WorldWideScience

Sample records for big sky program

  1. Evolution of the Air Toxics under the Big Sky Program

    Science.gov (United States)

    Marra, Nancy; Vanek, Diana; Hester, Carolyn; Holian, Andrij; Ward, Tony; Adams, Earle; Knuth, Randy

    2011-01-01

    As a yearlong exploration of air quality and its relation to respiratory health, the "Air Toxics Under the Big Sky" program offers opportunities for students to learn and apply science process skills through self-designed inquiry-based research projects conducted within their communities. The program follows a systematic scope and sequence…

  2. The Big Sky inside

    Science.gov (United States)

    Adams, Earle; Ward, Tony J.; Vanek, Diana; Marra, Nancy; Hester, Carolyn; Knuth, Randy; Spangler, Todd; Jones, David; Henthorn, Melissa; Hammill, Brock; Smith, Paul; Salisbury, Rob; Reckin, Gene; Boulafentis, Johna

    2009-01-01

    The University of Montana (UM)-Missoula has implemented a problem-based program in which students perform scientific research focused on indoor air pollution. The Air Toxics Under the Big Sky program (Jones et al. 2007; Adams et al. 2008; Ward et al. 2008) provides a community-based framework for understanding the complex relationship between poor…

  3. Thermography hogging the limelight at Big Sky

    Energy Technology Data Exchange (ETDEWEB)

    Plastow, C. [Fluke Electronics Canada, Mississauga, ON (Canada)

    2010-02-15

    The high levels of humidity and ammonia found at hog farms can lead to premature corrosion of electrical systems and create potential hazards, such as electrical fires. Big Sky Farms in Saskatchewan has performed on-site inspections at its 44 farms and 16 feed mills using handheld thermography technology from Fluke Electronics. Ti thermal imaging units save time and simplify inspections. The units could be used for everything, from checking out the bearings at the feed mills to electrical circuits and relays. The Ti25 is affordable and has the right features for a preventative maintenance program. Operators of Big Sky Farms use the Ti25 to inspect all circuit breakers of 600 volts or lower as well as transformers where corrosion often causes connections to break off. The units are used to look at bearings, do scanning and thermal imaging on motors. To date, the Ti25 has detected and highlighted 5 or 6 problems on transformers alone that could have been major issues. At one site, the Ti25 indicated that all 30 circuit breakers had loose connections and were overeating. Big Sky Farms fixed the problem right away before a disaster happened. In addition to reducing inspection times, the Ti25 can record all measurements and keep a record of all the readings for downloading. 2 figs.

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  5. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  6. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  7. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  8. "Air Toxics under the Big Sky": Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest

    Science.gov (United States)

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    "Air Toxics Under the Big Sky" is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1)…

  9. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  10. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    Science.gov (United States)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  11. 75 FR 3948 - Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc...

    Science.gov (United States)

    2010-01-25

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Big Sky Energy Corp., Biomedical Waste Systems, Inc., Biometrics Security Technology, Inc., Biosys, Inc., Bolder Technologies Corp., Boyds Wheels, Inc... securities of Biometrics Security Technology, Inc. because it has not filed any periodic reports since...

  12. Dark Skies Awareness Programs for the International Year of Astronomy

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2008-12-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our environment in terms of ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource" is a cornerstone project for the U.S. International Year of Astronomy (IYA) program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. These programs focus on citizen-scientist sky-brightness monitoring programs, a planetarium show, podcasting, social networking, a digital photography contest, the Good Neighbor Lighting Program, Earth Hour, National Dark Skies Week, a traveling exhibit, a video tutorial, Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy, and a Quiet Skies program. Many similar programs are available internationally through the "Dark Skies Awareness" Global Cornerstone Project. Working groups for both the national and international dark skies cornerstone projects are being chaired by the National Optical Astronomy Observatory (NOAO). The presenters from NOAO will provide the "know-how" and the means for session participants to become community advocates in promoting Dark Skies programs as public events at their home institutions. Participants will be able to get information on jump-starting their education programs through the use of well-developed instructional materials and kits. For more information, visit http://astronomy2009.us/darkskies/ and http://www.darkskiesawareness.org/.

  13. Stalin's Big Fleet Program

    National Research Council Canada - National Science Library

    Mauner, Milan

    2002-01-01

    Although Dr. Milan Hauner's study 'Stalin's Big Fleet program' has focused primarily on the formation of Big Fleets during the Tsarist and Soviet periods of Russia's naval history, there are important lessons...

  14. Educating for the Preservation of Dark Skies

    Science.gov (United States)

    Preston, Sandra Lee; Cianciolo, Frank; Wetzel, Marc; Finkelstein, Keely; Wren, William; Nance, Craig

    2015-08-01

    The stars at night really are big and bright deep in the heart of Texas at the McDonald Observatory near Fort Davis, Texas. Each year 80,000 visitors from all over the world make the pilgrimage to the Observatory to attend one of the three-times-a-week star parties. Many experience, for the first time, the humbling, splendor of a truly dark night sky. Over the last several years, the Observatory has experienced dramatic increases in visitation demonstrating the public’s appetite for science education, in general, and interest in the night sky, in particular. This increasing interest in astronomy is, ironically, occurring at a time when most of humanity’s skies are becoming increasingly light-polluted frustrating this natural interest. Dark skies and knowledgeable education and outreach staff are an important resource in maintaining the public’s interest in astronomy, support for astronomical research, and local tourism.This year Observatory educators were inspired by the observance of the International Year of Light to promote healthy outdoor lighting through its popular Astronomy Day distance learning program. This program reaches tens of thousands of K-12 students in Texas and other states with a message of how they can take action to preserve dark skies. As well, more than a thousand Boy Scouts visiting during the summer months receive a special program, which includes activities focusing on good lighting practices, thereby earning them credits toward an astronomy badge.The Observatory also offers a half-a-dozen K-12 teacher professional development workshops onsite each year, which provide about 90 teachers with dark skies information, best-practice lighting demonstrations, and red flashlights. Multi-year workshops for National Park and State of Texas Parks personnel are offered on dark sky preservation and sky interpretation at McDonald and a Dark Skies fund for retrofitting lights in the surrounding area has been established. The Observatory also uses

  15. Dark Skies Awareness Programs for the U.S. International Year of Astronomy

    Science.gov (United States)

    Walker, Constance E.; U. S. IYA Dark Skies Working Group

    2009-01-01

    The loss of a dark night sky as a natural resource is a growing concern. It impacts not only astronomical research, but also our ecology, health, safety, economics and energy conservation. For this reason, "Dark Skies are a Universal Resource” is one of seven primary themes of the U.S. International Year of Astronomy program in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved in a variety of dark skies-related programs. To reach this goal, activities have been developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking, Second Life) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize an event in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs, as well as RFI monitoring (e.g., GLOBE at Night and Quiet Skies) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., the Dark Skies Toolkit, Good Neighbor Lighting, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial). To deliver these programs, strategic networks have been established with astronomy clubs (ASP's Night Sky Network's astronomy clubs and the Astronomical League), science and nature centers (Astronomy from the Ground Up and the Association of Science and Technology), educational programs (Project ASTRO and GLOBE) and the International Dark-sky Association. The poster will describe the "know-how” and the means for people to become community advocates in promoting Dark Skies programs as public events at their home institutions. For more information, visit http://astronomy2009

  16. ``Dark Skies are a Universal Resource'' Programs Planned for the International Year of Astronomy

    Science.gov (United States)

    Walker, C. E.; Berglund, K.; Bueter, C.; Crelin, B.; Duriscoe, D.; Moore, C.; Gauthier, A.; Gay, P. L.; Foster, T.; Heatherly, S. A.; Maddalena, R.; Mann, T.; Patten, K.; Pompea, S. M.; Sparks, R.; Schaaf, F.; Simmons, M.; Smith, C.; Smith, M.; Tafreshi, B.

    2008-11-01

    In an effort to help more people appreciate the ongoing loss of a dark night sky for much of the world's population and to raise public knowledge about diverse impacts of excess artificial lighting on local environments, the International Year of Astronomy's Dark Skies Working Group has established six ``Dark Skies'' programs and six ``Dark Skies'' resources. The Dark Skies programs include GLOBE at Night (with Earth Hour), Astronomy Nights in the [National] Parks, Dark Skies Discovery Sites, Quiet Skies, Good Neighbor Lighting, and a digital photography contest. Resources include the light education toolkit, the ``Let There Be Night'' DVD and planetarium program, the 6-minute video, online interactions like Second Life, podcasts, and traveling exhibits. The programs and resources are summarized here, as they were in a poster for the June 2008 ASP/AAS conference. For more information on these programs and resources, visit http://astronomy2009.us/darkskies/.

  17. Big data from the sky: popular perceptions of private drones in Switzerland

    Directory of Open Access Journals (Sweden)

    F. Klauser

    2017-06-01

    Full Text Available Camera-fitted drones are now easily affordable for the public. The resulting extension of the vertical gaze raises a series of critical questions, ranging from the changing regimes of visibility and control that characterise today's world of big data from the sky to the novel opportunities, risks, and power dynamics hence implied. The paper addresses these issues empirically, focussing on the popular perception of commercial and hobby drones in Switzerland. This provides a deeper understanding of the driving forces and obstacles that shape current drone developments and highlights that the societal diffusion of private drones today transforms the very ways in which the aerial realm is lived and perceived, as a highly contested space of risks, opportunities, and power. This discussion is rooted in a research approach that places questions of power and (air-space at the centre when approaching the drone problematic.

  18. Dark Sky Education | CTIO

    Science.gov (United States)

    Calendar Activities NOAO-S EPO Programs CADIAS Astro Chile Hugo E. Schwarz Telescope Dark Sky Education ‹› You are here CTIO Home » Outreach » NOAO-S EPO Programs » Dark Sky Education Dark Sky Education Dark Sky Education (in progress) Is an EPO Program. It runs Globe at Night, an annual program to

  19. Promoting Dark Skies Awareness Programs Beyond the International Year of Astronomy 2009

    Science.gov (United States)

    Walker, Constance E.; Dark Skies Working Group

    2010-01-01

    The preservation of dark skies is a growing global concern, yet it is one of the easiest environmental problems people can address on local levels. For this reason, the goal of the International Year of Astronomy 2009 (IYA2009) Dark Skies Awareness Cornerstone Project is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs. These programs provide resources on light pollution for new technologies like a presence in Second Life and podcasts, for local thematic events at national parks and observatory open houses, for international thematic events like International Dark Skies Week and Earth Hour, for a program in the arts like an international photo contest, for global citizen-science programs that measure night sky brightness worldwide, and for educational materials like a kit with a light shielding demonstration. These programs have been successfully used around the world during IYA2009 to raise awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy. The poster will provide an update, take a look ahead at the project's sustainability, and describe how people can be involved in the future. Information about the programs is at www.darkskiesawareness.org.

  20. Dark Skies Awareness Programs for the International Year of Astronomy

    Science.gov (United States)

    Walker, Constance E.; US IYA Dark Skies Working Group

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's cultural and natural heritage. More than 1/5 of the world population, 2/3 of the United States population and 1/2 of the European Union population have already lost naked-eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The poster will provide an update, describe how people can continue to participate, and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  1. Can You See the Stars? Citizen-Science Programs to Measure Night Sky Brightness

    Science.gov (United States)

    Walker, Constance E.

    2009-05-01

    For the IYA2009 Dark Skies Awareness Cornerstone Project, partners in dark-sky, astronomy and environmental education are promoting three citizen-scientist programs that measure light pollution at local levels worldwide. These programs take the form of "star hunts", providing people with fun and direct ways to acquire heightened awareness about light pollution through first-hand observations of the night sky. Together the programs are spanning the entire IYA, namely: GLOBE at Night in March, Great World Wide Star Count in October, and How Many Stars during the rest of the year. Citizen-scientists - students, educators, amateur astronomers and the general public - measure the darkness of their local skies and contribute observations online to a world map. Anyone anywhere anytime can look within particular constellations for the faintest stars and match them to one of seven star maps. For more precise measurements, digital sky-brightness meters can be used. Measurements, along with the measurement location, time, and date, are submitted online, and within a few days to weeks a world map showing results is available. These measurements can be compared with data from previous years, as well as with satellite data, population densities, and electrical power-usage maps. Measurements are available online via Google Earth or other tools and as downloadable datasets. Data from multiple locations in one city or region are especially interesting, and can be used as the basis of a class project or science fair experiment, or even to inform the development of public policy. In the last few years these programs successfully conducted campaigns in which more than 35,000 observations were submitted from over 100 countries. The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For further information about these and other Dark Skies Awareness programs, please visit www.darkskiesawareness.org.

  2. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest.

    Science.gov (United States)

    Ward, Tony J; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path . Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  3. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students’ Science Skills and Interest

    Science.gov (United States)

    Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom. PMID:28286375

  4. Air Toxics Under the Big Sky: examining the effectiveness of authentic scientific research on high school students' science skills and interest

    Science.gov (United States)

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-04-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1) how the program affects student understanding of scientific inquiry and research and (2) how the open-inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  5. Building on the International Year of Astronomy: The Dark Skies Awareness Program

    Science.gov (United States)

    Walker, C. E.; Sparks, R. T.; Pompea, S. M.

    2010-08-01

    The International Year of Astronomy (IYA2009) offered opportunities to create exemplary educational programs in astronomy, such as those through the cornerstone project, Dark Skies Awareness (DSA). The preservation of dark skies is important for many reasons including astronomy, energy conservation, wildlife conservation, and even human health. Light pollution is a growing concern, yet it is one of the easiest global environmental problems citizen scientists can address on a local level. The Dark Skies workshop imparted the skills necessary for participants to lead activities at their home institution for conserving dark skies. Workshop participants experienced the hands-on activities, which are suitable for use in a variety of settings including museums, science centers, planetariums, schools, university outreach efforts, and astronomy club events. Participants were immersed in activities that illustrate proper lighting, light pollution's effects on wildlife, and how to measure the darkness of your skies. Several citizen science projects were highlighted, including GLOBE at Night, the Great World Wide Star Count, and How Many Stars. These programs enlist the help of students and the general public to collect data on the night sky conditions in their community and contribute to a worldwide database on light pollution. The data can be analyzed using various online tools. A CD of activities, a light shielding demonstration, a book, a two DVD set with a planetarium show, and many other resources are included in a Dark Skies Education Kit, which workshop participants received at the close of the workshop.

  6. Dark Skies are a Universal Resource: Programs Planned for the International Year of Astronomy

    Science.gov (United States)

    Walker, Constance E.; US IYA Dark Skies Working Group

    2008-05-01

    The dark night sky is a natural resource that is being lost by much of the world's population. This loss is a growing, serious issue that impacts not only astronomical research, but also human health, ecology, safety, economics and energy conservation. One of the themes of the US Node targeted for the International Year of Astronomy (IYA) is "Dark Skies are a Universal Resource". The goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved locally in a variety of dark skies-related events. To reach this goal, activities are being developed that: 1) Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking) 2) Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Teaching Sites, Astronomy Nights in the (National) Parks, Sidewalk Astronomy Nights) 3) Organize events in the arts (e.g., a photography contest) 4) Involve citizen-scientists in unaided-eye and digital-meter star counting programs (e.g., GLOBE at Night, "How Many Stars?” and the Great World Wide Star Count) and 5) Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security (e.g., The Great Switch Out, Earth Hour, National Dark Skies Week, traveling exhibits and a 6-minute video tutorial on lighting issues). To deliver these programs, strategic networks have been established with the ASP's Night Sky Network's astronomy clubs, Astronomy from the Ground Up's science and nature centers and the Project and Family ASTRO programs, as well as the International Dark-Sky Association, GLOBE and the Astronomical League, among others. The poster presentation will outline the activities being developed, the plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".

  7. Dark Skies Awareness Programs for the International Year of Astronomy: Involvement, Outcomes and Sustainability

    Science.gov (United States)

    Walker, Constance E.

    2010-01-01

    The preservation of dark skies is a growing global concern, yet it is one of the easiest environmental problems people can address on local levels. For this reason, the goal of the IYA Dark Skies Awareness Cornerstone Project is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs. These programs provide resources on light pollution for new technologies like a presence in Second Life and podcasts, for local thematic events at national parks and observatory open houses, for international thematic events like International Dark Skies Week and Earth Hour, for a program in the arts like an international photo contest, for global citizen-science programs that measure night sky brightness worldwide, and for educational materials like a kit with a light shielding demonstration. These programs have been successfully used around the world during IYA to raise awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy. The presentation will provide an update, take a look ahead at the project's sustainability, and describe how people can be involved in the future. Information about the programs is at www.darkskiesawareness.org.

  8. The Big Sky Model: A Regional Collaboration for Participatory Research on Environmental Health in the Rural West

    Science.gov (United States)

    Ward, Tony J.; Vanek, Diana; Marra, Nancy; Holian, Andrij; Adams, Earle; Jones, David; Knuth, Randy

    2010-01-01

    The case for inquiry-based, hands-on, meaningful science education continues to gain credence as an effective and appropriate pedagogical approach (Karukstis 2005; NSF 2000). An innovative community-based framework for science learning, hereinafter referred to as the Big Sky Model, successfully addresses these educational aims, guiding high school and tribal college students from rural areas of Montana and Idaho in their understanding of chemical, physical, and environmental health concepts. Students participate in classroom lessons and continue with systematic inquiry through actual field research to investigate a pressing, real-world issue: understanding the complex links between poor air quality and respiratory health outcomes. This article provides background information, outlines the procedure for implementing the model, and discusses its effectiveness as demonstrated through various evaluation tools. PMID:20428505

  9. Big Science

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-05-15

    Astronomy, like particle physics, has become Big Science where the demands of front line research can outstrip the science budgets of whole nations. Thus came into being the European Southern Observatory (ESO), founded in 1962 to provide European scientists with a major modern observatory to study the southern sky under optimal conditions.

  10. A Big Data Analytics Methodology Program in the Health Sector

    Science.gov (United States)

    Lawler, James; Joseph, Anthony; Howell-Barber, H.

    2016-01-01

    The benefits of Big Data Analytics are cited frequently in the literature. However, the difficulties of implementing Big Data Analytics can limit the number of organizational projects. In this study, the authors evaluate business, procedural and technical factors in the implementation of Big Data Analytics, applying a methodology program. Focusing…

  11. Fireballs in the Sky: An Augmented Reality Citizen Science Program

    Science.gov (United States)

    Day, Brian

    2017-01-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly augmented reality mobile app. Tens of thousands of people have downloaded the app world-wide and participated in the science of meteoritics. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000 by 36 megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million square kilometers. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  12. Fireballs in the Sky: an Augmented Reality Citizen Science Program

    Science.gov (United States)

    Day, B. H.; Bland, P.; Sayers, R.

    2017-12-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly augmented reality mobile app. Tens of thousands of people have downloaded the app world-wide and participated in the science of meteoritics. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000×36Megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million km^2. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  13. Big Surveys, Big Data Centres

    Science.gov (United States)

    Schade, D.

    2016-06-01

    Well-designed astronomical surveys are powerful and have consistently been keystones of scientific progress. The Byurakan Surveys using a Schmidt telescope with an objective prism produced a list of about 3000 UV-excess Markarian galaxies but these objects have stimulated an enormous amount of further study and appear in over 16,000 publications. The CFHT Legacy Surveys used a wide-field imager to cover thousands of square degrees and those surveys are mentioned in over 1100 publications since 2002. Both ground and space-based astronomy have been increasing their investments in survey work. Survey instrumentation strives toward fair samples and large sky coverage and therefore strives to produce massive datasets. Thus we are faced with the "big data" problem in astronomy. Survey datasets require specialized approaches to data management. Big data places additional challenging requirements for data management. If the term "big data" is defined as data collections that are too large to move then there are profound implications for the infrastructure that supports big data science. The current model of data centres is obsolete. In the era of big data the central problem is how to create architectures that effectively manage the relationship between data collections, networks, processing capabilities, and software, given the science requirements of the projects that need to be executed. A stand alone data silo cannot support big data science. I'll describe the current efforts of the Canadian community to deal with this situation and our successes and failures. I'll talk about how we are planning in the next decade to try to create a workable and adaptable solution to support big data science.

  14. Astroinformatics: the big data of the universe

    OpenAIRE

    Barmby, Pauline

    2016-01-01

    In astrophysics we like to think that our field was the originator of big data, back when it had to be carried around in big sky charts and books full of tables. These days, it's easier to move astrophysics data around, but we still have a lot of it, and upcoming telescope  facilities will generate even more. I discuss how astrophysicists approach big data in general, and give examples from some Western Physics & Astronomy research projects.  I also give an overview of ho...

  15. Promoting Dark Sky Protection in Chile: the Gabriel Mistral IDA Dark Sky Sanctuary and Other AURA Initiatives

    Science.gov (United States)

    Smith, R. Chris; Smith, Malcolm; Pompea, Stephen; Sanhueza, Pedro; AURA-Chile EPO Team

    2018-01-01

    For over 20 years, AURA has been leading efforts promoting the protection of dark skies in northern Chile. Efforts began in the early 1990s at AURA's Cerro Tololo Inter-American Observatory (CTIO), working in collaboration with other international observatories in Chile including Las Campanas Observatory (LCO) and the European Southern Observatory (ESO). CTIO also partnered with local communities, for example supporting Vicuña's effort to establish the first municipal observatory in Chile. Today we have developed a multifaceted effort of dark sky protection, including proactive government relations at national and local levels, a strong educational and public outreach program, and a program of highlighting international recognition of the dark skies through the IDA Dark Sky Places program. Work on international recognition has included the declaration of the Gabriel Mistral IDA Dark Sky Sanctuary, the first such IDA sanctuary in the world.

  16. Dark Skies as a Universal Resource: Citizen Scientists Measuring Sky Brightness

    Science.gov (United States)

    Walker, C. E.; Isbell, D.; Pompea, S. M.

    2007-12-01

    The international star-hunting event known as GLOBE at Night returned March 8-21, 2007 in two flavors: the classic GLOBE at Night activity incorporating unaided-eye observations which debuted last year, and a new effort to obtain precise measurements of urban dark skies using digital sky-brightness meters. Both flavors of the program were designed to aid in heightening the awareness about the impact of artificial lighting on local environments, and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To make possible the digital GLOBE at Night program, NSF funded 135 low-cost, digital sky-quality meter (manufactured by Unihedron). With these, citizen-scientists took direct measurements of the integrated sky brightness across a wide swath of night sky. Along with related materials developed by the National Optical Astronomy Observatory (NOAO), the meters were distributed to citizen-scientists in 21 U.S. states plus Washington DC, and in 5 other countries, including Chile, where NOAO has a major observatory. The citizen- scientists were selected from teachers, their students, astronomers at mountain-top observatories, International Dark-Sky Association members and staff from 19 small science centers. Most sites had a coordinator, who instructed local educators in the proper use of the meters and develop a plan to share them as widely as possible during the 2-week window. The local teams pooled their data for regional analysis and in some cases shared the results with their schools and local policymakers. Building upon the worldwide participation sparked by the first GLOBE at Night campaign in March 2006, the observations this year approached 8500 (from 60 countries), 85% higher than the number from last year. The success of GLOBE at Night 2007 is a major step toward the International Year of Astronomy in 2009, when one goal is to make the digital data collection into a worldwide activity. In this presentation, we will outline

  17. Research on taxi software policy based on big data

    Directory of Open Access Journals (Sweden)

    Feng Daoming

    2017-01-01

    Full Text Available Through big data analysis, statistical analysis of a large number of factors affect the establishment of the rally car index set, By establishing a mathematical model to analyze the different space-time taxi resource “to match supply and demand” degree, combined with intelligent deployment to solve the “taxi difficult” this hot social issues. This article takes Shanghai as an example, the central park, Lu Xun park, century park three areas as the object of study. From the “sky drops fast travel intelligence platform” big data, Extracted passenger demand and the number of taxi Kongshi data. Then demand and supply of taxis to establish indicators matrix, get the degree of matching supply needs of the region. Then through the big data relevant policies of each taxi company. Using the method of cluster analysis, to find the decisive role of the three aspects of the factors, using principal component analysis, compare the advantages and disadvantages of the existing company’s programs. Finally, according to the above research to develop a reasonable taxi software related policies.

  18. Dark-Skies Awareness

    Science.gov (United States)

    Walker, Constance E.

    2009-05-01

    The arc of the Milky Way seen from a truly dark location is part of our planet's natural heritage. More than one fifth of the world population, two thirds of the United States population and one half of the European Union population have already lost naked eye visibility of the Milky Way. This loss, caused by light pollution, is a serious and growing issue that impacts astronomical research, the economy, ecology, energy conservation, human health, public safety and our shared ability to see the night sky. For this reason, "Dark Skies” is a cornerstone project of the International Year of Astronomy. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people worldwide involved in a variety of programs that: 1. Teach about dark skies using new technology (e.g., an activity-based planetarium show on DVD, podcasting, social networking on Facebook and MySpace, a Second Life presence) 2. Provide thematic events on light pollution at star parties and observatory open houses (Dark Skies Discovery Sites, Nights in the (National) Parks, Sidewalk Astronomy) 3. Organize events in the arts (e.g., a photography contest) 4. Involve citizen-scientists in naked-eye and digital-meter star hunting programs (e.g., GLOBE at Night, "How Many Stars?", the Great World Wide Star Count and the radio frequency interference equivalent: "Quiet Skies") and 5. Raise awareness about the link between light pollution and public health, economic issues, ecological consequences, energy conservation, safety and security, and astronomy (e.g., The Starlight Initiative, World Night in Defense of Starlight, International Dark Sky Week, International Dark-Sky Communities, Earth Hour, The Great Switch Out, a traveling exhibit, downloadable posters and brochures). The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For more information, visit www.darkskiesawareness.org.

  19. Night sky a field guide to the constellations

    CERN Document Server

    Poppele, Jonathan

    2009-01-01

    Stargazing is among the most peaceful and inspiring outdoor activities. Night Sky, the award-winning book by Jonathan Poppele, makes it more fun than ever! Take a simple approach to finding 62 constellations by focusing on one constellation at a time, instead of attempting to study dizzying charts. Start with the easy-to-find constellations during each season and work toward the more difficult ones. Better yet, you'll learn how to locate any constellation in relation to the Big Dipper, the North Star and the top of the sky. With two ways to locate each constellation, you'll know where in the sky to look and what to look for! Along the way, you'll be introduced to mythology, facts and tidbits, as well as details about the planets, solar system and more! As an added bonus, the book comes with a red-light flashlight for night reading.

  20. Dark Skies Africa: an NOAO and IAU OAD Program on Light Pollution

    Science.gov (United States)

    Walker, Constance E.; Tellez, D.; Pompea, S. M.

    2014-01-01

    The IAU’s Office of Astronomy for Development (OAD) awarded the National Optical Astronomy Observatory (NOAO) with a grant to deliver a “Dark Skies Outreach to Sub-Saharan Africa” program to institutions in 12 African countries during 2013. The program helped students identify wasteful and inefficient lighting and provided ways to reduce consumption and to keep energy costs in check. The goal was to inspire students to be responsible stewards in helping their community safeguard one of Africa’s natural resources - a dark night sky. Thirteen kits made by the NOAO Education and Public Outreach group were sent to coordinators at university, science center and planetarium-type institutions in 12 African countries and to the IAU OAD. The program’s kit included complete instructional guides and supplies for six activities and a project on energy conservation and responsible lighting. The six activities were taught to the coordinators in a series of six Google+ Hangout sessions scheduled from June to mid-November. The coordinators at the institutions in the twelve countries in turn trained local teachers in junior and senior high schools. The Google+ Hangout sessions also included instruction on carrying out evaluations. From the end of November until mid-December students from the different African countries shared final class projects (such as posters or powerpoints) on the program’s website. The entire program was designed to help coordinators and educators work with students, parents and the community to identify dark sky resource, lighting and energy issues and to assess their status, efficiency and effectiveness. Participants will take away from the presentation new techniques on using Google+ Hangout sessions to instruct and sustain a community of coordinators and educators through distance learning as well as immersing them (and their students) in Project Based Learning after a scaffolded sequence of activities.

  1. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  2. An Innovative Collaboration on Dark Skies Education

    Science.gov (United States)

    Walker, Constance E.; Mayer, M.; EPO Students, NOAO

    2011-01-01

    Dark night skies are being lost all over the globe, and hundreds of millions of dollars of energy are being wasted in the process.. Improper lighting is the main cause of light pollution. Light pollution is a concern on many fronts, affecting safety, energy conservation, cost, human health, and wildlife. It also robs us of the beauty of viewing the night sky. In the U.S. alone, over half of the population cannot see the Milky Way from where they live. To help address this, the National Optical Astronomy Observatory Education and Public Outreach (NOAO EPO) staff created two programs: Dark Skies Rangers and GLOBE at Night. Through the two programs, students learn about the importance of dark skies and experience activities that illustrate proper lighting, light pollution's effects on wildlife and how to measure the darkness of their skies. To disseminate the programs locally in an appropriate yet innovative venue, NOAO partnered with the Cooper Center for Environmental Learning in Tucson, Arizona. Operated by the largest school district in Tucson and the University of Arizona College of Education, the Cooper Center educates thousands of students and educators each year about ecology, science, and the beauty and wonders of the Sonoran Desert. During the first academic year (2009-2010), we achieved our goal of reaching nearly 20 teachers in 40 classrooms of 1000 students. We gave two 3-hour teacher-training sessions and provided nineteen 2.5-hour on-site evening sessions on dark skies activities for the students of the teachers trained. One outcome of the program was the contribution of 1000 "GLOBE at Night 2010” night-sky brightness measurements by Tucson students. Training sessions at similar levels are continuing this year. The partnership, planning, lesson learned, and outcomes of NOAO's collaboration with the environmental center will be presented.

  3. Automatic Sky View Factor Estimation from Street View Photographs—A Big Data Approach

    Directory of Open Access Journals (Sweden)

    Jianming Liang

    2017-04-01

    Full Text Available Hemispherical (fisheye photography is a well-established approach for estimating the sky view factor (SVF. High-resolution urban models from LiDAR and oblique airborne photogrammetry can provide continuous SVF estimates over a large urban area, but such data are not always available and are difficult to acquire. Street view panoramas have become widely available in urban areas worldwide: Google Street View (GSV maintains a global network of panoramas excluding China and several other countries; Baidu Street View (BSV and Tencent Street View (TSV focus their panorama acquisition efforts within China, and have covered hundreds of cities therein. In this paper, we approach this issue from a big data perspective by presenting and validating a method for automatic estimation of SVF from massive amounts of street view photographs. Comparisons were made with SVF estimates derived from two independent sources: a LiDAR-based Digital Surface Model (DSM and an oblique airborne photogrammetry-based 3D city model (OAP3D, resulting in a correlation coefficient of 0.863 and 0.987, respectively. The comparisons demonstrated the capacity of the proposed method to provide reliable SVF estimates. Additionally, we present an application of the proposed method with about 12,000 GSV panoramas to characterize the spatial distribution of SVF over Manhattan Island in New York City. Although this is a proof-of-concept study, it has shown the potential of the proposed approach to assist urban climate and urban planning research. However, further development is needed before this approach can be finally delivered to the urban climate and urban planning communities for practical applications.

  4. Dark Skies are a Universal Resource. So are Quiet Skies!

    Science.gov (United States)

    Maddalena, Ronald J.; Heatherly, S.

    2008-05-01

    You've just purchased your first telescope. But where to set it up? Certainly not a WalMart parking lot. Too much light pollution! In the same way that man-made light obscures our night sky and blinds ground-based optical telescopes, man-made radio signals blind radio telescopes as well. NRAO developed the Quiet Skies project to increase awareness of radio frequency interference (RFI) and radio astronomy in general by engaging students in local studies of RFI. To do that we created a sensitive detector which measures RFI. We produced 20 of these, and assembled kits containing detectors and supplementary materials for loan to schools. Students conduct experiments to measure the properties of RFI in their area, and input their measurements into a web-based data base. The Quiet Skies project is a perfect complement to the IYA Dark Skies Awareness initiative. We hope to place 500 Quiet Skies detectors into the field through outreach to museums and schools around the world. Should we be successful, we will sustain this global initiative via a continuing loan program. One day we hope to have a publicly generated image of the Earth which shows RFI much as the Earth at Night image illustrates light pollution. The poster will present the components of the project in detail, including our plans for IYA, and various low-cost alternative strategies for introducing RFI and radio astronomy to the public. We will share the results of some of the experiments already being performed by high school students. Development of the Quiet Skies project was funded by a NASA IDEAS grant. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  5. Putting Together a Blue Sky: Laying the Foundation for Staff Evaluation

    Science.gov (United States)

    Searcy, Jeny

    2012-01-01

    Evaluation time can be like putting together a 5,000-piece jigsaw puzzle that is all sky--what, exactly, is the point? When all is said and done, one ends up with a big blue blob--nothing to show for all the effort. However, it doesn't have to be that way. Performance reviews can and should be an effective means of communication for both parties…

  6. Supporting Imagers' VOICE: A National Training Program in Comparative Effectiveness Research and Big Data Analytics.

    Science.gov (United States)

    Kang, Stella K; Rawson, James V; Recht, Michael P

    2017-12-05

    Provided methodologic training, more imagers can contribute to the evidence basis on improved health outcomes and value in diagnostic imaging. The Value of Imaging Through Comparative Effectiveness Research Program was developed to provide hands-on, practical training in five core areas for comparative effectiveness and big biomedical data research: decision analysis, cost-effectiveness analysis, evidence synthesis, big data principles, and applications of big data analytics. The program's mixed format consists of web-based modules for asynchronous learning as well as in-person sessions for practical skills and group discussion. Seven diagnostic radiology subspecialties and cardiology are represented in the first group of program participants, showing the collective potential for greater depth of comparative effectiveness research in the imaging community. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  7. Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends.

    Science.gov (United States)

    Mohammed, Emad A; Far, Behrouz H; Naugler, Christopher

    2014-01-01

    The emergence of massive datasets in a clinical setting presents both challenges and opportunities in data storage and analysis. This so called "big data" challenges traditional analytic tools and will increasingly require novel solutions adapted from other fields. Advances in information and communication technology present the most viable solutions to big data analysis in terms of efficiency and scalability. It is vital those big data solutions are multithreaded and that data access approaches be precisely tailored to large volumes of semi-structured/unstructured data. THE MAPREDUCE PROGRAMMING FRAMEWORK USES TWO TASKS COMMON IN FUNCTIONAL PROGRAMMING: Map and Reduce. MapReduce is a new parallel processing framework and Hadoop is its open-source implementation on a single computing node or on clusters. Compared with existing parallel processing paradigms (e.g. grid computing and graphical processing unit (GPU)), MapReduce and Hadoop have two advantages: 1) fault-tolerant storage resulting in reliable data processing by replicating the computing tasks, and cloning the data chunks on different computing nodes across the computing cluster; 2) high-throughput data processing via a batch processing framework and the Hadoop distributed file system (HDFS). Data are stored in the HDFS and made available to the slave nodes for computation. In this paper, we review the existing applications of the MapReduce programming framework and its implementation platform Hadoop in clinical big data and related medical health informatics fields. The usage of MapReduce and Hadoop on a distributed system represents a significant advance in clinical big data processing and utilization, and opens up new opportunities in the emerging era of big data analytics. The objective of this paper is to summarize the state-of-the-art efforts in clinical big data analytics and highlight what might be needed to enhance the outcomes of clinical big data analytics tools. This paper is concluded by

  8. The "Ocean" and the Night-Sky: Relations Between the Five-Factor Model of Personality and Noctcaelador

    Science.gov (United States)

    Kelly, William E.

    2004-01-01

    This study explored the relationship between noctcaelador, psychological attachment to the night-sky, and the Five-Factor Model of Personality. University students (N = 108) were administered the Noctcaelador Inventory and Saucier's Big-Five Mini-Markers of Personality. Noctcaelador was significantly positively related to Openness to Experience…

  9. Infrared Sky Surveys

    Science.gov (United States)

    Price, Stephan D.

    2009-02-01

    A retrospective is given on infrared sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-infrared all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying detector and cryogenic sensor advances to early mid-infrared probe-rocket and satellite-based surveys. This technology was transitioned to the infrared astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.

  10. Big data bioinformatics.

    Science.gov (United States)

    Greene, Casey S; Tan, Jie; Ung, Matthew; Moore, Jason H; Cheng, Chao

    2014-12-01

    Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the "big data" era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both "machine learning" algorithms as well as "unsupervised" and "supervised" examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia. © 2014 Wiley Periodicals, Inc.

  11. An analysis of cross-sectional differences in big and non-big public accounting firms' audit programs

    NARCIS (Netherlands)

    Blokdijk, J.H. (Hans); Drieenhuizen, F.; Stein, M.T.; Simunic, D.A.

    2006-01-01

    A significant body of prior research has shown that audits by the Big 5 (now Big 4) public accounting firms are quality differentiated relative to non-Big 5 audits. This result can be derived analytically by assuming that Big 5 and non-Big 5 firms face different loss functions for "audit failures"

  12. GLOBE at Night: a Worldwide Citizen-Science Program to Increase Awareness of Light Pollution by Measuring Night Sky Brightness

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2011-12-01

    The emphasis in the international citizen-science, star-hunting campaign, GLOBE at Night, is in bringing awareness to the public on issues of light pollution. Light pollution threatens not only observatory sites and our "right to starlight", but can affect energy consumption, wildlife and health. GLOBE at Night has successfully reached a few 100,000 citizen-scientists. What has contributed to its success? Foundational resources are available to facilitate the public's participation in promoting dark skies awareness. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. To promote the campaign via popular social media, GLOBE at Night created Facebook and Twitter pages. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for dark skies awareness have been distributed at the training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and "Dark Skies Rangers" activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how one can participate in a citizen-science star-hunt like GLOBE at Night. To increase participation in the 2011 campaign, children and adults submitted their sky brightness measurements in real time with smart phones or tablets using the web application at www.globeatnight.org/webapp/. With smart phones and tablets, the location, date and time register automatically. For those without smart mobile devices, user-friendly tools on the GLOBE at Night report page were reconfigured to determine latitude and longitude more easily and accurately. As a proto-type for taking multiple measurements, people in Tucson found it easy to adopt a street and take measurements every mile for the length of the street. The grid of measurements

  13. Integrated plant-safety assessment, Systematic Evaluation Program: Big Rock Point Plant (Docket No. 50-155)

    International Nuclear Information System (INIS)

    1983-09-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. This report documents the review of the Big Rock Point Plant, which is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. It also addresses a majority of the pending licensing actions for Big Rock Point, which include TMI Action Plan requirements and implementation criteria for resolved generic issues. Equipment and procedural changes have been identified as a result of the review

  14. NASA Science Engagement Through "Sky Art"

    Science.gov (United States)

    Bethea, K. L.; Damadeo, K.

    2013-12-01

    Sky Art is a NASA-funded online community where the public can share in the beauty of nature and the science behind it. At the center of Sky Art is a gallery of amateur sky photos submitted by users that are related to NASA Earth science mission research areas. Through their submissions, amateur photographers from around the world are engaged in the process of making observations, or taking pictures, of the sky just like many NASA science instruments. By submitting their pictures and engaging in the online community discussions and interactions with NASA scientists, users make the connection between the beauty of nature and atmospheric science. Sky Art is a gateway for interaction and information aimed at drawing excitement and interest in atmospheric phenomena including sunrises, sunsets, moonrises, moonsets, and aerosols, each of which correlates to a NASA science mission. Educating the public on atmospheric science topics in an informal way is a central goal of Sky Art. NASA science is included in the community through interaction from scientists, NASA images, and blog posts on science concepts derived from the images. Additionally, the website connects educators through the formal education pathway where science concepts are taught through activities and lessons that align with national learning standards. Sky Art was conceived as part of the Education and Public Outreach program of the SAGE III on ISS mission. There are currently three other NASA mission involved with Sky Art: CALIPSO, GPM, and CLARREO. This paper will discuss the process of developing the Sky Art online website, the challenges of growing a community of users, as well as the use of social media and mobile applications in science outreach and education.

  15. Dark Skies Awareness Cornerstone Project for the International Year of Astronomy

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.; Iya Dark Skies Awareness Working Group

    2010-12-01

    Programs that were part of the International Year of Astronomy 2009 (IYA2009) Dark Skies Awareness (DSA) Cornerstone Project have been successfully implemented around the world to promote social awareness of the effects of light pollution on public health, economic issues, ecological consequences, energy conservation, safety and security, nightscape aesthetics and especially astronomy. In developing the programs, DSA Cornerstone Project found that to influence cultural change effectively — to make people literally look up and see the light — we must make children a main focus, use approaches that offer involvement on many levels, from cursory to committed, and offer involvement via many venues. We must make the programs and resources as turn-key as possible, especially for educators — and provide ways to visualize the problem with simple, easily grasped demonstrations. The programs spanned a wide range; from new media technology for the younger generation, to an event in the arts, to various types of educational materials, to the promotion of dark skies communities, to national and international events and to global citizen science programs. The DSA Cornerstone Project is continuing most all of these programs beyond IYA2009. The International Dark-Sky Association as well as the Starlight Initiative is endorsing and helping to continue with some of the most successful programs from the DSA. The GLOBE at Night campaign is adding a research component that examines light pollution’s affects on wildlife. Dark Skies Rangers activities are being implemented in Europe through the Galileo Teacher Training Program. The new “One Star at a Time” will engage people to protect the night sky through personal pledges and registration of public stargazing areas or StarParks, like the newest one in Italy. The Starlight Initiative’s World Night in Defence of the Starlight will take place on the Vernal Equinox. DSA will again oversee the Dark Skies portion of Global

  16. Fireballs in the Sky

    Science.gov (United States)

    Day, B. H.; Bland, P.

    2016-12-01

    Fireballs in the Sky is an innovative Australian citizen science program that connects the public with the research of the Desert Fireball Network (DFN). This research aims to understand the early workings of the solar system, and Fireballs in the Sky invites people around the world to learn about this science, contributing fireball sightings via a user-friendly app. To date, more than 23,000 people have downloaded the app world-wide and participated in planetary science. The Fireballs in the Sky app allows users to get involved with the Desert Fireball Network research, supplementing DFN observations and providing enhanced coverage by reporting their own meteor sightings to DFN scientists. Fireballs in the Sky reports are used to track the trajectories of meteors - from their orbit in space to where they might have landed on Earth. Led by Phil Bland at Curtin University in Australia, the Desert Fireball Network (DFN) uses automated observatories across Australia to triangulate trajectories of meteorites entering the atmosphere, determine pre-entry orbits, and pinpoint their fall positions. Each observatory is an autonomous intelligent imaging system, taking 1000×36Megapixel all-sky images throughout the night, using neural network algorithms to recognize events. They are capable of operating for 12 months in a harsh environment, and store all imagery collected. We developed a completely automated software pipeline for data reduction, and built a supercomputer database for storage, allowing us to process our entire archive. The DFN currently stands at 50 stations distributed across the Australian continent, covering an area of 2.5 million km^2. Working with DFN's partners at NASA's Solar System Exploration Research Virtual Institute, the team is expanding the network beyond Australia to locations around the world. Fireballs in the Sky allows a growing public base to learn about and participate in this exciting research.

  17. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, biogeography, ecology, and population genetics of arthropods of the Madrean Sky Islands

    Science.gov (United States)

    Wendy Moore; Wallace M. Meyer; Jeffrey A. Eble; Kimberly Franklin; John F. Wiens; Richard C. Brusca

    2013-01-01

    The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically...

  18. Astronomy in the Big Data Era

    Directory of Open Access Journals (Sweden)

    Yanxia Zhang

    2015-05-01

    Full Text Available The fields of Astrostatistics and Astroinformatics are vital for dealing with the big data issues now faced by astronomy. Like other disciplines in the big data era, astronomy has many V characteristics. In this paper, we list the different data mining algorithms used in astronomy, along with data mining software and tools related to astronomical applications. We present SDSS, a project often referred to by other astronomical projects, as the most successful sky survey in the history of astronomy and describe the factors influencing its success. We also discuss the success of Astrostatistics and Astroinformatics organizations and the conferences and summer schools on these issues that are held annually. All the above indicates that astronomers and scientists from other areas are ready to face the challenges and opportunities provided by massive data volume.

  19. Blue Sky Ideas in Artificial Intelligence Education from the EAAI 2017 New and Future AI Educator Program

    OpenAIRE

    Eaton, Eric; Koenig, Sven; Schulz, Claudia; Maurelli, Francesco; Lee, John; Eckroth, Joshua; Crowley, Mark; Freedman, Richard G.; Cardona-Rivera, Rogelio E.; Machado, Tiago; Williams, Tom

    2017-01-01

    The 7th Symposium on Educational Advances in Artificial Intelligence (EAAI'17, co-chaired by Sven Koenig and Eric Eaton) launched the EAAI New and Future AI Educator Program to support the training of early-career university faculty, secondary school faculty, and future educators (PhD candidates or postdocs who intend a career in academia). As part of the program, awardees were asked to address one of the following "blue sky" questions: * How could/should Artificial Intelligence (AI) courses ...

  20. Cosmic Origins Program Annual Technology Report

    Science.gov (United States)

    Pham, Bruce Thai; Neff, Susan Gale

    2016-01-01

    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time.

  1. Go-To Telescopes Under Suburban Skies

    CERN Document Server

    Monks, Neale

    2010-01-01

    For the last four centuries stargazers have turned their telescopes to the night skies to look at its wonders, but only in this age of computers has it become possible to let the telescope find for you the object you are looking for! So-called “go-to” telescopes are programmed with the locations of thousands of objects, including dazzling distant Suns, stunning neighboring galaxies, globular and open star clusters, the remnants of past supernovae, and many other breathtaking sights. This book does not tell you how to use your Go-to telescope. Your manual will help you do that. It tells you what to look for in the deep sky and why, and what equipment to best see it with. Organized broadly by what is best for viewing in the northern hemisphere in different seasons, Monks further divides the sights of each season into groupings such as “Showpiece Objects,” “Interesting Deep Sky Objects,” and “Obscure and Challenging Deep Sky Objects.” He also tells what objects are visible even in light-polluted ...

  2. VLITE Surveys the Sky: A 340 MHz Companion to the VLA Sky Survey (VLASS)

    Science.gov (United States)

    Peters, Wendy; Clarke, Tracy; Brisken, Walter; Cotton, William; Richards, Emily E.; Giacintucci, Simona; Kassim, Namir

    2018-01-01

    The VLA Low Band Ionosphere and Transient Experiment (VLITE; ) is a commensal observing system on the Karl G. Janksy Very Large Array (VLA) which was developed by the Naval Research Laboratory and NRAO. A 64 MHz sub-band from the prime focus 240-470 MHz dipoles is correlated during nearly all regular VLA observations. VLITE uses dedicated samplers and fibers, as well as a custom designed, real-time DiFX software correlator, and requires no additional resources from the VLA system running the primary science program. The experiment has been operating since November 2014 with 10 antennas; a recent expansion in summer 2017 increased that number to 16 and more than doubled the number of baselines.The VLA Sky Survey (VLASS; ), is an ongoing survey of the entire sky visible to the VLA at a frequency of 2-4 GHz. The observations are made using an "on-the-fly" (OTF) continuous RA scanning technique which fills in the sky by observing along rows of constant declination. VLITE breaks the data into 2-second integrations and correlates these at a central position every 1.5 degrees. All data for each correlator position is imaged separately, corrected and weighted by an appropriately elongated primary beam model, and then combined in the image plane to create a mosaic of the sky. A catalog of the sources is extracted to provide a 340 MHz sky model.We present preliminary images and catalogs from the 2017 VLASS observations which began in early September, 2017, and continued on a nearly daily basis throughout the fall. In addition to providing a unique sky model at 340 MHz, these data complement VLASS by providing spectral indices for all cataloged sources.

  3. Vegetation-environment relations of the Chisos Mountains, Big Bend National Park, Texas

    Science.gov (United States)

    Helen M. Poulos; Ann E. Camp

    2005-01-01

    The Sky Island Archipelagos of the Sierra Madre Oriental and Occidental contain a unique array of endemic flora and fauna. Plant species composition in these elevationally restricted forests is thought to vary in relation to environmental gradients. This study quantifies plant population abundance and spatial distribution patterns in pine-oak woodlands of Big Bend...

  4. The BigBOSS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna

    2011-01-01

    BigBOSS will obtain observational constraints that will bear on three of the four 'science frontier' questions identified by the Astro2010 Cosmology and Fundamental Phyics Panel of the Decadal Survey: Why is the universe accelerating; what is dark matter and what are the properties of neutrinos? Indeed, the BigBOSS project was recommended for substantial immediate R and D support the PASAG report. The second highest ground-based priority from the Astro2010 Decadal Survey was the creation of a funding line within the NSF to support a 'Mid-Scale Innovations' program, and it used BigBOSS as a 'compelling' example for support. This choice was the result of the Decadal Survey's Program Priorization panels reviewing 29 mid-scale projects and recommending BigBOSS 'very highly'.

  5. Introduction to the Arizona Sky Island Arthropod Project (ASAP): Systematics, Biogeography, Ecology, and Population Genetics of Arthropods of the Madrean Sky Islands.

    Science.gov (United States)

    Moore, Wendy; Meyer, Wallace M; Eble, Jeffrey A; Franklin, Kimberly; Wiens, John F; Brusca, Richard C

    2013-01-01

    The Arizona Sky Island Arthropod Project (ASAP) is a new multi-disciplinary research program at the University of Arizona that combines systematics, biogeography, ecology, and population genetics to study origins and patterns of arthropod diversity along elevation gradients and among mountain ranges in the Madrean Sky Island Region. Arthropods represent taxonomically and ecologically diverse organisms that drive key ecosystem processes in this mountain archipelago. Using data from museum specimens and specimens we obtain during long-term collecting and monitoring programs, ASAP will document arthropod species across Arizona's Sky Islands to address a number of fundamental questions about arthropods of this region. Baseline data will be used to determine climatic boundaries for target species, which will then be integrated with climatological models to predict future changes in arthropod communities and distributions in the wake of rapid climate change. ASAP also makes use of the natural laboratory provided by the Sky Islands to investigate ecological and genetic factors that influence diversification and patterns of community assembly. Here, we introduce the project, outline overarching goals, and describe preliminary data from the first year of sampling ground-dwelling beetles and ants in the Santa Catalina Mountains.

  6. SURVEYING THE DYNAMIC RADIO SKY WITH THE LONG WAVELENGTH DEMONSTRATOR ARRAY

    International Nuclear Information System (INIS)

    Lazio, T. Joseph W.; Clarke, Tracy E.; Lane, W. M.; Gross, C.; Kassim, N. E.; Hicks, B.; Polisensky, E.; Stewart, K.; Ray, P. S.; Wood, D.; York, J. A.; Kerkhoff, A.; Dalal, N. Paravastu; Cohen, A. S.; Erickson, W. C.

    2010-01-01

    This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10 -2 events yr -1 deg -2 , having a pulse energy density ∼>1.5 x 10 -20 J m -2 Hz -1 at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.

  7. The "All Sky Camera Network"

    Science.gov (United States)

    Caldwell, Andy

    2005-01-01

    In 2001, the "All Sky Camera Network" came to life as an outreach program to connect the Denver Museum of Nature and Science (DMNS) exhibit "Space Odyssey" with Colorado schools. The network is comprised of cameras placed strategically at schools throughout Colorado to capture fireballs--rare events that produce meteorites.…

  8. Digital all-sky polarization imaging of partly cloudy skies.

    Science.gov (United States)

    Pust, Nathan J; Shaw, Joseph A

    2008-12-01

    Clouds reduce the degree of linear polarization (DOLP) of skylight relative to that of a clear sky. Even thin subvisual clouds in the "twilight zone" between clouds and aerosols produce a drop in skylight DOLP long before clouds become visible in the sky. In contrast, the angle of polarization (AOP) of light scattered by a cloud in a partly cloudy sky remains the same as in the clear sky for most cases. In unique instances, though, select clouds display AOP signatures that are oriented 90 degrees from the clear-sky AOP. For these clouds, scattered light oriented parallel to the scattering plane dominates the perpendicularly polarized Rayleigh-scattered light between the instrument and the cloud. For liquid clouds, this effect may assist cloud particle size identification because it occurs only over a relatively limited range of particle radii that will scatter parallel polarized light. Images are shown from a digital all-sky-polarization imager to illustrate these effects. Images are also shown that provide validation of previously published theories for weak (approximately 2%) polarization parallel to the scattering plane for a 22 degrees halo.

  9. Daylight and energy implications for CIE standard skies

    International Nuclear Information System (INIS)

    Li, Danny H.W.

    2007-01-01

    Recently, the International Commission on Illumination (CIE) has adopted a range of 15 standard skies, which include the existing CIE overcast, very clear and cloudless polluted skies, covering the whole probable spectrum of usual skies found in the world. The traditional daylight factor (DF) approach with the calculations being based on an isotropic overcast sky, however, cannot cater to the dynamic variations in daylight luminance and illuminance as the sun's position changes under non-overcast skies. Currently, we propose a numerical procedure that considers the changes in the luminance of sky elements to predict the interior daylight illuminance under the 15 CIE standard skies. This paper evaluates the method by using a typical room with a large vertical glazing window facing north. The available daylight for the room at mean hourly sun positions in each month in terms of DF and illuminance levels were determined and compared with those based on a computer program, namely, RADIANCE. A modification to the ground reflected component was made when a well defined shadow was cast in front of the window facade. It is shown that the results estimated by the proposed approach are in reasonably good agreement with those produced from RADIANCE. The interior daylight and lighting energy consumption were also determined using the proposed and the traditional DF approaches. The findings reveal that daylighting designs using existing CIE overcast sky only would considerably underestimate the indoor daylight availability and electric lighting energy savings, especially under high design indoor illuminance settings

  10. BigDansing

    KAUST Repository

    Khayyat, Zuhair

    2015-06-02

    Data cleansing approaches have usually focused on detecting and fixing errors with little attention to scaling to big datasets. This presents a serious impediment since data cleansing often involves costly computations such as enumerating pairs of tuples, handling inequality joins, and dealing with user-defined functions. In this paper, we present BigDansing, a Big Data Cleansing system to tackle efficiency, scalability, and ease-of-use issues in data cleansing. The system can run on top of most common general purpose data processing platforms, ranging from DBMSs to MapReduce-like frameworks. A user-friendly programming interface allows users to express data quality rules both declaratively and procedurally, with no requirement of being aware of the underlying distributed platform. BigDansing takes these rules into a series of transformations that enable distributed computations and several optimizations, such as shared scans and specialized joins operators. Experimental results on both synthetic and real datasets show that BigDansing outperforms existing baseline systems up to more than two orders of magnitude without sacrificing the quality provided by the repair algorithms.

  11. Dark Skies Ahead? Activities to Raise Awareness during the International Year of Astronomy

    Science.gov (United States)

    Walker, Constance E.; Isbell, D.; Pompea, S.

    2007-12-01

    "Dark Skies as a Universal Resource” is one of 7 themes targeted for the International Year of Astronomy in 2009. The theme's goal is to raise public awareness of the impact of artificial lighting on local environments and the ongoing loss of a dark night sky as a natural resource for much of the world's population. To reach this goal, activities are being developed which highlight dark skies preservation issues 1) through new technology (e.g., programs at planetaria, blogging, podcasting); 2) at events such as star parties and observatory open houses; 3) in arts, entertainment and storytelling (e.g., art competitions, documentaries, lectures, native American traditions); 4) through unaided-eye and digital-meter star count programs involving citizen-scientists; and 5) by relating them to public health, economic issues, ecological consequences, energy conservation, safety and security. A centerpiece of the Dark Skies theme is the unaided-eye and digital-meter versions of the GLOBE at Night program. The unaided-eye version directs citizen-scientists on how to observe and record the brightness of the night sky by matching its appearance toward the constellation of Orion with one of 7 stellar maps of different limiting magnitudes. For the "digital” version, low-cost meters are used by citizen-scientists to measure the integrated sky brightness. Data sets and maps of both versions are supplied on-line for further capstone activities. In the presentation, we will outline the activities being developed as well as plans for funding, implementation, marketing and the connections to the global cornerstone IYA project, "Dark Skies Awareness".

  12. SkyProbeBV: dual-color absolute sky transparency monitor to optimize science operations

    Science.gov (United States)

    Cuillandre, Jean-Charles; Magnier, Eugene; Sabin, Dan; Mahoney, Billy

    2008-07-01

    Mauna Kea (4200 m elevation, Hawaii) is known for its pristine seeing conditions, but sky transparency can be an issue for science operations: 25% of the nights are not photometric, a cloud coverage mostly due to high-altitude thin cirrus. The Canada-France-Hawaii Telescope (CFHT) is upgrading its real-time sky transparency monitor in the optical domain (V-band) into a dual-color system by adding a B-band channel and redesigning the entire optical and mechanical assembly. Since 2000, the original single-channel SkyProbe has gathered one exposure every minute during each observing night using a small CCD camera with a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (30 seconds) to capture at least 100 stars of Hipparcos' Tychos catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). A key advantage of SkyProbe over direct thermal infrared imaging detection of clouds, is that it allows an accurate absolute measurement, within 5%, of the true atmospheric absorption by clouds affecting the data being gathered by the telescope's main science instrument. This system has proven crucial for decision making in the CFHT queued service observing (QSO), representing today 95% of the telescope time: science exposures taken in non-photometric conditions are automatically registered for being re-observed later on (at 1/10th of the original exposure time per pointing in the observed filters) to ensure a proper final absolute photometric calibration. If the absorption is too high, exposures can be repeated, or the observing can be done for a lower ranked science program. The new dual color system (simultaneous B & V bands) will allow a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinner cirrus (absorption down to 0.02 mag., i.e. 2%). SkyProbe is operated within the Elixir pipeline, a collection of tools

  13. Sky camera imagery processing based on a sky classification using radiometric data

    International Nuclear Information System (INIS)

    Alonso, J.; Batlles, F.J.; López, G.; Ternero, A.

    2014-01-01

    As part of the development and expansion of CSP (concentrated solar power) technology, one of the most important operational requirements is to have complete control of all factors which may affect the quantity and quality of the solar power produced. New developments and tools in this field are focused on weather forecasting improving both operational security and electricity production. Such is the case with sky cameras, devices which are currently in use in some CSP plants and whose use is expanding in the new technology sector. Their application is mainly focused on cloud detection, estimating their movement as well as their influence on solar radiation attenuation indeed, the presence of clouds is the greatest factor involved in solar radiation attenuation. The aim of this work is the detection and analysis of clouds from images taken by a TSI-880 model sky. In order to obtain accurate image processing, three different models were created, based on a previous sky classification using radiometric data and representative sky conditions parameters. As a consequence, the sky can be classified as cloudless, partially-cloudy or overcast, delivering an average success rate of 92% in sky classification and cloud detection. - Highlights: • We developed a methodology for detection of clouds in total sky imagery (TSI-880). • A classification of sky is presented according to radiometric data and sky parameters. • The sky can be classified as cloudless, partially cloudy and overcast. • The images processing is based on the sky classification for the detection of clouds. • The average success of the developed model is around 92%

  14. Dark Sky Protection and Education - Izera Dark Sky Park

    Science.gov (United States)

    Berlicki, Arkadiusz; Kolomanski, Sylwester; Mrozek, Tomasz; Zakowicz, Grzegorz

    2015-08-01

    Darkness of the night sky is a natural component of our environment and should be protected against negative effects of human activities. The night darkness is necessary for balanced life of plants, animals and people. Unfortunately, development of human civilization and technology has led to the substantial increase of the night-sky brightness and to situation where nights are no more dark in many areas of the World. This phenomenon is called "light pollution" and it can be rank among such problems as chemical pollution of air, water and soil. Besides the environment, the light pollution can also affect e.g. the scientific activities of astronomers - many observatories built in the past began to be located within the glow of city lights making the night observations difficult, or even impossible.In order to protect the natural darkness of nights many so-called "dark sky parks" were established, where the darkness is preserved, similar to typical nature reserves. The role of these parks is not only conservation but also education, supporting to make society aware of how serious the problem of the light pollution is.History of the dark sky areas in Europe began on November 4, 2009 in Jizerka - a small village situated in the Izera Mountains, when Izera Dark Sky Park (IDSP) was established - it was the first transboundary dark sky park in the World. The idea of establishing that dark sky park in the Izera Mountains originated from a need to give to the society in Poland and Czech Republic the knowledge about the light pollution. Izera Dark Sky Park is a part of the astro-tourism project "Astro Izery" that combines tourist attraction of Izera Valley and astronomical education under the wonderful starry Izera sky. Besides the IDSP, the project Astro Izery consists of the set of simple astronomical instruments (gnomon, sundial), natural educational trail "Solar System Model", and astronomical events for the public. In addition, twice a year we organize a 3-4 days

  15. The BlueSky Smoke Modeling Framework: Recent Developments

    Science.gov (United States)

    Sullivan, D. C.; Larkin, N.; Raffuse, S. M.; Strand, T.; ONeill, S. M.; Leung, F. T.; Qu, J. J.; Hao, X.

    2012-12-01

    (TRMM) Multi-satellite Precipitation Analysis Real-Time (TMPA-RT) data set is being used to improve dead fuel moisture estimates. - EastFire live fuel moisture estimates, which are derived from NASA's MODIS direct broadcast, are being used to improve live fuel moisture estimates. - NASA's Multi-angle Imaging Spectroradiometer (MISR) stereo heights are being used to improve estimates of plume injection heights. Further, the Fire Location and Modeling of Burning Emissions (FLAMBÉ) model was incorporated into the BlueSky Framework as an alternative means of calculating fire emissions. FLAMBÉ directly estimates emissions on the basis of fire detections and radiance measures from NASA's MODIS and NOAA's GOES satellites. (The authors gratefully acknowledge NASA's Applied Sciences Program [Grant Nos. NN506AB52A and NNX09AV76G)], the USDA Forest Service, and the Joint Fire Science Program for their support.)

  16. Program Annual Technology Report: Cosmic Origins Program Office

    Science.gov (United States)

    Pham, Thai; Neff, Susan

    2017-01-01

    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life, starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy.

  17. Big Java late objects

    CERN Document Server

    Horstmann, Cay S

    2012-01-01

    Big Java: Late Objects is a comprehensive introduction to Java and computer programming, which focuses on the principles of programming, software engineering, and effective learning. It is designed for a two-semester first course in programming for computer science students.

  18. Night sky luminance under clear sky conditions: Theory vs. experiment

    International Nuclear Information System (INIS)

    Kocifaj, Miroslav

    2014-01-01

    Sky glow is caused by both natural phenomena and factors of anthropogenic origin, and of the latter ground-based light sources are the most important contributors for they emit the spatially linked spectral radiant intensity distribution of artificial light sources, which are further modulated by local atmospheric optics and perceived as the diffuse light of a night sky. In other words, sky glow is closely related to a city's shape and pattern of luminaire distribution, in practical effect an almost arbitrary deployment of random orientation of heterogeneous electrical light sources. Thus the luminance gradation function measured in a suburban zone or near the edges of a city is linked to the City Pattern or vice versa. It is shown that clear sky luminance/radiance data recorded in an urban area can be used to retrieve the bulk luminous/radiant intensity distribution if some a-priori information on atmospheric aerosols is available. For instance, the single scattering albedo of aerosol particles is required under low turbidity conditions, as demonstrated on a targeted experiment in the city of Frýdek-Mistek. One of the main advantages of the retrieval method presented in this paper is that the single scattering approximation is satisfactorily accurate in characterizing the light field near the ground because the dominant contribution to the sky glow has originated from beams propagated along short optical paths. - Highlights: • Urban sky glow is interpreted in terms of city emission function. • Luminance function in a suburban zone is linked to the City Pattern. • Single scattering approximation is applicable in modeling urban sky glow. • Information on aerosols represents valuable inputs to the retrieval procedure. • Sky glow patterns vary with light source distribution and spectral emission

  19. Decade of wildlife tracking in the Sky Islands

    Science.gov (United States)

    Jessica A. Lamberton-Moreno; Sergio Avila-Villegas

    2013-01-01

    In 2001 Sky Island Alliance developed a citizen science program that uses track and sign identification and count surveys to monitor potential wildlife corridors throughout southeastern Arizona and southwestern New Mexico. The goal of the Wildlife Linkages Program is to protect and advocate for an interconnected landscape where wildlife, based on their ecological needs...

  20. Big Data Knowledge in Global Health Education.

    Science.gov (United States)

    Olayinka, Olaniyi; Kekeh, Michele; Sheth-Chandra, Manasi; Akpinar-Elci, Muge

    The ability to synthesize and analyze massive amounts of data is critical to the success of organizations, including those that involve global health. As countries become highly interconnected, increasing the risk for pandemics and outbreaks, the demand for big data is likely to increase. This requires a global health workforce that is trained in the effective use of big data. To assess implementation of big data training in global health, we conducted a pilot survey of members of the Consortium of Universities of Global Health. More than half the respondents did not have a big data training program at their institution. Additionally, the majority agreed that big data training programs will improve global health deliverables, among other favorable outcomes. Given the observed gap and benefits, global health educators may consider investing in big data training for students seeking a career in global health. Copyright © 2017 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.

  1. "Dark Skies, Bright Kids" - First Year Of Outreach In Rural Virginia

    Science.gov (United States)

    Ries, Paul; Johnson, K.; Zasowski, G.; Beaton, R.; Carlberg, J.; Czekala, I.; de Messieres, G.; Drosback, M.; Gugliucci, N.; Jackson, L.; Lynch, R.; Romero, C.; Sivakoff, G.; Whelan, D.; Wong, A.

    2010-10-01

    Dark Skies, Bright Kids (DSBK) is an educational/public outreach program at the University of Virginia directed primarily towards rural elementary school students in grades 3-5. The program, which is run by a diverse community of volunteers (faculty, postdocs, grad students, and undergrads), targets schools in the rural areas surrounding UVa in southern Albemarle County. While these schools are privileged with remarkably dark skies, these same schools are also home to an economically under-privileged and educationally under-served population. DSBK seeks to use those dark skies, among other resources, to create excitement and interest in science and engineering as part of a weekly after-school program. A typical afternoon consists of 1.5-2.5 hours of science activities specifically centered around space and astronomy. Each week has a theme (e.g., rockets, invisible light) and we incorporate a mix of activities on that theme, such as hands-on experiments, stories, games, and creative play. We also encourage family involvement, so that the parents are actively involved in their children's education. Every other week, we hold a family observing night, so both the students and their parents can learn about the night sky together. The program lasts for one semester at each school, and we have just completed our second semester of work. Each new semester brings on new challenges, but also new lessons to make our program better in future semesters. Our group actively writes and then rewrites our own lesson plans as we learn what works best with the students. We are now in the process of putting our lesson plans online so other groups can take advantage of what we have learned and apply this program at other schools. On the web: http://www.astro.virginia.edu/dsbk/

  2. Astronomical Surveys and Big Data

    Directory of Open Access Journals (Sweden)

    Mickaelian Areg M.

    2016-03-01

    Full Text Available Recent all-sky and large-area astronomical surveys and their catalogued data over the whole range of electromagnetic spectrum, from γ-rays to radio waves, are reviewed, including such as Fermi-GLAST and INTEGRAL in γ-ray, ROSAT, XMM and Chandra in X-ray, GALEX in UV, SDSS and several POSS I and POSS II-based catalogues (APM, MAPS, USNO, GSC in the optical range, 2MASS in NIR, WISE and AKARI IRC in MIR, IRAS and AKARI FIS in FIR, NVSS and FIRST in radio range, and many others, as well as the most important surveys giving optical images (DSS I and II, SDSS, etc., proper motions (Tycho, USNO, Gaia, variability (GCVS, NSVS, ASAS, Catalina, Pan-STARRS, and spectroscopic data (FBS, SBS, Case, HQS, HES, SDSS, CALIFA, GAMA. An overall understanding of the coverage along the whole wavelength range and comparisons between various surveys are given: galaxy redshift surveys, QSO/AGN, radio, Galactic structure, and Dark Energy surveys. Astronomy has entered the Big Data era, with Astrophysical Virtual Observatories and Computational Astrophysics playing an important role in using and analyzing big data for new discoveries.

  3. PePSS - A portable sky scanner for measuring extremely low night-sky brightness

    Science.gov (United States)

    Kocifaj, Miroslav; Kómar, Ladislav; Kundracik, František

    2018-05-01

    A new portable sky scanner designed for low-light-level detection at night is developed and employed in night sky brightness measurements in a rural region. The fast readout, adjustable sensitivity and linear response guaranteed in 5-6 orders of magnitude makes the device well suited for narrow-band photometry in both dark areas and bright urban and suburban environments. Quasi-monochromatic night-sky brightness data are advantageous in the accurate characterization of spectral power distribution of scattered and emitted light and, also allows for the possibility to retrieve light output patterns from whole-city light sources. The sky scanner can operate in both night and day regimes, taking advantage of the complementarity of both radiance data types. Due to its inherent very high sensitivity the photomultiplier tube could be used in night sky radiometry, while the spectrometer-equipped system component capable of detecting elevated intensities is used in daylight monitoring. Daylight is a source of information on atmospheric optical properties that in turn are necessary in processing night sky radiances. We believe that the sky scanner has the potential to revolutionize night-sky monitoring systems.

  4. SciServer: An Online Collaborative Environment for Big Data in Research and Education

    Science.gov (United States)

    Raddick, Jordan; Souter, Barbara; Lemson, Gerard; Taghizadeh-Popp, Manuchehr

    2017-01-01

    For the past year, SciServer Compute (http://compute.sciserver.org) has offered access to big data resources running within server-side Docker containers. Compute has allowed thousands of researchers to bring advanced analysis to big datasets like the Sloan Digital Sky Survey and others, while keeping the analysis close to the data for better performance and easier read/write access. SciServer Compute is just one part of the SciServer system being developed at Johns Hopkins University, which provides an easy-to-use collaborative research environment for astronomy and many other sciences.SciServer enables these collaborative research strategies using Jupyter notebooks, in which users can write their own Python and R scripts and execute them on the same server as the data. We have written special-purpose libraries for querying, reading, and writing data. Intermediate results can be stored in large scratch space (hundreds of TBs) and analyzed directly from within Python or R with state-of-the-art visualization and machine learning libraries. Users can store science-ready results in their permanent allocation on SciDrive, a Dropbox-like system for sharing and publishing files.SciServer Compute’s virtual research environment has grown with the addition of task management and access control functions, allowing collaborators to share both data and analysis scripts securely across the world. These features also open up new possibilities for education, allowing instructors to share datasets with students and students to write analysis scripts to share with their instructors. We are leveraging these features into a new system called “SciServer Courseware,” which will allow instructors to share assignments with their students, allowing students to engage with big data in new ways.SciServer has also expanded to include more datasets beyond the Sloan Digital Sky Survey. A part of that growth has been the addition of the SkyQuery component, which allows for simple, fast

  5. [The backgroud sky subtraction around [OIII] line in LAMOST QSO spectra].

    Science.gov (United States)

    Shi, Zhi-Xin; Comte, Georges; Luo, A-Li; Tu, Liang-Ping; Zhao, Yong-Heng; Wu, Fu-Chao

    2014-11-01

    At present, most sky-subtraction methods focus on the full spectrum, not the particular location, especially for the backgroud sky around [OIII] line which is very important to low redshift quasars. A new method to precisely subtract sky lines in local region is proposed in the present paper, which sloves the problem that the width of Hβ-[OIII] line is effected by the backgroud sky subtraction. The exprimental results show that, for different redshift quasars, the spectral quality has been significantly improved using our method relative to the original batch program by LAMOST. It provides a complementary solution for the small part of LAMOST spectra which are not well handled by LAMOST 2D pipeline. Meanwhile, This method has been used in searching for candidates of double-peaked Active Galactic Nuclei.

  6. Sky Detection in Hazy Image.

    Science.gov (United States)

    Song, Yingchao; Luo, Haibo; Ma, Junkai; Hui, Bin; Chang, Zheng

    2018-04-01

    Sky detection plays an essential role in various computer vision applications. Most existing sky detection approaches, being trained on ideal dataset, may lose efficacy when facing unfavorable conditions like the effects of weather and lighting conditions. In this paper, a novel algorithm for sky detection in hazy images is proposed from the perspective of probing the density of haze. We address the problem by an image segmentation and a region-level classification. To characterize the sky of hazy scenes, we unprecedentedly introduce several haze-relevant features that reflect the perceptual hazy density and the scene depth. Based on these features, the sky is separated by two imbalance SVM classifiers and a similarity measurement. Moreover, a sky dataset (named HazySky) with 500 annotated hazy images is built for model training and performance evaluation. To evaluate the performance of our method, we conducted extensive experiments both on our HazySky dataset and the SkyFinder dataset. The results demonstrate that our method performs better on the detection accuracy than previous methods, not only under hazy scenes, but also under other weather conditions.

  7. Modelling and Display of the Ultraviolet Sky

    Science.gov (United States)

    Daniels, J.; Henry, R.; Murthy, J.; Allen, M.; McGlynn, T. A.; Scollick, K.

    1994-12-01

    A computer program is currently under development to model in 3D - one dimension of which is wavelength - all the known and major speculated sources of ultraviolet (900 A - 3100 A ) radiation over the celestial sphere. The software is being written in Fortran 77 and IDL and currently operates under IRIX (the operating system of the Silicon Graphics Iris Machine); all output models are in FITS format. Models along with display software will become available to the astronomical community. The Ultraviolet Sky Model currently includes the Zodiacal Light, Point Sources of Emission, and the Diffuse Galactic Light. The Ultraviolet Sky Model is currently displayed using SkyView: a package under development at NASA/ GSFC, which allows users to retrieve and display publically available all-sky astronomical survey data (covering many wavebands) over the Internet. We present a demonstration of the SkyView display of the Ultraviolet Model. The modelling is a five year development project: the work illustrated here represents product output at the end of year one. Future work includes enhancements to the current models and incorporation of the following models: Galactic Molecular Hydrogen Fluorescence; Galactic Highly Ionized Atomic Line Emission; Integrated Extragalactic Light; and speculated sources in the intergalactic medium such as Ionized Plasma and radiation from Non-Baryonic Particle Decay. We also present a poster which summarizes the components of the Ultraviolet Sky Model and outlines a further package that will be used to display the Ultraviolet Model. This work is supported by United States Air Force Contract F19628-93-K-0004. Dr J. Daniels is supported with a post-doctoral Fellowship from the Leverhulme Foundation, London, United Kingdom. We are also grateful for the encouragement of Dr Stephen Price (Phillips Laboratory, Hanscomb Air Force Base, MA)

  8. Teaching Astronomy Through Art: Under Southern Skies -- Aboriginal and Western Scientific Perspectives of the Australian Night Sky

    Science.gov (United States)

    Majewski, S. R.; Boles, M. S.; Patterson, R. J.

    1999-12-01

    We have created an exhibit, Under Southern Skies -- Aboriginal and Western Scientific Perspectives of the Australian Night Sky, which has shown since June, 1999 in newly refurbished exhibit space at the Leander McCormick Observatory. The University of Virginia has a long and continuing tradition of astrometry starting with early parallax work at the McCormick Observatory, extending to our own NSF CAREER Award-funded projects, and including a long-term, ongoing southern parallax program at Mt. Stromlo and Siding Springs Observatories in Australia. Recently, through a gift of Mr. John Kluge, the University of Virginia has obtained one of the most extensive collections of Australian Aboriginal art outside of Australia. The goal of our exhibit is to unite the University's scientific, artistic and cultural connections to Australia through an exhibit focusing on different perspectives of the Australian night sky. We have brought together Australian Aboriginal bark and canvas paintings that feature astronomical themes, e.g., Milky Way, Moon, Magellanic Cloud and Seven Sisters Dreamings, from the Kluge-Ruhe and private collections. These paintings, from the Central Desert and Arnhem Land regions of Australia, are intermingled with modern, large format, color astronomical images of the same scenes. Descriptive panels and a small gallery guide explain the cultural, artistic and scientific aspects of the various thematic groupings based on particular southern hemisphere night sky objects and associated Aboriginal traditions and stories. This unusual combination of art and science not only provides a unique avenue for educating the public about both astronomy and Australian Aboriginal culture, but highlights mankind's ancient and continuing connection to the night sky. We appreciate funding from NSF CAREER Award #AST-9702521, a Cottrell Scholar Award from The Research Corporation, and the Dept. of Astronomy and Ruhe-Kluge Collection at the University of Virginia.

  9. Integrated plant safety assessment. Systematic evaluation program, Big Rock Point Plant (Docket No. 50-155). Final report

    International Nuclear Information System (INIS)

    1984-05-01

    The Systematic Evaluation Program was initiated in February 1977 by the U.S. Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when the supplement to the Final Integrated Plant Safety Assessment Report has been issued. This report documents the review of the Big Rock Point Plant, which is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. It also addresses a majority of the pending licensing actions for Big Rock Point, which include TMI Action Plan requirements and implementation criteria for resolved generic issues. Equipment and procedural changes have been identified as a result of the review

  10. Sky coverage modeling for the whole sky for laser guide star multiconjugate adaptive optics.

    Science.gov (United States)

    Wang, Lianqi; Andersen, David; Ellerbroek, Brent

    2012-06-01

    The scientific productivity of laser guide star adaptive optics systems strongly depends on the sky coverage, which describes the probability of finding natural guide stars for the tip/tilt wavefront sensor(s) to achieve a certain performance. Knowledge of the sky coverage is also important for astronomers planning their observations. In this paper, we present an efficient method to compute the sky coverage for the laser guide star multiconjugate adaptive optics system, the Narrow Field Infrared Adaptive Optics System (NFIRAOS), being designed for the Thirty Meter Telescope project. We show that NFIRAOS can achieve more than 70% sky coverage over most of the accessible sky with the requirement of 191 nm total rms wavefront.

  11. Infrared Sky Imager (IRSI) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Victor R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    The Infrared Sky Imager (IRSI) deployed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility is a Solmirus Corp. All Sky Infrared Visible Analyzer. The IRSI is an automatic, continuously operating, digital imaging and software system designed to capture hemispheric sky images and provide time series retrievals of fractional sky cover during both the day and night. The instrument provides diurnal, radiometrically calibrated sky imagery in the mid-infrared atmospheric window and imagery in the visible wavelengths for cloud retrievals during daylight hours. The software automatically identifies cloudy and clear regions at user-defined intervals and calculates fractional sky cover, providing a real-time display of sky conditions.

  12. Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky Imager Solar Forecasting

    Science.gov (United States)

    Kurtz, Benjamin Bernard

    In recent years, ground-based sky imagers have emerged as a promising tool for forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the development of sky imager hardware and algorithms at UC San Diego, we present three new or improved algorithms for sky imager forecasting and forecast evaluation. First, we present an algorithm for measuring irradiance with a sky imager. Sky imager forecasts are often used in conjunction with other instruments for measuring irradiance, so this has the potential to decrease instrumentation costs and logistical complexity. In particular, the forecast algorithm itself often relies on knowledge of the current irradiance which can now be provided directly from the sky images. Irradiance measurements are accurate to within about 10%. Second, we demonstrate a virtual sky imager testbed that can be used for validating and enhancing the forecast algorithm. The testbed uses high-quality (but slow) simulations to produce virtual clouds and sky images. Because virtual cloud locations are known, much more advanced validation procedures are possible with the virtual testbed than with measured data. In this way, we are able to determine that camera geometry and non-uniform evolution of the cloud field are the two largest sources of forecast error. Finally, with the assistance of the virtual sky imager testbed, we develop improvements to the cloud advection model used for forecasting. The new advection schemes are 10-20% better at short time horizons.

  13. Big data analytics turning big data into big money

    CERN Document Server

    Ohlhorst, Frank J

    2012-01-01

    Unique insights to implement big data analytics and reap big returns to your bottom line Focusing on the business and financial value of big data analytics, respected technology journalist Frank J. Ohlhorst shares his insights on the newly emerging field of big data analytics in Big Data Analytics. This breakthrough book demonstrates the importance of analytics, defines the processes, highlights the tangible and intangible values and discusses how you can turn a business liability into actionable material that can be used to redefine markets, improve profits and identify new business opportuni

  14. SciServer Compute brings Analysis to Big Data in the Cloud

    Science.gov (United States)

    Raddick, Jordan; Medvedev, Dmitry; Lemson, Gerard; Souter, Barbara

    2016-06-01

    SciServer Compute uses Jupyter Notebooks running within server-side Docker containers attached to big data collections to bring advanced analysis to big data "in the cloud." SciServer Compute is a component in the SciServer Big-Data ecosystem under development at JHU, which will provide a stable, reproducible, sharable virtual research environment.SciServer builds on the popular CasJobs and SkyServer systems that made the Sloan Digital Sky Survey (SDSS) archive one of the most-used astronomical instruments. SciServer extends those systems with server-side computational capabilities and very large scratch storage space, and further extends their functions to a range of other scientific disciplines.Although big datasets like SDSS have revolutionized astronomy research, for further analysis, users are still restricted to downloading the selected data sets locally - but increasing data sizes make this local approach impractical. Instead, researchers need online tools that are co-located with data in a virtual research environment, enabling them to bring their analysis to the data.SciServer supports this using the popular Jupyter notebooks, which allow users to write their own Python and R scripts and execute them on the server with the data (extensions to Matlab and other languages are planned). We have written special-purpose libraries that enable querying the databases and other persistent datasets. Intermediate results can be stored in large scratch space (hundreds of TBs) and analyzed directly from within Python or R with state-of-the-art visualization and machine learning libraries. Users can store science-ready results in their permanent allocation on SciDrive, a Dropbox-like system for sharing and publishing files. Communication between the various components of the SciServer system is managed through SciServer‘s new Single Sign-on Portal.We have created a number of demos to illustrate the capabilities of SciServer Compute, including Python and R scripts

  15. Treasures of the Southern Sky

    CERN Document Server

    Gendler, Robert; Malin, David

    2011-01-01

    In these pages, the reader can follow the engaging saga of astronomical exploration in the southern hemisphere, in a modern merger of aesthetics, science, and a story of human endeavor. This book is truly a celebration of southern skies.  Jerry Bonnell, Editor - Astronomy Picture of the Day The southern sky became accessible to scientific scrutiny only a few centuries ago, after the first European explorers ventured south of the equator. Modern observing and imaging techniques have since revealed what seems like a new Universe, previously hidden below the horizon, a fresh astronomical bounty of beauty and knowledge uniquely different from the northern sky. The authors have crafted a book that brings this hidden Universe to all, regardless of location or latitude. Treasures of the Southern Sky celebrates the remarkable beauty and richness of the southern sky in words and with world-class imagery. In part, a photographic anthology of deep sky wonders south of the celestial equator, this book also celebrates th...

  16. LSVT LOUD and LSVT BIG: Behavioral Treatment Programs for Speech and Body Movement in Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Cynthia Fox

    2012-01-01

    Full Text Available Recent advances in neuroscience have suggested that exercise-based behavioral treatments may improve function and possibly slow progression of motor symptoms in individuals with Parkinson disease (PD. The LSVT (Lee Silverman Voice Treatment Programs for individuals with PD have been developed and researched over the past 20 years beginning with a focus on the speech motor system (LSVT LOUD and more recently have been extended to address limb motor systems (LSVT BIG. The unique aspects of the LSVT Programs include the combination of (a an exclusive target on increasing amplitude (loudness in the speech motor system; bigger movements in the limb motor system, (b a focus on sensory recalibration to help patients recognize that movements with increased amplitude are within normal limits, even if they feel “too loud” or “too big,” and (c training self-cueing and attention to action to facilitate long-term maintenance of treatment outcomes. In addition, the intensive mode of delivery is consistent with principles that drive activity-dependent neuroplasticity and motor learning. The purpose of this paper is to provide an integrative discussion of the LSVT Programs including the rationale for their fundamentals, a summary of efficacy data, and a discussion of limitations and future directions for research.

  17. Big Opportunities and Big Concerns of Big Data in Education

    Science.gov (United States)

    Wang, Yinying

    2016-01-01

    Against the backdrop of the ever-increasing influx of big data, this article examines the opportunities and concerns over big data in education. Specifically, this article first introduces big data, followed by delineating the potential opportunities of using big data in education in two areas: learning analytics and educational policy. Then, the…

  18. The night sky companion a yearly guide to sky-watching 2008-2009

    CERN Document Server

    Plotner, Tammy

    2007-01-01

    The Night Sky Companion is a comprehensive guide to what can be explored in the heavens on a nightly basis. Designed to appeal to readers at all skill levels, it provides a digest for sky watchers interested in all types of astronomical information.

  19. Big data in biomedicine.

    Science.gov (United States)

    Costa, Fabricio F

    2014-04-01

    The increasing availability and growth rate of biomedical information, also known as 'big data', provides an opportunity for future personalized medicine programs that will significantly improve patient care. Recent advances in information technology (IT) applied to biomedicine are changing the landscape of privacy and personal information, with patients getting more control of their health information. Conceivably, big data analytics is already impacting health decisions and patient care; however, specific challenges need to be addressed to integrate current discoveries into medical practice. In this article, I will discuss the major breakthroughs achieved in combining omics and clinical health data in terms of their application to personalized medicine. I will also review the challenges associated with using big data in biomedicine and translational science. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Scaling Big Data Cleansing

    KAUST Repository

    Khayyat, Zuhair

    2017-01-01

    on top of general-purpose distributed platforms. Its programming inter- face allows users to express data quality rules independently from the requirements of parallel and distributed environments. Without sacrificing their quality, BigDans- ing also

  1. Sky Subtraction with Fiber-Fed Spectrograph

    Science.gov (United States)

    Rodrigues, Myriam

    2017-09-01

    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  2. Adnyamathanha Night Skies

    Science.gov (United States)

    Curnow, Paul

    2009-06-01

    Aboriginal Australians have been viewing the night skies of Australia for some 45,000 years and possibly much longer. During this time they have been able to develop a complex knowledge of the night sky, the terrestrial environment in addition to seasonal changes. However, few of us in contemporary society have an in-depth knowledge of the nightly waltz of stars above.

  3. "Dark Skies, Bright Kids" -- Astronomy Education and Outreach in Rural Virginia

    Science.gov (United States)

    Zasowski, Gail; Johnson, K.; Beaton, R.; Carlberg, J.; Czekala, I.; de Messieres, G.; Drosback, M.; Filipetti, C.; Gugliucci, N.; Hoeft, A.; Jackson, L.; Lynch, R.; Romero, C.; Sivakoff, G.; Whelan, D.; Wong, A.

    2010-01-01

    In the hills of central Virginia, the extraordinarily dark nighttime skies of southern Albemarle County provide a natural outdoor classroom for local science education. Until recently, this rural area lacked the financial and educational support to take full advantage of this rare and valuable natural resource. With funds provided by the NSF, a team of volunteers from the University of Virginia introduced a new program this fall called "Dark Skies - Bright Kids," which promotes science education at the elementary school level through a wide range of activities. The program volunteers (comprising undergraduate and graduate students, postdocs, and faculty) have sought to develop a coherent schedule of fun and educational activities throughout the semester, with emphases on hands-on learning and critical thinking. For example, students learn about the constellations by making star-wheels, about rocketry by building and launching rockets, and about comets by assembling miniature analogs. Additional activities include stories about the scientific and cultural history of astronomy, visits by professional astronomers and popular book authors, and astronomy-themed exercises in art, music, and physical education. These projects are designed to make astronomy, and by extension all science, accessible and appealing to each student. Family involvement is important in any educational environment, particularly at the elementary school level. To include the students' families and the larger community in "Dark Skies," we hold weekly telescope observing sessions at the school. Here, all interested parties can come together to hear what the students are learning and view astronomical objects through a small telescope. We hope that this well-received program will soon expand to other disadvantaged schools in the area. The "Dark Skies" team is proud and excited to have an impact on the scientific literacy of the students in these starry-skied communities!

  4. Causality and skies: is non-refocussing necessary?

    International Nuclear Information System (INIS)

    Bautista, A; Ibort, A; Lafuente, J

    2015-01-01

    The causal structure of a strongly causal, null pseudo-convex, space-time M is completely characterized in terms of a partial order on its space of skies defined by means of a class of non-negative Legendrian isotopies called sky isotopies. It is also shown that such partial order is determined by the class of future causal celestial curves, that is, curves in the space of light rays which are tangent to skies and such that they determine non-negative sky isotopies. It will also be proved that the space of skies Σ equipped with Low’s (or reconstructive) topology is homeomorphic and diffeomorphic to M under the only additional assumption that M separates skies, that is, that different events determine different skies. The sky-separating property of M is sharp and the previous result provides an answer to the question about the class of space-times whose causal structure, topological and differentiable structure can be reconstructed from their spaces of light rays and skies. These results can be understood as a Malament–Hawking-like theorem stated in terms of the partial order defined on the space of skies. (paper)

  5. Determining Light Pollution of the Global Sky: GLOBE at Night

    Science.gov (United States)

    Henderson, S.; Meymaris, K.; Ward, D.; Walker, C.; Russell, R.; Pompea, S.; Salisbury, D.

    2006-05-01

    GLOBE at Night is an international science event designed to observe and record the visible stars as a means of measuring light pollution in a given location. Increased and robust understanding of our environment requires learning opportunities that take place outside of the conventional K-12 classroom and beyond the confines of the school day. This hands-on learning activity extended the traditional classroom and school day last March with a week of nighttime sky observations involving teachers, students and their families. The quality of the night sky for stellar observations is impacted by several factors including human activities. By observing cloud cover and locating specific constellations in the sky, students from around the world learned how the lights in their community contribute to light pollution, exploring the relationship between science, technology and their society. Students learned that light pollution impacts more than just the visibility of stars at night. Lights at night impact both the biology and ecology of many species in our environment. Students were able to participate in this global scientific campaign by submitting their observations through an online database, allowing for authentic worldwide research and analysis by participating scientists. Students and their families learned how latitude and longitude coordinates provide a location system to map and analyze the observation data submitted from around the globe. The collected data is available online for use by students, teachers and scientists worldwide to assess how the quality of the night sky varies around the world. This session will share how students and scientists across the globe can explore and analyze the results of this exciting campaign. GLOBE at Night is a collaborative effort sponsored by The GLOBE Program, the National Optical Astronomy Observatory (NOAO), Centro de Apoyo a la Didactica de la Astronomia (CADIAS), Windows to the Universe, and ESRI. The GLOBE Program is

  6. Intelligent Test Mechanism Design of Worn Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available With the continuous development of national economy, big gear was widely applied in metallurgy and mine domains. So, big gear plays an important role in above domains. In practical production, big gear abrasion and breach take place often. It affects normal production and causes unnecessary economic loss. A kind of intelligent test method was put forward on worn big gear mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. The measure equations transformations were made on involute straight gear. Original polar coordinate equations were transformed into rectangular coordinate equations. Big gear abrasion measure principle was introduced. Detection principle diagram was given. Detection route realization method was introduced. OADM12 laser sensor was selected. Detection on big gear abrasion area was realized by detection mechanism. Tested data of unworn gear and worn gear were led in designed calculation program written by Visual Basic language. Big gear abrasion quantity can be obtained. It provides a feasible method for intelligent test and intelligent repair welding on worn big gear.

  7. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Science.gov (United States)

    Gubler, S.; Gruber, S.; Purves, R. S.

    2012-06-01

    As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR) and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR). In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB) stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM) in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night. We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD) and the relative root mean squared deviance (RMSD) of the clear-sky global SDR scatter between between -2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations to local conditions

  8. Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation.

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2012-06-01

    Full Text Available As many environmental models rely on simulating the energy balance at the Earth's surface based on parameterized radiative fluxes, knowledge of the inherent model uncertainties is important. In this study we evaluate one parameterization of clear-sky direct, diffuse and global shortwave downward radiation (SDR and diverse parameterizations of clear-sky and all-sky longwave downward radiation (LDR. In a first step, SDR is estimated based on measured input variables and estimated atmospheric parameters for hourly time steps during the years 1996 to 2008. Model behaviour is validated using the high quality measurements of six Alpine Surface Radiation Budget (ASRB stations in Switzerland covering different elevations, and measurements of the Swiss Alpine Climate Radiation Monitoring network (SACRaM in Payerne. In a next step, twelve clear-sky LDR parameterizations are calibrated using the ASRB measurements. One of the best performing parameterizations is elected to estimate all-sky LDR, where cloud transmissivity is estimated using measured and modeled global SDR during daytime. In a last step, the performance of several interpolation methods is evaluated to determine the cloud transmissivity in the night.

    We show that clear-sky direct, diffuse and global SDR is adequately represented by the model when using measurements of the atmospheric parameters precipitable water and aerosol content at Payerne. If the atmospheric parameters are estimated and used as a fix value, the relative mean bias deviance (MBD and the relative root mean squared deviance (RMSD of the clear-sky global SDR scatter between between −2 and 5%, and 7 and 13% within the six locations. The small errors in clear-sky global SDR can be attributed to compensating effects of modeled direct and diffuse SDR since an overestimation of aerosol content in the atmosphere results in underestimating the direct, but overestimating the diffuse SDR. Calibration of LDR parameterizations

  9. Cosmic Origins Program Annual Technology Report

    Science.gov (United States)

    Pham, Bruce Thai; Neff, Susan Gale

    2015-01-01

    What is the Cosmic Origins (COR) Program? From ancient times, humans have looked up at the night sky and wondered: Are we alone? How did the universe come to be? How does the universe work? COR focuses on the second question. Scientists investigating this broad theme seek to understand the origin and evolution of the universe from the Big Bang to the present day, determining how the expanding universe grew into a grand cosmic web of dark matter enmeshed with galaxies and pristine gas, forming, merging, and evolving over time. COR also seeks to understand how stars and planets form from clouds in these galaxies to create the heavy elements that are essential to life starting with the first generation of stars to seed the universe, and continuing through the birth and eventual death of all subsequent generations of stars. The COR Programs purview includes the majority of the field known as astronomy, from antiquity to the present.

  10. Extended burnup demonstration: reactor fuel program. Pre-irradiation characterization and summary of pre-program poolside examinations. Big Rock Point extended burnup fuel

    International Nuclear Information System (INIS)

    Exarhos, C.A.; Van Swam, L.F.; Wahlquist, F.P.

    1981-12-01

    This report is a resource document characterizing the 64 fuel rods being irradiated at the Big Rock Point reactor as part of the Extended Burnup Demonstration being sponsored jointly by the US Department of Energy, Consumers Power Company, Exxon Nuclear Company, and General Public Utilities. The program entails extending the exposure of standard BWR fuel to a discharge average of 38,000 MWD/MTU to demonstrate the feasibility of operating fuel of standard design to levels significantly above current limits. The fabrication characteristics of the Big Rock Point EBD fuel are presented along with measurement of rod length, rod diameter, pellet stack height, and fuel rod withdrawal force taken at poolside at burnups up to 26,200 MWD/MTU. A review of the fuel examination data indicates no performance characteristics which might restrict the continued irradiation of the fuel

  11. 2014 Australasian sky guide

    CERN Document Server

    Lomb, Nick

    2013-01-01

    Compact, easy to use and reliable, this popular guide contains everything you need to know about the southern night sky with monthly astronomy maps, viewing tips and highlights, and details of all the year's exciting celestial events. Wherever you are in Australia or New Zealand, easy calculations allow you to estimate local rise and set times for the Sun, Moon and planets. The 2014 Australasian Sky Guide also provides information on the solar system, updated with the latest findings from space probes. Published annually since 1991, the Sky Guide continues to be a favourite with photographers,

  12. Adapting bioinformatics curricula for big data

    Science.gov (United States)

    Greene, Anna C.; Giffin, Kristine A.; Greene, Casey S.

    2016-01-01

    Modern technologies are capable of generating enormous amounts of data that measure complex biological systems. Computational biologists and bioinformatics scientists are increasingly being asked to use these data to reveal key systems-level properties. We review the extent to which curricula are changing in the era of big data. We identify key competencies that scientists dealing with big data are expected to possess across fields, and we use this information to propose courses to meet these growing needs. While bioinformatics programs have traditionally trained students in data-intensive science, we identify areas of particular biological, computational and statistical emphasis important for this era that can be incorporated into existing curricula. For each area, we propose a course structured around these topics, which can be adapted in whole or in parts into existing curricula. In summary, specific challenges associated with big data provide an important opportunity to update existing curricula, but we do not foresee a wholesale redesign of bioinformatics training programs. PMID:25829469

  13. Light pollution: Assessment of sky glow on two dark sky regions of Portugal.

    Science.gov (United States)

    Lima, Raul Cerveira; Pinto da Cunha, José; Peixinho, Nuno

    2016-01-01

    Artificial light at night (ALAN), producing light pollution (LP), is not a matter restricted to astronomy anymore. Light is part of modern societies and, as a consequence, the natural cycle day-night (bright-dark) has been interrupted in a large segment of the global population. There is increasing evidence that exposure to certain types of light at night and beyond threshold levels may produce hazardous effects to humans and the environment. The concept of "dark skies reserves" is a step forward in order to preserve the night sky and a means of enhancing public awareness of the problem of spread of light pollution worldwide. The aim of this study was to assess the skyglow at two sites in Portugal, the Peneda-Gerês National Park (PNPG) and the region now known as Dark Sky Alqueva Reserve. The latter site was classified as a "Starlight Tourism Destination" by the Starlight Foundation (the first in the world to achieve this classification) following a series of night sky measurements in situ described herein. The measurements at PNPG also contributed to the new set of regulations concerning light pollution at this national park. This study presents the first in situ systematic measurements of night sky brightness, showing that at the two sites the skies are mostly in levels 3 to 4 of the Bortle 9-level scale (with level 1 being the best achievable). The results indicate that the sources of light pollution and skyglow can be attributed predominantly to contamination from nearby urban regions.

  14. Big Math for Little Kids

    Science.gov (United States)

    Greenes, Carole; Ginsburg, Herbert P.; Balfanz, Robert

    2004-01-01

    "Big Math for Little Kids," a comprehensive program for 4- and 5-year-olds, develops and expands on the mathematics that children know and are capable of doing. The program uses activities and stories to develop ideas about number, shape, pattern, logical reasoning, measurement, operations on numbers, and space. The activities introduce the…

  15. NASA's Big Data Task Force

    Science.gov (United States)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  16. Education for Life in the Sky.

    Science.gov (United States)

    Roth, Charles E.

    1981-01-01

    The need to educate people about the sky as both a psychological and physical environment is discussed, including a formal curriculum schema (sky as habitat, sky as transport, influence on culture) and informal curriculum, with such topics as recreation, pollution, mythology, and clouds. (DC)

  17. Survey of Cyber Crime in Big Data

    Science.gov (United States)

    Rajeswari, C.; Soni, Krishna; Tandon, Rajat

    2017-11-01

    Big data is like performing computation operations and database operations for large amounts of data, automatically from the data possessor’s business. Since a critical strategic offer of big data access to information from numerous and various areas, security and protection will assume an imperative part in big data research and innovation. The limits of standard IT security practices are notable, with the goal that they can utilize programming sending to utilize programming designers to incorporate pernicious programming in a genuine and developing risk in applications and working frameworks, which are troublesome. The impact gets speedier than big data. In this way, one central issue is that security and protection innovation are sufficient to share controlled affirmation for countless direct get to. For powerful utilization of extensive information, it should be approved to get to the information of that space or whatever other area from a space. For a long time, dependable framework improvement has arranged a rich arrangement of demonstrated ideas of demonstrated security to bargain to a great extent with the decided adversaries, however this procedure has been to a great extent underestimated as “needless excess” and sellers In this discourse, essential talks will be examined for substantial information to exploit this develop security and protection innovation, while the rest of the exploration difficulties will be investigated.

  18. Big Data: Are Biomedical and Health Informatics Training Programs Ready? Contribution of the IMIA Working Group for Health and Medical Informatics Education.

    Science.gov (United States)

    Otero, P; Hersh, W; Jai Ganesh, A U

    2014-08-15

    The growing volume and diversity of health and biomedical data indicate that the era of Big Data has arrived for healthcare. This has many implications for informatics, not only in terms of implementing and evaluating information systems, but also for the work and training of informatics researchers and professionals. This article addresses the question: What do biomedical and health informaticians working in analytics and Big Data need to know? We hypothesize a set of skills that we hope will be discussed among academic and other informaticians. The set of skills includes: Programming - especially with data-oriented tools, such as SQL and statistical programming languages; Statistics - working knowledge to apply tools and techniques; Domain knowledge - depending on one's area of work, bioscience or health care; and Communication - being able to understand needs of people and organizations, and articulate results back to them. Biomedical and health informatics educational programs must introduce concepts of analytics, Big Data, and the underlying skills to use and apply them into their curricula. The development of new coursework should focus on those who will become experts, with training aiming to provide skills in "deep analytical talent" as well as those who need knowledge to support such individuals.

  19. Sky cover from MFRSR observations

    Directory of Open Access Journals (Sweden)

    E. Kassianov

    2011-07-01

    Full Text Available The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their modeled clear-sky counterparts are the main components of a new method for estimating the fractional sky cover of different cloud types, including cumuli. The performance of this method is illustrated using 1-min resolution data from a ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR. The MFRSR data are collected at the US Department of Energy Atmospheric Radiation Measurement (ARM Climate Research Facility (ACRF Southern Great Plains (SGP site during the summer of 2007 and represent 13 days with cumuli. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.

  20. An Investigation of LED Street Lighting's Impact on Sky Glow

    Energy Technology Data Exchange (ETDEWEB)

    Kinzey, Bruce R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Perrin, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Naomi J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kocifaj, Miroslav [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Aube, Martin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lamphar, Hector A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-04-25

    A significant amount of public attention has recently focused on perceived impacts of converting street lighting from incumbent lamp-based products to LED technology. Much of this attention pertains to the higher content of short wavelength light (commonly referred to as "blue light") of LEDs and its attendant influences on sky glow (a brightening of the night sky that can interfere with astronomical observation and may be associated with a host of other issues). The complexity of this topic leads to common misunderstandings and misperceptions among the public, and for this reason the U.S. Department of Energy Solid-State Lighting Program embarked on a study of sky glow using a well-established astronomical model to investigate some of the primary factors influencing sky glow. This report details the results of the investigation and attempts to present those results in terms accessible to the general lighting community. The report also strives to put the results into a larger context, and help educate interested readers on various topics relevant to the issues being discussed.

  1. Big Data-Survey

    Directory of Open Access Journals (Sweden)

    P.S.G. Aruna Sri

    2016-03-01

    Full Text Available Big data is the term for any gathering of information sets, so expensive and complex, that it gets to be hard to process for utilizing customary information handling applications. The difficulties incorporate investigation, catch, duration, inquiry, sharing, stockpiling, Exchange, perception, and protection infringement. To reduce spot business patterns, anticipate diseases, conflict etc., we require bigger data sets when compared with the smaller data sets. Enormous information is hard to work with utilizing most social database administration frameworks and desktop measurements and perception bundles, needing rather enormously parallel programming running on tens, hundreds, or even a large number of servers. In this paper there was an observation on Hadoop architecture, different tools used for big data and its security issues.

  2. TWO MICRON ALL SKY SURVEY PHOTOMETRIC REDSHIFT CATALOG: A COMPREHENSIVE THREE-DIMENSIONAL CENSUS OF THE WHOLE SKY

    International Nuclear Information System (INIS)

    Bilicki, Maciej; Jarrett, Thomas H.; Cluver, Michelle E.; Steward, Louise; Peacock, John A.

    2014-01-01

    Key cosmological applications require the three-dimensional (3D) galaxy distribution on the entire celestial sphere. These include measuring the gravitational pull on the Local Group, estimating the large-scale bulk flow, and testing the Copernican principle. However, the largest all-sky redshift surveys—the 2MASS Redshift Survey and IRAS Point Source Catalog Redshift Survey—have median redshifts of only z = 0.03 and sample the very local universe. All-sky galaxy catalogs exist that reach much deeper—SuperCOSMOS in the optical, the Two Micron All Sky Survey (2MASS) in the near-IR, and WISE in the mid-IR—but these lack complete redshift information. At present, the only rapid way toward larger 3D catalogs covering the whole sky is through photometric redshift techniques. In this paper we present the 2MASS Photometric Redshift catalog (2MPZ) containing one million galaxies, constructed by cross-matching Two Micron All Sky Survey Extended Source Catalog (2MASS XSC), WISE, and SuperCOSMOS all-sky samples and employing the artificial neural network approach (the ANNz algorithm), trained on such redshift surveys as the Sloan Digital Sky Survey, 6dFGS, and 2dFGRS. The derived photometric redshifts have errors nearly independent of distance, with an all-sky accuracy of σ z = 0.015 and a very small percentage of outliers. In this way, we obtain redshift estimates with a typical precision of 12% for all the 2MASS XSC galaxies that lack spectroscopy. In addition, we have made an early effort toward probing the entire 3D sky beyond 2MASS, by pairing up WISE with SuperCOSMOS and training the ANNz on GAMA redshift data currently reaching to z med ∼ 0.2. This has yielded photo-z accuracies comparable to those in the 2MPZ. These all-sky photo-z catalogs, with a median z ∼ 0.1 for the 2MPZ, and significantly deeper for future WISE-based samples, will be the largest and most complete of their kind for the foreseeable future

  3. Large scale and big data processing and management

    CERN Document Server

    Sakr, Sherif

    2014-01-01

    Large Scale and Big Data: Processing and Management provides readers with a central source of reference on the data management techniques currently available for large-scale data processing. Presenting chapters written by leading researchers, academics, and practitioners, it addresses the fundamental challenges associated with Big Data processing tools and techniques across a range of computing environments.The book begins by discussing the basic concepts and tools of large-scale Big Data processing and cloud computing. It also provides an overview of different programming models and cloud-bas

  4. The SPHEREx All-Sky Spectroscopic Survey

    Science.gov (United States)

    Unwin, Stephen C.; SPHEREx Science Team, SPHEREx Project Team

    2016-06-01

    SPHEREx is a mission to conduct an optical-near-IR survey of the entire sky with a spectrum at every pixel location. It was selected by NASA for a Phase A study in its Small Explorer Program; if selected, development would begin in 2016, and the observatory would start a 2-year prime mission in 2020. An all-sky spectroscopic survey can be used to tackle a wide range of science questions. The SPHEREx science team is focusing on three: (1) Probing the physics of inflation through measuring non-Gaussianity from the study of large-scale structure; (2) Studying the origin of water and biogenic molecules in a wide range of physical and chemical environments via ice absorption spectra; (3) Charting the history of star formation in the universe through intensity mapping of the large-scale spatial power. The instrument is a small wide-field telescope operating in the range of 0.75 - 4.8 µm at a spectral resolution of 41.5 in the optical and 150 at the long-wavelength end. It observes in a sun-sync low-earth orbit, covering the sky like WISE and COBE. SPHEREx is a simple instrument that requires no new technology. The Phase A design has substantial technical and resource margins and can be built with low risk. It is a partnership between Caltech and JPL, with Ball Aerospace and the Korea Astronomy and Space Science Institute as major partners. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Night sky a falcon field guide

    CERN Document Server

    Nigro, Nicholas

    2012-01-01

    Night Sky: A Falcon Field Guide covers both summer and winter constellations, planets, and stars found in the northern hemisphere. Conveniently sized to fit in a pocket and featuring detailed photographs, this informative guide makes it easy to identify objects in the night sky even from one's own backyard. From information on optimal weather conditions, preferred viewing locations, and how to use key tools of the trade, this handbook will help you adeptly navigate to and fro the vast and dynamic nighttime skies, and you'll fast recognize that the night sky's the limit.

  6. Adapting bioinformatics curricula for big data.

    Science.gov (United States)

    Greene, Anna C; Giffin, Kristine A; Greene, Casey S; Moore, Jason H

    2016-01-01

    Modern technologies are capable of generating enormous amounts of data that measure complex biological systems. Computational biologists and bioinformatics scientists are increasingly being asked to use these data to reveal key systems-level properties. We review the extent to which curricula are changing in the era of big data. We identify key competencies that scientists dealing with big data are expected to possess across fields, and we use this information to propose courses to meet these growing needs. While bioinformatics programs have traditionally trained students in data-intensive science, we identify areas of particular biological, computational and statistical emphasis important for this era that can be incorporated into existing curricula. For each area, we propose a course structured around these topics, which can be adapted in whole or in parts into existing curricula. In summary, specific challenges associated with big data provide an important opportunity to update existing curricula, but we do not foresee a wholesale redesign of bioinformatics training programs. © The Author 2015. Published by Oxford University Press.

  7. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach

    Directory of Open Access Journals (Sweden)

    Mike W.-L. Cheung

    2016-05-01

    Full Text Available Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists – and probably the most crucial one – is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study.

  8. Analyzing Big Data in Psychology: A Split/Analyze/Meta-Analyze Approach.

    Science.gov (United States)

    Cheung, Mike W-L; Jak, Suzanne

    2016-01-01

    Big data is a field that has traditionally been dominated by disciplines such as computer science and business, where mainly data-driven analyses have been performed. Psychology, a discipline in which a strong emphasis is placed on behavioral theories and empirical research, has the potential to contribute greatly to the big data movement. However, one challenge to psychologists-and probably the most crucial one-is that most researchers may not have the necessary programming and computational skills to analyze big data. In this study we argue that psychologists can also conduct big data research and that, rather than trying to acquire new programming and computational skills, they should focus on their strengths, such as performing psychometric analyses and testing theories using multivariate analyses to explain phenomena. We propose a split/analyze/meta-analyze approach that allows psychologists to easily analyze big data. Two real datasets are used to demonstrate the proposed procedures in R. A new research agenda related to the analysis of big data in psychology is outlined at the end of the study.

  9. Epidemiology in the Era of Big Data

    Science.gov (United States)

    Mooney, Stephen J; Westreich, Daniel J; El-Sayed, Abdulrahman M

    2015-01-01

    Big Data has increasingly been promoted as a revolutionary development in the future of science, including epidemiology. However, the definition and implications of Big Data for epidemiology remain unclear. We here provide a working definition of Big Data predicated on the so-called ‘3 Vs’: variety, volume, and velocity. From this definition, we argue that Big Data has evolutionary and revolutionary implications for identifying and intervening on the determinants of population health. We suggest that as more sources of diverse data become publicly available, the ability to combine and refine these data to yield valid answers to epidemiologic questions will be invaluable. We conclude that, while epidemiology as practiced today will continue to be practiced in the Big Data future, a component of our field’s future value lies in integrating subject matter knowledge with increased technical savvy. Our training programs and our visions for future public health interventions should reflect this future. PMID:25756221

  10. How Big Are "Martin's Big Words"? Thinking Big about the Future.

    Science.gov (United States)

    Gardner, Traci

    "Martin's Big Words: The Life of Dr. Martin Luther King, Jr." tells of King's childhood determination to use "big words" through biographical information and quotations. In this lesson, students in grades 3 to 5 explore information on Dr. King to think about his "big" words, then they write about their own…

  11. A Chinese sky trust?

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, Mark [Political Economy Research Institute, University of Massachusetts, Amherst (United States)]. E-mail: brenner@econs.umass.edu; Riddle, Matthew [Department of Economics, University of Massachusetts, Amherst (United States)]. E-mail: mriddle@econs.umass.edu; Boyce, James K. [Political Economy Research Institute and Department of Economics, University of Massachusetts, Amherst (United States)]. E-mail: boyce@econs.umass.edu

    2007-03-15

    The introduction of carbon charges on the use of fossil fuels in China would have a progressive impact on income distribution. This outcome, which contrasts to the regressive distributional impact found in most studies of carbon charges in industrialized countries, is driven primarily by differences between urban and rural expenditure patterns. If carbon revenues were recycled on an equal per capita basis via a 'sky trust,' the progressive impact would be further enhanced: low-income (mainly rural) households would receive more in sky-trust dividends than they pay in carbon charges, and high-income (mainly urban) households would pay more than they receive in dividends. Thus a Chinese sky trust would contribute to both lower fossil fuel consumption and greater income equality.

  12. A Chinese sky trust?

    International Nuclear Information System (INIS)

    Brenner, Mark; Riddle, Matthew; Boyce, James K.

    2007-01-01

    The introduction of carbon charges on the use of fossil fuels in China would have a progressive impact on income distribution. This outcome, which contrasts to the regressive distributional impact found in most studies of carbon charges in industrialized countries, is driven primarily by differences between urban and rural expenditure patterns. If carbon revenues were recycled on an equal per capita basis via a 'sky trust,' the progressive impact would be further enhanced: low-income (mainly rural) households would receive more in sky-trust dividends than they pay in carbon charges, and high-income (mainly urban) households would pay more than they receive in dividends. Thus a Chinese sky trust would contribute to both lower fossil fuel consumption and greater income equality

  13. Cartography in the Age of Spatio-temporal Big Data

    Directory of Open Access Journals (Sweden)

    WANG Jiayao

    2017-10-01

    Full Text Available Cartography is an ancient science with almost the same long history as the world's oldest culture.Since ancient times,the movement and change of anything and any phenomena,including human activities,have been carried out in a certain time and space.The development of science and technology and the progress of social civilization have made social management and governance more and more dependent on time and space.The information source,theme,content,carrier,form,production methods and application methods of map are different in different historical periods,so that its all-round value is different. With the arrival of the big data age,the scientific paradigm has now entered the era of "data-intensive" paradigm,so is the cartography,with obvious characteristics of big data science.All big data are caused by movement and change of all things and phenomena in the geographic world,so they have space and time characteristics and thus cannot be separated from the spatial reference and time reference.Therefore,big data is big spatio-temporal data essentially.Since the late 1950s and early 1960s,modern cartography,that is,the cartography in the information age,takes spatio-temporal data as the object,and focuses on the processing and expression of spatio-temporal data,but not in the face of the large scale multi-source heterogeneous and multi-dimensional dynamic data flow(or flow datafrom sky to the sea.The real-time dynamic nature,the theme pertinence,the content complexity,the carrier diversification,the expression form personalization,the production method modernization,the application ubiquity of the map,is incomparable in the past period,which leads to the great changes of the theory,technology and application system of cartography.And all these changes happen to occur in the 60 years since the late 1950s and early 1960s,so this article was written to commemorate the 60th anniversary of the "Acta Geodaetica et Cartographica Sinica".

  14. Big Data Provenance: Challenges, State of the Art and Opportunities.

    Science.gov (United States)

    Wang, Jianwu; Crawl, Daniel; Purawat, Shweta; Nguyen, Mai; Altintas, Ilkay

    2015-01-01

    Ability to track provenance is a key feature of scientific workflows to support data lineage and reproducibility. The challenges that are introduced by the volume, variety and velocity of Big Data, also pose related challenges for provenance and quality of Big Data, defined as veracity. The increasing size and variety of distributed Big Data provenance information bring new technical challenges and opportunities throughout the provenance lifecycle including recording, querying, sharing and utilization. This paper discusses the challenges and opportunities of Big Data provenance related to the veracity of the datasets themselves and the provenance of the analytical processes that analyze these datasets. It also explains our current efforts towards tracking and utilizing Big Data provenance using workflows as a programming model to analyze Big Data.

  15. Processing Solutions for Big Data in Astronomy

    Science.gov (United States)

    Fillatre, L.; Lepiller, D.

    2016-09-01

    This paper gives a simple introduction to processing solutions applied to massive amounts of data. It proposes a general presentation of the Big Data paradigm. The Hadoop framework, which is considered as the pioneering processing solution for Big Data, is described together with YARN, the integrated Hadoop tool for resource allocation. This paper also presents the main tools for the management of both the storage (NoSQL solutions) and computing capacities (MapReduce parallel processing schema) of a cluster of machines. Finally, more recent processing solutions like Spark are discussed. Big Data frameworks are now able to run complex applications while keeping the programming simple and greatly improving the computing speed.

  16. The one square meter hard X-ray (15-200 KeV) sky survey

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; La Padula, C.D.; Polcaro, V.F.

    1981-01-01

    A long term program was started at I.A.S. since 1979 to perform a survey of the hard X-ray sky using multiwire high pressure Xenon filled Spectroscopic Proportional Counters (SPC). The first payload consisting of two very large area SPC (2,700 cm 2 each) was flown during summer 1980 from the Milo Base (Sicily, Italy). The instrument duplicated to reach 10,800 cm 2 geometric area is expected to fly from northern (1981), southern (1982) and equatorial (1983) bases to perform a deep sky survey

  17. SkyNet: Modular nuclear reaction network library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-10-01

    The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

  18. SkyQuery - A Prototype Distributed Query and Cross-Matching Web Service for the Virtual Observatory

    Science.gov (United States)

    Thakar, A. R.; Budavari, T.; Malik, T.; Szalay, A. S.; Fekete, G.; Nieto-Santisteban, M.; Haridas, V.; Gray, J.

    2002-12-01

    We have developed a prototype distributed query and cross-matching service for the VO community, called SkyQuery, which is implemented with hierarchichal Web Services. SkyQuery enables astronomers to run combined queries on existing distributed heterogeneous astronomy archives. SkyQuery provides a simple, user-friendly interface to run distributed queries over the federation of registered astronomical archives in the VO. The SkyQuery client connects to the portal Web Service, which farms the query out to the individual archives, which are also Web Services called SkyNodes. The cross-matching algorithm is run recursively on each SkyNode. Each archive is a relational DBMS with a HTM index for fast spatial lookups. The results of the distributed query are returned as an XML DataSet that is automatically rendered by the client. SkyQuery also returns the image cutout corresponding to the query result. SkyQuery finds not only matches between the various catalogs, but also dropouts - objects that exist in some of the catalogs but not in others. This is often as important as finding matches. We demonstrate the utility of SkyQuery with a brown-dwarf search between SDSS and 2MASS, and a search for radio-quiet quasars in SDSS, 2MASS and FIRST. The importance of a service like SkyQuery for the worldwide astronomical community cannot be overstated: data on the same objects in various archives is mapped in different wavelength ranges and looks very different due to different errors, instrument sensitivities and other peculiarities of each archive. Our cross-matching algorithm preforms a fuzzy spatial join across multiple catalogs. This type of cross-matching is currently often done by eye, one object at a time. A static cross-identification table for a set of archives would become obsolete by the time it was built - the exponential growth of astronomical data means that a dynamic cross-identification mechanism like SkyQuery is the only viable option. SkyQuery was funded by a

  19. An overview of big data and data science education at South African universities

    Directory of Open Access Journals (Sweden)

    Eduan Kotzé

    2016-02-01

    Full Text Available Man and machine are generating data electronically at an astronomical speed and in such a way that society is experiencing cognitive challenges to analyse this data meaningfully. Big data firms, such as Google and Facebook, identified this problem several years ago and are continuously developing new technologies or improving existing technologies in order to facilitate the cognitive analysis process of these large data sets. The purpose of this article is to contribute to our theoretical understanding of the role that big data might play in creating new training opportunities for South African universities. The article investigates emerging literature on the characteristics and main components of big data, together with the Hadoop application stack as an example of big data technology. Due to the rapid development of big data technology, a paradigm shift of human resources is required to analyse these data sets; therefore, this study examines the state of big data teaching at South African universities. This article also provides an overview of possible big data sources for South African universities, as well as relevant big data skills that data scientists need. The study also investigates existing academic programs in South Africa, where the focus is on teaching advanced database systems. The study found that big data and data science topics are introduced to students on a postgraduate level, but that the scope is very limited. This article contributes by proposing important theoretical topics that could be introduced as part of the existing academic programs. More research is required, however, to expand these programs in order to meet the growing demand for data scientists with big data skills.

  20. Model for the angular distribution of sky radiance

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F C; Brunger, A P

    1979-08-01

    A flexible mathematical model is introduced which describes the radiance of the dome of the sky under various conditions. This three-component continuous distribution (TCCD) model is compounded by the superposition of three separate terms, the isotropic, circumsolar and horizon brightening terms, each representing the contribution of a particular sky characteristic. In use a particular sky condition is characterized by the values of the coefficients of each of these three terms, defining the distribution of the total diffuse component. The TCCD model has been demonstrated to fit both the normalized clear sky data and the normalized overcast sky data with an RMS error of about ten percent of the man overall sky radiance. By extension the model could describe variable or partly clouded sky conditions. The model can aid in improving the prediction of solar collector performance.

  1. Big Data, Big Problems: A Healthcare Perspective.

    Science.gov (United States)

    Househ, Mowafa S; Aldosari, Bakheet; Alanazi, Abdullah; Kushniruk, Andre W; Borycki, Elizabeth M

    2017-01-01

    Much has been written on the benefits of big data for healthcare such as improving patient outcomes, public health surveillance, and healthcare policy decisions. Over the past five years, Big Data, and the data sciences field in general, has been hyped as the "Holy Grail" for the healthcare industry promising a more efficient healthcare system with the promise of improved healthcare outcomes. However, more recently, healthcare researchers are exposing the potential and harmful effects Big Data can have on patient care associating it with increased medical costs, patient mortality, and misguided decision making by clinicians and healthcare policy makers. In this paper, we review the current Big Data trends with a specific focus on the inadvertent negative impacts that Big Data could have on healthcare, in general, and specifically, as it relates to patient and clinical care. Our study results show that although Big Data is built up to be as a the "Holy Grail" for healthcare, small data techniques using traditional statistical methods are, in many cases, more accurate and can lead to more improved healthcare outcomes than Big Data methods. In sum, Big Data for healthcare may cause more problems for the healthcare industry than solutions, and in short, when it comes to the use of data in healthcare, "size isn't everything."

  2. Measurements of 427 Double Stars With Speckle Interferometry: The Winter/Spring 2017 Observing Program at Brilliant Sky Observatory, Part 1

    Science.gov (United States)

    Harshaw, Richard

    2018-04-01

    In the winter and spring of 2017, an aggressive observing program of measuring close double stars with speckle interferometry and CCD imaging was undertaken at Brilliant Sky Observatory, my observing site in Cave Creek, Arizona. A total of 596 stars were observed, 8 of which were rejected for various reasons, leaving 588 pairs. Of these, 427 were observed and measured with speckle interferometry, while the remaining 161 were measured with a CCD. This paper reports the results of the observations of the 427 speckle cases. A separate paper in this issue will report the CCD measurements of the 161 other pairs.

  3. Solar irradiance forecasting at one-minute intervals for different sky conditions using sky camera images

    International Nuclear Information System (INIS)

    Alonso-Montesinos, J.; Batlles, F.J.; Portillo, C.

    2015-01-01

    Highlights: • The solar resource has been predicted for three hours at 1-min intervals. • Digital image levels and cloud motion vectors are joint for irradiance forecasting. • The three radiation components have been predicted under different sky conditions. • Diffuse and global radiation has an nRMSE value around 10% in all sky conditions. • Beam irradiance is predicted with an nRMSE value of about 15% in overcast skies. - Abstract: In the search for new techniques to predict atmospheric features that might be useful to solar power plant operators, we have carried out solar irradiance forecasting using emerging sky camera technology. Digital image levels are converted into irradiances and then the maximum cross-correlation method is applied to obtain future predictions. This methodology is a step forward in the study of the solar resource, essential to solar plant operators in adapting a plant’s operating procedures to atmospheric conditions and to improve electricity generation. The results are set out using different statistical parameters, in which beam, diffuse and global irradiances give a constant normalized root-mean-square error value over the time interval for all sky conditions. The average measure is 25.44% for beam irradiance; 11.60% for diffuse irradiance and 11.17% for global irradiance.

  4. The BigBoss Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; Bebek, C.; Becerril, S.; Blanton, M.; Bolton, A.; Bromley, B.; Cahn, R.; Carton, P.-H.; Cervanted-Cota, J.L.; Chu, Y.; Cortes, M.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna / /IAC, Mexico / / /Madrid, IFT /Marseille, Lab. Astrophys. / / /New York U. /Valencia U.

    2012-06-07

    BigBOSS is a Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a wide-area galaxy and quasar redshift survey over 14,000 square degrees. It has been conditionally accepted by NOAO in response to a call for major new instrumentation and a high-impact science program for the 4-m Mayall telescope at Kitt Peak. The BigBOSS instrument is a robotically-actuated, fiber-fed spectrograph capable of taking 5000 simultaneous spectra over a wavelength range from 340 nm to 1060 nm, with a resolution R = {lambda}/{Delta}{lambda} = 3000-4800. Using data from imaging surveys that are already underway, spectroscopic targets are selected that trace the underlying dark matter distribution. In particular, targets include luminous red galaxies (LRGs) up to z = 1.0, extending the BOSS LRG survey in both redshift and survey area. To probe the universe out to even higher redshift, BigBOSS will target bright [OII] emission line galaxies (ELGs) up to z = 1.7. In total, 20 million galaxy redshifts are obtained to measure the BAO feature, trace the matter power spectrum at smaller scales, and detect redshift space distortions. BigBOSS will provide additional constraints on early dark energy and on the curvature of the universe by measuring the Ly-alpha forest in the spectra of over 600,000 2.2 < z < 3.5 quasars. BigBOSS galaxy BAO measurements combined with an analysis of the broadband power, including the Ly-alpha forest in BigBOSS quasar spectra, achieves a FOM of 395 with Planck plus Stage III priors. This FOM is based on conservative assumptions for the analysis of broad band power (k{sub max} = 0.15), and could grow to over 600 if current work allows us to push the analysis to higher wave numbers (k{sub max} = 0.3). BigBOSS will also place constraints on theories of modified gravity and inflation, and will measure the sum of neutrino masses to 0.024 eV accuracy.

  5. Daytime Water Detection Based on Sky Reflections

    Science.gov (United States)

    Rankin, Arturo; Matthies, Larry; Bellutta, Paolo

    2011-01-01

    A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.

  6. Recht voor big data, big data voor recht

    NARCIS (Netherlands)

    Lafarre, Anne

    Big data is een niet meer weg te denken fenomeen in onze maatschappij. Het is de hype cycle voorbij en de eerste implementaties van big data-technieken worden uitgevoerd. Maar wat is nu precies big data? Wat houden de vijf V's in die vaak genoemd worden in relatie tot big data? Ter inleiding van

  7. The SPHEREx All-Sky Spectral Survey

    Science.gov (United States)

    Bock, James; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA's astrophysics division, with a single instrument, a wide-field spectral imager. SPHEREx will probe the physics of inflation by measuring non-Gaussianity by studying large-scale structure, surveying a large cosmological volume at low redshifts, complementing high-z surveys optimized to constrain dark energy. The origin of water and biogenic molecules will be investigated in all phases of planetary system formation - from molecular clouds to young stellar systems with protoplanetary disks - by measuring ice absorption spectra. We will chart the origin and history of galaxy formation through a deep survey mapping large-scale spatial power in two deep fields located near the ecliptic poles. Following in the tradition of all-sky missions such as IRAS, COBE and WISE, SPHEREx will be the first all-sky near-infrared spectral survey. SPHEREx will create spectra (0.75 – 4.2 um at R = 41; and 4.2 – 5 um at R = 135) with high sensitivity making background-limited observations using a passively-cooled telescope with a wide field-of-view for large mapping speed. During its two-year mission, SPHEREx will produce four complete all-sky maps that will serve as a rich archive for the astronomy community. With over a billion detected galaxies, hundreds of millions of high-quality stellar and galactic spectra, and over a million ice absorption spectra, the archive will enable diverse scientific investigations including studies of young stellar systems, brown dwarfs, high-redshift quasars, galaxy clusters, the interstellar medium, asteroids and comets. All aspects of the instrument and spacecraft have high heritage. SPHEREx requires no new technologies and carries large technical and resource margins on every aspect of the design. SPHEREx is a partnership between Caltech and JPL, following the

  8. Commentary: Epidemiology in the era of big data.

    Science.gov (United States)

    Mooney, Stephen J; Westreich, Daniel J; El-Sayed, Abdulrahman M

    2015-05-01

    Big Data has increasingly been promoted as a revolutionary development in the future of science, including epidemiology. However, the definition and implications of Big Data for epidemiology remain unclear. We here provide a working definition of Big Data predicated on the so-called "three V's": variety, volume, and velocity. From this definition, we argue that Big Data has evolutionary and revolutionary implications for identifying and intervening on the determinants of population health. We suggest that as more sources of diverse data become publicly available, the ability to combine and refine these data to yield valid answers to epidemiologic questions will be invaluable. We conclude that while epidemiology as practiced today will continue to be practiced in the Big Data future, a component of our field's future value lies in integrating subject matter knowledge with increased technical savvy. Our training programs and our visions for future public health interventions should reflect this future.

  9. Characterizing Sky Spectra Using SDSS BOSS Data

    Science.gov (United States)

    Florez, Lina Maria; Strauss, Michael A.

    2018-01-01

    In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.

  10. A Proposed Concentration Curriculum Design for Big Data Analytics for Information Systems Students

    Science.gov (United States)

    Molluzzo, John C.; Lawler, James P.

    2015-01-01

    Big Data is becoming a critical component of the Information Systems curriculum. Educators are enhancing gradually the concentration curriculum for Big Data in schools of computer science and information systems. This paper proposes a creative curriculum design for Big Data Analytics for a program at a major metropolitan university. The design…

  11. Experiments on the CMB Spectrum, Big Jets Model and Their Implications for the Missing Half of the Universe

    Directory of Open Access Journals (Sweden)

    Hsu Leonardo

    2018-01-01

    Full Text Available Based on the limiting continuation of Lorentz-Poincaré invariance, we propose an alternative formulation of the generalized Planck distribution for inertial and noninertial frames. The Lorentz invariant Planck distribution law leads to a new physical interpretation of the dipole anisotropy of the Cosmic Microwave Background. The Big Jets model predicts a distant ‘antimatter blackbody,’ whose radiations could make 50% of the sky very slightly warmer than the isotropic CMB temperature TCMB with a cosine function. The other 50% of the sky has the same isotropic temperature TCMB. Thus, we could have a pseudo-dipole anisotropy because the microwaves emitted from the antimatter blackbody are totally absorbed by our matter blackbody. We suggest that accurate data of satellite experiments might be used to search for the pseudo-dipole anisotropy and the missing half of the antimatter universe.

  12. X-RAY-EMITTING STARS IDENTIFIED FROM THE ROSAT ALL-SKY SURVEY AND THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Agueeros, Marcel A.; Newsom, Emily R.; Anderson, Scott F.; Hawley, Suzanne L.; Silvestri, Nicole M.; Szkody, Paula; Covey, Kevin R.; Posselt, Bettina; Margon, Bruce; Voges, Wolfgang

    2009-01-01

    The ROSAT All-Sky Survey (RASS) was the first imaging X-ray survey of the entire sky. Combining the RASS Bright and Faint Source Catalogs yields an average of about three X-ray sources per square degree. However, while X-ray source counterparts are known to range from distant quasars to nearby M dwarfs, the RASS data alone are often insufficient to determine the nature of an X-ray source. As a result, large-scale follow-up programs are required to construct samples of known X-ray emitters. We use optical data produced by the Sloan Digital Sky Survey (SDSS) to identify 709 stellar X-ray emitters cataloged in the RASS and falling within the SDSS Data Release 1 footprint. Most of these are bright stars with coronal X-ray emission unsuitable for SDSS spectroscopy, which is designed for fainter objects (g > 15 [mag]). Instead, we use SDSS photometry, correlations with the Two Micron All Sky Survey and other catalogs, and spectroscopy from the Apache Point Observatory 3.5 m telescope to identify these stellar X-ray counterparts. Our sample of 707 X-ray-emitting F, G, K, and M stars is one of the largest X-ray-selected samples of such stars. We derive distances to these stars using photometric parallax relations appropriate for dwarfs on the main sequence, and use these distances to calculate L X . We also identify a previously unknown cataclysmic variable (CV) as a RASS counterpart. Separately, we use correlations of the RASS and the SDSS spectroscopic catalogs of CVs and white dwarfs (WDs) to study the properties of these rarer X-ray-emitting stars. We examine the relationship between (f X /f g ) and the equivalent width of the Hβ emission line for 46 X-ray-emitting CVs and discuss tentative classifications for a subset based on these quantities. We identify 17 new X-ray-emitting DA (hydrogen) WDs, of which three are newly identified WDs. We report on follow-up observations of three candidate cool X-ray-emitting WDs (one DA and two DB (helium) WDs); we have not

  13. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    2003-03-01

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  14. Evidence of Cross-correlation between the CMB Lensing and the γ-Ray Sky

    Science.gov (United States)

    Fornengo, Nicolao; Perotto, Laurence; Regis, Marco; Camera, Stefano

    2015-03-01

    We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT γ-ray sky maps and the cosmic microwave background lensing potential map reconstructed by the Planck satellite. The matter distribution in the universe determines the bending of light coming from the last scattering surface. At the same time, the matter density drives the growth history of astrophysical objects, including their capability at generating non-thermal phenomena, which in turn give rise to γ-ray emissions. The Planck lensing map provides information on the integrated distribution of matter, while the integrated history of γ-ray emitters is imprinted in the Fermi-LAT sky maps. We report here the first evidence of their correlation. We find that the multipole dependence of the cross-correlation measurement is in agreement with current models of the γ-ray luminosity function for active galactic nuclei and star-forming galaxies, with a statistical evidence of 3.0σ. Moreover, its amplitude can in general be matched only assuming that these extragalactic emitters are also the bulk contribution of the measured isotopic γ-ray background (IGRB) intensity. This leaves little room for a big contribution from galactic sources to the IGRB measured by Fermi-LAT, pointing toward direct evidence of the extragalactic origin of the IGRB.

  15. EVIDENCE OF CROSS-CORRELATION BETWEEN THE CMB LENSING AND THE γ-RAY SKY

    Energy Technology Data Exchange (ETDEWEB)

    Fornengo, Nicolao; Regis, Marco [Dipartimento di Fisica, Università di Torino, I-10125 Torino (Italy); Perotto, Laurence [LPSC, Université Grenoble-Alpes, CNRS/IN2P3, 53, rue des Martyrs, F-38026 Grenoble Cedex (France); Camera, Stefano, E-mail: regis@to.infn.it [Jodrell Bank Centre for Astrophysics, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-03-01

    We report the measurement of the angular power spectrum of cross-correlation between the unresolved component of the Fermi-LAT γ-ray sky maps and the cosmic microwave background lensing potential map reconstructed by the Planck satellite. The matter distribution in the universe determines the bending of light coming from the last scattering surface. At the same time, the matter density drives the growth history of astrophysical objects, including their capability at generating non-thermal phenomena, which in turn give rise to γ-ray emissions. The Planck lensing map provides information on the integrated distribution of matter, while the integrated history of γ-ray emitters is imprinted in the Fermi-LAT sky maps. We report here the first evidence of their correlation. We find that the multipole dependence of the cross-correlation measurement is in agreement with current models of the γ-ray luminosity function for active galactic nuclei and star-forming galaxies, with a statistical evidence of 3.0σ. Moreover, its amplitude can in general be matched only assuming that these extragalactic emitters are also the bulk contribution of the measured isotopic γ-ray background (IGRB) intensity. This leaves little room for a big contribution from galactic sources to the IGRB measured by Fermi-LAT, pointing toward direct evidence of the extragalactic origin of the IGRB.

  16. The Python Sky Model: software for simulating the Galactic microwave sky

    Science.gov (United States)

    Thorne, B.; Dunkley, J.; Alonso, D.; Næss, S.

    2017-08-01

    We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of cosmic microwave background experiments. This python code builds on existing efforts to simulate the sky by providing an easy-to-use interface and is based on publicly available data from the WMAP (Wilkinson Microwave Anisotropy Probe) and Planck satellite missions. We simulate synchrotron, thermal dust, free-free and anomalous microwave emission over the whole sky, in addition to the cosmic microwave background, and include a set of alternative prescriptions for the frequency dependence of each component, for example, polarized dust with multiple temperatures and a decorrelation of the signals with frequency, which introduce complexity that is consistent with current data. We also present a new prescription for adding small-scale realizations of these components at resolutions greater than current all-sky measurements. The usefulness of the code is demonstrated by forecasting the impact of varying foreground complexity on the recovered tensor-to-scalar ratio for the LiteBIRD satellite. The code is available at: https://github.com/bthorne93/PySM_public.

  17. Dark Skies: Local Success, Global Challenge

    Science.gov (United States)

    Lockwood, G. W.

    2009-01-01

    The Flagstaff, Arizona 1987 lighting code reduced the growth rate of man-made sky glow by a third. Components of the code include requirements for full cutoff lighting, lumens per acre limits in radial zones around observatories, and use of low-pressure sodium monochromatic lighting for roadways and parking lots. Broad public acceptance of Flagstaff's lighting code demonstrates that dark sky preservation has significant appeal and few visibility or public safety negatives. An inventory by C. Luginbuhl et al. of the light output and shielding of a sampling of various zoning categories (municipal, commercial, apartments, single-family residences, roadways, sports facilities, industrial, etc.), extrapolated over the entire city, yields a total output of 139 million lumens. Commercial and industrial sources account for 62% of the total. Outdoor sports lighting increases the total by 24% on summer evenings. Flagstaff's per capita lumen output is 2.5 times greater than the nominal 1,000 lumens per capita assumed by R. Garstang in his early sky glow modeling work. We resolved the discrepancy with respect to Flagstaff's measured sky glow using an improved model that includes substantial near ground attenuation by foliage and structures. A 2008 university study shows that astronomy contributes $250M annually to Arizona's economy. Another study showed that the application of lighting codes throughout Arizona could reduce energy consumption significantly. An ongoing effort led by observatory directors statewide will encourage lighting controls in currently unregulated metropolitan areas whose growing sky glow threatens observatory facilities more than 100 miles away. The national press (New York Times, the New Yorker, the Economist, USA Today, etc.) have publicized dark sky issues but frequent repetition of the essential message and vigorous action will be required to steer society toward darker skies and less egregious waste.

  18. BigBOSS: The Ground-Based Stage IV BAO Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, David; Bebek, Chris; Heetderks, Henry; Ho, Shirley; Lampton, Michael; Levi, Michael; Mostek, Nick; Padmanabhan, Nikhil; Perlmutter, Saul; Roe, Natalie; Sholl, Michael; Smoot, George; White, Martin; Dey, Arjun; Abraham, Tony; Jannuzi, Buell; Joyce, Dick; Liang, Ming; Merrill, Mike; Olsen, Knut; Salim, Samir

    2009-04-01

    The BigBOSS experiment is a proposed DOE-NSF Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with an all-sky galaxy redshift survey. The project is designed to unlock the mystery of dark energy using existing ground-based facilities operated by NOAO. A new 4000-fiber R=5000 spectrograph covering a 3-degree diameter field will measure BAO and redshift space distortions in the distribution of galaxies and hydrogen gas spanning redshifts from 0.2< z< 3.5. The Dark Energy Task Force figure of merit (DETF FoM) for this experiment is expected to be equal to that of a JDEM mission for BAO with the lower risk and cost typical of a ground-based experiment.

  19. Spectral and Spatial UV Sky Radiance Measurements at a Seaside Resort Under Clear Sky and Slightly Overcast Conditions.

    Science.gov (United States)

    Sandmann, Henner; Stick, Carsten

    2014-01-01

    Spatial measurements of the diffusely scattered sky radiance at a seaside resort under clear sky and slightly overcast conditions have been used to calculate the sky radiance distribution across the upper hemisphere. The measurements were done in the summer season when solar UV radiation is highest. The selected wavelengths were 307, 350 and 550 nm representing the UVB, UVA and VIS band. Absolute values of radiance differ considerably between the wavelengths. Normalizing the measured values by use of direct solar radiance made the spatial distributions of unequal sky radiance comparable. The results convey a spatial impression of the different distributions of the radiance at the three wavelengths. Relative scattered radiance intensity is one order of magnitude greater in UVB than in VIS, whereas in UVA lies roughly in between. Under slightly overcast conditions scattered radiance is increased at all three wavelengths by about one order of magnitude. These measurements taken at the seaside underline the importance of diffuse scattered radiance. The effect of shading parts of the sky can be estimated from the distribution of sky radiance. This knowledge might be useful for sun seekers and in the treatment of people staying at the seaside for therapeutic purposes. © 2013 The American Society of Photobiology.

  20. Challenges and potential solutions for big data implementations in developing countries.

    Science.gov (United States)

    Luna, D; Mayan, J C; García, M J; Almerares, A A; Househ, M

    2014-08-15

    The volume of data, the velocity with which they are generated, and their variety and lack of structure hinder their use. This creates the need to change the way information is captured, stored, processed, and analyzed, leading to the paradigm shift called Big Data. To describe the challenges and possible solutions for developing countries when implementing Big Data projects in the health sector. A non-systematic review of the literature was performed in PubMed and Google Scholar. The following keywords were used: "big data", "developing countries", "data mining", "health information systems", and "computing methodologies". A thematic review of selected articles was performed. There are challenges when implementing any Big Data program including exponential growth of data, special infrastructure needs, need for a trained workforce, need to agree on interoperability standards, privacy and security issues, and the need to include people, processes, and policies to ensure their adoption. Developing countries have particular characteristics that hinder further development of these projects. The advent of Big Data promises great opportunities for the healthcare field. In this article, we attempt to describe the challenges developing countries would face and enumerate the options to be used to achieve successful implementations of Big Data programs.

  1. Big Data Components for Business Process Optimization

    Directory of Open Access Journals (Sweden)

    Mircea Raducu TRIFU

    2016-01-01

    Full Text Available In these days, more and more people talk about Big Data, Hadoop, noSQL and so on, but very few technical people have the necessary expertise and knowledge to work with those concepts and technologies. The present issue explains one of the concept that stand behind two of those keywords, and this is the map reduce concept. MapReduce model is the one that makes the Big Data and Hadoop so powerful, fast, and diverse for business process optimization. MapReduce is a programming model with an implementation built to process and generate large data sets. In addition, it is presented the benefits of integrating Hadoop in the context of Business Intelligence and Data Warehousing applications. The concepts and technologies behind big data let organizations to reach a variety of objectives. Like other new information technologies, the main important objective of big data technology is to bring dramatic cost reduction.

  2. Teach and Touch the Earth and Sky

    Science.gov (United States)

    Florina Tendea, Camelia

    2017-04-01

    supplemented attitudes and behaviors that care for their health, for the health of others and to the natural environment, interest and appreciation of logical argument; curiosity and concern about environmental phenomena, independent thinking, creativity. I think that is very important, like teacher, to combine the two parts of teaching: theoretical one and practical one. TEACH means setting a bag of theoretical aspects and also who can provide us support?(ideas, resources, scientific competitions etc.) and TOUCH means practical aspects for teachers & students. Resoults: Participating of teachers and students at workshops, round table, scientific debates provide knowledge about Space in context of STEM disciplines, Hands-on experiences; Find different situations of learning; Ideas, methods and techniques for design new lessons; Real scientific data from ESA/ESERO/ROSA sites; Chance to be part of international projects. Conclusions:Teach and Touch the Earth and Sky - could be a great chance to benefit from the proposed programs of ESA, through which space can be brought into the classroom and used as a tool for teaching and learning, moreover access to actual scientific data and experiences shared by the scientists, or other specialists offers a new prespective in the study of STEM subjects by students.

  3. Using routine meteorological data to derive sky conditions

    Directory of Open Access Journals (Sweden)

    D. Pagès

    Full Text Available Sky condition is a matter of interest for public and weather predictors as part of weather analyses. In this study, we apply a method that uses total solar radiation and other meteorological data recorded by an automatic station for deriving an estimation of the sky condition. The impetus of this work is the intention of the Catalan Meteorological Service (SMC to provide the public with real-time information about the sky condition. The methodology for deriving sky conditions from meteorological records is based on a supervised classification technique called maximum likelihood method. In this technique we first need to define features which are derived from measured variables. Second, we must decide which sky conditions are intended to be distinguished. Some analyses have led us to use four sky conditions: (a cloudless or almost cloudless sky, (b scattered clouds, (c mostly cloudy – high clouds, (d overcast – low clouds. An additional case, which may be treated separately, corresponds to precipitation (rain or snow. The main features for estimating sky conditions are, as expected, solar radiation and its temporal variability. The accuracy of this method of guessing sky conditions compared with human observations is around 70% when applied to four sites in Catalonia (NE Iberian Peninsula. The agreement increases if we take into account the uncertainty both in the automatic classifier and in visual observations.

    Key words. Meteorological and atmospheric dynamics (instruments and techniques; radiative processes – Atmospheric composition and structure (cloud physics and chemistry

  4. Scaling Big Data Cleansing

    KAUST Repository

    Khayyat, Zuhair

    2017-07-31

    Data cleansing approaches have usually focused on detecting and fixing errors with little attention to big data scaling. This presents a serious impediment since identify- ing and repairing dirty data often involves processing huge input datasets, handling sophisticated error discovery approaches and managing huge arbitrary errors. With large datasets, error detection becomes overly expensive and complicated especially when considering user-defined functions. Furthermore, a distinctive algorithm is de- sired to optimize inequality joins in sophisticated error discovery rather than na ̈ıvely parallelizing them. Also, when repairing large errors, their skewed distribution may obstruct effective error repairs. In this dissertation, I present solutions to overcome the above three problems in scaling data cleansing. First, I present BigDansing as a general system to tackle efficiency, scalability, and ease-of-use issues in data cleansing for Big Data. It automatically parallelizes the user’s code on top of general-purpose distributed platforms. Its programming inter- face allows users to express data quality rules independently from the requirements of parallel and distributed environments. Without sacrificing their quality, BigDans- ing also enables parallel execution of serial repair algorithms by exploiting the graph representation of discovered errors. The experimental results show that BigDansing outperforms existing baselines up to more than two orders of magnitude. Although BigDansing scales cleansing jobs, it still lacks the ability to handle sophisticated error discovery requiring inequality joins. Therefore, I developed IEJoin as an algorithm for fast inequality joins. It is based on sorted arrays and space efficient bit-arrays to reduce the problem’s search space. By comparing IEJoin against well- known optimizations, I show that it is more scalable, and several orders of magnitude faster. BigDansing depends on vertex-centric graph systems, i.e., Pregel

  5. Steering with big words: articulating ideographs in research programs

    NARCIS (Netherlands)

    Bos, Colette; Walhout, Bart; Walhout, Bart; Peine, Alexander; van Lente, Harro

    2014-01-01

    Nowadays, science should address societal challenges, such as ‘sustainability’, or ‘responsible research and innovation’. This emerging form of steering toward broad and generic goals involves the use of ‘big words’: encompassing concepts that are uncontested themselves, but that allow for multiple

  6. BigOP: Generating Comprehensive Big Data Workloads as a Benchmarking Framework

    OpenAIRE

    Zhu, Yuqing; Zhan, Jianfeng; Weng, Chuliang; Nambiar, Raghunath; Zhang, Jinchao; Chen, Xingzhen; Wang, Lei

    2014-01-01

    Big Data is considered proprietary asset of companies, organizations, and even nations. Turning big data into real treasure requires the support of big data systems. A variety of commercial and open source products have been unleashed for big data storage and processing. While big data users are facing the choice of which system best suits their needs, big data system developers are facing the question of how to evaluate their systems with regard to general big data processing needs. System b...

  7. A Comprehensive Approach to Dark Skies Research and Education at NOAO

    Science.gov (United States)

    Walker, Constance E.; Pompea, S. M.; Sparks, R. T.

    2013-01-01

    NOAO and its Education and Public Outreach group play an important role locally, nationally, and internationally in raising dark skies awareness. For the past 3 years NOAO has co-hosted the international “Earth and Sky” photo contest. In 2012 there were over 600 entries contributed within 3 weeks. NOAO also created a series of audio podcasts based on serial-type skits featuring a caped dark-skies hero who typically “saves the night” by mitigating upward directed lights with shields, thereby saving sea turtles, minimizing health effects, conserving energy, or keeping the public safe. To help understand the effects of light pollution, a citizen-science campaign called GLOBE at Night was started seven years ago. The worldwide campaign involves the public in recording night sky brightness data by matching the view of a constellation like Orion with maps of progressively fainter stars. Every year, NOAO adds more opportunities for participation: more campaigns during the year, Web applications for smart phones, objective measurements with sky brightness meters, and a GLOBE at Night Facebook page. Campaigns will run roughly the first 10 days of January through May in 2013. The EPO group created “Dark Skies Rangers”, a suite of well-tested and evaluated hands-on, minds-on activities that have children building star-brightness “readers,” creating glow-in-the-dark tracings to visualize constellations, and role-playing confused sea turtles. They also created a model city with shielded lights to stop upward light, examine different kinds of bulbs for energy efficiency, and perform an outdoor lighting audit of their school or neighborhood to determine ways to save energy. In the REU program at NOAO North, the undergraduate students have been doing research over the last 3 summers on effect of light pollution on endangered bats and characterizing the behavior of sky brightness over time across Tucson and on nearby astronomical mountaintops. For more information

  8. Blue Sky Funders Forum - Advancing Environmental Literacy through Funder Collaboration

    Science.gov (United States)

    Chen, A.

    2015-12-01

    The Blue Sky Funders Forum inspires, deepens, and expands private funding and philanthropic leadership to promote learning opportunities that connect people and nature and promote environmental literacy. Being prepared for the future requires all of us to understand the consequences of how we live on where we live - the connection between people and nature. Learning about the true meaning of that connection is a process that starts in early childhood and lasts a lifetime. Blue Sky brings supporters of this work together to learn from one another and to strategize how to scale up the impact of the effective programs that transform how people interact with their surroundings. By making these essential learning opportunities more accessible in all communities, we broaden and strengthen the constituency that makes well-informed choices, balancing the needs of today with the needs of future generations.

  9. Results from a Pilot REU Program: Exploring the Cosmos Using Sloan Digital Sky Survey Data

    Science.gov (United States)

    Chanover, Nancy J.; Holley-Bockelmann, Kelly; Holtzman, Jon A.

    2017-01-01

    In the Summer of 2016 we conducted a 10-week pilot Research Experience for Undergraduates (REU) program aimed at increasing the participation of underrepresented minority undergraduate students in research using data from the Sloan Digital Sky Survey (SDSS). This program utilized a distributed REU model, whereby students worked with SDSS scientists on exciting research projects while serving as members of a geographically distributed research community. The format of this REU is similar to that of the SDSS collaboration itself, and since this collaboration structure has become a model for the next generation of large scale astronomical surveys, the students participating in the SDSS REU received early exposure and familiarity with this approach to collaborative scientific research. The SDSS REU also provided the participants with a low-risk opportunity to audition for graduate schools and to explore opportunities afforded by a career as a research scientist. The six student participants were placed at SDSS REU host sites at the Center for Astrophysics at Harvard University, University of Wisconsin-Madison, Vanderbilt University, and the University of Portsmouth. Their research projects covered a broad range of topics related to stars, galaxies, and quasars, all making use of SDSS data. At the start of the summer the REU students participated in a week-long Boot Camp at NMSU, which served as a program orientation, an introduction to skills relevant to their research projects, and an opportunity for team-building and cohort-forming. To foster a sense of community among our distributed students throughout the summer, we conducted a weekly online meeting for all students in the program via virtual meeting tools. These virtual group meetings served two purposes: as a weekly check-in to find out how their projects were progressing, and to conduct professional development seminars on topics of interest and relevance to the REU participants. We discuss the outcomes of this

  10. How Big Is Too Big?

    Science.gov (United States)

    Cibes, Margaret; Greenwood, James

    2016-01-01

    Media Clips appears in every issue of Mathematics Teacher, offering readers contemporary, authentic applications of quantitative reasoning based on print or electronic media. This issue features "How Big is Too Big?" (Margaret Cibes and James Greenwood) in which students are asked to analyze the data and tables provided and answer a…

  11. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Manajit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gotseff, Peter [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  12. Integrating R and Hadoop for Big Data Analysis

    Directory of Open Access Journals (Sweden)

    Bogdan Oancea

    2014-06-01

    Full Text Available Analyzing and working with big data could be very difficult using classical means like relational database management systems or desktop software packages for statistics and visualization. Instead, big data requires large clusters with hundreds or even thousands of computing nodes. Official statistics is increasingly considering big data for deriving new statistics because big data sources could produce more relevant and timely statistics than traditional sources. One of the software tools successfully and wide spread used for storage and processing of big data sets on clusters of commodity hardware is Hadoop. Hadoop framework contains libraries, a distributed file-system (HDFS, a resource-management platform and implements a version of the MapReduce programming model for large scale data processing. In this paper we investigate the possibilities of integrating Hadoop with R which is a popular software used for statistical computing and data visualization. We present three ways of integrating them: R with Streaming, Rhipe and RHadoop and we emphasize the advantages and disadvantages of each solution.

  13. Gaia , an all sky astrometric and photometric survey

    International Nuclear Information System (INIS)

    Carrasco, J.M.

    2017-01-01

    Gaia space mission includes a low resolution spectroscopic instrument to classify and parametrize the observed sources. Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full mission. The data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for future on-ground and space projects (LSST, PLATO, EUCLID, ...). This work addresses the exploitation of the Gaia spectrophotometry as standard photometry reference through the discussion of the sky coverage, the spectrophotometric precision and the expected uncertainties of the synthetic photometry derived from the low resolution Gaia spectra and photometry.

  14. A genetic algorithm-based job scheduling model for big data analytics.

    Science.gov (United States)

    Lu, Qinghua; Li, Shanshan; Zhang, Weishan; Zhang, Lei

    Big data analytics (BDA) applications are a new category of software applications that process large amounts of data using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big data analytics framework, which implements the MapReduce programming model to process big data with MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in terms of feasibility and accuracy.

  15. Classification of Variable Objects in Massive Sky Monitoring Surveys

    Science.gov (United States)

    Woźniak, Przemek; Wyrzykowski, Łukasz; Belokurov, Vasily

    2012-03-01

    The era of great sky surveys is upon us. Over the past decade we have seen rapid progress toward a continuous photometric record of the optical sky. Numerous sky surveys are discovering and monitoring variable objects by hundreds of thousands. Advances in detector, computing, and networking technology are driving applications of all shapes and sizes ranging from small all sky monitors, through networks of robotic telescopes of modest size, to big glass facilities equipped with giga-pixel CCD mosaics. The Large Synoptic Survey Telescope will be the first peta-scale astronomical survey [18]. It will expand the volume of the parameter space available to us by three orders of magnitude and explore the mutable heavens down to an unprecedented level of sensitivity. Proliferation of large, multidimensional astronomical data sets is stimulating the work on new methods and tools to handle the identification and classification challenge [3]. Given exponentially growing data rates, automated classification of variability types is quickly becoming a necessity. Taking humans out of the loop not only eliminates the subjective nature of visual classification, but is also an enabling factor for time-critical applications. Full automation is especially important for studies of explosive phenomena such as γ-ray bursts that require rapid follow-up observations before the event is over. While there is a general consensus that machine learning will provide a viable solution, the available algorithmic toolbox remains underutilized in astronomy by comparison with other fields such as genomics or market research. Part of the problem is the nature of astronomical data sets that tend to be dominated by a variety of irregularities. Not all algorithms can handle gracefully uneven time sampling, missing features, or sparsely populated high-dimensional spaces. More sophisticated algorithms and better tools available in standard software packages are required to facilitate the adoption of

  16. Getting started with Greenplum for big data analytics

    CERN Document Server

    Gollapudi, Sunila

    2013-01-01

    Standard tutorial-based approach.""Getting Started with Greenplum for Big Data"" Analytics is great for data scientists and data analysts with a basic knowledge of Data Warehousing and Business Intelligence platforms who are new to Big Data and who are looking to get a good grounding in how to use the Greenplum Platform. It's assumed that you will have some experience with database design and programming as well as be familiar with analytics tools like R and Weka.

  17. Really big numbers

    CERN Document Server

    Schwartz, Richard Evan

    2014-01-01

    In the American Mathematical Society's first-ever book for kids (and kids at heart), mathematician and author Richard Evan Schwartz leads math lovers of all ages on an innovative and strikingly illustrated journey through the infinite number system. By means of engaging, imaginative visuals and endearing narration, Schwartz manages the monumental task of presenting the complex concept of Big Numbers in fresh and relatable ways. The book begins with small, easily observable numbers before building up to truly gigantic ones, like a nonillion, a tredecillion, a googol, and even ones too huge for names! Any person, regardless of age, can benefit from reading this book. Readers will find themselves returning to its pages for a very long time, perpetually learning from and growing with the narrative as their knowledge deepens. Really Big Numbers is a wonderful enrichment for any math education program and is enthusiastically recommended to every teacher, parent and grandparent, student, child, or other individual i...

  18. The Sky at Night

    CERN Document Server

    Moore, Patrick

    2010-01-01

    For more than 50 years now Sir Patrick Moore has presented the BBC Television series Sky at Night; not a month has been missed – a record for any television series, and a record which may never be broken. Every three years or so a book is published covering the main events in both astronomy and space research. This is the 13th volume, not only a record of the programmes but also of the great advances and discoveries during the period covered - eclipses, comets, and the strange chemical lakes of Titan, for instance, but also anniversaries such as the fifteenth “birthday” of the Hubble Space Telescope, and not forgetting the programme celebrating the Sky at Night’s 50th year, attended by astronaut Piers Sellars and many others who appeared on the programme over the years. All the chapters are self-contained, and fully illustrated. In this new Sky at Night book you will find much to entertain you. It will appeal to amateurs and professionals alike.

  19. The Einstein All-Sky IPC slew survey

    Science.gov (United States)

    Elvis, Martin; Plummer, David; Fabbiano, G.

    1989-01-01

    The construction of the Einstein All-Sky Imaging Proportional Counter (IPC) slew survey is considered. It contains approximately 1000 sources between 10(exp -12) and 10(exp -10) erg/sq cm/s with a concentration toward the ecliptic poles and away from the galactic plane. Several sizable samples of bright soft X-ray selected objects for follow-up ROSAT and ASTRO-D observations and statistical study are presented. The survey source list is expected to be available by late 1989. Both paper and remote access online data base versions are to be available. An identification program is considered.

  20. Nursing Needs Big Data and Big Data Needs Nursing.

    Science.gov (United States)

    Brennan, Patricia Flatley; Bakken, Suzanne

    2015-09-01

    Contemporary big data initiatives in health care will benefit from greater integration with nursing science and nursing practice; in turn, nursing science and nursing practice has much to gain from the data science initiatives. Big data arises secondary to scholarly inquiry (e.g., -omics) and everyday observations like cardiac flow sensors or Twitter feeds. Data science methods that are emerging ensure that these data be leveraged to improve patient care. Big data encompasses data that exceed human comprehension, that exist at a volume unmanageable by standard computer systems, that arrive at a velocity not under the control of the investigator and possess a level of imprecision not found in traditional inquiry. Data science methods are emerging to manage and gain insights from big data. The primary methods included investigation of emerging federal big data initiatives, and exploration of exemplars from nursing informatics research to benchmark where nursing is already poised to participate in the big data revolution. We provide observations and reflections on experiences in the emerging big data initiatives. Existing approaches to large data set analysis provide a necessary but not sufficient foundation for nursing to participate in the big data revolution. Nursing's Social Policy Statement guides a principled, ethical perspective on big data and data science. There are implications for basic and advanced practice clinical nurses in practice, for the nurse scientist who collaborates with data scientists, and for the nurse data scientist. Big data and data science has the potential to provide greater richness in understanding patient phenomena and in tailoring interventional strategies that are personalized to the patient. © 2015 Sigma Theta Tau International.

  1. Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry.

    Science.gov (United States)

    Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-12-01

    Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.

  2. Measurements of 161 Double Stars With a High-Speed CCD: The Winter/Spring 2017 Observing Program at Brilliant Sky Observatory, Part 2

    Science.gov (United States)

    Harshaw, Richard

    2018-04-01

    In the winter and spring of 2017, an aggressive observing program of measuring close double stars with speckle interferometry and CCD imaging was undertaken at Brilliant Sky Observatory, my observing site in Cave Creek, Arizona. A total of 596 stars were observed, 8 of which were rejected for various reasons, leaving 588 pairs. Of these, 427 were observed and measured with speckle interferometry, while the remaining 161 were measured with a CCD. This paper reports the results of the observations of the 161 CCD cases. A separate paper in this issue will report the speckle measurements of the 427 other pairs.

  3. Experience in Solar System and Sky Motions

    Science.gov (United States)

    Coles, K. S.

    2017-12-01

    To help students predict where they will see objects in the sky, they must comprehend sky motion and the relative motions of individual objects. Activities to promote this comprehension among college and secondary students include: Tracking star motion in the planetarium: Students predict star motion by marking the expected path on plastic hemisphere models of the celestial dome. They check their prediction by observing and marking the actual motion. For comprehension, comparing motion in different parts of the sky surpasses two-dimensional views of the sky in books or on computers. Mastery is assessed by the same exercise with the sky set at other latitudes, including those on the other side of the equator. Making sundials: Students first make a horizontal sundial for the latitude of their choice following written directions (e.g., Waugh, 1973). One problem to solve is how to convert sundial time to standard time. A prompt is a picture of the analemma (the position of the Sun in the sky at a fixed clock time over the course of a year). Tests of mastery include the questions, "What accounts for the shape of the analemma?" and "What information is needed to predict the shape of the analemma one would see on other planets?" Reference: Waugh, A. E., 1973, Sundials: their theory and construction: Dover, 228 p.

  4. BIG Data - BIG Gains? Understanding the Link Between Big Data Analytics and Innovation

    OpenAIRE

    Niebel, Thomas; Rasel, Fabienne; Viete, Steffen

    2017-01-01

    This paper analyzes the relationship between firms’ use of big data analytics and their innovative performance for product innovations. Since big data technologies provide new data information practices, they create new decision-making possibilities, which firms can use to realize innovations. Applying German firm-level data we find suggestive evidence that big data analytics matters for the likelihood of becoming a product innovator as well as the market success of the firms’ product innovat...

  5. Networking for big data

    CERN Document Server

    Yu, Shui; Misic, Jelena; Shen, Xuemin (Sherman)

    2015-01-01

    Networking for Big Data supplies an unprecedented look at cutting-edge research on the networking and communication aspects of Big Data. Starting with a comprehensive introduction to Big Data and its networking issues, it offers deep technical coverage of both theory and applications.The book is divided into four sections: introduction to Big Data, networking theory and design for Big Data, networking security for Big Data, and platforms and systems for Big Data applications. Focusing on key networking issues in Big Data, the book explains network design and implementation for Big Data. It exa

  6. Global fluctuation spectra in big-crunch-big-bang string vacua

    International Nuclear Information System (INIS)

    Craps, Ben; Ovrut, Burt A.

    2004-01-01

    We study big-crunch-big-bang cosmologies that correspond to exact world-sheet superconformal field theories of type II strings. The string theory spacetime contains a big crunch and a big bang cosmology, as well as additional 'whisker' asymptotic and intermediate regions. Within the context of free string theory, we compute, unambiguously, the scalar fluctuation spectrum in all regions of spacetime. Generically, the big crunch fluctuation spectrum is altered while passing through the bounce singularity. The change in the spectrum is characterized by a function Δ, which is momentum and time dependent. We compute Δ explicitly and demonstrate that it arises from the whisker regions. The whiskers are also shown to lead to 'entanglement' entropy in the big bang region. Finally, in the Milne orbifold limit of our superconformal vacua, we show that Δ→1 and, hence, the fluctuation spectrum is unaltered by the big-crunch-big-bang singularity. We comment on, but do not attempt to resolve, subtleties related to gravitational back reaction and light winding modes when interactions are taken into account

  7. 2015 Australasian sky guide

    CERN Document Server

    Lomb, Nick

    2014-01-01

    Compact, easy to use and reliable, this popular guide has been providing star gazers with everything they need to know about the southern night sky for the past 25 years. The 2015 guide will celebrate this landmark with highlights from the past as well as monthly astronomy maps, viewing tips and highlights, and details of the year's exciting celestial events.Wherever you are in Australia or New Zealand, easy calculations allow you to estimate local rise and set times for the Sun, Moon and planets. The 2015 Australasian Sky Guide also provides information on the solar system, updated with the l

  8. 2013 Australasian sky guide

    CERN Document Server

    Lomb, Nick

    2012-01-01

    Compact, easy to use and reliable, this popular guide contains everything you need to know about the southern night sky with monthly star maps, diagrams and details of all the year's exciting celestial events. Wherever you are in Australia or New Zealand, easy calculations allow you to determine when the Sun, Moon and planets will rise and set throughout the year. Also included is information on the latest astronomical findings from space probes and telescopes around the world. The Sky guide has been published annually by the Powerhouse Museum, Sydney, since 1991. It is recommended for photogr

  9. The New Progress of the Starry Sky Project of China

    Science.gov (United States)

    Wang, Xiaohua

    2015-08-01

    Since the 28th General Assembly of IAU, the SSPC team made new progress:1. Enhanced the function of the SSPC team-- Established the contact with IAU C50, IUCN Dark Skies Advisory Group, AWB and IDA,and undertakes the work of the IDA Beijing Chapter.-- Got supports from China’s National Astronomical Observatories, Beijing Planetarium, and Shanghai Science and Technology Museum.-- Signed cooperation agreements with Lighting Research Center, English Education Group and law Firm; formed the team force.2. Put forward a proposal to national top institutionThe SSPC submitted the first proposal about dark sky protection to the Chinese People’s Political Consultative Conference.3. Introduced the Criteria and Guideline of dark sky protectionThe SSPC team translated 8 documents of IDA, and provided a reference basis for Chinese dark sky protection.4. Actively establish dark sky places-- Plan a Dark Sky Reserve around Ali astronomical observatory (5,100m elevation) in Tibet. China’s Xinhua News Agency released the news.-- Combining with Hangcuo Lake, a National Natural Reserve and Scenic in Tibet, to plan and establish the Dark Sky Park.-- Cooperated with Shandong Longgang Tourism Group to construct the Dream Sky Theme Park in the suburbs of Jinan city.In the IYL 2015, the SSPC is getting further development:First, make dark sky protection enter National Ecological Strategy of “Beautiful China”. We call on: “Beautiful China” needs “Beautiful Night Sky” China should care the shared starry sky, and left this resource and heritage for children.Second, hold “Cosmic Light” exhibition in Shanghai Science and Technology Museum on August.Third, continue to establish Dark Sky Reserve, Park and Theme Park. We want to make these places become the bases of dark sky protection, astronomical education and ecological tourism, and develop into new cultural industry.Fourth, actively join international cooperation.Now, “Blue Sky, White Cloud and Starry Sky “have become

  10. Tropospheric haze and colors of the clear daytime sky.

    Science.gov (United States)

    Lee, Raymond L

    2015-02-01

    To casual observers, haze's visible effects on clear daytime skies may seem mundane: significant scattering by tropospheric aerosols visibly (1) reduces the luminance contrast of distant objects and (2) desaturates sky blueness. However, few published measurements of hazy-sky spectra and chromaticities exist to compare with these naked-eye observations. Hyperspectral imaging along sky meridians of clear and hazy skies at one inland and two coastal sites shows that they have characteristic colorimetric signatures of scattering and absorption by haze aerosols. In addition, a simple spectral transfer function and a second-order scattering model of skylight reveal the net spectral and colorimetric effects of haze.

  11. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    Science.gov (United States)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  12. Big Argumentation?

    Directory of Open Access Journals (Sweden)

    Daniel Faltesek

    2013-08-01

    Full Text Available Big Data is nothing new. Public concern regarding the mass diffusion of data has appeared repeatedly with computing innovations, in the formation before Big Data it was most recently referred to as the information explosion. In this essay, I argue that the appeal of Big Data is not a function of computational power, but of a synergistic relationship between aesthetic order and a politics evacuated of a meaningful public deliberation. Understanding, and challenging, Big Data requires an attention to the aesthetics of data visualization and the ways in which those aesthetics would seem to depoliticize information. The conclusion proposes an alternative argumentative aesthetic as the appropriate response to the depoliticization posed by the popular imaginary of Big Data.

  13. Polarization patterns of the twilight sky

    Science.gov (United States)

    Cronin, Thomas W.; Warrant, Eric J.; Greiner, Birgit

    2005-08-01

    Although natural light sources produce depolarized light, patterns of partially linearly polarized light appear in the sky due to scattering from air molecules, dust, and aerosols. Many animals, including bees and ants, orient themselves to patterns of polarization that are present in daytime skies, when the intensity is high and skylight polarization is strong and predictable. The halicitid bee Megalopta genalis inhabits rainforests in Central America. Unlike typical bees, it forages before sunrise and after sunset, when light intensities under the forest canopy are very low, and must find its way to food sources and return to its nest in visually challenging circumstances. An important cue for the orientation could be patterns of polarization in the twilight sky. Therefore, we used a calibrated digital camera to image skylight polarization in an overhead patch of sky, 87.6° across, before dawn on Barro Colorado Island in Panama, where the bees are found. We simultaneously measured the spectral properties of polarized light in a cloudless patch of sky 15° across centered on the zenith. We also performed full-sky imaging of polarization before dawn and after dusk on Lizard Island in Australia, another tropical island. During twilight, celestial polarized light occurs in a wide band stretching perpendicular to the location of the hidden sun and reaching typical degrees of polarization near 80% at wavelengths >600 nm. This pattern appears about 45 minutes before local sunrise or disappears 45 minutes after local sunset (about 20 minutes after the onset of astronomical twilight at dawn, or before its end at dusk) and extends with little change through the entire twilight period. Such a strong and reliable orientation cue could be used for flight orientation by any animal with polarization sensitivity that navigates during twilight.

  14. Job schedulers for Big data processing in Hadoop environment: testing real-life schedulers using benchmark programs

    Directory of Open Access Journals (Sweden)

    Mohd Usama

    2017-11-01

    Full Text Available At present, big data is very popular, because it has proved to be much successful in many fields such as social media, E-commerce transactions, etc. Big data describes the tools and technologies needed to capture, manage, store, distribute, and analyze petabyte or larger-sized datasets having different structures with high speed. Big data can be structured, unstructured, or semi structured. Hadoop is an open source framework that is used to process large amounts of data in an inexpensive and efficient way, and job scheduling is a key factor for achieving high performance in big data processing. This paper gives an overview of big data and highlights the problems and challenges in big data. It then highlights Hadoop Distributed File System (HDFS, Hadoop MapReduce, and various parameters that affect the performance of job scheduling algorithms in big data such as Job Tracker, Task Tracker, Name Node, Data Node, etc. The primary purpose of this paper is to present a comparative study of job scheduling algorithms along with their experimental results in Hadoop environment. In addition, this paper describes the advantages, disadvantages, features, and drawbacks of various Hadoop job schedulers such as FIFO, Fair, capacity, Deadline Constraints, Delay, LATE, Resource Aware, etc, and provides a comparative study among these schedulers.

  15. SKYMONITOR: A Global Network for Sky Brightness Measurements

    Science.gov (United States)

    Davis, Donald R.; Mckenna, D.; Pulvermacher, R.; Everett, M.

    2010-01-01

    We are implementing a global network to measure sky brightness at dark-sky critical sites with the goal of creating a multi-decade database. The heart of this project is the Night Sky Brightness Monitor (NSBM), an autonomous 2 channel photometer which measures night sky brightness in the visual wavelengths (Mckenna et al, AAS 2009). Sky brightness is measured every minute at two elevation angles typically zenith and 20 degrees to monitor brightness and transparency. The NSBM consists of two parts, a remote unit and a base station with an internet connection. Currently these devices use 2.4 Ghz transceivers with a range of 100 meters. The remote unit is battery powered with daytime recharging using a solar panel. Data received by the base unit is transmitted via email protocol to IDA offices in Tucson where it will be collected, archived and made available to the user community via a web interface. Two other versions of the NSBM are under development: one for radio sensitive areas using an optical fiber link and the second that reads data directly to a laptop for sites without internet access. NSBM units are currently undergoing field testing at two observatories. With support from the National Science Foundation, we will construct and install a total of 10 units at astronomical observatories. With additional funding, we will locate additional units at other sites such as National Parks, dark-sky preserves and other sites where dark sky preservation is crucial. We will present the current comparison with the National Park Service sky monitoring camera. We anticipate that the SKYMONITOR network will be functioning by the end of 2010.

  16. Session 21.6: Preserving Dark Skies and Protecting Against Light Pollution in a World Heritage Framework

    Science.gov (United States)

    Smith, Malcolm G.

    2016-10-01

    This session opened with a crucial explanation by Michel Cotte of how astronomers first need to understand how to apply UNESCO World Heritage Criteria if they want to motivate their government(s) to make the case to UNESCO for World Heritage recognition. UNESCO World Heritage cannot be obtained just to protect dark skies. Much more detail of this and the other presentations in this session, along with many images, can be found at the session website: http://www.noao.edu/education/IAUGA2015FM21. The next speaker, John Hearnshaw, described the Aoraki Mackenzie International Dark Sky Reserve and the work it carries out . This was followed by a wide-ranging summary (by Dan Duriscoe and Nate Ament) of the U.S. National Park Service (NPS) Night Skies Program. The abstract of Cipriano's Marin's paper, ``Developing Starlight connections with UNESCO sites through the Biosphere Smart" was shown in his absence. The final presentation (by Arkadiusz Berlicki, S. Kolomanksi and T. Mrozek) discussed the bi-national Izera Dark Sky Park.

  17. Urban Big Data and Sustainable Development Goals: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Ali Kharrazi

    2016-12-01

    Full Text Available Cities are perhaps one of the most challenging and yet enabling arenas for sustainable development goals. The Sustainable Development Goals (SDGs emphasize the need to monitor each goal through objective targets and indicators based on common denominators in the ability of countries to collect and maintain relevant standardized data. While this approach is aimed at harmonizing the SDGs at the national level, it presents unique challenges and opportunities for the development of innovative urban-level metrics through big data innovations. In this article, we make the case for advancing more innovative targets and indicators relevant to the SDGs through the emergence of urban big data. We believe that urban policy-makers are faced with unique opportunities to develop, experiment, and advance big data practices relevant to sustainable development. This can be achieved by situating the application of big data innovations through developing mayoral institutions for the governance of urban big data, advancing the culture and common skill sets for applying urban big data, and investing in specialized research and education programs.

  18. The Accuracy of RADIANCE Software in Modelling Overcast Sky Condition

    OpenAIRE

    Baharuddin

    2013-01-01

    A validation study of the sky models of RADIANCE simulation software against the overcast sky condition has been carried out in order to test the accuracy of sky model of RADIANCE for modeling the overcast sky condition in Hong Kong. Two sets of data have been analysed. Firstly, data collected from a set of experiments using a physical scale model. In this experiment, the illuminance of four points inside the model was measured under real sky conditions. Secondly, the RADIANCE simulation has ...

  19. (an)isotropy of the X-ray sky

    International Nuclear Information System (INIS)

    Shafer, R.A.; Fabian, A.C.

    1983-01-01

    An assessment is made of the extent to which the study of the isotropy of the X-ray sky has contributed to the present understanding of the structure of the universe at moderate redshifts. It is, of course, the anisotropic character of the sky flux that is valuable in this context. Although it is not currently possible to undertake measurements with the precision and small solid angles that are typically achieved in the microwave range, the comparatively crude limits from the X-ray fluctuations place limits on the largest scale structure of the universe. After indicating the nature of measurements made, with the HEAO 1 A-2 experiment, of the X-ray sky and its anisotropies, it is shown how these place limits on the origin of the X-ray sky and on any large scale structure of the universe. 40 references

  20. A practical guide to big data research in psychology.

    Science.gov (United States)

    Chen, Eric Evan; Wojcik, Sean P

    2016-12-01

    The massive volume of data that now covers a wide variety of human behaviors offers researchers in psychology an unprecedented opportunity to conduct innovative theory- and data-driven field research. This article is a practical guide to conducting big data research, covering data management, acquisition, processing, and analytics (including key supervised and unsupervised learning data mining methods). It is accompanied by walkthrough tutorials on data acquisition, text analysis with latent Dirichlet allocation topic modeling, and classification with support vector machines. Big data practitioners in academia, industry, and the community have built a comprehensive base of tools and knowledge that makes big data research accessible to researchers in a broad range of fields. However, big data research does require knowledge of software programming and a different analytical mindset. For those willing to acquire the requisite skills, innovative analyses of unexpected or previously untapped data sources can offer fresh ways to develop, test, and extend theories. When conducted with care and respect, big data research can become an essential complement to traditional research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Fading Skies

    Science.gov (United States)

    Sio, Betsy Menson

    2009-01-01

    A sky fading from blue to white to red at the horizon, and water darkening from light to midnight blue. Strong diagonals slashing through the image, drawing a viewer's eyes deeper into the picture, and delicate trees poised to convey a sense of beauty. These are the fascinating strengths of the ukiyo-e woodblock prints of Japanese artist Ando…

  2. Detection and Characterisation of Meteors as a Big Data Citizen Science project

    Science.gov (United States)

    Gritsevich, M.

    2017-12-01

    established EU COST BigSkyEarth http://bigskyearth.eu/ network.

  3. The "Sky on Earth" Project: A Synergy between Formal and Informal Astronomy Education

    Science.gov (United States)

    Rossi, Sabrina; Giordano, Enrica; Lanciano, Nicoletta

    2016-01-01

    In this paper we present the "Sky on Earth" project funded in 2008 by the Italian Ministry of Instruction, Research and University, inside its annual public outreach education program. The project's goal was to realise a stable and open-access astronomical garden, where children, teachers and citizens could be engaged in investigations…

  4. Big data

    DEFF Research Database (Denmark)

    Madsen, Anders Koed; Flyverbom, Mikkel; Hilbert, Martin

    2016-01-01

    is to outline a research agenda that can be used to raise a broader set of sociological and practice-oriented questions about the increasing datafication of international relations and politics. First, it proposes a way of conceptualizing big data that is broad enough to open fruitful investigations......The claim that big data can revolutionize strategy and governance in the context of international relations is increasingly hard to ignore. Scholars of international political sociology have mainly discussed this development through the themes of security and surveillance. The aim of this paper...... into the emerging use of big data in these contexts. This conceptualization includes the identification of three moments contained in any big data practice. Second, it suggests a research agenda built around a set of subthemes that each deserve dedicated scrutiny when studying the interplay between big data...

  5. Forget the hype or reality. Big data presents new opportunities in Earth Science.

    Science.gov (United States)

    Lee, T. J.

    2015-12-01

    Earth science is arguably one of the most mature science discipline which constantly acquires, curates, and utilizes a large volume of data with diverse variety. We deal with big data before there is big data. For example, while developing the EOS program in the 1980s, the EOS data and information system (EOSDIS) was developed to manage the vast amount of data acquired by the EOS fleet of satellites. EOSDIS continues to be a shining example of modern science data systems in the past two decades. With the explosion of internet, the usage of social media, and the provision of sensors everywhere, the big data era has bring new challenges. First, Goggle developed the search algorithm and a distributed data management system. The open source communities quickly followed up and developed Hadoop file system to facility the map reduce workloads. The internet continues to generate tens of petabytes of data every day. There is a significant shortage of algorithms and knowledgeable manpower to mine the data. In response, the federal government developed the big data programs that fund research and development projects and training programs to tackle these new challenges. Meanwhile, comparatively to the internet data explosion, Earth science big data problem has become quite small. Nevertheless, the big data era presents an opportunity for Earth science to evolve. We learned about the MapReduce algorithms, in memory data mining, machine learning, graph analysis, and semantic web technologies. How do we apply these new technologies to our discipline and bring the hype to Earth? In this talk, I will discuss how we might want to apply some of the big data technologies to our discipline and solve many of our challenging problems. More importantly, I will propose new Earth science data system architecture to enable new type of scientific inquires.

  6. COBE's search for structure in the Big Bang

    Science.gov (United States)

    Soffen, Gerald (Editor); Guerny, Gene (Editor); Keating, Thomas (Editor); Moe, Karen (Editor); Sullivan, Walter (Editor); Truszkowski, Walt (Editor)

    1989-01-01

    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle.

  7. Big data computing

    CERN Document Server

    Akerkar, Rajendra

    2013-01-01

    Due to market forces and technological evolution, Big Data computing is developing at an increasing rate. A wide variety of novel approaches and tools have emerged to tackle the challenges of Big Data, creating both more opportunities and more challenges for students and professionals in the field of data computation and analysis. Presenting a mix of industry cases and theory, Big Data Computing discusses the technical and practical issues related to Big Data in intelligent information management. Emphasizing the adoption and diffusion of Big Data tools and technologies in industry, the book i

  8. Derotation of the cosmic microwave background polarization: Full-sky formalism

    International Nuclear Information System (INIS)

    Gluscevic, Vera; Kamionkowski, Marc; Cooray, Asantha

    2009-01-01

    Mechanisms have been proposed that might rotate the linear polarization of the cosmic microwave background (CMB) as it propagates from the surface of last scatter. In the simplest scenario, the rotation will be uniform across the sky, but the rotation angle may also vary across the sky. We develop in detail the complete set of full-sky quadratic estimators for the rotation of the CMB polarization that can be constructed from the CMB temperature and polarization. We derive the variance with which these estimators can be measured and show that these variances reduce to the simpler flat-sky expressions in the appropriate limit. We evaluate the variances numerically. While the flat-sky formalism may be suitable if the rotation angle arises as a realization of a random field, the full-sky formalism will be required to search for rotations that vary slowly across the sky as well as for models in which the angular power spectrum for the rotation angle peaks at large angles.

  9. SkyNet: A Modular Nuclear Reaction Network Library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-12-01

    Almost all of the elements heavier than hydrogen that are present in our solar system were produced by nuclear burning processes either in the early universe or at some point in the life cycle of stars. In all of these environments, there are dozens to thousands of nuclear species that interact with each other to produce successively heavier elements. In this paper, we present SkyNet, a new general-purpose nuclear reaction network that evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. SkyNet is free and open source, and aims to be easy to use and flexible. Any list of isotopes can be evolved, and SkyNet supports different types of nuclear reactions. SkyNet is modular so that new or existing physics, like nuclear reactions or equations of state, can easily be added or modified. Here, we present in detail the physics implemented in SkyNet with a focus on a self-consistent transition to and from nuclear statistical equilibrium to non-equilibrium nuclear burning, our implementation of electron screening, and coupling of the network to an equation of state. We also present comprehensive code tests and comparisons with existing nuclear reaction networks. We find that SkyNet agrees with published results and other codes to an accuracy of a few percent. Discrepancies, where they exist, can be traced to differences in the physics implementations.

  10. From big bang to big crunch and beyond

    International Nuclear Information System (INIS)

    Elitzur, Shmuel; Rabinovici, Eliezer; Giveon, Amit; Kutasov, David

    2002-01-01

    We study a quotient Conformal Field Theory, which describes a 3+1 dimensional cosmological spacetime. Part of this spacetime is the Nappi-Witten (NW) universe, which starts at a 'big bang' singularity, expands and then contracts to a 'big crunch' singularity at a finite time. The gauged WZW model contains a number of copies of the NW spacetime, with each copy connected to the preceding one and to the next one at the respective big bang/big crunch singularities. The sequence of NW spacetimes is further connected at the singularities to a series of non-compact static regions with closed timelike curves. These regions contain boundaries, on which the observables of the theory live. This suggests a holographic interpretation of the physics. (author)

  11. BIG data - BIG gains? Empirical evidence on the link between big data analytics and innovation

    OpenAIRE

    Niebel, Thomas; Rasel, Fabienne; Viete, Steffen

    2017-01-01

    This paper analyzes the relationship between firms’ use of big data analytics and their innovative performance in terms of product innovations. Since big data technologies provide new data information practices, they create novel decision-making possibilities, which are widely believed to support firms’ innovation process. Applying German firm-level data within a knowledge production function framework we find suggestive evidence that big data analytics is a relevant determinant for the likel...

  12. STARS4ALL Night Sky Brightness Photometer

    Directory of Open Access Journals (Sweden)

    Jaime Zamorano

    2017-06-01

    Full Text Available We present the main features of TESS-W, the first version of a series of inexpensive but reliable photometers that will be used to measure night sky brightness. The bandpass is extended to the red with respect of that of the Sky Quality Meter (SQM. TESS-W connects to a router via WIFI and it sends automatically the brightness values to a data repository using Internet of Things protocols. The device includes an infrared sensor to estimate the cloud coverage. It is designed for fixed stations to monitor the evolution of the sky brightness. The photometer could also be used in local mode connected to a computer or tablet to gather data from a moving vehicle. The photometer is being developed within STARS4ALL project, a collective awareness platform for promoting dark skies in Europe, funded by the EU. We intend to extend the existing professional networks to a citizen-based network of photometers. 

  13. Weather and atmosphere observation with the ATOM all-sky camera

    Directory of Open Access Journals (Sweden)

    Jankowsky Felix

    2015-01-01

    Full Text Available The Automatic Telescope for Optical Monitoring (ATOM for H.E.S.S. is an 75 cm optical telescope which operates fully automated. As there is no observer present during observation, an auxiliary all-sky camera serves as weather monitoring system. This device takes an all-sky image of the whole sky every three minutes. The gathered data then undergoes live-analysis by performing astrometric comparison with a theoretical night sky model, interpreting the absence of stars as cloud coverage. The sky monitor also serves as tool for a meteorological analysis of the observation site of the the upcoming Cherenkov Telescope Array. This overview covers design and benefits of the all-sky camera and additionally gives an introduction into current efforts to integrate the device into the atmosphere analysis programme of H.E.S.S.

  14. The pre-launch Planck Sky Model: a model of sky emission at submillimetre to centimetre wavelengths

    CERN Document Server

    Delabrouille, J.; Melin, J.-B.; Miville-Deschenes, M.-A.; Gonzalez-Nuevo, J.; Jeune, M.Le; Castex, G.; de Zotti, G.; Basak, S.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.; Bernard, J.-P.; Bouchet, F.R.; Clements, D.L.; da Silva, A.; Dickinson, C.; Dodu, F.; Dolag, K.; Elsner, F.; Fauvet, L.; Fay, G.; Giardino, G.; Leach, S.; Lesgourgues, J.; Liguori, M.; Macias-Perez, J.F.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Montier, L.; Mottet, S.; Paladini, R.; Partridge, B.; Piffaretti, R.; Prezeau, G.; Prunet, S.; Ricciardi, S.; Roman, M.; Schaefer, B.; Toffolatti, L.

    2012-01-01

    We present the Planck Sky Model (PSM), a parametric model for the generation of all-sky, few arcminute resolution maps of sky emission at submillimetre to centimetre wavelengths, in both intensity and polarisation. Several options are implemented to model the cosmic microwave background, Galactic diffuse emission (synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic Sunyaev-Zeldovich signals from clusters of galaxies. Each component is simulated by means of educated interpolations/extrapolations of data sets available at the time of the launch of the Planck mission, complemented by state-of-the-art models of the emission. Distinctive features of the simulations are: spatially varying spectral properties of synchrotron and dust; different spectral parameters for each point source; modeling of the clustering properties of extragalactic sources and of the power spectrum of fluctuations in the cosmic infrared back...

  15. The Big Fish Down Under: Examining Moderators of the "Big-Fish-Little-Pond" Effect for Australia's High Achievers

    Science.gov (United States)

    Seaton, Marjorie; Marsh, Herbert W.; Yeung, Alexander Seeshing; Craven, Rhonda

    2011-01-01

    Big-fish-little-pond effect (BFLPE) research has demonstrated that academic self-concept is negatively affected by attending high-ability schools. This article examines data from large, representative samples of 15-year-olds from each Australian state, based on the three Program for International Student Assessment (PISA) databases that focus on…

  16. Benchmarking Big Data Systems and the BigData Top100 List.

    Science.gov (United States)

    Baru, Chaitanya; Bhandarkar, Milind; Nambiar, Raghunath; Poess, Meikel; Rabl, Tilmann

    2013-03-01

    "Big data" has become a major force of innovation across enterprises of all sizes. New platforms with increasingly more features for managing big datasets are being announced almost on a weekly basis. Yet, there is currently a lack of any means of comparability among such platforms. While the performance of traditional database systems is well understood and measured by long-established institutions such as the Transaction Processing Performance Council (TCP), there is neither a clear definition of the performance of big data systems nor a generally agreed upon metric for comparing these systems. In this article, we describe a community-based effort for defining a big data benchmark. Over the past year, a Big Data Benchmarking Community has become established in order to fill this void. The effort focuses on defining an end-to-end application-layer benchmark for measuring the performance of big data applications, with the ability to easily adapt the benchmark specification to evolving challenges in the big data space. This article describes the efforts that have been undertaken thus far toward the definition of a BigData Top100 List. While highlighting the major technical as well as organizational challenges, through this article, we also solicit community input into this process.

  17. A Study of the Application of Big Data in a Rural Comprehensive Information Service

    Directory of Open Access Journals (Sweden)

    Leifeng Guo

    2015-05-01

    Full Text Available Big data has attracted extensive interest due to its potential tremendous social and scientific value. Researchers are also trying to extract potential value from agriculture big data. This paper presents a study of information services based on big data from the perspective of a rural comprehensive information service. First, we introduce the background of the rural comprehensive information service, and then we present in detail the National Rural Comprehensive Information Service Platform (NRCISP, which is supported by the national science and technology support program. Next, we discuss big data in the NRCISP according to data characteristics, data sources, and data processing. Finally, we discuss a service model and services based on big data in the NRCISP.

  18. Design of a device for sky light polarization measurements.

    Science.gov (United States)

    Wang, Yujie; Hu, Xiaoping; Lian, Junxiang; Zhang, Lilian; Xian, Zhiwen; Ma, Tao

    2014-08-14

    Sky polarization patterns can be used both as indicators of atmospheric turbidity and as a sun compass for navigation. The objective of this study is to improve the precision of sky light polarization measurements by optimal design of the device used. The central part of the system is composed of a Charge Coupled Device (CCD) camera; a fish-eye lens and a linear polarizer. Algorithms for estimating parameters of the polarized light based on three images are derived and the optimal alignments of the polarizer are analyzed. The least-squares estimation is introduced for sky light polarization pattern measurement. The polarization patterns of sky light are obtained using the designed system and they follow almost the same patterns of the single-scattering Rayleigh model. Deviations of polarization angles between observation and the theory are analyzed. The largest deviations occur near the sun and anti-sun directions. Ninety percent of the deviations are less than 5° and 40% percent of them are less than 1°. The deviations decrease evidently as the degree of polarization increases. It also shows that the polarization pattern of the cloudy sky is almost identical as in the blue sky.

  19. Big data, big knowledge: big data for personalized healthcare.

    Science.gov (United States)

    Viceconti, Marco; Hunter, Peter; Hose, Rod

    2015-07-01

    The idea that the purely phenomenological knowledge that we can extract by analyzing large amounts of data can be useful in healthcare seems to contradict the desire of VPH researchers to build detailed mechanistic models for individual patients. But in practice no model is ever entirely phenomenological or entirely mechanistic. We propose in this position paper that big data analytics can be successfully combined with VPH technologies to produce robust and effective in silico medicine solutions. In order to do this, big data technologies must be further developed to cope with some specific requirements that emerge from this application. Such requirements are: working with sensitive data; analytics of complex and heterogeneous data spaces, including nontextual information; distributed data management under security and performance constraints; specialized analytics to integrate bioinformatics and systems biology information with clinical observations at tissue, organ and organisms scales; and specialized analytics to define the "physiological envelope" during the daily life of each patient. These domain-specific requirements suggest a need for targeted funding, in which big data technologies for in silico medicine becomes the research priority.

  20. Reconstruction of Sky Illumination Domes from Ground-Based Panoramas

    Science.gov (United States)

    Coubard, F.; Lelégard, L.; Brédif, M.; Paparoditis, N.; Briottet, X.

    2012-07-01

    The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  1. BigDataBench: a Big Data Benchmark Suite from Internet Services

    OpenAIRE

    Wang, Lei; Zhan, Jianfeng; Luo, Chunjie; Zhu, Yuqing; Yang, Qiang; He, Yongqiang; Gao, Wanling; Jia, Zhen; Shi, Yingjie; Zhang, Shujie; Zheng, Chen; Lu, Gang; Zhan, Kent; Li, Xiaona; Qiu, Bizhu

    2014-01-01

    As architecture, systems, and data management communities pay greater attention to innovative big data systems and architectures, the pressure of benchmarking and evaluating these systems rises. Considering the broad use of big data systems, big data benchmarks must include diversity of data and workloads. Most of the state-of-the-art big data benchmarking efforts target evaluating specific types of applications or system software stacks, and hence they are not qualified for serving the purpo...

  2. Photosynthetically-active radiation: sky radiance distributions under clear and overcast conditions

    International Nuclear Information System (INIS)

    Grant, R.H.; Heisler, G.M.; Gao, W.

    1996-01-01

    The photosynthetically active radiation (PAR), defined as the wavelength band of 0.400 μm to 0.700 μm, represents most of the visible solar radiation. Although the proportion of global irradiance that originates from diffuse sky radiation is higher for PAR than for all solar shortwave radiation, it is often assumed that the PAR diffuse sky radiation is distributed identically to that of all shortwave solar radiation. This assumption has not been tested. PAR sky radiance measurements were made in a rural area over a wide range of solar zenith angles. The distribution of PAR sky radiance was modeled using physically-based, non-linear equations.For clear skies, the normalized sky radiance distribution (N) was best modeled using the scattering angle (ψ) and the zenith position in the sky (Θ) as N (Θ, ψ) = 0.0361 [6.3 + (1 + cos 2 Θ / (1 - cos ψ)] [1-e -0.31 sec ( Θ]. The angle Ψ is defined by cos ψ = cos Θ cos Θ * + sin Θ sin Θ * cos Φ, where solar zenith angle is Θ* and the difference in azimuth between the sun and the position in the sky is Φ. Modeling of the overcast sky depended on the visibility of the solar disk. The translucent middle/high cloud overcast conditions (cloud base greater than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.149 + 0.084Θ∗ + 1.305e −2.5ψ while the translucent low cloud overcast conditions (cloud base less than 300 m above ground level) were best modeled as: N(Θ∗, ψ) = 0.080 + 0.058Θ∗ + 0.652e −2.1ψ . The obscured overcast sky condition (solar disk obscured) was best modeled as: N(Θ) = 0.441 [1 + 4.6cos Θ] /[1 + 4.6]. The unit of N for all equations is π Sr −1 , so that integration of each function over the sky hemisphere yields 1.0.These equations can be applied directly to the sky diffuse irradiance on the horizontal, I diff , to provide radiance distributions for the sky. Estimates of actual sky radiance distribution can be estimated from N a (Θ, ψ) = I diff N(Θ,

  3. Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview.

    Science.gov (United States)

    Shields, Janet E; Karr, Monette E; Johnson, Richard W; Burden, Art R

    2013-03-10

    A family of fully automated digital whole sky imagers (WSIs) has been developed at the Marine Physical Laboratory over many years, for a variety of research and military applications. The most advanced of these, the day/night whole sky imagers (D/N WSIs), acquire digital imagery of the full sky down to the horizon under all conditions from full sunlight to starlight. Cloud algorithms process the imagery to automatically detect the locations of cloud for both day and night. The instruments can provide absolute radiance distribution over the full radiance range from starlight through daylight. The WSIs were fielded in 1984, followed by the D/N WSIs in 1992. These many years of experience and development have resulted in very capable instruments and algorithms that remain unique. This article discusses the history of the development of the D/N WSIs, system design, algorithms, and data products. The paper cites many reports with more detailed technical documentation. Further details of calibration, day and night algorithms, and cloud free line-of-sight results will be discussed in future articles.

  4. Stability of the nine sky quality meters in the Dutch night sky brightness monitoring network.

    Science.gov (United States)

    den Outer, Peter; Lolkema, Dorien; Haaima, Marty; van der Hoff, Rene; Spoelstra, Henk; Schmidt, Wim

    2015-04-22

    In the context of monitoring abundance of artificial light at night, the year-to-year stability of Sky Quality Meters (SQMs) is investigated by analysing intercalibrations derived from two measurement campaigns that were held in 2011 and 2012. An intercalibration comprises a light sensitivity factor and an offset for each SQM. The campaigns were concerned with monitoring measurements, each lasting one month. Nine SQMs, together forming the Night Sky Brightness Monitoring network (MHN) in The Netherlands, were involved in both campaigns. The stability of the intercalibration of these instruments leads to a year-to-year uncertainty (standard deviation) of 5% in the measured median luminance occurring at the MHN monitoring locations. For the 10-percentiles and 90-percentiles, we find 8% and 4%, respectively. This means that, for urban and industrial areas, changes in the sky brightness larger than 5% become detectable. Rural and nature areas require an 8%-9% change of the median luminance to be detectable. The light sensitivety agrees within 8% for the whole group of SQMs.

  5. Conociendo Big Data

    Directory of Open Access Journals (Sweden)

    Juan José Camargo-Vega

    2014-12-01

    Full Text Available Teniendo en cuenta la importancia que ha adquirido el término Big Data, la presente investigación buscó estudiar y analizar de manera exhaustiva el estado del arte del Big Data; además, y como segundo objetivo, analizó las características, las herramientas, las tecnologías, los modelos y los estándares relacionados con Big Data, y por último buscó identificar las características más relevantes en la gestión de Big Data, para que con ello se pueda conocer todo lo concerniente al tema central de la investigación.La metodología utilizada incluyó revisar el estado del arte de Big Data y enseñar su situación actual; conocer las tecnologías de Big Data; presentar algunas de las bases de datos NoSQL, que son las que permiten procesar datos con formatos no estructurados, y mostrar los modelos de datos y las tecnologías de análisis de ellos, para terminar con algunos beneficios de Big Data.El diseño metodológico usado para la investigación fue no experimental, pues no se manipulan variables, y de tipo exploratorio, debido a que con esta investigación se empieza a conocer el ambiente del Big Data.

  6. Reflective all-sky thermal infrared cloud imager.

    Science.gov (United States)

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  7. An All-Sky Portable (ASP) Optical Catalogue

    Science.gov (United States)

    Flesch, Eric Wim

    2017-06-01

    This optical catalogue combines the all-sky USNO-B1.0/A1.0 and most-sky APM catalogues, plus overlays of SDSS optical data, into a single all-sky map presented in a sparse binary format that is easily downloaded at 9 Gb zipped. Total count is 1 163 237 190 sources and each has J2000 astrometry, red and blue magnitudes with PSFs and variability indicator, and flags for proper motion, epoch, and source survey and catalogue for each of the photometry and astrometry. The catalogue is available on http://quasars.org/asp.html, and additional data for this paper is available at http://dx.doi.org/10.4225/50/5807fbc12595f.

  8. Measuring high-resolution sky luminance distributions with a CCD camera.

    Science.gov (United States)

    Tohsing, Korntip; Schrempf, Michael; Riechelmann, Stefan; Schilke, Holger; Seckmeyer, Gunther

    2013-03-10

    We describe how sky luminance can be derived from a newly developed hemispherical sky imager (HSI) system. The system contains a commercial compact charge coupled device (CCD) camera equipped with a fish-eye lens. The projection of the camera system has been found to be nearly equidistant. The luminance from the high dynamic range images has been calculated and then validated with luminance data measured by a CCD array spectroradiometer. The deviation between both datasets is less than 10% for cloudless and completely overcast skies, and differs by no more than 20% for all sky conditions. The global illuminance derived from the HSI pictures deviates by less than 5% and 20% under cloudless and cloudy skies for solar zenith angles less than 80°, respectively. This system is therefore capable of measuring sky luminance with the high spatial and temporal resolution of more than a million pixels and every 20 s respectively.

  9. Job schedulers for Big data processing in Hadoop environment: testing real-life schedulers using benchmark programs

    OpenAIRE

    Mohd Usama; Mengchen Liu; Min Chen

    2017-01-01

    At present, big data is very popular, because it has proved to be much successful in many fields such as social media, E-commerce transactions, etc. Big data describes the tools and technologies needed to capture, manage, store, distribute, and analyze petabyte or larger-sized datasets having different structures with high speed. Big data can be structured, unstructured, or semi structured. Hadoop is an open source framework that is used to process large amounts of data in an inexpensive and ...

  10. Sky luminosity for Rio de Janeiro City - Brazil

    International Nuclear Information System (INIS)

    Corbella, O.D.

    1995-12-01

    This paper presents sky luminosity data for Rio de Janeiro City, useful to be used in daylighting design in architecture. The data are presented as monthly graphics that correlate sunshine-hours with the frequency of occurrence during the day of a specific type of sky, that would present one of five defined characteristics (among clear and overcast sky). These results were derived from the knowledge of daily solar radiation and sunshine-hours data, for every day for a twelve year period. (author). 10 refs, 13 figs, 16 tabs

  11. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ, the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤ θ ≤ 40°, 1 okta ≤ ρ ≤ 6 oktas for summer solstice, and at 20° ≤ θ ≤ 25°, 0 okta ≤ ρ ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite. Generally, under clear or less cloudy

  12. Citizen Sky, Solving the Mystery of epsilon Aurigae

    Science.gov (United States)

    Turner, Rebecca; Price, A.; Kloppenborg, B.; Henden, A.

    2010-01-01

    Citizen Sky is a multi-year, NSF funded citizen science project involving the bright star eps Aur. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky goes beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. It begins with a 10 Star Training Program of several types of binary and transient variable stars that are easy to observe from suburban locations with the naked eye. Participants then move on to monitoring the rare and mysterious 2009-2011 eclipse (already underway) of epsilon Aurigae. This object undergoes eclipses only every 27.1 years and each eclipse lasts nearly two years. The star is bright enough to be seen with the naked eye from most urban areas. Training will be provided in observing techniques as well as basic data analysis of photometric and visual datasets (light curve and period analysis). The project also involves two public workshops, one on observing (already held in August of 2009) and one on data analysis and scientific paper writing (to be held in 2010.) This project has been made possible by the National Science Foundation.

  13. The Mythology of the Night Sky

    Science.gov (United States)

    Falkner, David E.

    The word "planet" comes from the Latin word planeta and the Greek word planes, which means "wanderer." When the ancient Greeks studied the night sky they noticed that most of the stars remained in the same position relative to all the other stars, but a few stars seem to move in the sky from day to day, week to week, and month to month. The Greeks called these rogue stars "wanderers" because they wandered through the starry background.

  14. RECONSTRUCTION OF SKY ILLUMINATION DOMES FROM GROUND-BASED PANORAMAS

    Directory of Open Access Journals (Sweden)

    F. Coubard

    2012-07-01

    Full Text Available The knowledge of the sky illumination is important for radiometric corrections and for computer graphics applications such as relighting or augmented reality. We propose an approach to compute environment maps, representing the sky radiance, from a set of ground-based images acquired by a panoramic acquisition system, for instance a mobile-mapping system. These images can be affected by important radiometric artifacts, such as bloom or overexposure. A Perez radiance model is estimated with the blue sky pixels of the images, and used to compute additive corrections in order to reduce these radiometric artifacts. The sky pixels are then aggregated in an environment map, which still suffers from discontinuities on stitching edges. The influence of the quality of estimated sky radiance on the simulated light signal is measured quantitatively on a simple synthetic urban scene; in our case, the maximal error for the total sensor radiance is about 10%.

  15. Characterizing Big Data Management

    Directory of Open Access Journals (Sweden)

    Rogério Rossi

    2015-06-01

    Full Text Available Big data management is a reality for an increasing number of organizations in many areas and represents a set of challenges involving big data modeling, storage and retrieval, analysis and visualization. However, technological resources, people and processes are crucial to facilitate the management of big data in any kind of organization, allowing information and knowledge from a large volume of data to support decision-making. Big data management can be supported by these three dimensions: technology, people and processes. Hence, this article discusses these dimensions: the technological dimension that is related to storage, analytics and visualization of big data; the human aspects of big data; and, in addition, the process management dimension that involves in a technological and business approach the aspects of big data management.

  16. Big science

    CERN Multimedia

    Nadis, S

    2003-01-01

    " "Big science" is moving into astronomy, bringing large experimental teams, multi-year research projects, and big budgets. If this is the wave of the future, why are some astronomers bucking the trend?" (2 pages).

  17. The VLA Sky Survey

    Science.gov (United States)

    Lacy, Mark; VLASS Survey Team, VLASS Survey Science Group

    2018-01-01

    The VLA Sky Survey (VLASS), which began in September 2017, is a seven year project to image the entire sky north of Declination -40 degrees in three epochs. The survey is being carried out in I,Q and U polarization at a frequency of 2-4GHz, and a resolution of 2.5 arcseconds, with each epoch being separated by 32 months. Raw data from the survey, along with basic "quicklook" images are made freely available shortly after observation. Within a few months, NRAO will begin making available further basic data products, including refined images and source lists. In this talk I shall describe the science goals and methodology of the survey, the current survey status, and some early results, along with plans for collaborations with external groups to produce enhanced, high level data products.

  18. Optical Sky Brightness and Transparency during the Winter Season at Dome A Antarctica from the Gattini-All-Sky Camera

    Science.gov (United States)

    Yang, Yi; Moore, Anna M.; Krisciunas, Kevin; Wang, Lifan; Ashley, Michael C. B.; Fu, Jianning; Brown, Peter J.; Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel; Riddle, Reed L.; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Suntzeff, Nicholas B.; Tothill, Nick; Travouillon, Tony; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2017-07-01

    The summit of the Antarctic plateau, Dome A, is proving to be an excellent site for optical, near-infrared, and terahertz astronomical observations. Gattini is a wide-field camera installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in 2009 January. We present here the measurements of sky brightness with the Gattini ultra-large field of view (90^\\circ × 90^\\circ ) in the photometric B-, V-, and R-bands; cloud cover statistics measured during the 2009 winter season; and an estimate of the sky transparency. A cumulative probability distribution indicates that the darkest 10% of the nights at Dome A have sky brightness of S B = 22.98, S V = 21.86, and S R = 21.68 mag arcsec-2. These values were obtained during the year 2009 with minimum aurora, and they are comparable to the faintest sky brightness at Maunakea and the best sites of northern Chile. Since every filter includes strong auroral lines that effectively contaminate the sky brightness measurements, for instruments working around the auroral lines, either with custom filters or with high spectral resolution instruments, these values could be easily obtained on a more routine basis. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based site. These light curves will be published in a future paper.

  19. Big bang and big crunch in matrix string theory

    OpenAIRE

    Bedford, J; Papageorgakis, C; Rodríguez-Gómez, D; Ward, J

    2007-01-01

    Following the holographic description of linear dilaton null Cosmologies with a Big Bang in terms of Matrix String Theory put forward by Craps, Sethi and Verlinde, we propose an extended background describing a Universe including both Big Bang and Big Crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using Matrix String Theory. We provide a simple theory capable of...

  20. Upgrade of the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) to its Full Science Capability of Sun-Sky-Cloud-Trace Gas Spectrometry in Airborne Science Deployments

    Science.gov (United States)

    Johnson, Roy R.; Russell, P.; Dunagan, S.; Redemann, J.; Shinozuka, Y.; Segal-Rosenheimer, M.; LeBlanc, S.; Flynn, C.; Schmid, B.; Livingston, J.

    2014-01-01

    The objectives of this task in the AITT (Airborne Instrument Technology Transition) Program are to (1) upgrade the NASA 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument to its full science capability of measuring (a) direct-beam sun transmission to derive aerosol optical depth spectra, (b) sky radiance vs scattering angle to retrieve aerosol absorption and type (via complex refractive index spectra, shape, and mode-resolved size distribution), (c) zenith radiance for cloud properties, and (d) hyperspectral signals for trace gas retrievals, and (2) demonstrate its suitability for deployment in challenging NASA airborne multiinstrument campaigns. 4STAR combines airborne sun tracking, sky scanning, and zenith pointing with diffraction spectroscopy to improve knowledge of atmospheric constituents and their links to air pollution, radiant energy budgets (hence climate), and remote measurements of Earth's surfaces. Direct beam hyperspectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements are intended to tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. 4STAR test flights, as well as science flights in the 2012-13 TCAP (Two-Column Aerosol Project) and 2013 SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) have demonstrated that the following are essential for 4STAR to achieve its full science potential: (1) Calibration stability for both direct-beam irradiance and sky radiance, (2) Improved light collection and usage, and (3) Improved flight operability and reliability. A particular challenge

  1. The night sky brightness at McDonald Observatory

    Science.gov (United States)

    Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.

    1975-01-01

    Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.

  2. Bliver big data til big business?

    DEFF Research Database (Denmark)

    Ritter, Thomas

    2015-01-01

    Danmark har en digital infrastruktur, en registreringskultur og it-kompetente medarbejdere og kunder, som muliggør en førerposition, men kun hvis virksomhederne gør sig klar til næste big data-bølge.......Danmark har en digital infrastruktur, en registreringskultur og it-kompetente medarbejdere og kunder, som muliggør en førerposition, men kun hvis virksomhederne gør sig klar til næste big data-bølge....

  3. Big data uncertainties.

    Science.gov (United States)

    Maugis, Pierre-André G

    2018-07-01

    Big data-the idea that an always-larger volume of information is being constantly recorded-suggests that new problems can now be subjected to scientific scrutiny. However, can classical statistical methods be used directly on big data? We analyze the problem by looking at two known pitfalls of big datasets. First, that they are biased, in the sense that they do not offer a complete view of the populations under consideration. Second, that they present a weak but pervasive level of dependence between all their components. In both cases we observe that the uncertainty of the conclusion obtained by statistical methods is increased when used on big data, either because of a systematic error (bias), or because of a larger degree of randomness (increased variance). We argue that the key challenge raised by big data is not only how to use big data to tackle new problems, but to develop tools and methods able to rigorously articulate the new risks therein. Copyright © 2016. Published by Elsevier Ltd.

  4. Mining the SDSS SkyServer SQL queries log

    Science.gov (United States)

    Hirota, Vitor M.; Santos, Rafael; Raddick, Jordan; Thakar, Ani

    2016-05-01

    SkyServer, the Internet portal for the Sloan Digital Sky Survey (SDSS) astronomic catalog, provides a set of tools that allows data access for astronomers and scientific education. One of SkyServer data access interfaces allows users to enter ad-hoc SQL statements to query the catalog. SkyServer also presents some template queries that can be used as basis for more complex queries. This interface has logged over 330 million queries submitted since 2001. It is expected that analysis of this data can be used to investigate usage patterns, identify potential new classes of queries, find similar queries, etc. and to shed some light on how users interact with the Sloan Digital Sky Survey data and how scientists have adopted the new paradigm of e-Science, which could in turn lead to enhancements on the user interfaces and experience in general. In this paper we review some approaches to SQL query mining, apply the traditional techniques used in the literature and present lessons learned, namely, that the general text mining approach for feature extraction and clustering does not seem to be adequate for this type of data, and, most importantly, we find that this type of analysis can result in very different queries being clustered together.

  5. Big data science: A literature review of nursing research exemplars.

    Science.gov (United States)

    Westra, Bonnie L; Sylvia, Martha; Weinfurter, Elizabeth F; Pruinelli, Lisiane; Park, Jung In; Dodd, Dianna; Keenan, Gail M; Senk, Patricia; Richesson, Rachel L; Baukner, Vicki; Cruz, Christopher; Gao, Grace; Whittenburg, Luann; Delaney, Connie W

    Big data and cutting-edge analytic methods in nursing research challenge nurse scientists to extend the data sources and analytic methods used for discovering and translating knowledge. The purpose of this study was to identify, analyze, and synthesize exemplars of big data nursing research applied to practice and disseminated in key nursing informatics, general biomedical informatics, and nursing research journals. A literature review of studies published between 2009 and 2015. There were 650 journal articles identified in 17 key nursing informatics, general biomedical informatics, and nursing research journals in the Web of Science database. After screening for inclusion and exclusion criteria, 17 studies published in 18 articles were identified as big data nursing research applied to practice. Nurses clearly are beginning to conduct big data research applied to practice. These studies represent multiple data sources and settings. Although numerous analytic methods were used, the fundamental issue remains to define the types of analyses consistent with big data analytic methods. There are needs to increase the visibility of big data and data science research conducted by nurse scientists, further examine the use of state of the science in data analytics, and continue to expand the availability and use of a variety of scientific, governmental, and industry data resources. A major implication of this literature review is whether nursing faculty and preparation of future scientists (PhD programs) are prepared for big data and data science. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Citizen Sky, IYA 2009 and What's To Come

    Science.gov (United States)

    Turner, Rebecca; Price, A.; Henden, A.

    2010-01-01

    Citizen Sky is a multi-year, NSF funded citizen science project involving the bright and mysterious variable star eps Aur. The project was conceived by the IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists. Citizen Sky is going beyond simple observing to include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. During IYA 2009 the Citizen Sky team was fully assembled, the website was developed and put online, and the first of two participant workshops was held. However, Citizen Sky does not stop or even slow down with the conclusion of IYA 2009. The project will continue to grow in the coming years. New participants are being recruited and trained as the observing phase of the project continues, a second participant workshop is planned for 2010, and the data analysis phase of the project will begin in earnest.

  7. Simultaneous measurement of spectral sky radiance by a non-scanning multidirectional spectroradiometer (MUDIS)

    International Nuclear Information System (INIS)

    Riechelmann, Stefan; Schrempf, Michael; Seckmeyer, Gunther

    2013-01-01

    We present a novel non-scanning multidirectional spectroradiometer (MUDIS) measuring the spectral sky radiance as a function of zenith and azimuth angle with a high spectral and temporal resolution. The instrument is based on a hyperspectral imager and measures spectral sky radiance in the wavelength range of 250–600 nm at 113 different directions simultaneously. MUDIS has been intercalibrated with a sky scanning CCD spectroradiometer (SCCD). Sky radiance measurements have been performed with both instruments under cloudless and overcast sky. The spectral actinic irradiance derived from those measurements agrees within 8% for wavelengths higher than 320 nm. The bias between synchronous MUDIS and SCCD sky radiance measurements during cloudless and overcast sky is below 5% for 320 and 500 nm with a 1σ standard deviation of less than 10%. MUDIS enables us to perform more than 220 000 spectral sky radiance measurements instead of approximately 6000 SCCD spectral sky radiance measurements per day and to measure spatial variations of spectral sky radiance simultaneously. (paper)

  8. The Rainbow Sky

    CERN Document Server

    Buick, Tony

    2010-01-01

    The world is full of color, from the blue ocean and the yellow daffodils and sunflowers in green carpeted meadows to the majestic purple mountains in the distance and brightly hued coral reefs off the edges of tropical coasts. But what is color, exactly? Why do we see things in different colors? Do we all see the same colors? Like the surface of our planet, the sky above us offers us an endless palette of color, a visual feast for the eyes. Besides atmospheric phenomena such as sunsets and rainbows, there are the many varied worlds of the Solar System, which we can spy through our telescopes, with their subtle colorings of beige and blue and green. Faraway star systems have suns that come in shades ranging from red and yellow to blue and white. Scientists even often use "false colors" to enhance the features of images they take of structures, such as the rings of Saturn and Jupiter’s clouds. This book, with its clear explanations of what makes the sky such a colorful place and in its great wealth of picture...

  9. The NexStar evolution and SkyPortal user's guide

    CERN Document Server

    Chen, James L

    2016-01-01

    This book serves as a comprehensive guide for using a Nexstar Evolution mount with WiFi SkyPortal control, walking the reader through the process for aligning and operating the system from a tablet or smartphone. The next generation Go-To mount from Celestron, this is compatible not only with the Nextstar Evolution but also with older mounts. It is the ideal resource for anyone who owns, or is thinking of owning, a Nexstar Evolution telescope, or adapting their existing Celestron mount. Pros and cons of the system are thoroughly covered with a critical depth that addresses any possible question by users. Beginning with a brief history of Go-To telescopes and the genesis of this still new technology, the author covers every aspect of the newly expanding capability in observing. This includes the associated Sky Portal smartphone and tablet application, the transition from the original Nexstar GoTo system to the new SkyPortal system, the use of the Sky Portal application with its Sky Safari 4 basic software and ...

  10. Automated exploitation of sky polarization imagery.

    Science.gov (United States)

    Sadjadi, Firooz A; Chun, Cornell S L

    2018-03-10

    We propose an automated method for detecting neutral points in the sunlit sky. Until now, detecting these singularities has been done manually. Results are presented that document the application of this method on a limited number of polarimetric images of the sky captured with a camera and rotating polarizer. The results are significant because a method for automatically detecting the neutral points may aid in the determination of the solar position when the sun is obscured and may have applications in meteorology and pollution detection and characterization.

  11. HARNESSING BIG DATA VOLUMES

    Directory of Open Access Journals (Sweden)

    Bogdan DINU

    2014-04-01

    Full Text Available Big Data can revolutionize humanity. Hidden within the huge amounts and variety of the data we are creating we may find information, facts, social insights and benchmarks that were once virtually impossible to find or were simply inexistent. Large volumes of data allow organizations to tap in real time the full potential of all the internal or external information they possess. Big data calls for quick decisions and innovative ways to assist customers and the society as a whole. Big data platforms and product portfolio will help customers harness to the full the value of big data volumes. This paper deals with technical and technological issues related to handling big data volumes in the Big Data environment.

  12. Clear-Sky Narrowband Albedo Datasets Derived from Modis Data

    Science.gov (United States)

    Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R. F.; Hong, G.

    2013-12-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting the clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the near-infrared (NIR; 1.24, 1.6 or 2.13 μm) and visible (VIS; 0.63 μm) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) to help identify clouds and retrieve their properties. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. The clear-sky albedos are derived using a radiative transfer parameterization of the impact of the atmosphere, including aerosols, on the observed reflectances. This paper presents the method of generating monthly clear-sky overhead albedo maps for both snow-free and snow-covered surfaces of these channels using one year of MODIS (Moderate Resolution Imaging Spectroradiometer) CERES products. Maps of 1.24 and 1.6 μm are being used as the background to help retrieve cloud properties (e.g., effective particle size, optical depth) in CERES cloud retrievals in both snow-free and snow-covered conditions.

  13. Climate Change Education in Protected Areas: Highlights from the Earth to Sky NASA-NPS-USFWS Partnership

    Science.gov (United States)

    Davis, A.; Morris, J.; Paglierani, R.

    2009-12-01

    National Parks, Hatcheries, Refuges, and other protected lands provide ideal settings for communicating the immediate and obvious effects of climate change, from rapidly melting glaciers, increased intensity and length of fire seasons, to flooding of archeological and historical treasures. Our nation's protected areas demonstrate clearly that climate change is happening now, and the impacts are affecting us all. Highlights of interpretive, educational and informational products presented in these sites, and developed through the Earth to Sky (ETS) partnership are described. The visiting public in our nation's parks, refuges, cultural sites and other protected lands wants to learn more about climate change, and is asking questions—often, complex questions. A broad array of educational programs and media are delivered in these unique settings, to diverse audiences. To be good "honest brokers" of the best information, staff needs access to accurate, up-to-date data, descriptions, analysis, and imagery that make the issues understandable. Pairing real world experiences of climate effects such as glacial retreat or beetle infestations, with NASA’s unique planetary perspective provides opportunities to link local, regional, and global effects in the minds and hearts of the public and students. The perspective afforded by such linkages can create powerful and long lasting impressions, and will likely provoke further learning about this topic. About Earth to Sky Earth to Sky is a partnership between NASA's Space and Earth Science disciplines, the US Fish and Wildlife Service (USFWS), and the National Park Service (NPS). The partnership actively fosters collaborative work between the science and interpretation/education communities of NPS, USFWS, and NASA, centering around a series of professional development workshops aimed at informal educators. The workshops weave NASA content with NPS and USFWS interpretation and environmental education methodology, and use best

  14. Big bang and big crunch in matrix string theory

    International Nuclear Information System (INIS)

    Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.

    2007-01-01

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe

  15. Big data a primer

    CERN Document Server

    Bhuyan, Prachet; Chenthati, Deepak

    2015-01-01

    This book is a collection of chapters written by experts on various aspects of big data. The book aims to explain what big data is and how it is stored and used. The book starts from  the fundamentals and builds up from there. It is intended to serve as a review of the state-of-the-practice in the field of big data handling. The traditional framework of relational databases can no longer provide appropriate solutions for handling big data and making it available and useful to users scattered around the globe. The study of big data covers a wide range of issues including management of heterogeneous data, big data frameworks, change management, finding patterns in data usage and evolution, data as a service, service-generated data, service management, privacy and security. All of these aspects are touched upon in this book. It also discusses big data applications in different domains. The book will prove useful to students, researchers, and practicing database and networking engineers.

  16. SNAP sky background at the north ecliptic pole

    International Nuclear Information System (INIS)

    Aldering, Greg

    2002-01-01

    I summarize the extant direct and indirect data on the sky background SNAP will see at the North Ecliptic Pole over the wavelength range 0.4 < λ < 1.7 (micro)m. At the spatial resolution of SNAP the sky background due to stars and galaxies is resolved, so the only source considered is zodiacal light. Several models are explored to provide interpolation in wavelength between the broadband data from HST and COBE observations. I believe the input data are now established well enough that the accuracy of the sky background presented here is sufficient for SNAP simulations, and that it will stand up to scrutiny by reviewers

  17. Microsoft big data solutions

    CERN Document Server

    Jorgensen, Adam; Welch, John; Clark, Dan; Price, Christopher; Mitchell, Brian

    2014-01-01

    Tap the power of Big Data with Microsoft technologies Big Data is here, and Microsoft's new Big Data platform is a valuable tool to help your company get the very most out of it. This timely book shows you how to use HDInsight along with HortonWorks Data Platform for Windows to store, manage, analyze, and share Big Data throughout the enterprise. Focusing primarily on Microsoft and HortonWorks technologies but also covering open source tools, Microsoft Big Data Solutions explains best practices, covers on-premises and cloud-based solutions, and features valuable case studies. Best of all,

  18. A night sky model.

    Science.gov (United States)

    Erpylev, N. P.; Smirnov, M. A.; Bagrov, A. V.

    A night sky model is proposed. It includes different components of light polution, such as solar twilight, moon scattered light, zodiacal light, Milky Way, air glow and artificial light pollution. The model is designed for calculating the efficiency of astronomical installations.

  19. Corporate Social Responsibility programs of Big Food in Australia: a content analysis of industry documents.

    Science.gov (United States)

    Richards, Zoe; Thomas, Samantha L; Randle, Melanie; Pettigrew, Simone

    2015-12-01

    To examine Corporate Social Responsibility (CSR) tactics by identifying the key characteristics of CSR strategies as described in the corporate documents of selected 'Big Food' companies. A mixed methods content analysis was used to analyse the information contained on Australian Big Food company websites. Data sources included company CSR reports and web-based content that related to CSR initiatives employed in Australia. A total of 256 CSR activities were identified across six organisations. Of these, the majority related to the categories of environment (30.5%), responsibility to consumers (25.0%) or community (19.5%). Big Food companies appear to be using CSR activities to: 1) build brand image through initiatives associated with the environment and responsibility to consumers; 2) target parents and children through community activities; and 3) align themselves with respected organisations and events in an effort to transfer their positive image attributes to their own brands. Results highlight the type of CSR strategies Big Food companies are employing. These findings serve as a guide to mapping and monitoring CSR as a specific form of marketing. © 2015 Public Health Association of Australia.

  20. Summary big data

    CERN Document Server

    2014-01-01

    This work offers a summary of Cukier the book: "Big Data: A Revolution That Will Transform How we Live, Work, and Think" by Viktor Mayer-Schonberg and Kenneth. Summary of the ideas in Viktor Mayer-Schonberg's and Kenneth Cukier's book: " Big Data " explains that big data is where we use huge quantities of data to make better predictions based on the fact we identify patters in the data rather than trying to understand the underlying causes in more detail. This summary highlights that big data will be a source of new economic value and innovation in the future. Moreover, it shows that it will

  1. Measurement of the neutron spectrum of the Big Ten critical assembly by lithium-6 spectrometry

    International Nuclear Information System (INIS)

    De Leeuw-Gierts, G.; De Leeuw, S.; Hansen, G.E.; Helmick, H.H.

    1979-01-01

    The central neutron-flux spectrum of the Los Alamos Scientific Laboratory's critical assembly, Big Ten, was measured with a 6 Li spectrometer and techniques developed at the Centre d'Etude de L'Energie Nucleaire, Mol, as part of an experimental program to establish the characteristics of Big Ten

  2. Measurement of the neutron spectrum of the Big Ten critical assembly by lithium-6 spectrometry

    International Nuclear Information System (INIS)

    Leeuw-Gierts, G. de; Leeuw, S. de

    1980-01-01

    The central neutron-flux spectrum of the Los Alamos Scientific Laboratory's critical assembly, Big Ten, was measured with a 6 Li spectrometer and techniques developed at the Centre d'Etude de l'Energie Nucleaire, Mol, as part of an experimental program to establish the characteristics of Big Ten

  3. Big Data and Intelligence: Applications, Human Capital, and Education

    Directory of Open Access Journals (Sweden)

    Michael Landon-Murray

    2016-06-01

    Full Text Available The potential for big data to contribute to the US intelligence mission goes beyond bulk collection, social media and counterterrorism. Applications will speak to a range of issues of major concern to intelligence agencies, from military operations to climate change to cyber security. There are challenges too: procurement lags, data stovepiping, separating signal from noise, sources and methods, a range of normative issues, and central to managing these challenges, human capital. These potential applications and challenges are discussed and a closer look at what data scientists do in the Intelligence Community (IC is offered. Effectively filling the ranks of the IC’s data science workforce will depend on the provision of well-trained data scientists from the higher education system. Program offerings at America’s top fifty universities will thus be surveyed (just a few years ago there were reportedly no degrees in data science. One Master’s program that has melded data science with intelligence is examined as well as a university big data research center focused on security and intelligence. This discussion goes a long way to clarify the prospective uses of data science in intelligence while probing perhaps the key challenge to optimal application of big data in the IC.

  4. Research on Extraction of Ship Target in Complex Sea-sky Background

    International Nuclear Information System (INIS)

    Kang, W J; Ding, X M; Cui, J W; Ao, L

    2006-01-01

    Research on the extraction of ship target in complex sea-sky background has important value to improve the capability of imaging-typed sea navigation and nautical traffic control systems. According to the imaging property of complex sea-sky background, a reliable ship target extraction method is proposed in this paper. The general guide line is that getting the sea-sky division line as a priori knowledge and then the target potential area is determined through discontinuous region of the sea-sky division line. Firstly, a local selective window filter is adopted to filter the image; secondly, eight directions Sobel operator edge detection method and gradient Hough transform are combined to extract sea-sky division line in the image; then a multi-histogram matching technique is adopted to remove the sea and sky background and thus ship target is extracted from complex background. The experiments show that our method has the merits of robustness to noise, small computational complexity and stability

  5. Collaborative Approaches Needed to Close the Big Data Skills Gap

    Directory of Open Access Journals (Sweden)

    Steven Miller

    2014-04-01

    Full Text Available The big data and analytics talent discussion has largely focused on a single role – the data scientist. However, the need is much broader than data scientists. Data has become a strategic business asset. Every professional occupation must adapt to this new mindset. Universities in partnership with industry must move quickly to ensure that the graduates they produce have the required skills for the age of big data. Existing curricula should be reviewed and adapted to ensure relevance. New curricula and degree programs are needed to meet the needs of industry.

  6. Super-sample covariance approximations and partial sky coverage

    Science.gov (United States)

    Lacasa, Fabien; Lima, Marcos; Aguena, Michel

    2018-04-01

    Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30-35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.

  7. Supernova Cosmology in the Big Data Era

    Science.gov (United States)

    Kessler, Richard

    Here we describe large "Big Data" Supernova (SN) Ia surveys, past and present, used to make precision measurements of cosmological parameters that describe the expansion history of the universe. In particular, we focus on surveys designed to measure the dark energy equation of state parameter w and its dependence on cosmic time. These large surveys have at least four photometric bands, and they use a rolling search strategy in which the same instrument is used for both discovery and photometric follow-up observations. These surveys include the Supernova Legacy Survey (SNLS), Sloan Digital Sky Survey II (SDSS-II), Pan-STARRS 1 (PS1), Dark Energy Survey (DES), and Large Synoptic Survey Telescope (LSST). We discuss the development of how systematic uncertainties are evaluated, and how methods to reduce them play a major role is designing new surveys. The key systematic effects that we discuss are (1) calibration, measuring the telescope efficiency in each filter band, (2) biases from a magnitude-limited survey and from the analysis, and (3) photometric SN classification for current surveys that don't have enough resources to spectroscopically confirm each SN candidate.

  8. eGSM: A extended Sky Model of Diffuse Radio Emission

    Science.gov (United States)

    Kim, Doyeon; Liu, Adrian; Switzer, Eric

    2018-01-01

    Both cosmic microwave background and 21cm cosmology observations must contend with astrophysical foreground contaminants in the form of diffuse radio emission. For precise cosmological measurements, these foregrounds must be accurately modeled over the entire sky Ideally, such full-sky models ought to be primarily motivated by observations. Yet in practice, these observations are limited, with data sets that are observed not only in a heterogenous fashion, but also over limited frequency ranges. Previously, the Global Sky Model (GSM) took some steps towards solving the problem of incomplete observational data by interpolating over multi-frequency maps using principal component analysis (PCA).In this poster, we present an extended version of GSM (called eGSM) that includes the following improvements: 1) better zero-level calibration 2) incorporation of non-uniform survey resolutions and sky coverage 3) the ability to quantify uncertainties in sky models 4) the ability to optimally select spectral models using Bayesian Evidence techniques.

  9. Open Skies and monitoring a fissile materials cut-off treaty

    International Nuclear Information System (INIS)

    Allentuck, J.; Lemley, J.R.

    1995-01-01

    The Treaty on Open Skies (Open Skies) is intended among other things to provide, in the words of its preamble, means ''to facilitate the monitoring of compliance with existing or future arms control agreements.'' Open Skies permits overflights of the territory of member states by aircraft equipped with an array of sensors of various types. Their types and capabilities are treaty-limited. To find useful application in monitoring a cut-off treaty Open Skies would need to be amended. The number of signatories would need to be expanded so as to provide greater geographical coverage, and restrictions on sensor-array capabilities would need to be relaxed. To facilitate the detection of impending violations of a cut-off convention by Open Skies overflights, the data base provided by parties to the former should include among other things an enumeration of existing and former fuel cycle and research facilities including those converted to other uses, their precise geographic location, and a site plan

  10. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method.

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ , the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤  θ  ≤ 40°, 1 okta ≤  ρ  ≤ 6 oktas for summer solstice, and at 20° ≤  θ  ≤ 25°, 0 okta ≤  ρ  ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite

  11. Measuring and mapping the night sky brightness of Perth, Western Australia

    Science.gov (United States)

    Biggs, James D.; Fouché, Tiffany; Bilki, Frank; Zadnik, Marjan G.

    2012-04-01

    In order to study the light pollution produced in the city of Perth, Western Australia, we have used a hand-held sky brightness meter to measure the night sky brightness across the city. The data acquired facilitated the creation of a contour map of night sky brightness across the 2400 km2 area of the city - the first such map to be produced for a city. Importantly, this map was created using a methodology borrowed from the field of geophysics - the well proven and rigorous techniques of geostatistical analysis and modelling. A major finding of this study is the effect of land use on night sky brightness. By overlaying the night sky brightness map on to a suitably processed Landsat satellite image of Perth we found that locations near commercial and/or light industrial areas have a brighter night sky, whereas locations used for agriculture or having high vegetation coverage have a fainter night sky than surrounding areas. Urban areas have intermediate amounts of vegetation and are intermediate in brightness compared with the above-mentioned land uses. Regions with a higher density of major highways also appear to contribute to increased night sky brightness. When corrected for the effects of direct illumination from high buildings, we found that the night sky brightness in the central business district (CBD) is very close to that expected for a city of Perth's population from modelling work and observations obtained in earlier studies. Given that our night sky brightness measurements in Perth over 2009 and 2010 are commensurate with that measured in Canadian cities over 30 years earlier implies that the various lighting systems employed in Perth (and probably most other cities) have not been optimised to minimize light pollution over that time. We also found that night sky brightness diminished with distance with an exponent of approximately -0.25 ± 0.02 from 3.5 to 10 km from the Perth CBD, a region characterized by urban and commercial land use. For distances

  12. NRAO Makes Available VLA Sky Survey Maps

    Science.gov (United States)

    1994-06-01

    An original and comprehensive data set potentially full of scientific surprises now is available to astronomers, students and the public through the information superhighway. Radio images of the sky produced by the Very Large Array radio telescope -- one of the premier astronomical instruments in the world -- as part of a massive survey now are stored in an electronic repository avail- able over the Internet computer communications network. "Each of these sensitive new sky maps shows about a thou- sand radio-emitting objects, most of which have never been seen before," said Dr. J. J. Condon, leader of the National Radio As- tronomy Observatory (NRAO) survey team. "We are releasing them as soon as they are completed because they contain more data than we could possibly analyze by ourselves." "By using electronic distribution, we can open this tre- mendous resource of information for computer analysis by all as- tronomers immediately, without waiting for traditional publication," Condon added. The radio images are copyright NRAO/ AUI. Permission is granted for use of the material without charge for scholarly, educational and private non-commercial purposes. "It is entirely conceivable -- even probable -- that valuable discoveries will be made by students or amateur astrono- mers who devote the time to study these maps carefully," said team member Dr. W. D. Cotton. "Making this new information available electronically means that more people can participate in adding to its scientific value." The maps are a product of the NRAO VLA Sky Survey (NVSS), which began its observational phase in September of 1993 and will cover 82 percent of the sky when completed by the end of 1996. The NVSS is expected to produce a catalog of more than two million ra- dio-emitting objects in the sky, and it is the first sky survey sensitive to linearly polarized emission from radio sources beyond our own Milky Way galaxy. "The NVSS is being made as a service to the entire astronomical

  13. Big Data en surveillance, deel 1 : Definities en discussies omtrent Big Data

    NARCIS (Netherlands)

    Timan, Tjerk

    2016-01-01

    Naar aanleiding van een (vrij kort) college over surveillance en Big Data, werd me gevraagd iets dieper in te gaan op het thema, definities en verschillende vraagstukken die te maken hebben met big data. In dit eerste deel zal ik proberen e.e.a. uiteen te zetten betreft Big Data theorie en

  14. ESASky: All the sky you need

    Science.gov (United States)

    De Marchi, Guido; ESASky Team

    2018-06-01

    ESASky is a discovery portal giving to all astronomers, professional and amateur alike, an easy way to access high-quality scientific data from their computer, tablet, or mobile device. It includes over half a million images, 300,000 spectra, and more than a billion catalogue sources. From gamma rays to radio wavelengths, it allows users to explore the cosmos with data from a dozen space missions from the astronomical archives of ESA, NASA, and JAXA and does not require prior knowledge of any particular mission. ESASky features an all-sky exploration interface, letting users easily zoom in for stars as single targets or as part of a whole galaxy, visualise them and retrieve the relevant data taken in an area of the sky with just a few clicks. Users can easily compare observations of the same source obtained by different space missions at different times and wavelengths. They can also use ESASky to plan future observations with the James Webb Space Telescope, comparing the relevant portion of the sky as observed by Hubble and other missions. We will illustrate the many options to visualise and access astronomical data: interactive footprints for each instrument, tree-maps, filters, and solar-system object trajectories can all be combined and displayed. The most recent version of ESASky, released in February, also includes access to scientific publications, allowing users to visualise on the sky all astronomical objects with associated scientific publications and to link directly back to the papers in the NASA Astrophysics Data System.

  15. Characterizing Big Data Management

    OpenAIRE

    Rogério Rossi; Kechi Hirama

    2015-01-01

    Big data management is a reality for an increasing number of organizations in many areas and represents a set of challenges involving big data modeling, storage and retrieval, analysis and visualization. However, technological resources, people and processes are crucial to facilitate the management of big data in any kind of organization, allowing information and knowledge from a large volume of data to support decision-making. Big data management can be supported by these three dimensions: t...

  16. Predicting daylight illuminance on inclined surfaces using sky luminance data

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.H.W.; Lau, C.C.S.; Lam, J.C. [City University of Hong Kong, Kowloon (China). Dept. of Building and Construction

    2005-07-01

    Daylight illuminance, particularly on vertical surfaces, plays a major role in determining and evaluating the daylighting performance of a building. In many parts of the world, however, the basic daylight illuminance data for various vertical planes are not always readily available. The usual method to obtain diffuse illuminance on tilted planes would be based on inclined surface models using data from the horizontal measurements. Alternatively, the diffuse illuminance on a sloping plane can be computed by integrating the luminance distribution of the sky 'seen' by the plane. This paper presents an approach to estimate the vertical outdoor illuminance from sky luminance data and solar geometry. Sky luminance data recorded from January 1999 to December 2001 in Hong Kong and generated by two well-known sky luminance models (Kittler and Perez) were used to compute the outdoor illuminance for the four principal vertical planes (N, E, S and W). The performance of this approach was evaluated against data measured in the same period. Statistical analysis indicated that using sky luminance distributions to predict outdoor illuminance can give reasonably good agreement with measured data for all vertical surfaces. The findings provide an accurate alternative to determine the amount of daylight on vertical as well as other inclined surfaces when sky luminance data are available. (author)

  17. Development of software for estimating clear sky solar radiation in Indonesia

    Science.gov (United States)

    Ambarita, H.

    2017-01-01

    Research on solar energy applications in Indonesia has come under scrutiny in recent years. Solar radiation is harvested by solar collector or solar cell and convert the energy into useful energy such as heat and or electricity. In order to provide a better configuration of a solar collector or a solar cell, clear sky radiation should be estimated properly. In this study, an in-house software for estimating clear sky radiation is developed. The governing equations are solved simultaneously. The software is tested in Medan city by performing a solar radiation measurements. For clear sky radiation, the results of the software and measurements ones show a good agreement. However, for the cloudy sky condition it cannot predict the solar radiation. This software can be used to estimate the clear sky radiation in Indonesia.

  18. Clear sky solar insolation data for Islamabad

    International Nuclear Information System (INIS)

    Akhter, P.; Baig, A.; Mufti, A.

    1990-09-01

    Monthly average values of both integrated and instantaneous clear sky solar radiation components for Islamabad territory have been presented and discussed. The components include total, direct normal, direct horizontal, global and diffuse radiations, sun hours, number of clear days and temperature for solar energy applications. Beam irradiance values are used to get clear sky (maximum) sun hours by ab-initio. The need for replacing the conventional sunshine recorder is discussed. (author). 8 refs, 1 fig, 2 tabs

  19. Tropical rainforest response to marine sky brightening climate engineering

    Science.gov (United States)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  20. The observer's sky atlas

    CERN Document Server

    Karkoschka, E

    2007-01-01

    This title includes a short introduction to observing, a thorough description of the star charts and tables, a glossary and much more. It is perfect for both the beginner and seasoned observer. It is fully revised edition of a best-selling and highly-praised sky atlas.

  1. Electronic measurement equipment for determining the cloud cover of the sky. Elektronisches Messgeraet zur Bestimmung des Bedeckungsgrades des Himmels

    Energy Technology Data Exchange (ETDEWEB)

    Siebrasse, R

    1990-01-18

    The invention is used for the automatic determination of the degree of cloud cover of the sky. Compared to the state of the art, the invention has the advantage that it manages without mechanical controls, like those of 'sky scanners' for example, and that the measuring head has a very simple, cheap and robust construction. In order to do without any mechanics, a group of 24 photo-transistors of type BPX 43 was mounted on a hemispherical support, which screens the individual elements from one another, so that a certain section of the sky is allocated to each transistor. The optical axes of the individual axes are distributed completely evenly, so that there is an even and beam-shaped alignment to the sky above the measurement head. The individual measurements of the 24 transistors together give a certain optical impression, a 'picture' or a brightness distribution of the sky hemisphere, which can be read by a suitable program via a normal commercial adaptor into a personal computer, where this distribution is compared with given distributions which have degrees of cover of 0-8 or 0-10 as heading. The given 'picture' which comes closest to the current distribution is ejected as the result, and the heading of this picture gives the current degree of cloud cover.

  2. Big Data in der Cloud

    DEFF Research Database (Denmark)

    Leimbach, Timo; Bachlechner, Daniel

    2014-01-01

    Technology assessment of big data, in particular cloud based big data services, for the Office for Technology Assessment at the German federal parliament (Bundestag)......Technology assessment of big data, in particular cloud based big data services, for the Office for Technology Assessment at the German federal parliament (Bundestag)...

  3. Big Data is invading big places as CERN

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Big Data technologies are becoming more popular with the constant grow of data generation in different fields such as social networks, internet of things and laboratories like CERN. How is CERN making use of such technologies? How machine learning is applied at CERN with Big Data technologies? How much data we move and how it is analyzed? All these questions will be answered during the talk.

  4. The big bang

    International Nuclear Information System (INIS)

    Chown, Marcus.

    1987-01-01

    The paper concerns the 'Big Bang' theory of the creation of the Universe 15 thousand million years ago, and traces events which physicists predict occurred soon after the creation. Unified theory of the moment of creation, evidence of an expanding Universe, the X-boson -the particle produced very soon after the big bang and which vanished from the Universe one-hundredth of a second after the big bang, and the fate of the Universe, are all discussed. (U.K.)

  5. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  6. Introducing Public Libraries to The Big Read: Final Report on the Audio Guide Distribution

    Science.gov (United States)

    Sloan, Kay; Randall, Michelle

    2009-01-01

    In July 2008, over 14,000 public libraries throughout the U.S. received, free of charge, a set of fourteen Audio Guides introducing them to The Big Read. Since 2007, when the National Endowment for the Arts and the Institute of Museum and Library Services, in partnership with Arts Midwest, debuted The Big Read, the program has awarded grants to…

  7. Big Bear Exploration Ltd. 1998 annual report

    International Nuclear Information System (INIS)

    1999-01-01

    During the first quarter of 1998 Big Bear completed a purchase of additional assets in the Rainbow Lake area of Alberta in which light oil purchase was financed with new equity and bank debt. The business plan was to immediately exploit these light oil assets, the result of which would be increased reserves, production and cash flow. Although drilling results in the first quarter on the Rainbow Lake properties was mixed, oil prices started to free fall and drilling costs were much higher than expected. As a result, the company completed a reduced program which resulted in less incremental loss and cash flow than it budgeted for. On April 29, 1998, Big Bear entered into agreement with Belco Oil and Gas Corp. and Moan Investments Ltd. for the issuance of convertible preferred shares at a gross value of $15,750,000, which shares were eventually converted at 70 cents per share to common equity. As a result of the continued plunge in oil prices, the lending value of the company's assets continued to fall, requiring it to take action in order to meet its financial commitments. Late in the third quarter Big Bear issued equity for proceeds of $11,032,000 which further reduced the company's debt. Although the company has been extremely active in identifying and pursuing acquisition opportunities, it became evident that Belco Oil and Gas Corp. and Big Bear did nor share common criteria for acquisitions, which resulted in the restructuring of their relationship in the fourth quarter. With the future of oil prices in question, Big Bear decided that it would change its focus to that of natural gas and would refocus ts efforts to acquire natural gas assets to fuel its growth. The purchase of Blue Range put Big Bear in a difficult position in terms of the latter's growth. In summary, what started as a difficult year ended in disappointment

  8. Small Big Data Congress 2017

    NARCIS (Netherlands)

    Doorn, J.

    2017-01-01

    TNO, in collaboration with the Big Data Value Center, presents the fourth Small Big Data Congress! Our congress aims at providing an overview of practical and innovative applications based on big data. Do you want to know what is happening in applied research with big data? And what can already be

  9. Big data opportunities and challenges

    CERN Document Server

    2014-01-01

    This ebook aims to give practical guidance for all those who want to understand big data better and learn how to make the most of it. Topics range from big data analysis, mobile big data and managing unstructured data to technologies, governance and intellectual property and security issues surrounding big data.

  10. Dark Skies Africa: a Prototype Project with the IAU Office of Astronomy for Development

    Science.gov (United States)

    Walker, Constance Elaine; Tellez, Daniel; Pompea, Stephen M.

    2015-08-01

    The IAU’s Office of Astronomy for Development (OAD) awarded the National Optical Astronomy Observatory (NOAO) with a grant to deliver a “Dark Skies Outreach to Sub-Saharan Africa” program to institutions in 12 African countries during 2013: Algeria, Nigeria, Rwanda, Tanzania, Ghana, Zambia, South Africa, Ethiopia, Gabon, Kenya, Namibia and Senegal. The program helped students identify wasteful and inefficient lighting and provided ways to reduce consumption and to keep energy costs in check. The goal was to inspire students to be responsible stewards in helping their community safeguard one of Africa’s natural resources - a dark night sky.Thirteen kits made by the NOAO Education and Public Outreach group were sent to coordinators at university, science center and planetarium-type institutions in the 12 countries and to the IAU OAD. The program’s kit included complete instructional guides and supplies for six hands-on activities (e.g., on the importance of shielding lights and using energy efficient bulbs) and a project on energy conservation and responsible lighting (through energy audits). The activities were taught to the coordinators in a series of six Google+ Hangout sessions scheduled from June to mid-November. The coordinators at the institutions in turn trained local teachers in junior and senior high schools. The Google+ Hangout sessions also included instruction on carrying out evaluations. From the end of November until mid-December students from the different African countries shared final class projects (such as posters or powerpoints) on the program’s website.The entire program was designed to help coordinators and educators work with students, parents and the community to identify dark sky resource, lighting and energy issues and to assess their status, efficiency and effectiveness. The audience will take away from the presentation lessons learned on how well the techniques succeeded in using Google+ Hangout sessions to instruct and

  11. NIGHT SKY BRIGHTNESS ABOVE ZAGREB 2012.-2017.

    Directory of Open Access Journals (Sweden)

    Željko Andreić

    2018-01-01

    Full Text Available The night sky brightness at the RGN site (near the centre of Zagreb, Croatia was monitored form January 2012. to December 2017. The gathered data show that the average night sky brightness in this period did not change significantly, apart from differences caused by yearly variations in meteorological parameters. The nightly minima, maxima and mean values of the sky brightness do change considerably due to changes in meteorological conditions, often being between 2 and 3 magnitudes. The seasonal probability curves and histograms are constructed and are used to obtain additional information on the light pollution at the RGN site. They reveal that the night sky brightness clutters around two peaks, at about 15.0 mag/arcsec2 and at about 18.2 mag/arcsec2. The tendency to slightly lower brightness values in spring and summer can also be seen in the data. Two peaks correspond to cloudy and clear nights respectively, the difference in brightness between them being about 3 magnitudes. A crude clear/cloudy criterion can be defined too: the minimum between two peaks is around 16.7 mag/arcsec2. The brightness values smaller than thisare attributed to clear nights and vice-versa. Comparison with Vienna and Hong-Kong indicates that the light pollution of Zagreb is a few times larger.

  12. Reactor dosimetry calibrations in the Big Ten critical assembly

    International Nuclear Information System (INIS)

    Barr, D.W.; Hansen, G.E.

    1977-01-01

    Eleven irradiations of foil packs located in the central region of Big Ten were made for the Interlaboratory Reaction Rate Program. Each irradiation was at a nominal 10 15 fluence and the principal fluence monitor was the National Bureau of Standards' double fission chamber containing 235 U and 238 U deposits and located at the center of Big Ten. Secondary monitors consisted of three external fission chambers and two internal foil sets containing Au, In, and Al. Activities of one set were counted at the LASL and the other at the Hanford Engineering Developement Laboratory. The uncertainty in relative fluence for each irradiation was +-0.3%

  13. Sky shine of proton synchrotron

    International Nuclear Information System (INIS)

    Katoh, Kazuaki; Hirayama, Hideo

    1978-01-01

    This report represents present status of the study on sky shine and the results made at KEK. At present, data at various facilities can be analyzed by the formula presented by R.H. Thomas. Measurement of sky shine at KEK has been carried out since August, 1977. The neutron level around the accelerator, spatial distribution, energy spectra and the intensities at far distant places were measured. The radiation level at the surface of shield of the accelerator is less than 0.8 mrem/h. Therefore, high sensitive detectors are required to measure the neutron at the far distant places. A 2 inch diameter BF 3 detector with polyethylene moderator and a 5.8 inch diameter BF 3 detector with same moderator were used for the measurement. Conversion from the obtained counting rate to the dose rate was made by using the conversion coefficient for fission neutrons of Cf-252. The dose rate distributions at the shielding surface of the main ring of the accelerator and the counter experiment hall were measured. At the main ring, the dose rate was less than 0.16 mrem/h, and at the counter hall the maximum dose rate was 5 mrem/h. The distance dependence of the sky shine level was measured, and the effective attenuation distance was 1300 m. The result can be expressed by the formula by Thomas. (Kato, T.)

  14. Big Data and Neuroimaging.

    Science.gov (United States)

    Webb-Vargas, Yenny; Chen, Shaojie; Fisher, Aaron; Mejia, Amanda; Xu, Yuting; Crainiceanu, Ciprian; Caffo, Brian; Lindquist, Martin A

    2017-12-01

    Big Data are of increasing importance in a variety of areas, especially in the biosciences. There is an emerging critical need for Big Data tools and methods, because of the potential impact of advancements in these areas. Importantly, statisticians and statistical thinking have a major role to play in creating meaningful progress in this arena. We would like to emphasize this point in this special issue, as it highlights both the dramatic need for statistical input for Big Data analysis and for a greater number of statisticians working on Big Data problems. We use the field of statistical neuroimaging to demonstrate these points. As such, this paper covers several applications and novel methodological developments of Big Data tools applied to neuroimaging data.

  15. Big Data; A Management Revolution : The emerging role of big data in businesses

    OpenAIRE

    Blasiak, Kevin

    2014-01-01

    Big data is a term that was coined in 2012 and has since then emerged to one of the top trends in business and technology. Big data is an agglomeration of different technologies resulting in data processing capabilities that have been unreached before. Big data is generally characterized by 4 factors. Volume, velocity and variety. These three factors distinct it from the traditional data use. The possibilities to utilize this technology are vast. Big data technology has touch points in differ...

  16. Social big data mining

    CERN Document Server

    Ishikawa, Hiroshi

    2015-01-01

    Social Media. Big Data and Social Data. Hypotheses in the Era of Big Data. Social Big Data Applications. Basic Concepts in Data Mining. Association Rule Mining. Clustering. Classification. Prediction. Web Structure Mining. Web Content Mining. Web Access Log Mining, Information Extraction and Deep Web Mining. Media Mining. Scalability and Outlier Detection.

  17. Protecting the Local Dark-Sky Areas around the International Observatories in Chile.

    Science.gov (United States)

    Smith, M. G.

    2001-12-01

    This report covers efforts by IAU Commission 50's new Working Group on Light Pollution to slow or halt the spread of incipient light pollution near the VLT, the Magellan 6.5m telescopes, Gemini South, SOAR, Blanco and many smaller telescopes in Chile. An effort has just begun to protect the ALMA site in Northern Chile from RFI. Such work includes extensive outreach programs to the local population, schools and industry as well as to local, regional and national levels of government in Chile. The group is working internationally with such organizations as the IDA; one member has recently led the production of "The first world atlas of the artificial night-sky brightness". These efforts have resulted in the first national-level environmental legislation covering dark skies as part of a government effort to protect the environment. Chilean manufacturers are now producing competitive, full-cut-off, street lighting designed specifically to comply with the new legislation. The Chilean national tourism agency is supporting "Astronomical Tourism" based on the dark, clear skies of Chile. An international conference on Controlling Light Pollution and RFI will be held in La Serena, Chile on 5-7 March, 2002, backed up by a parallel meeting of Chilean amateur astronomers. Much work remains to be done. Most of this work is supported by funding from the US National Science Foundation through CTIO, and from ESO, OCIW and CONAMA.

  18. Cryptography for Big Data Security

    Science.gov (United States)

    2015-07-13

    Cryptography for Big Data Security Book Chapter for Big Data: Storage, Sharing, and Security (3S) Distribution A: Public Release Ariel Hamlin1 Nabil...Email: arkady@ll.mit.edu ii Contents 1 Cryptography for Big Data Security 1 1.1 Introduction...48 Chapter 1 Cryptography for Big Data Security 1.1 Introduction With the amount

  19. Data: Big and Small.

    Science.gov (United States)

    Jones-Schenk, Jan

    2017-02-01

    Big data is a big topic in all leadership circles. Leaders in professional development must develop an understanding of what data are available across the organization that can inform effective planning for forecasting. Collaborating with others to integrate data sets can increase the power of prediction. Big data alone is insufficient to make big decisions. Leaders must find ways to access small data and triangulate multiple types of data to ensure the best decision making. J Contin Educ Nurs. 2017;48(2):60-61. Copyright 2017, SLACK Incorporated.

  20. Tropospheric haze and colors of the clear twilight sky.

    Science.gov (United States)

    Lee, Raymond L; Mollner, Duncan C

    2017-07-01

    At the earth's surface, clear-sky colors during civil twilights depend on the combined spectral effects of molecular scattering, extinction by tropospheric aerosols, and absorption by ozone. Molecular scattering alone cannot produce the most vivid twilight colors near the solar horizon, for which aerosol scattering and absorption are also required. However, less well known are haze aerosols' effects on twilight sky colors at larger scattering angles, including near the antisolar horizon. To analyze this range of colors, we compare 3D Monte Carlo simulations of skylight spectra with hyperspectral measurements of clear twilight skies over a wide range of aerosol optical depths. Our combined measurements and simulations indicate that (a) the purest antisolar twilight colors would occur in a purely molecular, multiple-scattering atmosphere, whereas (b) the most vivid solar-sky colors require at least some turbidity. Taken together, these results suggest that multiple scattering plays an important role in determining the redness of the antitwilight arch.

  1. The new world atlas of artificial night sky brightness.

    Science.gov (United States)

    Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C M; Elvidge, Christopher D; Baugh, Kimberly; Portnov, Boris A; Rybnikova, Nataliya A; Furgoni, Riccardo

    2016-06-01

    Artificial lights raise night sky luminance, creating the most visible effect of light pollution-artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world's land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights.

  2. Using All-Sky Imaging to Improve Telescope Scheduling (Abstract)

    Science.gov (United States)

    Cole, G. M.

    2017-12-01

    (Abstract only) Automated scheduling makes it possible for a small telescope to observe a large number of targets in a single night. But when used in areas which have less-than-perfect sky conditions such automation can lead to large numbers of observations of clouds and haze. This paper describes the development of a "sky-aware" telescope automation system that integrates the data flow from an SBIG AllSky340c camera with an enhanced dispatch scheduler to make optimum use of the available observing conditions for two highly instrumented backyard telescopes. Using the minute-by-minute time series image stream and a self-maintained reference database, the software maintains a file of sky brightness, transparency, stability, and forecasted visibility at several hundred grid positions. The scheduling software uses this information in real time to exclude targets obscured by clouds and select the best observing task, taking into account the requirements and limits of each instrument.

  3. Big Data Revisited

    DEFF Research Database (Denmark)

    Kallinikos, Jannis; Constantiou, Ioanna

    2015-01-01

    We elaborate on key issues of our paper New games, new rules: big data and the changing context of strategy as a means of addressing some of the concerns raised by the paper’s commentators. We initially deal with the issue of social data and the role it plays in the current data revolution...... and the technological recording of facts. We further discuss the significance of the very mechanisms by which big data is produced as distinct from the very attributes of big data, often discussed in the literature. In the final section of the paper, we qualify the alleged importance of algorithms and claim...... that the structures of data capture and the architectures in which data generation is embedded are fundamental to the phenomenon of big data....

  4. Envisioning the future of 'big data' biomedicine.

    Science.gov (United States)

    Bui, Alex A T; Van Horn, John Darrell

    2017-05-01

    Through the increasing availability of more efficient data collection procedures, biomedical scientists are now confronting ever larger sets of data, often finding themselves struggling to process and interpret what they have gathered. This, while still more data continues to accumulate. This torrent of biomedical information necessitates creative thinking about how the data are being generated, how they might be best managed, analyzed, and eventually how they can be transformed into further scientific understanding for improving patient care. Recognizing this as a major challenge, the National Institutes of Health (NIH) has spearheaded the "Big Data to Knowledge" (BD2K) program - the agency's most ambitious biomedical informatics effort ever undertaken to date. In this commentary, we describe how the NIH has taken on "big data" science head-on, how a consortium of leading research centers are developing the means for handling large-scale data, and how such activities are being marshalled for the training of a new generation of biomedical data scientists. All in all, the NIH BD2K program seeks to position data science at the heart of 21 st Century biomedical research. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Determination atmospheric conditions by evaluating clearness index, turbidity and brightness of the sky

    International Nuclear Information System (INIS)

    Kandilli, C.

    2005-01-01

    There are fifteen different sky types which range from totally overcast sky to low turbidity clear sky have been defined by CIE (International Commission on Illumination). For the applications of solar energy engineering and day lighting purposes, it has a great importance to determine the physical characteristics of atmosphere and the sky type. The most important parameters which define the sky type are clearness index, turbidity and brightness. In this study, the parameters of clearness index, turbidity and brightness of the sky belong to Izmir was calculated and their relations with solar radiation and its components were represented according to 10 years data (1994-2004) of meteorology station of Ege University Solar Energy Institute. In this study, clearness index, turbidity, sky clearness and brightness were evaluated to put forward the effects of the these parameters on the atmospheric condition for designing and engineering purposes

  6. The Design of Intelligent Repair Welding Mechanism and Relative Control System of Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Effective repair of worn big gear has large influence on ensuring safety production and enhancing economic benefits. A kind of intelligent repair welding method was put forward mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. Big gear repair welding mechanism was designed in this paper. The work principle and part selection of big gear repair welding mechanism was introduced. The three dimensional mode of big gear repair welding mechanism was constructed by Pro/E three dimensional design software. Three dimensional motions can be realized by motor controlling ball screw. According to involute gear feature, the complicated curve motion on curved gear surface can be transformed to linear motion by orientation. By this way, the repair welding on worn gear area can be realized. In the design of big gear repair welding mechanism control system, Siemens S7-200 series hardware was chosen. Siemens STEP7 programming software was chosen as system design tool. The entire repair welding process was simulated by experiment simulation. It provides a kind of practical and feasible method for the intelligent repair welding of big worn gear.

  7. Big Data in industry

    Science.gov (United States)

    Latinović, T. S.; Preradović, D. M.; Barz, C. R.; Latinović, M. T.; Petrica, P. P.; Pop-Vadean, A.

    2016-08-01

    The amount of data at the global level has grown exponentially. Along with this phenomena, we have a need for a new unit of measure like exabyte, zettabyte, and yottabyte as the last unit measures the amount of data. The growth of data gives a situation where the classic systems for the collection, storage, processing, and visualization of data losing the battle with a large amount, speed, and variety of data that is generated continuously. Many of data that is created by the Internet of Things, IoT (cameras, satellites, cars, GPS navigation, etc.). It is our challenge to come up with new technologies and tools for the management and exploitation of these large amounts of data. Big Data is a hot topic in recent years in IT circles. However, Big Data is recognized in the business world, and increasingly in the public administration. This paper proposes an ontology of big data analytics and examines how to enhance business intelligence through big data analytics as a service by presenting a big data analytics services-oriented architecture. This paper also discusses the interrelationship between business intelligence and big data analytics. The proposed approach in this paper might facilitate the research and development of business analytics, big data analytics, and business intelligence as well as intelligent agents.

  8. Secrets to Successful Earth and Sky Photography

    Science.gov (United States)

    Tafreshi, Babak A.

    In the absolute silence of a desert night, surrounded by an arena of celestial beauties, a gentle breeze shifts the tiny grains of sand around me. There is a patchy glow of light visible all across the eastern horizon. It is gradually ascending over the sand dunes. The glow represents billions of stars in our home galaxy rising above the horizon of our planet. I have seen such dream-like starry scenes from many locations; from the boundless dark skies of the African Sahara when the summer Milky Way was arching over giant sandstones, to the shimmering beauty of the Grand Canyon under moonlight, and the transparent skies of the Himalayas when the bright stars of winter were rising above where the highest peak on Earth (Mt. Everest) meets the sky. These are forever-engraved moments in my memory. Astrophotography is not only about recording the celestial world. It can lead you to a life of adventure and discovery (Fig. 1).

  9. A New Sky Brightness Monitor

    Science.gov (United States)

    Crawford, David L.; McKenna, D.

    2006-12-01

    A good estimate of sky brightness and its variations throughout the night, the months, and even the years is an essential bit of knowledge both for good observing and especially as a tool in efforts to minimize sky brightness through local action. Hence a stable and accurate monitor can be a valuable and necessary tool. We have developed such a monitor, with the financial help of Vatican Observatory and Walker Management. The device is now undergoing its Beta test in preparation for production. It is simple, accurate, well calibrated, and automatic, sending its data directly to IDA over the internet via E-mail . Approximately 50 such monitors will be ready soon for deployment worldwide including most major observatories. Those interested in having one should enquire of IDA about details.

  10. Big Data Analytics An Overview

    Directory of Open Access Journals (Sweden)

    Jayshree Dwivedi

    2015-08-01

    Full Text Available Big data is a data beyond the storage capacity and beyond the processing power is called big data. Big data term is used for data sets its so large or complex that traditional data it involves data sets with sizes. Big data size is a constantly moving target year by year ranging from a few dozen terabytes to many petabytes of data means like social networking sites the amount of data produced by people is growing rapidly every year. Big data is not only a data rather it become a complete subject which includes various tools techniques and framework. It defines the epidemic possibility and evolvement of data both structured and unstructured. Big data is a set of techniques and technologies that require new forms of assimilate to uncover large hidden values from large datasets that are diverse complex and of a massive scale. It is difficult to work with using most relational database management systems and desktop statistics and visualization packages exacting preferably massively parallel software running on tens hundreds or even thousands of servers. Big data environment is used to grab organize and resolve the various types of data. In this paper we describe applications problems and tools of big data and gives overview of big data.

  11. Gaia, an all-sky survey for standard photometry

    Science.gov (United States)

    Carrasco, J. M.; Weiler, M.; Jordi, C.; Fabricius, C.

    2017-03-01

    Gaia ESA's space mission (launched in 2013) includes two low resolution spectroscopic instruments (one in the blue, BP, and another in the red, RP, wavelength domains) to classify and derive the astrophysical parameters of the observed sources. As it is well known, Gaia is a full-sky unbiased survey down to about 20th magnitude. The scanning law yields a rather uniform coverage of the sky over the full extent (a minimum of 5 years) of the mission. Gaia data reduction is a global one over the full mission. Both sky coverage and data reduction strategy ensure an unprecedented all-sky homogeneous spectrophotometric survey. Certainly, that survey is of interest for current and future on-ground and space projects, like LSST, PLATO, EUCLID and J-PAS/J-PLUS among others. These projects will benefit from the large amount (more than one billion) and wide variety of objects observed by Gaia with good quality spectrophotometry. Synthetic photometry derived from Gaia spectrophotometry for any passband can be used to expand the set of standard sources for these new instruments to come. In the current Gaia data release scenario, BP/RP spectrophotometric data will be available in the third release (in 2018, TBC). Current preliminary results allow us to estimate the precision of synthetic photometry derived from the Gaia data. This already allows the preparation of the on-going and future surveys and space missions. We discuss here the exploitation of the Gaia spectrophotometry as standard reference due to its full-sky coverage and its expected photometric uncertainties derived from the low resolution Gaia spectra.

  12. Urbanising Big

    DEFF Research Database (Denmark)

    Ljungwall, Christer

    2013-01-01

    Development in China raises the question of how big a city can become, and at the same time be sustainable, writes Christer Ljungwall of the Swedish Agency for Growth Policy Analysis.......Development in China raises the question of how big a city can become, and at the same time be sustainable, writes Christer Ljungwall of the Swedish Agency for Growth Policy Analysis....

  13. Big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Boyd, Richard N.

    2001-01-01

    The precision of measurements in modern cosmology has made huge strides in recent years, with measurements of the cosmic microwave background and the determination of the Hubble constant now rivaling the level of precision of the predictions of big bang nucleosynthesis. However, these results are not necessarily consistent with the predictions of the Standard Model of big bang nucleosynthesis. Reconciling these discrepancies may require extensions of the basic tenets of the model, and possibly of the reaction rates that determine the big bang abundances

  14. Big Data Meets Physics Education Research: From MOOCs to University-Led High School Programs

    Science.gov (United States)

    Seaton, Daniel

    2017-01-01

    The Massive Open Online Course (MOOC) movement has catalyzed discussions of digital learning on campuses around the world and highlighted the increasingly large, complex datasets related to learning. Physics Education Research can and should play a key role in measuring outcomes of this most recent wave of digital education. In this talk, I will discuss big data and learning analytics through multiple modes of teaching and learning enabled by the open-source edX platform: open-online, flipped, and blended. Open-Online learning will be described through analysis of MOOC offerings from Harvard and MIT, where 2.5 million unique users have led to 9 million enrollments across nearly 300 courses. Flipped instruction will be discussed through an Advanced Placement program at Davidson College that empowers high school teachers to use AP aligned, MOOC content directly in their classrooms with only their students. Analysis of this program will be highlighted, including results from a pilot study showing a positive correlation between content usage and externally validated AP exam scores. Lastly, blended learning will be discussed through specific residential use cases at Davidson College and MIT, highlighting unique course models that blend open-online and residential experiences. My hope for this talk is that listeners will better understand the current wave of digital education and the opportunities it provides for data-driven teaching and learning.

  15. Artificial light alters natural regimes of night-time sky brightness

    Science.gov (United States)

    Davies, Thomas W.; Bennie, Jonathan; Inger, Richard; Gaston, Kevin J.

    2013-01-01

    Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights increased sky brightness to levels six times above those recorded in rural locations, nine and twenty kilometers away. Artificial lighting masked natural monthly and seasonal regimes of lunar sky brightness in the city, and increased the number and annual regime of full moon equivalent hours available to organisms during the night. The changes have potentially profound ecological consequences.

  16. VizieR Online Data Catalog: Northern Sky Variability Survey (Wozniak+, 2004)

    Science.gov (United States)

    Wozniak, P. R.; Vestrand, W. T.; Akerlof, C. W.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Kehoe, R.; Kinemuchi, K.; Lee, B. C.; Marshall, S.; McGowan, K. E.; McKay, T. A.; Rykoff, E. S.; Smith, D. A.; Szymanski, J.; Wren, J.

    2004-11-01

    The Northern Sky Variability Survey (NSVS) is a temporal record of the sky over the optical magnitude range from 8 to 15.5. It was conducted in the course of the first-generation Robotic Optical Transient Search Experiment (ROTSE-I) using a robotic system of four comounted unfiltered telephoto lenses equipped with CCD cameras. The survey was conducted from Los Alamos, New Mexico, and primarily covers the entire northern sky. Some data in southern fields between declinations 0{deg} and -38{deg} are also available, although with fewer epochs and noticeably lesser quality. The NSVS contains light curves for approximately 14 million objects. With a 1-yr baseline and typically 100-500 measurements per object, the NSVS is the most extensive record of stellar variability across the bright sky available today. In a median field, bright unsaturated stars attain a point-to-point photometric scatter of ~0.02mag and position errors within 2. At Galactic latitudes |b|public access from the Sky Database for Objects in Time-Domain (SkyDOT) at Los Alamos National Laboratory. Copies of the full survey photometry may also be requested on tape. (7 data files).

  17. SKY BRIGHTNESS AND TRANSPARENCY IN THE i-BAND AT DOME A, ANTARCTICA

    International Nuclear Information System (INIS)

    Zou Hu; Zhou Xu; Jiang Zhaoji; Hu Jingyao; Ma Jun; Ashley, M. C. B.; Luong-Van, D. M.; Storey, J. W. V.; Cui Xiangqun; Feng Longlong; Gong Xuefei; Kulesa, C. A.; Lawrence, J. S.; Liu Genrong; Moore, A. M.; Pennypacker, C. R.; Travouillon, T.; Qin Weijia; Sun Bo; Shang Zhaohui

    2010-01-01

    The i-band observing conditions at Dome A on the Antarctic plateau have been investigated using data acquired during 2008 with the Chinese Small Telescope Array. The sky brightness, variations in atmospheric transparency, cloud cover, and the presence of aurorae are obtained from these images. The median sky brightness of moonless clear nights is 20.5 mag arcsec -2 in the SDSS i band at the south celestial pole (which includes a contribution of about 0.06 mag from diffuse Galactic light). The median over all Moon phases in the Antarctic winter is about 19.8 mag arcsec -2 . There were no thick clouds in 2008. We model contributions of the Sun and the Moon to the sky background to obtain the relationship between the sky brightness and transparency. Aurorae are identified by comparing the observed sky brightness to the sky brightness expected from this model. About 2% of the images are affected by relatively strong aurorae.

  18. Pi of the Sky Telescopes in Spain and Chile

    Directory of Open Access Journals (Sweden)

    M. Siudek

    2011-01-01

    Full Text Available Pi of the Sky is a system of robotic telescopes designed for observations of short timescale astrophysical phenomena, e.g. prompt optical GRB emissions. The apparatus is designed to monitor a large fraction of the sky with 12–13 m range and time resolution of the order of 1–10 seconds. In October 2010 the first unit of the new Pi of the Sky detector system was successfully installed in the INTA El Arenosillo Test Centre in Spain. We also moved our prototype detector from Las Campanas Observatory to San Pedro de Atacama Observatory in March 2011. The status and performance of both detectors is presented.

  19. The ethics of big data in big agriculture

    OpenAIRE

    Carbonell (Isabelle M.)

    2016-01-01

    This paper examines the ethics of big data in agriculture, focusing on the power asymmetry between farmers and large agribusinesses like Monsanto. Following the recent purchase of Climate Corp., Monsanto is currently the most prominent biotech agribusiness to buy into big data. With wireless sensors on tractors monitoring or dictating every decision a farmer makes, Monsanto can now aggregate large quantities of previously proprietary farming data, enabling a privileged position with unique in...

  20. Development of Competency-Based Articulated Automotive Program. Big Bend Community College and Area High Schools. Final Report.

    Science.gov (United States)

    Buche, Fred; Cox, Charles

    A competency-based automotive mechanics curriculum was developed at Big Bend Community College (Washington) in order to provide the basis for an advanced placement procedure for high school graduates and experienced adults through a competency assessment. In order to create the curriculum, Big Bend Community College automotive mechanics…

  1. Learning big data with Amazon Elastic MapReduce

    CERN Document Server

    Singh, Amarkant

    2014-01-01

    This book is aimed at developers and system administrators who want to learn about Big Data analysis using Amazon Elastic MapReduce. Basic Java programming knowledge is required. You should be comfortable with using command-line tools. Prior knowledge of AWS, API, and CLI tools is not assumed. Also, no exposure to Hadoop and MapReduce is expected.

  2. The big data-big model (BDBM) challenges in ecological research

    Science.gov (United States)

    Luo, Y.

    2015-12-01

    The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple

  3. A Big Video Manifesto

    DEFF Research Database (Denmark)

    Mcilvenny, Paul Bruce; Davidsen, Jacob

    2017-01-01

    and beautiful visualisations. However, we also need to ask what the tools of big data can do both for the Humanities and for more interpretative approaches and methods. Thus, we prefer to explore how the power of computation, new sensor technologies and massive storage can also help with video-based qualitative......For the last few years, we have witnessed a hype about the potential results and insights that quantitative big data can bring to the social sciences. The wonder of big data has moved into education, traffic planning, and disease control with a promise of making things better with big numbers...

  4. Identifying Dwarfs Workloads in Big Data Analytics

    OpenAIRE

    Gao, Wanling; Luo, Chunjie; Zhan, Jianfeng; Ye, Hainan; He, Xiwen; Wang, Lei; Zhu, Yuqing; Tian, Xinhui

    2015-01-01

    Big data benchmarking is particularly important and provides applicable yardsticks for evaluating booming big data systems. However, wide coverage and great complexity of big data computing impose big challenges on big data benchmarking. How can we construct a benchmark suite using a minimum set of units of computation to represent diversity of big data analytics workloads? Big data dwarfs are abstractions of extracting frequently appearing operations in big data computing. One dwarf represen...

  5. Deep-Sky Video Astronomy

    CERN Document Server

    Massey, Steve

    2009-01-01

    A guide to using modern integrating video cameras for deep-sky viewing and imaging with the kinds of modest telescopes available commercially to amateur astronomers. It includes an introduction and a brief history of the technology and camera types. It examines the pros and cons of this unrefrigerated yet highly efficient technology

  6. Applications of Big Data in Education

    OpenAIRE

    Faisal Kalota

    2015-01-01

    Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners' needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in educa...

  7. Big Data Semantics

    NARCIS (Netherlands)

    Ceravolo, Paolo; Azzini, Antonia; Angelini, Marco; Catarci, Tiziana; Cudré-Mauroux, Philippe; Damiani, Ernesto; Mazak, Alexandra; van Keulen, Maurice; Jarrar, Mustafa; Santucci, Giuseppe; Sattler, Kai-Uwe; Scannapieco, Monica; Wimmer, Manuel; Wrembel, Robert; Zaraket, Fadi

    2018-01-01

    Big Data technology has discarded traditional data modeling approaches as no longer applicable to distributed data processing. It is, however, largely recognized that Big Data impose novel challenges in data and infrastructure management. Indeed, multiple components and procedures must be

  8. Pengembangan Aplikasi Antarmuka Layanan Big Data Analysis

    Directory of Open Access Journals (Sweden)

    Gede Karya

    2017-11-01

    Full Text Available In the 2016 Higher Competitive Grants Research (Hibah Bersaing Dikti, we have been successfully developed models, infrastructure and modules of Hadoop-based big data analysis application. It has also successfully developed a virtual private network (VPN network that allows integration and access to the infrastructure from outside the FTIS Computer Laboratorium. Infrastructure and application modules of analysis are then wanted to be presented as services to small and medium enterprises (SMEs in Indonesia. This research aims to develop application of big data analysis service interface integrated with Hadoop-Cluster. The research begins with finding appropriate methods and techniques for scheduling jobs, calling for ready-made Java Map-Reduce (MR application modules, and techniques for tunneling input / output and meta-data construction of service request (input and service output. The above methods and techniques are then developed into a web-based service application, as well as an executable module that runs on Java and J2EE based programming environment and can access Hadoop-Cluster in the FTIS Computer Lab. The resulting application can be accessed by the public through the site http://bigdata.unpar.ac.id. Based on the test results, the application has functioned well in accordance with the specifications and can be used to perform big data analysis. Keywords: web based service, big data analysis, Hadop, J2EE Abstrak Pada penelitian Hibah Bersaing Dikti tahun 2016 telah berhasil dikembangkan model, infrastruktur dan modul-modul aplikasi big data analysis berbasis Hadoop. Selain itu juga telah berhasil dikembangkan jaringan virtual private network (VPN yang memungkinkan integrasi dan akses infrastruktur tersebut dari luar Laboratorium Komputer FTIS. Infrastruktur dan modul aplikasi analisis tersebut selanjutnya ingin dipresentasikan sebagai layanan kepada usaha kecil dan menengah (UKM di Indonesia. Penelitian ini bertujuan untuk mengembangkan

  9. 76 FR 42704 - Sky River LLC; Notice of Filing

    Science.gov (United States)

    2011-07-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. ER11-3277-000; ER11-3277-001] Sky River LLC; Notice of Filing Take notice that, on July 8, 2011, Sky River LLC filed to amend its Open Access Transmission Tariff (OATT) filing, submitted on April 1, 2011 and amended on April 7...

  10. Gender Roles and Night-Sky Watching among College Students

    Science.gov (United States)

    Kelly, William E.; McGee, Catherine M.

    2012-01-01

    The present study investigated the relationship between gender roles and night-sky watching in a sample of college students (N=161). The Bem Sex-Role Inventory (BSRI) and the Noctcaelador Inventory (NI) were used to investigate the differences between gender role groups for night-sky watching. The results supported the hypothesis that androgynous…

  11. Astronomy in the training of teachers and the role of practical rationality in sky observation

    Science.gov (United States)

    Bretones, P. S.; Compiani, M.

    2006-08-01

    This work analyses a program in the training of teachers that departs from the courses based on the technical rationality. An Astronomy course was offered to Science and Geography teachers of the four last years of high school education, comprising 46 hours, and organized in 2002 by the Instituto Superior de Ciências Aplicadas in Limeira, Brazil. Following the course a study group was established and held five meetings. The data was obtained through assessments, interviews, and accounts by the teachers and records from the classes and meetings. The actions and conceptual changes and the role of the Practical Rationality were then investigated. It was verified that for sky observation, the model of Practical Rationality within the reflective teacher theoretical framework and tutorial actions leads to knowledge acquisition, conceptual changes and extracurricular activities. Examples are: suggestions, personal actions of the teachers without their students, accounts of extracurricular activities and development of astronomical contents in class, actions in the pedagogical practices and reflections of the teachers with the teacher/ researcher towards the assessment of such changes are shown. It is important to stress that sky observation has specific features that lead to an equally specific school practice, in which the contents and procedures based on observations and their representation point towards a more practical rationality. Even in a training course for teachers based on technical rationality, the introduction of sky observation deepens the practical rationality and the development of principles that guide the acquisition and the teaching of knowledge about sky observation.

  12. Comparative validity of brief to medium-length Big Five and Big Six personality questionnaires

    NARCIS (Netherlands)

    Thalmayer, A.G.; Saucier, G.; Eigenhuis, A.

    2011-01-01

    A general consensus on the Big Five model of personality attributes has been highly generative for the field of personality psychology. Many important psychological and life outcome correlates with Big Five trait dimensions have been established. But researchers must choose between multiple Big Five

  13. High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications

    Energy Technology Data Exchange (ETDEWEB)

    Revercomb, Henry; Tobin, David; Knuteson, Robert; Borg, Lori; Moy, Leslie

    2009-06-17

    This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004.

  14. Gods, Demons and Deceivers: Jesuits Facing Chaco Skies

    Science.gov (United States)

    López, Alejandro Martín

    2015-05-01

    The Jesuit missions located in the Chaco are less known than the ones in Paraguay. They are the last step of the Jesuits' missionary device in the Rio de la Plata region. They were dedicated to 'evangelize' and 'civilize' the aboriginal groups considered more hostile: nomadic hunter-gatherers who adopted the use of horses and were not controlled by the colonial government. These groups were seen by Europeans as a radical otherness. That is why the Jesuits' descriptions of Chaco Indian skies are a very interesting example about European attitudes toward other worldviews. This paper explores the use of different paradigms for interpreting these alternative skies: demonic influence, the deception of sorcerers and an Evemeristic reading of the indigenous worldview. This article also addresses some of the interactions between the aboriginal and Christian skies in the mission context.

  15. SkyMapper Southern Survey: First Data Release (DR1)

    Science.gov (United States)

    Wolf, Christian; Onken, Christopher A.; Luvaul, Lance C.; Schmidt, Brian P.; Bessell, Michael S.; Chang, Seo-Won; Da Costa, Gary S.; Mackey, Dougal; Martin-Jones, Tony; Murphy, Simon J.; Preston, Tim; Scalzo, Richard A.; Shao, Li; Smillie, Jon; Tisserand, Patrick; White, Marc C.; Yuan, Fang

    2018-02-01

    We present the first data release of the SkyMapper Southern Survey, a hemispheric survey carried out with the SkyMapper Telescope at Siding Spring Observatory in Australia. Here, we present the survey strategy, data processing, catalogue construction, and database schema. The first data release dataset includes over 66 000 images from the Shallow Survey component, covering an area of 17 200 deg2 in all six SkyMapper passbands uvgriz, while the full area covered by any passband exceeds 20 000 deg2. The catalogues contain over 285 million unique astrophysical objects, complete to roughly 18 mag in all bands. We compare our griz point-source photometry with Pan-STARRS1 first data release and note an RMS scatter of 2%. The internal reproducibility of SkyMapper photometry is on the order of 1%. Astrometric precision is better than 0.2 arcsec based on comparison with Gaia first data release. We describe the end-user database, through which data are presented to the world community, and provide some illustrative science queries.

  16. Proof of Concept for a Simple Smartphone Sky Monitor

    Science.gov (United States)

    Kantamneni, Abhilash; Nemiroff, R. J.; Brisbois, C.

    2013-01-01

    We present a novel approach of obtaining a cloud and bright sky monitor by using a standard smartphone with a downloadable app. The addition of an inexpensive fisheye lens can extend the angular range to the entire sky visible above the device. A preliminary proof of concept image shows an optical limit of about visual magnitude 5 for a 70-second exposure. Support science objectives include cloud monitoring in a manner similar to the more expensive cloud monitors in use at most major astronomical observatories, making expensive observing time at these observatories more efficient. Primary science objectives include bright meteor tracking, bright comet tracking, and monitoring the variability of bright stars. Citizen science objectives include crowd sourcing of many networked sky monitoring smartphones typically in broader support of many of the primary science goals. The deployment of a citizen smartphone array in an active science mode could leverage the sky monitoring data infrastructure to track other non-visual science opportunities, including monitoring the Earth's magnetic field for the effects of solar flares and exhaustive surface coverage for strong seismic events.

  17. Dark Sky Collaborators: Arizona (AZ) Observatories, Communities, and Businesses

    Science.gov (United States)

    Del Castillo, Elizabeth Alvarez; Corbally, Christopher; Falco, Emilio E.; Green, Richard F.; Hall, Jeffrey C.; Williams, G. Grant

    2015-03-01

    With outdoor lighting ordinances in Arizona first in place around observatories in 1958 and 1972, then throughout the state since 1986, Arizonans have extensive experience working with communities and businesses to preserve our dark skies. Though communities are committed to the astronomy sector in our state, astronomers must collaborate with other stakeholders to implement solutions. Ongoing education and public outreach is necessary to enable ordinance updates as technology changes. Despite significant population increases, sky brightness measurements over the last 20 years show that ordinance updates are worth our efforts as we seek to maintain high quality skies around our observatories. Collaborations are being forged and actions taken to promote astronomy for the longer term in Arizona.

  18. Big data need big theory too.

    Science.gov (United States)

    Coveney, Peter V; Dougherty, Edward R; Highfield, Roger R

    2016-11-13

    The current interest in big data, machine learning and data analytics has generated the widespread impression that such methods are capable of solving most problems without the need for conventional scientific methods of inquiry. Interest in these methods is intensifying, accelerated by the ease with which digitized data can be acquired in virtually all fields of endeavour, from science, healthcare and cybersecurity to economics, social sciences and the humanities. In multiscale modelling, machine learning appears to provide a shortcut to reveal correlations of arbitrary complexity between processes at the atomic, molecular, meso- and macroscales. Here, we point out the weaknesses of pure big data approaches with particular focus on biology and medicine, which fail to provide conceptual accounts for the processes to which they are applied. No matter their 'depth' and the sophistication of data-driven methods, such as artificial neural nets, in the end they merely fit curves to existing data. Not only do these methods invariably require far larger quantities of data than anticipated by big data aficionados in order to produce statistically reliable results, but they can also fail in circumstances beyond the range of the data used to train them because they are not designed to model the structural characteristics of the underlying system. We argue that it is vital to use theory as a guide to experimental design for maximal efficiency of data collection and to produce reliable predictive models and conceptual knowledge. Rather than continuing to fund, pursue and promote 'blind' big data projects with massive budgets, we call for more funding to be allocated to the elucidation of the multiscale and stochastic processes controlling the behaviour of complex systems, including those of life, medicine and healthcare.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2015 The Authors.

  19. Big Data and medicine: a big deal?

    Science.gov (United States)

    Mayer-Schönberger, V; Ingelsson, E

    2018-05-01

    Big Data promises huge benefits for medical research. Looking beyond superficial increases in the amount of data collected, we identify three key areas where Big Data differs from conventional analyses of data samples: (i) data are captured more comprehensively relative to the phenomenon under study; this reduces some bias but surfaces important trade-offs, such as between data quantity and data quality; (ii) data are often analysed using machine learning tools, such as neural networks rather than conventional statistical methods resulting in systems that over time capture insights implicit in data, but remain black boxes, rarely revealing causal connections; and (iii) the purpose of the analyses of data is no longer simply answering existing questions, but hinting at novel ones and generating promising new hypotheses. As a consequence, when performed right, Big Data analyses can accelerate research. Because Big Data approaches differ so fundamentally from small data ones, research structures, processes and mindsets need to adjust. The latent value of data is being reaped through repeated reuse of data, which runs counter to existing practices not only regarding data privacy, but data management more generally. Consequently, we suggest a number of adjustments such as boards reviewing responsible data use, and incentives to facilitate comprehensive data sharing. As data's role changes to a resource of insight, we also need to acknowledge the importance of collecting and making data available as a crucial part of our research endeavours, and reassess our formal processes from career advancement to treatment approval. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  20. Assessing Big Data

    DEFF Research Database (Denmark)

    Leimbach, Timo; Bachlechner, Daniel

    2015-01-01

    In recent years, big data has been one of the most controversially discussed technologies in terms of its possible positive and negative impact. Therefore, the need for technology assessments is obvious. This paper first provides, based on the results of a technology assessment study, an overview...... of the potential and challenges associated with big data and then describes the problems experienced during the study as well as methods found helpful to address them. The paper concludes with reflections on how the insights from the technology assessment study may have an impact on the future governance of big...... data....

  1. Big data, big responsibilities

    Directory of Open Access Journals (Sweden)

    Primavera De Filippi

    2014-01-01

    Full Text Available Big data refers to the collection and aggregation of large quantities of data produced by and about people, things or the interactions between them. With the advent of cloud computing, specialised data centres with powerful computational hardware and software resources can be used for processing and analysing a humongous amount of aggregated data coming from a variety of different sources. The analysis of such data is all the more valuable to the extent that it allows for specific patterns to be found and new correlations to be made between different datasets, so as to eventually deduce or infer new information, as well as to potentially predict behaviours or assess the likelihood for a certain event to occur. This article will focus specifically on the legal and moral obligations of online operators collecting and processing large amounts of data, to investigate the potential implications of big data analysis on the privacy of individual users and on society as a whole.

  2. Comparative validity of brief to medium-length Big Five and Big Six Personality Questionnaires.

    Science.gov (United States)

    Thalmayer, Amber Gayle; Saucier, Gerard; Eigenhuis, Annemarie

    2011-12-01

    A general consensus on the Big Five model of personality attributes has been highly generative for the field of personality psychology. Many important psychological and life outcome correlates with Big Five trait dimensions have been established. But researchers must choose between multiple Big Five inventories when conducting a study and are faced with a variety of options as to inventory length. Furthermore, a 6-factor model has been proposed to extend and update the Big Five model, in part by adding a dimension of Honesty/Humility or Honesty/Propriety. In this study, 3 popular brief to medium-length Big Five measures (NEO Five Factor Inventory, Big Five Inventory [BFI], and International Personality Item Pool), and 3 six-factor measures (HEXACO Personality Inventory, Questionnaire Big Six Scales, and a 6-factor version of the BFI) were placed in competition to best predict important student life outcomes. The effect of test length was investigated by comparing brief versions of most measures (subsets of items) with original versions. Personality questionnaires were administered to undergraduate students (N = 227). Participants' college transcripts and student conduct records were obtained 6-9 months after data was collected. Six-factor inventories demonstrated better predictive ability for life outcomes than did some Big Five inventories. Additional behavioral observations made on participants, including their Facebook profiles and cell-phone text usage, were predicted similarly by Big Five and 6-factor measures. A brief version of the BFI performed surprisingly well; across inventory platforms, increasing test length had little effect on predictive validity. Comparative validity of the models and measures in terms of outcome prediction and parsimony is discussed.

  3. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    Energy Technology Data Exchange (ETDEWEB)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  4. A magnified young galaxy from about 500 million years after the Big Bang.

    Science.gov (United States)

    Zheng, Wei; Postman, Marc; Zitrin, Adi; Moustakas, John; Shu, Xinwen; Jouvel, Stephanie; Høst, Ole; Molino, Alberto; Bradley, Larry; Coe, Dan; Moustakas, Leonidas A; Carrasco, Mauricio; Ford, Holland; Benítez, Narciso; Lauer, Tod R; Seitz, Stella; Bouwens, Rychard; Koekemoer, Anton; Medezinski, Elinor; Bartelmann, Matthias; Broadhurst, Tom; Donahue, Megan; Grillo, Claudio; Infante, Leopoldo; Jha, Saurabh W; Kelson, Daniel D; Lahav, Ofer; Lemze, Doron; Melchior, Peter; Meneghetti, Massimo; Merten, Julian; Nonino, Mario; Ogaz, Sara; Rosati, Piero; Umetsu, Keiichi; van der Wel, Arjen

    2012-09-20

    Re-ionization of the intergalactic medium occurred in the early Universe at redshift z ≈ 6-11, following the formation of the first generation of stars. Those young galaxies (where the bulk of stars formed) at a cosmic age of less than about 500 million years (z ≲ 10) remain largely unexplored because they are at or beyond the sensitivity limits of existing large telescopes. Understanding the properties of these galaxies is critical to identifying the source of the radiation that re-ionized the intergalactic medium. Gravitational lensing by galaxy clusters allows the detection of high-redshift galaxies fainter than what otherwise could be found in the deepest images of the sky. Here we report multiband observations of the cluster MACS J1149+2223 that have revealed (with high probability) a gravitationally magnified galaxy from the early Universe, at a redshift of z = 9.6 ± 0.2 (that is, a cosmic age of 490 ± 15 million years, or 3.6 per cent of the age of the Universe). We estimate that it formed less than 200 million years after the Big Bang (at the 95 per cent confidence level), implying a formation redshift of ≲14. Given the small sky area that our observations cover, faint galaxies seem to be abundant at such a young cosmic age, suggesting that they may be the dominant source for the early re-ionization of the intergalactic medium.

  5. Dual of big bang and big crunch

    International Nuclear Information System (INIS)

    Bak, Dongsu

    2007-01-01

    Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by the procedure of double analytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are nonsingular as the coupling goes to zero in the N=4 super Yang-Mills theory. The cosmological singularities simply signal the failure of the supergravity description of the full type IIB superstring theory

  6. Comparative Validity of Brief to Medium-Length Big Five and Big Six Personality Questionnaires

    Science.gov (United States)

    Thalmayer, Amber Gayle; Saucier, Gerard; Eigenhuis, Annemarie

    2011-01-01

    A general consensus on the Big Five model of personality attributes has been highly generative for the field of personality psychology. Many important psychological and life outcome correlates with Big Five trait dimensions have been established. But researchers must choose between multiple Big Five inventories when conducting a study and are…

  7. Big data for health.

    Science.gov (United States)

    Andreu-Perez, Javier; Poon, Carmen C Y; Merrifield, Robert D; Wong, Stephen T C; Yang, Guang-Zhong

    2015-07-01

    This paper provides an overview of recent developments in big data in the context of biomedical and health informatics. It outlines the key characteristics of big data and how medical and health informatics, translational bioinformatics, sensor informatics, and imaging informatics will benefit from an integrated approach of piecing together different aspects of personalized information from a diverse range of data sources, both structured and unstructured, covering genomics, proteomics, metabolomics, as well as imaging, clinical diagnosis, and long-term continuous physiological sensing of an individual. It is expected that recent advances in big data will expand our knowledge for testing new hypotheses about disease management from diagnosis to prevention to personalized treatment. The rise of big data, however, also raises challenges in terms of privacy, security, data ownership, data stewardship, and governance. This paper discusses some of the existing activities and future opportunities related to big data for health, outlining some of the key underlying issues that need to be tackled.

  8. Estimates of clear night sky emissivity in the Negev Highlands, Israel

    International Nuclear Information System (INIS)

    Tang Runsheng; Etzion, Y.; Meir, I.A.

    2004-01-01

    A simple method was introduced to estimate the atmospheric emissivity of clear night skies based on the water temperature variation inside an open shallow pond. The method used the pond as an absorber of atmospheric radiation by measuring the water evaporation rate from the pond to ambient air and then calculating the heat loss inside the pond due to the radiative heat exchange between the pond and sky dome. An empirical correlation for the calculations of clear night sky emissivity in the Negev Highlands, Israel, was found. It showed that the emissivity of clear night sky in the Negev Highlands is slightly lower than that expected by Berdahl et al. and Clark's correlations under the climatic conditions during the period of measurements

  9. Fish Passage Assessment: Big Canyon Creek Watershed, Technical Report 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Richard

    2004-02-01

    This report presents the results of the fish passage assessment as outlined as part of the Protect and Restore the Big Canyon Creek Watershed project as detailed in the CY2003 Statement of Work (SOW). As part of the Northwest Power Planning Council's Columbia Basin Fish and Wildlife Program (FWP), this project is one of Bonneville Power Administration's (BPA) many efforts at off-site mitigation for damage to salmon and steelhead runs, their migration, and wildlife habitat caused by the construction and operation of federal hydroelectric dams on the Columbia River and its tributaries. The proposed restoration activities within the Big Canyon Creek watershed follow the watershed restoration approach mandated by the Fisheries and Watershed Program. Nez Perce Tribal Fisheries/Watershed Program vision focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects. We strive toward maximizing historic ecosystem productive health, for the restoration of anadromous and resident fish populations. The Nez Perce Tribal Fisheries/Watershed Program (NPTFWP) sponsors the Protect and Restore the Big Canyon Creek Watershed project. The NPTFWP has the authority to allocate funds under the provisions set forth in their contract with BPA. In the state of Idaho vast numbers of relatively small obstructions, such as road culverts, block thousands of miles of habitat suitable for a variety of fish species. To date, most agencies and land managers have not had sufficient, quantifiable data to adequately address these barrier sites. The ultimate objective of this comprehensive inventory and assessment was to identify all barrier crossings within the watershed. The barriers were then prioritized according to the

  10. Next Generation Workload Management and Analysis System for Big Data

    Energy Technology Data Exchange (ETDEWEB)

    De, Kaushik [Univ. of Texas, Arlington, TX (United States)

    2017-04-24

    We report on the activities and accomplishments of a four-year project (a three-year grant followed by a one-year no cost extension) to develop a next generation workload management system for Big Data. The new system is based on the highly successful PanDA software developed for High Energy Physics (HEP) in 2005. PanDA is used by the ATLAS experiment at the Large Hadron Collider (LHC), and the AMS experiment at the space station. The program of work described here was carried out by two teams of developers working collaboratively at Brookhaven National Laboratory (BNL) and the University of Texas at Arlington (UTA). These teams worked closely with the original PanDA team – for the sake of clarity the work of the next generation team will be referred to as the BigPanDA project. Their work has led to the adoption of BigPanDA by the COMPASS experiment at CERN, and many other experiments and science projects worldwide.

  11. Combined interpretation of SkyTEM and high-resolution seismic data

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie; Lykke-Andersen, Holger; Jørgensen, Flemming Voldum

    2011-01-01

    made based on AEM (SkyTEM) and high-resolution seismic data from an area covering 10 km2 in the western part of Denmark. As support for the interpretations, an exploration well was drilled to provide lithological and logging information in the form of resistivity and vertical seismic profiling. Based...... on the resistivity log, synthetic SkyTEM responses were calculated with a varying number of gate-times in order to illustrate the effect of the noise-level. At the exploration well geophysical data were compared to the lithological log; in general there is good agreement. The same tendency was recognised when Sky...

  12. A simple formula for determining globally clear skies

    Energy Technology Data Exchange (ETDEWEB)

    Long, C.N.; George, A.T.; Mace, G.G. [Penn State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Surface measurements to serve as {open_quotes}ground truth{close_quotes} are of primary importance in the development of retrieval algorithms using satellite measurements to predict surface irradiance. The most basic algorithms of this type deal with clear sky (i.e., cloudless) top-to-surface shortwave (SW) transfer, serving as a necessary prerequisite towards treating both clear and cloudy conditions. Recently, atmosphere SW cloud forcing to infer the possibility of excess atmospheric absorption (compared with model results) in cloudy atmospheres. The surface component of this ratio relies on inferring the expected clear sky SW irradiance to determine the effects of clouds on the SW energy budget. Solar renewable energy applications make use of clear and cloud fraction climatologies to assess solar radiation resources. All of the above depend to some extent on the identification of globally clear sky conditions and the attendant measurements of downwelling SW irradiance.

  13. Providing Diurnal Sky Cover Data at ARM Sites

    Energy Technology Data Exchange (ETDEWEB)

    Klebe, Dimitri I. [Solmirus Corporation, Colorado Springs, CO (United States)

    2015-03-06

    The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizing the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.

  14. Distribution to the Astronomy Community of the Compressed Digitized Sky Survey

    Science.gov (United States)

    Postman, Marc

    1996-03-01

    The Space Telescope Science Institute has compressed an all-sky collection of ground-based images and has printed the data on a two volume, 102 CD-ROM disc set. The first part of the survey (containing images of the southern sky) was published in May 1994. The second volume (containing images of the northern sky) was published in January 1995. Software which manages the image retrieval is included with each volume. The Astronomical Society of the Pacific (ASP) is handling the distribution of the lOx compressed data and has sold 310 sets as of October 1996. ASP is also handling the distribution of the recently published 100x version of the northern sky survey which is publicly available at a low cost. The target markets for the 100x compressed data set are the amateur astronomy community, educational institutions, and the general public. During the next year, we plan to publish the first version of a photometric calibration database which will allow users of the compressed sky survey to determine the brightness of stars in the images.

  15. BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing

    Science.gov (United States)

    Dong, Bo; Zheng, Qinghua; Qiao, Mu; Shu, Jian; Yang, Jie

    Currently, E-Learning has grown into a widely accepted way of learning. With the huge growth of users, services, education contents and resources, E-Learning systems are facing challenges of optimizing resource allocations, dealing with dynamic concurrency demands, handling rapid storage growth requirements and cost controlling. In this paper, an E-Learning framework based on cloud computing is presented, namely BlueSky cloud framework. Particularly, the architecture and core components of BlueSky cloud framework are introduced. In BlueSky cloud framework, physical machines are virtualized, and allocated on demand for E-Learning systems. Moreover, BlueSky cloud framework combines with traditional middleware functions (such as load balancing and data caching) to serve for E-Learning systems as a general architecture. It delivers reliable, scalable and cost-efficient services to E-Learning systems, and E-Learning organizations can establish systems through these services in a simple way. BlueSky cloud framework solves the challenges faced by E-Learning, and improves the performance, availability and scalability of E-Learning systems.

  16. Big Data: Implications for Health System Pharmacy.

    Science.gov (United States)

    Stokes, Laura B; Rogers, Joseph W; Hertig, John B; Weber, Robert J

    2016-07-01

    Big Data refers to datasets that are so large and complex that traditional methods and hardware for collecting, sharing, and analyzing them are not possible. Big Data that is accurate leads to more confident decision making, improved operational efficiency, and reduced costs. The rapid growth of health care information results in Big Data around health services, treatments, and outcomes, and Big Data can be used to analyze the benefit of health system pharmacy services. The goal of this article is to provide a perspective on how Big Data can be applied to health system pharmacy. It will define Big Data, describe the impact of Big Data on population health, review specific implications of Big Data in health system pharmacy, and describe an approach for pharmacy leaders to effectively use Big Data. A few strategies involved in managing Big Data in health system pharmacy include identifying potential opportunities for Big Data, prioritizing those opportunities, protecting privacy concerns, promoting data transparency, and communicating outcomes. As health care information expands in its content and becomes more integrated, Big Data can enhance the development of patient-centered pharmacy services.

  17. Generalized formal model of Big Data

    OpenAIRE

    Shakhovska, N.; Veres, O.; Hirnyak, M.

    2016-01-01

    This article dwells on the basic characteristic features of the Big Data technologies. It is analyzed the existing definition of the “big data” term. The article proposes and describes the elements of the generalized formal model of big data. It is analyzed the peculiarities of the application of the proposed model components. It is described the fundamental differences between Big Data technology and business analytics. Big Data is supported by the distributed file system Google File System ...

  18. BigWig and BigBed: enabling browsing of large distributed datasets.

    Science.gov (United States)

    Kent, W J; Zweig, A S; Barber, G; Hinrichs, A S; Karolchik, D

    2010-09-01

    BigWig and BigBed files are compressed binary indexed files containing data at several resolutions that allow the high-performance display of next-generation sequencing experiment results in the UCSC Genome Browser. The visualization is implemented using a multi-layered software approach that takes advantage of specific capabilities of web-based protocols and Linux and UNIX operating systems files, R trees and various indexing and compression tricks. As a result, only the data needed to support the current browser view is transmitted rather than the entire file, enabling fast remote access to large distributed data sets. Binaries for the BigWig and BigBed creation and parsing utilities may be downloaded at http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/. Source code for the creation and visualization software is freely available for non-commercial use at http://hgdownload.cse.ucsc.edu/admin/jksrc.zip, implemented in C and supported on Linux. The UCSC Genome Browser is available at http://genome.ucsc.edu.

  19. All-sky brightness monitoring of light pollution with astronomical methods.

    Science.gov (United States)

    Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar

    2010-06-01

    This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.

  20. Project first and eye on the sky: strategies for teaching space science in the early grades

    Science.gov (United States)

    Paglierani, R.; Hawkins, I.

    Elementary educators typically have only limited opportunity to teach substantive science units. This is due, in great part, to the current primary focus on literacy and mathematics instruction in the early grades. It is not surprising then, that the time and resources allocated to science teaching are significantly less than those allocated to language arts and mathematics. The integration of elementary science curricula with language arts provides one means of addressing the challenge of maintaining a robust science presence in the elementary classroom. Project FIRST's Eye on the Sky suggests a model for the successful integration of science instruction with language arts through inquiry-based learning. The model has been adopted by other Education/Public Outreach efforts, most recently, the Cassini- Huygens Mission and the Space Telescope Institute. We will present Eye on the Sky: Our Star the Sun, a suite of integrated, inquiry-based lessons designed specifically for K-4 students and discuss data showing the program's impact on the user audience. These materials offer an exciting opportunity to explore the dynamic Sun and share research discoveries of NASA's Sun-Earth Connection with the elementary education community. The lessons were developed and tested by UC Berkeley educators and NASA scientists in partnership with classroom teachers. We will review the program components and examine the benefits and challenges inherent in implementing such a program in the elementary school setting.

  1. Clear-sky classification procedures and models using a world-wide data-base

    International Nuclear Information System (INIS)

    Younes, S.; Muneer, T.

    2007-01-01

    Clear-sky data need to be extracted from all-sky measured solar-irradiance dataset, often by using algorithms that rely on other measured meteorological parameters. Current procedures for clear-sky data extraction have been examined and compared with each other to determine their reliability and location dependency. New clear-sky determination algorithms are proposed that are based on a combination of clearness index, diffuse ratio, cloud cover and Linke's turbidity limits. Various researchers have proposed clear-sky irradiance models that rely on synoptic parameters; four of these models, MRM, PRM, YRM and REST2 have been compared for six world-wide-locations. Based on a previously-developed comprehensive accuracy scoring method, the models MRM, REST2 and YRM were found to be of satisfactory performance in decreasing order. The so-called Page radiation model (PRM) was found to underestimate solar radiation, even though local turbidity data were provided for its operation

  2. Photometric Analysis of the Pi of the Sky Data

    Directory of Open Access Journals (Sweden)

    M. Siudek

    2011-01-01

    Full Text Available A database containing star measurements from the period 2006–2009 taken by the Pi of the Sky detector located in Las Campanas Observatory in Chile contains more than 2 billion measurements of almost 17 million objects. All measurements are available on the Pi of the Sky web site through a dedicated interface, which also allows users to download selected data. Accurate analysis of Pi of the Sky data is a real challenge, because of a number of factors that can influence the measurements. Possible sources of errors in our measurements include: reading the chip with the shutter open, strong and varying sky background, passing planets or planetoids, and clouds and hot pixels. In order tofacilitate the analysis of variable stars we have developed a system of dedicated filters to remove bad measurements or frames. The spectral sensitivity of the detector is taken into account by appropriate corrections based on the spectral type of reference stars. This process is illustrated by an analysis of the BG Ind system, where we have been able to reduce the systematic uncertainty to about 0.05 magnitudo.

  3. Sky brightness and twilight measurements at Jogyakarta city, Indonesia

    International Nuclear Information System (INIS)

    Herdiwijaya, Dhani

    2016-01-01

    The sky brightness measurements were performed using a portable photometer. A pocket-sized and low-cost photometer has 20 degree area measurement, and spectral ranges between 320-720 nm with output directly in magnitudes per arc second square (mass) unit. The sky brightness with 3 seconds temporal resolutions was recorded at Jogyakarta city (110° 25’ E; 70° 52’ S; elevation 100 m) within 136 days in years from 2014 to 2016. The darkest night could reach 22.61 mpass only in several seconds, with mean value 18.8±0.7 mpass and temperature variation 23.1±1.2 C. The difference of mean sky brightness between before and after midnight was about -0.76 mpass or 2.0 times brighter. Moreover, the sky brightness and temperature fluctuations were more stable in after midnight than in before midnight. It is suggested that city light pollution affects those variations, and subsequently duration of twilight. By comparing twilight brightness for several places, we also suggest a 17° solar dip or about 66 minutes before sunrise for new time of Fajr prayer. (paper)

  4. Dark Skies, Bright Kids! Year 3

    Science.gov (United States)

    Whelan, David G.; Johnson, K. E.; Barcos-Munoz, L. D.; Beaton, R. L.; Borish, J.; Corby, J. F.; Dorsey, G.; Gugliucci, N. E.; Prager, B. J.; Ries, P. A.; Romero, C. E.; Sokal, K. R.; Tang, X.; Walker, L. M.; Yang, A. J.; Zasowski, G.

    2012-01-01

    Dark Skies, Bright Kids! (DSBK) is a program that brings astronomy education to elementary schools throughout central Virginia. In a relaxed, out-of-classroom atmosphere, we are able to foster the innate curiosity that young students have about science and the world around them. We target schools that are under-served due to their rural locale or special needs students, demonstrating that science is a fun and creative process to a segment of the population that might not otherwise be exposed to astronomy. Families are included in the learning experience during semi-annual `star parties'. Since last January, we have expanded the breadth and depth of our educational capabilities. We have developed new programs for use in our digital planetarium. We held the first Central Virginia Star Party, providing an atmosphere where local children from multiple schools were able to share their love for astronomy. Local government and University officials were also invited so that they could experience our focused science outreach. Most recently, we have become part of Ivy Creek School's Club Day activities, bringing our program to a new segment of the elementary school system in Albemarle County: those that have `low-incidence' disabilities, requiring special attention. We continue to develop a curriculum for after-school programs that functions as either a series of one-time activities or several months of focused outreach at one school. Many of these activities are provided on our website, http://www.astro.virginia.edu/dsbk/, for the wider astronomical community, including the new planetarium work. We have extended our book project to include two bilingual astronomy books called `Snapshots of the Universe,' one in Spanish and English, the other in French and English. These books introduce young people to some of the many wonders of the Universe through art and captions developed by DSBK volunteers.

  5. NOAA AVHRR Clear-Sky Products over Oceans (ACSPO): Sea Surface Temperature, Clear Sky Radiances, and Aerosol Optical Depth for the Global Ocean, 2011 - present (NCEI Accession 0072979)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The AVHRR Clear-Sky Processor over Oceans, jointly developed between NESDIS STAR and OSDPD, produces AVHRR clear-sky products over oceans. ACSPO generates output...

  6. Planning and scheduling algorithms for the COSMO-SkyMed constellation

    NARCIS (Netherlands)

    Bianchessi, Nicola; Righini, Giovanni

    2008-01-01

    The COSMO-SkyMed satellite constellation for the observation of the Earth is made of four satellites equipped with radar instruments and is intended for dual use, i.e. for security as well as for environmental monitoring purpose. The planning and scheduling problem for the COSMO-SkyMed constellation

  7. Big data-driven business how to use big data to win customers, beat competitors, and boost profits

    CERN Document Server

    Glass, Russell

    2014-01-01

    Get the expert perspective and practical advice on big data The Big Data-Driven Business: How to Use Big Data to Win Customers, Beat Competitors, and Boost Profits makes the case that big data is for real, and more than just big hype. The book uses real-life examples-from Nate Silver to Copernicus, and Apple to Blackberry-to demonstrate how the winners of the future will use big data to seek the truth. Written by a marketing journalist and the CEO of a multi-million-dollar B2B marketing platform that reaches more than 90% of the U.S. business population, this book is a comprehens

  8. Big Game Reporting Stations

    Data.gov (United States)

    Vermont Center for Geographic Information — Point locations of big game reporting stations. Big game reporting stations are places where hunters can legally report harvested deer, bear, or turkey. These are...

  9. Effect of the position of the visible sky in determining the sky view factor on micrometeorological and human thermal comfort conditions in urban street canyons

    Science.gov (United States)

    Qaid, Adeb; Lamit, Hasanuddin Bin; Ossen, Dilshan Remaz; Rasidi, Mohd Hisyam

    2018-02-01

    Poor daytime and night-time micrometeorological conditions are issues that influence the quality of environmental conditions and can undermine a comfortable human lifestyle. The sky view factor (SVF) is one of the essential physical parameters used to assess the micrometeorological conditions and thermal comfort levels within city streets. The position of the visible sky relative to the path of the sun, in the cardinal and ordinal directions, has not been widely discerned as a parameter that could have an impact on the micrometeorological conditions of urban streets. To investigate this parameter, different urban streets that have a similar SVF value but diverse positions of visible sky were proposed in different street directions intersecting with the path of the sun, namely N-S, NE-SW and NW-SE. The effects of daytime and night-time micrometeorological variables and human thermal comfort variables on the street were investigated by applying ENVI-met V3.1 Beta software. The results show that the position of the visible sky has a greater influence on the street's meteorological and human thermal comfort conditions than the SVF value. It has the ability to maximise or minimise the mean radiation temperature (Tmrt, °C) and the physiological equivalent temperature (PET, °C) at street level. However, the visible sky positioned to the zenith in a NE-SW or N-S street direction and to the SW of a NW-SE street direction achieves the best daytime micrometeorological and thermal comfort conditions. Alternatively, the visible sky positioned to the NE for a NW-SE street direction, to the NW and the zenith for a NE-SW street direction and to the zenith for a N-S street direction reduces the night-time air temperature (Ta, °C). Therefore, SVF and the position of the visible sky relative to the sun's trajectory, in the cardinal and ordinal directions, must be considered during urban street planning to better understand the resultant micrometeorological and human thermal

  10. Big Data access and infrastructure for modern biology: case studies in data repository utility.

    Science.gov (United States)

    Boles, Nathan C; Stone, Tyler; Bergeron, Charles; Kiehl, Thomas R

    2017-01-01

    Big Data is no longer solely the purview of big organizations with big resources. Today's routine tools and experimental methods can generate large slices of data. For example, high-throughput sequencing can quickly interrogate biological systems for the expression levels of thousands of different RNAs, examine epigenetic marks throughout the genome, and detect differences in the genomes of individuals. Multichannel electrophysiology platforms produce gigabytes of data in just a few minutes of recording. Imaging systems generate videos capturing biological behaviors over the course of days. Thus, any researcher now has access to a veritable wealth of data. However, the ability of any given researcher to utilize that data is limited by her/his own resources and skills for downloading, storing, and analyzing the data. In this paper, we examine the necessary resources required to engage Big Data, survey the state of modern data analysis pipelines, present a few data repository case studies, and touch on current institutions and programs supporting the work that relies on Big Data. © 2016 New York Academy of Sciences.

  11. A Regional, Multi-Stakeholder Collaboration for Dark-Sky Protection in Flagstaff, Arizona

    Science.gov (United States)

    Hall, Jeffrey C.

    2018-01-01

    Flagstaff, Arizona is home to almost $200M in astronomical assets, including Lowell Observatory's 4.3-meter Discovery Channel Telescope and the Navy Precision Optical Interferometer, a partnership of Lowell, the U. S. Naval Observatory, and the Naval Research Laboratory. The City of Flagstaff and surrounding Coconino County have comprehensive and effective dark-sky ordinances, but continued regional growth has the potential to degrade the area's dark skies to a level at which observatory missions could be compromised. As a result, a wide array of stakeholders (the observatories, the City, the County, local dark-sky advocates, the business and tourism communities, the national parks and monuments, the Navajo Nation, the U. S. Navy, and others) have engaged in three complementary efforts to ensure that Flagstaff and Coconino County protect the area's dark skies while meeting the needs of the various communities and providing for continued growth and development. In this poster, I will present the status of Flagstaff's conversion to LED outdoor lighting, the Mission Compatibility Study carried out by the Navy to evaluate the dark-sky effects of buildout in Flagstaff, and the Joint Land Use Study (JLUS) presently underway among all the aforementioned stakeholders. Taken in sum, the efforts represent a comprehensive and constructive approach to dark-sky preservation region-wide, and they show what can be achieved when a culture of dark-sky protection is present and deliberate efforts are undertaken to maintain it for decades to come.

  12. Five Big, Big Five Issues : Rationale, Content, Structure, Status, and Crosscultural Assessment

    NARCIS (Netherlands)

    De Raad, Boele

    1998-01-01

    This article discusses the rationale, content, structure, status, and crosscultural assessment of the Big Five trait factors, focusing on topics of dispute and misunderstanding. Taxonomic restrictions of the original Big Five forerunner, the "Norman Five," are discussed, and criticisms regarding the

  13. The interactive sky: a browsable allsky image

    Science.gov (United States)

    Tancredi, Gonzalo; Da Rosa, Fernando; Roland, Santiago; Almenares, Luciano; Gomez, Fernando

    2015-08-01

    We are conducting a project to make available panoramas of the night sky of the southern hemisphere, based on a mosaic of hundred of photographs. Each allsky panorama is a giant image composed by hundreds of high-resolution photos taken in the course of one night. The panoramas are accessible with a web-browser and the public is able to zoom on them and to see the sky with better quality than the naked eye. We are preparing 4 sets of panoramas corresponding to the four seasons.The individual images are taken with a 16 Mpixels DLSR camera with a 50 mm lens mounted on a Gigapan EPIC robotic camera mounts. These devices and a autoguiding telescope are mounted in a equatorial telescope mount, which allows us to have exposure of several tens seconds. The images are then processed and stitched to create the gigantic panorama, with typical weight of several GBytes.The limiting magnitude is V~8. The panoramas include more than 50 times more stars those detected with the naked eye.In addition to the allsky panoramas, we embedded higher resolution images of specific regions of interest such as: emission nebulae and dark, open and globular clusters and galaxies; which can be zoomed.The photographs have been acquiring since December 2014 in a dark place with low light pollution in the countryside of Uruguay; which allows us to achieve deep sky objects.These panoramas will be available on a website and can be accessed with any browser.This tool will be available for teaching purposes, astronomy popularization or introductory research. Teacher guides will be developed for educational activities at different educational levels.While there are similar projects like Google Sky, the methodology used to generate the giant panoramas allows a much more realistic view, with a background of continuous sky without sharp edges. Furthermore, while the planetarium software is based on drawings of the stars, our panoramas are based on real images.This is the first project with these

  14. Region of Nova Cygni 1975 on the Palomar Sky Survey

    International Nuclear Information System (INIS)

    Beardsley, W.R.; King, M.W.; Russell, J.L.; Stein, J.W.

    1975-01-01

    Careful superposition of a blue Palomar Sky Survey print onto a sectored photograph of Nova Cygni 1975 obtained with the Thaw 30-inch (76-cm) refractor at the Allegheny Observatory decisively confirms the fact that no star brighter than magnitude 21 appears on the Sky Survey print at that position

  15. Radiative sky cooling: fundamental physics, materials, structures, and applications

    Science.gov (United States)

    Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang; Alam, Muhammad Ashraful; Bermel, Peter

    2017-07-01

    Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  16. Big data challenges

    DEFF Research Database (Denmark)

    Bachlechner, Daniel; Leimbach, Timo

    2016-01-01

    Although reports on big data success stories have been accumulating in the media, most organizations dealing with high-volume, high-velocity and high-variety information assets still face challenges. Only a thorough understanding of these challenges puts organizations into a position in which...... they can make an informed decision for or against big data, and, if the decision is positive, overcome the challenges smoothly. The combination of a series of interviews with leading experts from enterprises, associations and research institutions, and focused literature reviews allowed not only...... framework are also relevant. For large enterprises and startups specialized in big data, it is typically easier to overcome the challenges than it is for other enterprises and public administration bodies....

  17. Relationship Between Big Five Personality Traits, Emotional Intelligence and Self-esteem Among College Students

    OpenAIRE

    Fauzia Nazir, AnamAzam, Muhammad Rafiq, Sobia Nazir, Sophia Nazir, ShaziaTasleem

    2015-01-01

    The current research study was on the “Relationship between Big Five Personality Traits & Emotional Intelligence and Self-esteem among the College Students”. This work is based on cross sectional survey research design. The convenience sample was used by including 170 female Students studying at government college kotla Arab Ali khan Gujrat, Pakistan, degree program of 3rd year and 4th year. The study variables were measured using Big Five Inventory Scale by Goldberg (1993), Emotional Intell...

  18. Estimating the sky map in gamma-ray astronomy with a Compton telescope

    International Nuclear Information System (INIS)

    Herbert, T.J.

    1991-01-01

    Compton telescopes represent an effective design for γ-ray astronomy in the 1-30 MeV range. However, the complexity of the system response to incident γ-rays has restricted the formulation of optimal methods for processing the data. Since data is only acquired at considerable expense and difficulty a significant investment in both algorithm development and computer processing time are warranted. Current methods for processing low level data form the sky map as either the sum or product of the probabilities that each recorded γ-ray originated from within an area of the sky map. Instead, we model the unknown sky map itself as the means of a Poisson process generating the γ-ray recorded by the telescope. In this paper the authors formulate the probability density function of the data conditioned upon the sky map and derive an iterative algorithm for estimating the sky map by the method of maximum likelihood

  19. Big Data and HPC collocation: Using HPC idle resources for Big Data Analytics

    OpenAIRE

    MERCIER , Michael; Glesser , David; Georgiou , Yiannis; Richard , Olivier

    2017-01-01

    International audience; Executing Big Data workloads upon High Performance Computing (HPC) infrastractures has become an attractive way to improve their performances. However, the collocation of HPC and Big Data workloads is not an easy task, mainly because of their core concepts' differences. This paper focuses on the challenges related to the scheduling of both Big Data and HPC workloads on the same computing platform. In classic HPC workloads, the rigidity of jobs tends to create holes in ...

  20. CFHT's SkyProbe: True Atmospheric Attenuation Measurement in the Telescope Field

    Science.gov (United States)

    Cuillandre, J.-C.; Magnier, E. A.; Isani, S.; Sabin, D.; Knight, W.; Kras, S.; Lai, K.

    Developed at the Canada France Hawaii Telescope (CFHT), SkyProbe is a system that allows the direct measurement of the true attenuation by clouds. This measurement is performed approximately once per min, directly on the field viewed by the telescope. It has been possible to make this system relatively inexpensively due to low cost CCD cameras available on the amateur market. A crucial addition to this hardware is the recent availability of a full-sky photometry catalog at the appropriate depth: the Tycho catalog from the Hipparcos mission. A very important element in the SkyProbe data set creation is the automatic data analysis pipeline, Elixir, developed at CFHT for the improved operation of the CFHT wide-field imagers CFH12K and MegaCam. SkyProbe's FITS images are processed in real time, and the pipeline output (a zero point attenuation) provides the current sky transmission to the observers and aids immediate decision making. These measurements are also attached to the archived data, adding a key tool for future use by other astronomers. Specific features of the detector, such as intra pixel quantum efficiency variations, must be taken into consideration since the data are strongly undersampled.

  1. Big Data as Governmentality

    DEFF Research Database (Denmark)

    Flyverbom, Mikkel; Madsen, Anders Koed; Rasche, Andreas

    This paper conceptualizes how large-scale data and algorithms condition and reshape knowledge production when addressing international development challenges. The concept of governmentality and four dimensions of an analytics of government are proposed as a theoretical framework to examine how big...... data is constituted as an aspiration to improve the data and knowledge underpinning development efforts. Based on this framework, we argue that big data’s impact on how relevant problems are governed is enabled by (1) new techniques of visualizing development issues, (2) linking aspects...... shows that big data problematizes selected aspects of traditional ways to collect and analyze data for development (e.g. via household surveys). We also demonstrate that using big data analyses to address development challenges raises a number of questions that can deteriorate its impact....

  2. Boarding to Big data

    Directory of Open Access Journals (Sweden)

    Oana Claudia BRATOSIN

    2016-05-01

    Full Text Available Today Big data is an emerging topic, as the quantity of the information grows exponentially, laying the foundation for its main challenge, the value of the information. The information value is not only defined by the value extraction from huge data sets, as fast and optimal as possible, but also by the value extraction from uncertain and inaccurate data, in an innovative manner using Big data analytics. At this point, the main challenge of the businesses that use Big data tools is to clearly define the scope and the necessary output of the business so that the real value can be gained. This article aims to explain the Big data concept, its various classifications criteria, architecture, as well as the impact in the world wide processes.

  3. Big data - a 21st century science Maginot Line? No-boundary thinking: shifting from the big data paradigm.

    Science.gov (United States)

    Huang, Xiuzhen; Jennings, Steven F; Bruce, Barry; Buchan, Alison; Cai, Liming; Chen, Pengyin; Cramer, Carole L; Guan, Weihua; Hilgert, Uwe Kk; Jiang, Hongmei; Li, Zenglu; McClure, Gail; McMullen, Donald F; Nanduri, Bindu; Perkins, Andy; Rekepalli, Bhanu; Salem, Saeed; Specker, Jennifer; Walker, Karl; Wunsch, Donald; Xiong, Donghai; Zhang, Shuzhong; Zhang, Yu; Zhao, Zhongming; Moore, Jason H

    2015-01-01

    Whether your interests lie in scientific arenas, the corporate world, or in government, you have certainly heard the praises of big data: Big data will give you new insights, allow you to become more efficient, and/or will solve your problems. While big data has had some outstanding successes, many are now beginning to see that it is not the Silver Bullet that it has been touted to be. Here our main concern is the overall impact of big data; the current manifestation of big data is constructing a Maginot Line in science in the 21st century. Big data is not "lots of data" as a phenomena anymore; The big data paradigm is putting the spirit of the Maginot Line into lots of data. Big data overall is disconnecting researchers and science challenges. We propose No-Boundary Thinking (NBT), applying no-boundary thinking in problem defining to address science challenges.

  4. Big Egos in Big Science

    DEFF Research Database (Denmark)

    Andersen, Kristina Vaarst; Jeppesen, Jacob

    In this paper we investigate the micro-mechanisms governing structural evolution and performance of scientific collaboration. Scientific discovery tends not to be lead by so called lone ?stars?, or big egos, but instead by collaboration among groups of researchers, from a multitude of institutions...

  5. Big Data and Big Science

    OpenAIRE

    Di Meglio, Alberto

    2014-01-01

    Brief introduction to the challenges of big data in scientific research based on the work done by the HEP community at CERN and how the CERN openlab promotes collaboration among research institutes and industrial IT companies. Presented at the FutureGov 2014 conference in Singapore.

  6. Daylighting on the working plane in oriented attic rooms under overcast and clear sky

    Directory of Open Access Journals (Sweden)

    Kondáš Kristián

    2014-06-01

    Full Text Available The evaluation of daylight conditions in building interiors is based on the Daylight Factor concept after current Slovak standards. Criteria and requirements determined in these standards consider the worst daylight exterior conditions which are described by CIE overcast sky model. The sky luminance distribution of overcast sky is centrical to the zenith, so independence of window orientation to cardinal points is characteristic in daylighting calculations. The sky luminance distribution modelling is one of the main task of the daylight source research more than 50 years. It is evident that also other types of sky conditions exist in nature. An introduction of a new criterion based on photometric variables, which also consider sunlight influence, is expected. This article represents a study of the influence of the interior orientation on distribution of daylighting in attic spaces under an overcast and clear sky

  7. Challenges of Big Data Analysis.

    Science.gov (United States)

    Fan, Jianqing; Han, Fang; Liu, Han

    2014-06-01

    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions.

  8. Big data is not a monolith

    CERN Document Server

    Ekbia, Hamid R; Mattioli, Michael

    2016-01-01

    Big data is ubiquitous but heterogeneous. Big data can be used to tally clicks and traffic on web pages, find patterns in stock trades, track consumer preferences, identify linguistic correlations in large corpuses of texts. This book examines big data not as an undifferentiated whole but contextually, investigating the varied challenges posed by big data for health, science, law, commerce, and politics. Taken together, the chapters reveal a complex set of problems, practices, and policies. The advent of big data methodologies has challenged the theory-driven approach to scientific knowledge in favor of a data-driven one. Social media platforms and self-tracking tools change the way we see ourselves and others. The collection of data by corporations and government threatens privacy while promoting transparency. Meanwhile, politicians, policy makers, and ethicists are ill-prepared to deal with big data's ramifications. The contributors look at big data's effect on individuals as it exerts social control throu...

  9. Big universe, big data

    DEFF Research Database (Denmark)

    Kremer, Jan; Stensbo-Smidt, Kristoffer; Gieseke, Fabian Cristian

    2017-01-01

    , modern astronomy requires big data know-how, in particular it demands highly efficient machine learning and image analysis algorithms. But scalability is not the only challenge: Astronomy applications touch several current machine learning research questions, such as learning from biased data and dealing......, and highlight some recent methodological advancements in machine learning and image analysis triggered by astronomical applications....

  10. Poker Player Behavior After Big Wins and Big Losses

    OpenAIRE

    Gary Smith; Michael Levere; Robert Kurtzman

    2009-01-01

    We find that experienced poker players typically change their style of play after winning or losing a big pot--most notably, playing less cautiously after a big loss, evidently hoping for lucky cards that will erase their loss. This finding is consistent with Kahneman and Tversky's (Kahneman, D., A. Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometrica 47(2) 263-292) break-even hypothesis and suggests that when investors incur a large loss, it might be time to take ...

  11. Verification of the ISO calibration method for field pyranometers under tropical sky conditions

    Science.gov (United States)

    Janjai, Serm; Tohsing, Korntip; Pattarapanitchai, Somjet; Detkhon, Pasakorn

    2017-02-01

    Field pyranomters need to be annually calibrated and the International Organization for Standardization (ISO) has defined a standard method (ISO 9847) for calibrating these pyranometers. According to this standard method for outdoor calibration, the field pyranometers have to be compared to a reference pyranometer for the period of 2 to 14 days, depending on sky conditions. In this work, the ISO 9847 standard method was verified under tropical sky conditions. To verify the standard method, calibration of field pyranometers was conducted at a tropical site located in Nakhon Pathom (13.82o N, 100.04o E), Thailand under various sky conditions. The conditions of the sky were monitored by using a sky camera. The calibration results for different time periods used for the calibration under various sky conditions were analyzed. It was found that the calibration periods given by this standard method could be reduced without significant change in the final calibration result. In addition, recommendation and discussion on the use of this standard method in the tropics were also presented.

  12. Big Data and Chemical Education

    Science.gov (United States)

    Pence, Harry E.; Williams, Antony J.

    2016-01-01

    The amount of computerized information that organizations collect and process is growing so large that the term Big Data is commonly being used to describe the situation. Accordingly, Big Data is defined by a combination of the Volume, Variety, Velocity, and Veracity of the data being processed. Big Data tools are already having an impact in…

  13. Visualization at supercomputing centers: the tale of little big iron and the three skinny guys.

    Science.gov (United States)

    Bethel, E W; van Rosendale, J; Southard, D; Gaither, K; Childs, H; Brugger, E; Ahern, S

    2011-01-01

    Supercomputing centers are unique resources that aim to enable scientific knowledge discovery by employing large computational resources-the "Big Iron." Design, acquisition, installation, and management of the Big Iron are carefully planned and monitored. Because these Big Iron systems produce a tsunami of data, it's natural to colocate the visualization and analysis infrastructure. This infrastructure consists of hardware (Little Iron) and staff (Skinny Guys). Our collective experience suggests that design, acquisition, installation, and management of the Little Iron and Skinny Guys doesn't receive the same level of treatment as that of the Big Iron. This article explores the following questions about the Little Iron: How should we size the Little Iron to adequately support visualization and analysis of data coming off the Big Iron? What sort of capabilities must it have? Related questions concern the size of visualization support staff: How big should a visualization program be-that is, how many Skinny Guys should it have? What should the staff do? How much of the visualization should be provided as a support service, and how much should applications scientists be expected to do on their own?

  14. Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions

    Science.gov (United States)

    Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick

    2015-01-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.

  15. Big data in Finnish financial services

    OpenAIRE

    Laurila, M. (Mikko)

    2017-01-01

    Abstract This thesis aims to explore the concept of big data, and create understanding of big data maturity in the Finnish financial services industry. The research questions of this thesis are “What kind of big data solutions are being implemented in the Finnish financial services sector?” and “Which factors impede faster implementation of big data solutions in the Finnish financial services sector?”. ...

  16. Big data in fashion industry

    Science.gov (United States)

    Jain, S.; Bruniaux, J.; Zeng, X.; Bruniaux, P.

    2017-10-01

    Significant work has been done in the field of big data in last decade. The concept of big data includes analysing voluminous data to extract valuable information. In the fashion world, big data is increasingly playing a part in trend forecasting, analysing consumer behaviour, preference and emotions. The purpose of this paper is to introduce the term fashion data and why it can be considered as big data. It also gives a broad classification of the types of fashion data and briefly defines them. Also, the methodology and working of a system that will use this data is briefly described.

  17. Interventions for treating osteoarthritis of the big toe joint.

    Science.gov (United States)

    Zammit, Gerard V; Menz, Hylton B; Munteanu, Shannon E; Landorf, Karl B; Gilheany, Mark F

    2010-09-08

    Osteoarthritis affecting of the big toe joint of the foot (hallux limitus or rigidus) is a common and painful condition. Although several treatments have been proposed, few have been adequately evaluated. To identify controlled trials evaluating interventions for osteoarthritis of the big toe joint and to determine the optimum intervention(s). Literature searches were conducted across the following electronic databases: CENTRAL; MEDLINE; EMBASE; CINAHL; and PEDro (to 14th January 2010). No language restrictions were applied. Randomised controlled trials, quasi-randomised trials, or controlled clinical trials that assessed treatment outcomes for osteoarthritis of the big toe joint. Participants of any age or gender with osteoarthritis of the big toe joint (defined either radiographically or clinically) were included. Two authors examined the list of titles and abstracts identified by the literature searches. One content area expert and one methodologist independently applied the pre-determined inclusion and exclusion criteria to the full text of identified trials. To minimise error and reduce potential bias, data were extracted independently by two content experts. Only one trial satisfactorily fulfilled the inclusion criteria and was included in this review. This trial evaluated the effectiveness of two physical therapy programs in 20 individuals with osteoarthritis of the big toe joint. Assessment outcomes included pain levels, big toe joint range of motion and plantar flexion strength of the hallux. Mean differences at four weeks follow up were 3.80 points (95% CI 2.74 to 4.86) for self reported pain, 28.30 degrees (95% CI 21.37 to 35.23) for big toe joint range of motion, and 2.80 kg (95% CI 2.13 to 3.47) for muscle strength. Although differences in outcomes between treatment and control groups were reported, the risk of bias was high. The trial failed to employ appropriate randomisation or adequate allocation concealment, used a relatively small sample and

  18. Astronomy and big data a data clustering approach to identifying uncertain galaxy morphology

    CERN Document Server

    Edwards, Kieran Jay

    2014-01-01

    With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as “Uncertain”. This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Select...

  19. Radiative sky cooling: fundamental physics, materials, structures, and applications

    Directory of Open Access Journals (Sweden)

    Sun Xingshu

    2017-07-01

    Full Text Available Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  20. Changing the personality of a face: Perceived Big Two and Big Five personality factors modeled in real photographs.

    Science.gov (United States)

    Walker, Mirella; Vetter, Thomas

    2016-04-01

    General, spontaneous evaluations of strangers based on their faces have been shown to reflect judgments of these persons' intention and ability to harm. These evaluations can be mapped onto a 2D space defined by the dimensions trustworthiness (intention) and dominance (ability). Here we go beyond general evaluations and focus on more specific personality judgments derived from the Big Two and Big Five personality concepts. In particular, we investigate whether Big Two/Big Five personality judgments can be mapped onto the 2D space defined by the dimensions trustworthiness and dominance. Results indicate that judgments of the Big Two personality dimensions almost perfectly map onto the 2D space. In contrast, at least 3 of the Big Five dimensions (i.e., neuroticism, extraversion, and conscientiousness) go beyond the 2D space, indicating that additional dimensions are necessary to describe more specific face-based personality judgments accurately. Building on this evidence, we model the Big Two/Big Five personality dimensions in real facial photographs. Results from 2 validation studies show that the Big Two/Big Five are perceived reliably across different samples of faces and participants. Moreover, results reveal that participants differentiate reliably between the different Big Two/Big Five dimensions. Importantly, this high level of agreement and differentiation in personality judgments from faces likely creates a subjective reality which may have serious consequences for those being perceived-notably, these consequences ensue because the subjective reality is socially shared, irrespective of the judgments' validity. The methodological approach introduced here might prove useful in various psychological disciplines. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Big game hunting practices, meanings, motivations and constraints: a survey of Oregon big game hunters

    Science.gov (United States)

    Suresh K. Shrestha; Robert C. Burns

    2012-01-01

    We conducted a self-administered mail survey in September 2009 with randomly selected Oregon hunters who had purchased big game hunting licenses/tags for the 2008 hunting season. Survey questions explored hunting practices, the meanings of and motivations for big game hunting, the constraints to big game hunting participation, and the effects of age, years of hunting...

  2. Google BigQuery analytics

    CERN Document Server

    Tigani, Jordan

    2014-01-01

    How to effectively use BigQuery, avoid common mistakes, and execute sophisticated queries against large datasets Google BigQuery Analytics is the perfect guide for business and data analysts who want the latest tips on running complex queries and writing code to communicate with the BigQuery API. The book uses real-world examples to demonstrate current best practices and techniques, and also explains and demonstrates streaming ingestion, transformation via Hadoop in Google Compute engine, AppEngine datastore integration, and using GViz with Tableau to generate charts of query results. In addit

  3. Big data for dummies

    CERN Document Server

    Hurwitz, Judith; Halper, Fern; Kaufman, Marcia

    2013-01-01

    Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it m

  4. Associations between empathy and big five personality traits among Chinese undergraduate medical students.

    Science.gov (United States)

    Song, Yang; Shi, Meng

    2017-01-01

    Empathy promotes positive physician-patient communication and is associated with improved patient satisfaction, treatment adherence and clinical outcomes. It has been suggested that personality traits should be taken into consideration in programs designed to enhance empathy in medical education due to the association found between personality and empathy among medical students. However, the associations between empathy and big five personality traits in medical education are still underrepresented in the existing literature and relevant studies have not been conducted among medical students in China, where tensions in the physician-patient relationship have been reported as outstanding problems in the context of China's current medical reform. Thus, the main objective of this study was to examine the associations between empathy and big five personality traits among Chinese medical students. A cross-sectional study was conducted in a medical university in Northeast China in June 2016. Self-reported questionnaires including the Interpersonal Reactivity Index (IRI) and Big Five Inventory (BFI) and demographic characteristics were distributed. A total of 530 clinical medical students became our final subjects. Hierarchical regression analysis was performed to explore the effects of big five personality traits on empathy. Results of this study showed that big five personality traits accounted for 19.4%, 18.1%, 30.2% of the variance in three dimensions of empathy, namely, perspective taking, empathic concern and personal distress, respectively. Specifically, agreeableness had a strong positive association with empathic concern (β = 0.477, Ppersonal distress (β = 0.526, Ppersonal distress (β = -0.160, Pbig five personality traits were important predictors of self-reported measures of both cognitive and affective empathy among Chinese medical students. Therefore, individualized intervention strategies based on personality traits could be integrated into programs to

  5. Spinning projectile's attitude measurement with LW infrared radiation under sea-sky background

    Science.gov (United States)

    Xu, Miaomiao; Bu, Xiongzhu; Yu, Jing; He, Zilu

    2018-05-01

    With the further development of infrared radiation research in sea-sky background and the requirement of spinning projectile's attitude measurement, the sea-sky infrared radiation field is used to carry out spinning projectile's attitude angle instead of inertial sensors. Firstly, the generation mechanism of sea-sky infrared radiation is analysed. The mathematical model of sea-sky infrared radiation is deduced in LW (long wave) infrared 8 ∼ 14 μm band by calculating the sea surface and sky infrared radiation. Secondly, according to the movement characteristics of spinning projectile, the attitude measurement model of infrared sensors on projectile's three axis is established. And the feasibility of the model is analysed by simulation. Finally, the projectile's attitude calculation algorithm is designed to improve the attitude angle estimation accuracy. The results of semi-physical experiments show that the segmented interactive algorithm estimation error of pitch and roll angle is within ±1.5°. The attitude measurement method is effective and feasible, and provides accurate measurement basis for the guidance of spinning projectile.

  6. The Infrared Sky - Science from 2MASS

    International Nuclear Information System (INIS)

    Skrutskie, Michael

    2002-01-01

    The Two Micron All Sky Survey has imaged 100% of the celestial sphere in the near-infrared J (1.2 μm), H (1.6 μm) and Ks (2.2 μm) photometric bands. Pipeline processing of these data has produced catalogs containing 500 million stars and 1.5 million extended sources which will be released later this year. The catalogs are characterized by great photometric uniformity (1%) and precision (2-3%) around the sky as well as good astrometric accuracy (100 mas). This talk will focus on some of the initial scientific results enabled by this database ranging from brown dwarfs in the solar neighborhood to large scale structure in the early universe.

  7. SOUTH POL: Revealing the Polarized Southern Sky

    Science.gov (United States)

    Magalhaes, Antonio Mario Mario; Ramírez, Edgar; Ribeiro, Nadili; Seriacopi, Daiane; Rubinho, Marcelo; Ferrari, Tiberio; Rodrigues, Claudia; Schoenell, William; Herpich, Fabio; Pereyra, Antonio

    2018-01-01

    SOUTH POL will be a survey of the Southern sky in optical polarized light. It will use a newly built polarimeter for T80-S, an 84 cm robotic telescope installed at Cerro Tololo (CTIO), Chile. It will initially cover the sky South of declination -15 deg with a polarimetric accuracy Solar System.The polarimeter has just been commissioned in mid-November, 2017. The data reduction pipeline has already been built. We will describe the instrument and the data reduction, as well as a few of the science cases. The survey is expected to begin midway through the 1st semester of 2018. Both catalog data and raw images will be made available.

  8. Exploring complex and big data

    Directory of Open Access Journals (Sweden)

    Stefanowski Jerzy

    2017-12-01

    Full Text Available This paper shows how big data analysis opens a range of research and technological problems and calls for new approaches. We start with defining the essential properties of big data and discussing the main types of data involved. We then survey the dedicated solutions for storing and processing big data, including a data lake, virtual integration, and a polystore architecture. Difficulties in managing data quality and provenance are also highlighted. The characteristics of big data imply also specific requirements and challenges for data mining algorithms, which we address as well. The links with related areas, including data streams and deep learning, are discussed. The common theme that naturally emerges from this characterization is complexity. All in all, we consider it to be the truly defining feature of big data (posing particular research and technological challenges, which ultimately seems to be of greater importance than the sheer data volume.

  9. 40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?

    Science.gov (United States)

    2010-07-01

    ... Blue Sky Series engines? 1048.140 Section 1048.140 Protection of Environment ENVIRONMENTAL PROTECTION... Sky Series engines? This section defines voluntary standards for a recognized level of superior emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family under...

  10. Was there a big bang

    International Nuclear Information System (INIS)

    Narlikar, J.

    1981-01-01

    In discussing the viability of the big-bang model of the Universe relative evidence is examined including the discrepancies in the age of the big-bang Universe, the red shifts of quasars, the microwave background radiation, general theory of relativity aspects such as the change of the gravitational constant with time, and quantum theory considerations. It is felt that the arguments considered show that the big-bang picture is not as soundly established, either theoretically or observationally, as it is usually claimed to be, that the cosmological problem is still wide open and alternatives to the standard big-bang picture should be seriously investigated. (U.K.)

  11. Integration of polarization and chromatic cues in the insect sky compass.

    Science.gov (United States)

    el Jundi, Basil; Pfeiffer, Keram; Heinze, Stanley; Homberg, Uwe

    2014-06-01

    Animals relying on a celestial compass for spatial orientation may use the position of the sun, the chromatic or intensity gradient of the sky, the polarization pattern of the sky, or a combination of these cues as compass signals. Behavioral experiments in bees and ants, indeed, showed that direct sunlight and sky polarization play a role in sky compass orientation, but the relative importance of these cues are species-specific. Intracellular recordings from polarization-sensitive interneurons in the desert locust and monarch butterfly suggest that inputs from different eye regions, including polarized-light input through the dorsal rim area of the eye and chromatic/intensity gradient input from the main eye, are combined at the level of the medulla to create a robust compass signal. Conflicting input from the polarization and chromatic/intensity channel, resulting from eccentric receptive fields, is eliminated at the level of the anterior optic tubercle and central complex through internal compensation for changing solar elevations, which requires input from a circadian clock. Across several species, the central complex likely serves as an internal sky compass, combining E-vector information with other celestial cues. Descending neurons, likewise, respond both to zenithal polarization and to unpolarized cues in an azimuth-dependent way.

  12. BIG DATA-DRIVEN MARKETING: AN ABSTRACT

    OpenAIRE

    Suoniemi, Samppa; Meyer-Waarden, Lars; Munzel, Andreas

    2017-01-01

    Customer information plays a key role in managing successful relationships with valuable customers. Big data customer analytics use (BD use), i.e., the extent to which customer information derived from big data analytics guides marketing decisions, helps firms better meet customer needs for competitive advantage. This study addresses three research questions: What are the key antecedents of big data customer analytics use? How, and to what extent, does big data customer an...

  13. Sky-Radiance Models for Monte Carlo Radiative Transfer Applications

    Science.gov (United States)

    Santos, I.; Dalimonte, D.; Santos, J. P.

    2012-04-01

    Photon-tracing can be initialized through sky-radiance (Lsky) distribution models when executing Monte Carlo simulations for ocean color studies. To be effective, the Lsky model should: 1) properly represent sky-radiance features of interest; 2) require low computing time; and 3) depend on a limited number of input parameters. The present study verifies the satisfiability of these prerequisite by comparing results from different Lsky formulations. Specifically, two Lsky models were considered as reference cases because of their different approach among solutions presented in the literature. The first model, developed by the Harrisson and Coombes (HC), is based on a parametric expression where the sun geometry is the unique input. The HC model is one of the sky-radiance analytical distribution applied in state-of-art simulations for ocean optics. The coefficients of the HC model were set upon broad-band field measurements and the result is a model that requires a few implementation steps. The second model, implemented by Zibordi and Voss (ZV), is based on physical expressions that accounts for the optical thickness of permanent gases, aerosol, ozone and water vapour at specific wavelengths. Inter-comparisons between normalized ^LskyZV and ^LskyHC (i.e., with unitary scalar irradiance) are discussed by means of individual polar maps and percent difference between sky-radiance distributions. Sky-radiance cross-sections are presented as well. Considered cases include different sun zenith values and wavelengths (i.e., λ=413, 490 and 665 nm, corresponding to selected center-bands of the MEdium Resolution Imaging Spectrometer MERIS). Results have shown a significant convergence between ^LskyHC and ^LskyZV at 665 nm. Differences between models increase with the sun zenith and mostly with wavelength. For Instance, relative differences up to 50% between ^ L skyHC and ^ LskyZV can be observed in the antisolar region for λ=665 nm and θ*=45°. The effects of these

  14. Polarization of sky light from a canopy atmosphere

    International Nuclear Information System (INIS)

    Hannay, J H

    2004-01-01

    Light from the clear sky is produced by the scattering of unpolarized sunlight by molecules of the atmosphere and is partially linearly polarized in the process. Singly scattered light, for instance, is fully polarized in viewing directions perpendicular to the sun direction and less and less so towards the parallel and antiparallel directions, where it is unpolarized. The true, multiple, scattering is much less tractable, but importantly different, changing the polarization pattern's topology by splitting the unpolarized directions into pairs. The underlying cause of this 'symmetry breaking' is that the atmosphere is 'wider' than it is deep. Simplifying as much as possible while retaining this feature leads to the caricature atmosphere analysed here: a flattened sheet atmosphere in the sky, a canopy. The multiple scattering is fully tractable and leads to a simple polarization pattern in the sky: the ellipses and hyperbolas of standard confocal ellipsoidal coordinates. The model realizes physically a mathematical pattern of polarization in terms of a complex function proposed by Berry, Dennis and Lee (2004 New J. Phys.6 162) as the simplest one which captures the topology

  15. The gamma-ray sky as seen with HAWC

    Science.gov (United States)

    Hüntemeyer, Petra

    2015-12-01

    The High-Altitude Water Cherenkov (HAWC) TeV Gamma-Ray Observatory located at a site about two hours drive east of Puebla, Mexico on the Sierra Negra plateau (4100 m a.s.l.) was inaugurated in March 2015. The array of 300 water Cherenkov detectors can observe large portions of the sky simultaneously and, with an energy range of 100 GeV to 100 TeV, is currently one of the most sensitive instruments capable of probing particle acceleration near PeV energies. HAWC has already started science operation in the Summer of 2013 and preliminary sky maps have been produced from 260 days of data taken with a partial array. Multiple > 5 σ (pre-trials) hotspots are visible along the galactic plane and some appear to coincide with known TeV sources from the H.E.S.S. catalog, SNRs and molecular cloud associations, and pulsars wind nebulae (PWNe). The sky maps based on partial HAWC array data are discussed as well as the scientific potential of the completed instrument especially in the context of multi-wavelengths studies.

  16. Variable gamma-ray sky at 1 GeV

    International Nuclear Information System (INIS)

    Pshirkov, M. S.; Rubtsov, G. I.

    2013-01-01

    We search for the long-term variability of the gamma-ray sky in the energy range E > 1 GeV with 168 weeks of the gamma-ray telescope Fermi-LAT data. We perform a full sky blind search for regions with variable flux looking for deviations from uniformity. We bin the sky into 12288 pixels using the HEALPix package and use the Kolmogorov-Smirnov test to compare weekly photon counts in each pixel with the constant flux hypothesis. The weekly exposure of Fermi-LAT for each pixel is calculated with the Fermi-LAT tools. We consider flux variations in a pixel significant if the statistical probability of uniformity is less than 4 × 10 −6 , which corresponds to 0.05 false detections in the whole set. We identified 117 variable sources, 27 of which have not been reported variable before. The sources with previously unidentified variability contain 25 active galactic nuclei (AGN) belonging to the blazar class (11 BL Lacs and 14 FSRQs), one AGN of an uncertain type, and one pulsar PSR J0633+1746 (Geminga).

  17. Big Data Analytics in Medicine and Healthcare.

    Science.gov (United States)

    Ristevski, Blagoj; Chen, Ming

    2018-05-10

    This paper surveys big data with highlighting the big data analytics in medicine and healthcare. Big data characteristics: value, volume, velocity, variety, veracity and variability are described. Big data analytics in medicine and healthcare covers integration and analysis of large amount of complex heterogeneous data such as various - omics data (genomics, epigenomics, transcriptomics, proteomics, metabolomics, interactomics, pharmacogenomics, diseasomics), biomedical data and electronic health records data. We underline the challenging issues about big data privacy and security. Regarding big data characteristics, some directions of using suitable and promising open-source distributed data processing software platform are given.

  18. The trashing of Big Green

    International Nuclear Information System (INIS)

    Felten, E.

    1990-01-01

    The Big Green initiative on California's ballot lost by a margin of 2-to-1. Green measures lost in five other states, shocking ecology-minded groups. According to the postmortem by environmentalists, Big Green was a victim of poor timing and big spending by the opposition. Now its supporters plan to break up the bill and try to pass some provisions in the Legislature

  19. The Big Bang Singularity

    Science.gov (United States)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  20. Reframing Open Big Data

    DEFF Research Database (Denmark)

    Marton, Attila; Avital, Michel; Jensen, Tina Blegind

    2013-01-01

    Recent developments in the techniques and technologies of collecting, sharing and analysing data are challenging the field of information systems (IS) research let alone the boundaries of organizations and the established practices of decision-making. Coined ‘open data’ and ‘big data......’, these developments introduce an unprecedented level of societal and organizational engagement with the potential of computational data to generate new insights and information. Based on the commonalities shared by open data and big data, we develop a research framework that we refer to as open big data (OBD......) by employing the dimensions of ‘order’ and ‘relationality’. We argue that these dimensions offer a viable approach for IS research on open and big data because they address one of the core value propositions of IS; i.e. how to support organizing with computational data. We contrast these dimensions with two...

  1. The Other Dark Sky

    Science.gov (United States)

    Pazmino, John

    In previous demonstrations of New York's elimination of luminous graffiti from its skies, I focused attention on large-scale projects in the showcase districts of Manhattan. Although these works earned passionate respect in the dark sky movement, they by the same token were disheartening. New York was in some quarters of the movement regarded more as an unachievable Shangri-La than as a role model to emulate. This presentation focuses on scenes of light abatement efforts in parts of New York which resemble other towns in scale and density. I photographed these scenes along a certain bus route in Brooklyn on my way home from work during October 2001. This route circulates through various "bedroom communities," each similar to a mid-size to large town elsewhere in the United States. The sujbects included individual structures - stores, banks, schools - and streetscapes mimicking downtowns. The latter protrayed a mix of atrocious and excellent lighting practice, being that these streets are in transition by the routine process of replacement and renovation. The fixtures used - box lamps, fluted or Fresnel globes, subdued headsigns, indirect lighting - are casually obtainable by property managers at local outlets for lighting apparatus. They are routinely offered to the property managers by storefront designers, security services, contractors, and the community improvement or betterment councils.

  2. Sky brightness and color measurements during the 21 August 2017 total solar eclipse.

    Science.gov (United States)

    Bruns, Donald G; Bruns, Ronald D

    2018-06-01

    The sky brightness was measured during the partial phases and during totality of the 21 August 2017 total solar eclipse. A tracking CCD camera with color filters and a wide-angle lens allowed measurements across a wide field of view, recording images every 10 s. The partially and totally eclipsed Sun was kept behind an occulting disk attached to the camera, allowing direct brightness measurements from 1.5° to 38° from the Sun. During the partial phases, the sky brightness as a function of time closely followed the integrated intensity of the unobscured fraction of the solar disk. A redder sky was measured close to the Sun just before totality, caused by the redder color of the exposed solar limb. During totality, a bluer sky was measured, dimmer than the normal sky by a factor of 10,000. Suggestions for enhanced measurements at future eclipses are offered.

  3. Towards the intrahour forecasting of direct normal irradiance using sky-imaging data.

    Science.gov (United States)

    Nou, Julien; Chauvin, Rémi; Eynard, Julien; Thil, Stéphane; Grieu, Stéphane

    2018-04-01

    Increasing power plant efficiency through improved operation is key in the development of Concentrating Solar Power (CSP) technologies. To this end, one of the most challenging topics remains accurately forecasting the solar resource at a short-term horizon. Indeed, in CSP plants, production is directly impacted by both the availability and variability of the solar resource and, more specifically, by Direct Normal Irradiance (DNI). The present paper deals with a new approach to the intrahour forecasting (the forecast horizon [Formula: see text] is up to [Formula: see text] ahead) of DNI, taking advantage of the fact that this quantity can be split into two terms, i.e. clear-sky DNI and the clear sky index. Clear-sky DNI is forecasted from DNI measurements, using an empirical model (Ineichen and Perez, 2002) combined with a persistence of atmospheric turbidity. Moreover, in the framework of the CSPIMP (Concentrating Solar Power plant efficiency IMProvement) research project, PROMES-CNRS has developed a sky imager able to provide High Dynamic Range (HDR) images. So, regarding the clear-sky index, it is forecasted from sky-imaging data, using an Adaptive Network-based Fuzzy Inference System (ANFIS). A hybrid algorithm that takes inspiration from the classification algorithm proposed by Ghonima et al. (2012) when clear-sky anisotropy is known and from the hybrid thresholding algorithm proposed by Li et al. (2011) in the opposite case has been developed to the detection of clouds. Performance is evaluated via a comparative study in which persistence models - either a persistence of DNI or a persistence of the clear-sky index - are included. Preliminary results highlight that the proposed approach has the potential to outperform these models (both persistence models achieve similar performance) in terms of forecasting accuracy: over the test data used, RMSE (the Root Mean Square Error) is reduced of about [Formula: see text], with [Formula: see text], and [Formula: see

  4. Integrating paleoecology and genetics of bird populations in two sky island archipelagos.

    Science.gov (United States)

    McCormack, John E; Bowen, Bonnie S; Smith, Thomas B

    2008-06-27

    Genetic tests of paleoecological hypotheses have been rare, partly because recent genetic divergence is difficult to detect and time. According to fossil plant data, continuous woodland in the southwestern USA and northern Mexico became fragmented during the last 10,000 years, as warming caused cool-adapted species to retreat to high elevations. Most genetic studies of resulting 'sky islands' have either failed to detect recent divergence or have found discordant evidence for ancient divergence. We test this paleoecological hypothesis for the region with intraspecific mitochondrial DNA and microsatellite data from sky-island populations of a sedentary bird, the Mexican jay (Aphelocoma ultramarina). We predicted that populations on different sky islands would share common, ancestral alleles that existed during the last glaciation, but that populations on each sky island, owing to their isolation, would contain unique variants of postglacial origin. We also predicted that divergence times estimated from corrected genetic distance and a coalescence model would post-date the last glacial maximum. Our results provide multiple independent lines of support for postglacial divergence, with the predicted pattern of shared and unique mitochondrial DNA haplotypes appearing in two independent sky-island archipelagos, and most estimates of divergence time based on corrected genetic distance post-dating the last glacial maximum. Likewise, an isolation model based on multilocus gene coalescence indicated postglacial divergence of five pairs of sky islands. In contrast to their similar recent histories, the two archipelagos had dissimilar historical patterns in that sky islands in Arizona showed evidence for older divergence, suggesting different responses to the last glaciation. This study is one of the first to provide explicit support from genetic data for a postglacial divergence scenario predicted by one of the best paleoecological records in the world. Our results

  5. How to Generate Economic and Sustainability Reports from Big Data? Qualifications of Process Industry

    Directory of Open Access Journals (Sweden)

    Esa Hämäläinen

    2017-11-01

    Full Text Available Big Data may introduce new opportunities, and for this reason it has become a mantra among most industries. This paper focuses on examining how to develop cost and sustainable reporting by utilizing Big Data that covers economic values, production volumes, and emission information. We assume strongly that this use supports cleaner production, while at the same time offers more information for revenue and profitability development. We argue that Big Data brings company-wide business benefits if data queries and interfaces are built to be interactive, intuitive, and user-friendly. The amount of information related to operations, costs, emissions, and the supply chain would increase enormously if Big Data was used in various manufacturing industries. It is essential to expose the relevant correlations between different attributes and data fields. Proper algorithm design and programming are key to making the most of Big Data. This paper introduces ideas on how to refine raw data into valuable information, which can serve many types of end users, decision makers, and even external auditors. Concrete examples are given through an industrial paper mill case, which covers environmental aspects, cost-efficiency management, and process design.

  6. Dark Skies, Bright Kids Year 9

    Science.gov (United States)

    Burkhardt, Andrew Michael; Matthews, Allison M.; Johnson, Kelsey E.; Avilez, Ian; Beale, Luca; Bittle, Lauren E.; Bordenave, David; Finn, Molly; Firebaugh, Ariel; Hancock, Danielle; Hughes, Paul; Rochford Hayes, Christian; Lewis, Hannah; Linden, Sean; Liss, Sandra; Liu, Mengyao; McNair, Shunlante; Murphy, Edward; Prager, Brian; Pryal, Matthew; Richardson, Whitney; Song, Yiqing; Troup, Nicholas; Villadsen, Jackie; Wenger, Trey V.; Wilson, Robert Forrest

    2018-01-01

    We present updates from the ninth year of operation of Dark Skies, Bright Kids (DSBK) including new club content, continued assessments, and our seventh annual Star Party. DSBK is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Virginia through fun, hands-on activities that introduce basic Astronomy concepts. DSBK’s most fundamental program is an 8-10 week long after-school Astronomy camp at surrounding local elementary schools, where each week introduces new concepts through interactive hands-on activities. Over the past two summers, we have traveled to four rural Virginia locations to bring week-long Astronomy camps to otherwise overlooked elementary school districts. These programs aim to inspire a curiosity for science and include inquiry based activities in topics ranging from the electromagnetic spectrum to the classification and evolution of galaxies. We strive to be self-reflective in our mission to inspire scientific curiosity in the minds of underserved demographics. In this effort, we continually assess the effectiveness of each activity through feedback in student-kept journal pages and observed excitement levels. This self-reflection has initiated the development of new curriculum. In addition, differing from our normal collaboration with local elementary schools, we have found great success partnering with local youth organizations, who may better represent DSBK's target demographics and have infrastructure to support incoming outreach groups.

  7. Dark Skies, Bright Kids Year 6

    Science.gov (United States)

    Liss, Sandra; Troup, Nicholas William; Johnson, Kelsey E.; Barcos-Munoz, Loreto D.; Beaton, Rachael; Bittle, Lauren; Borish, Henry J.; Burkhardt, Andrew; Corby, Joanna; Dean, Janice; Hancock, Danielle; King, Jennie; Prager, Brian; Romero, Charles; Sokal, Kimberly R.; Stierwalt, Sabrina; Wenger, Trey; Zucker, Catherine

    2015-01-01

    Now entering our sixth year of operation, Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in central Virginia through fun, hands-on activities that introduce basic Astronomy concepts beyond Virginia's Standards of Learning. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.DSBK has amassed over 15,000 contact hours since 2009 and we continue to broaden our impact. One important step we have taken in the past year is to establish a graduate student led assessment program to identify and implement directed learning goals for DSBK outreach. The collection of student workbooks, observations, and volunteer surveys indicates broad scale success for the program both in terms of student learning and their perception of science. The data also reveal opportunities to improve our organizational and educational practices to maximize student achievement and overall volunteer satisfaction for DSBK's future clubs and outreach endeavors.

  8. Visual astronomy under dark skies a new approach to observing deep space

    CERN Document Server

    Cooke, Antony

    2005-01-01

    Modern astronomical telescopes, along with other advances in technology, have brought the deep sky - star clusters, nebulae and the galaxies - within reach of amateur astronomers. And it isn't even necessary to image many of these deep-sky objects in order to see them; they are within reach of visual observers using modern techniques and enhancement technology. The first requirement is truly dark skies; if you are observing from a light-polluted environment you need Tony Cooke's book, Visual Astronomy in the Suburbs. Given a site with clear, dark night skies everything else follows… this book will provide the reader with everything he needs to know about what to observe, and using some of today's state-of-the-art technique and commercial equipment, how to get superb views of faint and distant astronomical objects.

  9. Medical big data: promise and challenges.

    Science.gov (United States)

    Lee, Choong Ho; Yoon, Hyung-Jin

    2017-03-01

    The concept of big data, commonly characterized by volume, variety, velocity, and veracity, goes far beyond the data type and includes the aspects of data analysis, such as hypothesis-generating, rather than hypothesis-testing. Big data focuses on temporal stability of the association, rather than on causal relationship and underlying probability distribution assumptions are frequently not required. Medical big data as material to be analyzed has various features that are not only distinct from big data of other disciplines, but also distinct from traditional clinical epidemiology. Big data technology has many areas of application in healthcare, such as predictive modeling and clinical decision support, disease or safety surveillance, public health, and research. Big data analytics frequently exploits analytic methods developed in data mining, including classification, clustering, and regression. Medical big data analyses are complicated by many technical issues, such as missing values, curse of dimensionality, and bias control, and share the inherent limitations of observation study, namely the inability to test causality resulting from residual confounding and reverse causation. Recently, propensity score analysis and instrumental variable analysis have been introduced to overcome these limitations, and they have accomplished a great deal. Many challenges, such as the absence of evidence of practical benefits of big data, methodological issues including legal and ethical issues, and clinical integration and utility issues, must be overcome to realize the promise of medical big data as the fuel of a continuous learning healthcare system that will improve patient outcome and reduce waste in areas including nephrology.

  10. Medical big data: promise and challenges

    Directory of Open Access Journals (Sweden)

    Choong Ho Lee

    2017-03-01

    Full Text Available The concept of big data, commonly characterized by volume, variety, velocity, and veracity, goes far beyond the data type and includes the aspects of data analysis, such as hypothesis-generating, rather than hypothesis-testing. Big data focuses on temporal stability of the association, rather than on causal relationship and underlying probability distribution assumptions are frequently not required. Medical big data as material to be analyzed has various features that are not only distinct from big data of other disciplines, but also distinct from traditional clinical epidemiology. Big data technology has many areas of application in healthcare, such as predictive modeling and clinical decision support, disease or safety surveillance, public health, and research. Big data analytics frequently exploits analytic methods developed in data mining, including classification, clustering, and regression. Medical big data analyses are complicated by many technical issues, such as missing values, curse of dimensionality, and bias control, and share the inherent limitations of observation study, namely the inability to test causality resulting from residual confounding and reverse causation. Recently, propensity score analysis and instrumental variable analysis have been introduced to overcome these limitations, and they have accomplished a great deal. Many challenges, such as the absence of evidence of practical benefits of big data, methodological issues including legal and ethical issues, and clinical integration and utility issues, must be overcome to realize the promise of medical big data as the fuel of a continuous learning healthcare system that will improve patient outcome and reduce waste in areas including nephrology.

  11. The Sloan Digital Sky Survey: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Loveday, J.; SDSS Collaboration

    1996-05-01

    The Sloan Digital Sky Survey (SDSS) is a project to definitively map {pi} steradians of the local Universe. An array of CCD detectors used in drift-scan mode will digitally image the sky in five passbands to a limiting magnitude of r{prime} {approximately} 23. Selected from the imaging survey, 10{sup 6} galaxies and 10{sup 5} quasars will be observed spectroscopically. I describe the current status of the survey, which is due to begin observations early in 1997, and its prospects for constraining models for dark matter in the Universe. 8 refs., 7 figs.

  12. What is beyond the big five?

    Science.gov (United States)

    Saucier, G; Goldberg, L R

    1998-08-01

    Previous investigators have proposed that various kinds of person-descriptive content--such as differences in attitudes or values, in sheer evaluation, in attractiveness, or in height and girth--are not adequately captured by the Big Five Model. We report on a rather exhaustive search for reliable sources of Big Five-independent variation in data from person-descriptive adjectives. Fifty-three candidate clusters were developed in a college sample using diverse approaches and sources. In a nonstudent adult sample, clusters were evaluated with respect to a minimax criterion: minimum multiple correlation with factors from Big Five markers and maximum reliability. The most clearly Big Five-independent clusters referred to Height, Girth, Religiousness, Employment Status, Youthfulness and Negative Valence (or low-base-rate attributes). Clusters referring to Fashionableness, Sensuality/Seductiveness, Beauty, Masculinity, Frugality, Humor, Wealth, Prejudice, Folksiness, Cunning, and Luck appeared to be potentially beyond the Big Five, although each of these clusters demonstrated Big Five multiple correlations of .30 to .45, and at least one correlation of .20 and over with a Big Five factor. Of all these content areas, Religiousness, Negative Valence, and the various aspects of Attractiveness were found to be represented by a substantial number of distinct, common adjectives. Results suggest directions for supplementing the Big Five when one wishes to extend variable selection outside the domain of personality traits as conventionally defined.

  13. Big Data Analytics and Its Applications

    Directory of Open Access Journals (Sweden)

    Mashooque A. Memon

    2017-10-01

    Full Text Available The term, Big Data, has been authored to refer to the extensive heave of data that can't be managed by traditional data handling methods or techniques. The field of Big Data plays an indispensable role in various fields, such as agriculture, banking, data mining, education, chemistry, finance, cloud computing, marketing, health care stocks. Big data analytics is the method for looking at big data to reveal hidden patterns, incomprehensible relationship and other important data that can be utilize to resolve on enhanced decisions. There has been a perpetually expanding interest for big data because of its fast development and since it covers different areas of applications. Apache Hadoop open source technology created in Java and keeps running on Linux working framework was used. The primary commitment of this exploration is to display an effective and free solution for big data application in a distributed environment, with its advantages and indicating its easy use. Later on, there emerge to be a required for an analytical review of new developments in the big data technology. Healthcare is one of the best concerns of the world. Big data in healthcare imply to electronic health data sets that are identified with patient healthcare and prosperity. Data in the healthcare area is developing past managing limit of the healthcare associations and is relied upon to increment fundamentally in the coming years.

  14. Measuring the Promise of Big Data Syllabi

    Science.gov (United States)

    Friedman, Alon

    2018-01-01

    Growing interest in Big Data is leading industries, academics and governments to accelerate Big Data research. However, how teachers should teach Big Data has not been fully examined. This article suggests criteria for redesigning Big Data syllabi in public and private degree-awarding higher education establishments. The author conducted a survey…

  15. ROTSE All-Sky Surveys for Variable Stars. I. Test Fields

    International Nuclear Information System (INIS)

    Akerlof, C.; Amrose, S.; Balsano, R.; Bloch, J.; Casperson, D.; Fletcher, S.; Gisler, G.; Hills, J.; Kehoe, R.; Lee, B.

    2000-01-01

    The Robotic Optical Transient Search Experiment I (ROTSE-I) experiment has generated CCD photometry for the entire northern sky in two epochs nightly since 1998 March. These sky patrol data are a powerful resource for studies of astrophysical transients. As a demonstration project, we present first results of a search for periodic variable stars derived from ROTSE-I observations. Variable identification, period determination, and type classification are conducted via automatic algorithms. In a set of nine ROTSE-I sky patrol fields covering roughly 2000 deg2, we identify 1781 periodic variable stars with mean magnitudes between m v = 10.0 and m v = 15.5. About 90% of these objects are newly identified as variable. Examples of many familiar types are presented. All classifications for this study have been manually confirmed. The selection criteria for this analysis have been conservatively defined and are known to be biased against some variable classes. This preliminary study includes only 5.6% of the total ROTSE-I sky coverage, suggesting that the full ROTSE-I variable catalog will include more than 32,000 periodic variable stars. (c) (c) 2000. The American Astronomical Society

  16. A Study of Sasin-Animal Sky Map on Chonmunryucho

    Directory of Open Access Journals (Sweden)

    Hong-Jin Yang

    2003-03-01

    Full Text Available Chon-Mun-Ryu-Cho, written (edited by Lee Sun-Ji during the period of King Se-Jong, is a representative astronomy book of Cho-Sun (A.D. 1392 -1910 Dynasty. We find and study in the first page of the book; the description of 28 oriental constellations as a Sasin (four mythical oriental animals-animal sky map which is not widely known yet. The map consists of four groups of constellations, each of which represents the Sasin: Chang-Ryong (dragon, Baek-Ho (tigers with Ki-Rin [Oriental giraffe], Ju-Jak (Chinese phoenix, Hyun-Mu (a tortoise interwined with a snake. Each group (animals spans 2˜7 of 28 oriental constellations As we know from the illustration of the Chon-Sang-Yol-Cha-Bun-Ya-Ji-Do a representative sky map of Cho-Sun Dynasty, astronomy in Cho-Sun Dynasty is closely related to that in Go-Gu-Ryer (B.C. 37 -A.D. 668 Dynasty. Since these Sasin-animals appear in most mural paintings of Go-Gu-Ryer tombs, visualization of sky with these animal constellations could have been established as early as in Go-Gu-Ryer Dynasty. We also reconstruct this ''A Sasin-animal Korean sky map'' based on the shapes of the Sasin and Ki-Rin from Go-Gu-Ryer paintings and 28 oriental constellations in Chon-Sang-Yol-Cha-Bun-Ya-Ji-Do.

  17. Big data technologies in e-learning

    Directory of Open Access Journals (Sweden)

    Gyulara A. Mamedova

    2017-01-01

    Full Text Available Recently, e-learning around the world is rapidly developing, and the main problem is to provide the students with quality educational information on time. This task cannot be solved without analyzing the large flow of information, entering the information environment of e-learning from participants in the educational process – students, lecturers, administration, etc. In this environment, there are a large number of different types of data, both structured and unstructured. Data processing is difficult to implement by traditional statistical methods. The aim of the study is to show that for the development and implementation of successful e-learning systems, it is necessary to use new technologies that would allow storing and processing large data streams.In order to store the big data, a large amount of disk space is required. It is shown that to solve this problem it is efficient to use clustered NAS (Network Area Storage technology, which allows storing information of educational institutions on NAS servers and sharing them with Internet. To process and personalize the Big Data in the environment of e-learning, it is proposed to use the technologies MapReduce, Hadoop, NoSQL and others. The article gives examples of the use of these technologies in the cloud environment. These technologies in e-learning allow achieving flexibility, scalability, availability, quality of service, security, confidentiality and ease of educational information use.Another important problem of e-learning is the identification of new, sometimes hidden, interconnection in Big Data, new knowledge (data mining, which can be used to improve the educational process and improve its management. To classify electronic educational resources, identify patterns of students with similar psychological, behavioral and intellectual characteristics, developing individualized educational programs, it is proposed to use methods of analysis of Big Data.The article shows that at

  18. Indigenous Sky Stories: Reframing How We Introduce Primary School Students to Astronomy--A Type II Case Study of Implementation

    Science.gov (United States)

    Ruddell, Nicholas; Danaia, Lena; McKinnon, David

    2016-01-01

    The Indigenous Sky Stories Program may have the potential to deliver significant and long-lasting changes to the way science is taught to Year 5 and 6 primary school students. The context for this article is informed by research that shows that educational outcomes can be strengthened when Indigenous knowledge is given the space to co-exist with…

  19. Receptive fields of locust brain neurons are matched to polarization patterns of the sky.

    Science.gov (United States)

    Bech, Miklós; Homberg, Uwe; Pfeiffer, Keram

    2014-09-22

    Many animals, including insects, are able to use celestial cues as a reference for spatial orientation and long-distance navigation [1]. In addition to direct sunlight, the chromatic gradient of the sky and its polarization pattern are suited to serve as orientation cues [2-5]. Atmospheric scattering of sunlight causes a regular pattern of E vectors in the sky, which are arranged along concentric circles around the sun [5, 6]. Although certain insects rely predominantly on sky polarization for spatial orientation [7], it has been argued that detection of celestial E vector orientation may not suffice to differentiate between solar and antisolar directions [8, 9]. We show here that polarization-sensitive (POL) neurons in the brain of the desert locust Schistocerca gregaria can overcome this ambiguity. Extracellular recordings from POL units in the central complex and lateral accessory lobes revealed E vector tunings arranged in concentric circles within large receptive fields, matching the sky polarization pattern at certain solar positions. Modeling of neuronal responses under an idealized sky polarization pattern (Rayleigh sky) suggests that these "matched filter" properties allow locusts to unambiguously determine the solar azimuth by relying solely on the sky polarization pattern for compass navigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Anisotropy in the Microwave Sky at 90 GHz: Results From Python III

    OpenAIRE

    Platt, S. R.; Kovac, J.; Dragovan, M.; Peterson, J. B.; Ruhl, J. E.

    1996-01-01

    The third year of observations with the Python microwave background experiment densely sample a $5.5^o\\times 22^o$ region of sky that includes the fields measured during the first two years of observations with this instrument. The sky is sampled in two multipole bands centered at $l \\approx 92$ and $l \\approx 177$. These two data sets are analyzed to place limits on fluctuations in the microwave sky at 90 GHz. Interpreting the observed fluctuations as anisotropy in the cosmic microwave backg...

  1. Losing Sleep to Watch the Night-Sky: The Relationship between Sleep-Length and Noctcaelador

    Science.gov (United States)

    Kelly, William E.; Rose, Callie

    2005-01-01

    For most of history, humans have been watching the night-sky (Hawkins, 1983). Historically, individuals have watched the night-sky for aesthetic appreciation and to gain insights and knowledge (Brecher & Feirtag, 1979). Despite the long history of night-sky watching among humans and the apparent importance of the behavior to large groups of…

  2. 77 FR 27245 - Big Stone National Wildlife Refuge, Big Stone and Lac Qui Parle Counties, MN

    Science.gov (United States)

    2012-05-09

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R3-R-2012-N069; FXRS1265030000S3-123-FF03R06000] Big Stone National Wildlife Refuge, Big Stone and Lac Qui Parle Counties, MN AGENCY: Fish and... plan (CCP) and environmental assessment (EA) for Big Stone National Wildlife Refuge (Refuge, NWR) for...

  3. Night-sky brightness monitoring in Hong Kong: a city-wide light pollution assessment.

    Science.gov (United States)

    Pun, Chun Shing Jason; So, Chu Wing

    2012-04-01

    Results of the first comprehensive light pollution survey in Hong Kong are presented. The night-sky brightness was measured and monitored around the city using a portable light-sensing device called the Sky Quality Meter over a 15-month period beginning in March 2008. A total of 1,957 data sets were taken at 199 distinct locations, including urban and rural sites covering all 18 Administrative Districts of Hong Kong. The survey shows that the environmental light pollution problem in Hong Kong is severe-the urban night skies (sky brightness at 15.0 mag arcsec(- 2)) are on average ~ 100 times brighter than at the darkest rural sites (20.1 mag arcsec(- 2)), indicating that the high lighting densities in the densely populated residential and commercial areas lead to light pollution. In the worst polluted urban location studied, the night-sky at 13.2 mag arcsec(- 2) can be over 500 times brighter than the darkest sites in Hong Kong. The observed night-sky brightness is found to be affected by human factors such as land utilization and population density of the observation sites, together with meteorological and/or environmental factors. Moreover, earlier night skies (at 9:30 p.m. local time) are generally brighter than later time (at 11:30 p.m.), which can be attributed to some public and commercial lightings being turned off later at night. On the other hand, no concrete relationship between the observed sky brightness and air pollutant concentrations could be established with the limited survey sampling. Results from this survey will serve as an important database for the public to assess whether new rules and regulations are necessary to control the use of outdoor lightings in Hong Kong.

  4. SPHEREx: Probing the Physics of Inflation with an All-Sky Spectroscopic Galaxy Survey

    Science.gov (United States)

    Dore, Olivier; SPHEREx Science Team

    2018-01-01

    SPHEREx, a mission in NASA's Medium Explorer (MIDEX) program that was selected for Phase A in August 2017, is an all-sky survey satellite designed to address all three science goals in NASA’s astrophysics division: probe the origin and destiny of our Universe; explore whether planets around other stars could harbor life; and explore the origin and evolution of galaxies. These themes are addressed by a single survey, with a single instrument.In this poster, we describe how SPHEREx can probe the physics of inflationary non-Gaussianity by measuring large-scale structure with galaxy redshifts over a large cosmological volume at low redshifts, complementing high-redshift surveys optimized to constrain dark energy.SPHEREx will be the first all-sky near-infrared spectral survey, creating a legacy archive of spectra. In particular, it will measure the redshifts of over 500 million galaxies of all types, an unprecedented dataset. Using this catalog, SPHEREx will reduce the uncertainty in fNL -- a parameter describing the inflationary initial conditions -- by a factor of more than 10 compared with CMB measurements. At the same time, this catalog will enable strong scientific synergies with Euclid, WFIRST and LSST

  5. Big data and educational research

    OpenAIRE

    Beneito-Montagut, Roser

    2017-01-01

    Big data and data analytics offer the promise to enhance teaching and learning, improve educational research and progress education governance. This chapter aims to contribute to the conceptual and methodological understanding of big data and analytics within educational research. It describes the opportunities and challenges that big data and analytics bring to education as well as critically explore the perils of applying a data driven approach to education. Despite the claimed value of the...

  6. Flying between sky islands: the effect of naturally fragmented habitat on butterfly population structure.

    Science.gov (United States)

    Sekar, Sandhya; Karanth, Praveen

    2013-01-01

    High elevation montane areas are called "sky islands" when they occur as a series of high mountains separated by lowland valleys. Different climatic conditions at high elevations makes sky islands a specialized type of habitat, rendering them naturally fragmented compared to more continuous habitat at lower elevations. Species in sky islands face unsuitable climate in the intervening valleys when moving from one montane area to another. The high elevation shola-grassland mosaic in the Western Ghats of southern India form one such sky island complex. The fragmented patches make this area ideal to study the effect of the spatial orientation of suitable habitat patches on population genetic structure of species found in these areas. Past studies have suggested that sky islands tend to have genetically structured populations, possibly due to reduced gene flow between montane areas. To test this hypothesis, we adopted the comparative approach. Using Amplified Fragment Length Polymorphisms, we compared population genetic structures of two closely related, similar sized butterfly species: Heteropsis oculus, a high elevation shola-grassland specialist restricted to the southern Western Ghats, and Mycalesis patnia, found more continuously distributed in lower elevations. In all analyses, as per expectation the sky island specialist H. oculus exhibited a greater degree of population genetic structure than M. patnia, implying a difference in geneflow. This difference in geneflow in turn appears to be due to the natural fragmentation of the sky island complexes. Detailed analysis of a subset of H. oculus samples from one sky island complex (the Anamalais) showed a surprising genetic break. A possible reason for this break could be unsuitable conditions of higher temperature and lower rainfall in the intervening valley region. Thus, sky island species are not only restricted by lack of habitat continuity between montane areas, but also by the nature of the intervening habitat.

  7. Photometric Assessment of Night Sky Quality over Chaco Culture National Historical Park

    Science.gov (United States)

    Hung, Li-Wei; Duriscoe, Dan M.; White, Jeremy M.; Meadows, Bob; Anderson, Sharolyn J.

    2018-06-01

    The US National Park Service (NPS) characterizes night sky conditions over Chaco Culture National Historical Park using measurements in the park and satellite data. The park is located near the geographic center of the San Juan Basin of northwestern New Mexico and the adjacent Four Corners state. In the park, we capture a series of night sky images in V-band using our mobile camera system on nine nights from 2001 to 2016 at four sites. We perform absolute photometric calibration and determine the image placement to obtain multiple 45-million-pixel mosaic images of the entire night sky. We also model the regional night sky conditions in and around the park based on 2016 VIIRS satellite data. The average zenith brightness is 21.5 mag/arcsec2, and the whole sky is only ~16% brighter than the natural conditions. The faintest stars visible to naked eyes have magnitude of approximately 7.0, reaching the sensitivity limit of human eyes. The main impacts to Chaco’s night sky quality are the light domes from Albuquerque, Rio Rancho, Farmington, Bloomfield, Gallup, Santa Fe, Grants, and Crown Point. A few of these light domes exceed the natural brightness of the Milky Way. Additionally, glare sources from oil and gas development sites are visible along the north and east horizons. Overall, the night sky quality at Chaco Culture National Historical Park is very good. The park preserves to a large extent the natural illumination cycles, providing a refuge for crepuscular and nocturnal species. During clear and dark nights, visitors have an opportunity to see the Milky Way from nearly horizon to horizon, complete constellations, and faint astronomical objects and natural sources of light such as the Andromeda Galaxy, zodiacal light, and airglow.

  8. Thick-Big Descriptions

    DEFF Research Database (Denmark)

    Lai, Signe Sophus

    The paper discusses the rewards and challenges of employing commercial audience measurements data – gathered by media industries for profitmaking purposes – in ethnographic research on the Internet in everyday life. It questions claims to the objectivity of big data (Anderson 2008), the assumption...... communication systems, language and behavior appear as texts, outputs, and discourses (data to be ‘found’) – big data then documents things that in earlier research required interviews and observations (data to be ‘made’) (Jensen 2014). However, web-measurement enterprises build audiences according...... to a commercial logic (boyd & Crawford 2011) and is as such directed by motives that call for specific types of sellable user data and specific segmentation strategies. In combining big data and ‘thick descriptions’ (Geertz 1973) scholars need to question how ethnographic fieldwork might map the ‘data not seen...

  9. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  10. Observing floods from space: Experience gained from COSMO-SkyMed observations

    Science.gov (United States)

    Pierdicca, N.; Pulvirenti, L.; Chini, M.; Guerriero, L.; Candela, L.

    2013-03-01

    The COSMO-SkyMed mission offers a unique opportunity to obtain all weather radar images characterized by short revisit time, thus being useful for flood evolution mapping. The COSMO-SkyMed system has been activated several times in the last few years in occasion of flood events all over the world in order to provide very high resolution X-band SAR images useful for flood detection purposes. This paper discusses the major outcomes of the experience gained, within the framework of the OPERA Pilot Project funded by the Italian Space Agency, from using COSMO-SkyMed data for the purpose of near real time generation of flood maps. A review of the mechanisms which determine the imprints of the inundation on the radar images and of the fundamental simulation tools able to predict these imprints and help image interpretation is provided. The approach developed to process the data and to generate the flood maps is also summarized. Then, the paper illustrates the experience gained with COSMO-SkyMed by describing and discussing a number of significant examples. These examples demonstrate the potential of the COSMO-SkyMed system and the suitability of the approach developed for generating the final products, but they also highlight some critical aspects that require further investigations to improve the reliability of the flood maps.

  11. CMB spectra and bispectra calculations: making the flat-sky approximation rigorous

    International Nuclear Information System (INIS)

    Bernardeau, Francis; Pitrou, Cyril; Uzan, Jean-Philippe

    2011-01-01

    This article constructs flat-sky approximations in a controlled way in the context of the cosmic microwave background observations for the computation of both spectra and bispectra. For angular spectra, it is explicitly shown that there exists a whole family of flat-sky approximations of similar accuracy for which the expression and amplitude of next to leading order terms can be explicitly computed. It is noted that in this context two limiting cases can be encountered for which the expressions can be further simplified. They correspond to cases where either the sources are localized in a narrow region (thin-shell approximation) or are slowly varying over a large distance (which leads to the so-called Limber approximation). Applying this to the calculation of the spectra it is shown that, as long as the late integrated Sachs-Wolfe contribution is neglected, the flat-sky approximation at leading order is accurate at 1% level for any multipole. Generalization of this construction scheme to the bispectra led to the introduction of an alternative description of the bispectra for which the flat-sky approximation is well controlled. This is not the case for the usual description of the bispectrum in terms of reduced bispectrum for which a flat-sky approximation is proposed but the next-to-leading order terms of which remain obscure

  12. The cut-sky cosmic microwave background is not anomalous

    International Nuclear Information System (INIS)

    Pontzen, Andrew; Peiris, Hiranya V.

    2010-01-01

    The observed angular correlation function of the cosmic microwave background has previously been reported to be anomalous, particularly when measured in regions of the sky uncontaminated by Galactic emission. Recent work by Efstathiou et al. presents a Bayesian comparison of isotropic theories, casting doubt on the significance of the purported anomaly. We extend this analysis to all anisotropic Gaussian theories with vanishing mean ( =0), using the much wider class of models to confirm that the anomaly is not likely to point to new physics. On the other hand if there is any new physics to be gleaned, it results from low-l alignments which will be better quantified by a full-sky statistic. We also consider quadratic maximum likelihood power spectrum estimators that are constructed assuming isotropy. The underlying assumptions are therefore false if the ensemble is anisotropic. Nonetheless we demonstrate that, for theories compatible with the observed sky, these estimators (while no longer optimal) remain statistically superior to pseudo-C l power spectrum estimators.

  13. Cooling load reduction by means of night sky radiation

    International Nuclear Information System (INIS)

    Kamaruddin Abdullah; Armansyah, H.T.; Dyah, W.; Gunadnya, I.B.P.

    2006-01-01

    Nocturnal cooling can work under clear sky condition of the humid tropical climate. Such effect had been observed in a cool storage facilities for potatoes and for temporary storage of fresh vegetables installed in highland area of Candi kuning village of Bali. Test results have shown that the rate of heat dissipation to the sky could reduce storage temperature to 15 o C had been achieved when the nocturnal cooling unit was combined with modified cooling tower and 1 kW cooling effect of an auxiliary cooling unit. Under such condition the facility could maintain better quality of stored vegetables, such as broccoli, shallot, and celery as compared to those stored in room without cooling facility. The estimated average cooling rate due to night sky radiation was 47.6 W/m 2 , on September 28, 1999 and 47.2 W/m 2 with the lowest water temperature of 14 o C under ambient temperature of 16 o C

  14. Big Data's Role in Precision Public Health.

    Science.gov (United States)

    Dolley, Shawn

    2018-01-01

    Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous subpopulations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts.

  15. 2012 Australasian sky guide

    CERN Document Server

    Lomb, Nick

    2011-01-01

    Compact, easy to use and reliable, this popular guide contains everything you need to know about the southern night sky with monthly star maps, diagrams and details of all the year's exciting celestial events. Wherever you are in Australia or New Zealand, easy calculations allow you to determine when the Sun, Moon and planets will rise and set throughout the year. Also included is information on the latest astronomical findings from space probes and telescopes around the world.

  16. Big Data, indispensable today

    Directory of Open Access Journals (Sweden)

    Radu-Ioan ENACHE

    2015-10-01

    Full Text Available Big data is and will be used more in the future as a tool for everything that happens both online and offline. Of course , online is a real hobbit, Big Data is found in this medium , offering many advantages , being a real help for all consumers. In this paper we talked about Big Data as being a plus in developing new applications, by gathering useful information about the users and their behaviour.We've also presented the key aspects of real-time monitoring and the architecture principles of this technology. The most important benefit brought to this paper is presented in the cloud section.

  17. Antigravity and the big crunch/big bang transition

    Science.gov (United States)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-08-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  18. Antigravity and the big crunch/big bang transition

    Energy Technology Data Exchange (ETDEWEB)

    Bars, Itzhak [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-2535 (United States); Chen, Shih-Hung [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Department of Physics and School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Steinhardt, Paul J., E-mail: steinh@princeton.edu [Department of Physics and Princeton Center for Theoretical Physics, Princeton University, Princeton, NJ 08544 (United States); Turok, Neil [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)

    2012-08-29

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  19. Antigravity and the big crunch/big bang transition

    International Nuclear Information System (INIS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-01-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  20. Big data: een zoektocht naar instituties

    NARCIS (Netherlands)

    van der Voort, H.G.; Crompvoets, J

    2016-01-01

    Big data is a well-known phenomenon, even a buzzword nowadays. It refers to an abundance of data and new possibilities to process and use them. Big data is subject of many publications. Some pay attention to the many possibilities of big data, others warn us for their consequences. This special

  1. Data, Data, Data : Big, Linked & Open

    NARCIS (Netherlands)

    Folmer, E.J.A.; Krukkert, D.; Eckartz, S.M.

    2013-01-01

    De gehele business en IT-wereld praat op dit moment over Big Data, een trend die medio 2013 Cloud Computing is gepasseerd (op basis van Google Trends). Ook beleidsmakers houden zich actief bezig met Big Data. Neelie Kroes, vice-president van de Europese Commissie, spreekt over de ‘Big Data

  2. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    Science.gov (United States)

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.

  3. Photometric Analysis of Pi of the Sky Data

    Directory of Open Access Journals (Sweden)

    Rafał Opiela

    2013-01-01

    Full Text Available Two fully automatic Pi of the Sky detectors with a large field of view, located in Spain (INTA and in Chile (SPDA observe the sky in search of rare optical phenomena, and also collect observations which include many kinds of variable stars. To be able to draw proper conclusions from the data that is received, adequate quality of the detectors is very important. Pi of the Sky data are subject to systematic errors caused by various factors, e.g. cloud cover seen as significant fluctuations in the number of stars observed by the detector, problems with conducting mounting, a strong background of the moon or the passage of a bright object, e.g. a planet, near the observed star. Some of these adverse effects are already detected during cataloging of the individual measurements, but this is not sufficient to make the quality of the data satisfactory for us. In order to improve the quality of our data, we developed two new procedures based on two different approaches. In this paper we will say some words about these procedures, give some examples, and show how these procedures improve the quality of our data.

  4. The gamma-ray sky as seen with HAWC

    Directory of Open Access Journals (Sweden)

    Hüntemeyer Petra

    2015-01-01

    Full Text Available The High-Altitude Water Cherenkov (HAWC TeV Gamma-Ray Observatory located at a site about two hours drive east of Puebla, Mexico on the Sierra Negra plateau (4100 m a.s.l. was inaugurated in March 2015. The array of 300 water Cherenkov detectors can observe large portions of the sky simultaneously and, with an energy range of 100 GeV to 100 TeV, is currently one of the most sensitive instruments capable of probing particle acceleration near PeV energies. HAWC has already started science operation in the Summer of 2013 and preliminary sky maps have been produced from 260 days of data taken with a partial array. Multiple > 5 σ (pre-trials hotspots are visible along the galactic plane and some appear to coincide with known TeV sources from the H.E.S.S. catalog, SNRs and molecular cloud associations, and pulsars wind nebulae (PWNe. The sky maps based on partial HAWC array data are discussed as well as the scientific potential of the completed instrument especially in the context of multi-wavelengths studies.

  5. ACS/WFC Sky Flats from Frontier Fields Imaging

    Science.gov (United States)

    Mack, J.; Lucas, R. A.; Grogin, N. A.; Bohlin, R. C.; Koekemoer, A. M.

    2018-04-01

    Parallel imaging data from the HST Frontier Fields campaign (Lotz et al. 2017) have been used to compute sky flats for the ACS/WFC detector in order to verify the accuracy of the current set of flat field reference files. By masking sources and then co-adding many deep frames, the F606W and F814W filters have enough combined background signal that from Poisson statistics are efficiency tracks the thickness of the two WFC chips. Observations of blue and red calibration standards measured at various positions on the detector (Bohlin et al. 2017) confirm the fidelity of the F814W flat, with aperture photometry consistent to 1% across the FOV, regardless of spectral type. At bluer wavelengths, the total sky background is substantially lower, and the F435W sky flat shows a combination of both flat errors and detector artifacts. Aperture photometry of the red standard star shows a maximum deviation of 1.4% across the array in this filter. Larger residuals up to 2.5% are found for the blue standard, suggesting that the spatial sensitivity in F435W depends on spectral type.

  6. Methods and tools for big data visualization

    OpenAIRE

    Zubova, Jelena; Kurasova, Olga

    2015-01-01

    In this paper, methods and tools for big data visualization have been investigated. Challenges faced by the big data analysis and visualization have been identified. Technologies for big data analysis have been discussed. A review of methods and tools for big data visualization has been done. Functionalities of the tools have been demonstrated by examples in order to highlight their advantages and disadvantages.

  7. Study of X-ray transients with Scanning Sky Monitor (SSM) onboard ...

    Indian Academy of Sciences (India)

    M. C. RAMADEVI

    MS received 1 September 2017; accepted 19 December 2017; published online 10 February 2018. Abstract. Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the ..... 31(2–3), 99. Ramadevi M. C., Seetha S., Babu V. C., Ashoka B. N., Sreeku- mar P. 2006, Optimization of Gas Proportional Coun-.

  8. Big data analytics methods and applications

    CERN Document Server

    Rao, BLS; Rao, SB

    2016-01-01

    This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.

  9. The Big bang and the Quantum

    Science.gov (United States)

    Ashtekar, Abhay

    2010-06-01

    General relativity predicts that space-time comes to an end and physics comes to a halt at the big-bang. Recent developments in loop quantum cosmology have shown that these predictions cannot be trusted. Quantum geometry effects can resolve singularities, thereby opening new vistas. Examples are: The big bang is replaced by a quantum bounce; the `horizon problem' disappears; immediately after the big bounce, there is a super-inflationary phase with its own phenomenological ramifications; and, in presence of a standard inflation potential, initial conditions are naturally set for a long, slow roll inflation independently of what happens in the pre-big bang branch. As in my talk at the conference, I will first discuss the foundational issues and then the implications of the new Planck scale physics near the Big Bang.

  10. Protecting Dark Skies as a State-Wide Resource

    Science.gov (United States)

    Allen, Lori E.; Walker, Constance E.; Hall, Jeffrey C.; Larson, Steve; Williams, Grant; Falco, Emilio; Hinz, Joannah; Fortin, Pascal; Brocious, Dan; Corbally, Christopher; Gabor, Paul; Veillet, Christian; Shankland, Paul; Jannuzi, Buell; Cotera, Angela; Luginbuhl, Christian

    2018-01-01

    The state of Arizona contains the highest concentration of research telescopes in the continental United States, contributing more than a quarter of a billion dollars annually to the state's economy. Protecting the dark skies above these observatories is both good for astronomy and good for the state's economy. In this contribution we describe how a coalition of Arizona observatories is working together to protect our dark skies. Efforts date back to the creation of one of the first Outdoor Lighting Codes in the United States and continue today, including educational outreach, public policy engagement, and consensus building. We review some proven strategies, highlight recent successes and look at current threats.

  11. Variable X-ray sky with Lobster Eye Telescopes

    International Nuclear Information System (INIS)

    Hudec, R.; Pina, L.; Inneman, A.; Sveda, L.

    2004-01-01

    The variable X-ray sky requires wide-field monitoring with high sensitivity. We refer on novel X-ray telescopes with high sensitivity as well as large field of view. The results are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, GRBs, X-ray flashes, galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc

  12. 2MASS - The 2 Micron All Sky Survey

    Science.gov (United States)

    Kleinmann, S. G.

    1992-01-01

    This paper describes a new sky survey to be carried out in three wavebands, J(1.25 m), H(1.65 m), and K(2.2 m). The limiting sensitivity of the survey, 10 sigma detection of point sources with K not greater than 14 mag, coupled with its all-sky coverage, were selected primarily to support studies of the large-scale structure of the Milky Way and the Local Universe. The survey requires construction of a pair of observing facilities, one each for the Northern and Southern Hemispheres. Operations are scheduled to begin in 1995. The data will begin becoming publicly available soon thereafter.

  13. Diamonds in the Sky

    Science.gov (United States)

    Brotherton, M.

    2004-12-01

    My first science fiction novel, Star Dragon, just recently available in paperback from Tor, features a voyage to the cataclysmic variable star system SS Cygni. My second novel, Spider Star, to appear early in 2006, takes place in and around a dark matter ``planet'' orbiting a neutron star. Both novels are ``hard'' science fiction, relying on accurate physics to inform the tales. It's possible to bring to life abstract concepts like special relativity, and alien environments like accretion disks, by using science fiction. Novels are difficult to use in a science class, but short stories offer intriguing possibilities. I'm planning to edit an anthology of hard science fiction stories that contain accurate science and emphasize fundamental ideas in modern astronomy. The working title is Diamonds in the Sky. The collection will be a mix of original stories and reprints, highlighting challenging concepts covered in a typical introductory astronomy course. Larry Niven's classic story, ``Neutron Star," is an excellent demonstration of extreme tidal forces in an astronomical context. Diamonds in the Sky will include forewards and afterwards to the stories, including discussion questions and mathematical formulas/examples as appropriate. I envision this project will be published electronically or through a print-on-demand publisher, providing long-term availabilty and keeping low cost. I encourage interested parties to suggest previously published stories, or to suggest which topics must be included.

  14. First all-sky search for continuous gravitational waves from unknown sources in binary systems

    OpenAIRE

    Aasi, J.; Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Aggarwal, N.

    2014-01-01

    We present the first results of an all-sky search for continuous gravitational waves from unknown spinning neutron stars in binary systems using LIGO and Virgo data. Using a specially developed analysis program, the TwoSpect algorithm, the search was carried out on data from the sixth LIGO Science Run and the second and third Virgo Science Runs. The search covers a range of frequencies from 20 Hz to 520 Hz, a range of orbital periods from 2 to ~2,254 h and a frequency- and period-dependent ra...

  15. Big Bang baryosynthesis

    International Nuclear Information System (INIS)

    Turner, M.S.; Chicago Univ., IL

    1983-01-01

    In these lectures I briefly review Big Bang baryosynthesis. In the first lecture I discuss the evidence which exists for the BAU, the failure of non-GUT symmetrical cosmologies, the qualitative picture of baryosynthesis, and numerical results of detailed baryosynthesis calculations. In the second lecture I discuss the requisite CP violation in some detail, further the statistical mechanics of baryosynthesis, possible complications to the simplest scenario, and one cosmological implication of Big Bang baryosynthesis. (orig./HSI)

  16. arXiv AlterBBN v2: A public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies

    CERN Document Server

    Arbey, A.; Hickerson, K.P.; Jenssen, E.S.

    We present the version 2 of AlterBBN, an open public code for the calculation of the abundance of the elements from Big-Bang nucleosynthesis. It does not rely on any closed external library or program, aims at being user-friendly and allowing easy modifications, and provides a fast and reliable calculation of the Big-Bang nucleosynthesis constraints in the standard and alternative cosmologies.

  17. Exploiting big data for critical care research.

    Science.gov (United States)

    Docherty, Annemarie B; Lone, Nazir I

    2015-10-01

    Over recent years the digitalization, collection and storage of vast quantities of data, in combination with advances in data science, has opened up a new era of big data. In this review, we define big data, identify examples of critical care research using big data, discuss the limitations and ethical concerns of using these large datasets and finally consider scope for future research. Big data refers to datasets whose size, complexity and dynamic nature are beyond the scope of traditional data collection and analysis methods. The potential benefits to critical care are significant, with faster progress in improving health and better value for money. Although not replacing clinical trials, big data can improve their design and advance the field of precision medicine. However, there are limitations to analysing big data using observational methods. In addition, there are ethical concerns regarding maintaining confidentiality of patients who contribute to these datasets. Big data have the potential to improve medical care and reduce costs, both by individualizing medicine, and bringing together multiple sources of data about individual patients. As big data become increasingly mainstream, it will be important to maintain public confidence by safeguarding data security, governance and confidentiality.

  18. Empathy and the Big Five

    OpenAIRE

    Paulus, Christoph

    2016-01-01

    Del Barrio et al. (2004) haben vor mehr als 10 Jahren versucht, eine direkte Beziehung zwischen Empathie und den Big Five herzustellen. Im Mittel hatten in ihrer Stichprobe Frauen höhere Werte in der Empathie und auf den Big Five-Faktoren mit Ausnahme des Faktors Neurotizismus. Zusammenhänge zu Empathie fanden sie in den Bereichen Offenheit, Verträglichkeit, Gewissenhaftigkeit und Extraversion. In unseren Daten besitzen Frauen sowohl in der Empathie als auch den Big Five signifikant höhere We...

  19. Quantifying the clear-sky bias of satellite-derived infrared LST

    Science.gov (United States)

    Ermida, S. L.; Trigo, I. F.; DaCamara, C.

    2017-12-01

    Land surface temperature (LST) is one of the most relevant parameters when addressing the physical processes that take place at the surface of the Earth. Satellite data are particularly appropriate for measuring LST over the globe with high temporal resolution. Remote-sensed LST estimation from space-borne sensors has been systematically performed over the Globe for nearly 3 decades and geostationary LST climate data records are now available. The retrieval of LST from satellite observations generally relies on measurements in the thermal infrared (IR) window. Although there is a large number of IR sensors on-board geostationary satellites and polar orbiters suitable for LST retrievals with different temporal and spatial resolutions, the use of IR observations limits LST estimates to clear sky conditions. As a consequence, climate studies based on IR LST are likely to be affected by the restriction of LST data to cloudless conditions. However, such "clear sky bias" has never been quantified and, therefore, the actual impact of relying only on clear sky data is still to be determined. On the other hand, an "all-weather" global LST database may be set up based on passive microwave (MW) measurements which are much less affected by clouds. An 8-year record of all-weather MW LST is here used to quantify the clear-sky bias of IR LST at global scale based on MW observations performed by the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) onboard NASA's Aqua satellite. Selection of clear-sky and cloudy pixels is based on information derived from measurements performed by the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the same satellite.

  20. Planck 2013 results. XI. All-sky model of thermal dust emission

    DEFF Research Database (Denmark)

    Abergel, A.; Ade, P. A. R.; Aghanim, N.

    2014-01-01

    This paper presents an all-sky model of dust emission from the Planck 353, 545, and 857 GHz, and IRAS 100 mu m data. Using a modified blackbody fit to the data we present all-sky maps of the dust optical depth, temperature, and spectral index over the 353-3000 GHz range. This model is a good repr...

  1. Measuring the influence of aerosols and albedo on sky polarization.

    Science.gov (United States)

    Kreuter, A; Emde, C; Blumthaler, M

    2010-11-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05-0.5 and 0.1-0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error.

  2. Child survival in big cities: the disadvantages of migrants.

    Science.gov (United States)

    Brockerhoff, M

    1995-05-01

    Data from 15 Demographic and Health Surveys are used to examine whether rural-urban migrants in developing countries experience higher child mortality after settling in towns and cities than do lifelong urban residents, and if so, what individual or household characteristics account for this. Findings indicate that children of female migrants from the countryside generally have much poorer survival chances than other urban children. This survival disadvantage is more pronounced in big cities than in smaller urban areas, among migrants who have lived in the city for many years than among recent migrants, and in urban Latin America than in urban North Africa and sub-Saharan Africa. Within big cities, higher child mortality among migrant women is clearly related to their concentration in low-quality housing, and in part to fertility patterns at early ages of children and mother's educational attainment at later ages. Excess child mortality among urban migrants may also result from factors associated with the migration process, that are outlined in this study but not included in the analysis. Evidence of moderately high levels of residential segregation of migrant women in big cities suggests that opportunities exist for urban health programs to direct interventions to this disadvantaged segment of city populations.

  3. Sacred Sky and Cyberspace

    Science.gov (United States)

    Clynes, F.

    2011-06-01

    The concept of the sacred world beyond the stars found expression in the works of Plato, into Gnosticism and was incorporated into Christianity where medieval images of the cosmos pictured the heavenly domain as beyond the stars. Today cyberspace literature abounds with descriptions of a transmundane space, a great Beyond. This talk looks at current views of cyberspace and asks if they are a re-packaging of the age-old concept of a sacred sky in a secular and technological format?

  4. Big domains are novel Ca²+-binding modules: evidences from big domains of Leptospira immunoglobulin-like (Lig) proteins.

    Science.gov (United States)

    Raman, Rajeev; Rajanikanth, V; Palaniappan, Raghavan U M; Lin, Yi-Pin; He, Hongxuan; McDonough, Sean P; Sharma, Yogendra; Chang, Yung-Fu

    2010-12-29

    Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca²+. Leptospiral immunoglobulin-like (Lig) proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big) domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca²+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9(th) (Lig A9) and 10(th) repeats (Lig A10); and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon). All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca²+ with dissociation constants of 2-4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. We demonstrate that the Lig are Ca²+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca²+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca²+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca²+ binding.

  5. A new service support tool for COSMO-SkyMed: civil user coordination service and civil request management optimization

    Science.gov (United States)

    Daraio, M. G.; Battagliere, M. L.; Sacco, P.; Fasano, L.; Coletta, A.

    2015-10-01

    COSMO-SkyMed is a dual-use program for both civilian and defense provides user community (institutional and commercial) with SAR data in several environmental applications. In the context of COSMO-SkyMed data and User management, one of the aspects carefully monitored is the user satisfaction level, it is links to satisfaction of submitted user requests. The operational experience of the first years of operational phase, and the consequent lessons learnt by the COSMO-SkyMed data and user management, have demonstrated that a lot of acquisition rejections are due to conflicts (time conflicts or system conflicts) among two or more civilian user requests, and they can be managed and solved implementing an improved coordination of users and their requests on a daily basis. With this aim a new Service Support Tool (SST) has been designed and developed to support the operators in the User Request coordination. The Tool allow to analyze conflicts among Acquisition Requests (ARs) before the National Rankization phase and to elaborate proposals for conflict resolution. In this paper the most common causes of the occurred rejections will be showed, for example as the impossibility to aggregate different orders, and the SST functionalities will be described, in particular how it works to remove or minimize the conflicts among different orders.

  6. A lobster-eye on the x-ray sky

    International Nuclear Information System (INIS)

    Peele, A. G.; Zhang, W.; Gendreau, K. C.; Petre, R.; White, N. E.

    1999-01-01

    We propose an x-ray all-sky monitor for the International Space Station (ISS) that will be ten times more sensitive than past monitors and that opens up a new band of the soft x-ray spectrum (0.1 -3.0 keV) for study. Taking advantage of the power telemetry and space available on the ISS we can use a telescope geometry and detectors that will provide better than 4 arc minute resolution of the entire sky in a 1.5 hr duty cycle. To achieve this sensitivity and resolution we use focusing optics based on the lobster-eye geometry. We propose two approaches to the construction of the optics. The first method, well within the reach of existing technology, is to approximate the lobster-eye geometry by building crossed arrays of planar reflectors, this gives great control over the reflecting surface but is limited in terms of resolution at the baseline 4 arc minute level. The second method is to use microchannel plates: this technology has the potential to greatly exceed the baseline resolution and sensitivity but is yet to be fully demonstrated. A simultaneous development of both approaches with selection of the superior candidate at the end of the development phase is suggested. The instrument is made of a number of modules based on a 2x2 cooled CCD detector array that covers an area of 6x6 cm 2 at the focal plane. Using optics with a radius of curvature of 0.75 m this gives each module a field of view of 9 deg. x 9 deg. The modular approach gives us enormous flexibility in terms of physical arrangement on the ISS so that we may take advantage of clear lines of sight and also in terms of built-in redundancy. We estimate that ∼50 such modules give us instantaneous coverage of 1/10 of the sky. The scientific case for this mission is almost too broad to state here. The instrument we describe will allow investigation of the long term light curves of thousands of AGN, it will detect thousands of transients, including GRBs and type II supernova, and the stellar coronae of

  7. The Next Generation Sky Survey and the Quest for Cooler Brown Dwarfs

    OpenAIRE

    Kirkpatrick, J. Davy

    2002-01-01

    The Next Generation Sky Survey (NGSS) is a proposed NASA MIDEX mission to map the entire sky in four infrared bandpasses - 3.5, 4.7, 12, and 23 um. The seven-month mission will use a 50-cm telescope and four-channel imager to survey the sky from a circular orbit above the Earth. Expected sensitivities will be half a million times that of COBE/DIRBE at 3.5 and 4.7 um and a thousand times that of IRAS at 12 and 23 um. NGSS will be particularly sensitive to brown dwarfs cooler than those present...

  8. The effects of BIG-3 on osteoblast differentiation are not dependent upon endogenously produced BMPs

    International Nuclear Information System (INIS)

    Gori, Francesca; Demay, Marie B.

    2005-01-01

    BMPs play an important role in both intramembranous and endochondral ossification. BIG-3, BMP-2-induced gene 3 kb, encodes a WD-40 repeat protein that accelerates the program of osteoblastic differentiation in vitro. To examine the potential interactions between BIG-3 and the BMP-2 pathway during osteoblastic differentiation, MC3T3-E1 cells stably transfected with BIG-3 (MC3T3E1-BIG-3), or with the empty vector (MC3T3E1-EV), were treated with noggin. Noggin treatment of pooled MC3T3E1-EV clones inhibited the differentiation-dependent increase in AP activity observed in the untreated MC3T3E1-EV clones but did not affect the increase in AP activity in the MC3T3E1-BIG-3 clones. Noggin treatment decreased the expression of Runx2 and type I collagen mRNAs and impaired mineralized matrix formation in MC3T3E1-EV clones but not in MC3T3E1-BIG-3 clones. To determine whether the actions of BIG-3 on osteoblast differentiation converged upon the BMP pathway or involved an alternate signaling pathway, Smad1 phosphorylation was examined. Basal phosphorylation of Smad1 was not altered in the MC3T3E1-BIG-3 clones. However, these clones did not exhibit the noggin-dependent decrease in phosphoSmad1 observed in the MC3T3E1-EV clones, nor did it decrease nuclear localization of phosphoSmad1. These observations suggest that BIG-3 accelerates osteoblast differentiation in MC3T3-E1 cells by inducing phosphorylation and nuclear translocation of Smad1 independently of endogenously produced BMPs

  9. Semantic Web Technologies and Big Data Infrastructures: SPARQL Federated Querying of Heterogeneous Big Data Stores

    OpenAIRE

    Konstantopoulos, Stasinos; Charalambidis, Angelos; Mouchakis, Giannis; Troumpoukis, Antonis; Jakobitsch, Jürgen; Karkaletsis, Vangelis

    2016-01-01

    The ability to cross-link large scale data with each other and with structured Semantic Web data, and the ability to uniformly process Semantic Web and other data adds value to both the Semantic Web and to the Big Data community. This paper presents work in progress towards integrating Big Data infrastructures with Semantic Web technologies, allowing for the cross-linking and uniform retrieval of data stored in both Big Data infrastructures and Semantic Web data. The technical challenges invo...

  10. Quantum fields in a big-crunch-big-bang spacetime

    International Nuclear Information System (INIS)

    Tolley, Andrew J.; Turok, Neil

    2002-01-01

    We consider quantum field theory on a spacetime representing the big-crunch-big-bang transition postulated in ekpyrotic or cyclic cosmologies. We show via several independent methods that an essentially unique matching rule holds connecting the incoming state, in which a single extra dimension shrinks to zero, to the outgoing state in which it reexpands at the same rate. For free fields in our construction there is no particle production from the incoming adiabatic vacuum. When interactions are included the particle production for fixed external momentum is finite at the tree level. We discuss a formal correspondence between our construction and quantum field theory on de Sitter spacetime

  11. Turning big bang into big bounce: II. Quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Malkiewicz, Przemyslaw; Piechocki, Wlodzimierz, E-mail: pmalk@fuw.edu.p, E-mail: piech@fuw.edu.p [Theoretical Physics Department, Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)

    2010-11-21

    We analyze the big bounce transition of the quantum Friedmann-Robertson-Walker model in the setting of the nonstandard loop quantum cosmology (LQC). Elementary observables are used to quantize composite observables. The spectrum of the energy density operator is bounded and continuous. The spectrum of the volume operator is bounded from below and discrete. It has equally distant levels defining a quantum of the volume. The discreteness may imply a foamy structure of spacetime at a semiclassical level which may be detected in astro-cosmo observations. The nonstandard LQC method has a free parameter that should be fixed in some way to specify the big bounce transition.

  12. The ethics of big data in big agriculture

    Directory of Open Access Journals (Sweden)

    Isabelle M. Carbonell

    2016-03-01

    Full Text Available This paper examines the ethics of big data in agriculture, focusing on the power asymmetry between farmers and large agribusinesses like Monsanto. Following the recent purchase of Climate Corp., Monsanto is currently the most prominent biotech agribusiness to buy into big data. With wireless sensors on tractors monitoring or dictating every decision a farmer makes, Monsanto can now aggregate large quantities of previously proprietary farming data, enabling a privileged position with unique insights on a field-by-field basis into a third or more of the US farmland. This power asymmetry may be rebalanced through open-sourced data, and publicly-funded data analytic tools which rival Climate Corp. in complexity and innovation for use in the public domain.

  13. Homogeneous and isotropic big rips?

    CERN Document Server

    Giovannini, Massimo

    2005-01-01

    We investigate the way big rips are approached in a fully inhomogeneous description of the space-time geometry. If the pressure and energy densities are connected by a (supernegative) barotropic index, the spatial gradients and the anisotropic expansion decay as the big rip is approached. This behaviour is contrasted with the usual big-bang singularities. A similar analysis is performed in the case of sudden (quiescent) singularities and it is argued that the spatial gradients may well be non-negligible in the vicinity of pressure singularities.

  14. Rate Change Big Bang Theory

    Science.gov (United States)

    Strickland, Ken

    2013-04-01

    The Rate Change Big Bang Theory redefines the birth of the universe with a dramatic shift in energy direction and a new vision of the first moments. With rate change graph technology (RCGT) we can look back 13.7 billion years and experience every step of the big bang through geometrical intersection technology. The analysis of the Big Bang includes a visualization of the first objects, their properties, the astounding event that created space and time as well as a solution to the mystery of anti-matter.

  15. The use of a sky camera for solar radiation estimation based on digital image processing

    International Nuclear Information System (INIS)

    Alonso-Montesinos, J.; Batlles, F.J.

    2015-01-01

    The necessary search for a more sustainable global future means using renewable energy sources to generate pollutant-free electricity. CSP (Concentrated solar power) and PV (photovoltaic) plants are the systems most in demand for electricity production using solar radiation as the energy source. The main factors affecting final electricity generation in these plants are, among others, atmospheric conditions; therefore, knowing whether there will be any change in the solar radiation hitting the plant's solar field is of fundamental importance to CSP and PV plant operators in adapting the plant's operation mode to these fluctuations. Consequently, the most useful technology must involve the study of atmospheric conditions. This is the case for sky cameras, an emerging technology that allows one to gather sky information with optimal spatial and temporal resolution. Hence, in this work, a solar radiation estimation using sky camera images is presented for all sky conditions, where beam, diffuse and global solar radiation components are estimated in real-time as a novel way to evaluate the solar resource from a terrestrial viewpoint. - Highlights: • Using a sky camera, the solar resource has been estimated for one minute periods. • The sky images have been processed to estimate the solar radiation at pixel level. • The three radiation components have been estimated under all sky conditions. • Results have been presented for cloudless, partially-cloudy and overcast conditions. • For beam and global radiation, the nRMSE value is of about 11% under overcast skies.

  16. [Big data in medicine and healthcare].

    Science.gov (United States)

    Rüping, Stefan

    2015-08-01

    Healthcare is one of the business fields with the highest Big Data potential. According to the prevailing definition, Big Data refers to the fact that data today is often too large and heterogeneous and changes too quickly to be stored, processed, and transformed into value by previous technologies. The technological trends drive Big Data: business processes are more and more executed electronically, consumers produce more and more data themselves - e.g. in social networks - and finally ever increasing digitalization. Currently, several new trends towards new data sources and innovative data analysis appear in medicine and healthcare. From the research perspective, omics-research is one clear Big Data topic. In practice, the electronic health records, free open data and the "quantified self" offer new perspectives for data analytics. Regarding analytics, significant advances have been made in the information extraction from text data, which unlocks a lot of data from clinical documentation for analytics purposes. At the same time, medicine and healthcare is lagging behind in the adoption of Big Data approaches. This can be traced to particular problems regarding data complexity and organizational, legal, and ethical challenges. The growing uptake of Big Data in general and first best-practice examples in medicine and healthcare in particular, indicate that innovative solutions will be coming. This paper gives an overview of the potentials of Big Data in medicine and healthcare.

  17. The fast transient sky with Gaia

    Science.gov (United States)

    Wevers, Thomas; Jonker, Peter G.; Hodgkin, Simon T.; Kostrzewa-Rutkowska, Zuzanna; Harrison, Diana L.; Rixon, Guy; Nelemans, Gijs; Roelens, Maroussia; Eyer, Laurent; van Leeuwen, Floor; Yoldas, Abdullah

    2018-01-01

    The ESA Gaia satellite scans the whole sky with a temporal sampling ranging from seconds and hours to months. Each time a source passes within the Gaia field of view, it moves over 10 charge coupled devices (CCDs) in 45 s and a light curve with 4.5 s sampling (the crossing time per CCD) is registered. Given that the 4.5 s sampling represents a virtually unexplored parameter space in optical time domain astronomy, this data set potentially provides a unique opportunity to open up the fast transient sky. We present a method to start mining the wealth of information in the per CCD Gaia data. We perform extensive data filtering to eliminate known onboard and data processing artefacts, and present a statistical method to identify sources that show transient brightness variations on ≲2 h time-scales. We illustrate that by using the Gaia photometric CCD measurements, we can detect transient brightness variations down to an amplitude of 0.3 mag on time-scales ranging from 15 s to several hours. We search an area of ∼23.5 deg2 on the sky and find four strong candidate fast transients. Two candidates are tentatively classified as flares on M-dwarf stars, while one is probably a flare on a giant star and one potentially a flare on a solar-type star. These classifications are based on archival data and the time-scales involved. We argue that the method presented here can be added to the existing Gaia Science Alerts infrastructure for the near real-time public dissemination of fast transient events.

  18. From Big Data to Big Business

    DEFF Research Database (Denmark)

    Lund Pedersen, Carsten

    2017-01-01

    Idea in Brief: Problem: There is an enormous profit potential for manufacturing firms in big data, but one of the key barriers to obtaining data-driven growth is the lack of knowledge about which capabilities are needed to extract value and profit from data. Solution: We (BDBB research group at C...

  19. Students in Advanced Research for Sky Surveillance

    National Research Council Canada - National Science Library

    Gehrels, Tom

    1997-01-01

    .... to 2000 sqare degrees of sky are searched each year to a V magnitude level of 21.3. Spacewatch discoveries support studies of the evolution of the Centaur, Trojan, Main-Belt, and Earth-approaching asteroid populations...

  20. Making big sense from big data in toxicology by read-across.

    Science.gov (United States)

    Hartung, Thomas

    2016-01-01

    Modern information technologies have made big data available in safety sciences, i.e., extremely large data sets that may be analyzed only computationally to reveal patterns, trends and associations. This happens by (1) compilation of large sets of existing data, e.g., as a result of the European REACH regulation, (2) the use of omics technologies and (3) systematic robotized testing in a high-throughput manner. All three approaches and some other high-content technologies leave us with big data--the challenge is now to make big sense of these data. Read-across, i.e., the local similarity-based intrapolation of properties, is gaining momentum with increasing data availability and consensus on how to process and report it. It is predominantly applied to in vivo test data as a gap-filling approach, but can similarly complement other incomplete datasets. Big data are first of all repositories for finding similar substances and ensure that the available data is fully exploited. High-content and high-throughput approaches similarly require focusing on clusters, in this case formed by underlying mechanisms such as pathways of toxicity. The closely connected properties, i.e., structural and biological similarity, create the confidence needed for predictions of toxic properties. Here, a new web-based tool under development called REACH-across, which aims to support and automate structure-based read-across, is presented among others.