WorldWideScience

Sample records for big simple neural

  1. Big Data: A Parallel Particle Swarm Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce.

    Science.gov (United States)

    Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan

    2016-01-01

    A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.

  2. Obtaining big data of vegetation using artificial neural network

    Science.gov (United States)

    Ise, T.; Minagawa, M.; Onishi, M.

    2017-12-01

    To carry out predictive studies concerning ecosystems, obtaining appropriate datasets is one of the key factors. Recently, applications of neural network such as deep learning have successfully overcome difficulties in data acquisition and added large datasets for predictive science. For example, deep learning is very powerful in identifying and counting people, cars, etc. However, for vegetation science, deep learning has not been widely used. In general, differing from animals, plants have characteristics of modular growth. For example, numbers of leaves and stems which one individual plant typically possesses are not predetermined but change flexibly according to environmental conditions. This is clearly different from that the standard model of human face has predetermined numbers of parts, such as two eyes, one mouth, and so on. This characteristics of plants can make object identification difficult. In this study, a simple but effective technique was used to overcome the difficulty of visual identification of plants, and automated classification of plant types and quantitative analyses were become possible. For instance, when our method was applied to classify bryophytes, one of the most difficult plant types for computer vision due to their amorphous shapes, the performance of identification model was typically over 90% success. With this technology, it may be possible to obtain the big data of plant type, size, density etc. from satellite and/or drone imageries, in a quantitative manner. this will allow progress in predictive biogeosciences.

  3. A Simple Quantum Neural Net with a Periodic Activation Function

    OpenAIRE

    Daskin, Ammar

    2018-01-01

    In this paper, we propose a simple neural net that requires only $O(nlog_2k)$ number of qubits and $O(nk)$ quantum gates: Here, $n$ is the number of input parameters, and $k$ is the number of weights applied to these parameters in the proposed neural net. We describe the network in terms of a quantum circuit, and then draw its equivalent classical neural net which involves $O(k^n)$ nodes in the hidden layer. Then, we show that the network uses a periodic activation function of cosine values o...

  4. QSAR modelling using combined simple competitive learning networks and RBF neural networks.

    Science.gov (United States)

    Sheikhpour, R; Sarram, M A; Rezaeian, M; Sheikhpour, E

    2018-04-01

    The aim of this study was to propose a QSAR modelling approach based on the combination of simple competitive learning (SCL) networks with radial basis function (RBF) neural networks for predicting the biological activity of chemical compounds. The proposed QSAR method consisted of two phases. In the first phase, an SCL network was applied to determine the centres of an RBF neural network. In the second phase, the RBF neural network was used to predict the biological activity of various phenols and Rho kinase (ROCK) inhibitors. The predictive ability of the proposed QSAR models was evaluated and compared with other QSAR models using external validation. The results of this study showed that the proposed QSAR modelling approach leads to better performances than other models in predicting the biological activity of chemical compounds. This indicated the efficiency of simple competitive learning networks in determining the centres of RBF neural networks.

  5. 2nd INNS Conference on Big Data

    CERN Document Server

    Manolopoulos, Yannis; Iliadis, Lazaros; Roy, Asim; Vellasco, Marley

    2017-01-01

    The book offers a timely snapshot of neural network technologies as a significant component of big data analytics platforms. It promotes new advances and research directions in efficient and innovative algorithmic approaches to analyzing big data (e.g. deep networks, nature-inspired and brain-inspired algorithms); implementations on different computing platforms (e.g. neuromorphic, graphics processing units (GPUs), clouds, clusters); and big data analytics applications to solve real-world problems (e.g. weather prediction, transportation, energy management). The book, which reports on the second edition of the INNS Conference on Big Data, held on October 23–25, 2016, in Thessaloniki, Greece, depicts an interesting collaborative adventure of neural networks with big data and other learning technologies.

  6. Curating Big Data Made Simple: Perspectives from Scientific Communities.

    Science.gov (United States)

    Sowe, Sulayman K; Zettsu, Koji

    2014-03-01

    The digital universe is exponentially producing an unprecedented volume of data that has brought benefits as well as fundamental challenges for enterprises and scientific communities alike. This trend is inherently exciting for the development and deployment of cloud platforms to support scientific communities curating big data. The excitement stems from the fact that scientists can now access and extract value from the big data corpus, establish relationships between bits and pieces of information from many types of data, and collaborate with a diverse community of researchers from various domains. However, despite these perceived benefits, to date, little attention is focused on the people or communities who are both beneficiaries and, at the same time, producers of big data. The technical challenges posed by big data are as big as understanding the dynamics of communities working with big data, whether scientific or otherwise. Furthermore, the big data era also means that big data platforms for data-intensive research must be designed in such a way that research scientists can easily search and find data for their research, upload and download datasets for onsite/offsite use, perform computations and analysis, share their findings and research experience, and seamlessly collaborate with their colleagues. In this article, we present the architecture and design of a cloud platform that meets some of these requirements, and a big data curation model that describes how a community of earth and environmental scientists is using the platform to curate data. Motivation for developing the platform, lessons learnt in overcoming some challenges associated with supporting scientists to curate big data, and future research directions are also presented.

  7. A simple method for estimating the entropy of neural activity

    International Nuclear Information System (INIS)

    Berry II, Michael J; Tkačik, Gašper; Dubuis, Julien; Marre, Olivier; Da Silveira, Rava Azeredo

    2013-01-01

    The number of possible activity patterns in a population of neurons grows exponentially with the size of the population. Typical experiments explore only a tiny fraction of the large space of possible activity patterns in the case of populations with more than 10 or 20 neurons. It is thus impossible, in this undersampled regime, to estimate the probabilities with which most of the activity patterns occur. As a result, the corresponding entropy—which is a measure of the computational power of the neural population—cannot be estimated directly. We propose a simple scheme for estimating the entropy in the undersampled regime, which bounds its value from both below and above. The lower bound is the usual ‘naive’ entropy of the experimental frequencies. The upper bound results from a hybrid approximation of the entropy which makes use of the naive estimate, a maximum entropy fit, and a coverage adjustment. We apply our simple scheme to artificial data, in order to check their accuracy; we also compare its performance to those of several previously defined entropy estimators. We then apply it to actual measurements of neural activity in populations with up to 100 cells. Finally, we discuss the similarities and differences between the proposed simple estimation scheme and various earlier methods. (paper)

  8. On the equivalence between small-step and big-step abstract machines: a simple application of lightweight fusion

    DEFF Research Database (Denmark)

    Danvy, Olivier; Millikin, Kevin

    2008-01-01

    -step specification. We illustrate this observation here with a recognizer for Dyck words, the CEK machine, and Krivine’s machine with call/cc. The need for such a simple proof is motivated by our current work on small-step abstract machines as obtained by refocusing a function implementing a reduction semantics (a...... syntactic correspondence), and big-step abstract machines as obtained by CPStransforming and then defunctionalizing a function implementing a big-step semantics (a functional correspondence). © 2007 Elsevier B.V. All rights reserved....

  9. Simple techniques for improving deep neural network outcomes on commodity hardware

    Science.gov (United States)

    Colina, Nicholas Christopher A.; Perez, Carlos E.; Paraan, Francis N. C.

    2017-08-01

    We benchmark improvements in the performance of deep neural networks (DNN) on the MNIST data test upon imple-menting two simple modifications to the algorithm that have little overhead computational cost. First is GPU parallelization on a commodity graphics card, and second is initializing the DNN with random orthogonal weight matrices prior to optimization. Eigenspectra analysis of the weight matrices reveal that the initially orthogonal matrices remain nearly orthogonal after training. The probability distributions from which these orthogonal matrices are drawn are also shown to significantly affect the performance of these deep neural networks.

  10. A simple miniature device for wireless stimulation of neural circuits in small behaving animals.

    Science.gov (United States)

    Zhang, Yisi; Langford, Bruce; Kozhevnikov, Alexay

    2011-10-30

    The use of wireless neural stimulation devices offers significant advantages for neural stimulation experiments in behaving animals. We demonstrate a simple, low-cost and extremely lightweight wireless neural stimulation device which is made from off-the-shelf components. The device has low power consumption and does not require a high-power RF preamplifier. Neural stimulation can be carried out in either a voltage source mode or a current source mode. Using the device, we carry out wireless stimulation in the premotor brain area HVC of a songbird and demonstrate that such stimulation causes rapid perturbations of the acoustic structure of the song. Published by Elsevier B.V.

  11. Big bang and big crunch in matrix string theory

    OpenAIRE

    Bedford, J; Papageorgakis, C; Rodríguez-Gómez, D; Ward, J

    2007-01-01

    Following the holographic description of linear dilaton null Cosmologies with a Big Bang in terms of Matrix String Theory put forward by Craps, Sethi and Verlinde, we propose an extended background describing a Universe including both Big Bang and Big Crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using Matrix String Theory. We provide a simple theory capable of...

  12. Big bang and big crunch in matrix string theory

    International Nuclear Information System (INIS)

    Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.

    2007-01-01

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe

  13. Transform a Simple Sketch to a Chinese Painting by a Multiscale Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Daoyu Lin

    2018-01-01

    Full Text Available Recently, inspired by the power of deep learning, convolution neural networks can produce fantastic images at the pixel level. However, a significant limiting factor for previous approaches is that they focus on some simple datasets such as faces and bedrooms. In this paper, we propose a multiscale deep neural network to transform sketches into Chinese paintings. To synthesize more realistic imagery, we train the generative network by using both L1 loss and adversarial loss. Additionally, users can control the process of the synthesis since the generative network is feed-forward. This network can also be treated as neural style transfer by adding an edge detector. Furthermore, additional experiments on image colorization and image super-resolution demonstrate the universality of our proposed approach.

  14. Livermore Big Artificial Neural Network Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    LBANN is a toolkit that is designed to train artificial neural networks efficiently on high performance computing architectures. It is optimized to take advantages of key High Performance Computing features to accelerate neural network training. Specifically it is optimized for low-latency, high bandwidth interconnects, node-local NVRAM, node-local GPU accelerators, and high bandwidth parallel file systems. It is built on top of the open source Elemental distributed-memory dense and spars-direct linear algebra and optimization library that is released under the BSD license. The algorithms contained within LBANN are drawn from the academic literature and implemented to work within a distributed-memory framework.

  15. Processing Solutions for Big Data in Astronomy

    Science.gov (United States)

    Fillatre, L.; Lepiller, D.

    2016-09-01

    This paper gives a simple introduction to processing solutions applied to massive amounts of data. It proposes a general presentation of the Big Data paradigm. The Hadoop framework, which is considered as the pioneering processing solution for Big Data, is described together with YARN, the integrated Hadoop tool for resource allocation. This paper also presents the main tools for the management of both the storage (NoSQL solutions) and computing capacities (MapReduce parallel processing schema) of a cluster of machines. Finally, more recent processing solutions like Spark are discussed. Big Data frameworks are now able to run complex applications while keeping the programming simple and greatly improving the computing speed.

  16. Neural Computations for Biosonar Imaging in the Big Brown Bat

    Science.gov (United States)

    Saillant, Prestor Augusto

    1995-11-01

    The study of the intimate relationship between space and time has taken many forms, ranging from the Theory of Relativity down to the problem of avoiding traffic jams. However, nowhere has this relationship been more fully developed and exploited than in dolphins and bats, which have the ability to utilize biosonar. This thesis describes research on the behavioral and computational basis of echolocation carried out in order to explore the neural mechanisms which may account for the space-time constructs which are of psychological importance to the big brown bat. The SCAT (Spectrogram Correlation and Transformation) computational model was developed to provide a framework for understanding the computational requirements of FM echolocation as determined from psychophysical experiments (i.e., high resolution imaging) and neurobiological constraints (Saillant et al., 1993). The second part of the thesis consisted in developing a new behavioral paradigm for simultaneously studying acoustic behavior and flight behavior of big brown bats in pursuit of stationary or moving targets. In the third part of the thesis a complete acoustic "artificial bat" was constructed, making use of the SCAT process. The development of the artificial bat allowed us to begin experimentation with real world echoes from various targets, in order to gain a better appreciation for the additional complexities and sources of information encountered by bats in flight. Finally, the continued development of the SCAT model has allowed a deeper understanding of the phenomenon of "time expansion" and of the phenomenon of phase sensitivity in the ultrasonic range. Time expansion, first predicted through the use of the SCAT model, and later found in auditory local evoked potential recordings, opens up a new realm of information processing and representation in the brain which as of yet has not been considered. It seems possible, from the work in the auditory system, that time expansion may provide a novel

  17. Neural correlates of the difference between working memory speed and simple sensorimotor speed: an fMRI study.

    Directory of Open Access Journals (Sweden)

    Hikaru Takeuchi

    Full Text Available The difference between the speed of simple cognitive processes and the speed of complex cognitive processes has various psychological correlates. However, the neural correlates of this difference have not yet been investigated. In this study, we focused on working memory (WM for typical complex cognitive processes. Functional magnetic resonance imaging data were acquired during the performance of an N-back task, which is a measure of WM for typical complex cognitive processes. In our N-back task, task speed and memory load were varied to identify the neural correlates responsible for the difference between the speed of simple cognitive processes (estimated from the 0-back task and the speed of WM. Our findings showed that this difference was characterized by the increased activation in the right dorsolateral prefrontal cortex (DLPFC and the increased functional interaction between the right DLPFC and right superior parietal lobe. Furthermore, the local gray matter volume of the right DLPFC was correlated with participants' accuracy during fast WM tasks, which in turn correlated with a psychometric measure of participants' intelligence. Our findings indicate that the right DLPFC and its related network are responsible for the execution of the fast cognitive processes involved in WM. Identified neural bases may underlie the psychometric differences between the speed with which subjects perform simple cognitive tasks and the speed with which subjects perform more complex cognitive tasks, and explain the previous traditional psychological findings.

  18. Big Bang Day : The Great Big Particle Adventure - 3. Origins

    CERN Multimedia

    2008-01-01

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. If the LHC is successful, it will explain the nature of the Universe around us in terms of a few simple ingredients and a few simple rules. But the Universe now was forged in a Big Bang where conditions were very different, and the rules were very different, and those early moments were crucial to determining how things turned out later. At the LHC they can recreate conditions as they were billionths of a second after the Big Bang, before atoms and nuclei existed. They can find out why matter and antimatter didn't mutually annihilate each other to leave behind a Universe of pure, brilliant light. And they can look into the very structure of space and time - the fabric of the Universe

  19. Time series prediction with simple recurrent neural networks ...

    African Journals Online (AJOL)

    A hybrid of the two called Elman-Jordan (or Multi-recurrent) neural network is also being used. In this study, we evaluated the performance of these neural networks on three established bench mark time series prediction problems. Results from the experiments showed that Jordan neural network performed significantly ...

  20. Big Data and medicine: a big deal?

    Science.gov (United States)

    Mayer-Schönberger, V; Ingelsson, E

    2018-05-01

    Big Data promises huge benefits for medical research. Looking beyond superficial increases in the amount of data collected, we identify three key areas where Big Data differs from conventional analyses of data samples: (i) data are captured more comprehensively relative to the phenomenon under study; this reduces some bias but surfaces important trade-offs, such as between data quantity and data quality; (ii) data are often analysed using machine learning tools, such as neural networks rather than conventional statistical methods resulting in systems that over time capture insights implicit in data, but remain black boxes, rarely revealing causal connections; and (iii) the purpose of the analyses of data is no longer simply answering existing questions, but hinting at novel ones and generating promising new hypotheses. As a consequence, when performed right, Big Data analyses can accelerate research. Because Big Data approaches differ so fundamentally from small data ones, research structures, processes and mindsets need to adjust. The latent value of data is being reaped through repeated reuse of data, which runs counter to existing practices not only regarding data privacy, but data management more generally. Consequently, we suggest a number of adjustments such as boards reviewing responsible data use, and incentives to facilitate comprehensive data sharing. As data's role changes to a resource of insight, we also need to acknowledge the importance of collecting and making data available as a crucial part of our research endeavours, and reassess our formal processes from career advancement to treatment approval. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  1. Simple artificial neural networks that match probability and exploit and explore when confronting a multiarmed bandit.

    Science.gov (United States)

    Dawson, Michael R W; Dupuis, Brian; Spetch, Marcia L; Kelly, Debbie M

    2009-08-01

    The matching law (Herrnstein 1961) states that response rates become proportional to reinforcement rates; this is related to the empirical phenomenon called probability matching (Vulkan 2000). Here, we show that a simple artificial neural network generates responses consistent with probability matching. This behavior was then used to create an operant procedure for network learning. We use the multiarmed bandit (Gittins 1989), a classic problem of choice behavior, to illustrate that operant training balances exploiting the bandit arm expected to pay off most frequently with exploring other arms. Perceptrons provide a medium for relating results from neural networks, genetic algorithms, animal learning, contingency theory, reinforcement learning, and theories of choice.

  2. Big data need big theory too.

    Science.gov (United States)

    Coveney, Peter V; Dougherty, Edward R; Highfield, Roger R

    2016-11-13

    The current interest in big data, machine learning and data analytics has generated the widespread impression that such methods are capable of solving most problems without the need for conventional scientific methods of inquiry. Interest in these methods is intensifying, accelerated by the ease with which digitized data can be acquired in virtually all fields of endeavour, from science, healthcare and cybersecurity to economics, social sciences and the humanities. In multiscale modelling, machine learning appears to provide a shortcut to reveal correlations of arbitrary complexity between processes at the atomic, molecular, meso- and macroscales. Here, we point out the weaknesses of pure big data approaches with particular focus on biology and medicine, which fail to provide conceptual accounts for the processes to which they are applied. No matter their 'depth' and the sophistication of data-driven methods, such as artificial neural nets, in the end they merely fit curves to existing data. Not only do these methods invariably require far larger quantities of data than anticipated by big data aficionados in order to produce statistically reliable results, but they can also fail in circumstances beyond the range of the data used to train them because they are not designed to model the structural characteristics of the underlying system. We argue that it is vital to use theory as a guide to experimental design for maximal efficiency of data collection and to produce reliable predictive models and conceptual knowledge. Rather than continuing to fund, pursue and promote 'blind' big data projects with massive budgets, we call for more funding to be allocated to the elucidation of the multiscale and stochastic processes controlling the behaviour of complex systems, including those of life, medicine and healthcare.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2015 The Authors.

  3. Simple Electromagnetic Modeling of Small Airplanes: Neural Network Approach

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper deals with the development of simple electromagnetic models of small airplanes, which can contain composite materials in their construction. Electromagnetic waves can penetrate through the surface of the aircraft due to the specific electromagnetic properties of the composite materials, which can increase the intensity of fields inside the airplane and can negatively influence the functionality of the sensitive avionics. The airplane is simulated by two parallel dielectric layers (the left-hand side wall and the right-hand side wall of the airplane. The layers are put into a rectangular metallic waveguide terminated by the absorber in order to simulate the illumination of the airplane by the external wave (both of the harmonic nature and pulse one. Thanks to the simplicity of the model, the parametric analysis can be performed, and the results can be used in order to train an artificial neural network. The trained networks excel in further reduction of CPU-time demands of an airplane modeling.

  4. Using Big Book to Teach Things in My House

    OpenAIRE

    Effrien, Intan; Lailatus, Sa’diyah; Nuruliftitah Maja, Neneng

    2017-01-01

    The purpose of this study to determine students' interest in learning using the big book media. Big book is a big book from the general book. The big book contains simple words and images that match the content of sentences and spelling. From here researchers can know the interest and development of students' knowledge. As well as train researchers to remain crative in developing learning media for students.

  5. Application and Exploration of Big Data Mining in Clinical Medicine.

    Science.gov (United States)

    Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling

    2016-03-20

    To review theories and technologies of big data mining and their application in clinical medicine. Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster-Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Big data mining has the potential to play an important role in clinical medicine.

  6. Neural network prediction of carbonate lithofacies from well logs, Big Bow and Sand Arroyo Creek fields, Southwest Kansas

    Science.gov (United States)

    Qi, L.; Carr, T.R.

    2006-01-01

    In the Hugoton Embayment of southwestern Kansas, St. Louis Limestone reservoirs have relatively low recovery efficiencies, attributed to the heterogeneous nature of the oolitic deposits. This study establishes quantitative relationships between digital well logs and core description data, and applies these relationships in a probabilistic sense to predict lithofacies in 90 uncored wells across the Big Bow and Sand Arroyo Creek fields. In 10 wells, a single hidden-layer neural network based on digital well logs and core described lithofacies of the limestone depositional texture was used to train and establish a non-linear relationship between lithofacies assignments from detailed core descriptions and selected log curves. Neural network models were optimized by selecting six predictor variables and automated cross-validation with neural network parameters and then used to predict lithofacies on the whole data set of the 2023 half-foot intervals from the 10 cored wells with the selected network size of 35 and a damping parameter of 0.01. Predicted lithofacies results compared to actual lithofacies displays absolute accuracies of 70.37-90.82%. Incorporating adjoining lithofacies, within-one lithofacies improves accuracy slightly (93.72%). Digital logs from uncored wells were batch processed to predict lithofacies and probabilities related to each lithofacies at half-foot resolution corresponding to log units. The results were used to construct interpolated cross-sections and useful depositional patterns of St. Louis lithofacies were illustrated, e.g., the concentration of oolitic deposits (including lithofacies 5 and 6) along local highs and the relative dominance of quartz-rich carbonate grainstone (lithofacies 1) in the zones A and B of the St. Louis Limestone. Neural network techniques are applicable to other complex reservoirs, in which facies geometry and distribution are the key factors controlling heterogeneity and distribution of rock properties. Future work

  7. Drug-like and non drug-like pattern classification based on simple topology descriptor using hybrid neural network.

    Science.gov (United States)

    Wan-Mamat, Wan Mohd Fahmi; Isa, Nor Ashidi Mat; Wahab, Habibah A; Wan-Mamat, Wan Mohd Fairuz

    2009-01-01

    An intelligent prediction system has been developed to discriminate drug-like and non drug-like molecules pattern. The system is constructed by using the application of advanced version of standard multilayer perceptron (MLP) neural network called Hybrid Multilayer Perceptron (HMLP) neural network and trained using Modified Recursive Prediction Error (MRPE) training algorithm. In this work, a well understood and easy excess Rule of Five + Veber filter properties are selected as the topological descriptor. The main idea behind the selection of this simple descriptor is to assure that the system could be used widely, beneficial and more advantageous regardless at all user level within a drug discovery organization.

  8. Neural Network Classifier Based on Growing Hyperspheres

    Czech Academy of Sciences Publication Activity Database

    Jiřina Jr., Marcel; Jiřina, Marcel

    2000-01-01

    Roč. 10, č. 3 (2000), s. 417-428 ISSN 1210-0552. [Neural Network World 2000. Prague, 09.07.2000-12.07.2000] Grant - others:MŠMT ČR(CZ) VS96047; MPO(CZ) RP-4210 Institutional research plan: AV0Z1030915 Keywords : neural network * classifier * hyperspheres * big -dimensional data Subject RIV: BA - General Mathematics

  9. Application and Exploration of Big Data Mining in Clinical Medicine

    Science.gov (United States)

    Zhang, Yue; Guo, Shu-Li; Han, Li-Na; Li, Tie-Ling

    2016-01-01

    Objective: To review theories and technologies of big data mining and their application in clinical medicine. Data Sources: Literatures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015. Study Selection: Original articles regarding big data mining theory/technology and big data mining's application in the medical field were selected. Results: This review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster–Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine. Conclusion: Big data mining has the potential to play an important role in clinical medicine. PMID:26960378

  10. Big Data impacts on stochastic Forecast Models: Evidence from FX time series

    Directory of Open Access Journals (Sweden)

    Sebastian Dietz

    2013-12-01

    Full Text Available With the rise of the Big Data paradigm new tasks for prediction models appeared. In addition to the volume problem of such data sets nonlinearity becomes important, as the more detailed data sets contain also more comprehensive information, e.g. about non regular seasonal or cyclical movements as well as jumps in time series. This essay compares two nonlinear methods for predicting a high frequency time series, the USD/Euro exchange rate. The first method investigated is Autoregressive Neural Network Processes (ARNN, a neural network based nonlinear extension of classical autoregressive process models from time series analysis (see Dietz 2011. Its advantage is its simple but scalable time series process model architecture, which is able to include all kinds of nonlinearities based on the universal approximation theorem of Hornik, Stinchcombe and White 1989 and the extensions of Hornik 1993. However, restrictions related to the numeric estimation procedures limit the flexibility of the model. The alternative is a Support Vector Machine Model (SVM, Vapnik 1995. The two methods compared have different approaches of error minimization (Empirical error minimization at the ARNN vs. structural error minimization at the SVM. Our new finding is, that time series data classified as “Big Data” need new methods for prediction. Estimation and prediction was performed using the statistical programming language R. Besides prediction results we will also discuss the impact of Big Data on data preparation and model validation steps. Normal 0 21 false false false DE X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Normale Tabelle"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";}

  11. The neural correlates of emotional prosody comprehension: disentangling simple from complex emotion.

    Directory of Open Access Journals (Sweden)

    Lucy Alba-Ferrara

    Full Text Available BACKGROUND: Emotional prosody comprehension (EPC, the ability to interpret another person's feelings by listening to their tone of voice, is crucial for effective social communication. Previous studies assessing the neural correlates of EPC have found inconsistent results, particularly regarding the involvement of the medial prefrontal cortex (mPFC. It remained unclear whether the involvement of the mPFC is linked to an increased demand in socio-cognitive components of EPC such as mental state attribution and if basic perceptual processing of EPC can be performed without the contribution of this region. METHODS: fMRI was used to delineate neural activity during the perception of prosodic stimuli conveying simple and complex emotion. Emotional trials in general, as compared to neutral ones, activated a network comprising temporal and lateral frontal brain regions, while complex emotion trials specifically showed an additional involvement of the mPFC, premotor cortex, frontal operculum and left insula. CONCLUSION: These results indicate that the mPFC and premotor areas might be associated, but are not crucial to EPC. However, the mPFC supports socio-cognitive skills necessary to interpret complex emotion such as inferring mental states. Additionally, the premotor cortex involvement may reflect the participation of the mirror neuron system for prosody processing particularly of complex emotion.

  12. Hot big bang or slow freeze?

    Science.gov (United States)

    Wetterich, C.

    2014-09-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze - a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple ;crossover model; without a big bang singularity. In the infinite past space-time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  13. Hot big bang or slow freeze?

    Energy Technology Data Exchange (ETDEWEB)

    Wetterich, C.

    2014-09-07

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  14. Hot big bang or slow freeze?

    International Nuclear Information System (INIS)

    Wetterich, C.

    2014-01-01

    We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe

  15. Hot big bang or slow freeze?

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2014-09-01

    Full Text Available We confront the big bang for the beginning of the universe with an equivalent picture of a slow freeze — a very cold and slowly evolving universe. In the freeze picture the masses of elementary particles increase and the gravitational constant decreases with cosmic time, while the Newtonian attraction remains unchanged. The freeze and big bang pictures both describe the same observations or physical reality. We present a simple “crossover model” without a big bang singularity. In the infinite past space–time is flat. Our model is compatible with present observations, describing the generation of primordial density fluctuations during inflation as well as the present transition to a dark energy-dominated universe.

  16. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Huang, Yuan; Xu, Lixiong; Li, Siguang; Qi, Man

    2015-01-01

    Artificial neural networks (ANNs) have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  17. Digital image classification with the help of artificial neural network by simple histogram.

    Science.gov (United States)

    Dey, Pranab; Banerjee, Nirmalya; Kaur, Rajwant

    2016-01-01

    Visual image classification is a great challenge to the cytopathologist in routine day-to-day work. Artificial neural network (ANN) may be helpful in this matter. In this study, we have tried to classify digital images of malignant and benign cells in effusion cytology smear with the help of simple histogram data and ANN. A total of 404 digital images consisting of 168 benign cells and 236 malignant cells were selected for this study. The simple histogram data was extracted from these digital images and an ANN was constructed with the help of Neurointelligence software [Alyuda Neurointelligence 2.2 (577), Cupertino, California, USA]. The network architecture was 6-3-1. The images were classified as training set (281), validation set (63), and test set (60). The on-line backpropagation training algorithm was used for this study. A total of 10,000 iterations were done to train the ANN system with the speed of 609.81/s. After the adequate training of this ANN model, the system was able to identify all 34 malignant cell images and 24 out of 26 benign cells. The ANN model can be used for the identification of the individual malignant cells with the help of simple histogram data. This study will be helpful in the future to identify malignant cells in unknown situations.

  18. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.

    Directory of Open Access Journals (Sweden)

    H Francis Song

    2016-02-01

    Full Text Available The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, "trained" networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale's principle, which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural

  19. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework

    Science.gov (United States)

    Wang, Xiao-Jing

    2016-01-01

    The ability to simultaneously record from large numbers of neurons in behaving animals has ushered in a new era for the study of the neural circuit mechanisms underlying cognitive functions. One promising approach to uncovering the dynamical and computational principles governing population responses is to analyze model recurrent neural networks (RNNs) that have been optimized to perform the same tasks as behaving animals. Because the optimization of network parameters specifies the desired output but not the manner in which to achieve this output, “trained” networks serve as a source of mechanistic hypotheses and a testing ground for data analyses that link neural computation to behavior. Complete access to the activity and connectivity of the circuit, and the ability to manipulate them arbitrarily, make trained networks a convenient proxy for biological circuits and a valuable platform for theoretical investigation. However, existing RNNs lack basic biological features such as the distinction between excitatory and inhibitory units (Dale’s principle), which are essential if RNNs are to provide insights into the operation of biological circuits. Moreover, trained networks can achieve the same behavioral performance but differ substantially in their structure and dynamics, highlighting the need for a simple and flexible framework for the exploratory training of RNNs. Here, we describe a framework for gradient descent-based training of excitatory-inhibitory RNNs that can incorporate a variety of biological knowledge. We provide an implementation based on the machine learning library Theano, whose automatic differentiation capabilities facilitate modifications and extensions. We validate this framework by applying it to well-known experimental paradigms such as perceptual decision-making, context-dependent integration, multisensory integration, parametric working memory, and motor sequence generation. Our results demonstrate the wide range of neural activity

  20. Principles of big data preparing, sharing, and analyzing complex information

    CERN Document Server

    Berman, Jules J

    2013-01-01

    Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endo

  1. Comparative growth models of big-scale sand smelt (Atherina boyeri Risso, 1810 sampled from Hirfanll Dam Lake, Klrsehir, Ankara, Turkey

    Directory of Open Access Journals (Sweden)

    S. Benzer

    2017-06-01

    Full Text Available In this current publication the growth characteristics of big-scale sand smelt data were compared for population dynamics within artificial neural networks and length-weight relationships models. This study aims to describe the optimal decision of the growth model of big-scale sand smelt by artificial neural networks and length-weight relationships models at Hirfanll Dam Lake, Klrsehir, Turkey. There were a total of 1449 samples collected from Hirfanll Dam Lake between May 2015 and May 2016. Both model results were compared with each other and the results were also evaluated with MAPE (mean absolute percentage error, MSE (mean squared error and r2 (coefficient correlation data as a performance criterion. The results of the current study show that artificial neural networks is a superior estimation tool compared to length-weight relationships models of big-scale sand smelt in Hirfanll Dam Lake.

  2. A simple structure wavelet transform circuit employing function link neural networks and SI filters

    Science.gov (United States)

    Mu, Li; Yigang, He

    2016-12-01

    Signal processing by means of analog circuits offers advantages from a power consumption viewpoint. Implementing wavelet transform (WT) using analog circuits is of great interest when low-power consumption becomes an important issue. In this article, a novel simple structure WT circuit in analog domain is presented by employing functional link neural network (FLNN) and switched-current (SI) filters. First, the wavelet base is approximated using FLNN algorithms for giving a filter transfer function that is suitable for simple structure WT circuit implementation. Next, the WT circuit is constructed with the wavelet filter bank, whose impulse response is the approximated wavelet and its dilations. The filter design that follows is based on a follow-the-leader feedback (FLF) structure with multiple output bilinear SI integrators and current mirrors as the main building blocks. SI filter is well suited for this application since the dilation constant across different scales of the transform can be precisely implemented and controlled by the clock frequency of the circuit with the same system architecture. Finally, to illustrate the design procedure, a seventh-order FLNN-approximated Gaussian wavelet is implemented as an example. Simulations have successfully verified that the designed simple structure WT circuit has low sensitivity, low-power consumption and litter effect to the imperfections.

  3. MapReduce Based Parallel Neural Networks in Enabling Large Scale Machine Learning

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2015-01-01

    Full Text Available Artificial neural networks (ANNs have been widely used in pattern recognition and classification applications. However, ANNs are notably slow in computation especially when the size of data is large. Nowadays, big data has received a momentum from both industry and academia. To fulfill the potentials of ANNs for big data applications, the computation process must be speeded up. For this purpose, this paper parallelizes neural networks based on MapReduce, which has become a major computing model to facilitate data intensive applications. Three data intensive scenarios are considered in the parallelization process in terms of the volume of classification data, the size of the training data, and the number of neurons in the neural network. The performance of the parallelized neural networks is evaluated in an experimental MapReduce computer cluster from the aspects of accuracy in classification and efficiency in computation.

  4. An Educational Look at an Alternative to the Simple Big Bang Model

    Science.gov (United States)

    Kriske, Richard

    2009-10-01

    The author often toys with a Positively Curved surface resembling a globe as an alternative to the simple Big Bang model on a flat surface. When one looks at the Horizon of the earth, say at the ocean, masts in the distance tip away from the observer. If three dimensions of space where curved with a perpendicular mast at each vertex, those time masts would tip away from the observer and be cut-off. A new optical effect would be observed, in which vertices in the distance, say pair annihilation, would result in gamma rays appearing to be redshifted, since by parallel displacement, their time axis would progressively tilt away from the observer and give them a red shift until they reached a distance were they where non- magnifiable. Just as the Earth's Horizon is a non-magnifiable line (since the objects are tilted over and cut-off), so should be the Universe's Horizon be tilted and cut-off (but like a Black-Hole, the Horizon will be an area). The tilt and cut-off can be used to calculate the size and mass of the Universe,given that the cutoff is taken to be 2.725K, the CMBR. This model turns out to be a model of constants and gives absolute meaning to spin. Since this is a brand new theory developed solely by the author at his coffee breaks, looking out the window, he presents it as an exercise.

  5. Classical propagation of strings across a big crunch/big bang singularity

    International Nuclear Information System (INIS)

    Niz, Gustavo; Turok, Neil

    2007-01-01

    One of the simplest time-dependent solutions of M theory consists of nine-dimensional Euclidean space times 1+1-dimensional compactified Milne space-time. With a further modding out by Z 2 , the space-time represents two orbifold planes which collide and re-emerge, a process proposed as an explanation of the hot big bang [J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, Phys. Rev. D 64, 123522 (2001).][P. J. Steinhardt and N. Turok, Science 296, 1436 (2002).][N. Turok, M. Perry, and P. J. Steinhardt, Phys. Rev. D 70, 106004 (2004).]. When the two planes are near, the light states of the theory consist of winding M2-branes, describing fundamental strings in a particular ten-dimensional background. They suffer no blue-shift as the M theory dimension collapses, and their equations of motion are regular across the transition from big crunch to big bang. In this paper, we study the classical evolution of fundamental strings across the singularity in some detail. We also develop a simple semiclassical approximation to the quantum evolution which allows one to compute the quantum production of excitations on the string and implement it in a simplified example

  6. Pre-big bang in M-theory

    OpenAIRE

    Cavaglia, Marco

    2001-01-01

    We discuss a simple cosmological model derived from M-theory. Three assumptions lead naturally to a pre-big bang scenario: (a) 11-dimensional supergravity describes the low-energy world; (b) non-gravitational fields live on a three-dimensional brane; and (c) asymptotically past triviality.

  7. Big data analytics turning big data into big money

    CERN Document Server

    Ohlhorst, Frank J

    2012-01-01

    Unique insights to implement big data analytics and reap big returns to your bottom line Focusing on the business and financial value of big data analytics, respected technology journalist Frank J. Ohlhorst shares his insights on the newly emerging field of big data analytics in Big Data Analytics. This breakthrough book demonstrates the importance of analytics, defines the processes, highlights the tangible and intangible values and discusses how you can turn a business liability into actionable material that can be used to redefine markets, improve profits and identify new business opportuni

  8. BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images

    NARCIS (Netherlands)

    H. Peng (Hanchuan); M. Hawrylycz (Michael); J. Roskams (Jane); S. Hill (Sean); N. Spruston (Nelson); E. Meijering (Erik); G.A. Ascoli (Giorgio A.)

    2015-01-01

    textabstractUnderstanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and

  9. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications.

    Science.gov (United States)

    Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén

    2016-08-11

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure-Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron-Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.

  10. Big Opportunities and Big Concerns of Big Data in Education

    Science.gov (United States)

    Wang, Yinying

    2016-01-01

    Against the backdrop of the ever-increasing influx of big data, this article examines the opportunities and concerns over big data in education. Specifically, this article first introduces big data, followed by delineating the potential opportunities of using big data in education in two areas: learning analytics and educational policy. Then, the…

  11. Development and application of deep convolutional neural network in target detection

    Science.gov (United States)

    Jiang, Xiaowei; Wang, Chunping; Fu, Qiang

    2018-04-01

    With the development of big data and algorithms, deep convolution neural networks with more hidden layers have more powerful feature learning and feature expression ability than traditional machine learning methods, making artificial intelligence surpass human level in many fields. This paper first reviews the development and application of deep convolutional neural networks in the field of object detection in recent years, then briefly summarizes and ponders some existing problems in the current research, and the future development of deep convolutional neural network is prospected.

  12. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    Science.gov (United States)

    Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén

    2016-01-01

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure–Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods. PMID:27529225

  13. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    Directory of Open Access Journals (Sweden)

    Lucas Antón Pastur-Romay

    2016-08-01

    Full Text Available Over the past decade, Deep Artificial Neural Networks (DNNs have become the state-of-the-art algorithms in Machine Learning (ML, speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs. All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS, Quantitative Structure–Activity Relationship (QSAR research, protein structure prediction and genomics (and other omics data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.

  14. MX Siting Investigation. Gravity Survey - Big Smokey Valley, Nevada.

    Science.gov (United States)

    1980-11-28

    headquartered in Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace...OF TABLES Table Number Page Big Smoky Geotechnical Data ....................... 10 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anamaly Contours...reduced them to Simple Bouguer Anomalies (SBA) as described in Appendix A1.0. Up to three levels of terrain corrections were applied to the new

  15. Super-linear Precision in Simple Neural Population Codes

    Science.gov (United States)

    Schwab, David; Fiete, Ila

    2015-03-01

    A widely used tool for quantifying the precision with which a population of noisy sensory neurons encodes the value of an external stimulus is the Fisher Information (FI). Maximizing the FI is also a commonly used objective for constructing optimal neural codes. The primary utility and importance of the FI arises because it gives, through the Cramer-Rao bound, the smallest mean-squared error achievable by any unbiased stimulus estimator. However, it is well-known that when neural firing is sparse, optimizing the FI can result in codes that perform very poorly when considering the resulting mean-squared error, a measure with direct biological relevance. Here we construct optimal population codes by minimizing mean-squared error directly and study the scaling properties of the resulting network, focusing on the optimal tuning curve width. We then extend our results to continuous attractor networks that maintain short-term memory of external stimuli in their dynamics. Here we find similar scaling properties in the structure of the interactions that minimize diffusive information loss.

  16. How Big Are "Martin's Big Words"? Thinking Big about the Future.

    Science.gov (United States)

    Gardner, Traci

    "Martin's Big Words: The Life of Dr. Martin Luther King, Jr." tells of King's childhood determination to use "big words" through biographical information and quotations. In this lesson, students in grades 3 to 5 explore information on Dr. King to think about his "big" words, then they write about their own…

  17. A Matrix Big Bang

    OpenAIRE

    Craps, Ben; Sethi, Savdeep; Verlinde, Erik

    2005-01-01

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matr...

  18. Big Data, Big Problems: A Healthcare Perspective.

    Science.gov (United States)

    Househ, Mowafa S; Aldosari, Bakheet; Alanazi, Abdullah; Kushniruk, Andre W; Borycki, Elizabeth M

    2017-01-01

    Much has been written on the benefits of big data for healthcare such as improving patient outcomes, public health surveillance, and healthcare policy decisions. Over the past five years, Big Data, and the data sciences field in general, has been hyped as the "Holy Grail" for the healthcare industry promising a more efficient healthcare system with the promise of improved healthcare outcomes. However, more recently, healthcare researchers are exposing the potential and harmful effects Big Data can have on patient care associating it with increased medical costs, patient mortality, and misguided decision making by clinicians and healthcare policy makers. In this paper, we review the current Big Data trends with a specific focus on the inadvertent negative impacts that Big Data could have on healthcare, in general, and specifically, as it relates to patient and clinical care. Our study results show that although Big Data is built up to be as a the "Holy Grail" for healthcare, small data techniques using traditional statistical methods are, in many cases, more accurate and can lead to more improved healthcare outcomes than Big Data methods. In sum, Big Data for healthcare may cause more problems for the healthcare industry than solutions, and in short, when it comes to the use of data in healthcare, "size isn't everything."

  19. Gauge-invariant gravitational wave modes in pre-big bang cosmology

    International Nuclear Information System (INIS)

    Faraoni, Valerio

    2010-01-01

    The t<0 branch of pre-big bang cosmological scenarios is subject to a gravitational wave instability. The unstable behaviour of tensor perturbations is derived in a very simple way in Hwang's covariant and gauge-invariant formalism developed for extended theories of gravity. A simple interpretation of this instability as the effect of an ''antifriction'' is given, and it is argued that a universe must eventually enter the expanding phase. (orig.)

  20. Big Surveys, Big Data Centres

    Science.gov (United States)

    Schade, D.

    2016-06-01

    Well-designed astronomical surveys are powerful and have consistently been keystones of scientific progress. The Byurakan Surveys using a Schmidt telescope with an objective prism produced a list of about 3000 UV-excess Markarian galaxies but these objects have stimulated an enormous amount of further study and appear in over 16,000 publications. The CFHT Legacy Surveys used a wide-field imager to cover thousands of square degrees and those surveys are mentioned in over 1100 publications since 2002. Both ground and space-based astronomy have been increasing their investments in survey work. Survey instrumentation strives toward fair samples and large sky coverage and therefore strives to produce massive datasets. Thus we are faced with the "big data" problem in astronomy. Survey datasets require specialized approaches to data management. Big data places additional challenging requirements for data management. If the term "big data" is defined as data collections that are too large to move then there are profound implications for the infrastructure that supports big data science. The current model of data centres is obsolete. In the era of big data the central problem is how to create architectures that effectively manage the relationship between data collections, networks, processing capabilities, and software, given the science requirements of the projects that need to be executed. A stand alone data silo cannot support big data science. I'll describe the current efforts of the Canadian community to deal with this situation and our successes and failures. I'll talk about how we are planning in the next decade to try to create a workable and adaptable solution to support big data science.

  1. Recht voor big data, big data voor recht

    NARCIS (Netherlands)

    Lafarre, Anne

    Big data is een niet meer weg te denken fenomeen in onze maatschappij. Het is de hype cycle voorbij en de eerste implementaties van big data-technieken worden uitgevoerd. Maar wat is nu precies big data? Wat houden de vijf V's in die vaak genoemd worden in relatie tot big data? Ter inleiding van

  2. Neural processing of auditory signals and modular neural control for sound tropism of walking machines

    DEFF Research Database (Denmark)

    Manoonpong, Poramate; Pasemann, Frank; Fischer, Joern

    2005-01-01

    and a neural preprocessing system together with a modular neural controller are used to generate a sound tropism of a four-legged walking machine. The neural preprocessing network is acting as a low-pass filter and it is followed by a network which discerns between signals coming from the left or the right....... The parameters of these networks are optimized by an evolutionary algorithm. In addition, a simple modular neural controller then generates the desired different walking patterns such that the machine walks straight, then turns towards a switched-on sound source, and then stops near to it....

  3. Algorithmic design considerations for geospatial and/or temporal big data

    CSIR Research Space (South Africa)

    Van Zyl, T

    2014-02-01

    Full Text Available Mining. In addition, ignoring the spatiotemporal autocorrelation in the data can lead to spurious results, for instance, the salt and pepper effect when clustering. The solution to the big data challenge is simple to describe yet in most cases...

  4. Distortions in the cosmic background radiation and big-bang 4He nucleosynthesis

    International Nuclear Information System (INIS)

    Mathews, G.J.; Alhassid, Y.; Fuller, G.M.

    1981-01-01

    The observed distortion of the cosmic background radiation is analyzed in the framework of information theory to derive a simple form of the photon occupation probability. Taking this distribution function as indicative of the Lagrange parameters which might characterize the era of nucleosynthesis during the big bang, and assuming equilibrium among the constituents present, we find that the primordial 4 He abundance may be reduced by as much as 15% from the standard big-bang prediction

  5. Neural PID Control of Robot Manipulators With Application to an Upper Limb Exoskeleton.

    Science.gov (United States)

    Yu, Wen; Rosen, Jacob

    2013-04-01

    In order to minimize steady-state error with respect to uncertainties in robot control, proportional-integral-derivative (PID) control needs a big integral gain, or a neural compensator is added to the classical proportional-derivative (PD) control with a large derivative gain. Both of them deteriorate transient performances of the robot control. In this paper, we extend the popular neural PD control into neural PID control. This novel control is a natural combination of industrial linear PID control and neural compensation. The main contributions of this paper are semiglobal asymptotic stability of the neural PID control and local asymptotic stability of the neural PID control with a velocity observer which are proved with standard weight training algorithms. These conditions give explicit selection methods for the gains of the linear PID control. An experimental study on an upper limb exoskeleton with this neural PID control is addressed.

  6. Diffusion-based neuromodulation can eliminate catastrophic forgetting in simple neural networks

    Science.gov (United States)

    Clune, Jeff

    2017-01-01

    A long-term goal of AI is to produce agents that can learn a diversity of skills throughout their lifetimes and continuously improve those skills via experience. A longstanding obstacle towards that goal is catastrophic forgetting, which is when learning new information erases previously learned information. Catastrophic forgetting occurs in artificial neural networks (ANNs), which have fueled most recent advances in AI. A recent paper proposed that catastrophic forgetting in ANNs can be reduced by promoting modularity, which can limit forgetting by isolating task information to specific clusters of nodes and connections (functional modules). While the prior work did show that modular ANNs suffered less from catastrophic forgetting, it was not able to produce ANNs that possessed task-specific functional modules, thereby leaving the main theory regarding modularity and forgetting untested. We introduce diffusion-based neuromodulation, which simulates the release of diffusing, neuromodulatory chemicals within an ANN that can modulate (i.e. up or down regulate) learning in a spatial region. On the simple diagnostic problem from the prior work, diffusion-based neuromodulation 1) induces task-specific learning in groups of nodes and connections (task-specific localized learning), which 2) produces functional modules for each subtask, and 3) yields higher performance by eliminating catastrophic forgetting. Overall, our results suggest that diffusion-based neuromodulation promotes task-specific localized learning and functional modularity, which can help solve the challenging, but important problem of catastrophic forgetting. PMID:29145413

  7. Diffusion-based neuromodulation can eliminate catastrophic forgetting in simple neural networks.

    Directory of Open Access Journals (Sweden)

    Roby Velez

    Full Text Available A long-term goal of AI is to produce agents that can learn a diversity of skills throughout their lifetimes and continuously improve those skills via experience. A longstanding obstacle towards that goal is catastrophic forgetting, which is when learning new information erases previously learned information. Catastrophic forgetting occurs in artificial neural networks (ANNs, which have fueled most recent advances in AI. A recent paper proposed that catastrophic forgetting in ANNs can be reduced by promoting modularity, which can limit forgetting by isolating task information to specific clusters of nodes and connections (functional modules. While the prior work did show that modular ANNs suffered less from catastrophic forgetting, it was not able to produce ANNs that possessed task-specific functional modules, thereby leaving the main theory regarding modularity and forgetting untested. We introduce diffusion-based neuromodulation, which simulates the release of diffusing, neuromodulatory chemicals within an ANN that can modulate (i.e. up or down regulate learning in a spatial region. On the simple diagnostic problem from the prior work, diffusion-based neuromodulation 1 induces task-specific learning in groups of nodes and connections (task-specific localized learning, which 2 produces functional modules for each subtask, and 3 yields higher performance by eliminating catastrophic forgetting. Overall, our results suggest that diffusion-based neuromodulation promotes task-specific localized learning and functional modularity, which can help solve the challenging, but important problem of catastrophic forgetting.

  8. BigOP: Generating Comprehensive Big Data Workloads as a Benchmarking Framework

    OpenAIRE

    Zhu, Yuqing; Zhan, Jianfeng; Weng, Chuliang; Nambiar, Raghunath; Zhang, Jinchao; Chen, Xingzhen; Wang, Lei

    2014-01-01

    Big Data is considered proprietary asset of companies, organizations, and even nations. Turning big data into real treasure requires the support of big data systems. A variety of commercial and open source products have been unleashed for big data storage and processing. While big data users are facing the choice of which system best suits their needs, big data system developers are facing the question of how to evaluate their systems with regard to general big data processing needs. System b...

  9. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology.

    Science.gov (United States)

    Salazar, Brittany M; Balczewski, Emily A; Ung, Choong Yong; Zhu, Shizhen

    2016-12-27

    Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring "big data" applications in pediatric oncology. Computational strategies derived from big data science-network- and machine learning-based modeling and drug repositioning-hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which "big data" and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.

  10. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology

    Directory of Open Access Journals (Sweden)

    Brittany M. Salazar

    2016-12-01

    Full Text Available Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring “big data” applications in pediatric oncology. Computational strategies derived from big data science–network- and machine learning-based modeling and drug repositioning—hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which “big data” and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.

  11. BigNeuron: Large-scale 3D Neuron Reconstruction from Optical Microscopy Images

    OpenAIRE

    Peng, Hanchuan; Hawrylycz, Michael; Roskams, Jane; Hill, Sean; Spruston, Nelson; Meijering, Erik; Ascoli, Giorgio A.

    2015-01-01

    textabstractUnderstanding the structure of single neurons is critical for understanding how they function within neural circuits. BigNeuron is a new community effort that combines modern bioimaging informatics, recent leaps in labeling and microscopy, and the widely recognized need for openness and standardization to provide a community resource for automated reconstruction of dendritic and axonal morphology of single neurons. Understanding the structure of single neurons is critical for unde...

  12. How Big Is Too Big?

    Science.gov (United States)

    Cibes, Margaret; Greenwood, James

    2016-01-01

    Media Clips appears in every issue of Mathematics Teacher, offering readers contemporary, authentic applications of quantitative reasoning based on print or electronic media. This issue features "How Big is Too Big?" (Margaret Cibes and James Greenwood) in which students are asked to analyze the data and tables provided and answer a…

  13. Big trees, old trees, and growth factor tables

    Science.gov (United States)

    Kevin T. Smith

    2018-01-01

    The potential for a tree to reach a great size and to live a long life frequently captures the public's imagination. Sometimes the desire to know the age of an impressively large tree is simple curiosity. For others, the date-of-tree establishment can make a big diff erence for management, particularly for trees at historic sites or those mentioned in property...

  14. A step beyond local observations with a dialog aware bidirectional GRU network for Spoken Language Understanding

    OpenAIRE

    Vukotic , Vedran; Raymond , Christian; Gravier , Guillaume

    2016-01-01

    International audience; Architectures of Recurrent Neural Networks (RNN) recently become a very popular choice for Spoken Language Understanding (SLU) problems; however, they represent a big family of different architectures that can furthermore be combined to form more complex neural networks. In this work, we compare different recurrent networks, such as simple Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM) networks, Gated Memory Units (GRU) and their bidirectional versions,...

  15. Nursing Needs Big Data and Big Data Needs Nursing.

    Science.gov (United States)

    Brennan, Patricia Flatley; Bakken, Suzanne

    2015-09-01

    Contemporary big data initiatives in health care will benefit from greater integration with nursing science and nursing practice; in turn, nursing science and nursing practice has much to gain from the data science initiatives. Big data arises secondary to scholarly inquiry (e.g., -omics) and everyday observations like cardiac flow sensors or Twitter feeds. Data science methods that are emerging ensure that these data be leveraged to improve patient care. Big data encompasses data that exceed human comprehension, that exist at a volume unmanageable by standard computer systems, that arrive at a velocity not under the control of the investigator and possess a level of imprecision not found in traditional inquiry. Data science methods are emerging to manage and gain insights from big data. The primary methods included investigation of emerging federal big data initiatives, and exploration of exemplars from nursing informatics research to benchmark where nursing is already poised to participate in the big data revolution. We provide observations and reflections on experiences in the emerging big data initiatives. Existing approaches to large data set analysis provide a necessary but not sufficient foundation for nursing to participate in the big data revolution. Nursing's Social Policy Statement guides a principled, ethical perspective on big data and data science. There are implications for basic and advanced practice clinical nurses in practice, for the nurse scientist who collaborates with data scientists, and for the nurse data scientist. Big data and data science has the potential to provide greater richness in understanding patient phenomena and in tailoring interventional strategies that are personalized to the patient. © 2015 Sigma Theta Tau International.

  16. The Central Neural Foundations of Awareness and Self-Awareness

    Science.gov (United States)

    Pfaff, D.; Martin, E. M.; Weingarten, W.; Vimal, V.

    In the past, neuroscientists have done very well to concentrate onexplaining the mechanisms for very specific, simple behaviors. For example, our laboratory's work with molecular and neural mechanisms of a simple sex behavior proved for the first time that specific biochemical reactions in specific parts of the brain govern a specific behavior [D. W. Pfaff, Drive: Neurobiological and Molecular Mechanisms of Sexual Motivation (The MIT Press, Cambridge, 1999)]. Now, advances in our field coupled with new techniques permit us to attack the problems of explaining global changes of state in the central nervous system. For example, how does a simple sex behavior depend on sexual arousal, and in turn, how does that sexual arousal depend on other forms of CNS arousal? Of surpassing interest is the explanation of the primary causes of brain arousal [D. W. Pfaff, textit{Brain Arousal and Information Theory: Neural and Genetic Mechanisms} (Harvard University Press, Cambridg e, 2006)]. We have hypothesized that the earliest and most elementary event in waking up the brain is the activation of certain primitive nerve cells in the hindbrain reticular formation. Hypothesizing a `generalized arousal' force emanating from these cells puts forth an idea roughly analogous to the hypothesis of a `big bang' in astrophysics, or to our ideas about the magma of the earth in geophysics. Following the activation of this primitive arousal force we are able to be alert and aware. The neuroanatomical pathways serving brain arousal are fairly well known: they are Bilateral, Bidirectional, Universal among vertebrate animals including humans, and they are always involved in Response Potentiation, approach or avoidance responses (BBURP theory). More than 120 genes are involved in the regulation of brain arousal. In theoretical terms, the discussion so far has dealt with `bottoms up' approaches to awareness -- from mechanisms in the hindbrain working through several phylogenetically ancient

  17. BIG Data - BIG Gains? Understanding the Link Between Big Data Analytics and Innovation

    OpenAIRE

    Niebel, Thomas; Rasel, Fabienne; Viete, Steffen

    2017-01-01

    This paper analyzes the relationship between firms’ use of big data analytics and their innovative performance for product innovations. Since big data technologies provide new data information practices, they create new decision-making possibilities, which firms can use to realize innovations. Applying German firm-level data we find suggestive evidence that big data analytics matters for the likelihood of becoming a product innovator as well as the market success of the firms’ product innovat...

  18. Networking for big data

    CERN Document Server

    Yu, Shui; Misic, Jelena; Shen, Xuemin (Sherman)

    2015-01-01

    Networking for Big Data supplies an unprecedented look at cutting-edge research on the networking and communication aspects of Big Data. Starting with a comprehensive introduction to Big Data and its networking issues, it offers deep technical coverage of both theory and applications.The book is divided into four sections: introduction to Big Data, networking theory and design for Big Data, networking security for Big Data, and platforms and systems for Big Data applications. Focusing on key networking issues in Big Data, the book explains network design and implementation for Big Data. It exa

  19. Global fluctuation spectra in big-crunch-big-bang string vacua

    International Nuclear Information System (INIS)

    Craps, Ben; Ovrut, Burt A.

    2004-01-01

    We study big-crunch-big-bang cosmologies that correspond to exact world-sheet superconformal field theories of type II strings. The string theory spacetime contains a big crunch and a big bang cosmology, as well as additional 'whisker' asymptotic and intermediate regions. Within the context of free string theory, we compute, unambiguously, the scalar fluctuation spectrum in all regions of spacetime. Generically, the big crunch fluctuation spectrum is altered while passing through the bounce singularity. The change in the spectrum is characterized by a function Δ, which is momentum and time dependent. We compute Δ explicitly and demonstrate that it arises from the whisker regions. The whiskers are also shown to lead to 'entanglement' entropy in the big bang region. Finally, in the Milne orbifold limit of our superconformal vacua, we show that Δ→1 and, hence, the fluctuation spectrum is unaltered by the big-crunch-big-bang singularity. We comment on, but do not attempt to resolve, subtleties related to gravitational back reaction and light winding modes when interactions are taken into account

  20. Big Argumentation?

    Directory of Open Access Journals (Sweden)

    Daniel Faltesek

    2013-08-01

    Full Text Available Big Data is nothing new. Public concern regarding the mass diffusion of data has appeared repeatedly with computing innovations, in the formation before Big Data it was most recently referred to as the information explosion. In this essay, I argue that the appeal of Big Data is not a function of computational power, but of a synergistic relationship between aesthetic order and a politics evacuated of a meaningful public deliberation. Understanding, and challenging, Big Data requires an attention to the aesthetics of data visualization and the ways in which those aesthetics would seem to depoliticize information. The conclusion proposes an alternative argumentative aesthetic as the appropriate response to the depoliticization posed by the popular imaginary of Big Data.

  1. Artificial Neural Networks and the Mass Appraisal of Real Estate

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2018-03-01

    Full Text Available With the rapid development of computer, artificial intelligence and big data technology, artificial neural networks have become one of the most powerful machine learning algorithms. In the practice, most of the applications of artificial neural networks use back propagation neural network and its variation. Besides the back propagation neural network, various neural networks have been developing in order to improve the performance of standard models. Though neural networks are well known method in the research of real estate, there is enormous space for future research in order to enhance their function. Some scholars combine genetic algorithm, geospatial information, support vector machine model, particle swarm optimization with artificial neural networks to appraise the real estate, which is helpful for the existing appraisal technology. The mass appraisal of real estate in this paper includes the real estate valuation in the transaction and the tax base valuation in the real estate holding. In this study we focus on the theoretical development of artificial neural networks and mass appraisal of real estate, artificial neural networks model evolution and algorithm improvement, artificial neural networks practice and application, and review the existing literature about artificial neural networks and mass appraisal of real estate. Finally, we provide some suggestions for the mass appraisal of China's real estate.

  2. Neural networks. A new analytical tool, applicable also in nuclear technology

    International Nuclear Information System (INIS)

    Stritar, A.

    1992-01-01

    The basic concept of neural networks and back propagation learning algorithm are described. The behaviour of typical neural network is demonstrated on a simple graphical case. A short literature survey about the application of neural networks in nuclear science and engineering is made. The application of the neural network to the probability density calculation is shown. (author) [sl

  3. Foreground removal from WMAP 5 yr temperature maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik

    2010-01-01

    CMB signal makes it essential to minimize the systematic errors in the CMB temperature determinations. Methods. The feasibility of using simple neural networks to extract the CMB signal from detailed simulated data has already been demonstrated. Here, simple neural networks are applied to the WMAP 5...... yr temperature data without using any auxiliary data. Results. A simple multilayer perceptron neural network with two hidden layers provides temperature estimates over more than 75 per cent of the sky with random errors significantly below those previously extracted from these data. Also......, the systematic errors, i.e. errors correlated with the Galactic foregrounds, are very small. Conclusions. With these results the neural network method is well prepared for dealing with the high-quality CMB data from the ESA Planck Surveyor satellite. © ESO, 2010....

  4. Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots

    Science.gov (United States)

    2010-09-24

    system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...and control of the neural network depending on changing enviromental conditions • First basic design of the MOOP and a simple neural-endocrine based

  5. Big data

    DEFF Research Database (Denmark)

    Madsen, Anders Koed; Flyverbom, Mikkel; Hilbert, Martin

    2016-01-01

    is to outline a research agenda that can be used to raise a broader set of sociological and practice-oriented questions about the increasing datafication of international relations and politics. First, it proposes a way of conceptualizing big data that is broad enough to open fruitful investigations......The claim that big data can revolutionize strategy and governance in the context of international relations is increasingly hard to ignore. Scholars of international political sociology have mainly discussed this development through the themes of security and surveillance. The aim of this paper...... into the emerging use of big data in these contexts. This conceptualization includes the identification of three moments contained in any big data practice. Second, it suggests a research agenda built around a set of subthemes that each deserve dedicated scrutiny when studying the interplay between big data...

  6. A Neural Network-Based Interval Pattern Matcher

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2015-07-01

    Full Text Available One of the most important roles in the machine learning area is to classify, and neural networks are very important classifiers. However, traditional neural networks cannot identify intervals, let alone classify them. To improve their identification ability, we propose a neural network-based interval matcher in our paper. After summarizing the theoretical construction of the model, we take a simple and a practical weather forecasting experiment, which show that the recognizer accuracy reaches 100% and that is promising.

  7. Big data computing

    CERN Document Server

    Akerkar, Rajendra

    2013-01-01

    Due to market forces and technological evolution, Big Data computing is developing at an increasing rate. A wide variety of novel approaches and tools have emerged to tackle the challenges of Big Data, creating both more opportunities and more challenges for students and professionals in the field of data computation and analysis. Presenting a mix of industry cases and theory, Big Data Computing discusses the technical and practical issues related to Big Data in intelligent information management. Emphasizing the adoption and diffusion of Big Data tools and technologies in industry, the book i

  8. Memristor-based neural networks

    International Nuclear Information System (INIS)

    Thomas, Andy

    2013-01-01

    The synapse is a crucial element in biological neural networks, but a simple electronic equivalent has been absent. This complicates the development of hardware that imitates biological architectures in the nervous system. Now, the recent progress in the experimental realization of memristive devices has renewed interest in artificial neural networks. The resistance of a memristive system depends on its past states and exactly this functionality can be used to mimic the synaptic connections in a (human) brain. After a short introduction to memristors, we present and explain the relevant mechanisms in a biological neural network, such as long-term potentiation and spike time-dependent plasticity, and determine the minimal requirements for an artificial neural network. We review the implementations of these processes using basic electric circuits and more complex mechanisms that either imitate biological systems or could act as a model system for them. (topical review)

  9. Foreground removal from CMB temperature maps using an MLP neural network

    DEFF Research Database (Denmark)

    Nørgaard-Nielsen, Hans Ulrik; Jørgensen, H.E.

    2008-01-01

    the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over...... CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting...

  10. SDN Low Latency for Medical Big Data Using Wavelets

    Directory of Open Access Journals (Sweden)

    Fadia Shah

    2017-06-01

    Full Text Available New era is the age of 5G. The network has moved from the simple internet connection towards advanced LTE connections and transmission. The information and communication technology has reshaped telecommunication. For this, among many types of big data, Medical Big Data is one of the most sensitive forms of data. Wavelet is a technical tool to reduce the size of this data to make it available for the user for more time. It is also responsible for low latency and high speed data transmission over the network. The key concern is the Medical Big Data should be accurate and reliable enough so that the recommended treatment should be the concerned one. This paper proposed the scheme to support the concept of data availability without losing crucial information, via Wavelet the Medical Data compression and through SDN supportive architecture by making data availability over the wireless network. Such scheme is in favor of the efficient use of technology for the benefit of human beings in the support of medical treatments.

  11. From big bang to big crunch and beyond

    International Nuclear Information System (INIS)

    Elitzur, Shmuel; Rabinovici, Eliezer; Giveon, Amit; Kutasov, David

    2002-01-01

    We study a quotient Conformal Field Theory, which describes a 3+1 dimensional cosmological spacetime. Part of this spacetime is the Nappi-Witten (NW) universe, which starts at a 'big bang' singularity, expands and then contracts to a 'big crunch' singularity at a finite time. The gauged WZW model contains a number of copies of the NW spacetime, with each copy connected to the preceding one and to the next one at the respective big bang/big crunch singularities. The sequence of NW spacetimes is further connected at the singularities to a series of non-compact static regions with closed timelike curves. These regions contain boundaries, on which the observables of the theory live. This suggests a holographic interpretation of the physics. (author)

  12. BIG data - BIG gains? Empirical evidence on the link between big data analytics and innovation

    OpenAIRE

    Niebel, Thomas; Rasel, Fabienne; Viete, Steffen

    2017-01-01

    This paper analyzes the relationship between firms’ use of big data analytics and their innovative performance in terms of product innovations. Since big data technologies provide new data information practices, they create novel decision-making possibilities, which are widely believed to support firms’ innovation process. Applying German firm-level data within a knowledge production function framework we find suggestive evidence that big data analytics is a relevant determinant for the likel...

  13. Pattern recognition of state variables by neural networks

    International Nuclear Information System (INIS)

    Faria, Eduardo Fernandes; Pereira, Claubia

    1996-01-01

    An artificial intelligence system based on artificial neural networks can be used to classify predefined events and emergency procedures. These systems are being used in different areas. In the nuclear reactors safety, the goal is the classification of events whose data can be processed and recognized by neural networks. In this works we present a preliminary simple system, using neural networks in the recognition of patterns the recognition of variables which define a situation. (author)

  14. Modelling the low-tar BIG process; Modellering af low-tar BIG processen

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Lars Henrik

    2002-09-15

    This report describes the possibilities of integrating a biomass gasifier in a combined heat and power plant. The purpose of the study is, among others, to see if the gasification technology can challenge existing heat and power production methods. A research programme dealing with the construction of a low far gasifier (LT-BIG), which easily can be scaled to large gasification plants, is in progress. This report also contains a model formulation and implementation for this suggested low tar gasifier. All the models are created by the use of the energy simulation tool DNA. For some cases it has been necessary to develop new components or to alter existing components in DNA. Three different systems are considered; Gas Engine, Simple Cycle Gas Turbine and Combined Cycle. When biomass with and lower heating value of 19 MJ/kg and a moisture content of 50% is employed the subsequent results and designs are achieved: 1) The Engine plant utilizes the hot flue-gas to dry the biomass, but has difficulties taking advantage of the potential energy from the cooling of the syngas. An engine with a net electric efficiency of 40% at full load is computed to convert 38,5% of the energy content in the biomass to electricity. 2) The Simple Cycle Gas Turbine plant has good potential for integration with a gasifier. It dries the biomass by means of the flue-gas and recuperates the energy from the hot syngas to preheat the pressurised gas before it enters the combustion chamber. With an isentropic efficiency of 89% and a pressure ratio of 20, an electric efficiency of 38% is computed. 3) The Combined Cycle plant almost reach a computed efficiency of 45%. It utilises the cooling of the hot syngas to produce extra steam for the cycle, which results in a very steady efficiency, even when the moisture content of the fuel is changed. A grand parametric and sensitivity study of the LT-BIG model is carried out. The study includes estimates of the air demand for the gasifier and the partial

  15. Diagnostic Classifiers: Revealing how Neural Networks Process Hierarchical Structure

    NARCIS (Netherlands)

    Veldhoen, S.; Hupkes, D.; Zuidema, W.

    2016-01-01

    We investigate how neural networks can be used for hierarchical, compositional semantics. To this end, we define the simple but nontrivial artificial task of processing nested arithmetic expressions and study whether different types of neural networks can learn to add and subtract. We find that

  16. Zero Kelvin Big Bang, an Alternative Paradigm: I. Logic and the Cosmic Fabric

    Science.gov (United States)

    Haynes, Royce

    2011-11-01

    This is the first of three papers describing an alternative paradigm of cosmogony, the beginning and evolution of the universe. The Zero Kelvin Big Bang (ZKBB) theory is compared to the prevailing Standard Big Bang (SBB) paradigm, and challenges the notion that our universe is "all there is." Logic suggests that the Big Bang was not a creation event, but that the universe did have a beginning: a "cosmic fabric" of pre- existing matter, in pre-existing space. Instead, the Zero Kelvin Big Bang was a transitional event between that "beginning" and what would become our universe. Extrapolating entropy back in time (as SBB does for matter and energy), and applying simple logic, suggests a "cosmic fabric" of the simplest, stable particles of matter, at the lowest energy state possible: singlet state, spin-oriented atomic hydrogen at zero kelvin, at a density of, at most, only a few atoms per cubic meter of space, infinite and (almost) eternal. Papers II and III describe the condensation of part of the cosmic fabric into a Bose-Einstein condensate (BEC) as Lemaître's primeval atom, followed by an implosion- explosion Big Bang.

  17. Benchmarking Big Data Systems and the BigData Top100 List.

    Science.gov (United States)

    Baru, Chaitanya; Bhandarkar, Milind; Nambiar, Raghunath; Poess, Meikel; Rabl, Tilmann

    2013-03-01

    "Big data" has become a major force of innovation across enterprises of all sizes. New platforms with increasingly more features for managing big datasets are being announced almost on a weekly basis. Yet, there is currently a lack of any means of comparability among such platforms. While the performance of traditional database systems is well understood and measured by long-established institutions such as the Transaction Processing Performance Council (TCP), there is neither a clear definition of the performance of big data systems nor a generally agreed upon metric for comparing these systems. In this article, we describe a community-based effort for defining a big data benchmark. Over the past year, a Big Data Benchmarking Community has become established in order to fill this void. The effort focuses on defining an end-to-end application-layer benchmark for measuring the performance of big data applications, with the ability to easily adapt the benchmark specification to evolving challenges in the big data space. This article describes the efforts that have been undertaken thus far toward the definition of a BigData Top100 List. While highlighting the major technical as well as organizational challenges, through this article, we also solicit community input into this process.

  18. Big data, big knowledge: big data for personalized healthcare.

    Science.gov (United States)

    Viceconti, Marco; Hunter, Peter; Hose, Rod

    2015-07-01

    The idea that the purely phenomenological knowledge that we can extract by analyzing large amounts of data can be useful in healthcare seems to contradict the desire of VPH researchers to build detailed mechanistic models for individual patients. But in practice no model is ever entirely phenomenological or entirely mechanistic. We propose in this position paper that big data analytics can be successfully combined with VPH technologies to produce robust and effective in silico medicine solutions. In order to do this, big data technologies must be further developed to cope with some specific requirements that emerge from this application. Such requirements are: working with sensitive data; analytics of complex and heterogeneous data spaces, including nontextual information; distributed data management under security and performance constraints; specialized analytics to integrate bioinformatics and systems biology information with clinical observations at tissue, organ and organisms scales; and specialized analytics to define the "physiological envelope" during the daily life of each patient. These domain-specific requirements suggest a need for targeted funding, in which big data technologies for in silico medicine becomes the research priority.

  19. BigDataBench: a Big Data Benchmark Suite from Internet Services

    OpenAIRE

    Wang, Lei; Zhan, Jianfeng; Luo, Chunjie; Zhu, Yuqing; Yang, Qiang; He, Yongqiang; Gao, Wanling; Jia, Zhen; Shi, Yingjie; Zhang, Shujie; Zheng, Chen; Lu, Gang; Zhan, Kent; Li, Xiaona; Qiu, Bizhu

    2014-01-01

    As architecture, systems, and data management communities pay greater attention to innovative big data systems and architectures, the pressure of benchmarking and evaluating these systems rises. Considering the broad use of big data systems, big data benchmarks must include diversity of data and workloads. Most of the state-of-the-art big data benchmarking efforts target evaluating specific types of applications or system software stacks, and hence they are not qualified for serving the purpo...

  20. Conociendo Big Data

    Directory of Open Access Journals (Sweden)

    Juan José Camargo-Vega

    2014-12-01

    Full Text Available Teniendo en cuenta la importancia que ha adquirido el término Big Data, la presente investigación buscó estudiar y analizar de manera exhaustiva el estado del arte del Big Data; además, y como segundo objetivo, analizó las características, las herramientas, las tecnologías, los modelos y los estándares relacionados con Big Data, y por último buscó identificar las características más relevantes en la gestión de Big Data, para que con ello se pueda conocer todo lo concerniente al tema central de la investigación.La metodología utilizada incluyó revisar el estado del arte de Big Data y enseñar su situación actual; conocer las tecnologías de Big Data; presentar algunas de las bases de datos NoSQL, que son las que permiten procesar datos con formatos no estructurados, y mostrar los modelos de datos y las tecnologías de análisis de ellos, para terminar con algunos beneficios de Big Data.El diseño metodológico usado para la investigación fue no experimental, pues no se manipulan variables, y de tipo exploratorio, debido a que con esta investigación se empieza a conocer el ambiente del Big Data.

  1. Adaptive nonlinear control using input normalized neural networks

    International Nuclear Information System (INIS)

    Leeghim, Henzeh; Seo, In Ho; Bang, Hyo Choong

    2008-01-01

    An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain nonlinear systems. The neural network-based adaptive control theory has been widely studied. However, the stability analysis of the closed-loop system with the neural network is rather complicated and difficult to understand, and sometimes unnecessary assumptions are involved. As a result, unnecessary assumptions for stability analysis are avoided by using the neural network with input normalization technique. The ultimate boundedness of the tracking error is simply proved by the Lyapunov stability theory. A new simple update law as an adaptive nonlinear control is derived by the simplification of the input normalized neural network assuming the variation of the uncertain term is sufficiently small

  2. Advanced approach to numerical forecasting using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Michael Štencl

    2009-01-01

    Full Text Available Current global market is driven by many factors, such as the information age, the time and amount of information distributed by many data channels it is practically impossible analyze all kinds of incoming information flows and transform them to data with classical methods. New requirements could be met by using other methods. Once trained on patterns artificial neural networks can be used for forecasting and they are able to work with extremely big data sets in reasonable time. The patterns used for learning process are samples of past data. This paper uses Radial Basis Functions neural network in comparison with Multi Layer Perceptron network with Back-propagation learning algorithm on prediction task. The task works with simplified numerical time series and includes forty observations with prediction for next five observations. The main topic of the article is the identification of the main differences between used neural networks architectures together with numerical forecasting. Detected differences then verify on practical comparative example.

  3. BigDansing

    KAUST Repository

    Khayyat, Zuhair

    2015-06-02

    Data cleansing approaches have usually focused on detecting and fixing errors with little attention to scaling to big datasets. This presents a serious impediment since data cleansing often involves costly computations such as enumerating pairs of tuples, handling inequality joins, and dealing with user-defined functions. In this paper, we present BigDansing, a Big Data Cleansing system to tackle efficiency, scalability, and ease-of-use issues in data cleansing. The system can run on top of most common general purpose data processing platforms, ranging from DBMSs to MapReduce-like frameworks. A user-friendly programming interface allows users to express data quality rules both declaratively and procedurally, with no requirement of being aware of the underlying distributed platform. BigDansing takes these rules into a series of transformations that enable distributed computations and several optimizations, such as shared scans and specialized joins operators. Experimental results on both synthetic and real datasets show that BigDansing outperforms existing baseline systems up to more than two orders of magnitude without sacrificing the quality provided by the repair algorithms.

  4. Characterizing Big Data Management

    Directory of Open Access Journals (Sweden)

    Rogério Rossi

    2015-06-01

    Full Text Available Big data management is a reality for an increasing number of organizations in many areas and represents a set of challenges involving big data modeling, storage and retrieval, analysis and visualization. However, technological resources, people and processes are crucial to facilitate the management of big data in any kind of organization, allowing information and knowledge from a large volume of data to support decision-making. Big data management can be supported by these three dimensions: technology, people and processes. Hence, this article discusses these dimensions: the technological dimension that is related to storage, analytics and visualization of big data; the human aspects of big data; and, in addition, the process management dimension that involves in a technological and business approach the aspects of big data management.

  5. Big science

    CERN Multimedia

    Nadis, S

    2003-01-01

    " "Big science" is moving into astronomy, bringing large experimental teams, multi-year research projects, and big budgets. If this is the wave of the future, why are some astronomers bucking the trend?" (2 pages).

  6. Simple arithmetic: not so simple for highly math anxious individuals.

    Science.gov (United States)

    Chang, Hyesang; Sprute, Lisa; Maloney, Erin A; Beilock, Sian L; Berman, Marc G

    2017-12-01

    Fluency with simple arithmetic, typically achieved in early elementary school, is thought to be one of the building blocks of mathematical competence. Behavioral studies with adults indicate that math anxiety (feelings of tension or apprehension about math) is associated with poor performance on cognitively demanding math problems. However, it remains unclear whether there are fundamental differences in how high and low math anxious individuals approach overlearned simple arithmetic problems that are less reliant on cognitive control. The current study used functional magnetic resonance imaging to examine the neural correlates of simple arithmetic performance across high and low math anxious individuals. We implemented a partial least squares analysis, a data-driven, multivariate analysis method to measure distributed patterns of whole-brain activity associated with performance. Despite overall high simple arithmetic performance across high and low math anxious individuals, performance was differentially dependent on the fronto-parietal attentional network as a function of math anxiety. Specifically, low-compared to high-math anxious individuals perform better when they activate this network less-a potential indication of more automatic problem-solving. These findings suggest that low and high math anxious individuals approach even the most fundamental math problems differently. © The Author (2017). Published by Oxford University Press.

  7. Coastal 'Big Data' and nature-inspired computation: Prediction potentials, uncertainties, and knowledge derivation of neural networks for an algal metric

    Science.gov (United States)

    Millie, David F.; Weckman, Gary R.; Young, William A.; Ivey, James E.; Fries, David P.; Ardjmand, Ehsan; Fahnenstiel, Gary L.

    2013-07-01

    Coastal monitoring has become reliant upon automated sensors for data acquisition. Such a technical commitment comes with a cost; particularly, the generation of large, high-dimensional data streams ('Big Data') that personnel must search through to identify data structures. Nature-inspired computation, inclusive of artificial neural networks (ANNs), affords the unearthing of complex, recurring patterns within sizable data volumes. In 2009, select meteorological and hydrological data were acquired via autonomous instruments in Sarasota Bay, Florida (USA). ANNs estimated continuous chlorophyll (CHL) a concentrations from abiotic predictors, with correlations between measured:modeled concentrations >0.90 and model efficiencies ranging from 0.80 to 0.90. Salinity and water temperature were the principal influences for modeled CHL within the Bay; concentrations steadily increased at temperatures >28° C and were greatest at salinities 6.1 μg CHL L-1 maximized at a salinity of ca. 36.3 and a temperature of ca. 29.5 °C. A 10th-order Chebyshev bivariate polynomial equation was fit (adj. r2 = 0.99, p turbidity, temperature, and salinity (and to lesser degrees, wind speed, wind/current direction, irradiance, and urea-nitrogen) were key variables for quantitative rules in tree formalisms. Taken together, computations enabled knowledge provision for and quantifiable representations of the non-linear relationships between environmental variables and CHL a.

  8. Design of Robust Neural Network Classifiers

    DEFF Research Database (Denmark)

    Larsen, Jan; Andersen, Lars Nonboe; Hintz-Madsen, Mads

    1998-01-01

    This paper addresses a new framework for designing robust neural network classifiers. The network is optimized using the maximum a posteriori technique, i.e., the cost function is the sum of the log-likelihood and a regularization term (prior). In order to perform robust classification, we present...... a modified likelihood function which incorporates the potential risk of outliers in the data. This leads to the introduction of a new parameter, the outlier probability. Designing the neural classifier involves optimization of network weights as well as outlier probability and regularization parameters. We...... suggest to adapt the outlier probability and regularisation parameters by minimizing the error on a validation set, and a simple gradient descent scheme is derived. In addition, the framework allows for constructing a simple outlier detector. Experiments with artificial data demonstrate the potential...

  9. Bliver big data til big business?

    DEFF Research Database (Denmark)

    Ritter, Thomas

    2015-01-01

    Danmark har en digital infrastruktur, en registreringskultur og it-kompetente medarbejdere og kunder, som muliggør en førerposition, men kun hvis virksomhederne gør sig klar til næste big data-bølge.......Danmark har en digital infrastruktur, en registreringskultur og it-kompetente medarbejdere og kunder, som muliggør en førerposition, men kun hvis virksomhederne gør sig klar til næste big data-bølge....

  10. Big data uncertainties.

    Science.gov (United States)

    Maugis, Pierre-André G

    2018-07-01

    Big data-the idea that an always-larger volume of information is being constantly recorded-suggests that new problems can now be subjected to scientific scrutiny. However, can classical statistical methods be used directly on big data? We analyze the problem by looking at two known pitfalls of big datasets. First, that they are biased, in the sense that they do not offer a complete view of the populations under consideration. Second, that they present a weak but pervasive level of dependence between all their components. In both cases we observe that the uncertainty of the conclusion obtained by statistical methods is increased when used on big data, either because of a systematic error (bias), or because of a larger degree of randomness (increased variance). We argue that the key challenge raised by big data is not only how to use big data to tackle new problems, but to develop tools and methods able to rigorously articulate the new risks therein. Copyright © 2016. Published by Elsevier Ltd.

  11. HARNESSING BIG DATA VOLUMES

    Directory of Open Access Journals (Sweden)

    Bogdan DINU

    2014-04-01

    Full Text Available Big Data can revolutionize humanity. Hidden within the huge amounts and variety of the data we are creating we may find information, facts, social insights and benchmarks that were once virtually impossible to find or were simply inexistent. Large volumes of data allow organizations to tap in real time the full potential of all the internal or external information they possess. Big data calls for quick decisions and innovative ways to assist customers and the society as a whole. Big data platforms and product portfolio will help customers harness to the full the value of big data volumes. This paper deals with technical and technological issues related to handling big data volumes in the Big Data environment.

  12. Big data a primer

    CERN Document Server

    Bhuyan, Prachet; Chenthati, Deepak

    2015-01-01

    This book is a collection of chapters written by experts on various aspects of big data. The book aims to explain what big data is and how it is stored and used. The book starts from  the fundamentals and builds up from there. It is intended to serve as a review of the state-of-the-practice in the field of big data handling. The traditional framework of relational databases can no longer provide appropriate solutions for handling big data and making it available and useful to users scattered around the globe. The study of big data covers a wide range of issues including management of heterogeneous data, big data frameworks, change management, finding patterns in data usage and evolution, data as a service, service-generated data, service management, privacy and security. All of these aspects are touched upon in this book. It also discusses big data applications in different domains. The book will prove useful to students, researchers, and practicing database and networking engineers.

  13. Hardware implementation of stochastic spiking neural networks.

    Science.gov (United States)

    Rosselló, Josep L; Canals, Vincent; Morro, Antoni; Oliver, Antoni

    2012-08-01

    Spiking Neural Networks, the last generation of Artificial Neural Networks, are characterized by its bio-inspired nature and by a higher computational capacity with respect to other neural models. In real biological neurons, stochastic processes represent an important mechanism of neural behavior and are responsible of its special arithmetic capabilities. In this work we present a simple hardware implementation of spiking neurons that considers this probabilistic nature. The advantage of the proposed implementation is that it is fully digital and therefore can be massively implemented in Field Programmable Gate Arrays. The high computational capabilities of the proposed model are demonstrated by the study of both feed-forward and recurrent networks that are able to implement high-speed signal filtering and to solve complex systems of linear equations.

  14. A neural network approach to job-shop scheduling.

    Science.gov (United States)

    Zhou, D N; Cherkassky, V; Baldwin, T R; Olson, D E

    1991-01-01

    A novel analog computational network is presented for solving NP-complete constraint satisfaction problems, i.e. job-shop scheduling. In contrast to most neural approaches to combinatorial optimization based on quadratic energy cost function, the authors propose to use linear cost functions. As a result, the network complexity (number of neurons and the number of resistive interconnections) grows only linearly with problem size, and large-scale implementations become possible. The proposed approach is related to the linear programming network described by D.W. Tank and J.J. Hopfield (1985), which also uses a linear cost function for a simple optimization problem. It is shown how to map a difficult constraint-satisfaction problem onto a simple neural net in which the number of neural processors equals the number of subjobs (operations) and the number of interconnections grows linearly with the total number of operations. Simulations show that the authors' approach produces better solutions than existing neural approaches to job-shop scheduling, i.e. the traveling salesman problem-type Hopfield approach and integer linear programming approach of J.P.S. Foo and Y. Takefuji (1988), in terms of the quality of the solution and the network complexity.

  15. Microsoft big data solutions

    CERN Document Server

    Jorgensen, Adam; Welch, John; Clark, Dan; Price, Christopher; Mitchell, Brian

    2014-01-01

    Tap the power of Big Data with Microsoft technologies Big Data is here, and Microsoft's new Big Data platform is a valuable tool to help your company get the very most out of it. This timely book shows you how to use HDInsight along with HortonWorks Data Platform for Windows to store, manage, analyze, and share Big Data throughout the enterprise. Focusing primarily on Microsoft and HortonWorks technologies but also covering open source tools, Microsoft Big Data Solutions explains best practices, covers on-premises and cloud-based solutions, and features valuable case studies. Best of all,

  16. Summary big data

    CERN Document Server

    2014-01-01

    This work offers a summary of Cukier the book: "Big Data: A Revolution That Will Transform How we Live, Work, and Think" by Viktor Mayer-Schonberg and Kenneth. Summary of the ideas in Viktor Mayer-Schonberg's and Kenneth Cukier's book: " Big Data " explains that big data is where we use huge quantities of data to make better predictions based on the fact we identify patters in the data rather than trying to understand the underlying causes in more detail. This summary highlights that big data will be a source of new economic value and innovation in the future. Moreover, it shows that it will

  17. A matrix big bang

    International Nuclear Information System (INIS)

    Craps, Ben; Sethi, Savdeep; Verlinde, Erik

    2005-01-01

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control

  18. A matrix big bang

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States); Verlinde, Erik [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)

    2005-10-15

    The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type-IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our model provides a framework in which the physics of the singularity appears to be under control.

  19. Foreground removal from WMAP 5 yr temperature maps using an MLP neural network

    Science.gov (United States)

    Nørgaard-Nielsen, H. U.

    2010-09-01

    Aims: One of the main obstacles for extracting the cosmic microwave background (CMB) signal from observations in the mm/sub-mm range is the foreground contamination by emission from Galactic component: mainly synchrotron, free-free, and thermal dust emission. The statistical nature of the intrinsic CMB signal makes it essential to minimize the systematic errors in the CMB temperature determinations. Methods: The feasibility of using simple neural networks to extract the CMB signal from detailed simulated data has already been demonstrated. Here, simple neural networks are applied to the WMAP 5 yr temperature data without using any auxiliary data. Results: A simple multilayer perceptron neural network with two hidden layers provides temperature estimates over more than 75 per cent of the sky with random errors significantly below those previously extracted from these data. Also, the systematic errors, i.e. errors correlated with the Galactic foregrounds, are very small. Conclusions: With these results the neural network method is well prepared for dealing with the high - quality CMB data from the ESA Planck Surveyor satellite. unknown author type, collab

  20. An Activity for Demonstrating the Concept of a Neural Circuit

    Science.gov (United States)

    Kreiner, David S.

    2012-01-01

    College students in two sections of a general psychology course participated in a demonstration of a simple neural circuit. The activity was based on a neural circuit that Jeffress proposed for localizing sounds. Students in one section responded to a questionnaire prior to participating in the activity, while students in the other section…

  1. Ocean Networks Canada's "Big Data" Initiative

    Science.gov (United States)

    Dewey, R. K.; Hoeberechts, M.; Moran, K.; Pirenne, B.; Owens, D.

    2013-12-01

    Ocean Networks Canada operates two large undersea observatories that collect, archive, and deliver data in real time over the Internet. These data contribute to our understanding of the complex changes taking place on our ocean planet. Ocean Networks Canada's VENUS was the world's first cabled seafloor observatory to enable researchers anywhere to connect in real time to undersea experiments and observations. Its NEPTUNE observatory is the largest cabled ocean observatory, spanning a wide range of ocean environments. Most recently, we installed a new small observatory in the Arctic. Together, these observatories deliver "Big Data" across many disciplines in a cohesive manner using the Oceans 2.0 data management and archiving system that provides national and international users with open access to real-time and archived data while also supporting a collaborative work environment. Ocean Networks Canada operates these observatories to support science, innovation, and learning in four priority areas: study of the impact of climate change on the ocean; the exploration and understanding the unique life forms in the extreme environments of the deep ocean and below the seafloor; the exchange of heat, fluids, and gases that move throughout the ocean and atmosphere; and the dynamics of earthquakes, tsunamis, and undersea landslides. To date, the Ocean Networks Canada archive contains over 130 TB (collected over 7 years) and the current rate of data acquisition is ~50 TB per year. This data set is complex and diverse. Making these "Big Data" accessible and attractive to users is our priority. In this presentation, we share our experience as a "Big Data" institution where we deliver simple and multi-dimensional calibrated data cubes to a diverse pool of users. Ocean Networks Canada also conducts extensive user testing. Test results guide future tool design and development of "Big Data" products. We strive to bridge the gap between the raw, archived data and the needs and

  2. Big Data en surveillance, deel 1 : Definities en discussies omtrent Big Data

    NARCIS (Netherlands)

    Timan, Tjerk

    2016-01-01

    Naar aanleiding van een (vrij kort) college over surveillance en Big Data, werd me gevraagd iets dieper in te gaan op het thema, definities en verschillende vraagstukken die te maken hebben met big data. In dit eerste deel zal ik proberen e.e.a. uiteen te zetten betreft Big Data theorie en

  3. Characterizing Big Data Management

    OpenAIRE

    Rogério Rossi; Kechi Hirama

    2015-01-01

    Big data management is a reality for an increasing number of organizations in many areas and represents a set of challenges involving big data modeling, storage and retrieval, analysis and visualization. However, technological resources, people and processes are crucial to facilitate the management of big data in any kind of organization, allowing information and knowledge from a large volume of data to support decision-making. Big data management can be supported by these three dimensions: t...

  4. Drosophila olfactory memory: single genes to complex neural circuits.

    Science.gov (United States)

    Keene, Alex C; Waddell, Scott

    2007-05-01

    A central goal of neuroscience is to understand how neural circuits encode memory and guide behaviour. Studying simple, genetically tractable organisms, such as Drosophila melanogaster, can illuminate principles of neural circuit organization and function. Early genetic dissection of D. melanogaster olfactory memory focused on individual genes and molecules. These molecular tags subsequently revealed key neural circuits for memory. Recent advances in genetic technology have allowed us to manipulate and observe activity in these circuits, and even individual neurons, in live animals. The studies have transformed D. melanogaster from a useful organism for gene discovery to an ideal model to understand neural circuit function in memory.

  5. D-FNN Based Modeling and BP Neural Network Decoupling Control of PVC Stripping Process

    Directory of Open Access Journals (Sweden)

    Shu-zhi Gao

    2014-01-01

    Full Text Available PVC stripping process is a kind of complicated industrial process with characteristics of highly nonlinear and time varying. Aiming at the problem of establishing the accurate mathematics model due to the multivariable coupling and big time delay, the dynamic fuzzy neural network (D-FNN is adopted to establish the PVC stripping process model based on the actual process operation datum. Then, the PVC stripping process is decoupled by the distributed neural network decoupling module to obtain two single-input-single-output (SISO subsystems (slurry flow to top tower temperature and steam flow to bottom tower temperature. Finally, the PID controller based on BP neural networks is used to control the decoupled PVC stripper system. Simulation results show the effectiveness of the proposed integrated intelligent control method.

  6. Reheating and dangerous relics in pre-big-bang string cosmology

    International Nuclear Information System (INIS)

    Buonanno, Alessandra; Lemoine, Martin; Olive, Keith A.

    2000-01-01

    We discuss the mechanism of reheating in pre-big-bang string cosmology and we calculate the amount of moduli and gravitinos produced gravitationally and in scattering processes of the thermal bath. We find that this abundance always exceeds the limits imposed by big-bang nucleosynthesis, and significant entropy production is required. The exact amount of entropy needed depends on the details of the high curvature phase between the dilaton-driven inflationary era and the radiation era. We show that the domination and decay of the zero-mode of a modulus field, which could well be the dilaton, or of axions, suffices to dilute moduli and gravitinos. In this context, baryogenesis can be accommodated in a simple way via the Affleck-Dine mechanism and in some cases the Affleck-Dine condensate could provide both the source of entropy and the baryon asymmetry

  7. Theory of mind in schizophrenia: exploring neural mechanisms of belief attribution.

    Science.gov (United States)

    Lee, Junghee; Quintana, Javier; Nori, Poorang; Green, Michael F

    2011-01-01

    Although previous behavioral studies have shown that schizophrenia patients have impaired theory of mind (ToM), the neural mechanisms associated with this impairment are poorly understood. This study aimed to identify the neural mechanisms of ToM in schizophrenia, using functional magnetic resonance imaging (fMRI) with a belief attribution task. In the scanner, 12 schizophrenia patients and 13 healthy control subjects performed the belief attribution task with three conditions: a false belief condition, a false photograph condition, and a simple reading condition. For the false belief versus simple reading conditions, schizophrenia patients showed reduced neural activation in areas including the temporoparietal junction (TPJ) and medial prefrontal cortex (MPFC) compared with controls. Further, during the false belief versus false photograph conditions, we observed increased activations in the TPJ and the MPFC in healthy controls, but not in schizophrenia patients. For the false photograph versus simple reading condition, both groups showed comparable neural activations. Schizophrenia patients showed reduced task-related activation in the TPJ and the MPFC during the false belief condition compared with controls, but not for the false photograph condition. This pattern suggests that reduced activation in these regions is associated with, and specific to, impaired ToM in schizophrenia.

  8. Spike Neural Models Part II: Abstract Neural Models

    Directory of Open Access Journals (Sweden)

    Johnson, Melissa G.

    2018-02-01

    Full Text Available Neurons are complex cells that require a lot of time and resources to model completely. In spiking neural networks (SNN though, not all that complexity is required. Therefore simple, abstract models are often used. These models save time, use less computer resources, and are easier to understand. This tutorial presents two such models: Izhikevich's model, which is biologically realistic in the resulting spike trains but not in the parameters, and the Leaky Integrate and Fire (LIF model which is not biologically realistic but does quickly and easily integrate input to produce spikes. Izhikevich's model is based on Hodgkin-Huxley's model but simplified such that it uses only two differentiation equations and four parameters to produce various realistic spike patterns. LIF is based on a standard electrical circuit and contains one equation. Either of these two models, or any of the many other models in literature can be used in a SNN. Choosing a neural model is an important task that depends on the goal of the research and the resources available. Once a model is chosen, network decisions such as connectivity, delay, and sparseness, need to be made. Understanding neural models and how they are incorporated into the network is the first step in creating a SNN.

  9. Big Data in der Cloud

    DEFF Research Database (Denmark)

    Leimbach, Timo; Bachlechner, Daniel

    2014-01-01

    Technology assessment of big data, in particular cloud based big data services, for the Office for Technology Assessment at the German federal parliament (Bundestag)......Technology assessment of big data, in particular cloud based big data services, for the Office for Technology Assessment at the German federal parliament (Bundestag)...

  10. An analysis of cross-sectional differences in big and non-big public accounting firms' audit programs

    NARCIS (Netherlands)

    Blokdijk, J.H. (Hans); Drieenhuizen, F.; Stein, M.T.; Simunic, D.A.

    2006-01-01

    A significant body of prior research has shown that audits by the Big 5 (now Big 4) public accounting firms are quality differentiated relative to non-Big 5 audits. This result can be derived analytically by assuming that Big 5 and non-Big 5 firms face different loss functions for "audit failures"

  11. Big Data is invading big places as CERN

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Big Data technologies are becoming more popular with the constant grow of data generation in different fields such as social networks, internet of things and laboratories like CERN. How is CERN making use of such technologies? How machine learning is applied at CERN with Big Data technologies? How much data we move and how it is analyzed? All these questions will be answered during the talk.

  12. The big bang

    International Nuclear Information System (INIS)

    Chown, Marcus.

    1987-01-01

    The paper concerns the 'Big Bang' theory of the creation of the Universe 15 thousand million years ago, and traces events which physicists predict occurred soon after the creation. Unified theory of the moment of creation, evidence of an expanding Universe, the X-boson -the particle produced very soon after the big bang and which vanished from the Universe one-hundredth of a second after the big bang, and the fate of the Universe, are all discussed. (U.K.)

  13. Distributed Coordinate Descent Method for Learning with Big Data

    OpenAIRE

    Richtárik, Peter; Takáč, Martin

    2013-01-01

    In this paper we develop and analyze Hydra: HYbriD cooRdinAte descent method for solving loss minimization problems with big data. We initially partition the coordinates (features) and assign each partition to a different node of a cluster. At every iteration, each node picks a random subset of the coordinates from those it owns, independently from the other computers, and in parallel computes and applies updates to the selected coordinates based on a simple closed-form formula. We give bound...

  14. Pre-Big-Bang bubbles from the gravitational instability of generic string vacua

    International Nuclear Information System (INIS)

    Buonanno, A.; Damour, T.; Veneziano, G.

    1999-01-01

    We formulate the basic postulate of pre-Big-Bang cosmology as one of 'asymptotic past triviality', by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Such a past-trivial 'string vacuum' is made of an arbitrary ensemble of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, leading to the possible formation of many black holes hiding singular space-like hypersurfaces. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual Big-Bang t = 0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the Big-Bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-Big-Bang scenario

  15. Pre-Big-Bang bubbles from the gravitational instability of generic string vacua

    Energy Technology Data Exchange (ETDEWEB)

    Buonanno, A.; Damour, T.; Veneziano, G

    1999-03-22

    We formulate the basic postulate of pre-Big-Bang cosmology as one of 'asymptotic past triviality', by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Such a past-trivial 'string vacuum' is made of an arbitrary ensemble of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, leading to the possible formation of many black holes hiding singular space-like hypersurfaces. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual Big-Bang t = 0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the Big-Bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-Big-Bang scenario.

  16. iPad Made Simple

    CERN Document Server

    Trautschold, Martin; Learning, MSL Made Simple

    2010-01-01

    The new iPad is sleek, powerful, and most importantly, it's much more than just a big iPhone. Your iPad is can be used for reading, surfing the web, emailing, watching TV/Movies, getting work done, and much more. And with the upcoming wave of iPad apps, the possibilities are endless. iPad X Made Simple clarifies all of the key features on the iPad, introduces what's new, and also reveals dozens of time-saving shortcuts and techniques. The book has over 1,000 screen shots that are carefully annotated with step-by-step instructions. * Clear instructions on how to set up and use the iPad * Illust

  17. Small Big Data Congress 2017

    NARCIS (Netherlands)

    Doorn, J.

    2017-01-01

    TNO, in collaboration with the Big Data Value Center, presents the fourth Small Big Data Congress! Our congress aims at providing an overview of practical and innovative applications based on big data. Do you want to know what is happening in applied research with big data? And what can already be

  18. Big data opportunities and challenges

    CERN Document Server

    2014-01-01

    This ebook aims to give practical guidance for all those who want to understand big data better and learn how to make the most of it. Topics range from big data analysis, mobile big data and managing unstructured data to technologies, governance and intellectual property and security issues surrounding big data.

  19. Big Data and Neuroimaging.

    Science.gov (United States)

    Webb-Vargas, Yenny; Chen, Shaojie; Fisher, Aaron; Mejia, Amanda; Xu, Yuting; Crainiceanu, Ciprian; Caffo, Brian; Lindquist, Martin A

    2017-12-01

    Big Data are of increasing importance in a variety of areas, especially in the biosciences. There is an emerging critical need for Big Data tools and methods, because of the potential impact of advancements in these areas. Importantly, statisticians and statistical thinking have a major role to play in creating meaningful progress in this arena. We would like to emphasize this point in this special issue, as it highlights both the dramatic need for statistical input for Big Data analysis and for a greater number of statisticians working on Big Data problems. We use the field of statistical neuroimaging to demonstrate these points. As such, this paper covers several applications and novel methodological developments of Big Data tools applied to neuroimaging data.

  20. Big Data; A Management Revolution : The emerging role of big data in businesses

    OpenAIRE

    Blasiak, Kevin

    2014-01-01

    Big data is a term that was coined in 2012 and has since then emerged to one of the top trends in business and technology. Big data is an agglomeration of different technologies resulting in data processing capabilities that have been unreached before. Big data is generally characterized by 4 factors. Volume, velocity and variety. These three factors distinct it from the traditional data use. The possibilities to utilize this technology are vast. Big data technology has touch points in differ...

  1. Neural Networks

    International Nuclear Information System (INIS)

    Smith, Patrick I.

    2003-01-01

    information [2]. Each one of these cells acts as a simple processor. When individual cells interact with one another, the complex abilities of the brain are made possible. In neural networks, the input or data are processed by a propagation function that adds up the values of all the incoming data. The ending value is then compared with a threshold or specific value. The resulting value must exceed the activation function value in order to become output. The activation function is a mathematical function that a neuron uses to produce an output referring to its input value. [8] Figure 1 depicts this process. Neural networks usually have three components an input, a hidden, and an output. These layers create the end result of the neural network. A real world example is a child associating the word dog with a picture. The child says dog and simultaneously looks a picture of a dog. The input is the spoken word ''dog'', the hidden is the brain processing, and the output will be the category of the word dog based on the picture. This illustration describes how a neural network functions

  2. Social big data mining

    CERN Document Server

    Ishikawa, Hiroshi

    2015-01-01

    Social Media. Big Data and Social Data. Hypotheses in the Era of Big Data. Social Big Data Applications. Basic Concepts in Data Mining. Association Rule Mining. Clustering. Classification. Prediction. Web Structure Mining. Web Content Mining. Web Access Log Mining, Information Extraction and Deep Web Mining. Media Mining. Scalability and Outlier Detection.

  3. Neural entrainment to the rhythmic structure of music.

    Science.gov (United States)

    Tierney, Adam; Kraus, Nina

    2015-02-01

    The neural resonance theory of musical meter explains musical beat tracking as the result of entrainment of neural oscillations to the beat frequency and its higher harmonics. This theory has gained empirical support from experiments using simple, abstract stimuli. However, to date there has been no empirical evidence for a role of neural entrainment in the perception of the beat of ecologically valid music. Here we presented participants with a single pop song with a superimposed bassoon sound. This stimulus was either lined up with the beat of the music or shifted away from the beat by 25% of the average interbeat interval. Both conditions elicited a neural response at the beat frequency. However, although the on-the-beat condition elicited a clear response at the first harmonic of the beat, this frequency was absent in the neural response to the off-the-beat condition. These results support a role for neural entrainment in tracking the metrical structure of real music and show that neural meter tracking can be disrupted by the presentation of contradictory rhythmic cues.

  4. Cryptography for Big Data Security

    Science.gov (United States)

    2015-07-13

    Cryptography for Big Data Security Book Chapter for Big Data: Storage, Sharing, and Security (3S) Distribution A: Public Release Ariel Hamlin1 Nabil...Email: arkady@ll.mit.edu ii Contents 1 Cryptography for Big Data Security 1 1.1 Introduction...48 Chapter 1 Cryptography for Big Data Security 1.1 Introduction With the amount

  5. Data: Big and Small.

    Science.gov (United States)

    Jones-Schenk, Jan

    2017-02-01

    Big data is a big topic in all leadership circles. Leaders in professional development must develop an understanding of what data are available across the organization that can inform effective planning for forecasting. Collaborating with others to integrate data sets can increase the power of prediction. Big data alone is insufficient to make big decisions. Leaders must find ways to access small data and triangulate multiple types of data to ensure the best decision making. J Contin Educ Nurs. 2017;48(2):60-61. Copyright 2017, SLACK Incorporated.

  6. Big Data Revisited

    DEFF Research Database (Denmark)

    Kallinikos, Jannis; Constantiou, Ioanna

    2015-01-01

    We elaborate on key issues of our paper New games, new rules: big data and the changing context of strategy as a means of addressing some of the concerns raised by the paper’s commentators. We initially deal with the issue of social data and the role it plays in the current data revolution...... and the technological recording of facts. We further discuss the significance of the very mechanisms by which big data is produced as distinct from the very attributes of big data, often discussed in the literature. In the final section of the paper, we qualify the alleged importance of algorithms and claim...... that the structures of data capture and the architectures in which data generation is embedded are fundamental to the phenomenon of big data....

  7. Big Data in industry

    Science.gov (United States)

    Latinović, T. S.; Preradović, D. M.; Barz, C. R.; Latinović, M. T.; Petrica, P. P.; Pop-Vadean, A.

    2016-08-01

    The amount of data at the global level has grown exponentially. Along with this phenomena, we have a need for a new unit of measure like exabyte, zettabyte, and yottabyte as the last unit measures the amount of data. The growth of data gives a situation where the classic systems for the collection, storage, processing, and visualization of data losing the battle with a large amount, speed, and variety of data that is generated continuously. Many of data that is created by the Internet of Things, IoT (cameras, satellites, cars, GPS navigation, etc.). It is our challenge to come up with new technologies and tools for the management and exploitation of these large amounts of data. Big Data is a hot topic in recent years in IT circles. However, Big Data is recognized in the business world, and increasingly in the public administration. This paper proposes an ontology of big data analytics and examines how to enhance business intelligence through big data analytics as a service by presenting a big data analytics services-oriented architecture. This paper also discusses the interrelationship between business intelligence and big data analytics. The proposed approach in this paper might facilitate the research and development of business analytics, big data analytics, and business intelligence as well as intelligent agents.

  8. Stability analysis for cellular neural networks with variable delays

    International Nuclear Information System (INIS)

    Zhang Qiang; Wei Xiaopeng; Xu Jin

    2006-01-01

    Some sufficient conditions for the global exponential stability of cellular neural networks with variable delay are obtained by means of a method based on delay differential inequality. The method, which does not make use of Lyapunov functionals, is simple and effective for the stability analysis of neural networks with delay. Some previously established results in the literature are shown to be special cases of the presented result

  9. Intelligent neural network diagnostic system

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2010-01-01

    Recently, artificial neural network (ANN) has made a significant mark in the domain of diagnostic applications. Neural networks are used to implement complex non-linear mappings (functions) using simple elementary units interrelated through connections with adaptive weights. The performance of the ANN is mainly depending on their topology structure and weights. Some systems have been developed using genetic algorithm (GA) to optimize the topology of the ANN. But, they suffer from some limitations. They are : (1) The computation time requires for training the ANN several time reaching for the average weight required, (2) Slowness of GA for optimization process and (3) Fitness noise appeared in the optimization of ANN. This research suggests new issues to overcome these limitations for finding optimal neural network architectures to learn particular problems. This proposed methodology is used to develop a diagnostic neural network system. It has been applied for a 600 MW turbo-generator as a case of real complex systems. The proposed system has proved its significant performance compared to two common methods used in the diagnostic applications.

  10. Robust synchronization of delayed neural networks based on adaptive control and parameters identification

    International Nuclear Information System (INIS)

    Zhou Jin; Chen Tianping; Xiang Lan

    2006-01-01

    This paper investigates synchronization dynamics of delayed neural networks with all the parameters unknown. By combining the adaptive control and linear feedback with the updated law, some simple yet generic criteria for determining the robust synchronization based on the parameters identification of uncertain chaotic delayed neural networks are derived by using the invariance principle of functional differential equations. It is shown that the approaches developed here further extend the ideas and techniques presented in recent literature, and they are also simple to implement in practice. Furthermore, the theoretical results are applied to a typical chaotic delayed Hopfied neural networks, and numerical simulation also demonstrate the effectiveness and feasibility of the proposed technique

  11. Big Data Analytics An Overview

    Directory of Open Access Journals (Sweden)

    Jayshree Dwivedi

    2015-08-01

    Full Text Available Big data is a data beyond the storage capacity and beyond the processing power is called big data. Big data term is used for data sets its so large or complex that traditional data it involves data sets with sizes. Big data size is a constantly moving target year by year ranging from a few dozen terabytes to many petabytes of data means like social networking sites the amount of data produced by people is growing rapidly every year. Big data is not only a data rather it become a complete subject which includes various tools techniques and framework. It defines the epidemic possibility and evolvement of data both structured and unstructured. Big data is a set of techniques and technologies that require new forms of assimilate to uncover large hidden values from large datasets that are diverse complex and of a massive scale. It is difficult to work with using most relational database management systems and desktop statistics and visualization packages exacting preferably massively parallel software running on tens hundreds or even thousands of servers. Big data environment is used to grab organize and resolve the various types of data. In this paper we describe applications problems and tools of big data and gives overview of big data.

  12. Web Page Classification Method Using Neural Networks

    Science.gov (United States)

    Selamat, Ali; Omatu, Sigeru; Yanagimoto, Hidekazu; Fujinaka, Toru; Yoshioka, Michifumi

    Automatic categorization is the only viable method to deal with the scaling problem of the World Wide Web (WWW). In this paper, we propose a news web page classification method (WPCM). The WPCM uses a neural network with inputs obtained by both the principal components and class profile-based features (CPBF). Each news web page is represented by the term-weighting scheme. As the number of unique words in the collection set is big, the principal component analysis (PCA) has been used to select the most relevant features for the classification. Then the final output of the PCA is combined with the feature vectors from the class-profile which contains the most regular words in each class before feeding them to the neural networks. We have manually selected the most regular words that exist in each class and weighted them using an entropy weighting scheme. The fixed number of regular words from each class will be used as a feature vectors together with the reduced principal components from the PCA. These feature vectors are then used as the input to the neural networks for classification. The experimental evaluation demonstrates that the WPCM method provides acceptable classification accuracy with the sports news datasets.

  13. Urbanising Big

    DEFF Research Database (Denmark)

    Ljungwall, Christer

    2013-01-01

    Development in China raises the question of how big a city can become, and at the same time be sustainable, writes Christer Ljungwall of the Swedish Agency for Growth Policy Analysis.......Development in China raises the question of how big a city can become, and at the same time be sustainable, writes Christer Ljungwall of the Swedish Agency for Growth Policy Analysis....

  14. Big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Boyd, Richard N.

    2001-01-01

    The precision of measurements in modern cosmology has made huge strides in recent years, with measurements of the cosmic microwave background and the determination of the Hubble constant now rivaling the level of precision of the predictions of big bang nucleosynthesis. However, these results are not necessarily consistent with the predictions of the Standard Model of big bang nucleosynthesis. Reconciling these discrepancies may require extensions of the basic tenets of the model, and possibly of the reaction rates that determine the big bang abundances

  15. Neural network for solving convex quadratic bilevel programming problems.

    Science.gov (United States)

    He, Xing; Li, Chuandong; Huang, Tingwen; Li, Chaojie

    2014-03-01

    In this paper, using the idea of successive approximation, we propose a neural network to solve convex quadratic bilevel programming problems (CQBPPs), which is modeled by a nonautonomous differential inclusion. Different from the existing neural network for CQBPP, the model has the least number of state variables and simple structure. Based on the theory of nonsmooth analysis, differential inclusions and Lyapunov-like method, the limit equilibrium points sequence of the proposed neural networks can approximately converge to an optimal solution of CQBPP under certain conditions. Finally, simulation results on two numerical examples and the portfolio selection problem show the effectiveness and performance of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. The ethics of big data in big agriculture

    OpenAIRE

    Carbonell (Isabelle M.)

    2016-01-01

    This paper examines the ethics of big data in agriculture, focusing on the power asymmetry between farmers and large agribusinesses like Monsanto. Following the recent purchase of Climate Corp., Monsanto is currently the most prominent biotech agribusiness to buy into big data. With wireless sensors on tractors monitoring or dictating every decision a farmer makes, Monsanto can now aggregate large quantities of previously proprietary farming data, enabling a privileged position with unique in...

  17. Enhancing Health Risk Prediction with Deep Learning on Big Data and Revised Fusion Node Paradigm

    Directory of Open Access Journals (Sweden)

    Hongye Zhong

    2017-01-01

    Full Text Available With recent advances in health systems, the amount of health data is expanding rapidly in various formats. This data originates from many new sources including digital records, mobile devices, and wearable health devices. Big health data offers more opportunities for health data analysis and enhancement of health services via innovative approaches. The objective of this research is to develop a framework to enhance health prediction with the revised fusion node and deep learning paradigms. Fusion node is an information fusion model for constructing prediction systems. Deep learning involves the complex application of machine-learning algorithms, such as Bayesian fusions and neural network, for data extraction and logical inference. Deep learning, combined with information fusion paradigms, can be utilized to provide more comprehensive and reliable predictions from big health data. Based on the proposed framework, an experimental system is developed as an illustration for the framework implementation.

  18. The big data-big model (BDBM) challenges in ecological research

    Science.gov (United States)

    Luo, Y.

    2015-12-01

    The field of ecology has become a big-data science in the past decades due to development of new sensors used in numerous studies in the ecological community. Many sensor networks have been established to collect data. For example, satellites, such as Terra and OCO-2 among others, have collected data relevant on global carbon cycle. Thousands of field manipulative experiments have been conducted to examine feedback of terrestrial carbon cycle to global changes. Networks of observations, such as FLUXNET, have measured land processes. In particular, the implementation of the National Ecological Observatory Network (NEON), which is designed to network different kinds of sensors at many locations over the nation, will generate large volumes of ecological data every day. The raw data from sensors from those networks offer an unprecedented opportunity for accelerating advances in our knowledge of ecological processes, educating teachers and students, supporting decision-making, testing ecological theory, and forecasting changes in ecosystem services. Currently, ecologists do not have the infrastructure in place to synthesize massive yet heterogeneous data into resources for decision support. It is urgent to develop an ecological forecasting system that can make the best use of multiple sources of data to assess long-term biosphere change and anticipate future states of ecosystem services at regional and continental scales. Forecasting relies on big models that describe major processes that underlie complex system dynamics. Ecological system models, despite great simplification of the real systems, are still complex in order to address real-world problems. For example, Community Land Model (CLM) incorporates thousands of processes related to energy balance, hydrology, and biogeochemistry. Integration of massive data from multiple big data sources with complex models has to tackle Big Data-Big Model (BDBM) challenges. Those challenges include interoperability of multiple

  19. A Big Video Manifesto

    DEFF Research Database (Denmark)

    Mcilvenny, Paul Bruce; Davidsen, Jacob

    2017-01-01

    and beautiful visualisations. However, we also need to ask what the tools of big data can do both for the Humanities and for more interpretative approaches and methods. Thus, we prefer to explore how the power of computation, new sensor technologies and massive storage can also help with video-based qualitative......For the last few years, we have witnessed a hype about the potential results and insights that quantitative big data can bring to the social sciences. The wonder of big data has moved into education, traffic planning, and disease control with a promise of making things better with big numbers...

  20. Identifying Dwarfs Workloads in Big Data Analytics

    OpenAIRE

    Gao, Wanling; Luo, Chunjie; Zhan, Jianfeng; Ye, Hainan; He, Xiwen; Wang, Lei; Zhu, Yuqing; Tian, Xinhui

    2015-01-01

    Big data benchmarking is particularly important and provides applicable yardsticks for evaluating booming big data systems. However, wide coverage and great complexity of big data computing impose big challenges on big data benchmarking. How can we construct a benchmark suite using a minimum set of units of computation to represent diversity of big data analytics workloads? Big data dwarfs are abstractions of extracting frequently appearing operations in big data computing. One dwarf represen...

  1. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.

    Science.gov (United States)

    Jimenez-Romero, Cristian; Johnson, Jeffrey

    2017-01-01

    The scientific interest attracted by Spiking Neural Networks (SNN) has lead to the development of tools for the simulation and study of neuronal dynamics ranging from phenomenological models to the more sophisticated and biologically accurate Hodgkin-and-Huxley-based and multi-compartmental models. However, despite the multiple features offered by neural modelling tools, their integration with environments for the simulation of robots and agents can be challenging and time consuming. The implementation of artificial neural circuits to control robots generally involves the following tasks: (1) understanding the simulation tools, (2) creating the neural circuit in the neural simulator, (3) linking the simulated neural circuit with the environment of the agent and (4) programming the appropriate interface in the robot or agent to use the neural controller. The accomplishment of the above-mentioned tasks can be challenging, especially for undergraduate students or novice researchers. This paper presents an alternative tool which facilitates the simulation of simple SNN circuits using the multi-agent simulation and the programming environment Netlogo (educational software that simplifies the study and experimentation of complex systems). The engine proposed and implemented in Netlogo for the simulation of a functional model of SNN is a simplification of integrate and fire (I&F) models. The characteristics of the engine (including neuronal dynamics, STDP learning and synaptic delay) are demonstrated through the implementation of an agent representing an artificial insect controlled by a simple neural circuit. The setup of the experiment and its outcomes are described in this work.

  2. Applications of Big Data in Education

    OpenAIRE

    Faisal Kalota

    2015-01-01

    Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners' needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in educa...

  3. A hybrid ARIMA and neural network model applied to forecast catch volumes of Selar crumenophthalmus

    Science.gov (United States)

    Aquino, Ronald L.; Alcantara, Nialle Loui Mar T.; Addawe, Rizavel C.

    2017-11-01

    The Selar crumenophthalmus with the English name big-eyed scad fish, locally known as matang-baka, is one of the fishes commonly caught along the waters of La Union, Philippines. The study deals with the forecasting of catch volumes of big-eyed scad fish for commercial consumption. The data used are quarterly caught volumes of big-eyed scad fish from 2002 to first quarter of 2017. This actual data is available from the open stat database published by the Philippine Statistics Authority (PSA)whose task is to collect, compiles, analyzes and publish information concerning different aspects of the Philippine setting. Autoregressive Integrated Moving Average (ARIMA) models, Artificial Neural Network (ANN) model and the Hybrid model consisting of ARIMA and ANN were developed to forecast catch volumes of big-eyed scad fish. Statistical errors such as Mean Absolute Errors (MAE) and Root Mean Square Errors (RMSE) were computed and compared to choose the most suitable model for forecasting the catch volume for the next few quarters. A comparison of the results of each model and corresponding statistical errors reveals that the hybrid model, ARIMA-ANN (2,1,2)(6:3:1), is the most suitable model to forecast the catch volumes of the big-eyed scad fish for the next few quarters.

  4. Big Data Semantics

    NARCIS (Netherlands)

    Ceravolo, Paolo; Azzini, Antonia; Angelini, Marco; Catarci, Tiziana; Cudré-Mauroux, Philippe; Damiani, Ernesto; Mazak, Alexandra; van Keulen, Maurice; Jarrar, Mustafa; Santucci, Giuseppe; Sattler, Kai-Uwe; Scannapieco, Monica; Wimmer, Manuel; Wrembel, Robert; Zaraket, Fadi

    2018-01-01

    Big Data technology has discarded traditional data modeling approaches as no longer applicable to distributed data processing. It is, however, largely recognized that Big Data impose novel challenges in data and infrastructure management. Indeed, multiple components and procedures must be

  5. Neural networks. A new analytical tool, applicable also in nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Stritar, A [Inst. Jozef Stefan, Ljubljana (Slovenia)

    1992-07-01

    The basic concept of neural networks and back propagation learning algorithm are described. The behaviour of typical neural network is demonstrated on a simple graphical case. A short literature survey about the application of neural networks in nuclear science and engineering is made. The application of the neural network to the probability density calculation is shown. (author) [Slovenian] Opisana je osnova nevronskih mrez in back propagation nacina njihovega ucenja. Obnasanje enostavne nevronske mreze je prikazano na graficnem primeru. Podan je kratek pregled literaure o uporabi nevronskih mrez v jedrski znanosti in tehnologiji. Prikazana je tudi uporaba nevronske mreze pri izracunu verjetnostne porazdelitve. (author)

  6. Comparative validity of brief to medium-length Big Five and Big Six personality questionnaires

    NARCIS (Netherlands)

    Thalmayer, A.G.; Saucier, G.; Eigenhuis, A.

    2011-01-01

    A general consensus on the Big Five model of personality attributes has been highly generative for the field of personality psychology. Many important psychological and life outcome correlates with Big Five trait dimensions have been established. But researchers must choose between multiple Big Five

  7. Field performance of timber bridges. 9, Big Erick`s stress-laminated deck bridge

    Science.gov (United States)

    J. A. Kainz; J. P. Wacker; M. Nelson

    The Big Erickas bridge was constructed during September 1992 in Baraga County, Michigan. The bridge is 72 ft long, 16 ft wide, and consists of three simple spans: two stress-laminated deck approach spans and a stress-laminated box center span. The bridge is unique in that it is one of the first known stress-laminated timber bridge applications to use Eastern Hemlock...

  8. Big Bang à Genève - French version only

    CERN Multimedia

    2005-01-01

    C'est la dernière conférence du cycle organisé par la section de physique de l'Université de Genève à l'occasion de l'Année internationale de la physique. Pour le bouquet final, la section de physique a choisi le grand boum du Big Bang. Intitulée « Big Bang à Genève », la conférence donnée par Laurent Chevalier de l'institut français CEA Saclay évoquera les expériences qui se préparent au CERN avec le LHC. Leur but est de reproduire et d'analyser les conditions qui prévalaient à l'origine de l'Univers, juste après le Big Bang. L'exposé décrira de façon simple les techniques utilisées pour cette exploration, qui démarrera en 2007. Laurent Chevalier se demandera avec le public quels phénomènes nouveaux les physiciens espèrent découvrir dans ce monde inexploré. Comme les précédentes, la conférence débutera par une démonstration de détection de rayons cosmiques dans l'auditoire et l'utilisation de ces signaux pour créer une « musique cosmique », en collaboration avec le Pr...

  9. Simple Algorithms for Distributed Leader Election in Anonymous Synchronous Rings and Complete Networks Inspired by Neural Development in Fruit Flies.

    Science.gov (United States)

    Xu, Lei; Jeavons, Peter

    2015-11-01

    Leader election in anonymous rings and complete networks is a very practical problem in distributed computing. Previous algorithms for this problem are generally designed for a classical message passing model where complex messages are exchanged. However, the need to send and receive complex messages makes such algorithms less practical for some real applications. We present some simple synchronous algorithms for distributed leader election in anonymous rings and complete networks that are inspired by the development of the neural system of the fruit fly. Our leader election algorithms all assume that only one-bit messages are broadcast by nodes in the network and processors are only able to distinguish between silence and the arrival of one or more messages. These restrictions allow implementations to use a simpler message-passing architecture. Even with these harsh restrictions our algorithms are shown to achieve good time and message complexity both analytically and experimentally.

  10. The Big Five of Personality and structural imaging revisited: a VBM - DARTEL study.

    Science.gov (United States)

    Liu, Wei-Yin; Weber, Bernd; Reuter, Martin; Markett, Sebastian; Chu, Woei-Chyn; Montag, Christian

    2013-05-08

    The present study focuses on the neurostructural foundations of the human personality. In a large sample of 227 healthy human individuals (168 women and 59 men), we used MRI to examine the relationship between personality traits and both regional gray and white matter volume, while controlling for age and sex. Personality was assessed using the German version of the NEO Five-Factor Inventory that measures individual differences in the 'Big Five of Personality': extraversion, neuroticism, agreeableness, conscientiousness, and openness to experience. In contrast to most previous studies on neural correlates of the Big Five, we used improved processing strategies: white and gray matter were independently assessed by segmentation steps before data analysis. In addition, customized sex-specific diffeomorphic anatomical registration using exponentiated lie algebra templates were used. Our results did not show significant correlations between any dimension of the Big Five and regional gray matter volume. However, among others, higher conscientiousness scores correlated significantly with reductions in regional white matter volume in different brain areas, including the right insula, putamen, caudate, and left fusiformis. These correlations were driven by the female subsample. The present study suggests that many results from the literature on the neurostructural basis of personality should be reviewed carefully, considering the results when the sample size is larger, imaging methods are rigorously applied, and sex-related and age-related effects are controlled.

  11. Assessing Big Data

    DEFF Research Database (Denmark)

    Leimbach, Timo; Bachlechner, Daniel

    2015-01-01

    In recent years, big data has been one of the most controversially discussed technologies in terms of its possible positive and negative impact. Therefore, the need for technology assessments is obvious. This paper first provides, based on the results of a technology assessment study, an overview...... of the potential and challenges associated with big data and then describes the problems experienced during the study as well as methods found helpful to address them. The paper concludes with reflections on how the insights from the technology assessment study may have an impact on the future governance of big...... data....

  12. Big data, big responsibilities

    Directory of Open Access Journals (Sweden)

    Primavera De Filippi

    2014-01-01

    Full Text Available Big data refers to the collection and aggregation of large quantities of data produced by and about people, things or the interactions between them. With the advent of cloud computing, specialised data centres with powerful computational hardware and software resources can be used for processing and analysing a humongous amount of aggregated data coming from a variety of different sources. The analysis of such data is all the more valuable to the extent that it allows for specific patterns to be found and new correlations to be made between different datasets, so as to eventually deduce or infer new information, as well as to potentially predict behaviours or assess the likelihood for a certain event to occur. This article will focus specifically on the legal and moral obligations of online operators collecting and processing large amounts of data, to investigate the potential implications of big data analysis on the privacy of individual users and on society as a whole.

  13. A model of interval timing by neural integration.

    Science.gov (United States)

    Simen, Patrick; Balci, Fuat; de Souza, Laura; Cohen, Jonathan D; Holmes, Philip

    2011-06-22

    We show that simple assumptions about neural processing lead to a model of interval timing as a temporal integration process, in which a noisy firing-rate representation of time rises linearly on average toward a response threshold over the course of an interval. Our assumptions include: that neural spike trains are approximately independent Poisson processes, that correlations among them can be largely cancelled by balancing excitation and inhibition, that neural populations can act as integrators, and that the objective of timed behavior is maximal accuracy and minimal variance. The model accounts for a variety of physiological and behavioral findings in rodents, monkeys, and humans, including ramping firing rates between the onset of reward-predicting cues and the receipt of delayed rewards, and universally scale-invariant response time distributions in interval timing tasks. It furthermore makes specific, well-supported predictions about the skewness of these distributions, a feature of timing data that is usually ignored. The model also incorporates a rapid (potentially one-shot) duration-learning procedure. Human behavioral data support the learning rule's predictions regarding learning speed in sequences of timed responses. These results suggest that simple, integration-based models should play as prominent a role in interval timing theory as they do in theories of perceptual decision making, and that a common neural mechanism may underlie both types of behavior.

  14. Biological neural networks as model systems for designing future parallel processing computers

    Science.gov (United States)

    Ross, Muriel D.

    1991-01-01

    One of the more interesting debates of the present day centers on whether human intelligence can be simulated by computer. The author works under the premise that neurons individually are not smart at all. Rather, they are physical units which are impinged upon continuously by other matter that influences the direction of voltage shifts across the units membranes. It is only the action of a great many neurons, billions in the case of the human nervous system, that intelligent behavior emerges. What is required to understand even the simplest neural system is painstaking analysis, bit by bit, of the architecture and the physiological functioning of its various parts. The biological neural network studied, the vestibular utricular and saccular maculas of the inner ear, are among the most simple of the mammalian neural networks to understand and model. While there is still a long way to go to understand even this most simple neural network in sufficient detail for extrapolation to computers and robots, a start was made. Moreover, the insights obtained and the technologies developed help advance the understanding of the more complex neural networks that underlie human intelligence.

  15. Comparative validity of brief to medium-length Big Five and Big Six Personality Questionnaires.

    Science.gov (United States)

    Thalmayer, Amber Gayle; Saucier, Gerard; Eigenhuis, Annemarie

    2011-12-01

    A general consensus on the Big Five model of personality attributes has been highly generative for the field of personality psychology. Many important psychological and life outcome correlates with Big Five trait dimensions have been established. But researchers must choose between multiple Big Five inventories when conducting a study and are faced with a variety of options as to inventory length. Furthermore, a 6-factor model has been proposed to extend and update the Big Five model, in part by adding a dimension of Honesty/Humility or Honesty/Propriety. In this study, 3 popular brief to medium-length Big Five measures (NEO Five Factor Inventory, Big Five Inventory [BFI], and International Personality Item Pool), and 3 six-factor measures (HEXACO Personality Inventory, Questionnaire Big Six Scales, and a 6-factor version of the BFI) were placed in competition to best predict important student life outcomes. The effect of test length was investigated by comparing brief versions of most measures (subsets of items) with original versions. Personality questionnaires were administered to undergraduate students (N = 227). Participants' college transcripts and student conduct records were obtained 6-9 months after data was collected. Six-factor inventories demonstrated better predictive ability for life outcomes than did some Big Five inventories. Additional behavioral observations made on participants, including their Facebook profiles and cell-phone text usage, were predicted similarly by Big Five and 6-factor measures. A brief version of the BFI performed surprisingly well; across inventory platforms, increasing test length had little effect on predictive validity. Comparative validity of the models and measures in terms of outcome prediction and parsimony is discussed.

  16. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    Energy Technology Data Exchange (ETDEWEB)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  17. Dual of big bang and big crunch

    International Nuclear Information System (INIS)

    Bak, Dongsu

    2007-01-01

    Starting from the Janus solution and its gauge theory dual, we obtain the dual gauge theory description of the cosmological solution by the procedure of double analytic continuation. The coupling is driven either to zero or to infinity at the big-bang and big-crunch singularities, which are shown to be related by the S-duality symmetry. In the dual Yang-Mills theory description, these are nonsingular as the coupling goes to zero in the N=4 super Yang-Mills theory. The cosmological singularities simply signal the failure of the supergravity description of the full type IIB superstring theory

  18. Advanced neural network-based computational schemes for robust fault diagnosis

    CERN Document Server

    Mrugalski, Marcin

    2014-01-01

    The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practica...

  19. Comparative Validity of Brief to Medium-Length Big Five and Big Six Personality Questionnaires

    Science.gov (United States)

    Thalmayer, Amber Gayle; Saucier, Gerard; Eigenhuis, Annemarie

    2011-01-01

    A general consensus on the Big Five model of personality attributes has been highly generative for the field of personality psychology. Many important psychological and life outcome correlates with Big Five trait dimensions have been established. But researchers must choose between multiple Big Five inventories when conducting a study and are…

  20. Big data for health.

    Science.gov (United States)

    Andreu-Perez, Javier; Poon, Carmen C Y; Merrifield, Robert D; Wong, Stephen T C; Yang, Guang-Zhong

    2015-07-01

    This paper provides an overview of recent developments in big data in the context of biomedical and health informatics. It outlines the key characteristics of big data and how medical and health informatics, translational bioinformatics, sensor informatics, and imaging informatics will benefit from an integrated approach of piecing together different aspects of personalized information from a diverse range of data sources, both structured and unstructured, covering genomics, proteomics, metabolomics, as well as imaging, clinical diagnosis, and long-term continuous physiological sensing of an individual. It is expected that recent advances in big data will expand our knowledge for testing new hypotheses about disease management from diagnosis to prevention to personalized treatment. The rise of big data, however, also raises challenges in terms of privacy, security, data ownership, data stewardship, and governance. This paper discusses some of the existing activities and future opportunities related to big data for health, outlining some of the key underlying issues that need to be tackled.

  1. Investigation of efficient features for image recognition by neural networks.

    Science.gov (United States)

    Goltsev, Alexander; Gritsenko, Vladimir

    2012-04-01

    In the paper, effective and simple features for image recognition (named LiRA-features) are investigated in the task of handwritten digit recognition. Two neural network classifiers are considered-a modified 3-layer perceptron LiRA and a modular assembly neural network. A method of feature selection is proposed that analyses connection weights formed in the preliminary learning process of a neural network classifier. In the experiments using the MNIST database of handwritten digits, the feature selection procedure allows reduction of feature number (from 60 000 to 7000) preserving comparable recognition capability while accelerating computations. Experimental comparison between the LiRA perceptron and the modular assembly neural network is accomplished, which shows that recognition capability of the modular assembly neural network is somewhat better. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Machine learning of big data in gaining insight into successful treatment of hypertension.

    Science.gov (United States)

    Koren, Gideon; Nordon, Galia; Radinsky, Kira; Shalev, Varda

    2018-06-01

    Despite effective medications, rates of uncontrolled hypertension remain high. Treatment protocols are largely based on randomized trials and meta-analyses of these studies. The objective of this study was to test the utility of machine learning of big data in gaining insight into the treatment of hypertension. We applied machine learning techniques such as decision trees and neural networks, to identify determinants that contribute to the success of hypertension drug treatment on a large set of patients. We also identified concomitant drugs not considered to have antihypertensive activity, which may contribute to lowering blood pressure (BP) control. Higher initial BP predicts lower success rates. Among the medication options and their combinations, treatment with beta blockers appears to be more commonly effective, which is not reflected in contemporary guidelines. Among numerous concomitant drugs taken by hypertensive patients, proton pump inhibitors (PPIs), and HMG CO-A reductase inhibitors (statins) significantly improved the success rate of hypertension. In conclusions, machine learning of big data is a novel method to identify effective antihypertensive therapy and for repurposing medications already on the market for new indications. Our results related to beta blockers, stemming from machine learning of a large and diverse set of big data, in contrast to the much narrower criteria for randomized clinic trials (RCTs), should be corroborated and affirmed by other methods, as they hold potential promise for an old class of drugs which may be presently underutilized. These previously unrecognized effects of PPIs and statins have been very recently identified as effective in lowering BP in preliminary clinical observations, lending credibility to our big data results.

  3. Big Data: Implications for Health System Pharmacy.

    Science.gov (United States)

    Stokes, Laura B; Rogers, Joseph W; Hertig, John B; Weber, Robert J

    2016-07-01

    Big Data refers to datasets that are so large and complex that traditional methods and hardware for collecting, sharing, and analyzing them are not possible. Big Data that is accurate leads to more confident decision making, improved operational efficiency, and reduced costs. The rapid growth of health care information results in Big Data around health services, treatments, and outcomes, and Big Data can be used to analyze the benefit of health system pharmacy services. The goal of this article is to provide a perspective on how Big Data can be applied to health system pharmacy. It will define Big Data, describe the impact of Big Data on population health, review specific implications of Big Data in health system pharmacy, and describe an approach for pharmacy leaders to effectively use Big Data. A few strategies involved in managing Big Data in health system pharmacy include identifying potential opportunities for Big Data, prioritizing those opportunities, protecting privacy concerns, promoting data transparency, and communicating outcomes. As health care information expands in its content and becomes more integrated, Big Data can enhance the development of patient-centered pharmacy services.

  4. Generalized formal model of Big Data

    OpenAIRE

    Shakhovska, N.; Veres, O.; Hirnyak, M.

    2016-01-01

    This article dwells on the basic characteristic features of the Big Data technologies. It is analyzed the existing definition of the “big data” term. The article proposes and describes the elements of the generalized formal model of big data. It is analyzed the peculiarities of the application of the proposed model components. It is described the fundamental differences between Big Data technology and business analytics. Big Data is supported by the distributed file system Google File System ...

  5. BigWig and BigBed: enabling browsing of large distributed datasets.

    Science.gov (United States)

    Kent, W J; Zweig, A S; Barber, G; Hinrichs, A S; Karolchik, D

    2010-09-01

    BigWig and BigBed files are compressed binary indexed files containing data at several resolutions that allow the high-performance display of next-generation sequencing experiment results in the UCSC Genome Browser. The visualization is implemented using a multi-layered software approach that takes advantage of specific capabilities of web-based protocols and Linux and UNIX operating systems files, R trees and various indexing and compression tricks. As a result, only the data needed to support the current browser view is transmitted rather than the entire file, enabling fast remote access to large distributed data sets. Binaries for the BigWig and BigBed creation and parsing utilities may be downloaded at http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/. Source code for the creation and visualization software is freely available for non-commercial use at http://hgdownload.cse.ucsc.edu/admin/jksrc.zip, implemented in C and supported on Linux. The UCSC Genome Browser is available at http://genome.ucsc.edu.

  6. A Simple Neural Network System for Wisconsin Card Sorting Test

    National Research Council Canada - National Science Library

    Kaplan, Gulay

    2001-01-01

    .... A simple model based on winner take all network and multi layer perceptron suffices to model the affect of frontal lobe damage, which leads to perseveration as diminishing the influence of reinforcement...

  7. Big Impacts and Transient Oceans on Titan

    Science.gov (United States)

    Zahnle, K. J.; Korycansky, D. G.; Nixon, C. A.

    2014-01-01

    We have studied the thermal consequences of very big impacts on Titan [1]. Titan's thick atmosphere and volatile-rich surface cause it to respond to big impacts in a somewhat Earth-like manner. Here we construct a simple globally-averaged model that tracks the flow of energy through the environment in the weeks, years, and millenia after a big comet strikes Titan. The model Titan is endowed with 1.4 bars of N2 and 0.07 bars of CH4, methane lakes, a water ice crust, and enough methane underground to saturate the regolith to the surface. We assume that half of the impact energy is immediately available to the atmosphere and surface while the other half is buried at the site of the crater and is unavailable on time scales of interest. The atmosphere and surface are treated as isothermal. We make the simplifying assumptions that the crust is everywhere as methane saturated as it was at the Huygens landing site, that the concentration of methane in the regolith is the same as it is at the surface, and that the crust is made of water ice. Heat flow into and out of the crust is approximated by step-functions. If the impact is great enough, ice melts. The meltwater oceans cool to the atmosphere conductively through an ice lid while at the base melting their way into the interior, driven down in part through Rayleigh-Taylor instabilities between the dense water and the warm ice. Topography, CO2, and hydrocarbons other than methane are ignored. Methane and ethane clathrate hydrates are discussed quantitatively but not fully incorporated into the model.

  8. Big Data-Driven Based Real-Time Traffic Flow State Identification and Prediction

    Directory of Open Access Journals (Sweden)

    Hua-pu Lu

    2015-01-01

    Full Text Available With the rapid development of urban informatization, the era of big data is coming. To satisfy the demand of traffic congestion early warning, this paper studies the method of real-time traffic flow state identification and prediction based on big data-driven theory. Traffic big data holds several characteristics, such as temporal correlation, spatial correlation, historical correlation, and multistate. Traffic flow state quantification, the basis of traffic flow state identification, is achieved by a SAGA-FCM (simulated annealing genetic algorithm based fuzzy c-means based traffic clustering model. Considering simple calculation and predictive accuracy, a bilevel optimization model for regional traffic flow correlation analysis is established to predict traffic flow parameters based on temporal-spatial-historical correlation. A two-stage model for correction coefficients optimization is put forward to simplify the bilevel optimization model. The first stage model is built to calculate the number of temporal-spatial-historical correlation variables. The second stage model is present to calculate basic model formulation of regional traffic flow correlation. A case study based on a real-world road network in Beijing, China, is implemented to test the efficiency and applicability of the proposed modeling and computing methods.

  9. AMAZON HADOOP FRAMEWORK USED IN BUSINESS FOR BIG DATA ANALYSIS

    OpenAIRE

    Ankush Verma*, Dr Neelesh Jain

    2017-01-01

    The Amazon MapReduce programming model, introduced by Amazon, a simple and efficient way of performing distributed computation over large data sets on the web especially for e-commerce. Amazon EMR work on Master/Slave Architecture using Amazon EMR for map and reduce big data. Amazon EC2 use cloud computing is a central part of designed web service that provides resizable compute capacity in the cloud. Here we also discuss about the Benefit and limitation of using Amazon EMR. Amazon S3 use eas...

  10. Big data-driven business how to use big data to win customers, beat competitors, and boost profits

    CERN Document Server

    Glass, Russell

    2014-01-01

    Get the expert perspective and practical advice on big data The Big Data-Driven Business: How to Use Big Data to Win Customers, Beat Competitors, and Boost Profits makes the case that big data is for real, and more than just big hype. The book uses real-life examples-from Nate Silver to Copernicus, and Apple to Blackberry-to demonstrate how the winners of the future will use big data to seek the truth. Written by a marketing journalist and the CEO of a multi-million-dollar B2B marketing platform that reaches more than 90% of the U.S. business population, this book is a comprehens

  11. Big Game Reporting Stations

    Data.gov (United States)

    Vermont Center for Geographic Information — Point locations of big game reporting stations. Big game reporting stations are places where hunters can legally report harvested deer, bear, or turkey. These are...

  12. Stalin's Big Fleet Program

    National Research Council Canada - National Science Library

    Mauner, Milan

    2002-01-01

    Although Dr. Milan Hauner's study 'Stalin's Big Fleet program' has focused primarily on the formation of Big Fleets during the Tsarist and Soviet periods of Russia's naval history, there are important lessons...

  13. Five Big, Big Five Issues : Rationale, Content, Structure, Status, and Crosscultural Assessment

    NARCIS (Netherlands)

    De Raad, Boele

    1998-01-01

    This article discusses the rationale, content, structure, status, and crosscultural assessment of the Big Five trait factors, focusing on topics of dispute and misunderstanding. Taxonomic restrictions of the original Big Five forerunner, the "Norman Five," are discussed, and criticisms regarding the

  14. Statistical mechanics of attractor neural network models with synaptic depression

    International Nuclear Information System (INIS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2009-01-01

    Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.

  15. Big data challenges

    DEFF Research Database (Denmark)

    Bachlechner, Daniel; Leimbach, Timo

    2016-01-01

    Although reports on big data success stories have been accumulating in the media, most organizations dealing with high-volume, high-velocity and high-variety information assets still face challenges. Only a thorough understanding of these challenges puts organizations into a position in which...... they can make an informed decision for or against big data, and, if the decision is positive, overcome the challenges smoothly. The combination of a series of interviews with leading experts from enterprises, associations and research institutions, and focused literature reviews allowed not only...... framework are also relevant. For large enterprises and startups specialized in big data, it is typically easier to overcome the challenges than it is for other enterprises and public administration bodies....

  16. Big Data and HPC collocation: Using HPC idle resources for Big Data Analytics

    OpenAIRE

    MERCIER , Michael; Glesser , David; Georgiou , Yiannis; Richard , Olivier

    2017-01-01

    International audience; Executing Big Data workloads upon High Performance Computing (HPC) infrastractures has become an attractive way to improve their performances. However, the collocation of HPC and Big Data workloads is not an easy task, mainly because of their core concepts' differences. This paper focuses on the challenges related to the scheduling of both Big Data and HPC workloads on the same computing platform. In classic HPC workloads, the rigidity of jobs tends to create holes in ...

  17. Le big bang n'est pas une théorie comme les autres

    CERN Document Server

    Bonnet-Bidaud, Jean-Marc; Leglu, Dominique; Reinisch, Gilbert

    2009-01-01

    Le big bang n'est pas une théorie comme les autres. Ce n'est d'ailleurs pas une théorie physique au sens propre du terme, mais un scénario cosmologique issu des équations de la relativité générale. Il est le modèle qui s'ajuste le mieux aux observations actuelles, mais à quel prix ? Il nous livre un Univers composé à 96 % de matière et d'énergie noires inconnues. C'est donc un euphémisme que de dire que le big bang semble poser autant - sinon plus - de questions qu'il n'en résout. En ce sens, le big bang apparaît davantage comme une paramétrisation de notre ignorance plutôt que comme une modélisation d'un phénomène. Pourtant, le succès du big bang et l'adhésion qu'il suscite, tant dans la sphère scientifique que dans la sphère médiatique, ne se démentent pas. Surmédiatisé, son statut dépasse celui de modèle théorique, et la simple évocation de son nom suffit pour justifier des opérations de marketing scientifique ou rejeter des cosmologies alternatives. Pour éclaircir les pr...

  18. Big Data as Governmentality

    DEFF Research Database (Denmark)

    Flyverbom, Mikkel; Madsen, Anders Koed; Rasche, Andreas

    This paper conceptualizes how large-scale data and algorithms condition and reshape knowledge production when addressing international development challenges. The concept of governmentality and four dimensions of an analytics of government are proposed as a theoretical framework to examine how big...... data is constituted as an aspiration to improve the data and knowledge underpinning development efforts. Based on this framework, we argue that big data’s impact on how relevant problems are governed is enabled by (1) new techniques of visualizing development issues, (2) linking aspects...... shows that big data problematizes selected aspects of traditional ways to collect and analyze data for development (e.g. via household surveys). We also demonstrate that using big data analyses to address development challenges raises a number of questions that can deteriorate its impact....

  19. Boarding to Big data

    Directory of Open Access Journals (Sweden)

    Oana Claudia BRATOSIN

    2016-05-01

    Full Text Available Today Big data is an emerging topic, as the quantity of the information grows exponentially, laying the foundation for its main challenge, the value of the information. The information value is not only defined by the value extraction from huge data sets, as fast and optimal as possible, but also by the value extraction from uncertain and inaccurate data, in an innovative manner using Big data analytics. At this point, the main challenge of the businesses that use Big data tools is to clearly define the scope and the necessary output of the business so that the real value can be gained. This article aims to explain the Big data concept, its various classifications criteria, architecture, as well as the impact in the world wide processes.

  20. Big data - a 21st century science Maginot Line? No-boundary thinking: shifting from the big data paradigm.

    Science.gov (United States)

    Huang, Xiuzhen; Jennings, Steven F; Bruce, Barry; Buchan, Alison; Cai, Liming; Chen, Pengyin; Cramer, Carole L; Guan, Weihua; Hilgert, Uwe Kk; Jiang, Hongmei; Li, Zenglu; McClure, Gail; McMullen, Donald F; Nanduri, Bindu; Perkins, Andy; Rekepalli, Bhanu; Salem, Saeed; Specker, Jennifer; Walker, Karl; Wunsch, Donald; Xiong, Donghai; Zhang, Shuzhong; Zhang, Yu; Zhao, Zhongming; Moore, Jason H

    2015-01-01

    Whether your interests lie in scientific arenas, the corporate world, or in government, you have certainly heard the praises of big data: Big data will give you new insights, allow you to become more efficient, and/or will solve your problems. While big data has had some outstanding successes, many are now beginning to see that it is not the Silver Bullet that it has been touted to be. Here our main concern is the overall impact of big data; the current manifestation of big data is constructing a Maginot Line in science in the 21st century. Big data is not "lots of data" as a phenomena anymore; The big data paradigm is putting the spirit of the Maginot Line into lots of data. Big data overall is disconnecting researchers and science challenges. We propose No-Boundary Thinking (NBT), applying no-boundary thinking in problem defining to address science challenges.

  1. Big Egos in Big Science

    DEFF Research Database (Denmark)

    Andersen, Kristina Vaarst; Jeppesen, Jacob

    In this paper we investigate the micro-mechanisms governing structural evolution and performance of scientific collaboration. Scientific discovery tends not to be lead by so called lone ?stars?, or big egos, but instead by collaboration among groups of researchers, from a multitude of institutions...

  2. Big Data and Big Science

    OpenAIRE

    Di Meglio, Alberto

    2014-01-01

    Brief introduction to the challenges of big data in scientific research based on the work done by the HEP community at CERN and how the CERN openlab promotes collaboration among research institutes and industrial IT companies. Presented at the FutureGov 2014 conference in Singapore.

  3. Neural codes of seeing architectural styles.

    Science.gov (United States)

    Choo, Heeyoung; Nasar, Jack L; Nikrahei, Bardia; Walther, Dirk B

    2017-01-10

    Images of iconic buildings, such as the CN Tower, instantly transport us to specific places, such as Toronto. Despite the substantial impact of architectural design on people's visual experience of built environments, we know little about its neural representation in the human brain. In the present study, we have found patterns of neural activity associated with specific architectural styles in several high-level visual brain regions, but not in primary visual cortex (V1). This finding suggests that the neural correlates of the visual perception of architectural styles stem from style-specific complex visual structure beyond the simple features computed in V1. Surprisingly, the network of brain regions representing architectural styles included the fusiform face area (FFA) in addition to several scene-selective regions. Hierarchical clustering of error patterns further revealed that the FFA participated to a much larger extent in the neural encoding of architectural styles than entry-level scene categories. We conclude that the FFA is involved in fine-grained neural encoding of scenes at a subordinate-level, in our case, architectural styles of buildings. This study for the first time shows how the human visual system encodes visual aspects of architecture, one of the predominant and longest-lasting artefacts of human culture.

  4. Challenges of Big Data Analysis.

    Science.gov (United States)

    Fan, Jianqing; Han, Fang; Liu, Han

    2014-06-01

    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article gives overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasize on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions.

  5. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns.

    Directory of Open Access Journals (Sweden)

    Andrea Maesani

    2015-11-01

    Full Text Available The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs-locomotor bouts-matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior.

  6. Random noise effects in pulse-mode digital multilayer neural networks.

    Science.gov (United States)

    Kim, Y C; Shanblatt, M A

    1995-01-01

    A pulse-mode digital multilayer neural network (DMNN) based on stochastic computing techniques is implemented with simple logic gates as basic computing elements. The pulse-mode signal representation and the use of simple logic gates for neural operations lead to a massively parallel yet compact and flexible network architecture, well suited for VLSI implementation. Algebraic neural operations are replaced by stochastic processes using pseudorandom pulse sequences. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. Synaptic weights and neuron states are represented as probabilities and estimated as average pulse occurrence rates in corresponding pulse sequences. A statistical model of the noise (error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Computational differences are then explained by comparison to deterministic neural computations. DMNN feedforward architectures are modeled in VHDL using character recognition problems as testbeds. Computational accuracy is analyzed, and the results of the statistical model are compared with the actual simulation results. Experiments show that the calculations performed in the DMNN are more accurate than those anticipated when Bernoulli sequences are assumed, as is common in the literature. Furthermore, the statistical model successfully predicts the accuracy of the operations performed in the DMNN.

  7. Classical Conditioning with Pulsed Integrated Neural Networks: Circuits and System

    DEFF Research Database (Denmark)

    Lehmann, Torsten

    1998-01-01

    In this paper we investigate on-chip learning for pulsed, integrated neural networks. We discuss the implementational problems the technology imposes on learning systems and we find that abiologically inspired approach using simple circuit structures is most likely to bring success. We develop a ...... chip to solve simple classical conditioning tasks, thus verifying the design methodologies put forward in the paper....

  8. Big data is not a monolith

    CERN Document Server

    Ekbia, Hamid R; Mattioli, Michael

    2016-01-01

    Big data is ubiquitous but heterogeneous. Big data can be used to tally clicks and traffic on web pages, find patterns in stock trades, track consumer preferences, identify linguistic correlations in large corpuses of texts. This book examines big data not as an undifferentiated whole but contextually, investigating the varied challenges posed by big data for health, science, law, commerce, and politics. Taken together, the chapters reveal a complex set of problems, practices, and policies. The advent of big data methodologies has challenged the theory-driven approach to scientific knowledge in favor of a data-driven one. Social media platforms and self-tracking tools change the way we see ourselves and others. The collection of data by corporations and government threatens privacy while promoting transparency. Meanwhile, politicians, policy makers, and ethicists are ill-prepared to deal with big data's ramifications. The contributors look at big data's effect on individuals as it exerts social control throu...

  9. Big universe, big data

    DEFF Research Database (Denmark)

    Kremer, Jan; Stensbo-Smidt, Kristoffer; Gieseke, Fabian Cristian

    2017-01-01

    , modern astronomy requires big data know-how, in particular it demands highly efficient machine learning and image analysis algorithms. But scalability is not the only challenge: Astronomy applications touch several current machine learning research questions, such as learning from biased data and dealing......, and highlight some recent methodological advancements in machine learning and image analysis triggered by astronomical applications....

  10. Simple neural substrate predicts complex rhythmic structure in duetting birds

    Science.gov (United States)

    Amador, Ana; Trevisan, M. A.; Mindlin, G. B.

    2005-09-01

    Horneros (Furnarius Rufus) are South American birds well known for their oven-looking nests and their ability to sing in couples. Previous work has analyzed the rhythmic organization of the duets, unveiling a mathematical structure behind the songs. In this work we analyze in detail an extended database of duets. The rhythms of the songs are compatible with the dynamics presented by a wide class of dynamical systems: forced excitable systems. Compatible with this nonlinear rule, we build a biologically inspired model for how the neural and the anatomical elements may interact to produce the observed rhythmic patterns. This model allows us to synthesize songs presenting the acoustic and rhythmic features observed in real songs. We also make testable predictions in order to support our hypothesis.

  11. Poker Player Behavior After Big Wins and Big Losses

    OpenAIRE

    Gary Smith; Michael Levere; Robert Kurtzman

    2009-01-01

    We find that experienced poker players typically change their style of play after winning or losing a big pot--most notably, playing less cautiously after a big loss, evidently hoping for lucky cards that will erase their loss. This finding is consistent with Kahneman and Tversky's (Kahneman, D., A. Tversky. 1979. Prospect theory: An analysis of decision under risk. Econometrica 47(2) 263-292) break-even hypothesis and suggests that when investors incur a large loss, it might be time to take ...

  12. Big Data and Chemical Education

    Science.gov (United States)

    Pence, Harry E.; Williams, Antony J.

    2016-01-01

    The amount of computerized information that organizations collect and process is growing so large that the term Big Data is commonly being used to describe the situation. Accordingly, Big Data is defined by a combination of the Volume, Variety, Velocity, and Veracity of the data being processed. Big Data tools are already having an impact in…

  13. Simple Electromagnetic Modeling of Small Airplanes: Neural Network Approach

    OpenAIRE

    Koudelka, V.; Raida, Zbyněk; Tobola, P.

    2009-01-01

    The paper deals with the development of simple electromagnetic models of small airplanes, which can contain composite materials in their construction. Electromagnetic waves can penetrate through the surface of the aircraft due to the specific electromagnetic properties of the composite materials, which can increase the intensity of fields inside the airplane and can negatively influence the functionality of the sensitive avionics. The airplane is simulated by two parallel dielectric layers (t...

  14. Deep Gate Recurrent Neural Network

    Science.gov (United States)

    2016-11-22

    and Fred Cummins. Learning to forget: Continual prediction with lstm . Neural computation, 12(10):2451–2471, 2000. Alex Graves. Generating sequences...DSGU) and Simple Gated Unit (SGU), which are structures for learning long-term dependencies. Compared to traditional Long Short-Term Memory ( LSTM ) and...Gated Recurrent Unit (GRU), both structures require fewer parameters and less computation time in sequence classification tasks. Unlike GRU and LSTM

  15. Hybrid neural network bushing model for vehicle dynamics simulation

    International Nuclear Information System (INIS)

    Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk

    2008-01-01

    Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers

  16. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  17. Big data in Finnish financial services

    OpenAIRE

    Laurila, M. (Mikko)

    2017-01-01

    Abstract This thesis aims to explore the concept of big data, and create understanding of big data maturity in the Finnish financial services industry. The research questions of this thesis are “What kind of big data solutions are being implemented in the Finnish financial services sector?” and “Which factors impede faster implementation of big data solutions in the Finnish financial services sector?”. ...

  18. Big data in fashion industry

    Science.gov (United States)

    Jain, S.; Bruniaux, J.; Zeng, X.; Bruniaux, P.

    2017-10-01

    Significant work has been done in the field of big data in last decade. The concept of big data includes analysing voluminous data to extract valuable information. In the fashion world, big data is increasingly playing a part in trend forecasting, analysing consumer behaviour, preference and emotions. The purpose of this paper is to introduce the term fashion data and why it can be considered as big data. It also gives a broad classification of the types of fashion data and briefly defines them. Also, the methodology and working of a system that will use this data is briefly described.

  19. Modelling the low-tar BIG gasification concept[Biomass Integrated gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Lars; Elmegaard, B.; Qvale, B.; Henriksen, Ulrrik [Technical univ. of Denmark (Denmark); Bentzen, J.D.; Hummelshoej, R. [COWI A/S (Denmark)

    2007-07-01

    A low-tar, high-efficient biomass gasification concept for medium- to large-scale power plants has been designed. The concept is named 'Low-Tar BIG' (BIG = Biomass Integrated Gasification). The concept is based on separate pyrolysis and gasification units. The volatile gases from the pyrolysis (containing tar) are partially oxidised in a separate chamber, and hereby the tar content is dramatically reduced. Thus, the investment, and running cost of a gas cleaning system can be reduced, and the reliability can be increased. Both pyrolysis and gasification chamber are bubbling fluid beds, fluidised with steam. For moist fuels, the gasifier can be integrated with a steam drying process, where the produced steam is used in the pyrolysis/gasification chamber. In this paper, mathematical models and results from initial tests of a laboratory Low-Tar BIG gasifier are presented. Two types of models are presented: 1. The gasifier-dryer applied in different power plant systems: Gas engine, Simple cycle gas turbine, Recuperated gas turbine and Integrated Gasification and Combined Cycle (IGCC). The paper determines the differences in efficiency of these systems and shows that the gasifier will be applicable for very different fuels with different moisture contents, depending on the system. 2. A thermodynamic Low-Tar BIG model. This model is based on mass and heat balance between four reactors: Pyrolysis, partial oxidation, gasification, gas-solid mixer. The paper describes the results from this study and compares the results to actual laboratory tests. The study shows, that the Low-Tar BIG process can use very wet fuels (up to 65-70% moist) and still produce heat and power with a remarkable high electric efficiency. Hereby the process offers the unique combination of large scale gasification and low-cost gas cleaning and use of low-cost fuels which very likely is the necessary combination that will lead to a breakthrough of gasification technology. (au)

  20. Big data bioinformatics.

    Science.gov (United States)

    Greene, Casey S; Tan, Jie; Ung, Matthew; Moore, Jason H; Cheng, Chao

    2014-12-01

    Recent technological advances allow for high throughput profiling of biological systems in a cost-efficient manner. The low cost of data generation is leading us to the "big data" era. The availability of big data provides unprecedented opportunities but also raises new challenges for data mining and analysis. In this review, we introduce key concepts in the analysis of big data, including both "machine learning" algorithms as well as "unsupervised" and "supervised" examples of each. We note packages for the R programming language that are available to perform machine learning analyses. In addition to programming based solutions, we review webservers that allow users with limited or no programming background to perform these analyses on large data compendia. © 2014 Wiley Periodicals, Inc.

  1. Changing the personality of a face: Perceived Big Two and Big Five personality factors modeled in real photographs.

    Science.gov (United States)

    Walker, Mirella; Vetter, Thomas

    2016-04-01

    General, spontaneous evaluations of strangers based on their faces have been shown to reflect judgments of these persons' intention and ability to harm. These evaluations can be mapped onto a 2D space defined by the dimensions trustworthiness (intention) and dominance (ability). Here we go beyond general evaluations and focus on more specific personality judgments derived from the Big Two and Big Five personality concepts. In particular, we investigate whether Big Two/Big Five personality judgments can be mapped onto the 2D space defined by the dimensions trustworthiness and dominance. Results indicate that judgments of the Big Two personality dimensions almost perfectly map onto the 2D space. In contrast, at least 3 of the Big Five dimensions (i.e., neuroticism, extraversion, and conscientiousness) go beyond the 2D space, indicating that additional dimensions are necessary to describe more specific face-based personality judgments accurately. Building on this evidence, we model the Big Two/Big Five personality dimensions in real facial photographs. Results from 2 validation studies show that the Big Two/Big Five are perceived reliably across different samples of faces and participants. Moreover, results reveal that participants differentiate reliably between the different Big Two/Big Five dimensions. Importantly, this high level of agreement and differentiation in personality judgments from faces likely creates a subjective reality which may have serious consequences for those being perceived-notably, these consequences ensue because the subjective reality is socially shared, irrespective of the judgments' validity. The methodological approach introduced here might prove useful in various psychological disciplines. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. The BigBOSS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna

    2011-01-01

    BigBOSS will obtain observational constraints that will bear on three of the four 'science frontier' questions identified by the Astro2010 Cosmology and Fundamental Phyics Panel of the Decadal Survey: Why is the universe accelerating; what is dark matter and what are the properties of neutrinos? Indeed, the BigBOSS project was recommended for substantial immediate R and D support the PASAG report. The second highest ground-based priority from the Astro2010 Decadal Survey was the creation of a funding line within the NSF to support a 'Mid-Scale Innovations' program, and it used BigBOSS as a 'compelling' example for support. This choice was the result of the Decadal Survey's Program Priorization panels reviewing 29 mid-scale projects and recommending BigBOSS 'very highly'.

  3. A study on neural network representation of reactor power control procedures 2

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Park, Jea Chang; Kim, Young Taek; Lee, Hee Cho; Yang, Sung Uoon; Hwang, Hee Sun; Hwang, In Ah

    1998-12-01

    The major results of this study are as follows; the first is the algorithm developed through this study for computing the spline interpolation coefficients without solving the matrix equation involved. This is expected to be used in various numerical analysis problems. If this algorithm can be extended to functions of two independent variables in the future, then it could be a big help for the finite element method used in solving various boundary value problems. The second is the method developed to reduce systematically the number of output fuzzy sets for fuzzy systems representing functions of two variables. this may be considered as an indication that the neural network representation of functions has advantages over other conventional methods. The third result is an artificial neural network system developed for automating the manual procedures being used to change the reactor power level by adding boric acid or water to the reactor coolant. This along with the neural networks developed earlier can be used in nuclear power plants as an operator aid after a verification process. (author). 8 refs., 13 tabs., 5 figs

  4. A study on neural network representation of reactor power control procedures 2

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung Soo; Park, Jea Chang; Kim, Young Taek; Lee, Hee Cho; Yang, Sung Uoon; Hwang, Hee Sun; Hwang, In Ah

    1998-12-01

    The major results of this study are as follows; the first is the algorithm developed through this study for computing the spline interpolation coefficients without solving the matrix equation involved. This is expected to be used in various numerical analysis problems. If this algorithm can be extended to functions of two independent variables in the future, then it could be a big help for the finite element method used in solving various boundary value problems. The second is the method developed to reduce systematically the number of output fuzzy sets for fuzzy systems representing functions of two variables. this may be considered as an indication that the neural network representation of functions has advantages over other conventional methods. The third result is an artificial neural network system developed for automating the manual procedures being used to change the reactor power level by adding boric acid or water to the reactor coolant. This along with the neural networks developed earlier can be used in nuclear power plants as an operator aid after a verification process. (author). 8 refs., 13 tabs., 5 figs.

  5. Big game hunting practices, meanings, motivations and constraints: a survey of Oregon big game hunters

    Science.gov (United States)

    Suresh K. Shrestha; Robert C. Burns

    2012-01-01

    We conducted a self-administered mail survey in September 2009 with randomly selected Oregon hunters who had purchased big game hunting licenses/tags for the 2008 hunting season. Survey questions explored hunting practices, the meanings of and motivations for big game hunting, the constraints to big game hunting participation, and the effects of age, years of hunting...

  6. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    polynomial function approach, splines with limited support and neural network models are ... for thin streamlined bodies, the normal force and pitching moment .... eter, a simple point vortex over an infinite plate is used to derive some results.

  7. Google BigQuery analytics

    CERN Document Server

    Tigani, Jordan

    2014-01-01

    How to effectively use BigQuery, avoid common mistakes, and execute sophisticated queries against large datasets Google BigQuery Analytics is the perfect guide for business and data analysts who want the latest tips on running complex queries and writing code to communicate with the BigQuery API. The book uses real-world examples to demonstrate current best practices and techniques, and also explains and demonstrates streaming ingestion, transformation via Hadoop in Google Compute engine, AppEngine datastore integration, and using GViz with Tableau to generate charts of query results. In addit

  8. Big data for dummies

    CERN Document Server

    Hurwitz, Judith; Halper, Fern; Kaufman, Marcia

    2013-01-01

    Find the right big data solution for your business or organization Big data management is one of the major challenges facing business, industry, and not-for-profit organizations. Data sets such as customer transactions for a mega-retailer, weather patterns monitored by meteorologists, or social network activity can quickly outpace the capacity of traditional data management tools. If you need to develop or manage big data solutions, you'll appreciate how these four experts define, explain, and guide you through this new and often confusing concept. You'll learn what it is, why it m

  9. Time, space, stars and man the story of the Big Bang

    CERN Document Server

    Woolfson, Michael M

    2013-01-01

    The three greatest scientific mysteries, which remain poorly understood, are the origin of the universe, the origin of life and the development of consciousness. This book describes the processes preceding the Big Bang, the creation of matter, the concentration of that matter into stars and planets, the development of simple life forms and the theory of evolution that has given higher life forms, including mankind. Readership: Members of the general public who have an interest in popular science. There are many popular and excellent science books that present various aspects of science. However, this book follows a narrow scientific pathway from the Big Bang to mankind, and depicts the causal relationship between each step and the next. The science covered will be enough to satisfy most readers. Many important areas of science are dealt with, and these include cosmology, particle physics, atomic physics, galaxy and star formation, planet formation and aspects of evolution. The necessary science is described i...

  10. Effects of aripiprazole and haloperidol on neural activation during a simple motor task in healthy individuals: A functional MRI study.

    Science.gov (United States)

    Goozee, Rhianna; O'Daly, Owen; Handley, Rowena; Reis Marques, Tiago; Taylor, Heather; McQueen, Grant; Hubbard, Kathryn; Pariante, Carmine; Mondelli, Valeria; Reinders, Antje A T S; Dazzan, Paola

    2017-04-01

    The dopaminergic system plays a key role in motor function and motor abnormalities have been shown to be a specific feature of psychosis. Due to their dopaminergic action, antipsychotic drugs may be expected to modulate motor function, but the precise effects of these drugs on motor function remain unclear. We carried out a within-subject, double-blind, randomized study of the effects of aripiprazole, haloperidol and placebo on motor function in 20 healthy men. For each condition, motor performance on an auditory-paced task was investigated. We entered maps of neural activation into a random effects general linear regression model to investigate motor function main effects. Whole-brain imaging revealed a significant treatment effect in a distributed network encompassing posterior orbitofrontal/anterior insula cortices, and the inferior temporal and postcentral gyri. Post-hoc comparison of treatments showed neural activation after aripiprazole did not differ significantly from placebo in either voxel-wise or region of interest analyses, with the results above driven primarily by haloperidol. We also observed a simple main effect of haloperidol compared with placebo, with increased task-related recruitment of posterior cingulate and precentral gyri. Furthermore, region of interest analyses revealed greater activation following haloperidol compared with placebo in the precentral and post-central gyri, and the putamen. These diverse modifications in cortical motor activation may relate to the different pharmacological profiles of haloperidol and aripiprazole, although the specific mechanisms underlying these differences remain unclear. Evaluating healthy individuals can allow investigation of the effects of different antipsychotics on cortical activation, independently of either disease-related pathology or previous treatment. Hum Brain Mapp 38:1833-1845, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. The artificial neural networks: An approach to artificial intelligence; Un approccio ``biologico`` all`intelligenza artificiale

    Energy Technology Data Exchange (ETDEWEB)

    Taraglio, Sergio; Zanela, Andrea [ENEA, Casaccia (Italy). Dipt. Innovazione

    1997-05-01

    The artificial neural networks try to simulate the functionalities of the nervous system through a complex network of simple computing elements. In this work is presented an introduction to the neural networks and some of their possible applications, especially in the field of Artificial Intelligence.

  12. Exploring complex and big data

    Directory of Open Access Journals (Sweden)

    Stefanowski Jerzy

    2017-12-01

    Full Text Available This paper shows how big data analysis opens a range of research and technological problems and calls for new approaches. We start with defining the essential properties of big data and discussing the main types of data involved. We then survey the dedicated solutions for storing and processing big data, including a data lake, virtual integration, and a polystore architecture. Difficulties in managing data quality and provenance are also highlighted. The characteristics of big data imply also specific requirements and challenges for data mining algorithms, which we address as well. The links with related areas, including data streams and deep learning, are discussed. The common theme that naturally emerges from this characterization is complexity. All in all, we consider it to be the truly defining feature of big data (posing particular research and technological challenges, which ultimately seems to be of greater importance than the sheer data volume.

  13. Was there a big bang

    International Nuclear Information System (INIS)

    Narlikar, J.

    1981-01-01

    In discussing the viability of the big-bang model of the Universe relative evidence is examined including the discrepancies in the age of the big-bang Universe, the red shifts of quasars, the microwave background radiation, general theory of relativity aspects such as the change of the gravitational constant with time, and quantum theory considerations. It is felt that the arguments considered show that the big-bang picture is not as soundly established, either theoretically or observationally, as it is usually claimed to be, that the cosmological problem is still wide open and alternatives to the standard big-bang picture should be seriously investigated. (U.K.)

  14. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    Central Pattern Generators (CPG) are oscillatory systems that are responsible for generating rhythmic patterns at the origin of many biological activities such as for example locomotion or digestion. These systems are generally modelled as recurrent neural networks whose parameters are tuned so...... that the network oscillates in a suitable way, this tuning being a non trivial task. It also appears that the link with the physical body that these oscillatory entities control has a fundamental importance, and it seems that most bodies used for experimental validation in the literature (walking robots, lamprey...... a brief description of the Roller-Racer, we present as a preliminary study an RNN-based feed-forward controller whose parameters are obtained through the well-known teacher forcing learning algorithm, extended to learn signals with a continuous component....

  15. BIG DATA-DRIVEN MARKETING: AN ABSTRACT

    OpenAIRE

    Suoniemi, Samppa; Meyer-Waarden, Lars; Munzel, Andreas

    2017-01-01

    Customer information plays a key role in managing successful relationships with valuable customers. Big data customer analytics use (BD use), i.e., the extent to which customer information derived from big data analytics guides marketing decisions, helps firms better meet customer needs for competitive advantage. This study addresses three research questions: What are the key antecedents of big data customer analytics use? How, and to what extent, does big data customer an...

  16. Big Data Analytics in Medicine and Healthcare.

    Science.gov (United States)

    Ristevski, Blagoj; Chen, Ming

    2018-05-10

    This paper surveys big data with highlighting the big data analytics in medicine and healthcare. Big data characteristics: value, volume, velocity, variety, veracity and variability are described. Big data analytics in medicine and healthcare covers integration and analysis of large amount of complex heterogeneous data such as various - omics data (genomics, epigenomics, transcriptomics, proteomics, metabolomics, interactomics, pharmacogenomics, diseasomics), biomedical data and electronic health records data. We underline the challenging issues about big data privacy and security. Regarding big data characteristics, some directions of using suitable and promising open-source distributed data processing software platform are given.

  17. The trashing of Big Green

    International Nuclear Information System (INIS)

    Felten, E.

    1990-01-01

    The Big Green initiative on California's ballot lost by a margin of 2-to-1. Green measures lost in five other states, shocking ecology-minded groups. According to the postmortem by environmentalists, Big Green was a victim of poor timing and big spending by the opposition. Now its supporters plan to break up the bill and try to pass some provisions in the Legislature

  18. Error Concealment using Neural Networks for Block-Based Image Coding

    Directory of Open Access Journals (Sweden)

    M. Mokos

    2006-06-01

    Full Text Available In this paper, a novel adaptive error concealment (EC algorithm, which lowers the requirements for channel coding, is proposed. It conceals errors in block-based image coding systems by using neural network. In this proposed algorithm, only the intra-frame information is used for reconstruction of the image with separated damaged blocks. The information of pixels surrounding a damaged block is used to recover the errors using the neural network models. Computer simulation results show that the visual quality and the MSE evaluation of a reconstructed image are significantly improved using the proposed EC algorithm. We propose also a simple non-neural approach for comparison.

  19. The Big Bang Singularity

    Science.gov (United States)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  20. Reframing Open Big Data

    DEFF Research Database (Denmark)

    Marton, Attila; Avital, Michel; Jensen, Tina Blegind

    2013-01-01

    Recent developments in the techniques and technologies of collecting, sharing and analysing data are challenging the field of information systems (IS) research let alone the boundaries of organizations and the established practices of decision-making. Coined ‘open data’ and ‘big data......’, these developments introduce an unprecedented level of societal and organizational engagement with the potential of computational data to generate new insights and information. Based on the commonalities shared by open data and big data, we develop a research framework that we refer to as open big data (OBD......) by employing the dimensions of ‘order’ and ‘relationality’. We argue that these dimensions offer a viable approach for IS research on open and big data because they address one of the core value propositions of IS; i.e. how to support organizing with computational data. We contrast these dimensions with two...

  1. Using Big Data for Online Advertising Without Wastage: Wishful Dream, Nightmare or Reality?

    OpenAIRE

    Grether Mark

    2016-01-01

    Big data contains lots of information about consumers and allows companies real-time and data-assisted decision making to gain significant competitive advantages. Digital advertising is an important application for tailoring services to individual needs. Customized advertising is expected to be more effective, cost less, and better received by society. But what looks deceptively simple when it succeeds is frequently quite difficult to implement in practice. It is difficult to judge and valida...

  2. Medical big data: promise and challenges.

    Science.gov (United States)

    Lee, Choong Ho; Yoon, Hyung-Jin

    2017-03-01

    The concept of big data, commonly characterized by volume, variety, velocity, and veracity, goes far beyond the data type and includes the aspects of data analysis, such as hypothesis-generating, rather than hypothesis-testing. Big data focuses on temporal stability of the association, rather than on causal relationship and underlying probability distribution assumptions are frequently not required. Medical big data as material to be analyzed has various features that are not only distinct from big data of other disciplines, but also distinct from traditional clinical epidemiology. Big data technology has many areas of application in healthcare, such as predictive modeling and clinical decision support, disease or safety surveillance, public health, and research. Big data analytics frequently exploits analytic methods developed in data mining, including classification, clustering, and regression. Medical big data analyses are complicated by many technical issues, such as missing values, curse of dimensionality, and bias control, and share the inherent limitations of observation study, namely the inability to test causality resulting from residual confounding and reverse causation. Recently, propensity score analysis and instrumental variable analysis have been introduced to overcome these limitations, and they have accomplished a great deal. Many challenges, such as the absence of evidence of practical benefits of big data, methodological issues including legal and ethical issues, and clinical integration and utility issues, must be overcome to realize the promise of medical big data as the fuel of a continuous learning healthcare system that will improve patient outcome and reduce waste in areas including nephrology.

  3. Medical big data: promise and challenges

    Directory of Open Access Journals (Sweden)

    Choong Ho Lee

    2017-03-01

    Full Text Available The concept of big data, commonly characterized by volume, variety, velocity, and veracity, goes far beyond the data type and includes the aspects of data analysis, such as hypothesis-generating, rather than hypothesis-testing. Big data focuses on temporal stability of the association, rather than on causal relationship and underlying probability distribution assumptions are frequently not required. Medical big data as material to be analyzed has various features that are not only distinct from big data of other disciplines, but also distinct from traditional clinical epidemiology. Big data technology has many areas of application in healthcare, such as predictive modeling and clinical decision support, disease or safety surveillance, public health, and research. Big data analytics frequently exploits analytic methods developed in data mining, including classification, clustering, and regression. Medical big data analyses are complicated by many technical issues, such as missing values, curse of dimensionality, and bias control, and share the inherent limitations of observation study, namely the inability to test causality resulting from residual confounding and reverse causation. Recently, propensity score analysis and instrumental variable analysis have been introduced to overcome these limitations, and they have accomplished a great deal. Many challenges, such as the absence of evidence of practical benefits of big data, methodological issues including legal and ethical issues, and clinical integration and utility issues, must be overcome to realize the promise of medical big data as the fuel of a continuous learning healthcare system that will improve patient outcome and reduce waste in areas including nephrology.

  4. Big Bang et au-delà les nouveaux horizons de l'Univers

    CERN Document Server

    Barrau, Aurélien

    2015-01-01

    Notre Univers a-t-il un début ? Est-il unique ? La science moderne a révolutionné notre compréhension de l’Univers. Bien que l’étude du cosmos soit sans doute aussi ancienne que la pensée, notre image du réel est en ce moment même en train de se redessiner. Il est maintenant possible de connaître certains aspects des processus qui eurent lieu moins d’un milliardième de milliardième de milliardième de seconde après le Big Bang. À la lumière des dernières découvertes du satellite Planck, Aurélien Barrau décrit en termes simples le cosmos qui se dessine sous nos yeux. Trous noirs, modèle standard de la physique des particules, gravité… les piliers et les énigmes du Big Bang sont abordés les uns après les autres, à la manière d’une balade aux origines de l’Univers. « Parce que la science est avant tout une aventure humaine, j’ai esquissé, ici et là, en contrepoint des explications physiques fournies dans la langue la plus simple et la plus accessible possible, mon expér...

  5. What is beyond the big five?

    Science.gov (United States)

    Saucier, G; Goldberg, L R

    1998-08-01

    Previous investigators have proposed that various kinds of person-descriptive content--such as differences in attitudes or values, in sheer evaluation, in attractiveness, or in height and girth--are not adequately captured by the Big Five Model. We report on a rather exhaustive search for reliable sources of Big Five-independent variation in data from person-descriptive adjectives. Fifty-three candidate clusters were developed in a college sample using diverse approaches and sources. In a nonstudent adult sample, clusters were evaluated with respect to a minimax criterion: minimum multiple correlation with factors from Big Five markers and maximum reliability. The most clearly Big Five-independent clusters referred to Height, Girth, Religiousness, Employment Status, Youthfulness and Negative Valence (or low-base-rate attributes). Clusters referring to Fashionableness, Sensuality/Seductiveness, Beauty, Masculinity, Frugality, Humor, Wealth, Prejudice, Folksiness, Cunning, and Luck appeared to be potentially beyond the Big Five, although each of these clusters demonstrated Big Five multiple correlations of .30 to .45, and at least one correlation of .20 and over with a Big Five factor. Of all these content areas, Religiousness, Negative Valence, and the various aspects of Attractiveness were found to be represented by a substantial number of distinct, common adjectives. Results suggest directions for supplementing the Big Five when one wishes to extend variable selection outside the domain of personality traits as conventionally defined.

  6. Big Data Analytics and Its Applications

    Directory of Open Access Journals (Sweden)

    Mashooque A. Memon

    2017-10-01

    Full Text Available The term, Big Data, has been authored to refer to the extensive heave of data that can't be managed by traditional data handling methods or techniques. The field of Big Data plays an indispensable role in various fields, such as agriculture, banking, data mining, education, chemistry, finance, cloud computing, marketing, health care stocks. Big data analytics is the method for looking at big data to reveal hidden patterns, incomprehensible relationship and other important data that can be utilize to resolve on enhanced decisions. There has been a perpetually expanding interest for big data because of its fast development and since it covers different areas of applications. Apache Hadoop open source technology created in Java and keeps running on Linux working framework was used. The primary commitment of this exploration is to display an effective and free solution for big data application in a distributed environment, with its advantages and indicating its easy use. Later on, there emerge to be a required for an analytical review of new developments in the big data technology. Healthcare is one of the best concerns of the world. Big data in healthcare imply to electronic health data sets that are identified with patient healthcare and prosperity. Data in the healthcare area is developing past managing limit of the healthcare associations and is relied upon to increment fundamentally in the coming years.

  7. Measuring the Promise of Big Data Syllabi

    Science.gov (United States)

    Friedman, Alon

    2018-01-01

    Growing interest in Big Data is leading industries, academics and governments to accelerate Big Data research. However, how teachers should teach Big Data has not been fully examined. This article suggests criteria for redesigning Big Data syllabi in public and private degree-awarding higher education establishments. The author conducted a survey…

  8. Spatial big data for disaster management

    Science.gov (United States)

    Shalini, R.; Jayapratha, K.; Ayeshabanu, S.; Chemmalar Selvi, G.

    2017-11-01

    Big data is an idea of informational collections that depicts huge measure of information and complex that conventional information preparing application program is lacking to manage them. Presently, big data is a widely known domain used in research, academic, and industries. It is utilized to store substantial measure of information in a solitary brought together one. Challenges integrate capture, allocation, analysis, information precise, visualization, distribution, interchange, delegation, inquiring, updating and information protection. In this digital world, to put away the information and recovering the data is enormous errand for the huge organizations and some time information ought to be misfortune due to circulated information putting away. For this issue the organization individuals are chosen to actualize the huge information to put away every one of the information identified with the organization they are put away in one enormous database that is known as large information. Remote sensor is a science getting data used to distinguish the items or break down the range from a separation. It is anything but difficult to discover the question effortlessly with the sensor. It makes geographic data from satellite and sensor information so in this paper dissect what are the structures are utilized for remote sensor in huge information and how the engineering is vary from each other and how they are identify with our investigations. This paper depicts how the calamity happens and figuring consequence of informational collection. And applied a seismic informational collection to compute the tremor calamity in view of classification and clustering strategy. The classical data mining algorithms for classification used are k-nearest, naive bayes and decision table and clustering used are hierarchical, make density based and simple k_means using XLMINER and WEKA tool. This paper also helps to predicts the spatial dataset by applying the XLMINER AND WEKA tool and

  9. 77 FR 27245 - Big Stone National Wildlife Refuge, Big Stone and Lac Qui Parle Counties, MN

    Science.gov (United States)

    2012-05-09

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R3-R-2012-N069; FXRS1265030000S3-123-FF03R06000] Big Stone National Wildlife Refuge, Big Stone and Lac Qui Parle Counties, MN AGENCY: Fish and... plan (CCP) and environmental assessment (EA) for Big Stone National Wildlife Refuge (Refuge, NWR) for...

  10. The BigBoss Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schelgel, D.; Abdalla, F.; Abraham, T.; Ahn, C.; Allende Prieto, C.; Annis, J.; Aubourg, E.; Azzaro, M.; Bailey, S.; Baltay, C.; Baugh, C.; Bebek, C.; Becerril, S.; Blanton, M.; Bolton, A.; Bromley, B.; Cahn, R.; Carton, P.-H.; Cervanted-Cota, J.L.; Chu, Y.; Cortes, M.; /APC, Paris /Brookhaven /IRFU, Saclay /Marseille, CPPM /Marseille, CPT /Durham U. / /IEU, Seoul /Fermilab /IAA, Granada /IAC, La Laguna / /IAC, Mexico / / /Madrid, IFT /Marseille, Lab. Astrophys. / / /New York U. /Valencia U.

    2012-06-07

    BigBOSS is a Stage IV ground-based dark energy experiment to study baryon acoustic oscillations (BAO) and the growth of structure with a wide-area galaxy and quasar redshift survey over 14,000 square degrees. It has been conditionally accepted by NOAO in response to a call for major new instrumentation and a high-impact science program for the 4-m Mayall telescope at Kitt Peak. The BigBOSS instrument is a robotically-actuated, fiber-fed spectrograph capable of taking 5000 simultaneous spectra over a wavelength range from 340 nm to 1060 nm, with a resolution R = {lambda}/{Delta}{lambda} = 3000-4800. Using data from imaging surveys that are already underway, spectroscopic targets are selected that trace the underlying dark matter distribution. In particular, targets include luminous red galaxies (LRGs) up to z = 1.0, extending the BOSS LRG survey in both redshift and survey area. To probe the universe out to even higher redshift, BigBOSS will target bright [OII] emission line galaxies (ELGs) up to z = 1.7. In total, 20 million galaxy redshifts are obtained to measure the BAO feature, trace the matter power spectrum at smaller scales, and detect redshift space distortions. BigBOSS will provide additional constraints on early dark energy and on the curvature of the universe by measuring the Ly-alpha forest in the spectra of over 600,000 2.2 < z < 3.5 quasars. BigBOSS galaxy BAO measurements combined with an analysis of the broadband power, including the Ly-alpha forest in BigBOSS quasar spectra, achieves a FOM of 395 with Planck plus Stage III priors. This FOM is based on conservative assumptions for the analysis of broad band power (k{sub max} = 0.15), and could grow to over 600 if current work allows us to push the analysis to higher wave numbers (k{sub max} = 0.3). BigBOSS will also place constraints on theories of modified gravity and inflation, and will measure the sum of neutrino masses to 0.024 eV accuracy.

  11. Synchronization criteria for generalized reaction-diffusion neural networks via periodically intermittent control.

    Science.gov (United States)

    Gan, Qintao; Lv, Tianshi; Fu, Zhenhua

    2016-04-01

    In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.

  12. Big data and educational research

    OpenAIRE

    Beneito-Montagut, Roser

    2017-01-01

    Big data and data analytics offer the promise to enhance teaching and learning, improve educational research and progress education governance. This chapter aims to contribute to the conceptual and methodological understanding of big data and analytics within educational research. It describes the opportunities and challenges that big data and analytics bring to education as well as critically explore the perils of applying a data driven approach to education. Despite the claimed value of the...

  13. Neural networks and their potential application in nuclear power plants

    International Nuclear Information System (INIS)

    Uhrig, R.E.

    1991-01-01

    A neural network is a data processing system consisting of a number of simple, highly interconnected processing elements in an architecture inspired by the structure of the cerebral cortex portion of the brain. Hence, neural networks are often capable of doing things which humans or animals do well but which conventional computers often do poorly. Neural networks have emerged in the past few years as an area of unusual opportunity for research, development and application to a variety of real world problems. Indeed, neural networks exhibit characteristics and capabilities not provided by any other technology. Examples include reading Japanese Kanji characters and human handwriting, reading a typewritten manuscript aloud, compensating for alignment errors in robots, interpreting very noise signals (e.g., electroencephalograms), modeling complex systems that cannot be modeled mathematically, and predicting whether proposed loans will be good or fail. This paper presents a brief tutorial on neural networks and describes research on the potential applications to nuclear power plants

  14. Thick-Big Descriptions

    DEFF Research Database (Denmark)

    Lai, Signe Sophus

    The paper discusses the rewards and challenges of employing commercial audience measurements data – gathered by media industries for profitmaking purposes – in ethnographic research on the Internet in everyday life. It questions claims to the objectivity of big data (Anderson 2008), the assumption...... communication systems, language and behavior appear as texts, outputs, and discourses (data to be ‘found’) – big data then documents things that in earlier research required interviews and observations (data to be ‘made’) (Jensen 2014). However, web-measurement enterprises build audiences according...... to a commercial logic (boyd & Crawford 2011) and is as such directed by motives that call for specific types of sellable user data and specific segmentation strategies. In combining big data and ‘thick descriptions’ (Geertz 1973) scholars need to question how ethnographic fieldwork might map the ‘data not seen...

  15. Oscillator Neural Network Retrieving Sparsely Coded Phase Patterns

    Science.gov (United States)

    Aoyagi, Toshio; Nomura, Masaki

    1999-08-01

    Little is known theoretically about the associative memory capabilities of neural networks in which information is encoded not only in the mean firing rate but also in the timing of firings. Particularly, in the case of sparsely coded patterns, it is biologically important to consider the timings of firings and to study how such consideration influences storage capacities and quality of recalled patterns. For this purpose, we propose a simple extended model of oscillator neural networks to allow for expression of a nonfiring state. Analyzing both equilibrium states and dynamical properties in recalling processes, we find that the system possesses good associative memory.

  16. Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole

    2011-01-01

    It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is ab...... to perform accurate response prediction much faster than the corresponding finite element model. Initial result indicate a reduction in cpu time by two orders of magnitude....

  17. Big Data's Role in Precision Public Health.

    Science.gov (United States)

    Dolley, Shawn

    2018-01-01

    Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous subpopulations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts.

  18. The neural correlates of beauty comparison.

    Science.gov (United States)

    Kedia, Gayannée; Mussweiler, Thomas; Mullins, Paul; Linden, David E J

    2014-05-01

    Beauty is in the eye of the beholder. How attractive someone is perceived to be depends on the individual or cultural standards to which this person is compared. But although comparisons play a central role in the way people judge the appearance of others, the brain processes underlying attractiveness comparisons remain unknown. In the present experiment, we tested the hypothesis that attractiveness comparisons rely on the same cognitive and neural mechanisms as comparisons of simple nonsocial magnitudes such as size. We recorded brain activity with functional magnetic resonance imaging (fMRI) while participants compared the beauty or height of two women or two dogs. Our data support the hypothesis of a common process underlying these different types of comparisons. First, we demonstrate that the distance effect characteristic of nonsocial comparisons also holds for attractiveness comparisons. Behavioral results indicated, for all our comparisons, longer response times for near than far distances. Second, the neural correlates of these distance effects overlapped in a frontoparietal network known for its involvement in processing simple nonsocial quantities. These results provide evidence for overlapping processes in the comparison of physical attractiveness and nonsocial magnitudes.

  19. Big Data, indispensable today

    Directory of Open Access Journals (Sweden)

    Radu-Ioan ENACHE

    2015-10-01

    Full Text Available Big data is and will be used more in the future as a tool for everything that happens both online and offline. Of course , online is a real hobbit, Big Data is found in this medium , offering many advantages , being a real help for all consumers. In this paper we talked about Big Data as being a plus in developing new applications, by gathering useful information about the users and their behaviour.We've also presented the key aspects of real-time monitoring and the architecture principles of this technology. The most important benefit brought to this paper is presented in the cloud section.

  20. Antigravity and the big crunch/big bang transition

    Science.gov (United States)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-08-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  1. Antigravity and the big crunch/big bang transition

    Energy Technology Data Exchange (ETDEWEB)

    Bars, Itzhak [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-2535 (United States); Chen, Shih-Hung [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Department of Physics and School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Steinhardt, Paul J., E-mail: steinh@princeton.edu [Department of Physics and Princeton Center for Theoretical Physics, Princeton University, Princeton, NJ 08544 (United States); Turok, Neil [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada)

    2012-08-29

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  2. Antigravity and the big crunch/big bang transition

    International Nuclear Information System (INIS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-01-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  3. Big data: een zoektocht naar instituties

    NARCIS (Netherlands)

    van der Voort, H.G.; Crompvoets, J

    2016-01-01

    Big data is a well-known phenomenon, even a buzzword nowadays. It refers to an abundance of data and new possibilities to process and use them. Big data is subject of many publications. Some pay attention to the many possibilities of big data, others warn us for their consequences. This special

  4. Data, Data, Data : Big, Linked & Open

    NARCIS (Netherlands)

    Folmer, E.J.A.; Krukkert, D.; Eckartz, S.M.

    2013-01-01

    De gehele business en IT-wereld praat op dit moment over Big Data, een trend die medio 2013 Cloud Computing is gepasseerd (op basis van Google Trends). Ook beleidsmakers houden zich actief bezig met Big Data. Neelie Kroes, vice-president van de Europese Commissie, spreekt over de ‘Big Data

  5. Big History or the 13800 million years from the Big Bang to the Human Brain

    Science.gov (United States)

    Gústafsson, Ludvik E.

    2017-04-01

    Big History is the integrated history of the Cosmos, Earth, Life, and Humanity. It is an attempt to understand our existence as a continuous unfolding of processes leading to ever more complex structures. Three major steps in the development of the Universe can be distinguished, the first being the creation of matter/energy and forces in the context of an expanding universe, while the second and third steps were reached when completely new qualities of matter came into existence. 1. Matter comes out of nothing Quantum fluctuations and the inflation event are thought to be responsible for the creation of stable matter particles in what is called the Big Bang. Along with simple particles the universe is formed. Later larger particles like atoms and the most simple chemical elements hydrogen and helium evolved. Gravitational contraction of hydrogen and helium formed the first stars und later on the first galaxies. Massive stars ended their lives in violent explosions releasing heavier elements like carbon, oxygen, nitrogen, sulfur and iron into the universe. Subsequent star formation led to star systems with bodies containing these heavier elements. 2. Matter starts to live About 9200 million years after the Big Bang a rather inconspicous star of middle size formed in one of a billion galaxies. The leftovers of the star formation clumped into bodies rotating around the central star. In some of them elements like silicon, oxygen, iron and many other became the dominant matter. On the third of these bodies from the central star much of the surface was covered with an already very common chemical compound in the universe, water. Fluid water and plenty of various elements, especially carbon, were the ingredients of very complex chemical compounds that made up even more complex structures. These were able to replicate themselves. Life had appeared, the only occasion that we human beings know of. Life evolved subsequently leading eventually to the formation of multicellular

  6. Pre-big bang bubbles from the gravitational instability of generic string vacua

    CERN Document Server

    Buonanno, A; Veneziano, Gabriele

    1999-01-01

    We formulate the basic postulate of pre-big bang cosmology as one of ``asymptotic past triviality'', by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Such a past-trivial ``string vacuum'' is made of an arbitrary ensemble of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, leading to the possible formation of many black holes hiding singular space-like hypersurfaces. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual big-bang t=0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically-symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/infl...

  7. Methods and tools for big data visualization

    OpenAIRE

    Zubova, Jelena; Kurasova, Olga

    2015-01-01

    In this paper, methods and tools for big data visualization have been investigated. Challenges faced by the big data analysis and visualization have been identified. Technologies for big data analysis have been discussed. A review of methods and tools for big data visualization has been done. Functionalities of the tools have been demonstrated by examples in order to highlight their advantages and disadvantages.

  8. Neural Network Based Real-time Correction of Transducer Dynamic Errors

    Science.gov (United States)

    Roj, J.

    2013-12-01

    In order to carry out real-time dynamic error correction of transducers described by a linear differential equation, a novel recurrent neural network was developed. The network structure is based on solving this equation with respect to the input quantity when using the state variables. It is shown that such a real-time correction can be carried out using simple linear perceptrons. Due to the use of a neural technique, knowledge of the dynamic parameters of the transducer is not necessary. Theoretical considerations are illustrated by the results of simulation studies performed for the modeled second order transducer. The most important properties of the neural dynamic error correction, when emphasizing the fundamental advantages and disadvantages, are discussed.

  9. Permutation parity machines for neural cryptography.

    Science.gov (United States)

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-06-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  10. Permutation parity machines for neural cryptography

    International Nuclear Information System (INIS)

    Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz

    2010-01-01

    Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.

  11. Learning-parameter adjustment in neural networks

    Science.gov (United States)

    Heskes, Tom M.; Kappen, Bert

    1992-06-01

    We present a learning-parameter adjustment algorithm, valid for a large class of learning rules in neural-network literature. The algorithm follows directly from a consideration of the statistics of the weights in the network. The characteristic behavior of the algorithm is calculated, both in a fixed and a changing environment. A simple example, Widrow-Hoff learning for statistical classification, serves as an illustration.

  12. Big data analytics methods and applications

    CERN Document Server

    Rao, BLS; Rao, SB

    2016-01-01

    This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.

  13. The Big bang and the Quantum

    Science.gov (United States)

    Ashtekar, Abhay

    2010-06-01

    General relativity predicts that space-time comes to an end and physics comes to a halt at the big-bang. Recent developments in loop quantum cosmology have shown that these predictions cannot be trusted. Quantum geometry effects can resolve singularities, thereby opening new vistas. Examples are: The big bang is replaced by a quantum bounce; the `horizon problem' disappears; immediately after the big bounce, there is a super-inflationary phase with its own phenomenological ramifications; and, in presence of a standard inflation potential, initial conditions are naturally set for a long, slow roll inflation independently of what happens in the pre-big bang branch. As in my talk at the conference, I will first discuss the foundational issues and then the implications of the new Planck scale physics near the Big Bang.

  14. Big Bang baryosynthesis

    International Nuclear Information System (INIS)

    Turner, M.S.; Chicago Univ., IL

    1983-01-01

    In these lectures I briefly review Big Bang baryosynthesis. In the first lecture I discuss the evidence which exists for the BAU, the failure of non-GUT symmetrical cosmologies, the qualitative picture of baryosynthesis, and numerical results of detailed baryosynthesis calculations. In the second lecture I discuss the requisite CP violation in some detail, further the statistical mechanics of baryosynthesis, possible complications to the simplest scenario, and one cosmological implication of Big Bang baryosynthesis. (orig./HSI)

  15. Exploiting big data for critical care research.

    Science.gov (United States)

    Docherty, Annemarie B; Lone, Nazir I

    2015-10-01

    Over recent years the digitalization, collection and storage of vast quantities of data, in combination with advances in data science, has opened up a new era of big data. In this review, we define big data, identify examples of critical care research using big data, discuss the limitations and ethical concerns of using these large datasets and finally consider scope for future research. Big data refers to datasets whose size, complexity and dynamic nature are beyond the scope of traditional data collection and analysis methods. The potential benefits to critical care are significant, with faster progress in improving health and better value for money. Although not replacing clinical trials, big data can improve their design and advance the field of precision medicine. However, there are limitations to analysing big data using observational methods. In addition, there are ethical concerns regarding maintaining confidentiality of patients who contribute to these datasets. Big data have the potential to improve medical care and reduce costs, both by individualizing medicine, and bringing together multiple sources of data about individual patients. As big data become increasingly mainstream, it will be important to maintain public confidence by safeguarding data security, governance and confidentiality.

  16. Precision requirements for single-layer feed-forward neural networks

    NARCIS (Netherlands)

    Annema, Anne J.; Hoen, K.; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    This paper presents a mathematical analysis of the effect of limited precision analog hardware for weight adaptation to be used in on-chip learning feedforward neural networks. Easy-to-read equations and simple worst-case estimations for the maximum tolerable imprecision are presented. As an

  17. Empathy and the Big Five

    OpenAIRE

    Paulus, Christoph

    2016-01-01

    Del Barrio et al. (2004) haben vor mehr als 10 Jahren versucht, eine direkte Beziehung zwischen Empathie und den Big Five herzustellen. Im Mittel hatten in ihrer Stichprobe Frauen höhere Werte in der Empathie und auf den Big Five-Faktoren mit Ausnahme des Faktors Neurotizismus. Zusammenhänge zu Empathie fanden sie in den Bereichen Offenheit, Verträglichkeit, Gewissenhaftigkeit und Extraversion. In unseren Daten besitzen Frauen sowohl in der Empathie als auch den Big Five signifikant höhere We...

  18. Germinal Center Optimization Applied to Neural Inverse Optimal Control for an All-Terrain Tracked Robot

    Directory of Open Access Journals (Sweden)

    Carlos Villaseñor

    2017-12-01

    Full Text Available Nowadays, there are several meta-heuristics algorithms which offer solutions for multi-variate optimization problems. These algorithms use a population of candidate solutions which explore the search space, where the leadership plays a big role in the exploration-exploitation equilibrium. In this work, we propose to use a Germinal Center Optimization algorithm (GCO which implements temporal leadership through modeling a non-uniform competitive-based distribution for particle selection. GCO is used to find an optimal set of parameters for a neural inverse optimal control applied to all-terrain tracked robot. In the Neural Inverse Optimal Control (NIOC scheme, a neural identifier, based on Recurrent High Orden Neural Network (RHONN trained with an extended kalman filter algorithm, is used to obtain a model of the system, then, a control law is design using such model with the inverse optimal control approach. The RHONN identifier is developed without knowledge of the plant model or its parameters, on the other hand, the inverse optimal control is designed for tracking velocity references. Applicability of the proposed scheme is illustrated using simulations results as well as real-time experimental results with an all-terrain tracked robot.

  19. Modelling the phonotactic structure of natural language words with simple recurrent networks

    NARCIS (Netherlands)

    Stoianov, [No Value; Nerbonne, J; Bouma, H; Coppen, PA; vanHalteren, H; Teunissen, L

    1998-01-01

    Simple Recurrent Networks (SRN) are Neural Network (connectionist) models able to process natural language. Phonotactics concerns the order of symbols in words. We continued an earlier unsuccessful trial to model the phonotactics of Dutch words with SRNs. In order to overcome the previously reported

  20. Solving differential equations with unknown constitutive relations as recurrent neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.; Tartakovsky, Alexandre M.

    2017-12-08

    We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learning literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.

  1. Big domains are novel Ca²+-binding modules: evidences from big domains of Leptospira immunoglobulin-like (Lig) proteins.

    Science.gov (United States)

    Raman, Rajeev; Rajanikanth, V; Palaniappan, Raghavan U M; Lin, Yi-Pin; He, Hongxuan; McDonough, Sean P; Sharma, Yogendra; Chang, Yung-Fu

    2010-12-29

    Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca²+. Leptospiral immunoglobulin-like (Lig) proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big) domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca²+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9(th) (Lig A9) and 10(th) repeats (Lig A10); and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon). All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca²+ with dissociation constants of 2-4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. We demonstrate that the Lig are Ca²+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca²+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca²+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca²+ binding.

  2. Testing the Friedmann equation: The expansion of the universe during big-bang nucleosynthesis

    International Nuclear Information System (INIS)

    Carroll, Sean M.; Kaplinghat, Manoj

    2002-01-01

    In conventional general relativity, the expansion rate H of a Robertson-Walker universe is related to the energy density by the Friedmann equation. Aside from the present day, the only epoch at which we can constrain the expansion history in a model-independent way is during big-bang nucleosynthesis (BBN). We consider a simple two-parameter characterization of the behavior of H during BBN and derive constraints on this parameter space, finding that the allowed region of parameter space is essentially one dimensional. We also study the effects of a large neutrino asymmetry within this framework. Our results provide a simple way to compare an alternative cosmology to the observational requirement of matching the primordial abundances of the light elements

  3. Image Classification, Deep Learning and Convolutional Neural Networks : A Comparative Study of Machine Learning Frameworks

    OpenAIRE

    Airola, Rasmus; Hager, Kristoffer

    2017-01-01

    The use of machine learning and specifically neural networks is a growing trend in software development, and has grown immensely in the last couple of years in the light of an increasing need to handle big data and large information flows. Machine learning has a broad area of application, such as human-computer interaction, predicting stock prices, real-time translation, and self driving vehicles. Large companies such as Microsoft and Google have already implemented machine learning in some o...

  4. Semantic Web Technologies and Big Data Infrastructures: SPARQL Federated Querying of Heterogeneous Big Data Stores

    OpenAIRE

    Konstantopoulos, Stasinos; Charalambidis, Angelos; Mouchakis, Giannis; Troumpoukis, Antonis; Jakobitsch, Jürgen; Karkaletsis, Vangelis

    2016-01-01

    The ability to cross-link large scale data with each other and with structured Semantic Web data, and the ability to uniformly process Semantic Web and other data adds value to both the Semantic Web and to the Big Data community. This paper presents work in progress towards integrating Big Data infrastructures with Semantic Web technologies, allowing for the cross-linking and uniform retrieval of data stored in both Big Data infrastructures and Semantic Web data. The technical challenges invo...

  5. Quantum fields in a big-crunch-big-bang spacetime

    International Nuclear Information System (INIS)

    Tolley, Andrew J.; Turok, Neil

    2002-01-01

    We consider quantum field theory on a spacetime representing the big-crunch-big-bang transition postulated in ekpyrotic or cyclic cosmologies. We show via several independent methods that an essentially unique matching rule holds connecting the incoming state, in which a single extra dimension shrinks to zero, to the outgoing state in which it reexpands at the same rate. For free fields in our construction there is no particle production from the incoming adiabatic vacuum. When interactions are included the particle production for fixed external momentum is finite at the tree level. We discuss a formal correspondence between our construction and quantum field theory on de Sitter spacetime

  6. Turning big bang into big bounce: II. Quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Malkiewicz, Przemyslaw; Piechocki, Wlodzimierz, E-mail: pmalk@fuw.edu.p, E-mail: piech@fuw.edu.p [Theoretical Physics Department, Institute for Nuclear Studies, Hoza 69, 00-681 Warsaw (Poland)

    2010-11-21

    We analyze the big bounce transition of the quantum Friedmann-Robertson-Walker model in the setting of the nonstandard loop quantum cosmology (LQC). Elementary observables are used to quantize composite observables. The spectrum of the energy density operator is bounded and continuous. The spectrum of the volume operator is bounded from below and discrete. It has equally distant levels defining a quantum of the volume. The discreteness may imply a foamy structure of spacetime at a semiclassical level which may be detected in astro-cosmo observations. The nonstandard LQC method has a free parameter that should be fixed in some way to specify the big bounce transition.

  7. Scaling Big Data Cleansing

    KAUST Repository

    Khayyat, Zuhair

    2017-07-31

    Data cleansing approaches have usually focused on detecting and fixing errors with little attention to big data scaling. This presents a serious impediment since identify- ing and repairing dirty data often involves processing huge input datasets, handling sophisticated error discovery approaches and managing huge arbitrary errors. With large datasets, error detection becomes overly expensive and complicated especially when considering user-defined functions. Furthermore, a distinctive algorithm is de- sired to optimize inequality joins in sophisticated error discovery rather than na ̈ıvely parallelizing them. Also, when repairing large errors, their skewed distribution may obstruct effective error repairs. In this dissertation, I present solutions to overcome the above three problems in scaling data cleansing. First, I present BigDansing as a general system to tackle efficiency, scalability, and ease-of-use issues in data cleansing for Big Data. It automatically parallelizes the user’s code on top of general-purpose distributed platforms. Its programming inter- face allows users to express data quality rules independently from the requirements of parallel and distributed environments. Without sacrificing their quality, BigDans- ing also enables parallel execution of serial repair algorithms by exploiting the graph representation of discovered errors. The experimental results show that BigDansing outperforms existing baselines up to more than two orders of magnitude. Although BigDansing scales cleansing jobs, it still lacks the ability to handle sophisticated error discovery requiring inequality joins. Therefore, I developed IEJoin as an algorithm for fast inequality joins. It is based on sorted arrays and space efficient bit-arrays to reduce the problem’s search space. By comparing IEJoin against well- known optimizations, I show that it is more scalable, and several orders of magnitude faster. BigDansing depends on vertex-centric graph systems, i.e., Pregel

  8. The ethics of big data in big agriculture

    Directory of Open Access Journals (Sweden)

    Isabelle M. Carbonell

    2016-03-01

    Full Text Available This paper examines the ethics of big data in agriculture, focusing on the power asymmetry between farmers and large agribusinesses like Monsanto. Following the recent purchase of Climate Corp., Monsanto is currently the most prominent biotech agribusiness to buy into big data. With wireless sensors on tractors monitoring or dictating every decision a farmer makes, Monsanto can now aggregate large quantities of previously proprietary farming data, enabling a privileged position with unique insights on a field-by-field basis into a third or more of the US farmland. This power asymmetry may be rebalanced through open-sourced data, and publicly-funded data analytic tools which rival Climate Corp. in complexity and innovation for use in the public domain.

  9. Homogeneous and isotropic big rips?

    CERN Document Server

    Giovannini, Massimo

    2005-01-01

    We investigate the way big rips are approached in a fully inhomogeneous description of the space-time geometry. If the pressure and energy densities are connected by a (supernegative) barotropic index, the spatial gradients and the anisotropic expansion decay as the big rip is approached. This behaviour is contrasted with the usual big-bang singularities. A similar analysis is performed in the case of sudden (quiescent) singularities and it is argued that the spatial gradients may well be non-negligible in the vicinity of pressure singularities.

  10. Rate Change Big Bang Theory

    Science.gov (United States)

    Strickland, Ken

    2013-04-01

    The Rate Change Big Bang Theory redefines the birth of the universe with a dramatic shift in energy direction and a new vision of the first moments. With rate change graph technology (RCGT) we can look back 13.7 billion years and experience every step of the big bang through geometrical intersection technology. The analysis of the Big Bang includes a visualization of the first objects, their properties, the astounding event that created space and time as well as a solution to the mystery of anti-matter.

  11. Soil biogeochemistry in the age of big data

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre; Coissac, Eric; Plante, Alain; Rasse, Daniel

    2015-04-01

    already been made thanks to meta-analysis, chemometrics, machine-learning systems and bioinformatics. Some techniques like structural equation modeling eventually propose to explore causalities opening a way towards the mechanistic understanding of soil big data rather than simple correlations. We claim that data science should be fully integrated into soil biogeochemists basic education schemes. We expect the blooming of a new generation of soil biogeochemists highly skilled in manipulating big data. Will big data represent a net gain for soil biogeochemistry? Increasing the amount of data will increase associated biases that may further be exacerbated by the increasing distance between data manipulators, soil sampling and data acquisition. Integrating data science into soil biogeochemistry should thus not be done at the expenses of pedology and metrology. We further expect that the more data, the more spurious correlations will appear leading to possible misinterpretation of data. Finally, big data on soils characteristics and processes will always need to be confronted to biogeochemical theories and socio-economic knowledge to be useful. Big data could revolutionize soil biogeochemistry, fostering new scientific and business models around the conservation of the soil natural capital, but our community should go into this new era with clear-sightedness and discernment.

  12. Intelligent Test Mechanism Design of Worn Big Gear

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available With the continuous development of national economy, big gear was widely applied in metallurgy and mine domains. So, big gear plays an important role in above domains. In practical production, big gear abrasion and breach take place often. It affects normal production and causes unnecessary economic loss. A kind of intelligent test method was put forward on worn big gear mainly aimed at the big gear restriction conditions of high production cost, long production cycle and high- intensity artificial repair welding work. The measure equations transformations were made on involute straight gear. Original polar coordinate equations were transformed into rectangular coordinate equations. Big gear abrasion measure principle was introduced. Detection principle diagram was given. Detection route realization method was introduced. OADM12 laser sensor was selected. Detection on big gear abrasion area was realized by detection mechanism. Tested data of unworn gear and worn gear were led in designed calculation program written by Visual Basic language. Big gear abrasion quantity can be obtained. It provides a feasible method for intelligent test and intelligent repair welding on worn big gear.

  13. [Big data in medicine and healthcare].

    Science.gov (United States)

    Rüping, Stefan

    2015-08-01

    Healthcare is one of the business fields with the highest Big Data potential. According to the prevailing definition, Big Data refers to the fact that data today is often too large and heterogeneous and changes too quickly to be stored, processed, and transformed into value by previous technologies. The technological trends drive Big Data: business processes are more and more executed electronically, consumers produce more and more data themselves - e.g. in social networks - and finally ever increasing digitalization. Currently, several new trends towards new data sources and innovative data analysis appear in medicine and healthcare. From the research perspective, omics-research is one clear Big Data topic. In practice, the electronic health records, free open data and the "quantified self" offer new perspectives for data analytics. Regarding analytics, significant advances have been made in the information extraction from text data, which unlocks a lot of data from clinical documentation for analytics purposes. At the same time, medicine and healthcare is lagging behind in the adoption of Big Data approaches. This can be traced to particular problems regarding data complexity and organizational, legal, and ethical challenges. The growing uptake of Big Data in general and first best-practice examples in medicine and healthcare in particular, indicate that innovative solutions will be coming. This paper gives an overview of the potentials of Big Data in medicine and healthcare.

  14. Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback.

    Science.gov (United States)

    Orhan, A Emin; Ma, Wei Ji

    2017-07-26

    Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks. Probabilistic inference requires trial-to-trial representation of the uncertainties associated with task variables and subsequent use of this representation. Previous work has implemented such computations using neural networks with hand-crafted and task-dependent operations. We show that generic neural networks trained with a simple error-based learning rule perform near-optimal probabilistic inference in nine common psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic network simultaneously explains a monkey's learning curve and the evolution of qualitative aspects of its choice behavior. In all tasks, the number of neurons required for a given level of performance grows sublinearly with the input population size, a substantial improvement on previous implementations of probabilistic inference. The trained networks develop a novel sparsity-based probabilistic population code. Our results suggest that probabilistic inference emerges naturally in generic neural networks trained with error-based learning rules.Behavioural tasks often require probability distributions to be inferred about task specific variables. Here, the authors demonstrate that generic neural networks can be trained using a simple error-based learning rule to perform such probabilistic computations efficiently without any need for task specific operations.

  15. From Big Data to Big Business

    DEFF Research Database (Denmark)

    Lund Pedersen, Carsten

    2017-01-01

    Idea in Brief: Problem: There is an enormous profit potential for manufacturing firms in big data, but one of the key barriers to obtaining data-driven growth is the lack of knowledge about which capabilities are needed to extract value and profit from data. Solution: We (BDBB research group at C...

  16. Feature to prototype transition in neural networks

    Science.gov (United States)

    Krotov, Dmitry; Hopfield, John

    Models of associative memory with higher order (higher than quadratic) interactions, and their relationship to neural networks used in deep learning are discussed. Associative memory is conventionally described by recurrent neural networks with dynamical convergence to stable points. Deep learning typically uses feedforward neural nets without dynamics. However, a simple duality relates these two different views when applied to problems of pattern classification. From the perspective of associative memory such models deserve attention because they make it possible to store a much larger number of memories, compared to the quadratic case. In the dual description, these models correspond to feedforward neural networks with one hidden layer and unusual activation functions transmitting the activities of the visible neurons to the hidden layer. These activation functions are rectified polynomials of a higher degree rather than the rectified linear functions used in deep learning. The network learns representations of the data in terms of features for rectified linear functions, but as the power in the activation function is increased there is a gradual shift to a prototype-based representation, the two extreme regimes of pattern recognition known in cognitive psychology. Simons Center for Systems Biology.

  17. Making big sense from big data in toxicology by read-across.

    Science.gov (United States)

    Hartung, Thomas

    2016-01-01

    Modern information technologies have made big data available in safety sciences, i.e., extremely large data sets that may be analyzed only computationally to reveal patterns, trends and associations. This happens by (1) compilation of large sets of existing data, e.g., as a result of the European REACH regulation, (2) the use of omics technologies and (3) systematic robotized testing in a high-throughput manner. All three approaches and some other high-content technologies leave us with big data--the challenge is now to make big sense of these data. Read-across, i.e., the local similarity-based intrapolation of properties, is gaining momentum with increasing data availability and consensus on how to process and report it. It is predominantly applied to in vivo test data as a gap-filling approach, but can similarly complement other incomplete datasets. Big data are first of all repositories for finding similar substances and ensure that the available data is fully exploited. High-content and high-throughput approaches similarly require focusing on clusters, in this case formed by underlying mechanisms such as pathways of toxicity. The closely connected properties, i.e., structural and biological similarity, create the confidence needed for predictions of toxic properties. Here, a new web-based tool under development called REACH-across, which aims to support and automate structure-based read-across, is presented among others.

  18. [Big data in official statistics].

    Science.gov (United States)

    Zwick, Markus

    2015-08-01

    The concept of "big data" stands to change the face of official statistics over the coming years, having an impact on almost all aspects of data production. The tasks of future statisticians will not necessarily be to produce new data, but rather to identify and make use of existing data to adequately describe social and economic phenomena. Until big data can be used correctly in official statistics, a lot of questions need to be answered and problems solved: the quality of data, data protection, privacy, and the sustainable availability are some of the more pressing issues to be addressed. The essential skills of official statisticians will undoubtedly change, and this implies a number of challenges to be faced by statistical education systems, in universities, and inside the statistical offices. The national statistical offices of the European Union have concluded a concrete strategy for exploring the possibilities of big data for official statistics, by means of the Big Data Roadmap and Action Plan 1.0. This is an important first step and will have a significant influence on implementing the concept of big data inside the statistical offices of Germany.

  19. Big-Leaf Mahogany on CITES Appendix II: Big Challenge, Big Opportunity

    Science.gov (United States)

    JAMES GROGAN; PAULO BARRETO

    2005-01-01

    On 15 November 2003, big-leaf mahogany (Swietenia macrophylla King, Meliaceae), the most valuable widely traded Neotropical timber tree, gained strengthened regulatory protection from its listing on Appendix II of the Convention on International Trade in Endangered Species ofWild Fauna and Flora (CITES). CITES is a United Nations-chartered agreement signed by 164...

  20. Big Data as Information Barrier

    Directory of Open Access Journals (Sweden)

    Victor Ya. Tsvetkov

    2014-07-01

    Full Text Available The article covers analysis of ‘Big Data’ which has been discussed over last 10 years. The reasons and factors for the issue are revealed. It has proved that the factors creating ‘Big Data’ issue has existed for quite a long time, and from time to time, would cause the informational barriers. Such barriers were successfully overcome through the science and technologies. The conducted analysis refers the “Big Data” issue to a form of informative barrier. This issue may be solved correctly and encourages development of scientific and calculating methods.

  1. Big Data in Space Science

    OpenAIRE

    Barmby, Pauline

    2018-01-01

    It seems like “big data” is everywhere these days. In planetary science and astronomy, we’ve been dealing with large datasets for a long time. So how “big” is our data? How does it compare to the big data that a bank or an airline might have? What new tools do we need to analyze big datasets, and how can we make better use of existing tools? What kinds of science problems can we address with these? I’ll address these questions with examples including ESA’s Gaia mission, ...

  2. Application of a neural network for reflectance spectrum classification

    Science.gov (United States)

    Yang, Gefei; Gartley, Michael

    2017-05-01

    Traditional reflectance spectrum classification algorithms are based on comparing spectrum across the electromagnetic spectrum anywhere from the ultra-violet to the thermal infrared regions. These methods analyze reflectance on a pixel by pixel basis. Inspired by high performance that Convolution Neural Networks (CNN) have demonstrated in image classification, we applied a neural network to analyze directional reflectance pattern images. By using the bidirectional reflectance distribution function (BRDF) data, we can reformulate the 4-dimensional into 2 dimensions, namely incident direction × reflected direction × channels. Meanwhile, RIT's micro-DIRSIG model is utilized to simulate additional training samples for improving the robustness of the neural networks training. Unlike traditional classification by using hand-designed feature extraction with a trainable classifier, neural networks create several layers to learn a feature hierarchy from pixels to classifier and all layers are trained jointly. Hence, the our approach of utilizing the angular features are different to traditional methods utilizing spatial features. Although training processing typically has a large computational cost, simple classifiers work well when subsequently using neural network generated features. Currently, most popular neural networks such as VGG, GoogLeNet and AlexNet are trained based on RGB spatial image data. Our approach aims to build a directional reflectance spectrum based neural network to help us to understand from another perspective. At the end of this paper, we compare the difference among several classifiers and analyze the trade-off among neural networks parameters.

  3. Big Data in Medicine is Driving Big Changes

    Science.gov (United States)

    Verspoor, K.

    2014-01-01

    Summary Objectives To summarise current research that takes advantage of “Big Data” in health and biomedical informatics applications. Methods Survey of trends in this work, and exploration of literature describing how large-scale structured and unstructured data sources are being used to support applications from clinical decision making and health policy, to drug design and pharmacovigilance, and further to systems biology and genetics. Results The survey highlights ongoing development of powerful new methods for turning that large-scale, and often complex, data into information that provides new insights into human health, in a range of different areas. Consideration of this body of work identifies several important paradigm shifts that are facilitated by Big Data resources and methods: in clinical and translational research, from hypothesis-driven research to data-driven research, and in medicine, from evidence-based practice to practice-based evidence. Conclusions The increasing scale and availability of large quantities of health data require strategies for data management, data linkage, and data integration beyond the limits of many existing information systems, and substantial effort is underway to meet those needs. As our ability to make sense of that data improves, the value of the data will continue to increase. Health systems, genetics and genomics, population and public health; all areas of biomedicine stand to benefit from Big Data and the associated technologies. PMID:25123716

  4. Main Issues in Big Data Security

    Directory of Open Access Journals (Sweden)

    Julio Moreno

    2016-09-01

    Full Text Available Data is currently one of the most important assets for companies in every field. The continuous growth in the importance and volume of data has created a new problem: it cannot be handled by traditional analysis techniques. This problem was, therefore, solved through the creation of a new paradigm: Big Data. However, Big Data originated new issues related not only to the volume or the variety of the data, but also to data security and privacy. In order to obtain a full perspective of the problem, we decided to carry out an investigation with the objective of highlighting the main issues regarding Big Data security, and also the solutions proposed by the scientific community to solve them. In this paper, we explain the results obtained after applying a systematic mapping study to security in the Big Data ecosystem. It is almost impossible to carry out detailed research into the entire topic of security, and the outcome of this research is, therefore, a big picture of the main problems related to security in a Big Data system, along with the principal solutions to them proposed by the research community.

  5. Exploring the Potential of Predictive Analytics and Big Data in Emergency Care.

    Science.gov (United States)

    Janke, Alexander T; Overbeek, Daniel L; Kocher, Keith E; Levy, Phillip D

    2016-02-01

    Clinical research often focuses on resource-intensive causal inference, whereas the potential of predictive analytics with constantly increasing big data sources remains largely unexplored. Basic prediction, divorced from causal inference, is much easier with big data. Emergency care may benefit from this simpler application of big data. Historically, predictive analytics have played an important role in emergency care as simple heuristics for risk stratification. These tools generally follow a standard approach: parsimonious criteria, easy computability, and independent validation with distinct populations. Simplicity in a prediction tool is valuable, but technological advances make it no longer a necessity. Emergency care could benefit from clinical predictions built using data science tools with abundant potential input variables available in electronic medical records. Patients' risks could be stratified more precisely with large pools of data and lower resource requirements for comparing each clinical encounter to those that came before it, benefiting clinical decisionmaking and health systems operations. The largest value of predictive analytics comes early in the clinical encounter, in which diagnostic and prognostic uncertainty are high and resource-committing decisions need to be made. We propose an agenda for widening the application of predictive analytics in emergency care. Throughout, we express cautious optimism because there are myriad challenges related to database infrastructure, practitioner uptake, and patient acceptance. The quality of routinely compiled clinical data will remain an important limitation. Complementing big data sources with prospective data may be necessary if predictive analytics are to achieve their full potential to improve care quality in the emergency department. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  6. Prediksi Pergerakan Harga Valas Menggunakan Algoritma Neural Network

    Directory of Open Access Journals (Sweden)

    Castaka Agus Sugianto

    2018-01-01

    Full Text Available World currency market trading has become one of the many types of work that has been done by the public due to the convenience offered, big profits and the flexibility of time and place in trading. This study aims to predict the movement of EUR / USD currency trends using data mining techniques combined with neural network algorithms compared by linear regression algorithm that can be used as one of the references for traders as an open trading position. Attributes were used in this study namely Open (Opening Price, Close (Closing Price, Highest (Highest Price, Lowest (Lowest Price, for time frame price used is with time frame 1 day and the time period is taken from 3 January 2011 to 15 November 2016. The result of this research is Root Mean Squared Error (RMSE percentage number as well as additional label prediction result that obtained after validation using sliding windows validation. Best result obtained from testing phase using neural network algorithm which uses 0.006 and 0.003 windowing which results is equal to testing phase that does not use windowing. In other hands, testing phase on linear regression algorithm using windowing resulted in 0.007 and testing phase that does not use windowing that is equal to 0.004. T-test showed that neural network has insignificant result compared with linear regression. T-test result value is 1.00 for testing with windowing and 0.077 for windowless test.

  7. Foreground removal from CMB temperature maps using an MLP neural network

    Science.gov (United States)

    Nørgaard-Nielsen, H. U.; Jørgensen, H. E.

    2008-12-01

    One of the main obstacles for extracting the Cosmic Microwave Background (CMB) signal from observations in the mm-submm range is the foreground contamination by emission from Galactic components: mainly synchrotron, free-free and thermal dust emission. Due to the statistical nature of the intrinsic CMB signal it is essential to minimize the systematic errors in the CMB temperature determinations. Following the available knowledge of the spectral behavior of the Galactic foregrounds simple power law-like spectra have been assumed. The feasibility of using a simple neural network for extracting the CMB temperature signal from the combined signal CMB and the foregrounds has been investigated. As a specific example, we have analysed simulated data, as expected from the ESA Planck CMB mission. A simple multilayer perceptron neural network with 2 hidden layers can provide temperature estimates over more than 80 per cent of the sky that are to a high degree uncorrelated with the foreground signals. A single network will be able to cover the dynamic range of the Planck noise level over the entire sky.

  8. Neural Network Models of Simple Mechanical Systems Illustrating the Feasibility of Accelerated Life Testing

    Science.gov (United States)

    Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph

    1996-01-01

    A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.

  9. Harnessing the Power of Big Data to Improve Graduate Medical Education: Big Idea or Bust?

    Science.gov (United States)

    Arora, Vineet M

    2018-06-01

    With the advent of electronic medical records (EMRs) fueling the rise of big data, the use of predictive analytics, machine learning, and artificial intelligence are touted as transformational tools to improve clinical care. While major investments are being made in using big data to transform health care delivery, little effort has been directed toward exploiting big data to improve graduate medical education (GME). Because our current system relies on faculty observations of competence, it is not unreasonable to ask whether big data in the form of clinical EMRs and other novel data sources can answer questions of importance in GME such as when is a resident ready for independent practice.The timing is ripe for such a transformation. A recent National Academy of Medicine report called for reforms to how GME is delivered and financed. While many agree on the need to ensure that GME meets our nation's health needs, there is little consensus on how to measure the performance of GME in meeting this goal. During a recent workshop at the National Academy of Medicine on GME outcomes and metrics in October 2017, a key theme emerged: Big data holds great promise to inform GME performance at individual, institutional, and national levels. In this Invited Commentary, several examples are presented, such as using big data to inform clinical experience and provide clinically meaningful data to trainees, and using novel data sources, including ambient data, to better measure the quality of GME training.

  10. A SWOT Analysis of Big Data

    Science.gov (United States)

    Ahmadi, Mohammad; Dileepan, Parthasarati; Wheatley, Kathleen K.

    2016-01-01

    This is the decade of data analytics and big data, but not everyone agrees with the definition of big data. Some researchers see it as the future of data analysis, while others consider it as hype and foresee its demise in the near future. No matter how it is defined, big data for the time being is having its glory moment. The most important…

  11. A survey of big data research

    Science.gov (United States)

    Fang, Hua; Zhang, Zhaoyang; Wang, Chanpaul Jin; Daneshmand, Mahmoud; Wang, Chonggang; Wang, Honggang

    2015-01-01

    Big data create values for business and research, but pose significant challenges in terms of networking, storage, management, analytics and ethics. Multidisciplinary collaborations from engineers, computer scientists, statisticians and social scientists are needed to tackle, discover and understand big data. This survey presents an overview of big data initiatives, technologies and research in industries and academia, and discusses challenges and potential solutions. PMID:26504265

  12. Big Data in Action for Government : Big Data Innovation in Public Services, Policy, and Engagement

    OpenAIRE

    World Bank

    2017-01-01

    Governments have an opportunity to harness big data solutions to improve productivity, performance and innovation in service delivery and policymaking processes. In developing countries, governments have an opportunity to adopt big data solutions and leapfrog traditional administrative approaches

  13. 78 FR 3911 - Big Stone National Wildlife Refuge, Big Stone and Lac Qui Parle Counties, MN; Final Comprehensive...

    Science.gov (United States)

    2013-01-17

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R3-R-2012-N259; FXRS1265030000-134-FF03R06000] Big Stone National Wildlife Refuge, Big Stone and Lac Qui Parle Counties, MN; Final Comprehensive... significant impact (FONSI) for the environmental assessment (EA) for Big Stone National Wildlife Refuge...

  14. IR wireless cluster synapses of HYDRA very large neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  15. Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network

    Science.gov (United States)

    Wang, Li-Hua; Zhao, Xiao-Ping; Wu, Jia-Xin; Xie, Yang-Yang; Zhang, Yong-Hong

    2017-11-01

    With the rapid development of mechanical equipment, the mechanical health monitoring field has entered the era of big data. However, the method of manual feature extraction has the disadvantages of low efficiency and poor accuracy, when handling big data. In this study, the research object was the asynchronous motor in the drivetrain diagnostics simulator system. The vibration signals of different fault motors were collected. The raw signal was pretreated using short time Fourier transform (STFT) to obtain the corresponding time-frequency map. Then, the feature of the time-frequency map was adaptively extracted by using a convolutional neural network (CNN). The effects of the pretreatment method, and the hyper parameters of network diagnostic accuracy, were investigated experimentally. The experimental results showed that the influence of the preprocessing method is small, and that the batch-size is the main factor affecting accuracy and training efficiency. By investigating feature visualization, it was shown that, in the case of big data, the extracted CNN features can represent complex mapping relationships between signal and health status, and can also overcome the prior knowledge and engineering experience requirement for feature extraction, which is used by traditional diagnosis methods. This paper proposes a new method, based on STFT and CNN, which can complete motor fault diagnosis tasks more intelligently and accurately.

  16. Big domains are novel Ca²+-binding modules: evidences from big domains of Leptospira immunoglobulin-like (Lig proteins.

    Directory of Open Access Journals (Sweden)

    Rajeev Raman

    Full Text Available BACKGROUND: Many bacterial surface exposed proteins mediate the host-pathogen interaction more effectively in the presence of Ca²+. Leptospiral immunoglobulin-like (Lig proteins, LigA and LigB, are surface exposed proteins containing Bacterial immunoglobulin like (Big domains. The function of proteins which contain Big fold is not known. Based on the possible similarities of immunoglobulin and βγ-crystallin folds, we here explore the important question whether Ca²+ binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. PRINCIPAL FINDINGS: We selected six individual Big domains for this study (three from the conserved part of LigA and LigB, denoted as Lig A3, Lig A4, and LigBCon5; two from the variable region of LigA, i.e., 9(th (Lig A9 and 10(th repeats (Lig A10; and one from the variable region of LigB, i.e., LigBCen2. We have also studied the conserved region covering the three and six repeats (LigBCon1-3 and LigCon. All these proteins bind the calcium-mimic dye Stains-all. All the selected four domains bind Ca²+ with dissociation constants of 2-4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm, probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. CONCLUSIONS: We demonstrate that the Lig are Ca²+-binding proteins, with Big domains harbouring the binding motif. We conclude that despite differences in sequence, a Big motif binds Ca²+. This work thus sets up a strong possibility for classifying the proteins containing Big domains as a novel family of Ca²+-binding proteins. Since Big domain is a part of many proteins in bacterial kingdom, we suggest a possible function these proteins via Ca²+ binding.

  17. Higher-order neural network software for distortion invariant object recognition

    Science.gov (United States)

    Reid, Max B.; Spirkovska, Lilly

    1991-01-01

    The state-of-the-art in pattern recognition for such applications as automatic target recognition and industrial robotic vision relies on digital image processing. We present a higher-order neural network model and software which performs the complete feature extraction-pattern classification paradigm required for automatic pattern recognition. Using a third-order neural network, we demonstrate complete, 100 percent accurate invariance to distortions of scale, position, and in-plate rotation. In a higher-order neural network, feature extraction is built into the network, and does not have to be learned. Only the relatively simple classification step must be learned. This is key to achieving very rapid training. The training set is much smaller than with standard neural network software because the higher-order network only has to be shown one view of each object to be learned, not every possible view. The software and graphical user interface run on any Sun workstation. Results of the use of the neural software in autonomous robotic vision systems are presented. Such a system could have extensive application in robotic manufacturing.

  18. New 'bigs' in cosmology

    International Nuclear Information System (INIS)

    Yurov, Artyom V.; Martin-Moruno, Prado; Gonzalez-Diaz, Pedro F.

    2006-01-01

    This paper contains a detailed discussion on new cosmic solutions describing the early and late evolution of a universe that is filled with a kind of dark energy that may or may not satisfy the energy conditions. The main distinctive property of the resulting space-times is that they make to appear twice the single singular events predicted by the corresponding quintessential (phantom) models in a manner which can be made symmetric with respect to the origin of cosmic time. Thus, big bang and big rip singularity are shown to take place twice, one on the positive branch of time and the other on the negative one. We have also considered dark energy and phantom energy accretion onto black holes and wormholes in the context of these new cosmic solutions. It is seen that the space-times of these holes would then undergo swelling processes leading to big trip and big hole events taking place on distinct epochs along the evolution of the universe. In this way, the possibility is considered that the past and future be connected in a non-paradoxical manner in the universes described by means of the new symmetric solutions

  19. Functional electrical stimulation controlled by artificial neural networks: pilot experiments with simple movements are promising for rehabilitation applications.

    Science.gov (United States)

    Ferrante, Simona; Pedrocchi, Alessandra; Iannò, Marco; De Momi, Elena; Ferrarin, Maurizio; Ferrigno, Giancarlo

    2004-01-01

    This study falls within the ambit of research on functional electrical stimulation for the design of rehabilitation training for spinal cord injured patients. In this context, a crucial issue is the control of the stimulation parameters in order to optimize the patterns of muscle activation and to increase the duration of the exercises. An adaptive control system (NEURADAPT) based on artificial neural networks (ANNs) was developed to control the knee joint in accordance with desired trajectories by stimulating quadriceps muscles. This strategy includes an inverse neural model of the stimulated limb in the feedforward line and a neural network trained on-line in the feedback loop. NEURADAPT was compared with a linear closed-loop proportional integrative derivative (PID) controller and with a model-based neural controller (NEUROPID). Experiments on two subjects (one healthy and one paraplegic) show the good performance of NEURADAPT, which is able to reduce the time lag introduced by the PID controller. In addition, control systems based on ANN techniques do not require complicated calibration procedures at the beginning of each experimental session. After the initial learning phase, the ANN, thanks to its generalization capacity, is able to cope with a certain range of variability of skeletal muscle properties.

  20. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  1. Scalable privacy-preserving big data aggregation mechanism

    Directory of Open Access Journals (Sweden)

    Dapeng Wu

    2016-08-01

    Full Text Available As the massive sensor data generated by large-scale Wireless Sensor Networks (WSNs recently become an indispensable part of ‘Big Data’, the collection, storage, transmission and analysis of the big sensor data attract considerable attention from researchers. Targeting the privacy requirements of large-scale WSNs and focusing on the energy-efficient collection of big sensor data, a Scalable Privacy-preserving Big Data Aggregation (Sca-PBDA method is proposed in this paper. Firstly, according to the pre-established gradient topology structure, sensor nodes in the network are divided into clusters. Secondly, sensor data is modified by each node according to the privacy-preserving configuration message received from the sink. Subsequently, intra- and inter-cluster data aggregation is employed during the big sensor data reporting phase to reduce energy consumption. Lastly, aggregated results are recovered by the sink to complete the privacy-preserving big data aggregation. Simulation results validate the efficacy and scalability of Sca-PBDA and show that the big sensor data generated by large-scale WSNs is efficiently aggregated to reduce network resource consumption and the sensor data privacy is effectively protected to meet the ever-growing application requirements.

  2. Obesity-specific neural cost of maintaining gait performance under complex conditions in community-dwelling older adults.

    Science.gov (United States)

    Osofundiya, Olufunmilola; Benden, Mark E; Dowdy, Diane; Mehta, Ranjana K

    2016-06-01

    Recent evidence of obesity-related changes in the prefrontal cortex during cognitive and seated motor activities has surfaced; however, the impact of obesity on neural activity during ambulation remains unclear. The purpose of this study was to determine obesity-specific neural cost of simple and complex ambulation in older adults. Twenty non-obese and obese individuals, 65years and older, performed three tasks varying in the types of complexity of ambulation (simple walking, walking+cognitive dual-task, and precision walking). Maximum oxygenated hemoglobin, a measure of neural activity, was measured bilaterally using a portable functional near infrared spectroscopy system, and gait speed and performance on the complex tasks were also obtained. Complex ambulatory tasks were associated with ~2-3.5 times greater cerebral oxygenation levels and ~30-40% slower gait speeds when compared to the simple walking task. Additionally, obesity was associated with three times greater oxygenation levels, particularly during the precision gait task, despite obese adults demonstrating similar gait speeds and performances on the complex gait tasks as non-obese adults. Compared to existing studies that focus solely on biomechanical outcomes, the present study is one of the first to examine obesity-related differences in neural activity during ambulation in older adults. In order to maintain gait performance, obesity was associated with higher neural costs, and this was augmented during ambulatory tasks requiring greater precision control. These preliminary findings have clinical implications in identifying individuals who are at greater risk of mobility limitations, particularly when performing complex ambulatory tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Periodic oscillatory solution in delayed competitive-cooperative neural networks: A decomposition approach

    International Nuclear Information System (INIS)

    Yuan Kun; Cao Jinde

    2006-01-01

    In this paper, the problems of exponential convergence and the exponential stability of the periodic solution for a general class of non-autonomous competitive-cooperative neural networks are analyzed via the decomposition approach. The idea is to divide the connection weights into inhibitory or excitatory types and thereby to embed a competitive-cooperative delayed neural network into an augmented cooperative delay system through a symmetric transformation. Some simple necessary and sufficient conditions are derived to ensure the componentwise exponential convergence and the exponential stability of the periodic solution of the considered neural networks. These results generalize and improve the previous works, and they are easy to check and apply in practice

  4. Modeling Distillation Column Using ARX Model Structure and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Pirmoradi

    2012-04-01

    Full Text Available Distillation is a complex and highly nonlinear industrial process. In general it is not always possible to obtain accurate first principles models for high-purity distillation columns. On the other hand the development of first principles models is usually time consuming and expensive. To overcome these problems, empirical models such as neural networks can be used. One major drawback of empirical models is that the prediction is valid only inside the data domain that is sufficiently covered by measurement data. Modeling distillation columns by means of neural networks is reported in literature by using recursive networks. The recursive networks are proper for modeling purpose, but such models have the problems of high complexity and high computational cost. The objective of this paper is to propose a simple and reliable model for distillation column. The proposed model uses feed forward neural networks which results in a simple model with less parameters and faster training time. Simulation results demonstrate that predictions of the proposed model in all regions are close to outputs of the dynamic model and the error in negligible. This implies that the model is reliable in all regions.

  5. Ethische aspecten van big data

    NARCIS (Netherlands)

    N. (Niek) van Antwerpen; Klaas Jan Mollema

    2017-01-01

    Big data heeft niet alleen geleid tot uitdagende technische vraagstukken, ook gaat het gepaard met allerlei nieuwe ethische en morele kwesties. Om verantwoord met big data om te gaan, moet ook over deze kwesties worden nagedacht. Want slecht datagebruik kan nadelige gevolgen hebben voor

  6. Epidemiology in wonderland: Big Data and precision medicine.

    Science.gov (United States)

    Saracci, Rodolfo

    2018-03-01

    Big Data and precision medicine, two major contemporary challenges for epidemiology, are critically examined from two different angles. In Part 1 Big Data collected for research purposes (Big research Data) and Big Data used for research although collected for other primary purposes (Big secondary Data) are discussed in the light of the fundamental common requirement of data validity, prevailing over "bigness". Precision medicine is treated developing the key point that high relative risks are as a rule required to make a variable or combination of variables suitable for prediction of disease occurrence, outcome or response to treatment; the commercial proliferation of allegedly predictive tests of unknown or poor validity is commented. Part 2 proposes a "wise epidemiology" approach to: (a) choosing in a context imprinted by Big Data and precision medicine-epidemiological research projects actually relevant to population health, (b) training epidemiologists, (c) investigating the impact on clinical practices and doctor-patient relation of the influx of Big Data and computerized medicine and (d) clarifying whether today "health" may be redefined-as some maintain in purely technological terms.

  7. Big Data and Analytics in Healthcare.

    Science.gov (United States)

    Tan, S S-L; Gao, G; Koch, S

    2015-01-01

    This editorial is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". The amount of data being generated in the healthcare industry is growing at a rapid rate. This has generated immense interest in leveraging the availability of healthcare data (and "big data") to improve health outcomes and reduce costs. However, the nature of healthcare data, and especially big data, presents unique challenges in processing and analyzing big data in healthcare. This Focus Theme aims to disseminate some novel approaches to address these challenges. More specifically, approaches ranging from efficient methods of processing large clinical data to predictive models that could generate better predictions from healthcare data are presented.

  8. Big Data for Business Ecosystem Players

    Directory of Open Access Journals (Sweden)

    Perko Igor

    2016-06-01

    Full Text Available In the provided research, some of the Big Data most prospective usage domains connect with distinguished player groups found in the business ecosystem. Literature analysis is used to identify the state of the art of Big Data related research in the major domains of its use-namely, individual marketing, health treatment, work opportunities, financial services, and security enforcement. System theory was used to identify business ecosystem major player types disrupted by Big Data: individuals, small and mid-sized enterprises, large organizations, information providers, and regulators. Relationships between the domains and players were explained through new Big Data opportunities and threats and by players’ responsive strategies. System dynamics was used to visualize relationships in the provided model.

  9. "Big data" in economic history.

    Science.gov (United States)

    Gutmann, Myron P; Merchant, Emily Klancher; Roberts, Evan

    2018-03-01

    Big data is an exciting prospect for the field of economic history, which has long depended on the acquisition, keying, and cleaning of scarce numerical information about the past. This article examines two areas in which economic historians are already using big data - population and environment - discussing ways in which increased frequency of observation, denser samples, and smaller geographic units allow us to analyze the past with greater precision and often to track individuals, places, and phenomena across time. We also explore promising new sources of big data: organically created economic data, high resolution images, and textual corpora.

  10. Big Data Knowledge in Global Health Education.

    Science.gov (United States)

    Olayinka, Olaniyi; Kekeh, Michele; Sheth-Chandra, Manasi; Akpinar-Elci, Muge

    The ability to synthesize and analyze massive amounts of data is critical to the success of organizations, including those that involve global health. As countries become highly interconnected, increasing the risk for pandemics and outbreaks, the demand for big data is likely to increase. This requires a global health workforce that is trained in the effective use of big data. To assess implementation of big data training in global health, we conducted a pilot survey of members of the Consortium of Universities of Global Health. More than half the respondents did not have a big data training program at their institution. Additionally, the majority agreed that big data training programs will improve global health deliverables, among other favorable outcomes. Given the observed gap and benefits, global health educators may consider investing in big data training for students seeking a career in global health. Copyright © 2017 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.

  11. Big behavioral data: psychology, ethology and the foundations of neuroscience.

    Science.gov (United States)

    Gomez-Marin, Alex; Paton, Joseph J; Kampff, Adam R; Costa, Rui M; Mainen, Zachary F

    2014-11-01

    Behavior is a unifying organismal process where genes, neural function, anatomy and environment converge and interrelate. Here we review the current state and discuss the future effect of accelerating advances in technology for behavioral studies, focusing on rodents as an example. We frame our perspective in three dimensions: the degree of experimental constraint, dimensionality of data and level of description. We argue that 'big behavioral data' presents challenges proportionate to its promise and describe how these challenges might be met through opportunities afforded by the two rival conceptual legacies of twentieth century behavioral science, ethology and psychology. We conclude that, although 'more is not necessarily better', copious, quantitative and open behavioral data has the potential to transform and unify these two disciplines and to solidify the foundations of others, including neuroscience, but only if the development of new theoretical frameworks and improved experimental designs matches the technological progress.

  12. GEOSS: Addressing Big Data Challenges

    Science.gov (United States)

    Nativi, S.; Craglia, M.; Ochiai, O.

    2014-12-01

    In the sector of Earth Observation, the explosion of data is due to many factors including: new satellite constellations, the increased capabilities of sensor technologies, social media, crowdsourcing, and the need for multidisciplinary and collaborative research to face Global Changes. In this area, there are many expectations and concerns about Big Data. Vendors have attempted to use this term for their commercial purposes. It is necessary to understand whether Big Data is a radical shift or an incremental change for the existing digital infrastructures. This presentation tries to explore and discuss the impact of Big Data challenges and new capabilities on the Global Earth Observation System of Systems (GEOSS) and particularly on its common digital infrastructure called GCI. GEOSS is a global and flexible network of content providers allowing decision makers to access an extraordinary range of data and information at their desk. The impact of the Big Data dimensionalities (commonly known as 'V' axes: volume, variety, velocity, veracity, visualization) on GEOSS is discussed. The main solutions and experimentation developed by GEOSS along these axes are introduced and analyzed. GEOSS is a pioneering framework for global and multidisciplinary data sharing in the Earth Observation realm; its experience on Big Data is valuable for the many lessons learned.

  13. Big data for bipolar disorder.

    Science.gov (United States)

    Monteith, Scott; Glenn, Tasha; Geddes, John; Whybrow, Peter C; Bauer, Michael

    2016-12-01

    The delivery of psychiatric care is changing with a new emphasis on integrated care, preventative measures, population health, and the biological basis of disease. Fundamental to this transformation are big data and advances in the ability to analyze these data. The impact of big data on the routine treatment of bipolar disorder today and in the near future is discussed, with examples that relate to health policy, the discovery of new associations, and the study of rare events. The primary sources of big data today are electronic medical records (EMR), claims, and registry data from providers and payers. In the near future, data created by patients from active monitoring, passive monitoring of Internet and smartphone activities, and from sensors may be integrated with the EMR. Diverse data sources from outside of medicine, such as government financial data, will be linked for research. Over the long term, genetic and imaging data will be integrated with the EMR, and there will be more emphasis on predictive models. Many technical challenges remain when analyzing big data that relates to size, heterogeneity, complexity, and unstructured text data in the EMR. Human judgement and subject matter expertise are critical parts of big data analysis, and the active participation of psychiatrists is needed throughout the analytical process.

  14. BIG DATA IN TAMIL: OPPORTUNITIES, BENEFITS AND CHALLENGES

    OpenAIRE

    R.S. Vignesh Raj; Babak Khazaei; Ashik Ali

    2015-01-01

    This paper gives an overall introduction on big data and has tried to introduce Big Data in Tamil. It discusses the potential opportunities, benefits and likely challenges from a very Tamil and Tamil Nadu perspective. The paper has also made original contribution by proposing the ‘big data’s’ terminology in Tamil. The paper further suggests a few areas to explore using big data Tamil on the lines of the Tamil Nadu Government ‘vision 2023’. Whilst, big data has something to offer everyone, it ...

  15. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    Science.gov (United States)

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  16. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Emilio J Gualda

    2014-08-01

    Full Text Available The development of three dimensional cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex three dimensional matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy is becoming an excellent tool for fast imaging of such three-dimensional biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment.

  17. Big data in biomedicine.

    Science.gov (United States)

    Costa, Fabricio F

    2014-04-01

    The increasing availability and growth rate of biomedical information, also known as 'big data', provides an opportunity for future personalized medicine programs that will significantly improve patient care. Recent advances in information technology (IT) applied to biomedicine are changing the landscape of privacy and personal information, with patients getting more control of their health information. Conceivably, big data analytics is already impacting health decisions and patient care; however, specific challenges need to be addressed to integrate current discoveries into medical practice. In this article, I will discuss the major breakthroughs achieved in combining omics and clinical health data in terms of their application to personalized medicine. I will also review the challenges associated with using big data in biomedicine and translational science. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Training Convolutional Neural Networks for Translational Invariance on SAR ATR

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Engholm, Rasmus; Østergaard Pedersen, Morten

    2016-01-01

    In this paper we present a comparison of the robustness of Convolutional Neural Networks (CNN) to other classifiers in the presence of uncertainty of the objects localization in SAR image. We present a framework for simulating simple SAR images, translating the object of interest systematically...

  19. Cosmological perturbations in the 5D big bang

    International Nuclear Information System (INIS)

    Garriga, Jaume; Tanaka, Takahiro

    2002-01-01

    Bucher has recently proposed an interesting brane-world cosmological scenario where the 'big bang' hypersurface is the locus of collision of two vacuum bubbles which nucleate in a five-dimensional flat space. This gives rise to an open universe, where the curvature can be very small provided that d/R 0 is sufficiently large. Here, d is the distance between bubbles and R 0 is their size at the time of nucleation. Quantum fluctuations develop on the bubbles as they expand towards each other, and these in turn imprint cosmological perturbations on the initial hypersurface. We present a simple formalism for calculating the spectrum of such perturbations and their subsequent evolution. We conclude that, unfortunately, the spectrum is very tilted, with a spectral index n s =3. The amplitude of fluctuations at the horizon crossing is given by 2 >∼(R 0 /d) 2 S E -1 k 2 , where S E >>1 is the Euclidean action of the instanton describing the nucleation of a bubble and k is the wave number in units of the curvature scale. The spectrum peaks on the smallest possible relevant scale, whose wave number is given by k∼d/R 0 . We comment on the possible extension of our formalism to more general situations where a big bang is ignited through the collision of 4D extended objects

  20. A decomposition approach to analysis of competitive-cooperative neural networks with delay

    International Nuclear Information System (INIS)

    Chu Tianguang; Zhang Zongda; Wang Zhaolin

    2003-01-01

    Competitive-cooperative or inhibitory-excitatory configurations abound in neural networks. It is demonstrated here how such a configuration may be exploited to give a detailed characterization of the fixed point dynamics in general neural networks with time delay. The idea is to divide the connection weights into inhibitory and excitatory types and thereby to embed a competitive-cooperative delay neural network into an augmented cooperative delay system through a symmetric transformation. This allows for the use of the powerful monotone properties of cooperative systems. By the method, we derive several simple necessary and sufficient conditions on guaranteed trapping regions and guaranteed componentwise (exponential) convergence of the neural networks. The results relate specific decay rate and trajectory bounds to system parameters and are therefore of practical significance in designing a network with desired performance

  1. Adaptive Regularization of Neural Networks Using Conjugate Gradient

    DEFF Research Database (Denmark)

    Goutte, Cyril; Larsen, Jan

    1998-01-01

    Andersen et al. (1997) and Larsen et al. (1996, 1997) suggested a regularization scheme which iteratively adapts regularization parameters by minimizing validation error using simple gradient descent. In this contribution we present an improved algorithm based on the conjugate gradient technique........ Numerical experiments with feedforward neural networks successfully demonstrate improved generalization ability and lower computational cost...

  2. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Disney, Adam [University of Tennessee (UT); Reynolds, John [University of Tennessee (UT)

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  3. Big Data’s Role in Precision Public Health

    Science.gov (United States)

    Dolley, Shawn

    2018-01-01

    Precision public health is an emerging practice to more granularly predict and understand public health risks and customize treatments for more specific and homogeneous subpopulations, often using new data, technologies, and methods. Big data is one element that has consistently helped to achieve these goals, through its ability to deliver to practitioners a volume and variety of structured or unstructured data not previously possible. Big data has enabled more widespread and specific research and trials of stratifying and segmenting populations at risk for a variety of health problems. Examples of success using big data are surveyed in surveillance and signal detection, predicting future risk, targeted interventions, and understanding disease. Using novel big data or big data approaches has risks that remain to be resolved. The continued growth in volume and variety of available data, decreased costs of data capture, and emerging computational methods mean big data success will likely be a required pillar of precision public health into the future. This review article aims to identify the precision public health use cases where big data has added value, identify classes of value that big data may bring, and outline the risks inherent in using big data in precision public health efforts. PMID:29594091

  4. Big inquiry

    Energy Technology Data Exchange (ETDEWEB)

    Wynne, B [Lancaster Univ. (UK)

    1979-06-28

    The recently published report entitled 'The Big Public Inquiry' from the Council for Science and Society and the Outer Circle Policy Unit is considered, with especial reference to any future enquiry which may take place into the first commercial fast breeder reactor. Proposals embodied in the report include stronger rights for objectors and an attempt is made to tackle the problem that participation in a public inquiry is far too late to be objective. It is felt by the author that the CSS/OCPU report is a constructive contribution to the debate about big technology inquiries but that it fails to understand the deeper currents in the economic and political structure of technology which so influence the consequences of whatever formal procedures are evolved.

  5. Big data analytics with R and Hadoop

    CERN Document Server

    Prajapati, Vignesh

    2013-01-01

    Big Data Analytics with R and Hadoop is a tutorial style book that focuses on all the powerful big data tasks that can be achieved by integrating R and Hadoop.This book is ideal for R developers who are looking for a way to perform big data analytics with Hadoop. This book is also aimed at those who know Hadoop and want to build some intelligent applications over Big data with R packages. It would be helpful if readers have basic knowledge of R.

  6. A new method to estimate parameters of linear compartmental models using artificial neural networks

    International Nuclear Information System (INIS)

    Gambhir, Sanjiv S.; Keppenne, Christian L.; Phelps, Michael E.; Banerjee, Pranab K.

    1998-01-01

    At present, the preferred tool for parameter estimation in compartmental analysis is an iterative procedure; weighted nonlinear regression. For a large number of applications, observed data can be fitted to sums of exponentials whose parameters are directly related to the rate constants/coefficients of the compartmental models. Since weighted nonlinear regression often has to be repeated for many different data sets, the process of fitting data from compartmental systems can be very time consuming. Furthermore the minimization routine often converges to a local (as opposed to global) minimum. In this paper, we examine the possibility of using artificial neural networks instead of weighted nonlinear regression in order to estimate model parameters. We train simple feed-forward neural networks to produce as outputs the parameter values of a given model when kinetic data are fed to the networks' input layer. The artificial neural networks produce unbiased estimates and are orders of magnitude faster than regression algorithms. At noise levels typical of many real applications, the neural networks are found to produce lower variance estimates than weighted nonlinear regression in the estimation of parameters from mono- and biexponential models. These results are primarily due to the inability of weighted nonlinear regression to converge. These results establish that artificial neural networks are powerful tools for estimating parameters for simple compartmental models. (author)

  7. Big data in forensic science and medicine.

    Science.gov (United States)

    Lefèvre, Thomas

    2018-07-01

    In less than a decade, big data in medicine has become quite a phenomenon and many biomedical disciplines got their own tribune on the topic. Perspectives and debates are flourishing while there is a lack for a consensual definition for big data. The 3Vs paradigm is frequently evoked to define the big data principles and stands for Volume, Variety and Velocity. Even according to this paradigm, genuine big data studies are still scarce in medicine and may not meet all expectations. On one hand, techniques usually presented as specific to the big data such as machine learning techniques are supposed to support the ambition of personalized, predictive and preventive medicines. These techniques are mostly far from been new and are more than 50 years old for the most ancient. On the other hand, several issues closely related to the properties of big data and inherited from other scientific fields such as artificial intelligence are often underestimated if not ignored. Besides, a few papers temper the almost unanimous big data enthusiasm and are worth attention since they delineate what is at stakes. In this context, forensic science is still awaiting for its position papers as well as for a comprehensive outline of what kind of contribution big data could bring to the field. The present situation calls for definitions and actions to rationally guide research and practice in big data. It is an opportunity for grounding a true interdisciplinary approach in forensic science and medicine that is mainly based on evidence. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  8. Constructing general partial differential equations using polynomial and neural networks.

    Science.gov (United States)

    Zjavka, Ladislav; Pedrycz, Witold

    2016-01-01

    Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. NASA's Big Data Task Force

    Science.gov (United States)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  10. Big Data Technologies

    Science.gov (United States)

    Bellazzi, Riccardo; Dagliati, Arianna; Sacchi, Lucia; Segagni, Daniele

    2015-01-01

    The so-called big data revolution provides substantial opportunities to diabetes management. At least 3 important directions are currently of great interest. First, the integration of different sources of information, from primary and secondary care to administrative information, may allow depicting a novel view of patient’s care processes and of single patient’s behaviors, taking into account the multifaceted nature of chronic care. Second, the availability of novel diabetes technologies, able to gather large amounts of real-time data, requires the implementation of distributed platforms for data analysis and decision support. Finally, the inclusion of geographical and environmental information into such complex IT systems may further increase the capability of interpreting the data gathered and extract new knowledge from them. This article reviews the main concepts and definitions related to big data, it presents some efforts in health care, and discusses the potential role of big data in diabetes care. Finally, as an example, it describes the research efforts carried on in the MOSAIC project, funded by the European Commission. PMID:25910540

  11. Model for neural signaling leap statistics

    International Nuclear Information System (INIS)

    Chevrollier, Martine; Oria, Marcos

    2011-01-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T 37.5 0 C, awaken regime) and Levy statistics (T = 35.5 0 C, sleeping period), characterized by rare events of long range connections.

  12. Model for neural signaling leap statistics

    Science.gov (United States)

    Chevrollier, Martine; Oriá, Marcos

    2011-03-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T = 37.5°C, awaken regime) and Lévy statistics (T = 35.5°C, sleeping period), characterized by rare events of long range connections.

  13. A short-term neural network memory

    Energy Technology Data Exchange (ETDEWEB)

    Morris, R.J.T.; Wong, W.S.

    1988-12-01

    Neural network memories with storage prescriptions based on Hebb's rule are known to collapse as more words are stored. By requiring that the most recently stored word be remembered precisely, a new simple short-term neutral network memory is obtained and its steady state capacity analyzed and simulated. Comparisons are drawn with Hopfield's method, the delta method of Widrow and Hoff, and the revised marginalist model of Mezard, Nadal, and Toulouse.

  14. The Berlin Inventory of Gambling behavior - Screening (BIG-S): Validation using a clinical sample.

    Science.gov (United States)

    Wejbera, Martin; Müller, Kai W; Becker, Jan; Beutel, Manfred E

    2017-05-18

    Published diagnostic questionnaires for gambling disorder in German are either based on DSM-III criteria or focus on aspects other than life time prevalence. This study was designed to assess the usability of the DSM-IV criteria based Berlin Inventory of Gambling Behavior Screening tool in a clinical sample and adapt it to DSM-5 criteria. In a sample of 432 patients presenting for behavioral addiction assessment at the University Medical Center Mainz, we checked the screening tool's results against clinical diagnosis and compared a subsample of n=300 clinically diagnosed gambling disorder patients with a comparison group of n=132. The BIG-S produced a sensitivity of 99.7% and a specificity of 96.2%. The instrument's unidimensionality and the diagnostic improvements of DSM-5 criteria were verified by exploratory and confirmatory factor analysis as well as receiver operating characteristic analysis. The BIG-S is a reliable and valid screening tool for gambling disorder and demonstrated its concise and comprehensible operationalization of current DSM-5 criteria in a clinical setting.

  15. Traffic information computing platform for big data

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zongtao, E-mail: ztduan@chd.edu.cn; Li, Ying, E-mail: ztduan@chd.edu.cn; Zheng, Xibin, E-mail: ztduan@chd.edu.cn; Liu, Yan, E-mail: ztduan@chd.edu.cn; Dai, Jiting, E-mail: ztduan@chd.edu.cn; Kang, Jun, E-mail: ztduan@chd.edu.cn [Chang' an University School of Information Engineering, Xi' an, China and Shaanxi Engineering and Technical Research Center for Road and Traffic Detection, Xi' an (China)

    2014-10-06

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users.

  16. Traffic information computing platform for big data

    International Nuclear Information System (INIS)

    Duan, Zongtao; Li, Ying; Zheng, Xibin; Liu, Yan; Dai, Jiting; Kang, Jun

    2014-01-01

    Big data environment create data conditions for improving the quality of traffic information service. The target of this article is to construct a traffic information computing platform for big data environment. Through in-depth analysis the connotation and technology characteristics of big data and traffic information service, a distributed traffic atomic information computing platform architecture is proposed. Under the big data environment, this type of traffic atomic information computing architecture helps to guarantee the traffic safety and efficient operation, more intelligent and personalized traffic information service can be used for the traffic information users

  17. Neural computation of visual imaging based on Kronecker product in the primary visual cortex

    Directory of Open Access Journals (Sweden)

    Guozheng Yao

    2010-03-01

    Full Text Available Abstract Background What kind of neural computation is actually performed by the primary visual cortex and how is this represented mathematically at the system level? It is an important problem in the visual information processing, but has not been well answered. In this paper, according to our understanding of retinal organization and parallel multi-channel topographical mapping between retina and primary visual cortex V1, we divide an image into orthogonal and orderly array of image primitives (or patches, in which each patch will evoke activities of simple cells in V1. From viewpoint of information processing, this activated process, essentially, involves optimal detection and optimal matching of receptive fields of simple cells with features contained in image patches. For the reconstruction of the visual image in the visual cortex V1 based on the principle of minimum mean squares error, it is natural to use the inner product expression in neural computation, which then is transformed into matrix form. Results The inner product is carried out by using Kronecker product between patches and function architecture (or functional column in localized and oriented neural computing. Compared with Fourier Transform, the mathematical description of Kronecker product is simple and intuitive, so is the algorithm more suitable for neural computation of visual cortex V1. Results of computer simulation based on two-dimensional Gabor pyramid wavelets show that the theoretical analysis and the proposed model are reasonable. Conclusions Our results are: 1. The neural computation of the retinal image in cortex V1 can be expressed to Kronecker product operation and its matrix form, this algorithm is implemented by the inner operation between retinal image primitives and primary visual cortex's column. It has simple, efficient and robust features, which is, therefore, such a neural algorithm, which can be completed by biological vision. 2. It is more suitable

  18. Fremtidens landbrug bliver big business

    DEFF Research Database (Denmark)

    Hansen, Henning Otte

    2016-01-01

    Landbrugets omverdensforhold og konkurrencevilkår ændres, og det vil nødvendiggøre en udvikling i retning af “big business“, hvor landbrugene bliver endnu større, mere industrialiserede og koncentrerede. Big business bliver en dominerende udvikling i dansk landbrug - men ikke den eneste...

  19. Quantum nature of the big bang.

    Science.gov (United States)

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet

    2006-04-14

    Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.

  20. Mentoring in Schools: An Impact Study of Big Brothers Big Sisters School-Based Mentoring

    Science.gov (United States)

    Herrera, Carla; Grossman, Jean Baldwin; Kauh, Tina J.; McMaken, Jennifer

    2011-01-01

    This random assignment impact study of Big Brothers Big Sisters School-Based Mentoring involved 1,139 9- to 16-year-old students in 10 cities nationwide. Youth were randomly assigned to either a treatment group (receiving mentoring) or a control group (receiving no mentoring) and were followed for 1.5 school years. At the end of the first school…

  1. Backpropagation Neural Ensemble for Localizing and Recognizing Non-Standardized Malaysia’s Car Plates

    OpenAIRE

    Chin Kim On; Teo Kein Yau; Rayner Alfred; Jason Teo; Patricia Anthony; Wang Cheng

    2016-01-01

    In this paper, we describe a research project that autonomously localizes and recognizes non-standardized Malaysian’s car plates using conventional Backpropagation algorithm (BPP) in combination with Ensemble Neural Network (ENN). We compared the results with the results obtained using simple Feed-Forward Neural Network (FFNN). This research aims to solve four main issues; (1) localization of car plates that has the same colour with the vehicle colour, (2) detection and recognition of car pla...

  2. Big data processing in the cloud - Challenges and platforms

    Science.gov (United States)

    Zhelev, Svetoslav; Rozeva, Anna

    2017-12-01

    Choosing the appropriate architecture and technologies for a big data project is a difficult task, which requires extensive knowledge in both the problem domain and in the big data landscape. The paper analyzes the main big data architectures and the most widely implemented technologies used for processing and persisting big data. Clouds provide for dynamic resource scaling, which makes them a natural fit for big data applications. Basic cloud computing service models are presented. Two architectures for processing big data are discussed, Lambda and Kappa architectures. Technologies for big data persistence are presented and analyzed. Stream processing as the most important and difficult to manage is outlined. The paper highlights main advantages of cloud and potential problems.

  3. Neural estimation of kinetic rate constants from dynamic PET-scans

    DEFF Research Database (Denmark)

    Fog, Torben L.; Nielsen, Lars Hupfeldt; Hansen, Lars Kai

    1994-01-01

    A feedforward neural net is trained to invert a simple three compartment model describing the tracer kinetics involved in the metabolism of [18F]fluorodeoxyglucose in the human brain. The network can estimate rate constants from positron emission tomography sequences and is about 50 times faster ...

  4. Ethics and Epistemology in Big Data Research.

    Science.gov (United States)

    Lipworth, Wendy; Mason, Paul H; Kerridge, Ian; Ioannidis, John P A

    2017-12-01

    Biomedical innovation and translation are increasingly emphasizing research using "big data." The hope is that big data methods will both speed up research and make its results more applicable to "real-world" patients and health services. While big data research has been embraced by scientists, politicians, industry, and the public, numerous ethical, organizational, and technical/methodological concerns have also been raised. With respect to technical and methodological concerns, there is a view that these will be resolved through sophisticated information technologies, predictive algorithms, and data analysis techniques. While such advances will likely go some way towards resolving technical and methodological issues, we believe that the epistemological issues raised by big data research have important ethical implications and raise questions about the very possibility of big data research achieving its goals.

  5. A note on exponential convergence of neural networks with unbounded distributed delays

    Energy Technology Data Exchange (ETDEWEB)

    Chu Tianguang [Intelligent Control Laboratory, Center for Systems and Control, Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)]. E-mail: chutg@pku.edu.cn; Yang Haifeng [Intelligent Control Laboratory, Center for Systems and Control, Department of Mechanics and Engineering Science, Peking University, Beijing 100871 (China)

    2007-12-15

    This note examines issues concerning global exponential convergence of neural networks with unbounded distributed delays. Sufficient conditions are derived by exploiting exponentially fading memory property of delay kernel functions. The method is based on comparison principle of delay differential equations and does not need the construction of any Lyapunov functionals. It is simple yet effective in deriving less conservative exponential convergence conditions and more detailed componentwise decay estimates. The results of this note and [Chu T. An exponential convergence estimate for analog neural networks with delay. Phys Lett A 2001;283:113-8] suggest a class of neural networks whose globally exponentially convergent dynamics is completely insensitive to a wide range of time delays from arbitrary bounded discrete type to certain unbounded distributed type. This is of practical interest in designing fast and reliable neural circuits. Finally, an open question is raised on the nature of delay kernels for attaining exponential convergence in an unbounded distributed delayed neural network.

  6. A note on exponential convergence of neural networks with unbounded distributed delays

    International Nuclear Information System (INIS)

    Chu Tianguang; Yang Haifeng

    2007-01-01

    This note examines issues concerning global exponential convergence of neural networks with unbounded distributed delays. Sufficient conditions are derived by exploiting exponentially fading memory property of delay kernel functions. The method is based on comparison principle of delay differential equations and does not need the construction of any Lyapunov functionals. It is simple yet effective in deriving less conservative exponential convergence conditions and more detailed componentwise decay estimates. The results of this note and [Chu T. An exponential convergence estimate for analog neural networks with delay. Phys Lett A 2001;283:113-8] suggest a class of neural networks whose globally exponentially convergent dynamics is completely insensitive to a wide range of time delays from arbitrary bounded discrete type to certain unbounded distributed type. This is of practical interest in designing fast and reliable neural circuits. Finally, an open question is raised on the nature of delay kernels for attaining exponential convergence in an unbounded distributed delayed neural network

  7. Victoria Stodden: Scholarly Communication in the Era of Big Data and Big Computation

    OpenAIRE

    Stodden, Victoria

    2015-01-01

    Victoria Stodden gave the keynote address for Open Access Week 2015. "Scholarly communication in the era of big data and big computation" was sponsored by the University Libraries, Computational Modeling and Data Analytics, the Department of Computer Science, the Department of Statistics, the Laboratory for Interdisciplinary Statistical Analysis (LISA), and the Virginia Bioinformatics Institute. Victoria Stodden is an associate professor in the Graduate School of Library and Information Scien...

  8. Big Data: Concept, Potentialities and Vulnerabilities

    Directory of Open Access Journals (Sweden)

    Fernando Almeida

    2018-03-01

    Full Text Available The evolution of information systems and the growth in the use of the Internet and social networks has caused an explosion in the amount of available data relevant to the activities of the companies. Therefore, the treatment of these available data is vital to support operational, tactical and strategic decisions. This paper aims to present the concept of big data and the main technologies that support the analysis of large data volumes. The potential of big data is explored considering nine sectors of activity, such as financial, retail, healthcare, transports, agriculture, energy, manufacturing, public, and media and entertainment. In addition, the main current opportunities, vulnerabilities and privacy challenges of big data are discussed. It was possible to conclude that despite the potential for using the big data to grow in the previously identified areas, there are still some challenges that need to be considered and mitigated, namely the privacy of information, the existence of qualified human resources to work with Big Data and the promotion of a data-driven organizational culture.

  9. Big data analytics a management perspective

    CERN Document Server

    Corea, Francesco

    2016-01-01

    This book is about innovation, big data, and data science seen from a business perspective. Big data is a buzzword nowadays, and there is a growing necessity within practitioners to understand better the phenomenon, starting from a clear stated definition. This book aims to be a starting reading for executives who want (and need) to keep the pace with the technological breakthrough introduced by new analytical techniques and piles of data. Common myths about big data will be explained, and a series of different strategic approaches will be provided. By browsing the book, it will be possible to learn how to implement a big data strategy and how to use a maturity framework to monitor the progress of the data science team, as well as how to move forward from one stage to the next. Crucial challenges related to big data will be discussed, where some of them are more general - such as ethics, privacy, and ownership – while others concern more specific business situations (e.g., initial public offering, growth st...

  10. Human factors in Big Data

    NARCIS (Netherlands)

    Boer, J. de

    2016-01-01

    Since 2014 I am involved in various (research) projects that try to make the hype around Big Data more concrete and tangible for the industry and government. Big Data is about multiple sources of (real-time) data that can be analysed, transformed to information and be used to make 'smart' decisions.

  11. Dynamic artificial neural networks with affective systems.

    Directory of Open Access Journals (Sweden)

    Catherine D Schuman

    Full Text Available Artificial neural networks (ANNs are processors that are trained to perform particular tasks. We couple a computational ANN with a simulated affective system in order to explore the interaction between the two. In particular, we design a simple affective system that adjusts the threshold values in the neurons of our ANN. The aim of this paper is to demonstrate that this simple affective system can control the firing rate of the ensemble of neurons in the ANN, as well as to explore the coupling between the affective system and the processes of long term potentiation (LTP and long term depression (LTD, and the effect of the parameters of the affective system on its performance. We apply our networks with affective systems to a simple pole balancing example and briefly discuss the effect of affective systems on network performance.

  12. Slaves to Big Data. Or Are We?

    Directory of Open Access Journals (Sweden)

    Mireille Hildebrandt

    2013-10-01

    Full Text Available

    In this contribution, the notion of Big Data is discussed in relation to the monetisation of personal data. The claim of some proponents, as well as adversaries, that Big Data implies that ‘n = all’, meaning that we no longer need to rely on samples because we have all the data, is scrutinised and found to be both overly optimistic and unnecessarily pessimistic. A set of epistemological and ethical issues is presented, focusing on the implications of Big Data for our perception, cognition, fairness, privacy and due process. The article then looks into the idea of user-centric personal data management to investigate to what extent it provides solutions for some of the problems triggered by the Big Data conundrum. Special attention is paid to the core principle of data protection legislation, namely purpose binding. Finally, this contribution seeks to inquire into the influence of Big Data politics on self, mind and society, and asks how we can prevent ourselves from becoming slaves to Big Data.

  13. Activity in part of the neural correlates of consciousness reflects integration.

    Science.gov (United States)

    Eriksson, Johan

    2017-10-01

    Integration is commonly viewed as a key process for generating conscious experiences. Accordingly, there should be increased activity within the neural correlates of consciousness when demands on integration increase. We used fMRI and "informational masking" to isolate the neural correlates of consciousness and measured how the associated brain activity changed as a function of required integration. Integration was manipulated by comparing the experience of hearing simple reoccurring tones to hearing harmonic tone triplets. The neural correlates of auditory consciousness included superior temporal gyrus, lateral and medial frontal regions, cerebellum, and also parietal cortex. Critically, only activity in left parietal cortex increased significantly as a function of increasing demands on integration. We conclude that integration can explain part of the neural activity associated with the generation conscious experiences, but that much of associated brain activity apparently reflects other processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The application of artificial neural networks to TLD dose algorithm

    International Nuclear Information System (INIS)

    Moscovitch, M.

    1997-01-01

    We review the application of feed forward neural networks to multi element thermoluminescence dosimetry (TLD) dose algorithm development. A Neural Network is an information processing method inspired by the biological nervous system. A dose algorithm based on a neural network is a fundamentally different approach from conventional algorithms, as it has the capability to learn from its own experience. The neural network algorithm is shown the expected dose values (output) associated with a given response of a multi-element dosimeter (input) many times.The algorithm, being trained that way, eventually is able to produce its own unique solution to similar (but not exactly the same) dose calculation problems. For personnel dosimetry, the output consists of the desired dose components: deep dose, shallow dose, and eye dose. The input consists of the TL data obtained from the readout of a multi-element dosimeter. For this application, a neural network architecture was developed based on the concept of functional links network (FLN). The FLN concept allowed an increase in the dimensionality of the input space and construction of a neural network without any hidden layers. This simplifies the problem and results in a relatively simple and reliable dose calculation algorithm. Overall, the neural network dose algorithm approach has been shown to significantly improve the precision and accuracy of dose calculations. (authors)

  15. Will Organization Design Be Affected By Big Data?

    Directory of Open Access Journals (Sweden)

    Giles Slinger

    2014-12-01

    Full Text Available Computing power and analytical methods allow us to create, collate, and analyze more data than ever before. When datasets are unusually large in volume, velocity, and variety, they are referred to as “big data.” Some observers have suggested that in order to cope with big data (a organizational structures will need to change and (b the processes used to design organizations will be different. In this article, we differentiate big data from relatively slow-moving, linked people data. We argue that big data will change organizational structures as organizations pursue the opportunities presented by big data. The processes by which organizations are designed, however, will be relatively unaffected by big data. Instead, organization design processes will be more affected by the complex links found in people data.

  16. Official statistics and Big Data

    Directory of Open Access Journals (Sweden)

    Peter Struijs

    2014-07-01

    Full Text Available The rise of Big Data changes the context in which organisations producing official statistics operate. Big Data provides opportunities, but in order to make optimal use of Big Data, a number of challenges have to be addressed. This stimulates increased collaboration between National Statistical Institutes, Big Data holders, businesses and universities. In time, this may lead to a shift in the role of statistical institutes in the provision of high-quality and impartial statistical information to society. In this paper, the changes in context, the opportunities, the challenges and the way to collaborate are addressed. The collaboration between the various stakeholders will involve each partner building on and contributing different strengths. For national statistical offices, traditional strengths include, on the one hand, the ability to collect data and combine data sources with statistical products and, on the other hand, their focus on quality, transparency and sound methodology. In the Big Data era of competing and multiplying data sources, they continue to have a unique knowledge of official statistical production methods. And their impartiality and respect for privacy as enshrined in law uniquely position them as a trusted third party. Based on this, they may advise on the quality and validity of information of various sources. By thus positioning themselves, they will be able to play their role as key information providers in a changing society.

  17. Big Data

    OpenAIRE

    Bútora, Matúš

    2017-01-01

    Cieľom bakalárskej práca je popísať problematiku Big Data a agregačné operácie OLAP pre podporu rozhodovania, ktoré sú na ne aplikované pomocou technológie Apache Hadoop. Prevažná časť práce je venovaná popisu práve tejto technológie. Posledná kapitola sa zaoberá spôsobom aplikovania agregačných operácií a problematikou ich realizácie. Nasleduje celkové zhodnotenie práce a možnosti využitia výsledného systému do budúcna. The aim of the bachelor thesis is to describe the Big Data issue and ...

  18. Neural Network Based Recognition of Signal Patterns in Application to Automatic Testing of Rails

    Directory of Open Access Journals (Sweden)

    Tomasz Ciszewski

    2006-01-01

    Full Text Available The paper describes the application of neural network for recognition of signal patterns in measuring data gathered by the railroad ultrasound testing car. Digital conversion of the measuring signal allows to store and process large quantities of data. The elaboration of smart, effective and automatic procedures recognizing the obtained patterns on the basisof measured signal amplitude has been presented. The test shows only two classes of pattern recognition. In authors’ opinion if we deliver big enough quantity of training data, presented method is applicable to a system that recognizes many classes.

  19. BigDansing

    KAUST Repository

    Khayyat, Zuhair; Ilyas, Ihab F.; Jindal, Alekh; Madden, Samuel; Ouzzani, Mourad; Papotti, Paolo; Quiané -Ruiz, Jorge-Arnulfo; Tang, Nan; Yin, Si

    2015-01-01

    of the underlying distributed platform. BigDansing takes these rules into a series of transformations that enable distributed computations and several optimizations, such as shared scans and specialized joins operators. Experimental results on both synthetic

  20. Leveraging Mobile Network Big Data for Developmental Policy ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Some argue that big data and big data users offer advantages to generate evidence. ... Supported by IDRC, this research focused on transportation planning in urban ... Using mobile network big data for land use classification CPRsouth 2015.

  1. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-11-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  2. Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice.

    Science.gov (United States)

    Balasubramani, Pragathi P; Moreno-Bote, Rubén; Hayden, Benjamin Y

    2018-01-01

    The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals). Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies.

  3. Practice Variation in Big-4 Transparency Reports

    DEFF Research Database (Denmark)

    Girdhar, Sakshi; Klarskov Jeppesen, Kim

    2018-01-01

    Purpose: The purpose of this paper is to examine the transparency reports published by the Big-4 public accounting firms in the UK, Germany and Denmark to understand the determinants of their content within the networks of big accounting firms. Design/methodology/approach: The study draws...... on a qualitative research approach, in which the content of transparency reports is analyzed and semi-structured interviews are conducted with key people from the Big-4 firms who are responsible for developing the transparency reports. Findings: The findings show that the content of transparency reports...... is inconsistent and the transparency reporting practice is not uniform within the Big-4 networks. Differences were found in the way in which the transparency reporting practices are coordinated globally by the respective central governing bodies of the Big-4. The content of the transparency reports...

  4. Using a neural network approach for muon reconstruction and triggering

    CERN Document Server

    Etzion, E; Abramowicz, H; Benhammou, Ya; Horn, D; Levinson, L; Livneh, R

    2004-01-01

    The extremely high rate of events that will be produced in the future Large Hadron Collider requires the triggering mechanism to take precise decisions in a few nano-seconds. We present a study which used an artificial neural network triggering algorithm and compared it to the performance of a dedicated electronic muon triggering system. Relatively simple architecture was used to solve a complicated inverse problem. A comparison with a realistic example of the ATLAS first level trigger simulation was in favour of the neural network. A similar architecture trained after the simulation of the electronics first trigger stage showed a further background rejection.

  5. Development of an accident diagnosis system using a dynamic neural network for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jong Hyun; Seong, Poong Hyun

    2004-01-01

    In this work, an accident diagnosis system using the dynamic neural network is developed. In order to help the plant operators to quickly identify the problem, perform diagnosis and initiate recovery actions ensuring the safety of the plant, many operator support system and accident diagnosis systems have been developed. Neural networks have been recognized as a good method to implement an accident diagnosis system. However, conventional accident diagnosis systems that used neural networks did not consider a time factor sufficiently. If the neural network could be trained according to time, it is possible to perform more efficient and detailed accidents analysis. Therefore, this work suggests a dynamic neural network which has different features from existing dynamic neural networks. And a simple accident diagnosis system is implemented in order to validate the dynamic neural network. After training of the prototype, several accident diagnoses were performed. The results show that the prototype can detect the accidents correctly with good performances

  6. Handwritten Digits Recognition Using Neural Computing

    Directory of Open Access Journals (Sweden)

    Călin Enăchescu

    2009-12-01

    Full Text Available In this paper we present a method for the recognition of handwritten digits and a practical implementation of this method for real-time recognition. A theoretical framework for the neural networks used to classify the handwritten digits is also presented.The classification task is performed using a Convolutional Neural Network (CNN. CNN is a special type of multy-layer neural network, being trained with an optimized version of the back-propagation learning algorithm.CNN is designed to recognize visual patterns directly from pixel images with minimal preprocessing, being capable to recognize patterns with extreme variability (such as handwritten characters, and with robustness to distortions and simple geometric transformations.The main contributions of this paper are related to theoriginal methods for increasing the efficiency of the learning algorithm by preprocessing the images before the learning process and a method for increasing the precision and performance for real-time applications, by removing the non useful information from the background.By combining these strategies we have obtained an accuracy of 96.76%, using as training set the NIST (National Institute of Standards and Technology database.

  7. Big data and biomedical informatics: a challenging opportunity.

    Science.gov (United States)

    Bellazzi, R

    2014-05-22

    Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations.

  8. Was the big bang hot

    International Nuclear Information System (INIS)

    Wright, E.L.

    1983-01-01

    The author considers experiments to confirm the substantial deviations from a Planck curve in the Woody and Richards spectrum of the microwave background, and search for conducting needles in our galaxy. Spectral deviations and needle-shaped grains are expected for a cold Big Bang, but are not required by a hot Big Bang. (Auth.)

  9. Passport to the Big Bang

    CERN Multimedia

    De Melis, Cinzia

    2013-01-01

    Le 2 juin 2013, le CERN inaugure le projet Passeport Big Bang lors d'un grand événement public. Affiche et programme. On 2 June 2013 CERN launches a scientific tourist trail through the Pays de Gex and the Canton of Geneva known as the Passport to the Big Bang. Poster and Programme.

  10. Model for neural signaling leap statistics

    Energy Technology Data Exchange (ETDEWEB)

    Chevrollier, Martine; Oria, Marcos, E-mail: oria@otica.ufpb.br [Laboratorio de Fisica Atomica e Lasers Departamento de Fisica, Universidade Federal da ParaIba Caixa Postal 5086 58051-900 Joao Pessoa, Paraiba (Brazil)

    2011-03-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T 37.5{sup 0}C, awaken regime) and Levy statistics (T = 35.5{sup 0}C, sleeping period), characterized by rare events of long range connections.

  11. Structured Memory for Neural Turing Machines

    OpenAIRE

    Zhang, Wei; Yu, Yang; Zhou, Bowen

    2015-01-01

    Neural Turing Machines (NTM) contain memory component that simulates "working memory" in the brain to store and retrieve information to ease simple algorithms learning. So far, only linearly organized memory is proposed, and during experiments, we observed that the model does not always converge, and overfits easily when handling certain tasks. We think memory component is key to some faulty behaviors of NTM, and better organization of memory component could help fight those problems. In this...

  12. Keynote: Big Data, Big Opportunities

    OpenAIRE

    Borgman, Christine L.

    2014-01-01

    The enthusiasm for big data is obscuring the complexity and diversity of data in scholarship and the challenges for stewardship. Inside the black box of data are a plethora of research, technology, and policy issues. Data are not shiny objects that are easily exchanged. Rather, data are representations of observations, objects, or other entities used as evidence of phenomena for the purposes of research or scholarship. Data practices are local, varying from field to field, individual to indiv...

  13. Integrating R and Hadoop for Big Data Analysis

    OpenAIRE

    Bogdan Oancea; Raluca Mariana Dragoescu

    2014-01-01

    Analyzing and working with big data could be very diffi cult using classical means like relational database management systems or desktop software packages for statistics and visualization. Instead, big data requires large clusters with hundreds or even thousands of computing nodes. Offi cial statistics is increasingly considering big data for deriving new statistics because big data sources could produce more relevant and timely statistics than traditional sources. One of the software tools ...

  14. The challenges of big data.

    Science.gov (United States)

    Mardis, Elaine R

    2016-05-01

    The largely untapped potential of big data analytics is a feeding frenzy that has been fueled by the production of many next-generation-sequencing-based data sets that are seeking to answer long-held questions about the biology of human diseases. Although these approaches are likely to be a powerful means of revealing new biological insights, there are a number of substantial challenges that currently hamper efforts to harness the power of big data. This Editorial outlines several such challenges as a means of illustrating that the path to big data revelations is paved with perils that the scientific community must overcome to pursue this important quest. © 2016. Published by The Company of Biologists Ltd.

  15. Fraud Detection in Credit Card Transactions; Using Parallel Processing of Anomalies in Big Data

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Taghva

    2016-10-01

    Full Text Available In parallel to the increasing use of electronic cards, especially in the banking industry, the volume of transactions using these cards has grown rapidly. Moreover, the financial nature of these cards has led to the desirability of fraud in this area. The present study with Map Reduce approach and parallel processing, applied the Kohonen neural network model to detect abnormalities in bank card transactions. For this purpose, firstly it was proposed to classify all transactions into the fraudulent and legal which showed better performance compared with other methods. In the next step, we transformed the Kohonen model into the form of parallel task which demonstrated appropriate performance in terms of time; as expected to be well implemented in transactions with Big Data assumptions.

  16. Big³. Editorial.

    Science.gov (United States)

    Lehmann, C U; Séroussi, B; Jaulent, M-C

    2014-05-22

    To provide an editorial introduction into the 2014 IMIA Yearbook of Medical Informatics with an overview of the content, the new publishing scheme, and upcoming 25th anniversary. A brief overview of the 2014 special topic, Big Data - Smart Health Strategies, and an outline of the novel publishing model is provided in conjunction with a call for proposals to celebrate the 25th anniversary of the Yearbook. 'Big Data' has become the latest buzzword in informatics and promise new approaches and interventions that can improve health, well-being, and quality of life. This edition of the Yearbook acknowledges the fact that we just started to explore the opportunities that 'Big Data' will bring. However, it will become apparent to the reader that its pervasive nature has invaded all aspects of biomedical informatics - some to a higher degree than others. It was our goal to provide a comprehensive view at the state of 'Big Data' today, explore its strengths and weaknesses, as well as its risks, discuss emerging trends, tools, and applications, and stimulate the development of the field through the aggregation of excellent survey papers and working group contributions to the topic. For the first time in history will the IMIA Yearbook be published in an open access online format allowing a broader readership especially in resource poor countries. For the first time, thanks to the online format, will the IMIA Yearbook be published twice in the year, with two different tracks of papers. We anticipate that the important role of the IMIA yearbook will further increase with these changes just in time for its 25th anniversary in 2016.

  17. A new fuzzy regression model based on interval-valued fuzzy neural network and its applications to management

    Directory of Open Access Journals (Sweden)

    Somaye Yeylaghi

    2017-06-01

    Full Text Available In this paper, a novel hybrid method based on interval-valued fuzzy neural network for approximate of interval-valued fuzzy regression models, is presented. The work of this paper is an expansion of the research of real fuzzy regression models. In this paper interval-valued fuzzy neural network (IVFNN can be trained with crisp and interval-valued fuzzy data. Here a neural network is considered as a part of a large field called neural computing or soft computing. Moreover, in order to find the approximate parameters, a simple algorithm from the cost function of the fuzzy neural network is proposed. Finally, we illustrate our approach by some numerical examples and compare this method with existing methods.

  18. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Directory of Open Access Journals (Sweden)

    Christopher L Buckley

    2018-01-01

    Full Text Available During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results

  19. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    Science.gov (United States)

    Buckley, Christopher L; Toyoizumi, Taro

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence

  20. A deep convolutional neural network to analyze position averaged convergent beam electron diffraction patterns.

    Science.gov (United States)

    Xu, W; LeBeau, J M

    2018-05-01

    We establish a series of deep convolutional neural networks to automatically analyze position averaged convergent beam electron diffraction patterns. The networks first calibrate the zero-order disk size, center position, and rotation without the need for pretreating the data. With the aligned data, additional networks then measure the sample thickness and tilt. The performance of the network is explored as a function of a variety of variables including thickness, tilt, and dose. A methodology to explore the response of the neural network to various pattern features is also presented. Processing patterns at a rate of  ∼ 0.1 s/pattern, the network is shown to be orders of magnitude faster than a brute force method while maintaining accuracy. The approach is thus suitable for automatically processing big, 4D STEM data. We also discuss the generality of the method to other materials/orientations as well as a hybrid approach that combines the features of the neural network with least squares fitting for even more robust analysis. The source code is available at https://github.com/subangstrom/DeepDiffraction. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Simple and effective method for nuclear tellurium isomers separation from antimony cyclotron targets

    International Nuclear Information System (INIS)

    Bondarevskij, S.I.; Eremin, V.V.

    1999-01-01

    Simple and effective method of generation of tellurium nuclear isomers from irradiated on cyclotron metallic antimony is suggested. Basically this method consists in consideration of the big difference in volatilities of metallic forms of antimony, tin and tellurium. Heating of the tin-antimony alloy at 1200 K permits to separate about 90 % of produced quantity of 121m Te and 123m Te (in this case impurity of antimony radionuclides is not more than 1 % on activity) [ru

  2. Detection of bars in galaxies using a deep convolutional neural network

    Science.gov (United States)

    Abraham, Sheelu; Aniyan, A. K.; Kembhavi, Ajit K.; Philip, N. S.; Vaghmare, Kaustubh

    2018-06-01

    We present an automated method for the detection of bar structure in optical images of galaxies using a deep convolutional neural network that is easy to use and provides good accuracy. In our study, we use a sample of 9346 galaxies in the redshift range of 0.009-0.2 from the Sloan Digital Sky Survey (SDSS), which has 3864 barred galaxies, the rest being unbarred. We reach a top precision of 94 per cent in identifying bars in galaxies using the trained network. This accuracy matches the accuracy reached by human experts on the same data without additional information about the images. Since deep convolutional neural networks can be scaled to handle large volumes of data, the method is expected to have great relevance in an era where astronomy data is rapidly increasing in terms of volume, variety, volatility, and velocity along with other V's that characterize big data. With the trained model, we have constructed a catalogue of barred galaxies from SDSS and made it available online.

  3. Classification of brain MRI with big data and deep 3D convolutional neural networks

    Science.gov (United States)

    Wegmayr, Viktor; Aitharaju, Sai; Buhmann, Joachim

    2018-02-01

    Our ever-aging society faces the growing problem of neurodegenerative diseases, in particular dementia. Magnetic Resonance Imaging provides a unique tool for non-invasive investigation of these brain diseases. However, it is extremely difficult for neurologists to identify complex disease patterns from large amounts of three-dimensional images. In contrast, machine learning excels at automatic pattern recognition from large amounts of data. In particular, deep learning has achieved impressive results in image classification. Unfortunately, its application to medical image classification remains difficult. We consider two reasons for this difficulty: First, volumetric medical image data is considerably scarcer than natural images. Second, the complexity of 3D medical images is much higher compared to common 2D images. To address the problem of small data set size, we assemble the largest dataset ever used for training a deep 3D convolutional neural network to classify brain images as healthy (HC), mild cognitive impairment (MCI) or Alzheimers disease (AD). We use more than 20.000 images from subjects of these three classes, which is almost 9x the size of the previously largest data set. The problem of high dimensionality is addressed by using a deep 3D convolutional neural network, which is state-of-the-art in large-scale image classification. We exploit its ability to process the images directly, only with standard preprocessing, but without the need for elaborate feature engineering. Compared to other work, our workflow is considerably simpler, which increases clinical applicability. Accuracy is measured on the ADNI+AIBL data sets, and the independent CADDementia benchmark.

  4. Cloud Based Big Data Infrastructure: Architectural Components and Automated Provisioning

    OpenAIRE

    Demchenko, Yuri; Turkmen, Fatih; Blanchet, Christophe; Loomis, Charles; Laat, Caees de

    2016-01-01

    This paper describes the general architecture and functional components of the cloud based Big Data Infrastructure (BDI). The proposed BDI architecture is based on the analysis of the emerging Big Data and data intensive technologies and supported by the definition of the Big Data Architecture Framework (BDAF) that defines the following components of the Big Data technologies: Big Data definition, Data Management including data lifecycle and data structures, Big Data Infrastructure (generical...

  5. Physics with Big Karl Brainstorming. Abstracts

    International Nuclear Information System (INIS)

    Machner, H.; Lieb, J.

    2000-08-01

    Before summarizing details of the meeting, a short description of the spectrometer facility Big Karl is given. The facility is essentially a new instrument using refurbished dipole magnets from its predecessor. The large acceptance quadrupole magnets and the beam optics are new. Big Karl has a design very similar as the focussing spectrometers at MAMI (Mainz), AGOR (Groningen) and the high resolution spectrometer (HRS) in Hall A at Jefferson Laboratory with ΔE/E = 10 -4 but at some lower maximum momentum. The focal plane detectors consisting of multiwire drift chambers and scintillating hodoscopes are similar. Unlike HRS, Big Karl still needs Cerenkov counters and polarimeters in its focal plane; detectors which are necessary to perform some of the experiments proposed during the brainstorming. In addition, BIG KARL allows emission angle reconstruction via track measurements in its focal plane with high resolution. In the following the physics highlights, the proposed and potential experiments are summarized. During the meeting it became obvious that the physics to be explored at Big Karl can be grouped into five distinct categories, and this summary is organized accordingly. (orig.)

  6. Seed bank and big sagebrush plant community composition in a range margin for big sagebrush

    Science.gov (United States)

    Martyn, Trace E.; Bradford, John B.; Schlaepfer, Daniel R.; Burke, Ingrid C.; Laurenroth, William K.

    2016-01-01

    The potential influence of seed bank composition on range shifts of species due to climate change is unclear. Seed banks can provide a means of both species persistence in an area and local range expansion in the case of increasing habitat suitability, as may occur under future climate change. However, a mismatch between the seed bank and the established plant community may represent an obstacle to persistence and expansion. In big sagebrush (Artemisia tridentata) plant communities in Montana, USA, we compared the seed bank to the established plant community. There was less than a 20% similarity in the relative abundance of species between the established plant community and the seed bank. This difference was primarily driven by an overrepresentation of native annual forbs and an underrepresentation of big sagebrush in the seed bank compared to the established plant community. Even though we expect an increase in habitat suitability for big sagebrush under future climate conditions at our sites, the current mismatch between the plant community and the seed bank could impede big sagebrush range expansion into increasingly suitable habitat in the future.

  7. Application and Prospect of Big Data in Water Resources

    Science.gov (United States)

    Xi, Danchi; Xu, Xinyi

    2017-04-01

    Because of developed information technology and affordable data storage, we h ave entered the era of data explosion. The term "Big Data" and technology relate s to it has been created and commonly applied in many fields. However, academic studies just got attention on Big Data application in water resources recently. As a result, water resource Big Data technology has not been fully developed. This paper introduces the concept of Big Data and its key technologies, including the Hadoop system and MapReduce. In addition, this paper focuses on the significance of applying the big data in water resources and summarizing prior researches by others. Most studies in this field only set up theoretical frame, but we define the "Water Big Data" and explain its tridimensional properties which are time dimension, spatial dimension and intelligent dimension. Based on HBase, the classification system of Water Big Data is introduced: hydrology data, ecology data and socio-economic data. Then after analyzing the challenges in water resources management, a series of solutions using Big Data technologies such as data mining and web crawler, are proposed. Finally, the prospect of applying big data in water resources is discussed, it can be predicted that as Big Data technology keeps developing, "3D" (Data Driven Decision) will be utilized more in water resources management in the future.

  8. Big Data in food and agriculture

    Directory of Open Access Journals (Sweden)

    Kelly Bronson

    2016-06-01

    Full Text Available Farming is undergoing a digital revolution. Our existing review of current Big Data applications in the agri-food sector has revealed several collection and analytics tools that may have implications for relationships of power between players in the food system (e.g. between farmers and large corporations. For example, Who retains ownership of the data generated by applications like Monsanto Corproation's Weed I.D . “app”? Are there privacy implications with the data gathered by John Deere's precision agricultural equipment? Systematically tracing the digital revolution in agriculture, and charting the affordances as well as the limitations of Big Data applied to food and agriculture, should be a broad research goal for Big Data scholarship. Such a goal brings data scholarship into conversation with food studies and it allows for a focus on the material consequences of big data in society.

  9. Big data optimization recent developments and challenges

    CERN Document Server

    2016-01-01

    The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.

  10. Una aproximación a Big Data = An approach to Big Data

    OpenAIRE

    Puyol Moreno, Javier

    2014-01-01

    Big Data puede ser considerada como una tendencia en el avance de la tecnología que ha abierto la puerta a un nuevo enfoque para la comprensión y la toma de decisiones, que se utiliza para describir las enormes cantidades de datos (estructurados, no estructurados y semi- estructurados) que sería demasiado largo y costoso para cargar una base de datos relacional para su análisis. Así, el concepto de Big Data se aplica a toda la información que no puede ser procesada o analizada utilizando herr...

  11. Toward a Literature-Driven Definition of Big Data in Healthcare.

    Science.gov (United States)

    Baro, Emilie; Degoul, Samuel; Beuscart, Régis; Chazard, Emmanuel

    2015-01-01

    The aim of this study was to provide a definition of big data in healthcare. A systematic search of PubMed literature published until May 9, 2014, was conducted. We noted the number of statistical individuals (n) and the number of variables (p) for all papers describing a dataset. These papers were classified into fields of study. Characteristics attributed to big data by authors were also considered. Based on this analysis, a definition of big data was proposed. A total of 196 papers were included. Big data can be defined as datasets with Log(n∗p) ≥ 7. Properties of big data are its great variety and high velocity. Big data raises challenges on veracity, on all aspects of the workflow, on extracting meaningful information, and on sharing information. Big data requires new computational methods that optimize data management. Related concepts are data reuse, false knowledge discovery, and privacy issues. Big data is defined by volume. Big data should not be confused with data reuse: data can be big without being reused for another purpose, for example, in omics. Inversely, data can be reused without being necessarily big, for example, secondary use of Electronic Medical Records (EMR) data.

  12. Big Data Analytic, Big Step for Patient Management and Care in Puerto Rico.

    Science.gov (United States)

    Borrero, Ernesto E

    2018-01-01

    This letter provides an overview of the application of big data in health care system to improve quality of care, including predictive modelling for risk and resource use, precision medicine and clinical decision support, quality of care and performance measurement, public health and research applications, among others. The author delineates the tremendous potential for big data analytics and discuss how it can be successfully implemented in clinical practice, as an important component of a learning health-care system.

  13. Big Data and Biomedical Informatics: A Challenging Opportunity

    Science.gov (United States)

    2014-01-01

    Summary Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations. PMID:24853034

  14. Big data governance an emerging imperative

    CERN Document Server

    Soares, Sunil

    2012-01-01

    Written by a leading expert in the field, this guide focuses on the convergence of two major trends in information management-big data and information governance-by taking a strategic approach oriented around business cases and industry imperatives. With the advent of new technologies, enterprises are expanding and handling very large volumes of data; this book, nontechnical in nature and geared toward business audiences, encourages the practice of establishing appropriate governance over big data initiatives and addresses how to manage and govern big data, highlighting the relevant processes,

  15. Big Data and historical social science

    Directory of Open Access Journals (Sweden)

    Peter Bearman

    2015-11-01

    Full Text Available “Big Data” can revolutionize historical social science if it arises from substantively important contexts and is oriented towards answering substantively important questions. Such data may be especially important for answering previously largely intractable questions about the timing and sequencing of events, and of event boundaries. That said, “Big Data” makes no difference for social scientists and historians whose accounts rest on narrative sentences. Since such accounts are the norm, the effects of Big Data on the practice of historical social science may be more limited than one might wish.

  16. The Inverted Big-Bang

    OpenAIRE

    Vaas, Ruediger

    2004-01-01

    Our universe appears to have been created not out of nothing but from a strange space-time dust. Quantum geometry (loop quantum gravity) makes it possible to avoid the ominous beginning of our universe with its physically unrealistic (i.e. infinite) curvature, extreme temperature, and energy density. This could be the long sought after explanation of the big-bang and perhaps even opens a window into a time before the big-bang: Space itself may have come from an earlier collapsing universe tha...

  17. Minsky on "Big Government"

    Directory of Open Access Journals (Sweden)

    Daniel de Santana Vasconcelos

    2014-03-01

    Full Text Available This paper objective is to assess, in light of the main works of Minsky, his view and analysis of what he called the "Big Government" as that huge institution which, in parallels with the "Big Bank" was capable of ensuring stability in the capitalist system and regulate its inherently unstable financial system in mid-20th century. In this work, we analyze how Minsky proposes an active role for the government in a complex economic system flawed by financial instability.

  18. Large deep neural networks for MS lesion segmentation

    Science.gov (United States)

    Prieto, Juan C.; Cavallari, Michele; Palotai, Miklos; Morales Pinzon, Alfredo; Egorova, Svetlana; Styner, Martin; Guttmann, Charles R. G.

    2017-02-01

    Multiple sclerosis (MS) is a multi-factorial autoimmune disorder, characterized by spatial and temporal dissemination of brain lesions that are visible in T2-weighted and Proton Density (PD) MRI. Assessment of lesion burden and is useful for monitoring the course of the disease, and assessing correlates of clinical outcomes. Although there are established semi-automated methods to measure lesion volume, most of them require human interaction and editing, which are time consuming and limits the ability to analyze large sets of data with high accuracy. The primary objective of this work is to improve existing segmentation algorithms and accelerate the time consuming operation of identifying and validating MS lesions. In this paper, a Deep Neural Network for MS Lesion Segmentation is implemented. The MS lesion samples are extracted from the Partners Comprehensive Longitudinal Investigation of Multiple Sclerosis (CLIMB) study. A set of 900 subjects with T2, PD and a manually corrected label map images were used to train a Deep Neural Network and identify MS lesions. Initial tests using this network achieved a 90% accuracy rate. A secondary goal was to enable this data repository for big data analysis by using this algorithm to segment the remaining cases available in the CLIMB repository.

  19. A gentle introduction to artificial neural networks.

    Science.gov (United States)

    Zhang, Zhongheng

    2016-10-01

    Artificial neural network (ANN) is a flexible and powerful machine learning technique. However, it is under utilized in clinical medicine because of its technical challenges. The article introduces some basic ideas behind ANN and shows how to build ANN using R in a step-by-step framework. In topology and function, ANN is in analogue to the human brain. There are input and output signals transmitting from input to output nodes. Input signals are weighted before reaching output nodes according to their respective importance. Then the combined signal is processed by activation function. I simulated a simple example to illustrate how to build a simple ANN model using nnet() function. This function allows for one hidden layer with varying number of units in that layer. The basic structure of ANN can be visualized with plug-in plot.nnet() function. The plot function is powerful that it allows for varieties of adjustment to the appearance of the neural networks. Prediction with ANN can be performed with predict() function, similar to that of conventional generalized linear models. Finally, the prediction power of ANN is examined using confusion matrix and average accuracy. It appears that ANN is slightly better than conventional linear model.

  20. Adaptive Control of Nonlinear Discrete-Time Systems by Using OS-ELM Neural Networks

    Directory of Open Access Journals (Sweden)

    Xiao-Li Li

    2014-01-01

    Full Text Available As a kind of novel feedforward neural network with single hidden layer, ELM (extreme learning machine neural networks are studied for the identification and control of nonlinear dynamic systems. The property of simple structure and fast convergence of ELM can be shown clearly. In this paper, we are interested in adaptive control of nonlinear dynamic plants by using OS-ELM (online sequential extreme learning machine neural networks. Based on data scope division, the problem that training process of ELM neural network is sensitive to the initial training data is also solved. According to the output range of the controlled plant, the data corresponding to this range will be used to initialize ELM. Furthermore, due to the drawback of conventional adaptive control, when the OS-ELM neural network is used for adaptive control of the system with jumping parameters, the topological structure of the neural network can be adjusted dynamically by using multiple model switching strategy, and an MMAC (multiple model adaptive control will be used to improve the control performance. Simulation results are included to complement the theoretical results.

  1. The Information Panopticon in the Big Data Era

    Directory of Open Access Journals (Sweden)

    Martin Berner

    2014-04-01

    Full Text Available Taking advantage of big data opportunities is challenging for traditional organizations. In this article, we take a panoptic view of big data – obtaining information from more sources and making it visible to all organizational levels. We suggest that big data requires the transformation from command and control hierarchies to post-bureaucratic organizational structures wherein employees at all levels can be empowered while simultaneously being controlled. We derive propositions that show how to best exploit big data technologies in organizations.

  2. WE-H-BRB-00: Big Data in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  3. WE-H-BRB-00: Big Data in Radiation Oncology

    International Nuclear Information System (INIS)

    2016-01-01

    Big Data in Radiation Oncology: (1) Overview of the NIH 2015 Big Data Workshop, (2) Where do we stand in the applications of big data in radiation oncology?, and (3) Learning Health Systems for Radiation Oncology: Needs and Challenges for Future Success The overriding goal of this trio panel of presentations is to improve awareness of the wide ranging opportunities for big data impact on patient quality care and enhancing potential for research and collaboration opportunities with NIH and a host of new big data initiatives. This presentation will also summarize the Big Data workshop that was held at the NIH Campus on August 13–14, 2015 and sponsored by AAPM, ASTRO, and NIH. The workshop included discussion of current Big Data cancer registry initiatives, safety and incident reporting systems, and other strategies that will have the greatest impact on radiation oncology research, quality assurance, safety, and outcomes analysis. Learning Objectives: To discuss current and future sources of big data for use in radiation oncology research To optimize our current data collection by adopting new strategies from outside radiation oncology To determine what new knowledge big data can provide for clinical decision support for personalized medicine L. Xing, NIH/NCI Google Inc.

  4. De impact van Big Data op Internationale Betrekkingen

    NARCIS (Netherlands)

    Zwitter, Andrej

    Big Data changes our daily lives, but does it also change international politics? In this contribution, Andrej Zwitter (NGIZ chair at Groningen University) argues that Big Data impacts on international relations in ways that we only now start to understand. To comprehend how Big Data influences

  5. Epidemiology in the Era of Big Data

    Science.gov (United States)

    Mooney, Stephen J; Westreich, Daniel J; El-Sayed, Abdulrahman M

    2015-01-01

    Big Data has increasingly been promoted as a revolutionary development in the future of science, including epidemiology. However, the definition and implications of Big Data for epidemiology remain unclear. We here provide a working definition of Big Data predicated on the so-called ‘3 Vs’: variety, volume, and velocity. From this definition, we argue that Big Data has evolutionary and revolutionary implications for identifying and intervening on the determinants of population health. We suggest that as more sources of diverse data become publicly available, the ability to combine and refine these data to yield valid answers to epidemiologic questions will be invaluable. We conclude that, while epidemiology as practiced today will continue to be practiced in the Big Data future, a component of our field’s future value lies in integrating subject matter knowledge with increased technical savvy. Our training programs and our visions for future public health interventions should reflect this future. PMID:25756221

  6. Using a Simple Neural Network to Delineate Some Principles of Distributed Economic Choice

    Directory of Open Access Journals (Sweden)

    Pragathi P. Balasubramani

    2018-03-01

    Full Text Available The brain uses a mixture of distributed and modular organization to perform computations and generate appropriate actions. While the principles under which the brain might perform computations using modular systems have been more amenable to modeling, the principles by which the brain might make choices using distributed principles have not been explored. Our goal in this perspective is to delineate some of those distributed principles using a neural network method and use its results as a lens through which to reconsider some previously published neurophysiological data. To allow for direct comparison with our own data, we trained the neural network to perform binary risky choices. We find that value correlates are ubiquitous and are always accompanied by non-value information, including spatial information (i.e., no pure value signals. Evaluation, comparison, and selection were not distinct processes; indeed, value signals even in the earliest stages contributed directly, albeit weakly, to action selection. There was no place, other than at the level of action selection, at which dimensions were fully integrated. No units were specialized for specific offers; rather, all units encoded the values of both offers in an anti-correlated format, thus contributing to comparison. Individual network layers corresponded to stages in a continuous rotation from input to output space rather than to functionally distinct modules. While our network is likely to not be a direct reflection of brain processes, we propose that these principles should serve as hypotheses to be tested and evaluated for future studies.

  7. Big data and analytics strategic and organizational impacts

    CERN Document Server

    Morabito, Vincenzo

    2015-01-01

    This book presents and discusses the main strategic and organizational challenges posed by Big Data and analytics in a manner relevant to both practitioners and scholars. The first part of the book analyzes strategic issues relating to the growing relevance of Big Data and analytics for competitive advantage, which is also attributable to empowerment of activities such as consumer profiling, market segmentation, and development of new products or services. Detailed consideration is also given to the strategic impact of Big Data and analytics on innovation in domains such as government and education and to Big Data-driven business models. The second part of the book addresses the impact of Big Data and analytics on management and organizations, focusing on challenges for governance, evaluation, and change management, while the concluding part reviews real examples of Big Data and analytics innovation at the global level. The text is supported by informative illustrations and case studies, so that practitioners...

  8. The neural substrates of social influence on decision making.

    Science.gov (United States)

    Tomlin, Damon; Nedic, Andrea; Prentice, Deborah A; Holmes, Philip; Cohen, Jonathan D

    2013-01-01

    The mechanisms that govern human learning and decision making under uncertainty have been the focus of intense behavioral and, more recently, neuroscientific investigation. Substantial progress has been made in building models of the processes involved, and identifying underlying neural mechanisms using simple, two-alternative forced choice decision tasks. However, less attention has been given to how social information influences these processes, and the neural systems that mediate this influence. Here we sought to address these questions by using tasks similar to ones that have been used to study individual decision making behavior, and adding conditions in which participants were given trial-by-trial information about the performance of other individuals (their choices and/or their rewards) simultaneously playing the same tasks. We asked two questions: How does such information about the behavior of others influence performance in otherwise simple decision tasks, and what neural systems mediate this influence? We found that bilateral insula exhibited a parametric relationship to the degree of misalignment of the individual's performance with those of others in the group. Furthermore, activity in the bilateral insula significantly predicted participants' subsequent choices to align their behavior with others in the group when they were misaligned either in their choices (independent of success) or their degree of success (independent of specific choices). These findings add to the growing body of empirical data suggesting that the insula participates in an important way in social information processing and decision making.

  9. Multispectral Image classification using the theories of neural networks

    International Nuclear Information System (INIS)

    Ardisasmita, M.S.; Subki, M.I.R.

    1997-01-01

    Image classification is the one of the important part of digital image analysis. the objective of image classification is to identify and regroup the features occurring in an image into one or several classes in terms of the object. basic to the understanding of multispectral classification is the concept of the spectral response of an object as a function of the electromagnetic radiation and the wavelength of the spectrum. new approaches to classification has been developed to improve the result of analysis, these state-of-the-art classifiers are based upon the theories of neural networks. Neural network classifiers are algorithmes which mimic the computational abilities of the human brain. Artificial neurons are simple emulation's of biological neurons; they take in information from sensors or other artificial neurons, perform very simple operations on this data, and pass the result to other recognize the spectral signature of each image pixel. Neural network image classification has been divided into supervised and unsupervised training procedures. In the supervised approach, examples of each cover type can be located and the computer can compute spectral signatures to categorize all pixels in a digital image into several land cover classes. In supervised classification, spectral signatures are generated by mathematically grouping and it does not require analyst-specified training data. Thus, in the supervised approach we define useful information categories and then examine their spectral reparability; in the unsupervised approach the computer determines spectrally sapable classes and then we define thei information value

  10. Big Science and Long-tail Science

    CERN Document Server

    2008-01-01

    Jim Downing and I were privileged to be the guests of Salavtore Mele at CERN yesterday and to see the Atlas detector of the Large Hadron Collider . This is a wow experience - although I knew it was big, I hadnt realised how big.

  11. Toward a Literature-Driven Definition of Big Data in Healthcare

    Directory of Open Access Journals (Sweden)

    Emilie Baro

    2015-01-01

    Full Text Available Objective. The aim of this study was to provide a definition of big data in healthcare. Methods. A systematic search of PubMed literature published until May 9, 2014, was conducted. We noted the number of statistical individuals (n and the number of variables (p for all papers describing a dataset. These papers were classified into fields of study. Characteristics attributed to big data by authors were also considered. Based on this analysis, a definition of big data was proposed. Results. A total of 196 papers were included. Big data can be defined as datasets with Log⁡(n*p≥7. Properties of big data are its great variety and high velocity. Big data raises challenges on veracity, on all aspects of the workflow, on extracting meaningful information, and on sharing information. Big data requires new computational methods that optimize data management. Related concepts are data reuse, false knowledge discovery, and privacy issues. Conclusion. Big data is defined by volume. Big data should not be confused with data reuse: data can be big without being reused for another purpose, for example, in omics. Inversely, data can be reused without being necessarily big, for example, secondary use of Electronic Medical Records (EMR data.

  12. Toward a Literature-Driven Definition of Big Data in Healthcare

    Science.gov (United States)

    Baro, Emilie; Degoul, Samuel; Beuscart, Régis; Chazard, Emmanuel

    2015-01-01

    Objective. The aim of this study was to provide a definition of big data in healthcare. Methods. A systematic search of PubMed literature published until May 9, 2014, was conducted. We noted the number of statistical individuals (n) and the number of variables (p) for all papers describing a dataset. These papers were classified into fields of study. Characteristics attributed to big data by authors were also considered. Based on this analysis, a definition of big data was proposed. Results. A total of 196 papers were included. Big data can be defined as datasets with Log⁡(n∗p) ≥ 7. Properties of big data are its great variety and high velocity. Big data raises challenges on veracity, on all aspects of the workflow, on extracting meaningful information, and on sharing information. Big data requires new computational methods that optimize data management. Related concepts are data reuse, false knowledge discovery, and privacy issues. Conclusion. Big data is defined by volume. Big data should not be confused with data reuse: data can be big without being reused for another purpose, for example, in omics. Inversely, data can be reused without being necessarily big, for example, secondary use of Electronic Medical Records (EMR) data. PMID:26137488

  13. Big-Eyed Bugs Have Big Appetite for Pests

    Science.gov (United States)

    Many kinds of arthropod natural enemies (predators and parasitoids) inhabit crop fields in Arizona and can have a large negative impact on several pest insect species that also infest these crops. Geocoris spp., commonly known as big-eyed bugs, are among the most abundant insect predators in field c...

  14. Using a neural network in the search for the Higgs boson

    International Nuclear Information System (INIS)

    Hultqvist, K.; Jacobsson, R.; Johansson, K.E.

    1995-01-01

    The search for the Standard Model Higgs boson in high energy e + e - collisions requires analysis techniques which efficiently discriminate against the very large background. A classifier based on a feed-forward neural network has been extensively used in a search in the channel where the Higgs boson is produced in association with neutrinos. The method has significantly improved the sensitivity of the search. With a simple preselection based on event topology followed by a neural network we have obtained a combined background rejection factor of more than 29 000 and a selection efficiency for Higgs particle events of 54%, assuming a mass of 55 GeV/c 2 for the Higgs boson. We describe here the details of the analysis with emphasis on the neural network. (orig.)

  15. Using Big Data for Online Advertising Without Wastage: Wishful Dream, Nightmare or Reality?

    Directory of Open Access Journals (Sweden)

    Grether Mark

    2016-11-01

    Full Text Available Big data contains lots of information about consumers and allows companies real-time and data-assisted decision making to gain significant competitive advantages. Digital advertising is an important application for tailoring services to individual needs. Customized advertising is expected to be more effective, cost less, and better received by society. But what looks deceptively simple when it succeeds is frequently quite difficult to implement in practice. It is difficult to judge and validate the quality of automatically generated data. And besides quality, there are other aspects that make it tricky to determine the value of the data. A reasonable price for data depends on the context of its application and the potential cost savings it generates. And not only the price per impression is unclear. The number of contacts is also less obvious than it seems at first glance. Primarily third party data providers often incur problems with the monetization of big data and many are struggling to survive. They depend on the fairness of the data buyer and a successful business model has yet to be developed.

  16. Big Data - What is it and why it matters.

    Science.gov (United States)

    Tattersall, Andy; Grant, Maria J

    2016-06-01

    Big data, like MOOCs, altmetrics and open access, is a term that has been commonplace in the library community for some time yet, despite its prevalence, many in the library and information sector remain unsure of the relationship between big data and their roles. This editorial explores what big data could mean for the day-to-day practice of health library and information workers, presenting examples of big data in action, considering the ethics of accessing big data sets and the potential for new roles for library and information workers. © 2016 Health Libraries Group.

  17. Research on information security in big data era

    Science.gov (United States)

    Zhou, Linqi; Gu, Weihong; Huang, Cheng; Huang, Aijun; Bai, Yongbin

    2018-05-01

    Big data is becoming another hotspot in the field of information technology after the cloud computing and the Internet of Things. However, the existing information security methods can no longer meet the information security requirements in the era of big data. This paper analyzes the challenges and a cause of data security brought by big data, discusses the development trend of network attacks under the background of big data, and puts forward my own opinions on the development of security defense in technology, strategy and product.

  18. BIG DATA IN BUSINESS ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Logica BANICA

    2015-06-01

    Full Text Available In recent years, dealing with a lot of data originating from social media sites and mobile communications among data from business environments and institutions, lead to the definition of a new concept, known as Big Data. The economic impact of the sheer amount of data produced in a last two years has increased rapidly. It is necessary to aggregate all types of data (structured and unstructured in order to improve current transactions, to develop new business models, to provide a real image of the supply and demand and thereby, generate market advantages. So, the companies that turn to Big Data have a competitive advantage over other firms. Looking from the perspective of IT organizations, they must accommodate the storage and processing Big Data, and provide analysis tools that are easily integrated into business processes. This paper aims to discuss aspects regarding the Big Data concept, the principles to build, organize and analyse huge datasets in the business environment, offering a three-layer architecture, based on actual software solutions. Also, the article refers to the graphical tools for exploring and representing unstructured data, Gephi and NodeXL.

  19. Fuzzy 2-partition entropy threshold selection based on Big Bang–Big Crunch Optimization algorithm

    Directory of Open Access Journals (Sweden)

    Baljit Singh Khehra

    2015-03-01

    Full Text Available The fuzzy 2-partition entropy approach has been widely used to select threshold value for image segmenting. This approach used two parameterized fuzzy membership functions to form a fuzzy 2-partition of the image. The optimal threshold is selected by searching an optimal combination of parameters of the membership functions such that the entropy of fuzzy 2-partition is maximized. In this paper, a new fuzzy 2-partition entropy thresholding approach based on the technology of the Big Bang–Big Crunch Optimization (BBBCO is proposed. The new proposed thresholding approach is called the BBBCO-based fuzzy 2-partition entropy thresholding algorithm. BBBCO is used to search an optimal combination of parameters of the membership functions for maximizing the entropy of fuzzy 2-partition. BBBCO is inspired by the theory of the evolution of the universe; namely the Big Bang and Big Crunch Theory. The proposed algorithm is tested on a number of standard test images. For comparison, three different algorithms included Genetic Algorithm (GA-based, Biogeography-based Optimization (BBO-based and recursive approaches are also implemented. From experimental results, it is observed that the performance of the proposed algorithm is more effective than GA-based, BBO-based and recursion-based approaches.

  20. Comparing Models GRM, Refraction Tomography and Neural Network to Analyze Shallow Landslide

    Directory of Open Access Journals (Sweden)

    Armstrong F. Sompotan

    2011-11-01

    Full Text Available Detailed investigations of landslides are essential to understand fundamental landslide mechanisms. Seismic refraction method has been proven as a useful geophysical tool for investigating shallow landslides. The objective of this study is to introduce a new workflow using neural network in analyzing seismic refraction data and to compare the result with some methods; that are general reciprocal method (GRM and refraction tomography. The GRM is effective when the velocity structure is relatively simple and refractors are gently dipping. Refraction tomography is capable of modeling the complex velocity structures of landslides. Neural network is found to be more potential in application especially in time consuming and complicated numerical methods. Neural network seem to have the ability to establish a relationship between an input and output space for mapping seismic velocity. Therefore, we made a preliminary attempt to evaluate the applicability of neural network to determine velocity and elevation of subsurface synthetic models corresponding to arrival times. The training and testing process of the neural network is successfully accomplished using the synthetic data. Furthermore, we evaluated the neural network using observed data. The result of the evaluation indicates that the neural network can compute velocity and elevation corresponding to arrival times. The similarity of those models shows the success of neural network as a new alternative in seismic refraction data interpretation.

  1. A little big history of Tiananmen

    NARCIS (Netherlands)

    Quaedackers, E.; Grinin, L.E.; Korotayev, A.V.; Rodrigue, B.H.

    2011-01-01

    This contribution aims at demonstrating the usefulness of studying small-scale subjects such as Tiananmen, or the Gate of Heavenly Peace, in Beijing - from a Big History perspective. By studying such a ‘little big history’ of Tiananmen, previously overlooked yet fundamental explanations for why

  2. A comparative study of multilayer perceptron neural networks for the identification of rhubarb samples.

    Science.gov (United States)

    Zhang, Zhuoyong; Wang, Yamin; Fan, Guoqiang; Harrington, Peter de B

    2007-01-01

    Artificial neural networks have gained much attention in recent years as fast and flexible methods for quality control in traditional medicine. Near-infrared (NIR) spectroscopy has become an accepted method for the qualitative and quantitative analyses of traditional Chinese medicine since it is simple, rapid, and non-destructive. The present paper describes a method by which to discriminate official and unofficial rhubarb samples using three layer perceptron neural networks applied to NIR data. Multilayer perceptron neural networks were trained with back propagation, delta-bar-delta and quick propagation algorithms. Results obtained using these methods were all satisfactory, but the best outcomes were obtained with the delta-bar-delta algorithm.

  3. Parameter diagnostics of phases and phase transition learning by neural networks

    Science.gov (United States)

    Suchsland, Philippe; Wessel, Stefan

    2018-05-01

    We present an analysis of neural network-based machine learning schemes for phases and phase transitions in theoretical condensed matter research, focusing on neural networks with a single hidden layer. Such shallow neural networks were previously found to be efficient in classifying phases and locating phase transitions of various basic model systems. In order to rationalize the emergence of the classification process and for identifying any underlying physical quantities, it is feasible to examine the weight matrices and the convolutional filter kernels that result from the learning process of such shallow networks. Furthermore, we demonstrate how the learning-by-confusing scheme can be used, in combination with a simple threshold-value classification method, to diagnose the learning parameters of neural networks. In particular, we study the classification process of both fully-connected and convolutional neural networks for the two-dimensional Ising model with extended domain wall configurations included in the low-temperature regime. Moreover, we consider the two-dimensional XY model and contrast the performance of the learning-by-confusing scheme and convolutional neural networks trained on bare spin configurations to the case of preprocessed samples with respect to vortex configurations. We discuss these findings in relation to similar recent investigations and possible further applications.

  4. Addressing big data issues in Scientific Data Infrastructure

    NARCIS (Netherlands)

    Demchenko, Y.; Membrey, P.; Grosso, P.; de Laat, C.; Smari, W.W.; Fox, G.C.

    2013-01-01

    Big Data are becoming a new technology focus both in science and in industry. This paper discusses the challenges that are imposed by Big Data on the modern and future Scientific Data Infrastructure (SDI). The paper discusses a nature and definition of Big Data that include such features as Volume,

  5. Improving Healthcare Using Big Data Analytics

    Directory of Open Access Journals (Sweden)

    Revanth Sonnati

    2017-03-01

    Full Text Available In daily terms we call the current era as Modern Era which can also be named as the era of Big Data in the field of Information Technology. Our daily lives in todays world are rapidly advancing never quenching ones thirst. The fields of science engineering and technology are producing data at an exponential rate leading to Exabytes of data every day. Big data helps us to explore and re-invent many areas not limited to education health and law. The primary purpose of this paper is to provide an in-depth analysis in the area of Healthcare using the big data and analytics. The main purpose is to emphasize on the usage of the big data which is being stored all the time helping to look back in the history but this is the time to emphasize on the analyzation to improve the medication and services. Although many big data implementations happen to be in-house development this proposed implementation aims to propose a broader extent using Hadoop which just happen to be the tip of the iceberg. The focus of this paper is not limited to the improvement and analysis of the data it also focusses on the strengths and drawbacks compared to the conventional techniques available.

  6. Big Data - Smart Health Strategies

    Science.gov (United States)

    2014-01-01

    Summary Objectives To select best papers published in 2013 in the field of big data and smart health strategies, and summarize outstanding research efforts. Methods A systematic search was performed using two major bibliographic databases for relevant journal papers. The references obtained were reviewed in a two-stage process, starting with a blinded review performed by the two section editors, and followed by a peer review process operated by external reviewers recognized as experts in the field. Results The complete review process selected four best papers, illustrating various aspects of the special theme, among them: (a) using large volumes of unstructured data and, specifically, clinical notes from Electronic Health Records (EHRs) for pharmacovigilance; (b) knowledge discovery via querying large volumes of complex (both structured and unstructured) biological data using big data technologies and relevant tools; (c) methodologies for applying cloud computing and big data technologies in the field of genomics, and (d) system architectures enabling high-performance access to and processing of large datasets extracted from EHRs. Conclusions The potential of big data in biomedicine has been pinpointed in various viewpoint papers and editorials. The review of current scientific literature illustrated a variety of interesting methods and applications in the field, but still the promises exceed the current outcomes. As we are getting closer towards a solid foundation with respect to common understanding of relevant concepts and technical aspects, and the use of standardized technologies and tools, we can anticipate to reach the potential that big data offer for personalized medicine and smart health strategies in the near future. PMID:25123721

  7. About Big Data and its Challenges and Benefits in Manufacturing

    OpenAIRE

    Bogdan NEDELCU

    2013-01-01

    The aim of this article is to show the importance of Big Data and its growing influence on companies. It also shows what kind of big data is currently generated and how much big data is estimated to be generated. We can also see how much are the companies willing to invest in big data and how much are they currently gaining from their big data. There are also shown some major influences that big data has over one major segment in the industry (manufacturing) and the challenges that appear.

  8. Big Data Management in US Hospitals: Benefits and Barriers.

    Science.gov (United States)

    Schaeffer, Chad; Booton, Lawrence; Halleck, Jamey; Studeny, Jana; Coustasse, Alberto

    Big data has been considered as an effective tool for reducing health care costs by eliminating adverse events and reducing readmissions to hospitals. The purposes of this study were to examine the emergence of big data in the US health care industry, to evaluate a hospital's ability to effectively use complex information, and to predict the potential benefits that hospitals might realize if they are successful in using big data. The findings of the research suggest that there were a number of benefits expected by hospitals when using big data analytics, including cost savings and business intelligence. By using big data, many hospitals have recognized that there have been challenges, including lack of experience and cost of developing the analytics. Many hospitals will need to invest in the acquiring of adequate personnel with experience in big data analytics and data integration. The findings of this study suggest that the adoption, implementation, and utilization of big data technology will have a profound positive effect among health care providers.

  9. Big Data Strategy for Telco: Network Transformation

    OpenAIRE

    F. Amin; S. Feizi

    2014-01-01

    Big data has the potential to improve the quality of services; enable infrastructure that businesses depend on to adapt continually and efficiently; improve the performance of employees; help organizations better understand customers; and reduce liability risks. Analytics and marketing models of fixed and mobile operators are falling short in combating churn and declining revenue per user. Big Data presents new method to reverse the way and improve profitability. The benefits of Big Data and ...

  10. Big Data in Shipping - Challenges and Opportunities

    OpenAIRE

    Rødseth, Ørnulf Jan; Perera, Lokukaluge Prasad; Mo, Brage

    2016-01-01

    Big Data is getting popular in shipping where large amounts of information is collected to better understand and improve logistics, emissions, energy consumption and maintenance. Constraints to the use of big data include cost and quality of on-board sensors and data acquisition systems, satellite communication, data ownership and technical obstacles to effective collection and use of big data. New protocol standards may simplify the process of collecting and organizing the data, including in...

  11. Can renormalization group flow end in a Big Mess?

    International Nuclear Information System (INIS)

    Morozov, Alexei; Niemi, Antti J.

    2003-01-01

    The field theoretical renormalization group equations have many common features with the equations of dynamical systems. In particular, the manner how Callan-Symanzik equation ensures the independence of a theory from its subtraction point is reminiscent of self-similarity in autonomous flows towards attractors. Motivated by such analogies we propose that besides isolated fixed points, the couplings in a renormalizable field theory may also flow towards more general, even fractal attractors. This could lead to Big Mess scenarios in applications to multiphase systems, from spin-glasses and neural networks to fundamental string (M?) theory. We consider various general aspects of such chaotic flows. We argue that they pose no obvious contradictions with the known properties of effective actions, the existence of dissipative Lyapunov functions, and even the strong version of the c-theorem. We also explain the difficulties encountered when constructing effective actions with chaotic renormalization group flows and observe that they have many common virtues with realistic field theory effective actions. We conclude that if chaotic renormalization group flows are to be excluded, conceptually novel no-go theorems must be developed

  12. Noise-enhanced categorization in a recurrently reconnected neural network

    International Nuclear Information System (INIS)

    Monterola, Christopher; Zapotocky, Martin

    2005-01-01

    We investigate the interplay of recurrence and noise in neural networks trained to categorize spatial patterns of neural activity. We develop the following procedure to demonstrate how, in the presence of noise, the introduction of recurrence permits to significantly extend and homogenize the operating range of a feed-forward neural network. We first train a two-level perceptron in the absence of noise. Following training, we identify the input and output units of the feed-forward network, and thus convert it into a two-layer recurrent network. We show that the performance of the reconnected network has features reminiscent of nondynamic stochastic resonance: the addition of noise enables the network to correctly categorize stimuli of subthreshold strength, with optimal noise magnitude significantly exceeding the stimulus strength. We characterize the dynamics leading to this effect and contrast it to the behavior of a more simple associative memory network in which noise-mediated categorization fails

  13. Noise-enhanced categorization in a recurrently reconnected neural network

    Science.gov (United States)

    Monterola, Christopher; Zapotocky, Martin

    2005-03-01

    We investigate the interplay of recurrence and noise in neural networks trained to categorize spatial patterns of neural activity. We develop the following procedure to demonstrate how, in the presence of noise, the introduction of recurrence permits to significantly extend and homogenize the operating range of a feed-forward neural network. We first train a two-level perceptron in the absence of noise. Following training, we identify the input and output units of the feed-forward network, and thus convert it into a two-layer recurrent network. We show that the performance of the reconnected network has features reminiscent of nondynamic stochastic resonance: the addition of noise enables the network to correctly categorize stimuli of subthreshold strength, with optimal noise magnitude significantly exceeding the stimulus strength. We characterize the dynamics leading to this effect and contrast it to the behavior of a more simple associative memory network in which noise-mediated categorization fails.

  14. [Relevance of big data for molecular diagnostics].

    Science.gov (United States)

    Bonin-Andresen, M; Smiljanovic, B; Stuhlmüller, B; Sörensen, T; Grützkau, A; Häupl, T

    2018-04-01

    Big data analysis raises the expectation that computerized algorithms may extract new knowledge from otherwise unmanageable vast data sets. What are the algorithms behind the big data discussion? In principle, high throughput technologies in molecular research already introduced big data and the development and application of analysis tools into the field of rheumatology some 15 years ago. This includes especially omics technologies, such as genomics, transcriptomics and cytomics. Some basic methods of data analysis are provided along with the technology, however, functional analysis and interpretation requires adaptation of existing or development of new software tools. For these steps, structuring and evaluating according to the biological context is extremely important and not only a mathematical problem. This aspect has to be considered much more for molecular big data than for those analyzed in health economy or epidemiology. Molecular data are structured in a first order determined by the applied technology and present quantitative characteristics that follow the principles of their biological nature. These biological dependencies have to be integrated into software solutions, which may require networks of molecular big data of the same or even different technologies in order to achieve cross-technology confirmation. More and more extensive recording of molecular processes also in individual patients are generating personal big data and require new strategies for management in order to develop data-driven individualized interpretation concepts. With this perspective in mind, translation of information derived from molecular big data will also require new specifications for education and professional competence.

  15. DCS-Neural-Network Program for Aircraft Control and Testing

    Science.gov (United States)

    Jorgensen, Charles C.

    2006-01-01

    A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.

  16. Big Bang synthesis of nuclear dark matter

    International Nuclear Information System (INIS)

    Hardy, Edward; Lasenby, Robert; March-Russell, John; West, Stephen M.

    2015-01-01

    We investigate the physics of dark matter models featuring composite bound states carrying a large conserved dark “nucleon” number. The properties of sufficiently large dark nuclei may obey simple scaling laws, and we find that this scaling can determine the number distribution of nuclei resulting from Big Bang Dark Nucleosynthesis. For plausible models of asymmetric dark matter, dark nuclei of large nucleon number, e.g. ≳10 8 , may be synthesised, with the number distribution taking one of two characteristic forms. If small-nucleon-number fusions are sufficiently fast, the distribution of dark nuclei takes on a logarithmically-peaked, universal form, independent of many details of the initial conditions and small-number interactions. In the case of a substantial bottleneck to nucleosynthesis for small dark nuclei, we find the surprising result that even larger nuclei, with size ≫10 8 , are often finally synthesised, again with a simple number distribution. We briefly discuss the constraints arising from the novel dark sector energetics, and the extended set of (often parametrically light) dark sector states that can occur in complete models of nuclear dark matter. The physics of the coherent enhancement of direct detection signals, the nature of the accompanying dark-sector form factors, and the possible modifications to astrophysical processes are discussed in detail in a companion paper.

  17. Big data in psychology: A framework for research advancement.

    Science.gov (United States)

    Adjerid, Idris; Kelley, Ken

    2018-02-22

    The potential for big data to provide value for psychology is significant. However, the pursuit of big data remains an uncertain and risky undertaking for the average psychological researcher. In this article, we address some of this uncertainty by discussing the potential impact of big data on the type of data available for psychological research, addressing the benefits and most significant challenges that emerge from these data, and organizing a variety of research opportunities for psychology. Our article yields two central insights. First, we highlight that big data research efforts are more readily accessible than many researchers realize, particularly with the emergence of open-source research tools, digital platforms, and instrumentation. Second, we argue that opportunities for big data research are diverse and differ both in their fit for varying research goals, as well as in the challenges they bring about. Ultimately, our outlook for researchers in psychology using and benefiting from big data is cautiously optimistic. Although not all big data efforts are suited for all researchers or all areas within psychology, big data research prospects are diverse, expanding, and promising for psychology and related disciplines. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. 'Big data' in pharmaceutical science: challenges and opportunities.

    Science.gov (United States)

    Dossetter, Al G; Ecker, Gerhard; Laverty, Hugh; Overington, John

    2014-05-01

    Future Medicinal Chemistry invited a selection of experts to express their views on the current impact of big data in drug discovery and design, as well as speculate on future developments in the field. The topics discussed include the challenges of implementing big data technologies, maintaining the quality and privacy of data sets, and how the industry will need to adapt to welcome the big data era. Their enlightening responses provide a snapshot of the many and varied contributions being made by big data to the advancement of pharmaceutical science.

  19. Using the TensorFlow Deep Neural Network to Classify Mainland China Visitor Behaviours in Hong Kong from Check-in Data

    Directory of Open Access Journals (Sweden)

    Shanshan Han

    2018-04-01

    Full Text Available Over the past decade, big data, including Global Positioning System (GPS data, mobile phone tracking data and social media check-in data, have been widely used to analyse human movements and behaviours. Tourism management researchers have noted the potential of applying these data to study tourist behaviours, and many studies have shown that social media check-in data can provide new opportunities for extracting tourism activities and tourist behaviours. However, traditional methods may not be suitable for extracting comprehensive tourist behaviours due to the complexity and diversity of human behaviours. Studies have shown that deep neural networks have outpaced the abilities of human beings in many fields and that deep neural networks can be explained in a psychological manner. Thus, deep neural network methods can potentially be used to understand human behaviours. In this paper, a deep learning neural network constructed in TensorFlow is applied to classify Mainland China visitor behaviours in Hong Kong, and the characteristics of these visitors are analysed to verify the classification results. For the social science classification problem investigated in this study, the deep neural network classifier in TensorFlow provides better accuracy and more lucid visualisation than do traditional neural network methods, even for erratic classification rules. Furthermore, the results of this study reveal that TensorFlow has considerable potential for application in the human geography field.

  20. Understanding the Implications of Neural Population Activity on Behavior

    Science.gov (United States)

    Briguglio, John

    Learning how neural activity in the brain leads to the behavior we exhibit is one of the fundamental questions in Neuroscience. In this dissertation, several lines of work are presented to that use principles of neural coding to understand behavior. In one line of work, we formulate the efficient coding hypothesis in a non-traditional manner in order to test human perceptual sensitivity to complex visual textures. We find a striking agreement between how variable a particular texture signal is and how sensitive humans are to its presence. This reveals that the efficient coding hypothesis is still a guiding principle for neural organization beyond the sensory periphery, and that the nature of cortical constraints differs from the peripheral counterpart. In another line of work, we relate frequency discrimination acuity to neural responses from auditory cortex in mice. It has been previously observed that optogenetic manipulation of auditory cortex, in addition to changing neural responses, evokes changes in behavioral frequency discrimination. We are able to account for changes in frequency discrimination acuity on an individual basis by examining the Fisher information from the neural population with and without optogenetic manipulation. In the third line of work, we address the question of what a neural population should encode given that its inputs are responses from another group of neurons. Drawing inspiration from techniques in machine learning, we train Deep Belief Networks on fake retinal data and show the emergence of Garbor-like filters, reminiscent of responses in primary visual cortex. In the last line of work, we model the state of a cortical excitatory-inhibitory network during complex adaptive stimuli. Using a rate model with Wilson-Cowan dynamics, we demonstrate that simple non-linearities in the signal transferred from inhibitory to excitatory neurons can account for real neural recordings taken from auditory cortex. This work establishes and tests

  1. Soft computing in big data processing

    CERN Document Server

    Park, Seung-Jong; Lee, Jee-Hyong

    2014-01-01

    Big data is an essential key to build a smart world as a meaning of the streaming, continuous integration of large volume and high velocity data covering from all sources to final destinations. The big data range from data mining, data analysis and decision making, by drawing statistical rules and mathematical patterns through systematical or automatically reasoning. The big data helps serve our life better, clarify our future and deliver greater value. We can discover how to capture and analyze data. Readers will be guided to processing system integrity and implementing intelligent systems. With intelligent systems, we deal with the fundamental data management and visualization challenges in effective management of dynamic and large-scale data, and efficient processing of real-time and spatio-temporal data. Advanced intelligent systems have led to managing the data monitoring, data processing and decision-making in realistic and effective way. Considering a big size of data, variety of data and frequent chan...

  2. Locally Simple Models Construction: Methodology and Practice

    Directory of Open Access Journals (Sweden)

    I. A. Kazakov

    2017-12-01

    Full Text Available One of the most notable trends associated with the Fourth industrial revolution is a significant strengthening of the role played by semantic methods. They are engaged in artificial intelligence means, knowledge mining in huge flows of big data, robotization, and in the internet of things. Smart contracts also can be mentioned here, although the ’intelligence’ of smart contracts still needs to be seriously elaborated. These trends should inevitably lead to an increased role of logical methods working with semantics, and significantly expand the scope of their application in practice. However, there are a number of problems that hinder this process. We are developing an approach, which makes the application of logical modeling efficient in some important areas. The approach is based on the concept of locally simple models and is primarily focused on solving tasks in the management of enterprises, organizations, governing bodies. The most important feature of locally simple models is their ability to replace software systems. Replacement of programming by modeling gives huge advantages, for instance, it dramatically reduces development and support costs. Modeling, unlike programming, preserves the explicit semantics of models allowing integration with artificial intelligence and robots. In addition, models are much more understandable to general people than programs. In this paper we propose the implementation of the concept of locally simple modeling on the basis of so-called document models, which has been developed by us earlier. It is shown that locally simple modeling is realized through document models with finite submodel coverages. In the second part of the paper an example of using document models for solving a management problem of real complexity is demonstrated.

  3. Neural coding in graphs of bidirectional associative memories.

    Science.gov (United States)

    Bouchain, A David; Palm, Günther

    2012-01-24

    In the last years we have developed large neural network models for the realization of complex cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex. We have used networks of several cortical modules that contain two populations of neurons (one excitatory, one inhibitory). The excitatory populations in these so-called "cortical networks" are organized as a graph of Bidirectional Associative Memories (BAMs), where edges of the graph correspond to BAMs connecting two neural modules and nodes of the graph correspond to excitatory populations with associative feedback connections (and inhibitory interneurons). The neural code in each of these modules consists essentially of the firing pattern of the excitatory population, where mainly it is the subset of active neurons that codes the contents to be represented. The overall activity can be used to distinguish different properties of the patterns that are represented which we need to distinguish and control when performing complex tasks like language understanding with these cortical networks. The most important pattern properties or situations are: exactly fitting or matching input, incomplete information or partially matching pattern, superposition of several patterns, conflicting information, and new information that is to be learned. We show simple simulations of these situations in one area or module and discuss how to distinguish these situations based on the overall internal activation of the module. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Solution of a braneworld big crunch/big bang cosmology

    International Nuclear Information System (INIS)

    McFadden, Paul L.; Turok, Neil; Steinhardt, Paul J.

    2007-01-01

    We solve for the cosmological perturbations in a five-dimensional background consisting of two separating or colliding boundary branes, as an expansion in the collision speed V divided by the speed of light c. Our solution permits a detailed check of the validity of four-dimensional effective theory in the vicinity of the event corresponding to the big crunch/big bang singularity. We show that the four-dimensional description fails at the first nontrivial order in (V/c) 2 . At this order, there is nontrivial mixing of the two relevant four-dimensional perturbation modes (the growing and decaying modes) as the boundary branes move from the narrowly separated limit described by Kaluza-Klein theory to the well-separated limit where gravity is confined to the positive-tension brane. We comment on the cosmological significance of the result and compute other quantities of interest in five-dimensional cosmological scenarios

  5. [Big data and their perspectives in radiation therapy].

    Science.gov (United States)

    Guihard, Sébastien; Thariat, Juliette; Clavier, Jean-Baptiste

    2017-02-01

    The concept of big data indicates a change of scale in the use of data and data aggregation into large databases through improved computer technology. One of the current challenges in the creation of big data in the context of radiation therapy is the transformation of routine care items into dark data, i.e. data not yet collected, and the fusion of databases collecting different types of information (dose-volume histograms and toxicity data for example). Processes and infrastructures devoted to big data collection should not impact negatively on the doctor-patient relationship, the general process of care or the quality of the data collected. The use of big data requires a collective effort of physicians, physicists, software manufacturers and health authorities to create, organize and exploit big data in radiotherapy and, beyond, oncology. Big data involve a new culture to build an appropriate infrastructure legally and ethically. Processes and issues are discussed in this article. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  6. Current applications of big data in obstetric anesthesiology.

    Science.gov (United States)

    Klumpner, Thomas T; Bauer, Melissa E; Kheterpal, Sachin

    2017-06-01

    The narrative review aims to highlight several recently published 'big data' studies pertinent to the field of obstetric anesthesiology. Big data has been used to study rare outcomes, to identify trends within the healthcare system, to identify variations in practice patterns, and to highlight potential inequalities in obstetric anesthesia care. Big data studies have helped define the risk of rare complications of obstetric anesthesia, such as the risk of neuraxial hematoma in thrombocytopenic parturients. Also, large national databases have been used to better understand trends in anesthesia-related adverse events during cesarean delivery as well as outline potential racial/ethnic disparities in obstetric anesthesia care. Finally, real-time analysis of patient data across a number of disparate health information systems through the use of sophisticated clinical decision support and surveillance systems is one promising application of big data technology on the labor and delivery unit. 'Big data' research has important implications for obstetric anesthesia care and warrants continued study. Real-time electronic surveillance is a potentially useful application of big data technology on the labor and delivery unit.

  7. The attentional drift-diffusion model extends to simple purchasing decisions.

    Science.gov (United States)

    Krajbich, Ian; Lu, Dingchao; Camerer, Colin; Rangel, Antonio

    2012-01-01

    How do we make simple purchasing decisions (e.g., whether or not to buy a product at a given price)? Previous work has shown that the attentional drift-diffusion model (aDDM) can provide accurate quantitative descriptions of the psychometric data for binary and trinary value-based choices, and of how the choice process is guided by visual attention. Here we extend the aDDM to the case of purchasing decisions, and test it using an eye-tracking experiment. We find that the model also provides a reasonably accurate quantitative description of the relationship between choice, reaction time, and visual fixations using parameters that are very similar to those that best fit the previous data. The only critical difference is that the choice biases induced by the fixations are about half as big in purchasing decisions as in binary choices. This suggests that a similar computational process is used to make binary choices, trinary choices, and simple purchasing decisions.

  8. Study on intelligence fault diagnosis method for nuclear power plant equipment based on rough set and fuzzy neural network

    International Nuclear Information System (INIS)

    Liu Yongkuo; Xia Hong; Xie Chunli; Chen Zhihui; Chen Hongxia

    2007-01-01

    Rough set theory and fuzzy neural network are combined, to take full advantages of the two of them. Based on the reduction technology to knowledge of Rough set method, and by drawing the simple rule from a large number of initial data, the fuzzy neural network was set up, which was with better topological structure, improved study speed, accurate judgment, strong fault-tolerant ability, and more practical. In order to test the validity of the method, the inverted U-tubes break accident of Steam Generator and etc are used as examples, and many simulation experiments are performed. The test result shows that it is feasible to incorporate the fault intelligence diagnosis method based on rough set and fuzzy neural network in the nuclear power plant equipment, and the method is simple and convenience, with small calculation amount and reliable result. (authors)

  9. Volume and Value of Big Healthcare Data.

    Science.gov (United States)

    Dinov, Ivo D

    Modern scientific inquiries require significant data-driven evidence and trans-disciplinary expertise to extract valuable information and gain actionable knowledge about natural processes. Effective evidence-based decisions require collection, processing and interpretation of vast amounts of complex data. The Moore's and Kryder's laws of exponential increase of computational power and information storage, respectively, dictate the need rapid trans-disciplinary advances, technological innovation and effective mechanisms for managing and interrogating Big Healthcare Data. In this article, we review important aspects of Big Data analytics and discuss important questions like: What are the challenges and opportunities associated with this biomedical, social, and healthcare data avalanche? Are there innovative statistical computing strategies to represent, model, analyze and interpret Big heterogeneous data? We present the foundation of a new compressive big data analytics (CBDA) framework for representation, modeling and inference of large, complex and heterogeneous datasets. Finally, we consider specific directions likely to impact the process of extracting information from Big healthcare data, translating that information to knowledge, and deriving appropriate actions.

  10. Granular neural networks, pattern recognition and bioinformatics

    CERN Document Server

    Pal, Sankar K; Ganivada, Avatharam

    2017-01-01

    This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...

  11. Field-theoretic approach to fluctuation effects in neural networks

    International Nuclear Information System (INIS)

    Buice, Michael A.; Cowan, Jack D.

    2007-01-01

    A well-defined stochastic theory for neural activity, which permits the calculation of arbitrary statistical moments and equations governing them, is a potentially valuable tool for theoretical neuroscience. We produce such a theory by analyzing the dynamics of neural activity using field theoretic methods for nonequilibrium statistical processes. Assuming that neural network activity is Markovian, we construct the effective spike model, which describes both neural fluctuations and response. This analysis leads to a systematic expansion of corrections to mean field theory, which for the effective spike model is a simple version of the Wilson-Cowan equation. We argue that neural activity governed by this model exhibits a dynamical phase transition which is in the universality class of directed percolation. More general models (which may incorporate refractoriness) can exhibit other universality classes, such as dynamic isotropic percolation. Because of the extremely high connectivity in typical networks, it is expected that higher-order terms in the systematic expansion are small for experimentally accessible measurements, and thus, consistent with measurements in neocortical slice preparations, we expect mean field exponents for the transition. We provide a quantitative criterion for the relative magnitude of each term in the systematic expansion, analogous to the Ginsburg criterion. Experimental identification of dynamic universality classes in vivo is an outstanding and important question for neuroscience

  12. Flexible poly(methyl methacrylate)-based neural probe: An affordable implementation

    Science.gov (United States)

    Gasemi, Pejman; Veladi, Hadi; Shahabi, Parviz; Khalilzadeh, Emad

    2018-03-01

    This research presents a novel technique used to fabricate a deep brain stimulation probe based on a commercial poly(methyl methacrylate) (PMMA) polymer. This technique is developed to overcome the high cost of available probes crucial for chronic stimulation and recording in neural disorders such as Parkinson’s disease and epilepsy. The probe is made of PMMA and its mechanical properties have been customized by controlling the reaction conditions. The polymer is adjusted to be stiff enough to be easily inserted and, on the other hand, soft enough to perform required movements. As cost is one of the issues in the use of neural probes, a simple process is proposed for the production of PMMA neural probes without using expensive equipment and operations, and without compromising performance and quality. An in vivo animal test was conducted to observe the recording capability of a PMMA probe.

  13. RM-SORN: a reward-modulated self-organizing recurrent neural network.

    Science.gov (United States)

    Aswolinskiy, Witali; Pipa, Gordon

    2015-01-01

    Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network to explore possible output sequences and STDP, modulated by reward, reinforces the creation of the rewarded output sequences. The model is tested on tasks for prediction, recall, non-linear computation, pattern recognition, and sequence generation. It achieves performance comparable to networks trained with supervised learning, while using simple, biologically motivated plasticity rules, and rewarding strategies. The results confirm the importance of investigating the interaction of several plasticity rules in the context of reward-modulated learning and whether reward-modulated self-organization can explain the amazing capabilities of the brain.

  14. Big Data Analytics Methodology in the Financial Industry

    Science.gov (United States)

    Lawler, James; Joseph, Anthony

    2017-01-01

    Firms in industry continue to be attracted by the benefits of Big Data Analytics. The benefits of Big Data Analytics projects may not be as evident as frequently indicated in the literature. The authors of the study evaluate factors in a customized methodology that may increase the benefits of Big Data Analytics projects. Evaluating firms in the…

  15. Big data: survey, technologies, opportunities, and challenges.

    Science.gov (United States)

    Khan, Nawsher; Yaqoob, Ibrar; Hashem, Ibrahim Abaker Targio; Inayat, Zakira; Ali, Waleed Kamaleldin Mahmoud; Alam, Muhammad; Shiraz, Muhammad; Gani, Abdullah

    2014-01-01

    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data.

  16. Big Data: Survey, Technologies, Opportunities, and Challenges

    Science.gov (United States)

    Khan, Nawsher; Yaqoob, Ibrar; Hashem, Ibrahim Abaker Targio; Inayat, Zakira; Mahmoud Ali, Waleed Kamaleldin; Alam, Muhammad; Shiraz, Muhammad; Gani, Abdullah

    2014-01-01

    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data. PMID:25136682

  17. Opportunity and Challenges for Migrating Big Data Analytics in Cloud

    Science.gov (United States)

    Amitkumar Manekar, S.; Pradeepini, G., Dr.

    2017-08-01

    Big Data Analytics is a big word now days. As per demanding and more scalable process data generation capabilities, data acquisition and storage become a crucial issue. Cloud storage is a majorly usable platform; the technology will become crucial to executives handling data powered by analytics. Now a day’s trend towards “big data-as-a-service” is talked everywhere. On one hand, cloud-based big data analytics exactly tackle in progress issues of scale, speed, and cost. But researchers working to solve security and other real-time problem of big data migration on cloud based platform. This article specially focused on finding possible ways to migrate big data to cloud. Technology which support coherent data migration and possibility of doing big data analytics on cloud platform is demanding in natute for new era of growth. This article also gives information about available technology and techniques for migration of big data in cloud.

  18. Big Data

    DEFF Research Database (Denmark)

    Aaen, Jon; Nielsen, Jeppe Agger

    2016-01-01

    Big Data byder sig til som en af tidens mest hypede teknologiske innovationer, udråbt til at rumme kimen til nye, værdifulde operationelle indsigter for private virksomheder og offentlige organisationer. Mens de optimistiske udmeldinger er mange, er forskningen i Big Data i den offentlige sektor...... indtil videre begrænset. Denne artikel belyser, hvordan den offentlige sundhedssektor kan genanvende og udnytte en stadig større mængde data under hensyntagen til offentlige værdier. Artiklen bygger på et casestudie af anvendelsen af store mængder sundhedsdata i Dansk AlmenMedicinsk Database (DAMD......). Analysen viser, at (gen)brug af data i nye sammenhænge er en flerspektret afvejning mellem ikke alene økonomiske rationaler og kvalitetshensyn, men også kontrol over personfølsomme data og etiske implikationer for borgeren. I DAMD-casen benyttes data på den ene side ”i den gode sags tjeneste” til...

  19. Big data analytics in healthcare: promise and potential.

    Science.gov (United States)

    Raghupathi, Wullianallur; Raghupathi, Viju

    2014-01-01

    To describe the promise and potential of big data analytics in healthcare. The paper describes the nascent field of big data analytics in healthcare, discusses the benefits, outlines an architectural framework and methodology, describes examples reported in the literature, briefly discusses the challenges, and offers conclusions. The paper provides a broad overview of big data analytics for healthcare researchers and practitioners. Big data analytics in healthcare is evolving into a promising field for providing insight from very large data sets and improving outcomes while reducing costs. Its potential is great; however there remain challenges to overcome.

  20. Data warehousing in the age of big data

    CERN Document Server

    Krishnan, Krish

    2013-01-01

    Data Warehousing in the Age of the Big Data will help you and your organization make the most of unstructured data with your existing data warehouse. As Big Data continues to revolutionize how we use data, it doesn't have to create more confusion. Expert author Krish Krishnan helps you make sense of how Big Data fits into the world of data warehousing in clear and concise detail. The book is presented in three distinct parts. Part 1 discusses Big Data, its technologies and use cases from early adopters. Part 2 addresses data warehousing, its shortcomings, and new architecture

  1. The Death of the Big Men

    DEFF Research Database (Denmark)

    Martin, Keir

    2010-01-01

    Recently Tolai people og Papua New Guinea have adopted the term 'Big Shot' to decribe an emerging post-colonial political elite. The mergence of the term is a negative moral evaluation of new social possibilities that have arisen as a consequence of the Big Shots' privileged position within a glo...

  2. Big data and software defined networks

    CERN Document Server

    Taheri, Javid

    2018-01-01

    Big Data Analytics and Software Defined Networking (SDN) are helping to drive the management of data usage of the extraordinary increase of computer processing power provided by Cloud Data Centres (CDCs). This new book investigates areas where Big-Data and SDN can help each other in delivering more efficient services.

  3. Big Data-Survey

    Directory of Open Access Journals (Sweden)

    P.S.G. Aruna Sri

    2016-03-01

    Full Text Available Big data is the term for any gathering of information sets, so expensive and complex, that it gets to be hard to process for utilizing customary information handling applications. The difficulties incorporate investigation, catch, duration, inquiry, sharing, stockpiling, Exchange, perception, and protection infringement. To reduce spot business patterns, anticipate diseases, conflict etc., we require bigger data sets when compared with the smaller data sets. Enormous information is hard to work with utilizing most social database administration frameworks and desktop measurements and perception bundles, needing rather enormously parallel programming running on tens, hundreds, or even a large number of servers. In this paper there was an observation on Hadoop architecture, different tools used for big data and its security issues.

  4. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  5. Big Data Analytics, Infectious Diseases and Associated Ethical Impacts

    OpenAIRE

    Garattini, C.; Raffle, J.; Aisyah, D. N.; Sartain, F.; Kozlakidis, Z.

    2017-01-01

    The exponential accumulation, processing and accrual of big data in healthcare are only possible through an equally rapidly evolving field of big data analytics. The latter offers the capacity to rationalize, understand and use big data to serve many different purposes, from improved services modelling to prediction of treatment outcomes, to greater patient and disease stratification. In the area of infectious diseases, the application of big data analytics has introduced a number of changes ...

  6. Evaluation of Data Management Systems for Geospatial Big Data

    OpenAIRE

    Amirian, Pouria; Basiri, Anahid; Winstanley, Adam C.

    2014-01-01

    Big Data encompasses collection, management, processing and analysis of the huge amount of data that varies in types and changes with high frequency. Often data component of Big Data has a positional component as an important part of it in various forms, such as postal address, Internet Protocol (IP) address and geographical location. If the positional components in Big Data extensively used in storage, retrieval, analysis, processing, visualization and knowledge discovery (geospatial Big Dat...

  7. Cosmological space-times with resolved Big Bang in Yang-Mills matrix models

    Science.gov (United States)

    Steinacker, Harold C.

    2018-02-01

    We present simple solutions of IKKT-type matrix models that can be viewed as quantized homogeneous and isotropic cosmological space-times, with finite density of microstates and a regular Big Bang (BB). The BB arises from a signature change of the effective metric on a fuzzy brane embedded in Lorentzian target space, in the presence of a quantized 4-volume form. The Hubble parameter is singular at the BB, and becomes small at late times. There is no singularity from the target space point of view, and the brane is Euclidean "before" the BB. Both recollapsing and expanding universe solutions are obtained, depending on the mass parameters.

  8. A comparison between wavelet based static and dynamic neural network approaches for runoff prediction

    Science.gov (United States)

    Shoaib, Muhammad; Shamseldin, Asaad Y.; Melville, Bruce W.; Khan, Mudasser Muneer

    2016-04-01

    In order to predict runoff accurately from a rainfall event, the multilayer perceptron type of neural network models are commonly used in hydrology. Furthermore, the wavelet coupled multilayer perceptron neural network (MLPNN) models has also been found superior relative to the simple neural network models which are not coupled with wavelet. However, the MLPNN models are considered as static and memory less networks and lack the ability to examine the temporal dimension of data. Recurrent neural network models, on the other hand, have the ability to learn from the preceding conditions of the system and hence considered as dynamic models. This study for the first time explores the potential of wavelet coupled time lagged recurrent neural network (TLRNN) models for runoff prediction using rainfall data. The Discrete Wavelet Transformation (DWT) is employed in this study to decompose the input rainfall data using six of the most commonly used wavelet functions. The performance of the simple and the wavelet coupled static MLPNN models is compared with their counterpart dynamic TLRNN models. The study found that the dynamic wavelet coupled TLRNN models can be considered as alternative to the static wavelet MLPNN models. The study also investigated the effect of memory depth on the performance of static and dynamic neural network models. The memory depth refers to how much past information (lagged data) is required as it is not known a priori. The db8 wavelet function is found to yield the best results with the static MLPNN models and with the TLRNN models having small memory depths. The performance of the wavelet coupled TLRNN models with large memory depths is found insensitive to the selection of the wavelet function as all wavelet functions have similar performance.

  9. A New Look at Big History

    Science.gov (United States)

    Hawkey, Kate

    2014-01-01

    The article sets out a "big history" which resonates with the priorities of our own time. A globalizing world calls for new spacial scales to underpin what the history curriculum addresses, "big history" calls for new temporal scales, while concern over climate change calls for a new look at subject boundaries. The article…

  10. West Virginia's big trees: setting the record straight

    Science.gov (United States)

    Melissa Thomas-Van Gundy; Robert. Whetsell

    2016-01-01

    People love big trees, people love to find big trees, and people love to find big trees in the place they call home. Having been suspicious for years, my coauthor and historian Rob Whetsell, approached me with a species identification challenge. There are several photographs of giant trees used by many people to illustrate the past forests of West Virginia,...

  11. Correlations in Output and Overflow Traffic Processes in Simple Queues

    Directory of Open Access Journals (Sweden)

    Don McNickle

    2007-01-01

    Full Text Available We consider some simple Markov and Erlang queues with limited storage space. Although the departure processes from some such systems are known to be Poisson, they actually consist of the superposition of two complex correlated processes, the overflow process and the output process. We measure the cross-correlation between the counting processes for these two processes. It turns out that this can be positive, negative, or even zero (without implying independence. The models suggest some general principles on how big these correlations are, and when they are important. This may suggest when renewal or moment approximations to similar processes will be successful, and when they will not.

  12. Sosiaalinen asiakassuhdejohtaminen ja big data

    OpenAIRE

    Toivonen, Topi-Antti

    2015-01-01

    Tässä tutkielmassa käsitellään sosiaalista asiakassuhdejohtamista sekä hyötyjä, joita siihen voidaan saada big datan avulla. Sosiaalinen asiakassuhdejohtaminen on terminä uusi ja monille tuntematon. Tutkimusta motivoi aiheen vähäinen tutkimus, suomenkielisen tutkimuksen puuttuminen kokonaan sekä sosiaalisen asiakassuhdejohtamisen mahdollinen olennainen rooli yritysten toiminnassa tulevaisuudessa. Big dataa käsittelevissä tutkimuksissa keskitytään monesti sen tekniseen puoleen, eikä sovellutuk...

  13. Neural associative memories for the integration of language, vision and action in an autonomous agent.

    Science.gov (United States)

    Markert, H; Kaufmann, U; Kara Kayikci, Z; Palm, G

    2009-03-01

    Language understanding is a long-standing problem in computer science. However, the human brain is capable of processing complex languages with seemingly no difficulties. This paper shows a model for language understanding using biologically plausible neural networks composed of associative memories. The model is able to deal with ambiguities on the single word and grammatical level. The language system is embedded into a robot in order to demonstrate the correct semantical understanding of the input sentences by letting the robot perform corresponding actions. For that purpose, a simple neural action planning system has been combined with neural networks for visual object recognition and visual attention control mechanisms.

  14. Dynamical systems, attractors, and neural circuits.

    Science.gov (United States)

    Miller, Paul

    2016-01-01

    Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

  15. D-branes in a big bang/big crunch universe: Misner space

    International Nuclear Information System (INIS)

    Hikida, Yasuaki; Nayak, Rashmi R.; Panigrahi, Kamal L.

    2005-01-01

    We study D-branes in a two-dimensional lorentzian orbifold R 1,1 /Γ with a discrete boost Γ. This space is known as Misner or Milne space, and includes big crunch/big bang singularity. In this space, there are D0-branes in spiral orbits and D1-branes with or without flux on them. In particular, we observe imaginary parts of partition functions, and interpret them as the rates of open string pair creation for D0-branes and emission of winding closed strings for D1-branes. These phenomena occur due to the time-dependence of the background. Open string 2→2 scattering amplitude on a D1-brane is also computed and found to be less singular than closed string case

  16. D-branes in a big bang/big crunch universe: Misner space

    Energy Technology Data Exchange (ETDEWEB)

    Hikida, Yasuaki [Theory Group, High Energy Accelerator Research Organization (KEK), Tukuba, Ibaraki 305-0801 (Japan); Nayak, Rashmi R. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' , Rome 00133 (Italy); Panigrahi, Kamal L. [Dipartimento di Fisica and INFN, Sezione di Roma 2, ' Tor Vergata' , Rome 00133 (Italy)

    2005-09-01

    We study D-branes in a two-dimensional lorentzian orbifold R{sup 1,1}/{gamma} with a discrete boost {gamma}. This space is known as Misner or Milne space, and includes big crunch/big bang singularity. In this space, there are D0-branes in spiral orbits and D1-branes with or without flux on them. In particular, we observe imaginary parts of partition functions, and interpret them as the rates of open string pair creation for D0-branes and emission of winding closed strings for D1-branes. These phenomena occur due to the time-dependence of the background. Open string 2{yields}2 scattering amplitude on a D1-brane is also computed and found to be less singular than closed string case.

  17. Astroinformatics: the big data of the universe

    OpenAIRE

    Barmby, Pauline

    2016-01-01

    In astrophysics we like to think that our field was the originator of big data, back when it had to be carried around in big sky charts and books full of tables. These days, it's easier to move astrophysics data around, but we still have a lot of it, and upcoming telescope  facilities will generate even more. I discuss how astrophysicists approach big data in general, and give examples from some Western Physics & Astronomy research projects.  I also give an overview of ho...

  18. Recent big flare

    International Nuclear Information System (INIS)

    Moriyama, Fumio; Miyazawa, Masahide; Yamaguchi, Yoshisuke

    1978-01-01

    The features of three big solar flares observed at Tokyo Observatory are described in this paper. The active region, McMath 14943, caused a big flare on September 16, 1977. The flare appeared on both sides of a long dark line which runs along the boundary of the magnetic field. Two-ribbon structure was seen. The electron density of the flare observed at Norikura Corona Observatory was 3 x 10 12 /cc. Several arc lines which connect both bright regions of different magnetic polarity were seen in H-α monochrome image. The active region, McMath 15056, caused a big flare on December 10, 1977. At the beginning, several bright spots were observed in the region between two main solar spots. Then, the area and the brightness increased, and the bright spots became two ribbon-shaped bands. A solar flare was observed on April 8, 1978. At first, several bright spots were seen around the solar spot in the active region, McMath 15221. Then, these bright spots developed to a large bright region. On both sides of a dark line along the magnetic neutral line, bright regions were generated. These developed to a two-ribbon flare. The time required for growth was more than one hour. A bright arc which connects two ribbons was seen, and this arc may be a loop prominence system. (Kato, T.)

  19. Inflated granularity: Spatial “Big Data” and geodemographics

    Directory of Open Access Journals (Sweden)

    Craig M Dalton

    2015-08-01

    Full Text Available Data analytics, particularly the current rhetoric around “Big Data”, tend to be presented as new and innovative, emerging ahistorically to revolutionize modern life. In this article, we situate one branch of Big Data analytics, spatial Big Data, through a historical predecessor, geodemographic analysis, to help develop a critical approach to current data analytics. Spatial Big Data promises an epistemic break in marketing, a leap from targeting geodemographic areas to targeting individuals. Yet it inherits characteristics and problems from geodemographics, including a justification through the market, and a process of commodification through the black-boxing of technology. As researchers develop sustained critiques of data analytics and its effects on everyday life, we must so with a grounding in the cultural and historical contexts from which data technologies emerged. This article and others (Barnes and Wilson, 2014 develop a historically situated, critical approach to spatial Big Data. This history illustrates connections to the critical issues of surveillance, redlining, and the production of consumer subjects and geographies. The shared histories and structural logics of spatial Big Data and geodemographics create the space for a continued critique of data analyses’ role in society.

  20. Big data analysis for smart farming

    NARCIS (Netherlands)

    Kempenaar, C.; Lokhorst, C.; Bleumer, E.J.B.; Veerkamp, R.F.; Been, Th.; Evert, van F.K.; Boogaardt, M.J.; Ge, L.; Wolfert, J.; Verdouw, C.N.; Bekkum, van Michael; Feldbrugge, L.; Verhoosel, Jack P.C.; Waaij, B.D.; Persie, van M.; Noorbergen, H.

    2016-01-01

    In this report we describe results of a one-year TO2 institutes project on the development of big data technologies within the milk production chain. The goal of this project is to ‘create’ an integration platform for big data analysis for smart farming and to develop a show case. This includes both