain/stress tensors at a very local level, by combining white and monochromatic X-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron X-ray diffraction techniques at the ALS, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  15. Submicron X-ray diffraction and its applications to problems in materials and environmental science

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, N.; Celestre, R.S.; MacDowell, A.A.; Padmore, H.A.; Spolenak, R.; Valek, B.C.; Meier Chang, N.; Manceau, A.; Patel, J.R.

    2002-03-26

    The availability of high brilliance 3rd generation synchrotron sources together with progress in achromatic focusing optics allow to add submicron spatial resolution to the conventional century-old X-ray diffraction technique. The new capabilities include the possibility to map in-situ, grain orientations, crystalline phase distribution and full strain/stress tensors at a very local level, by combining white and monochromatic X-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron X-ray diffraction techniques at the ALS, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.

  16. Controlling the radiative properties of cool black-color coatings pigmented with CuO submicron particles

    International Nuclear Information System (INIS)

    Gonome, Hiroki; Baneshi, Mehdi; Okajima, Junnosuke; Komiya, Atsuki; Maruyama, Shigenao

    2014-01-01

    The objective of this study was to design a pigmented coating with dark appearance that maintains a low temperature while exposed to sunlight. The radiative properties of a black-color coating pigmented with copper oxide (CuO) submicron particles are described. In the present work, the spectral behavior of the CuO-pigmented coating was calculated. The radiative properties of CuO particles were evaluated, and the radiative transfer in the pigmented coating was modeled using the radiation element method by ray emission model (REM 2 ). The coating is made using optimized particles. The reflectivity is measured by spectroscopy and an integrating sphere in the visible (VIS) and near infrared (NIR) regions. By using CuO particles controlled in size, we were able to design a black-color coating with high reflectance in the NIR region. The coating substrate also plays an important role in controlling the reflectance. The NIR reflectance of the coating on a standard white substrate with appropriate coating thickness and volume fraction was much higher than that on a standard black substrate. From the comparison between the experimental and calculated results, we know that more accurate particle size control enables us to achieve better performance. The use of appropriate particles with optimum size, coating thickness and volume fraction on a suitable substrate enables cool and black-color coating against solar irradiation. -- Highlights: • A new approach in designing pigmented coatings was used. • The effects of particles size on both visible and near infrared reflectivities were studied. • The results of numerical calculation were compared with experimental ones for CuO powders

  17. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    International Nuclear Information System (INIS)

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-01-01

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T c can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor

  18. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: zwxing@nju.edu.cn [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  19. Improvement of dissolution behavior of poorly water soluble drugs by biodegradable polymeric submicron carriers containing sparingly methylated β-cyclodextrin.

    Science.gov (United States)

    Singhavi, Dilesh J; Khan, Shagufta; Yeole, Pramod G

    2013-04-01

    The objective of this study was to develop submicron carriers of two drugs that are practically insoluble in water, i.e. meloxicam and aceclofenac, to improve their dissolution behavior. The phase solubility of the drugs was studied using different concentrations of sparingly methylated β-cyclodextrin, Kleptose(®) Crysmeβ (Crysmeb), in the presence and absence of 0.2 % w/v water-soluble chitosan. Drug-loaded submicron particles (SMPs) were prepared using chitosan chlorhydrate and Crysmeb by the ionotropic gelation method. The SMPs were characterized in terms of powder X-ray diffraction, Fourier transforms infrared spectroscopy, size determination, process yield, drug loading, encapsulation efficiency, surface morphology and in vitro release. The drug loading in the SMPs was enhanced in the presence of Crysmeb. The in vitro drug release was found to be enhanced with SMPs prepared using higher concentrations of Crysmeb. These results indicate that SMPs formed from chitosan chlorhydrate and Crysmeb are promising submicron carriers for enhancing the dissolution of meloxicam and aceclofenac.

  20. Localized plasmons in bilayer graphene nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Xiao, Sanshui; Mortensen, N. Asger

    2016-01-01

    We study localized plasmonic excitations in bilayer graphene (BLG) nanodisks, comparing AA-stacked and AB-stacked BLG and contrasting the results to the case of two monolayers without electronic hybridization. The electrodynamic response of the BLG electron gas is described in terms of a spatially...

  1. Ab-initio calculation of electronic structure and optical properties of AB-stacked bilayer α-graphyne

    Science.gov (United States)

    Behzad, Somayeh

    2016-09-01

    Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.

  2. Modeling of transient electroluminescence overshoot in bilayer organic light-emitting diodes using rate equations

    International Nuclear Information System (INIS)

    Chandra, V.K.; Chandra, B.P.; Tiwari, M.; Baghel, R.N.; Ramrakhiani, M.

    2012-01-01

    When a voltage pulse is applied under forward biased condition to a spin-coated bilayer organic light-emitting diode (OLED), then initially the electroluminescence (EL) intensity appearing after a delay time, increases with time and later on it attains a saturation value. At the end of the voltage pulse, the EL intensity decreases with time, attains a minimum intensity and then it again increases with time, attains a peak value and later on it decreases with time. For the OLEDs, in which the lifetime of trapped carriers is less than the decay time of the EL occurring prior to the onset of overshoot, the EL overshoot begins just after the end of voltage pulse. The overshoot in spin-coated bilayer OLEDs is caused by the presence of an interfacial layer of finite thickness between hole and electron transporting layers in which both transport molecules coexist, whereby the interfacial energy barrier impedes both hole and electron passage. When a voltage pulse is applied to a bilayer OLED, positive and negative space charges are established at the opposite faces of the interfacial layer. Subsequently, the charge recombination occurs with the incoming flux of injected carriers of opposite polarity. When the voltage is turned off, the interfacial charges recombine under the action of their mutual electric field. Thus, after switching off the external voltage the electrons stored in the interface next to the anode cell compartment experience an electric field directed from cathode to anode, and therefore, the electrons move towards the cathode, that is, towards the positive space charge, whereby electron–hole recombination gives rise to luminescence. The EL prior to onset of overshoot is caused by the movement of electrons in the electron transporting states, however, the EL in the overshoot region is caused by the movement of detrapped electrons. On the basis of the rate equations for the detrapping and recombination of charge carriers accumulated at the interface

  3. Modeling of transient electroluminescence overshoot in bilayer organic light-emitting diodes using rate equations

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001 (C.G.) (India); Chandra, B.P., E-mail: bpchandra4@yahoo.co.in [Department of Applied Physics, Ashoka Institute of Technology and Management, Rajnandgaon 491441 (C.G.) (India); Tiwari, M. [Department of Postgraduate Studies and Research in Physics and Electronics, Rani Durgavati University, Jabalpur 482001 (M.P.) (India); Baghel, R.N. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010 (C.G.) (India); Ramrakhiani, M. [Department of Postgraduate Studies and Research in Physics and Electronics, Rani Durgavati University, Jabalpur 482001 (M.P.) (India)

    2012-06-15

    When a voltage pulse is applied under forward biased condition to a spin-coated bilayer organic light-emitting diode (OLED), then initially the electroluminescence (EL) intensity appearing after a delay time, increases with time and later on it attains a saturation value. At the end of the voltage pulse, the EL intensity decreases with time, attains a minimum intensity and then it again increases with time, attains a peak value and later on it decreases with time. For the OLEDs, in which the lifetime of trapped carriers is less than the decay time of the EL occurring prior to the onset of overshoot, the EL overshoot begins just after the end of voltage pulse. The overshoot in spin-coated bilayer OLEDs is caused by the presence of an interfacial layer of finite thickness between hole and electron transporting layers in which both transport molecules coexist, whereby the interfacial energy barrier impedes both hole and electron passage. When a voltage pulse is applied to a bilayer OLED, positive and negative space charges are established at the opposite faces of the interfacial layer. Subsequently, the charge recombination occurs with the incoming flux of injected carriers of opposite polarity. When the voltage is turned off, the interfacial charges recombine under the action of their mutual electric field. Thus, after switching off the external voltage the electrons stored in the interface next to the anode cell compartment experience an electric field directed from cathode to anode, and therefore, the electrons move towards the cathode, that is, towards the positive space charge, whereby electron-hole recombination gives rise to luminescence. The EL prior to onset of overshoot is caused by the movement of electrons in the electron transporting states, however, the EL in the overshoot region is caused by the movement of detrapped electrons. On the basis of the rate equations for the detrapping and recombination of charge carriers accumulated at the interface

  4. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering.

    Science.gov (United States)

    Pu, Juan; Komvopoulos, Kyriakos

    2014-06-01

    Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bing; Feng Weiyue, E-mail: fengwy@mail.ihep.ac.cn; Zhu Motao; Wang Yun; Wang Meng [Chinese Academy of Sciences, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics (China); Gu Yiqun [Maternity Hospital of Haidian District (China); Ouyang Hong; Wang Huajian; Li Ming; Zhao Yuliang, E-mail: zhaoyuliang@mail.ihep.ac.cn; Chai Zhifang [Chinese Academy of Sciences, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics (China); Wang Haifang [Peking University, College of Chemistry and Molecular Engineering (China)

    2009-01-15

    Olfactory tract has been demonstrated to be an important portal for inhaled solid nanoparticle transportation into the central nervous system (CNS). We have previously demonstrated that intranasally instilled Fe{sub 2}O{sub 3} nanoparticles could transport into the CNS via olfactory pathway. In this study, we investigated the neurotoxicity and size effect of repeatedly low-dose (130 {mu}g) intranasal exposure of nano- and submicron-sized Fe{sub 2}O{sub 3} particles (21 nm and 280 nm) to mice. The biomarkers of oxidative stress, activity of nitric oxide synthases and release of monoamine neurotransmitter in the brain were studied. Our results showed that significant oxidative stress was induced by the two sizes of Fe{sub 2}O{sub 3} particles. The activities of GSH-Px, Cu,Zn-SOD, and cNOS significantly elevated and the total GSH and GSH/GSSG ratio significantly decreased in the olfactory bulb and hippocampus after the nano- and submicron-sized Fe{sub 2}O{sub 3} particle treatment (p < 0.05). The nano-sized Fe{sub 2}O{sub 3} generally induced greater alteration and more significant dose-effect response than the submicron-sized particle did. Some slight perturbation of monoamine neurotransmitters were found in the hippocampus after exposure to the two sizes of Fe{sub 2}O{sub 3} particle. The TEM image showed that some ultrastructural alterations in nerve cells, including neurodendron degeneration, membranous structure disruption and lysosome increase in the olfactory bulb, slight dilation in the rough endoplasmic reticulum and lysosome increase in the hippocampus were induced by the nano-sized Fe{sub 2}O{sub 3} treatment. In contrast, in the submicron-sized Fe{sub 2}O{sub 3} treated mice, slightly swollen mitochondria and some vacuoles were observed in the olfactory bulb and hippocampus, respectively. These results indicate that intranasal exposure of Fe{sub 2}O{sub 3} nanoparticles could induce more severe oxidative stress and nerve cell damage in the brain than the

  6. Fabrication and structural properties of AlN submicron periodic lateral polar structures and waveguides for UV-C applications

    Energy Technology Data Exchange (ETDEWEB)

    Alden, D. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany); Guo, W.; Kaess, F.; Bryan, I.; Reddy, P.; Hernandez-Balderrama, Luis H.; Franke, A.; Collazo, R.; Sitar, Z. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kirste, R.; Mita, S. [Adroit Materials, Inc., 2054 Kildaire Farm Rd., Suite 205, Cary, North Carolina 27518 (United States); Troha, T.; Zgonik, M. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Bagal, A.; Chang, C.-H. [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Hoffmann, A. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin (Germany)

    2016-06-27

    Periodically poled AlN thin films with submicron domain widths were fabricated for nonlinear applications in the UV-VIS region. A procedure utilizing metalorganic chemical vapor deposition growth of AlN in combination with laser interference lithography was developed for making a nanoscale lateral polarity structure (LPS) with domain size down to 600 nm. The Al-polar and N-polar domains were identified by wet etching the periodic LPS in a potassium hydroxide solution and subsequent scanning electron microscopy (SEM) characterization. Fully coalesced and well-defined vertical interfaces between the adjacent domains were established by cross-sectional SEM. AlN LPSs were mechanically polished and surface roughness with a root mean square value of ∼10 nm over a 90 μm × 90 μm area was achieved. 3.8 μm wide and 650 nm thick AlN LPS waveguides were fabricated. The achieved domain sizes, surface roughness, and waveguides are suitable for second harmonic generation in the UVC spectrum.

  7. Entrapment of dye molecules within submicron silver particles

    Energy Technology Data Exchange (ETDEWEB)

    Yosef, Itzik; Avnir, David, E-mail: david@chem.ch.huji.ac.il [Hebrew University of Jerusalem, Institute of Chemistry (Israel)

    2011-09-15

    We describe a method for the preparation of metal-organic composites submicron particles. Specifically, the preparation of silver particle-clusters 150-200 nm in size, doped with an organic dye Congo-red, is reported. The use of sodium citrate coupled with sodium hypophosphite facilitated the formation of these particle-clusters, which were fully characterized by TEM analysis, Zeta potential and size measurements, scanning electron microscopy, UV-Vis measurements, and thermogravimetric analysis. The latter reveals a catalytic action of the metal on the thermal oxidative decomposition of the entrapped dye. The use of these particles to obtain dense thin metallic films was demonstrated by the coating of ITO glass.

  8. Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils

    Science.gov (United States)

    Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu

    2014-01-01

    The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...

  9. Molybdenum-gold proximity bilayers as transition edge sensors for microcalorimeters and bolometers

    International Nuclear Information System (INIS)

    Chen, T.C.; Bier, A.; DiCamillo, B.; Finkbeiner, F. M.

    1999-01-01

    Mo/Au proximity bilayers as transition edge sensors (TESs) are promising candidates for low-temperature thermometry. The transition temperature of the bilayers can be easily tuned between 50 and 600 mK, yielding sensors which can be used in a variety of calorimetric and bolometric applications. With phase transition widths of less than 1 mK, Mo/Au TESs show very high temperature sensitivity (d(logR)/d(logT)∼2500). Also, Mo/Au TESs show improved thermal and chemical stability compared to most other bilayer configurations. Fabrication issues and detector performance of Mo/Au TESs on Si 3 N 4 membranes are discussed. (author)

  10. A criterion to identify the equilibration time in lipid bilayer simulations

    Directory of Open Access Journals (Sweden)

    Rodolfo D. Porasso

    2012-11-01

    Full Text Available With the aim of establishing a criterion for identifying when a lipid bilayer has reached steady state using the molecular dynamics simulation technique, lipid bilayers of different composition in their liquid crystalline phase were simulated in aqueous solution in presence of CaCl_2 as electrolyte, at different concentration levels. In this regard, we used two different lipid bilayer systems: one composed by 288 DPPC (DiPalmitoylPhosphatidylCholine and another constituted by 288 DPPS (DiPalmitoylPhosphatidylSerine. In this sense, for both type of lipid bilayers, we have studied the temporal evolution of some lipids properties, such as the surface area per lipid, the deuterium order parameter, the lipid hydration and the lipid-calcium coordination. From their analysis, it became evident how each property has a different time to achieve equilibrium. The following order was found, from faster property to slower property: coordination of ions $approx$ deuterium order parameter > area per lipid $approx$ hydration. Consequently, when the hydration of lipids or the mean area per lipid are stable, we can ensure that the lipid membrane has reached the steady state.

  11. Electrically Controllable Magnetism in Twisted Bilayer Graphene.

    Science.gov (United States)

    Gonzalez-Arraga, Luis A; Lado, J L; Guinea, Francisco; San-Jose, Pablo

    2017-09-08

    Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.

  12. Superhard behaviour, low residual stress, and unique structure in diamond-like carbon films by simple bilayer approach

    International Nuclear Information System (INIS)

    Dwivedi, Neeraj; Kumar, Sushil; Malik, Hitendra K.

    2012-01-01

    Simple bilayer approach is proposed for synthesizing hard and superhard diamond-like carbon (DLC) coatings with reduced residual stress. For this, M/DLC bilayer (M = Ti and Cu) structures are grown using hybrid system involving radio frequency (RF)-sputtering and RF-plasma enhanced chemical vapor deposition techniques. Ti/DLC bilayer deposited at negative self bias of 100 V shows superhard behaviour with hardness (H) as 49 GPa. Cu/DLC bilayer grown at self bias of 100 V exhibits hard behaviour with H as 22.8 GPa. The hardness of Ti/DLC (Cu/DLC) bilayer gets changed from superhard (hard) to hard (moderate hard) regime, when the self bias is raised to 300 V. Residual stress in Ti/DLC (Cu/DLC) bilayer is found to be significantly low that varies in the range of 1 GPa-1.65 GPa (0.8 GPa-1.6 GPa). The microstructure and morphology are studied by Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). SEM and AFM pictures reveal the creation of nanostructured features in the deposited bilayers. Raman, SEM, and AFM analyses are correlated with the nano-mechanical properties. Owing to excellent nano-mechanical properties, these bilayers can find their direct industrial applications as hard and protective coatings.

  13. Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling.

    Science.gov (United States)

    Richards, Mark J; Daniel, Susan

    2017-02-07

    The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.

  14. Asymmetric intermixing in Co/Ti bilayer

    International Nuclear Information System (INIS)

    Suele, P.; Kotis, L.; Toth, L.; Menyhard, M.; Egelhoff, W.F.

    2008-01-01

    Recently we have studied the ion mixing of mass-anisotropic bilayer and found strong asymmetry depending on the succession of the layers [P. Suele, M. Menyhard, L. Kotis, J. Labar, W.F. Egelhoff Jr., J. Appl. Phys. 101 (2007) 043502]. The finding was explained by the mass difference of the constituents. To check the validity of explanation we studied the interface broadening of Co/Ti and Ti/Co bilayers due to low-energy ion bombardment. We have applied Auger electron spectroscopy depth profiling and molecular dynamics simulation to determine the intermixing. Since the Co/Ti system is nearly mass isotropic the ballistic intermixing mechanism can be ruled out and no asymmetry is expected. In contrary to the expectation both methods showed asymmetry of intermixing at bombardment of 2 keV ion energy. The asymmetry vanishes progressively with decreasing ion energy. We suggest that atomic size-anisotropy could play some role in the enhancement of interdiffusion of Co in Ti

  15. Spontaneous bending of pre-stretched bilayers.

    Science.gov (United States)

    DeSimone, Antonio

    2018-01-01

    We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.

  16. Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers

    International Nuclear Information System (INIS)

    Peng, Z.Y.; Simplaceanu, V.; Dowd, S.R.; Ho, C.

    1989-01-01

    Nuclear spin-lattice relaxation both in the rotating frame and in the laboratory frame is used to investigate the slow and fast molecular motions of phospholipids in oriented bilayers in the liquid crystalline phase. The bilayers are prepared from a perdeuterated phospholipid labeled with a pair of 19 F atoms at the 7 position of the 2-sn acyl chain. Phospholipid-cholesterol or phospholipid-gramicidin interactions are characterized by measuring the relaxation rates as a function of the bilayer orientation, the locking field, and the temperature. These studies show that cholesterol or gramicidin can specifically enhance the relaxation due to slow motions in phospholipid bilayers with correlation times τ s longer than 10 -8 sec. The perturbations of the geometry of the slow motions induced by cholesterol are qualitatively different from those induced by gramicidin. In contrast, the presence of cholesterol or gramicidin slightly suppresses the fast motions with correlation times τ f = 10 -9 to 10 -10 sec without significantly affecting their geometry. Weak locking-field and temperature dependences are observed for both pure lipid bilayers and bilayers containing either cholesterol or gramicidin, suggesting that the motions of phospholipid acyl chains may have dispersed correlation times

  17. Solid oxide fuel cells with bi-layered electrolyte structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, B.C. V6T 1W5 (Canada)

    2008-01-10

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 {mu}m SSZ and 4 {mu}m SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm{sup -2} at 650 C and 0.85 W cm{sup -2} at 700 C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R{sub el}) and electrode polarization resistance (R{sub p,a+c}) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O{sub 2-x} during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R{sub el} value (0.32 {omega} cm{sup 2}) at 650 C, which is almost one order of magnitude higher than the calculated value. (author)

  18. Spin glass transition in a thin-film NiO/permalloy bilayer

    Science.gov (United States)

    Ma, Tianyu; Urazhdin, Sergei

    2018-02-01

    We experimentally study magnetization aging in a thin-film NiO/permalloy bilayer. Aging characteristics are nearly independent of temperature below the exchange bias blocking temperature TB, but rapidly vary above it. The dependence on the magnetic history qualitatively changes across TB. The observed behaviors are consistent with the spin glass transition at TB, with significant implications for magnetism and magnetoelectronic phenomena in antiferromagnet/ferromagnet bilayers.

  19. Breaking Frontiers: Submicron Structures in Physics and Biology - 52 Zakopane School of Physics

    International Nuclear Information System (INIS)

    2008-01-01

    The 52 Zakopane School of Physics held in Zakopane from 19 to 24 May 2008. The main task of the symposium was to present the newest results of research in field of submicron structures in physics, biology and medicine. Some new technologies as well as their applications are also presented

  20. Breaking Frontiers: Submicron Structures in Physics and Biology - 52 Zakopane School of Physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The 52 Zakopane School of Physics held in Zakopane from 19 to 24 May 2008. The main task of the symposium was to present the newest results of research in field of submicron structures in physics, biology and medicine. Some new technologies as well as their applications are also presented.

  1. Enhanced exchange bias in MnN/CoFe bilayers after high-temperature annealing

    Science.gov (United States)

    Dunz, M.; Schmalhorst, J.; Meinert, M.

    2018-05-01

    We report an exchange bias of more than 2700 Oe at room temperature in MnN/CoFe bilayers after high-temperature annealing. We studied the dependence of exchange bias on the annealing temperature for different MnN thicknesses in detail and found that samples with tMnN > 32nm show an increase of exchange bias for annealing temperatures higher than TA = 400 °C. Maximum exchange bias values exceeding 2000 Oe with reasonably small coercive fields around 600 Oe are achieved for tMnN = 42, 48 nm. The median blocking temperature of those systems is determined to be 180 °C after initial annealing at TA = 525 °C. X-ray diffraction measurements and Auger depth profiling show that the large increase of exchange bias after high-temperature annealing is accompanied by strong nitrogen diffusion into the Ta buffer layer of the stacks.

  2. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Khan, Muhammad Shuja; Dosoky, Noura Sayed; Patel, Darayas; Weimer, Jeffrey; Williams, John Dalton

    2017-07-05

    Supported lipid bilayers (SLBs) are widely used in biophysical research to probe the functionality of biological membranes and to provide diagnoses in high throughput drug screening. Formation of SLBs at below phase transition temperature ( Tm ) has applications in nano-medicine research where low temperature profiles are required. Herein, we report the successful production of SLBs at above-as well as below-the Tm of the lipids in an anisotropically etched, silicon-based micro-cavity. The Si-based cavity walls exhibit controlled temperature which assist in the quick and stable formation of lipid bilayer membranes. Fusion of large unilamellar vesicles was monitored in real time in an aqueous environment inside the Si cavity using atomic force microscopy (AFM), and the lateral organization of the lipid molecules was characterized until the formation of the SLBs. The stability of SLBs produced was also characterized by recording the electrical resistance and the capacitance using electrochemical impedance spectroscopy (EIS). Analysis was done in the frequency regime of 10 -2 -10⁵ Hz at a signal voltage of 100 mV and giga-ohm sealed impedance was obtained continuously over four days. Finally, the cantilever tip in AFM was utilized to estimate the bilayer thickness and to calculate the rupture force at the interface of the tip and the SLB. We anticipate that a silicon-based, micron-sized cavity has the potential to produce highly-stable SLBs below their Tm . The membranes inside the Si cavity could last for several days and allow robust characterization using AFM or EIS. This could be an excellent platform for nanomedicine experiments that require low operating temperatures.

  3. Single-component supported lipid bilayers probed using broadband nonlinear optics.

    Science.gov (United States)

    Olenick, Laura L; Chase, Hilary M; Fu, Li; Zhang, Yun; McGeachy, Alicia C; Dogangun, Merve; Walter, Stephanie R; Wang, Hong-Fei; Geiger, Franz M

    2018-01-31

    Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm -1 , which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm -1 and another at ∼2880 cm -1 . The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H 2 O-D 2 O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.

  4. Lipid Bilayer Formation on Organic Electronic Materials

    KAUST Repository

    Zhang, Yi; Wustoni, Shofarul; Savva, Achilleas; Giovannitti, Alexander; McCulloch, Iain; Inal, Sahika

    2018-01-01

    The lipid bilayer is the elemental structure of cell membrane, forming a stable barrier between the interior and exterior of the cell while hosting membrane proteins that enable selective transport of biologically important compounds and cellular

  5. Photolithographic Polymerization of Diacetylene-Containing Phospholipid Bilayers Studied by Multimode Atomic Force Microscopy

    NARCIS (Netherlands)

    Morigaki, Kenichi; Schönherr, Holger; Frank, Curtis W.; Knoll, Wolfgang

    2003-01-01

    Photopolymerization of the diacetylene-containing phospholipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (1) in substrate-supported planar lipid bilayers (SPBs) has been studied by using multimode atomic force microscopy (AFM). Monolayers and bilayers of 1 have been transferred onto

  6. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  7. Self-assembled bilayers based on organothiol and organotrimethoxysilane on zinc platform

    International Nuclear Information System (INIS)

    Berger, Francois; Delhalle, Joseph; Mekhalif, Zineb

    2010-01-01

    This study describes the formation of a bilayer system developed on electrodeposited zinc. In a first step, a monolayer of 11-mercapto-1-undecanol is grafted on zinc, optimization of the conditions of elaboration have been performed. In a second step, organotrimethoxysilane have been grafted on the zinc modified with the hydroxyl terminated self-assembled monolayer (SAM) to finalize the bilayer system. X-ray photoelectron spectroscopy (XPS), polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS) and contact angle measurements are used to characterize each step of modification. An electrochemical evaluation of the different created systems is carried out by linear sweep voltammetry (LSV), cyclic voltammetry (CV) and scanning vibrating electrode technique (SVET). The impact of the modification of zinc using SAM and self-assembled bilayer (SAB) on the electrochemical activity of the surface is highlighted.

  8. Grain orientation and strain measurements in sub-micron wide passivated individual aluminum test structures

    International Nuclear Information System (INIS)

    Tamura, N.; Valek, B.C.; Spolenak, R.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Brown, W.L.; Marieb, T.; Bravman, J.C.; Batterman, B.W.; Patel, J.R.

    2001-01-01

    An X-ray microdiffraction dedicated beamline, combining white and monochromatic beam capabilities, has been built at the Advanced Light Source. The purpose of this beamline is to address the myriad of problems in Materials Science and Physics that require submicron x-ray beams for structural characterization. Many such problems are found in the general area of thin films and nano-materials. For instance, the ability to characterize the orientation and strain state in individual grains of thin films allows us to measure structural changes at a very local level. These microstructural changes are influenced heavily by such parameters as deposition conditions and subsequent treatment. The accurate measurement of strain gradients at the micron and sub-micron level finds many applications ranging from the strain state under nano-indenters to gradients at crack tips. Undoubtedly many other applications will unfold in the future as we gain experience with the capabilities and limitations of this instrument. We have applied this technique to measure grain orientation and residual stress in single grains of pure Al interconnect lines and preliminary results on post-electromigration test experiments are presented. It is shown that measurements with this instrument can be used to resolve the complete stress tensor (6 components) in a submicron volume inside a single grain of Al under a passivation layer with an overall precision of about 20 MPa. The microstructure of passivated lines appears to be complex, with grains divided into identifiable subgrains and noticeable local variations of both tensile/compressive and shear stresses within single grains

  9. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.

    Science.gov (United States)

    Saito, Hiroaki; Shinoda, Wataru

    2011-12-29

    Water permeability of two different lipid bilayers of dipalmitoylphosphatidylcholine (DPPC) and palmitoylsphingomyelin (PSM) in the absence and presence of cholesterol (0-50 mol %) have been studied by molecular dynamics simulations to elucidate the molecular mechanism of the reduction in water leakage across the membranes by the addition of cholesterol. An enhanced free energy barrier was observed in these membranes with increased cholesterol concentration, and this was explained by the reduced cavity density around the cholesterol in the hydrophobic membrane core. There was an increase of trans conformers in the hydrophobic lipid chains adjacent to the cholesterol, which reduced the cavity density. The enhanced free energy barrier was found to be the main reason to reduce the water permeability with increased cholesterol concentration. At low cholesterol concentrations the PSM bilayer exhibited a higher free energy barrier than the DPPC bilayer for water permeation, while at greater than 30 mol % of cholesterol the difference became minor. This tendency for the PSM and DPPC bilayers to resemble each other at higher cholesterol concentrations was similar to commonly observed trends in several structural properties, such as order parameters, cross-sectional area per molecule, and cavity density profiles in the hydrophobic regions of bilayer membranes. These results demonstrate that DPPC and PSM bilayers with high cholesterol contents possess similar physical properties, which suggests that the solubility of cholesterol in these lipid bilayers has importance for an understanding of multicomponent lipid membranes with cholesterol. © 2011 American Chemical Society

  10. Correlating bilayer tablet delamination tendencies to micro-environmental thermodynamic conditions during pan coating.

    Science.gov (United States)

    Zacour, Brian M; Pandey, Preetanshu; Subramanian, Ganeshkumar; Gao, Julia Z; Nikfar, Faranak

    2014-06-01

    The objective of this study was to determine the impact that the micro-environment, as measured by PyroButton data loggers, experienced by tablets during the pan coating unit operation had on the layer adhesion of bilayer tablets in open storage conditions. A full factorial design of experiments (DOE) with three center points was conducted to study the impact of final tablet hardness, film coating spray rate and film coating exhaust temperature on the delamination tendencies of bilayer tablets. PyroButton data loggers were placed (fixed) at various locations in a pan coater and were also allowed to freely move with the tablet bed to measure the micro-environmental temperature and humidity conditions of the tablet bed. The variance in the measured micro-environment via PyroButton data loggers accounted for 75% of the variance in the delamination tendencies of bilayer tablets on storage (R(2 )= 0.75). A survival analysis suggested that tablet hardness and coating spray rate significantly impacted the delamination tendencies of the bilayer tablets under open storage conditions. The coating exhaust temperature did not show good correlation with the tablets' propensity to crack indicating that it was not representative of the coating micro-environment. Models created using data obtained from the PyroButton data loggers outperformed models created using primary DOE factors in the prediction of bilayer tablet strength, especially upon equipment or scale transfers. The coating micro-environment experienced by tablets during the pan coating unit operation significantly impacts the strength of the bilayer interface of tablets on storage.

  11. Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation

    Directory of Open Access Journals (Sweden)

    A. V. Svalov

    2013-09-01

    Full Text Available FeNi/FeMn bilayers were grown in a magnetic field and subjected to heat treatments at temperatures of 50 to 350 °C in vacuum or in a gas mixture containing oxygen. In the as-deposited state, the hysteresis loop of 30 nm FeNi layer was shifted. Low temperature annealing leads to a decrease of the exchange bias field. Heat treatments at higher temperatures in gas mixture result in partial oxidation of 20 nm thick FeMn layer leading to a nonlinear dependence of coercivity and a switching field of FeNi layer on annealing temperature. The maximum of coercivity and switching field were observed after annealing at 300 °C.

  12. Fluid bilayer structure determination: Joint refinement in composition space using X-ray and neutron diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    White, S.H. [Univ. of California, Irvine, CA (United States); Wiener, M.C. [Univ. of California, San Francisco, CA (United States)

    1994-12-31

    Experimentally-determined structural models of fluid lipid bilayers are essential for verifying molecular dynamics simulations of bilayers and for understanding the structural consequences of peptide interactions. The extreme thermal motion of bilayers precludes the possibility of atomic-level structural models. Defining {open_quote}the structure{close_quote} of a bilayer as the time-averaged transbilayer distribution of the water and the principal lipid structural groups such as the carbonyls and double-bonds (quasimolecular fragments), one can represent the bilayer structure as a sum of Gaussian functions referred to collectively as the quasimolecular structure. One method of determining the structure is by neutron diffraction combined with exhaustive specific deuteration. This method is impractical because of the expense of the chemical syntheses and the limited amount of neutron beam time currently available. We have therefore developed the composition space refinement method for combining X-ray and minimal neutron diffraction data to arrive at remarkably detailed and accurate structures of fluid bilayers. The composition space representation of the bilayer describes the probability of occupancy per unit length across the width of the bilayer of each quasimolecular component and permits the joint refinement of X-ray and neutron lamellar diffraction data by means of a single quasimolecular structure that is fitted simultaneously to both data sets. Scaling of each component by the appropriate neutron or X-ray scattering length maps the composition-space profile to the appropriate scattering length space for comparison to experimental data. The difficulty with the method is that fluid bilayer structures are generally only marginally determined by the experimental data. This means that the space of possible solutions must be extensively explored in conjunction with a thorough analysis of errors.

  13. Fluid bilayer structure determination: Joint refinement in composition space using X-ray and neutron diffraction data

    International Nuclear Information System (INIS)

    White, S.H.; Wiener, M.C.

    1994-01-01

    Experimentally-determined structural models of fluid lipid bilayers are essential for verifying molecular dynamics simulations of bilayers and for understanding the structural consequences of peptide interactions. The extreme thermal motion of bilayers precludes the possibility of atomic-level structural models. Defining open-quote the structure close-quote of a bilayer as the time-averaged transbilayer distribution of the water and the principal lipid structural groups such as the carbonyls and double-bonds (quasimolecular fragments), one can represent the bilayer structure as a sum of Gaussian functions referred to collectively as the quasimolecular structure. One method of determining the structure is by neutron diffraction combined with exhaustive specific deuteration. This method is impractical because of the expense of the chemical syntheses and the limited amount of neutron beam time currently available. We have therefore developed the composition space refinement method for combining X-ray and minimal neutron diffraction data to arrive at remarkably detailed and accurate structures of fluid bilayers. The composition space representation of the bilayer describes the probability of occupancy per unit length across the width of the bilayer of each quasimolecular component and permits the joint refinement of X-ray and neutron lamellar diffraction data by means of a single quasimolecular structure that is fitted simultaneously to both data sets. Scaling of each component by the appropriate neutron or X-ray scattering length maps the composition-space profile to the appropriate scattering length space for comparison to experimental data. The difficulty with the method is that fluid bilayer structures are generally only marginally determined by the experimental data. This means that the space of possible solutions must be extensively explored in conjunction with a thorough analysis of errors

  14. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    Science.gov (United States)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  15. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts

    International Nuclear Information System (INIS)

    Gille, G.; Szesny, B.; Dreyer, K.; Berg, H. van den; Schidt, J.; Gestrich, T.; Leitner, G.

    2001-01-01

    Although round tools as carbide drills and mills are dominating by far the application of submicron and ultrafine hardmetals the consumption for PCB microdrills had the strongest growth rate over the last decade. This paper deals with the latest developments of ultrafine hardmetals and their application for PCB microdrills and metal cutting inserts. Based on optimized processing and properties such as hardness, hot hardness, toughness, strength and wear resistance a new generation of microdrills is presented. In particular the failure probability of the microdrills could be considerably reduced and the number of drilling strokes was nearly doubled. Combining improved pressing behavior with proper doping and optimized processing new applications of submicron and ultrafine hardmetals could be obtained by using complex shaped metal cutting inserts. Apart from these application examples the paper gives some insight into fundamental investigations an sintering and properties of ultrafine hardmetals and shows in particular the influence of milling, doping and sintering an the properties of ultrafine hardmetals. The paper also presents a new ultrafine WC grade showing a 0.1 μm WC intercept of a sintered WC - 10 wt % Co structure and a hardness of HV 30 = 2050 for a 1 wt % mixed VC/Cr 3 C 2 doping. (author)

  16. Design and characterization of submicron formulation for a poorly soluble drug: the effect of Vitamin E TPGS and other solubilizers on skin permeability enhancement.

    Science.gov (United States)

    Ghosh, Indrajit; Michniak-Kohn, Bozena

    2012-09-15

    In transdermal drug delivery systems (TDDS), it is a challenge to achieve stable and prolonged high permeation rates across the skin since the concentrations of the drug dissolved in the matrix have to be high in order to maintain zero order release kinetics. Several attempts have been reported to improve the permeability of poorly soluble drug compounds using supersaturated systems, however, due to thermodynamic challenges, there was a high tendency for the drug to nucleate immediately after formulating or even during storage. The present study focuses on the efficiency of drug crystals at the submicron/nano range in presence of different solubilizers to improve the permeation rate. Effect of several solubilizers, e.g. Pluronic F-127, Vitamin E TPGS, propylene glycol were studied on the submicron suspension systems of ibuprofen as a model drug. Various stabilizers such as hydroxylpropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were examined to evaluate their crystal inhibitory effects on particle growth of the drug compound at submicron range. The overall permeation enhancement process through the skin seems to be influenced by the presence of solubilizers and also the presence of submicron drug crystal. The most promising stable formulation was developed with Vitamin E TPGS+HPMC submicron suspension, which produced higher permeation rate compared to other vehicles. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. The longitudinal optical conductivity in bilayer graphene and other two-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H., E-mail: chyang@nuist.edu.cn [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Ao, Z.M., E-mail: zhimin.ao@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney ,PO Box 123, Broadway, Sydney, NSW 2007 (Australia); Wei, X.F. [West Anhui University, Luan 237012 (China); Jiang, J.J. [Department of Physics, Sanjing College, Nanjing 210012 (China)

    2015-01-15

    The longitudinal optical conductivity in bilayer graphene is calculated using the dielectric function by defining the density operator theoretically, while the effect of the broadening width determined by the scattering sources on the optical conductivity is also investigated. Some features, such as chirality, energy dispersion and density of state (DOS) in bilayer graphene, are similar to those in monolayer graphene and a traditional two-dimensional electron gas (2DEG). Therefore, in this paper, the bilayer graphene optical conductivity is compared with the results in these two systems. The analytical and numerical results show that the optical conductivity per graphene layer is almost a constant and close to e{sup 2}/(4ℏ), which agrees with the experimental results.

  18. L-tryptophan-induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence.

    Science.gov (United States)

    Sarangi, Nirod Kumar; Patnaik, Archita

    2012-12-21

    Molecular orientation-dependent electron transport across supported 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers (SLBs) on semiconducting indium tin oxide (ITO) is reported with an aim towards potential nanobiotechnological applications. A bifunctional strategy is adopted to form symmetric and asymmetric bilayers of DPPC that interact with L-tryptophan, and are analyzed by surface manometry and atomic force microscopy. Polarization-dependent real-time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) analysis of these SLBs reveals electrostatic, hydrogen-bonding, and cation-π interactions between the polar head groups of the lipid and the indole side chains. Consequently, a molecular tilt arises from the effective interface dipole, facilitating electron transport across the ITO-anchored SLBs in the presence of an internal Fe(CN)(6)(4-/3-) redox probe. The incorporation of tryptophan enhances the voltammetric features of the SLBs. The estimated electron-transfer rate constants for symmetric and asymmetric bilayers (k(s) = 2.0×10(-2) and 2.8×10(-2) s(-1)) across the two-dimensional (2D) ordered DPPC/tryptophan SLBs are higher compared to pure DPPC SLBs (k(s) = 3.2×10(-3) and 3.9×10(-3) s(-1)). In addition, they are molecular tilt-dependent, as it is the case with the standard apparent rate constants k(app)(0), estimated from electrochemical impedance spectroscopy and bipotentiostatic experiments with a Pt ultramicroelectrode. Lower magnitudes of k(s) and k(app)(0) imply that electrochemical reactions across the ITO-SLB electrodes are kinetically limited and consequently governed by electron tunneling across the SLBs. Standard theoretical rate constants (k(th)(0)) accrued upon electron tunneling comply with the potential-independent electron-tunneling coefficient β = 0.15 Å(-1). Insulator-semiconductor transitions moving from a liquid-expanded to a condensed 2D-phase state of the SLBs are noted, adding a new dimension

  19. Submicron InP DHBT technology for high-speed high-swing mixed-signal ICs

    DEFF Research Database (Denmark)

    Godin, Jean; Nodjiadjim, V.; Riet, Muriel

    2008-01-01

    We report on the development of a submicron InP DHBT technology, optimized for the fabrication of 50-GHz-clock mixed signal ICs. In-depth study of device geometry and structure has allowed to get the needed performances and yield. Special attention has been paid to critical thermal behavior. Vari...... applications of interest....

  20. Tunable electric properties of bilayer InSe with different interlayer distances and external electric field

    Science.gov (United States)

    Shang, Jimin; Pan, Longfei; Wang, Xiaoting; Li, Jingbo; Wei, Zhongming

    2018-03-01

    Using density functional theory we explore the band structure of bilayer Indium selenide (InSe), and we find that the van der Waals interaction has significant effects on the electric and optical properties. We then explore the tuning electronic properties by different interlayer distances and by an external vertical electric field. Our results demonstrate that the band gaps of bilayer InSe can be continuously tuned by different interlayer coupling. With decreasing interlayer distances, the tunable band gaps of bilayer decrease linearly, owing to the enhancement of the interlayer interaction. Additionally, the band structure of bilayer InSe under external vertical fields is discussed. The presence of a small external electric field can make a new spatial distribution of electron-hole pairs. A well separation based on the electrons and holes, localized in different layers can be obtained using this easy method. These properties of bilayer InSe indicates potential applications in designing new optoelectronic devices.