1991-01-01
Dynamical Bifurcation Theory is concerned with the phenomena that occur in one parameter families of dynamical systems (usually ordinary differential equations), when the parameter is a slowly varying function of time. During the last decade these phenomena were observed and studied by many mathematicians, both pure and applied, from eastern and western countries, using classical and nonstandard analysis. It is the purpose of this book to give an account of these developments. The first paper, by C. Lobry, is an introduction: the reader will find here an explanation of the problems and some easy examples; this paper also explains the role of each of the other paper within the volume and their relationship to one another. CONTENTS: C. Lobry: Dynamic Bifurcations.- T. Erneux, E.L. Reiss, L.J. Holden, M. Georgiou: Slow Passage through Bifurcation and Limit Points. Asymptotic Theory and Applications.- M. Canalis-Durand: Formal Expansion of van der Pol Equation Canard Solutions are Gevrey.- V. Gautheron, E. Isambe...
Unfolding the Riddling Bifurcation
DEFF Research Database (Denmark)
Maistrenko, Yu.; Popovych, O.; Mosekilde, Erik
1999-01-01
We present analytical conditions for the riddling bifurcation in a system of two symmetrically coupled, identical, smooth one-dimensional maps to be soft or hard and describe a generic scenario for the transformations of the basin of attraction following a soft riddling bifurcation.......We present analytical conditions for the riddling bifurcation in a system of two symmetrically coupled, identical, smooth one-dimensional maps to be soft or hard and describe a generic scenario for the transformations of the basin of attraction following a soft riddling bifurcation....
Relative Lyapunov Center Bifurcations
DEFF Research Database (Denmark)
Wulff, Claudia; Schilder, Frank
2014-01-01
Relative equilibria (REs) and relative periodic orbits (RPOs) are ubiquitous in symmetric Hamiltonian systems and occur, for example, in celestial mechanics, molecular dynamics, and rigid body motion. REs are equilibria, and RPOs are periodic orbits of the symmetry reduced system. Relative Lyapunov...... center bifurcations are bifurcations of RPOs from REs corresponding to Lyapunov center bifurcations of the symmetry reduced dynamics. In this paper we first prove a relative Lyapunov center theorem by combining recent results on the persistence of RPOs in Hamiltonian systems with a symmetric Lyapunov...... center theorem of Montaldi, Roberts, and Stewart. We then develop numerical methods for the detection of relative Lyapunov center bifurcations along branches of RPOs and for their computation. We apply our methods to Lagrangian REs of the N-body problem....
Bifurcations of transition states: Morse bifurcations
International Nuclear Information System (INIS)
MacKay, R S; Strub, D C
2014-01-01
A transition state for a Hamiltonian system is a closed, invariant, oriented, codimension-2 submanifold of an energy level that can be spanned by two compact codimension-1 surfaces of unidirectional flux whose union, called a dividing surface, locally separates the energy level into two components and has no local recrossings. For this to happen robustly to all smooth perturbations, the transition state must be normally hyperbolic. The dividing surface then has locally minimal geometric flux through it, giving an upper bound on the rate of transport in either direction. Transition states diffeomorphic to S 2m−3 are known to exist for energies just above any index-1 critical point of a Hamiltonian of m degrees of freedom, with dividing surfaces S 2m−2 . The question addressed here is what qualitative changes in the transition state, and consequently the dividing surface, may occur as the energy or other parameters are varied? We find that there is a class of systems for which the transition state becomes singular and then regains normal hyperbolicity with a change in diffeomorphism class. These are Morse bifurcations. Various examples are considered. Firstly, some simple examples in which transition states connect or disconnect, and the dividing surface may become a torus or other. Then, we show how sequences of Morse bifurcations producing various interesting forms of transition state and dividing surface are present in reacting systems, by considering a hypothetical class of bimolecular reactions in gas phase. (paper)
International Nuclear Information System (INIS)
Olmstead, W.E.; Davis, S.H.; Rosenblat, S.; Kath, W.L.
1986-01-01
A model equation containing a memory integral is posed. The extent of the memory, the relaxation time lambda, controls the bifurcation behavior as the control parameter R is increased. Small (large) lambda gives steady (periodic) bifurcation. There is a double eigenvalue at lambda = lambda 1 , separating purely steady (lambda 1 ) from combined steady/T-periodic (lambda > lambda 1 ) states with T → infinity as lambda → lambda + 1 . Analysis leads to the co-existence of stable steady/periodic states and as R is increased, the periodic states give way to the steady states. Numerical solutions show that this behavior persists away from lambda = lambda 1
Energetics and monsoon bifurcations
Seshadri, Ashwin K.
2017-01-01
Monsoons involve increases in dry static energy (DSE), with primary contributions from increased shortwave radiation and condensation of water vapor, compensated by DSE export via horizontal fluxes in monsoonal circulations. We introduce a simple box-model characterizing evolution of the DSE budget to study nonlinear dynamics of steady-state monsoons. Horizontal fluxes of DSE are stabilizing during monsoons, exporting DSE and hence weakening the monsoonal circulation. By contrast latent heat addition (LHA) due to condensation of water vapor destabilizes, by increasing the DSE budget. These two factors, horizontal DSE fluxes and LHA, are most strongly dependent on the contrast in tropospheric mean temperature between land and ocean. For the steady-state DSE in the box-model to be stable, the DSE flux should depend more strongly on the temperature contrast than LHA; stronger circulation then reduces DSE and thereby restores equilibrium. We present conditions for this to occur. The main focus of the paper is describing conditions for bifurcation behavior of simple models. Previous authors presented a minimal model of abrupt monsoon transitions and argued that such behavior can be related to a positive feedback called the `moisture advection feedback'. However, by accounting for the effect of vertical lapse rate of temperature on the DSE flux, we show that bifurcations are not a generic property of such models despite these fluxes being nonlinear in the temperature contrast. We explain the origin of this behavior and describe conditions for a bifurcation to occur. This is illustrated for the case of the July-mean monsoon over India. The default model with mean parameter estimates does not contain a bifurcation, but the model admits bifurcation as parameters are varied.
Directory of Open Access Journals (Sweden)
Ajith Ananthakrishna Pillai
2012-03-01
Full Text Available Bifurcation percutaneous coronary intervention (PCI is still a difficult call for the interventionist despite advancements in the instrumentation, technical skill and the imaging modalities. With major cardiac events relate to the side-branch (SB compromise, the concept and practice of dedicated bifurcation stents seems exciting. Several designs of such dedicated stents are currently undergoing trials. This novel concept and pristine technology offers new hope notwithstanding the fact that we need to go a long way in widespread acceptance and practice of these gadgets. Some of these designs even though looks enterprising, the mere complex delivering technique and the demanding knowledge of the exact coronary anatomy makes their routine use challenging.
Bifurcation and Nonlinear Oscillations.
1980-09-28
Structural stability and bifurcation theory. pp. 549-560 in Dinamical Systems (Ed. MI. Peixoto), Academic Press, 1973. [211 J. Sotomayor, Generic one...Dynamical Systems Brown University ELECTP" 71, Providence, R. I. 02912 1EC 2 4 1980j //C -*)’ Septabe-4., 1980 / -A + This research was supported in...problems are discussed. The first one deals with the characterization of the flow for a periodic planar system which is the perturbation of an autonomous
Numerical analysis of bifurcations
International Nuclear Information System (INIS)
Guckenheimer, J.
1996-01-01
This paper is a brief survey of numerical methods for computing bifurcations of generic families of dynamical systems. Emphasis is placed upon algorithms that reflect the structure of the underlying mathematical theory while retaining numerical efficiency. Significant improvements in the computational analysis of dynamical systems are to be expected from more reliance of geometric insight coming from dynamical systems theory. copyright 1996 American Institute of Physics
Bubble transport in bifurcations
Bull, Joseph; Qamar, Adnan
2017-11-01
Motivated by a developmental gas embolotherapy technique for cancer treatment, we examine the transport of bubbles entrained in liquid. In gas embolotherapy, infarction of tumors is induced by selectively formed vascular gas bubbles that originate from acoustic vaporization of vascular droplets. In the case of non-functionalized droplets with the objective of vessel occlusion, the bubbles are transported by flow through vessel bifurcations, where they may split prior to eventually reach vessels small enough that they become lodged. This splitting behavior affects the distribution of bubbles and the efficacy of flow occlusion and the treatment. In these studies, we investigated bubble transport in bifurcations using computational and theoretical modeling. The model reproduces the variety of experimentally observed splitting behaviors. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Maximum shear stresses were found to decrease with increasing Reynolds number. The initial bubble length was found to affect the splitting behavior in the presence of gravitational asymmetry. This work was supported by NIH Grant R01EB006476.
International Nuclear Information System (INIS)
Kalkofen, W.
1985-01-01
The assumptions of Ayres' model of the upper solar atmosphere are examined. It is found that the bistable character of his model is postulated - through the assumptions concerning the opacity sources and the effect of mechanical waves, which are allowed to destroy the CO molecules but not to heat the gas. The neglect of cooling by metal lines is based on their reduced local cooling rate, but it ignores the increased depth over which this cooling occurs. Thus, the bifurcated model of the upper solar atmosphere consists of two models, one cold at the temperature minimum, with a kinetic temperature of 2900 K, and the other hot, with a temperature of 4900 K. 8 references
Bifurcations sights, sounds, and mathematics
Matsumoto, Takashi; Kokubu, Hiroshi; Tokunaga, Ryuji
1993-01-01
Bifurcation originally meant "splitting into two parts. " Namely, a system under goes a bifurcation when there is a qualitative change in the behavior of the sys tem. Bifurcation in the context of dynamical systems, where the time evolution of systems are involved, has been the subject of research for many scientists and engineers for the past hundred years simply because bifurcations are interesting. A very good way of understanding bifurcations would be to see them first and study theories second. Another way would be to first comprehend the basic concepts and theories and then see what they look like. In any event, it is best to both observe experiments and understand the theories of bifurcations. This book attempts to provide a general audience with both avenues toward understanding bifurcations. Specifically, (1) A variety of concrete experimental results obtained from electronic circuits are given in Chapter 1. All the circuits are very simple, which is crucial in any experiment. The circuits, howev...
Riddling bifurcation and interstellar journeys
International Nuclear Information System (INIS)
Kapitaniak, Tomasz
2005-01-01
We show that riddling bifurcation which is characteristic for low-dimensional attractors embedded in higher-dimensional phase space can give physical mechanism explaining interstellar journeys described in science-fiction literature
Dynamic bifurcations on financial markets
International Nuclear Information System (INIS)
Kozłowska, M.; Denys, M.; Wiliński, M.; Link, G.; Gubiec, T.; Werner, T.R.; Kutner, R.; Struzik, Z.R.
2016-01-01
We provide evidence that catastrophic bifurcation breakdowns or transitions, preceded by early warning signs such as flickering phenomena, are present on notoriously unpredictable financial markets. For this we construct robust indicators of catastrophic dynamical slowing down and apply these to identify hallmarks of dynamical catastrophic bifurcation transitions. This is done using daily closing index records for the representative examples of financial markets of small and mid to large capitalisations experiencing a speculative bubble induced by the worldwide financial crisis of 2007-08.
Quantitative angiography methods for bifurcation lesions
DEFF Research Database (Denmark)
Collet, Carlos; Onuma, Yoshinobu; Cavalcante, Rafael
2017-01-01
Bifurcation lesions represent one of the most challenging lesion subsets in interventional cardiology. The European Bifurcation Club (EBC) is an academic consortium whose goal has been to assess and recommend the appropriate strategies to manage bifurcation lesions. The quantitative coronary...... angiography (QCA) methods for the evaluation of bifurcation lesions have been subject to extensive research. Single-vessel QCA has been shown to be inaccurate for the assessment of bifurcation lesion dimensions. For this reason, dedicated bifurcation software has been developed and validated. These software...
Pierce instability and bifurcating equilibria
International Nuclear Information System (INIS)
Godfrey, B.B.
1981-01-01
The report investigates the connection between equilibrium bifurcations and occurrence of the Pierce instability. Electrons flowing from one ground plane to a second through an ion background possess a countable infinity of static equilibria, of which only one is uniform and force-free. Degeneracy of the uniform and simplest non-uniform equilibria at a certain ground plan separation marks the onset of the Pierce instability, based on a newly derived dispersion relation appropriate to all the equilibria. For large ground plane separations the uniform equilibrium is unstable and the non-uniform equilibrium is stable, the reverse of their stability properties at small separations. Onset of the Pierce instability at the first bifurcation of equilibria persists in more complicated geometries, providing a general criterion for marginal stability. It seems probable that bifurcation analysis can be a useful tool in the overall study of stable beam generation in diodes and transport in finite cavities
Homoclinic bifurcation in Chua's circuit
Indian Academy of Sciences (India)
spiking and bursting behaviors of neurons. Recent experiments ... a limit cycle increases in a wiggle with alternate sequences of stable and unstable orbits via ... further changes in parameter, the system shows period-adding bifurcation when .... [21–23] transition from limit cycle to single scroll chaos via PD and then to alter-.
Bifurcation scenarios for bubbling transition.
Zimin, Aleksey V; Hunt, Brian R; Ott, Edward
2003-01-01
Dynamical systems with chaos on an invariant submanifold can exhibit a type of behavior called bubbling, whereby a small random or fixed perturbation to the system induces intermittent bursting. The bifurcation to bubbling occurs when a periodic orbit embedded in the chaotic attractor in the invariant manifold becomes unstable to perturbations transverse to the invariant manifold. Generically the periodic orbit can become transversely unstable through a pitchfork, transcritical, period-doubling, or Hopf bifurcation. In this paper a unified treatment of the four types of bubbling bifurcation is presented. Conditions are obtained determining whether the transition to bubbling is soft or hard; that is, whether the maximum burst amplitude varies continuously or discontinuously with variation of the parameter through its critical value. For soft bubbling transitions, the scaling of the maximum burst amplitude with the parameter is derived. For both hard and soft transitions the scaling of the average interburst time with the bifurcation parameter is deduced. Both random (noise) and fixed (mismatch) perturbations are considered. Results of numerical experiments testing our theoretical predictions are presented.
Bifurcation of steady tearing states
International Nuclear Information System (INIS)
Saramito, B.; Maschke, E.K.
1985-10-01
We apply the bifurcation theory for compact operators to the problem of the nonlinear solutions of the 3-dimensional incompressible visco-resistive MHD equations. For the plane plasma slab model we compute branches of nonlinear tearing modes, which are stationary for the range of parameters investigated up to now
Bifurcation in a buoyant horizontal laminar jet
Arakeri, Jaywant H.; Das, Debopam; Srinivasan, J.
2000-06-01
The trajectory of a laminar buoyant jet discharged horizontally has been studied. The experimental observations were based on the injection of pure water into a brine solution. Under certain conditions the jet has been found to undergo bifurcation. The bifurcation of the jet occurs in a limited domain of Grashof number and Reynolds number. The regions in which the bifurcation occurs has been mapped in the Reynolds number Grashof number plane. There are three regions where bifurcation does not occur. The various mechanisms that prevent bifurcation have been proposed.
Bifurcation routes and economic stability
Czech Academy of Sciences Publication Activity Database
Vošvrda, Miloslav
2001-01-01
Roč. 8, č. 14 (2001), s. 43-59 ISSN 1212-074X R&D Projects: GA ČR GA402/00/0439; GA ČR GA402/01/0034; GA ČR GA402/01/0539 Institutional research plan: AV0Z1075907 Keywords : macroeconomic stability * foreign investment phenomenon * the Hopf bifurcation Subject RIV: AH - Economics
Bifurcations of Fibonacci generating functions
Energy Technology Data Exchange (ETDEWEB)
Ozer, Mehmet [Istanbul Kultur University, E5 Karayolu Uzeri Sirinevler, 34191 Istanbul (Turkey) and Semiconductor Physics Institute, LT-01108 and Vilnius Gediminas Technical University, Sauletekio 11, LT-10223 (Lithuania)]. E-mail: m.ozer@iku.edu.tr; Cenys, Antanas [Semiconductor Physics Institute, LT-01108 and Vilnius Gediminas Technical University, Sauletekio 11, LT-10223 (Lithuania); Polatoglu, Yasar [Istanbul Kultur University, E5 Karayolu Uzeri Sirinevler, 34191 Istanbul (Turkey); Hacibekiroglu, Guersel [Istanbul Kultur University, E5 Karayolu Uzeri Sirinevler, 34191 Istanbul (Turkey); Akat, Ercument [Yeditepe University, 26 Agustos Campus Kayisdagi Street, Kayisdagi 81120, Istanbul (Turkey); Valaristos, A. [Aristotle University of Thessaloniki, GR-54124, Thessaloniki (Greece); Anagnostopoulos, A.N. [Aristotle University of Thessaloniki, GR-54124, Thessaloniki (Greece)
2007-08-15
In this work the dynamic behaviour of the one-dimensional family of maps F{sub p,q}(x) = 1/(1 - px - qx {sup 2}) is examined, for specific values of the control parameters p and q. Lyapunov exponents and bifurcation diagrams are numerically calculated. Consequently, a transition from periodic to chaotic regions is observed at values of p and q, where the related maps correspond to Fibonacci generating functions associated with the golden-, the silver- and the bronze mean.
Bifurcations of Fibonacci generating functions
International Nuclear Information System (INIS)
Ozer, Mehmet; Cenys, Antanas; Polatoglu, Yasar; Hacibekiroglu, Guersel; Akat, Ercument; Valaristos, A.; Anagnostopoulos, A.N.
2007-01-01
In this work the dynamic behaviour of the one-dimensional family of maps F p,q (x) = 1/(1 - px - qx 2 ) is examined, for specific values of the control parameters p and q. Lyapunov exponents and bifurcation diagrams are numerically calculated. Consequently, a transition from periodic to chaotic regions is observed at values of p and q, where the related maps correspond to Fibonacci generating functions associated with the golden-, the silver- and the bronze mean
Resonant Homoclinic Flips Bifurcation in Principal Eigendirections
Directory of Open Access Journals (Sweden)
Tiansi Zhang
2013-01-01
Full Text Available A codimension-4 homoclinic bifurcation with one orbit flip and one inclination flip at principal eigenvalue direction resonance is considered. By introducing a local active coordinate system in some small neighborhood of homoclinic orbit, we get the Poincaré return map and the bifurcation equation. A detailed investigation produces the number and the existence of 1-homoclinic orbit, 1-periodic orbit, and double 1-periodic orbits. We also locate their bifurcation surfaces in certain regions.
Bifurcations of optimal vector fields: an overview
Kiseleva, T.; Wagener, F.; Rodellar, J.; Reithmeier, E.
2009-01-01
We develop a bifurcation theory for the solution structure of infinite horizon optimal control problems with one state variable. It turns out that qualitative changes of this structure are connected to local and global bifurcations in the state-costate system. We apply the theory to investigate an
Bifurcation of the spin-wave equations
International Nuclear Information System (INIS)
Cascon, A.; Koiller, J.; Rezende, S.M.
1990-01-01
We study the bifurcations of the spin-wave equations that describe the parametric pumping of collective modes in magnetic media. Mechanisms describing the following dynamical phenomena are proposed: (i) sequential excitation of modes via zero eigenvalue bifurcations; (ii) Hopf bifurcations followed (or not) by Feingenbaum cascades of period doubling; (iii) local and global homoclinic phenomena. Two new organizing center for routes to chaos are identified; in the classification given by Guckenheimer and Holmes [GH], one is a codimension-two local bifurcation, with one pair of imaginary eigenvalues and a zero eigenvalue, to which many dynamical consequences are known; secondly, global homoclinic bifurcations associated to splitting of separatrices, in the limit where the system can be considered a Hamiltonian subjected to weak dissipation and forcing. We outline what further numerical and algebraic work is necessary for the detailed study following this program. (author)
Voltage stability, bifurcation parameters and continuation methods
Energy Technology Data Exchange (ETDEWEB)
Alvarado, F L [Wisconsin Univ., Madison, WI (United States)
1994-12-31
This paper considers the importance of the choice of bifurcation parameter in the determination of the voltage stability limit and the maximum power load ability of a system. When the bifurcation parameter is power demand, the two limits are equivalent. However, when other types of load models and bifurcation parameters are considered, the two concepts differ. The continuation method is considered as a method for determination of voltage stability margins. Three variants of the continuation method are described: the continuation parameter is the bifurcation parameter the continuation parameter is initially the bifurcation parameter, but is free to change, and the continuation parameter is a new `arc length` parameter. Implementations of voltage stability software using continuation methods are described. (author) 23 refs., 9 figs.
Bifurcation and chaos in neural excitable system
International Nuclear Information System (INIS)
Jing Zhujun; Yang Jianping; Feng Wei
2006-01-01
In this paper, we investigate the dynamical behaviors of neural excitable system without periodic external current (proposed by Chialvo [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] and with periodic external current as system's parameters vary. The existence and stability of three fixed points, bifurcation of fixed points, the conditions of existences of fold bifurcation, flip bifurcation and Hopf bifurcation are derived by using bifurcation theory and center manifold theorem. The chaotic existence in the sense of Marotto's definition of chaos is proved. We then give the numerical simulated results (using bifurcation diagrams, computations of Maximum Lyapunov exponent and phase portraits), which not only show the consistence with the analytic results but also display new and interesting dynamical behaviors, including the complete period-doubling and inverse period-doubling bifurcation, symmetry period-doubling bifurcations of period-3 orbit, simultaneous occurrence of two different routes (invariant cycle and period-doubling bifurcations) to chaos for a given bifurcation parameter, sudden disappearance of chaos at one critical point, a great abundance of period windows (period 2 to 10, 12, 19, 20 orbits, and so on) in transient chaotic regions with interior crises, strange chaotic attractors and strange non-chaotic attractor. In particular, the parameter k plays a important role in the system, which can leave the chaotic behavior or the quasi-periodic behavior to period-1 orbit as k varies, and it can be considered as an control strategy of chaos by adjusting the parameter k. Combining the existing results in [Generic excitable dynamics on a two-dimensional map. Chaos, Solitons and Fractals 1995;5(3-4):461-79] with the new results reported in this paper, a more complete description of the system is now obtained
Nonlinear stability control and λ-bifurcation
International Nuclear Information System (INIS)
Erneux, T.; Reiss, E.L.; Magnan, J.F.; Jayakumar, P.K.
1987-01-01
Passive techniques for nonlinear stability control are presented for a model of fluidelastic instability. They employ the phenomena of λ-bifurcation and a generalization of it. λ-bifurcation occurs when a branch of flutter solutions bifurcates supercritically from a basic solution and terminates with an infinite period orbit at a branch of divergence solutions which bifurcates subcritically from the basic solution. The shape of the bifurcation diagram then resembles the greek letter λ. When the system parameters are in the range where flutter occurs by λ-bifurcation, then as the flow velocity increase the flutter amplitude also increases, but the frequencies of the oscillations decrease to zero. This diminishes the damaging effects of structural fatigue by flutter, and permits the flow speed to exceed the critical flutter speed. If generalized λ-bifurcation occurs, then there is a jump transition from the flutter states to a divergence state with a substantially smaller amplitude, when the flow speed is sufficiently larger than the critical flutter speed
Recent perspective on coronary artery bifurcation interventions.
Dash, Debabrata
2014-01-01
Coronary bifurcation lesions are frequent in routine practice, accounting for 15-20% of all lesions undergoing percutaneous coronary intervention (PCI). PCI of this subset of lesions is technically challenging and historically has been associated with lower procedural success rates and worse clinical outcomes compared with non-bifurcation lesions. The introduction of drug-eluting stents has dramatically improved the outcomes. The provisional technique of implanting one stent in the main branch remains the default approach in most bifurcation lesions. Selection of the most effective technique for an individual bifurcation is important. The use of two-stent techniques as an intention to treat is an acceptable approach in some bifurcation lesions. However, a large amount of metal is generally left unapposed in the lumen with complex two-stent techniques, which is particularly concerning for the risk of stent thrombosis. New technology and dedicated bifurcation stents may overcome some of the limitations of two-stent techniques and revolutionise the management of bifurcation PCI in the future.
Quantum entanglement and fixed-point bifurcations
International Nuclear Information System (INIS)
Hines, Andrew P.; McKenzie, Ross H.; Milburn, G.J.
2005-01-01
How does the classical phase-space structure for a composite system relate to the entanglement characteristics of the corresponding quantum system? We demonstrate how the entanglement in nonlinear bipartite systems can be associated with a fixed-point bifurcation in the classical dynamics. Using the example of coupled giant spins we show that when a fixed point undergoes a supercritical pitchfork bifurcation, the corresponding quantum state--the ground state--achieves its maximum amount of entanglement near the critical point. We conjecture that this will be a generic feature of systems whose classical limit exhibits such a bifurcation
A case study in bifurcation theory
Khmou, Youssef
This short paper is focused on the bifurcation theory found in map functions called evolution functions that are used in dynamical systems. The most well-known example of discrete iterative function is the logistic map that puts into evidence bifurcation and chaotic behavior of the topology of the logistic function. We propose a new iterative function based on Lorentizan function and its generalized versions, based on numerical study, it is found that the bifurcation of the Lorentzian function is of second-order where it is characterized by the absence of chaotic region.
Bifurcations of non-smooth systems
Angulo, Fabiola; Olivar, Gerard; Osorio, Gustavo A.; Escobar, Carlos M.; Ferreira, Jocirei D.; Redondo, Johan M.
2012-12-01
Non-smooth systems (namely piecewise-smooth systems) have received much attention in the last decade. Many contributions in this area show that theory and applications (to electronic circuits, mechanical systems, …) are relevant to problems in science and engineering. Specially, new bifurcations have been reported in the literature, and this was the topic of this minisymposium. Thus both bifurcation theory and its applications were included. Several contributions from different fields show that non-smooth bifurcations are a hot topic in research. Thus in this paper the reader can find contributions from electronics, energy markets and population dynamics. Also, a carefully-written specific algebraic software tool is presented.
Bifurcation Control of Chaotic Dynamical Systems
National Research Council Canada - National Science Library
Wang, Hua O; Abed, Eyad H
1992-01-01
A nonlinear system which exhibits bifurcations, transient chaos, and fully developed chaos is considered, with the goal of illustrating the role of two ideas in the control of chaotic dynamical systems...
Bifurcation and instability problems in vortex wakes
DEFF Research Database (Denmark)
Aref, Hassan; Brøns, Morten; Stremler, Mark A.
2007-01-01
A number of instability and bifurcation problems related to the dynamics of vortex wake flows are addressed using various analytical tools and approaches. We discuss the bifurcations of the streamline pattern behind a bluff body as a vortex wake is produced, a theory of the universal Strouhal......-Reynolds number relation for vortex wakes, the bifurcation diagram for "exotic" wake patterns behind an oscillating cylinder first determined experimentally by Williamson & Roshko, and the bifurcations in topology of the streamlines pattern in point vortex streets. The Hamiltonian dynamics of point vortices...... in a periodic strip is considered. The classical results of von Kármán concerning the structure of the vortex street follow from the two-vortices-in-a-strip problem, while the stability results follow largely from a four-vortices-in-a-strip analysis. The three-vortices-in-a-strip problem is argued...
Bifurcation structure of successive torus doubling
International Nuclear Information System (INIS)
Sekikawa, Munehisa; Inaba, Naohiko; Yoshinaga, Tetsuya; Tsubouchi, Takashi
2006-01-01
The authors discuss the 'embryology' of successive torus doubling via the bifurcation theory, and assert that the coupled map of a logistic map and a circle map has a structure capable of generating infinite number of torus doublings
Hopf bifurcation in an Internet congestion control model
International Nuclear Information System (INIS)
Li Chunguang; Chen Guanrong; Liao Xiaofeng; Yu Juebang
2004-01-01
We consider an Internet model with a single link accessed by a single source, which responds to congestion signals from the network, and study bifurcation of such a system. By choosing the gain parameter as a bifurcation parameter, we prove that Hopf bifurcation occurs. The stability of bifurcating periodic solutions and the direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. Finally, a numerical example is given to verify the theoretical analysis
Discretization analysis of bifurcation based nonlinear amplifiers
Feldkord, Sven; Reit, Marco; Mathis, Wolfgang
2017-09-01
Recently, for modeling biological amplification processes, nonlinear amplifiers based on the supercritical Andronov-Hopf bifurcation have been widely analyzed analytically. For technical realizations, digital systems have become the most relevant systems in signal processing applications. The underlying continuous-time systems are transferred to the discrete-time domain using numerical integration methods. Within this contribution, effects on the qualitative behavior of the Andronov-Hopf bifurcation based systems concerning numerical integration methods are analyzed. It is shown exemplarily that explicit Runge-Kutta methods transform the truncated normalform equation of the Andronov-Hopf bifurcation into the normalform equation of the Neimark-Sacker bifurcation. Dependent on the order of the integration method, higher order terms are added during this transformation.A rescaled normalform equation of the Neimark-Sacker bifurcation is introduced that allows a parametric design of a discrete-time system which corresponds to the rescaled Andronov-Hopf system. This system approximates the characteristics of the rescaled Hopf-type amplifier for a large range of parameters. The natural frequency and the peak amplitude are preserved for every set of parameters. The Neimark-Sacker bifurcation based systems avoid large computational effort that would be caused by applying higher order integration methods to the continuous-time normalform equations.
Geometrically Induced Interactions and Bifurcations
Binder, Bernd
2010-01-01
In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.
DEFF Research Database (Denmark)
Behan, Miles W; Holm, Niels Ramsing; Curzen, Nicholas P
2011-01-01
Background— Controversy persists regarding the correct strategy for bifurcation lesions. Therefore, we combined the patient-level data from 2 large trials with similar methodology: the NORDIC Bifurcation Study (NORDIC I) and the British Bifurcation Coronary Study (BBC ONE). Methods and Results— B...
Bifurcation analysis of a three dimensional system
Directory of Open Access Journals (Sweden)
Yongwen WANG
2018-04-01
Full Text Available In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddle-focus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimension-one Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddle-focus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.
Bifurcations of Tumor-Immune Competition Systems with Delay
Directory of Open Access Journals (Sweden)
Ping Bi
2014-01-01
Full Text Available A tumor-immune competition model with delay is considered, which consists of two-dimensional nonlinear differential equation. The conditions for the linear stability of the equilibria are obtained by analyzing the distribution of eigenvalues. General formulas for the direction, period, and stability of the bifurcated periodic solutions are given for codimension one and codimension two bifurcations, including Hopf bifurcation, steady-state bifurcation, and B-T bifurcation. Numerical examples and simulations are given to illustrate the bifurcations analysis and obtained results.
Attractors near grazing–sliding bifurcations
International Nuclear Information System (INIS)
Glendinning, P; Kowalczyk, P; Nordmark, A B
2012-01-01
In this paper we prove, for the first time, that multistability can occur in three-dimensional Fillipov type flows due to grazing–sliding bifurcations. We do this by reducing the study of the dynamics of Filippov type flows around a grazing–sliding bifurcation to the study of appropriately defined one-dimensional maps. In particular, we prove the presence of three qualitatively different types of multiple attractors born in grazing–sliding bifurcations. Namely, a period-two orbit with a sliding segment may coexist with a chaotic attractor, two stable, period-two and period-three orbits with a segment of sliding each may coexist, or a non-sliding and period-three orbit with two sliding segments may coexist
International Nuclear Information System (INIS)
Sushko, Iryna; Agliari, Anna; Gardini, Laura
2006-01-01
We study the structure of the 2D bifurcation diagram for a two-parameter family of piecewise smooth unimodal maps f with one break point. Analysing the parameters of the normal form for the border-collision bifurcation of an attracting n-cycle of the map f, we describe the possible kinds of dynamics associated with such a bifurcation. Emergence and role of border-collision bifurcation curves in the 2D bifurcation plane are studied. Particular attention is paid also to the curves of homoclinic bifurcations giving rise to the band merging of pieces of cyclic chaotic intervals
Bifurcation of Jovian magnetotail current sheet
Directory of Open Access Journals (Sweden)
P. L. Israelevich
2006-07-01
Full Text Available Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer and double-peaked (bifurcated current sheet. Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the Bx-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.
Bifurcation of Jovian magnetotail current sheet
Directory of Open Access Journals (Sweden)
P. L. Israelevich
2006-07-01
Full Text Available Multiple crossings of the magnetotail current sheet by a single spacecraft give the possibility to distinguish between two types of electric current density distribution: single-peaked (Harris type current layer and double-peaked (bifurcated current sheet. Magnetic field measurements in the Jovian magnetic tail by Voyager-2 reveal bifurcation of the tail current sheet. The electric current density possesses a minimum at the point of the B_{x}-component reversal and two maxima at the distance where the magnetic field strength reaches 50% of its value in the tail lobe.
Discretizing the transcritical and pitchfork bifurcations – conjugacy results
Ló czi, Lajos
2015-01-01
© 2015 Taylor & Francis. We present two case studies in one-dimensional dynamics concerning the discretization of transcritical (TC) and pitchfork (PF) bifurcations. In the vicinity of a TC or PF bifurcation point and under some natural assumptions
Bifurcations of a class of singular biological economic models
International Nuclear Information System (INIS)
Zhang Xue; Zhang Qingling; Zhang Yue
2009-01-01
This paper studies systematically a prey-predator singular biological economic model with time delay. It shows that this model exhibits two bifurcation phenomena when the economic profit is zero. One is transcritical bifurcation which changes the stability of the system, and the other is singular induced bifurcation which indicates that zero economic profit brings impulse, i.e., rapid expansion of the population in biological explanation. On the other hand, if the economic profit is positive, at a critical value of bifurcation parameter, the system undergoes a Hopf bifurcation, i.e., the increase of delay destabilizes the system and bifurcates into small amplitude periodic solution. Finally, by using Matlab software, numerical simulations illustrate the effectiveness of the results obtained here. In addition, we study numerically that the system undergoes a saddle-node bifurcation when the bifurcation parameter goes through critical value of positive economic profit.
Bifurcation structure of a model of bursting pancreatic cells
DEFF Research Database (Denmark)
Mosekilde, Erik; Lading, B.; Yanchuk, S.
2001-01-01
One- and two-dimensional bifurcation studies of a prototypic model of bursting oscillations in pancreatic P-cells reveal a squid-formed area of chaotic dynamics in the parameter plane, with period-doubling bifurcations on one side of the arms and saddle-node bifurcations on the other. The transit......One- and two-dimensional bifurcation studies of a prototypic model of bursting oscillations in pancreatic P-cells reveal a squid-formed area of chaotic dynamics in the parameter plane, with period-doubling bifurcations on one side of the arms and saddle-node bifurcations on the other....... The transition from this structure to the so-called period-adding structure is found to involve a subcritical period-doubling bifurcation and the emergence of type-III intermittency. The period-adding transition itself is not smooth but consists of a saddle-node bifurcation in which (n + 1)-spike bursting...
Codimension-2 bifurcations of the Kaldor model of business cycle
International Nuclear Information System (INIS)
Wu, Xiaoqin P.
2011-01-01
Research highlights: → The conditions are given such that the characteristic equation may have purely imaginary roots and double zero roots. → Purely imaginary roots lead us to study Hopf and Bautin bifurcations and to calculate the first and second Lyapunov coefficients. → Double zero roots lead us to study Bogdanov-Takens (BT) bifurcation. → Bifurcation diagrams for Bautin and BT bifurcations are obtained by using the normal form theory. - Abstract: In this paper, complete analysis is presented to study codimension-2 bifurcations for the nonlinear Kaldor model of business cycle. Sufficient conditions are given for the model to demonstrate Bautin and Bogdanov-Takens (BT) bifurcations. By computing the first and second Lyapunov coefficients and performing nonlinear transformation, the normal forms are derived to obtain the bifurcation diagrams such as Hopf, homoclinic and double limit cycle bifurcations. Some examples are given to confirm the theoretical results.
Comments on the Bifurcation Structure of 1D Maps
DEFF Research Database (Denmark)
Belykh, V.N.; Mosekilde, Erik
1997-01-01
-within-a-box structure of the total bifurcation set. This presents a picture in which the homoclinic orbit bifurcations act as a skeleton for the bifurcational set. At the same time, experimental results on continued subharmonic generation for piezoelectrically amplified sound waves, predating the Feigenbaum theory......, are called into attention....
NUMERICAL HOPF BIFURCATION OF DELAY-DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper we consider the numerical solution of some delay differential equations undergoing a Hopf bifurcation. We prove that if the delay differential equations have a Hopf bifurcation point atλ=λ*, then the numerical solution of the equation also has a Hopf bifurcation point atλh =λ* + O(h).
Bifurcation of elastic solids with sliding interfaces
Bigoni, D.; Bordignon, N.; Piccolroaz, A.; Stupkiewicz, S.
2018-01-01
Lubricated sliding contact between soft solids is an interesting topic in biomechanics and for the design of small-scale engineering devices. As a model of this mechanical set-up, two elastic nonlinear solids are considered jointed through a frictionless and bilateral surface, so that continuity of the normal component of the Cauchy traction holds across the surface, but the tangential component is null. Moreover, the displacement can develop only in a way that the bodies in contact do neither detach, nor overlap. Surprisingly, this finite strain problem has not been correctly formulated until now, so this formulation is the objective of the present paper. The incremental equations are shown to be non-trivial and different from previously (and erroneously) employed conditions. In particular, an exclusion condition for bifurcation is derived to show that previous formulations based on frictionless contact or `spring-type' interfacial conditions are not able to predict bifurcations in tension, while experiments-one of which, ad hoc designed, is reported-show that these bifurcations are a reality and become possible when the correct sliding interface model is used. The presented results introduce a methodology for the determination of bifurcations and instabilities occurring during lubricated sliding between soft bodies in contact.
Climate bifurcation during the last deglaciation?
Lenton, T.M.; Livina, V.N.; Dakos, V.; Scheffer, M.
2012-01-01
There were two abrupt warming events during the last deglaciation, at the start of the Bolling-Allerod and at the end of the Younger Dryas, but their underlying dynamics are unclear. Some abrupt climate changes may involve gradual forcing past a bifurcation point, in which a prevailing climate state
Bifurcation structure of an optical ring cavity
DEFF Research Database (Denmark)
Kubstrup, C.; Mosekilde, Erik
1996-01-01
One- and two-dimensional continuation techniques are applied to determine the basic bifurcation structure for an optical ring cavity with a nonlinear absorbing element (the Ikeda Map). By virtue of the periodic structure of the map, families of similar solutions develop in parameter space. Within...
Resource competition: a bifurcation theory approach.
Kooi, B.W.; Dutta, P.S.; Feudel, U.
2013-01-01
We develop a framework for analysing the outcome of resource competition based on bifurcation theory. We elaborate our methodology by readdressing the problem of competition of two species for two resources in a chemostat environment. In the case of perfect-essential resources it has been
Digital subtraction angiography of carotid bifurcation
International Nuclear Information System (INIS)
Vries, A.R. de.
1984-01-01
This study demonstrates the reliability of digital subtraction angiography (DSA) by means of intra- and interobserver investigations as well as indicating the possibility of substituting catheterangiography by DSA in the diagnosis of carotid bifurcation. Whenever insufficient information is obtained from the combination of non-invasive investigation and DSA, a catheterangiogram will be necessary. (Auth.)
Percutaneous coronary intervention for coronary bifurcation disease
DEFF Research Database (Denmark)
Lassen, Jens Flensted; Holm, Niels Ramsing; Banning, Adrian
2016-01-01
of combining the opinions of interventional cardiologists with the opinions of a large variety of other scientists on bifurcation management. The present 11th EBC consensus document represents the summary of the up-to-date EBC consensus and recommendations. It points to the fact that there is a multitude...
Bifurcation of self-folded polygonal bilayers
Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy
2017-09-01
Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.
Modified jailed balloon technique for bifurcation lesions.
Saito, Shigeru; Shishido, Koki; Moriyama, Noriaki; Ochiai, Tomoki; Mizuno, Shingo; Yamanaka, Futoshi; Sugitatsu, Kazuya; Tobita, Kazuki; Matsumi, Junya; Tanaka, Yutaka; Murakami, Masato
2017-12-04
We propose a new systematic approach in bifurcation lesions, modified jailed balloon technique (M-JBT), and report the first clinical experience. Side branch occlusion brings with a serious complication and occurs in more than 7.0% of cases during bifurcation stenting. A jailed balloon (JB) is introduced into the side branch (SB), while a stent is placed in the main branch (MB) as crossing SB. The size of the JB is half of the MB stent size. While the proximal end of JB attaching to MB stent, both stent and JB are simultaneously inflated with same pressure. JB is removed and then guidewires are recrossed. Kissing balloon dilatation (KBD) and/or T and protrusion (TAP) stenting are applied as needed. Between February 2015 and February 2016, 233 patients (254 bifurcation lesions including 54 left main trunk disease) underwent percutaneous coronary intervention (PCI) using this technique. Procedure success was achieved in all cases. KBD was performed for 183 lesions and TAP stenting was employed for 31 lesions. Occlusion of SV was not observed in any of the patients. Bench test confirmed less deformity of MB stent in M-JBT compared with conventional-JBT. This is the first report for clinical experiences by using modified jailed balloon technique. This novel M-JBT is safe and effective in the preservation of SB patency during bifurcation stenting. © 2017 Wiley Periodicals, Inc.
Stochastic bifurcation in a model of love with colored noise
Yue, Xiaokui; Dai, Honghua; Yuan, Jianping
2015-07-01
In this paper, we wish to examine the stochastic bifurcation induced by multiplicative Gaussian colored noise in a dynamical model of love where the random factor is used to describe the complexity and unpredictability of psychological systems. First, the dynamics in deterministic love-triangle model are considered briefly including equilibrium points and their stability, chaotic behaviors and chaotic attractors. Then, the influences of Gaussian colored noise with different parameters are explored such as the phase plots, top Lyapunov exponents, stationary probability density function (PDF) and stochastic bifurcation. The stochastic P-bifurcation through a qualitative change of the stationary PDF will be observed and bifurcation diagram on parameter plane of correlation time and noise intensity is presented to find the bifurcation behaviors in detail. Finally, the top Lyapunov exponent is computed to determine the D-bifurcation when the noise intensity achieves to a critical value. By comparison, we find there is no connection between two kinds of stochastic bifurcation.
Bifurcation Behavior Analysis in a Predator-Prey Model
Directory of Open Access Journals (Sweden)
Nan Wang
2016-01-01
Full Text Available A predator-prey model is studied mathematically and numerically. The aim is to explore how some key factors influence dynamic evolutionary mechanism of steady conversion and bifurcation behavior in predator-prey model. The theoretical works have been pursuing the investigation of the existence and stability of the equilibria, as well as the occurrence of bifurcation behaviors (transcritical bifurcation, saddle-node bifurcation, and Hopf bifurcation, which can deduce a standard parameter controlled relationship and in turn provide a theoretical basis for the numerical simulation. Numerical analysis ensures reliability of the theoretical results and illustrates that three stable equilibria will arise simultaneously in the model. It testifies the existence of Bogdanov-Takens bifurcation, too. It should also be stressed that the dynamic evolutionary mechanism of steady conversion and bifurcation behavior mainly depend on a specific key parameter. In a word, all these results are expected to be of use in the study of the dynamic complexity of ecosystems.
Symmetry breaking bifurcations of a current sheet
International Nuclear Information System (INIS)
Parker, R.D.; Dewar, R.L.; Johnson, J.L.
1990-01-01
Using a time evolution code with periodic boundary conditions, the viscoresistive hydromagnetic equations describing an initially static, planar current sheet with large Lundquist number have been evolved for times long enough to reach a steady state. A cosh 2 x resistivity model was used. For long periodicity lengths L p , the resistivity gradient drives flows that cause forced reconnection at X point current sheets. Using L p as a bifurcation parameter, two new symmetry breaking bifurcations were found: a transition to an asymmetric island chain with nonzero, positive, or negative phase velocity, and a transition to a static state with alternating large and small islands. These states are reached after a complex transient behavior, which involves a competition between secondary current sheet instability and coalescence
Symmetry breaking bifurcations of a current sheet
International Nuclear Information System (INIS)
Parker, R.D.; Dewar, R.L.; Johnson, J.L.
1988-08-01
Using a time evolution code with periodic boundary conditions, the viscoresistive hydromagnetic equations describing an initially static, planar current sheet with large Lundquist number have been evolved for times long enough to reach a steady state. A cosh 2 x resistivity model was used. For long periodicity lengths, L p , the resistivity gradient drives flows which cause forced reconnection at X point current sheets. Using L p as a bifurcation parameter, two new symmetry breaking bifurcations were found - a transition to an asymmetric island chain with nonzero, positive or negative phase velocity, and a transition to a static state with alternating large and small islands. These states are reached after a complex transient behavior which involves a competition between secondary current sheet instability and coalescence. 31 refs., 6 figs
Experimental Study of Flow in a Bifurcation
Fresconi, Frank; Prasad, Ajay
2003-11-01
An instability known as the Dean vortex occurs in curved pipes with a longitudinal pressure gradient. A similar effect is manifest in the flow in a converging or diverging bifurcation, such as those found in the human respiratory airways. The goal of this study is to characterize secondary flows in a bifurcation. Particle image velocimetry (PIV) and laser-induced fluorescence (LIF) experiments were performed in a clear, plastic model. Results show the strength and migration of secondary vortices. Primary velocity features are also presented along with dispersion patterns from dye visualization. Unsteadiness, associated with a hairpin vortex, was also found at higher Re. This work can be used to assess the dispersion of particles in the lung. Medical delivery systems and pollution effect studies would profit from such an understanding.
Bifurcations and chaos of DNA solitonic dynamics
International Nuclear Information System (INIS)
Gonzalez, J.A.; Martin-Landrove, M.; Carbo, J.R.; Chacon, M.
1994-09-01
We investigated the nonlinear DNA torsional equations proposed by Yakushevich in the presence of damping and external torques. Analytical expressions for some solutions are obtained in the case of the isolated chain. Special attention is paid to the stability of the solutions and the range of soliton interaction in the general case. The bifurcation analysis is performed and prediction of chaos is obtained for some set of parameters. Some biological implications are suggested. (author). 11 refs, 13 figs
Torus bifurcations in multilevel converter systems
DEFF Research Database (Denmark)
Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Yanochkina, Olga O.
2011-01-01
embedded one into the other and with their basins of attraction delineated by intervening repelling tori. The paper illustrates the coexistence of three stable tori with different resonance behaviors and shows how reconstruction of these tori takes place across the borders of different dynamical regimes....... The paper also demonstrates how pairs of attracting and repelling tori emerge through border-collision torus-birth and border-collision torus-fold bifurcations. © 2011 World Scientific Publishing Company....
Perturbed period-doubling bifurcation. I. Theory
DEFF Research Database (Denmark)
Svensmark, Henrik; Samuelsen, Mogens Rugholm
1990-01-01
-defined way that is a function of the amplitude and the frequency of the signal. New scaling laws between the amplitude of the signal and the detuning δ are found; these scaling laws apply to a variety of quantities, e.g., to the shift of the bifurcation point. It is also found that the stability...... of a microwave-driven Josephson junction confirm the theory. Results should be of interest in parametric-amplification studies....
Sex differences in intracranial arterial bifurcations
DEFF Research Database (Denmark)
Lindekleiv, Haakon M; Valen-Sendstad, Kristian; Morgan, Michael K
2010-01-01
Subarachnoid hemorrhage (SAH) is a serious condition, occurring more frequently in females than in males. SAH is mainly caused by rupture of an intracranial aneurysm, which is formed by localized dilation of the intracranial arterial vessel wall, usually at the apex of the arterial bifurcation. T....... The female preponderance is usually explained by systemic factors (hormonal influences and intrinsic wall weakness); however, the uneven sex distribution of intracranial aneurysms suggests a possible physiologic factor-a local sex difference in the intracranial arteries....
Drift bifurcation detection for dissipative solitons
International Nuclear Information System (INIS)
Liehr, A W; Boedeker, H U; Roettger, M C; Frank, T D; Friedrich, R; Purwins, H-G
2003-01-01
We report on the experimental detection of a drift bifurcation for dissipative solitons, which we observe in the form of current filaments in a planar semiconductor-gas-discharge system. By introducing a new stochastic data analysis technique we find that due to a change of system parameters the dissipative solitons undergo a transition from purely noise-driven objects with Brownian motion to particles with a dynamically stabilized finite velocity
Energized Oxygen : Speiser Current Sheet Bifurcation
George, D. E.; Jahn, J. M.
2017-12-01
A single population of energized Oxygen (O+) is shown to produce a cross-tail bifurcated current sheet in 2.5D PIC simulations of the magnetotail without the influence of magnetic reconnection. Treatment of oxygen in simulations of space plasmas, specifically a magnetotail current sheet, has been limited to thermal energies despite observations of and mechanisms which explain energized ions. We performed simulations of a homogeneous oxygen background, that has been energized in a physically appropriate manner, to study the behavior of current sheets and magnetic reconnection, specifically their bifurcation. This work uses a 2.5D explicit Particle-In-a-Cell (PIC) code to investigate the dynamics of energized heavy ions as they stream Dawn-to-Dusk in the magnetotail current sheet. We present a simulation study dealing with the response of a current sheet system to energized oxygen ions. We establish a, well known and studied, 2-species GEM Challenge Harris current sheet as a starting point. This system is known to eventually evolve and produce magnetic reconnection upon thinning of the current sheet. We added a uniform distribution of thermal O+ to the background. This 3-species system is also known to eventually evolve and produce magnetic reconnection. We add one additional variable to the system by providing an initial duskward velocity to energize the O+. We also traced individual particle motion within the PIC simulation. Three main results are shown. First, energized dawn- dusk streaming ions are clearly seen to exhibit sustained Speiser motion. Second, a single population of heavy ions clearly produces a stable bifurcated current sheet. Third, magnetic reconnection is not required to produce the bifurcated current sheet. Finally a bifurcated current sheet is compatible with the Harris current sheet model. This work is the first step in a series of investigations aimed at studying the effects of energized heavy ions on magnetic reconnection. This work differs
Global Bifurcation of a Novel Computer Virus Propagation Model
Directory of Open Access Journals (Sweden)
Jianguo Ren
2014-01-01
Full Text Available In a recent paper by J. Ren et al. (2012, a novel computer virus propagation model under the effect of the antivirus ability in a real network is established. The analysis there only partially uncovers the dynamics behaviors of virus spread over the network in the case where around bifurcation is local. In the present paper, by mathematical analysis, it is further shown that, under appropriate parameter values, the model may undergo a global B-T bifurcation, and the curves of saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation are obtained to illustrate the qualitative behaviors of virus propagation. On this basis, a collection of policies is recommended to prohibit the virus prevalence. To our knowledge, this is the first time the global bifurcation has been explored for the computer virus propagation. Theoretical results and corresponding suggestions may help us suppress or eliminate virus propagation in the network.
Bifurcation theory for finitely smooth planar autonomous differential systems
Han, Maoan; Sheng, Lijuan; Zhang, Xiang
2018-03-01
In this paper we establish bifurcation theory of limit cycles for planar Ck smooth autonomous differential systems, with k ∈ N. The key point is to study the smoothness of bifurcation functions which are basic and important tool on the study of Hopf bifurcation at a fine focus or a center, and of Poincaré bifurcation in a period annulus. We especially study the smoothness of the first order Melnikov function in degenerate Hopf bifurcation at an elementary center. As we know, the smoothness problem was solved for analytic and C∞ differential systems, but it was not tackled for finitely smooth differential systems. Here, we present their optimal regularity of these bifurcation functions and their asymptotic expressions in the finite smooth case.
Bifurcation structure of a model of bursting pancreatic cells
DEFF Research Database (Denmark)
Mosekilde, Erik; Lading, B.; Yanchuk, S.
2001-01-01
. The transition from this structure to the so-called period-adding structure is found to involve a subcritical period-doubling bifurcation and the emergence of type-III intermittency. The period-adding transition itself is not smooth but consists of a saddle-node bifurcation in which (n + 1)-spike bursting...... behavior is born, slightly overlapping with a subcritical period-doubling bifurcation in which n-spike bursting behavior loses its stability.......One- and two-dimensional bifurcation studies of a prototypic model of bursting oscillations in pancreatic P-cells reveal a squid-formed area of chaotic dynamics in the parameter plane, with period-doubling bifurcations on one side of the arms and saddle-node bifurcations on the other...
Nonlinear physical systems spectral analysis, stability and bifurcations
Kirillov, Oleg N
2013-01-01
Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam
Stability and bifurcation analysis in a delayed SIR model
International Nuclear Information System (INIS)
Jiang Zhichao; Wei Junjie
2008-01-01
In this paper, a time-delayed SIR model with a nonlinear incidence rate is considered. The existence of Hopf bifurcations at the endemic equilibrium is established by analyzing the distribution of the characteristic values. A explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form and the center manifold theory. Numerical simulations to support the analytical conclusions are carried out
Bifurcation of rupture path by linear and cubic damping force
Dennis L. C., C.; Chew X., Y.; Lee Y., C.
2014-06-01
Bifurcation of rupture path is studied for the effect of linear and cubic damping. Momentum equation with Rayleigh factor was transformed into ordinary differential form. Bernoulli differential equation was obtained and solved by the separation of variables. Analytical or exact solutions yielded the bifurcation was visible at imaginary part when the wave was non dispersive. For the dispersive wave, bifurcation of rupture path was invisible.
A codimension two bifurcation in a railway bogie system
DEFF Research Database (Denmark)
Zhang, Tingting; True, Hans; Dai, Huanyun
2017-01-01
In this paper, a comprehensive analysis is presented to investigate a codimension two bifurcation that exists in a nonlinear railway bogie dynamic system combining theoretical analysis with numerical investigation. By using the running velocity V and the primary longitudinal stiffness (Formula...... coexist in a range of the bifurcation parameters which can lead to jumps in the lateral oscillation amplitude of the railway bogie system. Furthermore, reduce the values of the bifurcation parameters gradually. Firstly, the supercritical Hopf bifurcation turns into a subcritical one with multiple limit...
Hopf bifurcation for tumor-immune competition systems with delay
Directory of Open Access Journals (Sweden)
Ping Bi
2014-01-01
Full Text Available In this article, a immune response system with delay is considered, which consists of two-dimensional nonlinear differential equations. The main purpose of this paper is to explore the Hopf bifurcation of a immune response system with delay. The general formula of the direction, the estimation formula of period and stability of bifurcated periodic solution are also given. Especially, the conditions of the global existence of periodic solutions bifurcating from Hopf bifurcations are given. Numerical simulations are carried out to illustrate the the theoretical analysis and the obtained results.
Predicting bifurcation angle effect on blood flow in the microvasculature.
Yang, Jiho; Pak, Y Eugene; Lee, Tae-Rin
2016-11-01
Since blood viscosity is a basic parameter for understanding hemodynamics in human physiology, great amount of research has been done in order to accurately predict this highly non-Newtonian flow property. However, previous works lacked in consideration of hemodynamic changes induced by heterogeneous vessel networks. In this paper, the effect of bifurcation on hemodynamics in a microvasculature is quantitatively predicted. The flow resistance in a single bifurcation microvessel was calculated by combining a new simple mathematical model with 3-dimensional flow simulation for varying bifurcation angles under physiological flow conditions. Interestingly, the results indicate that flow resistance induced by vessel bifurcation holds a constant value of approximately 0.44 over the whole single bifurcation model below diameter of 60μm regardless of geometric parameters including bifurcation angle. Flow solutions computed from this new model showed substantial decrement in flow velocity relative to other mathematical models, which do not include vessel bifurcation effects, while pressure remained the same. Furthermore, when applying the bifurcation angle effect to the entire microvascular network, the simulation results gave better agreements with recent in vivo experimental measurements. This finding suggests a new paradigm in microvascular blood flow properties, that vessel bifurcation itself, regardless of its angle, holds considerable influence on blood viscosity, and this phenomenon will help to develop new predictive tools in microvascular research. Copyright © 2016 Elsevier Inc. All rights reserved.
Double Hopf bifurcation in delay differential equations
Directory of Open Access Journals (Sweden)
Redouane Qesmi
2014-07-01
Full Text Available The paper addresses the computation of elements of double Hopf bifurcation for retarded functional differential equations (FDEs with parameters. We present an efficient method for computing, simultaneously, the coefficients of center manifolds and normal forms, in terms of the original FDEs, associated with the double Hopf singularity up to an arbitrary order. Finally, we apply our results to a nonlinear model with periodic delay. This shows the applicability of the methodology in the study of delay models arising in either natural or technological problems.
Bifurcation theory for toroidal MHD instabilities
International Nuclear Information System (INIS)
Maschke, E.K.; Morros Tosas, J.; Urquijo, G.
1992-01-01
Using a general representation of magneto-hydrodynamics in terms of stream functions and potentials, proposed earlier, a set of reduced MHD equations for the case of toroidal geometry had been derived by an appropriate ordering with respect to the inverse aspect ratio. When all dissipative terms are neglected in this reduced system, it has the same linear stability limits as the full ideal MHD equations, to the order considered. When including resistivity, thermal conductivity and viscosity, we can apply bifurcation theory to investigate nonlinear stationary solution branches related to various instabilities. In particular, we show that a stationary solution of the internal kink type can be found
Spijkerboer, T.P.
2017-01-01
The externalization of European migration policy has resulted in a bifurcation of global human mobility, which is divided along a North/South axis. In two judgments, the EU Court of Justice was confronted with cases challenging the exclusion of Syrian refugees from Europe. These cases concern core
Bifurcation into functional niches in adaptation.
White, Justin S; Adami, Christoph
2004-01-01
One of the central questions in evolutionary biology concerns the dynamics of adaptation and diversification. This issue can be addressed experimentally if replicate populations adapting to identical environments can be investigated in detail. We have studied 501 such replicas using digital organisms adapting to at least two fundamentally different functional niches (survival strategies) present in the same environment: one in which fast replication is the way to live, and another where exploitation of the environment's complexity leads to complex organisms with longer life spans and smaller replication rates. While these two modes of survival are closely analogous to those expected to emerge in so-called r and K selection scenarios respectively, the bifurcation of evolutionary histories according to these functional niches occurs in identical environments, under identical selective pressures. We find that the branching occurs early, and leads to drastic phenotypic differences (in fitness, sequence length, and gestation time) that are permanent and irreversible. This study confirms an earlier experimental effort using microorganisms, in that diversification can be understood at least in part in terms of bifurcations on saddle points leading to peak shifts, as in the picture drawn by Sewall Wright.
Bifurcation theory of ac electric arcing
International Nuclear Information System (INIS)
Christen, Thomas; Peinke, Emanuel
2012-01-01
The performance of alternating current (ac) electric arcing devices is related to arc extinction or its re-ignition at zero crossings of the current (so-called ‘current zero’, CZ). Theoretical investigations thus usually focus on the transient behaviour of arcs near CZ, e.g. by solving the modelling differential equations in the vicinity of CZ. This paper proposes as an alternative approach to investigate global mathematical properties of the underlying periodically driven dynamic system describing the electric circuit containing the arcing device. For instance, the uniqueness of the trivial solution associated with the insulating state indicates the extinction of any arc. The existence of non-trivial attractors (typically a time-periodic state) points to a re-ignition of certain arcs. The performance regions of arcing devices, such as circuit breakers and arc torches, can thus be identified with the regions of absence and existence, respectively, of non-trivial attractors. Most important for applications, the boundary of a performance region in the model parameter space is then associated with the bifurcation of the non-trivial attractors. The concept is illustrated for simple black-box arc models, such as the Mayr and the Cassie model, by calculating for various cases the performance boundaries associated with the bifurcation of ac arcs. (paper)
Analysis of Vehicle Steering and Driving Bifurcation Characteristics
Directory of Open Access Journals (Sweden)
Xianbin Wang
2015-01-01
Full Text Available The typical method of vehicle steering bifurcation analysis is based on the nonlinear autonomous vehicle model deriving from the classic two degrees of freedom (2DOF linear vehicle model. This method usually neglects the driving effect on steering bifurcation characteristics. However, in the steering and driving combined conditions, the tyre under different driving conditions can provide different lateral force. The steering bifurcation mechanism without the driving effect is not able to fully reveal the vehicle steering and driving bifurcation characteristics. Aiming at the aforementioned problem, this paper analyzed the vehicle steering and driving bifurcation characteristics with the consideration of driving effect. Based on the 5DOF vehicle system dynamics model with the consideration of driving effect, the 7DOF autonomous system model was established. The vehicle steering and driving bifurcation dynamic characteristics were analyzed with different driving mode and driving torque. Taking the front-wheel-drive system as an example, the dynamic evolution process of steering and driving bifurcation was analyzed by phase space, system state variables, power spectral density, and Lyapunov index. The numerical recognition results of chaos were also provided. The research results show that the driving mode and driving torque have the obvious effect on steering and driving bifurcation characteristics.
Sediment discharge division at two tidally influenced river bifurcations
Sassi, M.G.; Hoitink, A.J.F.; Vermeulen, B.; Hidayat, H.
2013-01-01
[1] We characterize and quantify the sediment discharge division at two tidally influenced river bifurcations in response to mean flow and secondary circulation by employing a boat-mounted acoustic Doppler current profiler (ADCP), to survey transects at bifurcating branches during a semidiurnal
Views on the Hopf bifurcation with respect to voltage instabilities
Energy Technology Data Exchange (ETDEWEB)
Roa-Sepulveda, C A [Universidad de Concepcion, Concepcion (Chile). Dept. de Ingenieria Electrica; Knight, U G [Imperial Coll. of Science and Technology, London (United Kingdom). Dept. of Electrical and Electronic Engineering
1994-12-31
This paper presents a sensitivity study of the Hopf bifurcation phenomenon which can in theory appear in power systems, with reference to the dynamics of the process and the impact of demand characteristics. Conclusions are drawn regarding power levels at which these bifurcations could appear and concern the concept of the imaginary axis as a `hard` limit eigenvalue analyses. (author) 20 refs., 31 figs.
Bifurcations of heterodimensional cycles with two saddle points
Energy Technology Data Exchange (ETDEWEB)
Geng Fengjie [School of Information Technology, China University of Geosciences (Beijing), Beijing 100083 (China)], E-mail: gengfengjie_hbu@163.com; Zhu Deming [Department of Mathematics, East China Normal University, Shanghai 200062 (China)], E-mail: dmzhu@math.ecnu.edu.cn; Xu Yancong [Department of Mathematics, East China Normal University, Shanghai 200062 (China)], E-mail: yancongx@163.com
2009-03-15
The bifurcations of 2-point heterodimensional cycles are investigated in this paper. Under some generic conditions, we establish the existence of one homoclinic loop, one periodic orbit, two periodic orbits, one 2-fold periodic orbit, and the coexistence of one periodic orbit and heteroclinic loop. Some bifurcation patterns different to the case of non-heterodimensional heteroclinic cycles are revealed.
Numerical bifurcation analysis of a class of nonlinear renewal equations
Breda, Dimitri; Diekmann, Odo; Liessi, Davide; Scarabel, Francesca
2016-01-01
We show, by way of an example, that numerical bifurcation tools for ODE yield reliable bifurcation diagrams when applied to the pseudospectral approximation of a one-parameter family of nonlinear renewal equations. The example resembles logistic-and Ricker-type population equations and exhibits
Travelling waves and their bifurcations in the Lorenz-96 model
van Kekem, Dirk L.; Sterk, Alef E.
2018-03-01
In this paper we study the dynamics of the monoscale Lorenz-96 model using both analytical and numerical means. The bifurcations for positive forcing parameter F are investigated. The main analytical result is the existence of Hopf or Hopf-Hopf bifurcations in any dimension n ≥ 4. Exploiting the circulant structure of the Jacobian matrix enables us to reduce the first Lyapunov coefficient to an explicit formula from which it can be determined when the Hopf bifurcation is sub- or supercritical. The first Hopf bifurcation for F > 0 is always supercritical and the periodic orbit born at this bifurcation has the physical interpretation of a travelling wave. Furthermore, by unfolding the codimension two Hopf-Hopf bifurcation it is shown to act as an organising centre, explaining dynamics such as quasi-periodic attractors and multistability, which are observed in the original Lorenz-96 model. Finally, the region of parameter values beyond the first Hopf bifurcation value is investigated numerically and routes to chaos are described using bifurcation diagrams and Lyapunov exponents. The observed routes to chaos are various but without clear pattern as n → ∞.
Bifurcations of heterodimensional cycles with two saddle points
International Nuclear Information System (INIS)
Geng Fengjie; Zhu Deming; Xu Yancong
2009-01-01
The bifurcations of 2-point heterodimensional cycles are investigated in this paper. Under some generic conditions, we establish the existence of one homoclinic loop, one periodic orbit, two periodic orbits, one 2-fold periodic orbit, and the coexistence of one periodic orbit and heteroclinic loop. Some bifurcation patterns different to the case of non-heterodimensional heteroclinic cycles are revealed.
Bifurcation diagram of a cubic three-parameter autonomous system
Directory of Open Access Journals (Sweden)
Lenka Barakova
2005-07-01
Full Text Available In this paper, we study the cubic three-parameter autonomous planar system $$displaylines{ dot x_1 = k_1 + k_2x_1 - x_1^3 - x_2,cr dot x_2 = k_3 x_1 - x_2, }$$ where $k_2, k_3$ are greater than 0. Our goal is to obtain a bifurcation diagram; i.e., to divide the parameter space into regions within which the system has topologically equivalent phase portraits and to describe how these portraits are transformed at the bifurcation boundaries. Results may be applied to the macroeconomical model IS-LM with Kaldor's assumptions. In this model existence of a stable limit cycles has already been studied (Andronov-Hopf bifurcation. We present the whole bifurcation diagram and among others, we prove existence of more difficult bifurcations and existence of unstable cycles.
Critical bifurcation surfaces of 3D discrete dynamics
Directory of Open Access Journals (Sweden)
Michael Sonis
2000-01-01
Full Text Available This paper deals with the analytical representation of bifurcations of each 3D discrete dynamics depending on the set of bifurcation parameters. The procedure of bifurcation analysis proposed in this paper represents the 3D elaboration and specification of the general algorithm of the n-dimensional linear bifurcation analysis proposed by the author earlier. It is proven that 3D domain of asymptotic stability (attraction of the fixed point for a given 3D discrete dynamics is bounded by three critical bifurcation surfaces: the divergence, flip and flutter surfaces. The analytical construction of these surfaces is achieved with the help of classical Routh–Hurvitz conditions of asymptotic stability. As an application the adjustment process proposed by T. Puu for the Cournot oligopoly model is considered in detail.
Bifurcation of transition paths induced by coupled bistable systems.
Tian, Chengzhe; Mitarai, Namiko
2016-06-07
We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the example system that, if the steady states of individual gene circuits are not changed by the coupling, the bifurcation pattern is not dependent on the number of gene circuits. We further show that the transition rate exponentially decreases with the number of gene circuits when the transition path does not bifurcate, while a bifurcation facilitates the transition by lowering the quasi-potential energy barrier.
Hopf Bifurcation of Compound Stochastic van der Pol System
Directory of Open Access Journals (Sweden)
Shaojuan Ma
2016-01-01
Full Text Available Hopf bifurcation analysis for compound stochastic van der Pol system with a bound random parameter and Gaussian white noise is investigated in this paper. By the Karhunen-Loeve (K-L expansion and the orthogonal polynomial approximation, the equivalent deterministic van der Pol system can be deduced. Based on the bifurcation theory of nonlinear deterministic system, the critical value of bifurcation parameter is obtained and the influence of random strength δ and noise intensity σ on stochastic Hopf bifurcation in compound stochastic system is discussed. At last we found that increased δ can relocate the critical value of bifurcation parameter forward while increased σ makes it backward and the influence of δ is more sensitive than σ. The results are verified by numerical simulations.
Bifurcation of solutions to Hamiltonian boundary value problems
McLachlan, R. I.; Offen, C.
2018-06-01
A bifurcation is a qualitative change in a family of solutions to an equation produced by varying parameters. In contrast to the local bifurcations of dynamical systems that are often related to a change in the number or stability of equilibria, bifurcations of boundary value problems are global in nature and may not be related to any obvious change in dynamical behaviour. Catastrophe theory is a well-developed framework which studies the bifurcations of critical points of functions. In this paper we study the bifurcations of solutions of boundary-value problems for symplectic maps, using the language of (finite-dimensional) singularity theory. We associate certain such problems with a geometric picture involving the intersection of Lagrangian submanifolds, and hence with the critical points of a suitable generating function. Within this framework, we then study the effect of three special cases: (i) some common boundary conditions, such as Dirichlet boundary conditions for second-order systems, restrict the possible types of bifurcations (for example, in generic planar systems only the A-series beginning with folds and cusps can occur); (ii) integrable systems, such as planar Hamiltonian systems, can exhibit a novel periodic pitchfork bifurcation; and (iii) systems with Hamiltonian symmetries or reversing symmetries can exhibit restricted bifurcations associated with the symmetry. This approach offers an alternative to the analysis of critical points in function spaces, typically used in the study of bifurcation of variational problems, and opens the way to the detection of more exotic bifurcations than the simple folds and cusps that are often found in examples.
Climate bifurcation during the last deglaciation?
Directory of Open Access Journals (Sweden)
T. M. Lenton
2012-07-01
Full Text Available There were two abrupt warming events during the last deglaciation, at the start of the Bølling-Allerød and at the end of the Younger Dryas, but their underlying dynamics are unclear. Some abrupt climate changes may involve gradual forcing past a bifurcation point, in which a prevailing climate state loses its stability and the climate tips into an alternative state, providing an early warning signal in the form of slowing responses to perturbations, which may be accompanied by increasing variability. Alternatively, short-term stochastic variability in the climate system can trigger abrupt climate changes, without early warning. Previous work has found signals consistent with slowing down during the last deglaciation as a whole, and during the Younger Dryas, but with conflicting results in the run-up to the Bølling-Allerød. Based on this, we hypothesise that a bifurcation point was approached at the end of the Younger Dryas, in which the cold climate state, with weak Atlantic overturning circulation, lost its stability, and the climate tipped irreversibly into a warm interglacial state. To test the bifurcation hypothesis, we analysed two different climate proxies in three Greenland ice cores, from the Last Glacial Maximum to the end of the Younger Dryas. Prior to the Bølling warming, there was a robust increase in climate variability but no consistent slowing down signal, suggesting this abrupt change was probably triggered by a stochastic fluctuation. The transition to the warm Bølling-Allerød state was accompanied by a slowing down in climate dynamics and an increase in climate variability. We suggest that the Bølling warming excited an internal mode of variability in Atlantic meridional overturning circulation strength, causing multi-centennial climate fluctuations. However, the return to the Younger Dryas cold state increased climate stability. We find no consistent evidence for slowing down during the Younger Dryas, or in a longer
Bifurcations and Patterns in Nonlinear Dissipative Systems
Energy Technology Data Exchange (ETDEWEB)
Guenter Ahlers
2005-05-27
This project consists of experimental investigations of heat transport, pattern formation, and bifurcation phenomena in non-linear non-equilibrium fluid-mechanical systems. These issues are studies in Rayleigh-B\\'enard convection, using both pure and multicomponent fluids. They are of fundamental scientific interest, but also play an important role in engineering, materials science, ecology, meteorology, geophysics, and astrophysics. For instance, various forms of convection are important in such diverse phenomena as crystal growth from a melt with or without impurities, energy production in solar ponds, flow in the earth's mantle and outer core, geo-thermal stratifications, and various oceanographic and atmospheric phenomena. Our work utilizes computer-enhanced shadowgraph imaging of flow patterns, sophisticated digital image analysis, and high-resolution heat transport measurements.
The bifurcations of nearly flat origami
Santangelo, Christian
Self-folding origami structures provide one means of fabricating complex, three-dimensional structures from a flat, two-dimensional sheet. Self-folding origami structures have been fabricated on scales ranging from macroscopic to microscopic and can have quite complicated structures with hundreds of folds arranged in complex patterns. I will describe our efforts to understand the mechanics and energetics of self-folding origami structures. Though the dimension of the configuration space of an origami structure scales with the size of the boundary and not with the number of vertices in the interior of the structure, a typical origami structure is also floppy in the sense that there are many possible ways to assign fold angles consistently. I will discuss our theoretical progress in understanding the geometry of the configuration space of origami. For random origami, the number of possible bifurcations grows surprisingly quickly even when the dimension of the configuration space is small. EFRI ODISSEI-1240441, DMR-0846582.
Transport Bifurcation in a Rotating Tokamak Plasma
International Nuclear Information System (INIS)
Highcock, E. G.; Barnes, M.; Schekochihin, A. A.; Parra, F. I.; Roach, C. M.; Cowley, S. C.
2010-01-01
The effect of flow shear on turbulent transport in tokamaks is studied numerically in the experimentally relevant limit of zero magnetic shear. It is found that the plasma is linearly stable for all nonzero flow shear values, but that subcritical turbulence can be sustained nonlinearly at a wide range of temperature gradients. Flow shear increases the nonlinear temperature gradient threshold for turbulence but also increases the sensitivity of the heat flux to changes in the temperature gradient, except over a small range near the threshold where the sensitivity is decreased. A bifurcation in the equilibrium gradients is found: for a given input of heat, it is possible, by varying the applied torque, to trigger a transition to significantly higher temperature and flow gradients.
Bifurcated SEN with Fluid Flow Conditioners
Directory of Open Access Journals (Sweden)
F. Rivera-Perez
2014-01-01
Full Text Available This work evaluates the performance of a novel design for a bifurcated submerged entry nozzle (SEN used for the continuous casting of steel slabs. The proposed design incorporates fluid flow conditioners attached on SEN external wall. The fluid flow conditioners impose a pseudosymmetric pattern in the upper zone of the mold by inhibiting the fluid exchange between the zones created by conditioners. The performance of the SEN with fluid flow conditioners is analyzed through numerical simulations using the CFD technique. Numerical results were validated by means of physical simulations conducted on a scaled cold water model. Numerical and physical simulations confirmed that the performance of the proposed SEN is superior to a traditional one. Fluid flow conditioners reduce the liquid free surface fluctuations and minimize the occurrence of vortexes at the free surface.
Oscillatory bifurcation for semilinear ordinary differential equations
Directory of Open Access Journals (Sweden)
Tetsutaro Shibata
2016-06-01
\\] where $f(u = u + (1/2\\sin^k u$ ($k \\ge 2$ and $\\lambda > 0$ is a bifurcation parameter. It is known that $\\lambda$ is parameterized by the maximum norm $\\alpha = \\Vert u_\\lambda\\Vert_\\infty$ of the solution $u_\\lambda$ associated with $\\lambda$ and is written as $\\lambda = \\lambda(k,\\alpha$. When we focus on the asymptotic behavior of $\\lambda(k,\\alpha$ as $\\alpha \\to \\infty$, it is natural to expect that $\\lambda(k, \\alpha \\to \\pi^2/4$, and its convergence rate is common to $k$. Contrary to this expectation, we show that $\\lambda(2n_1+1,\\alpha$ tends to $\\pi^2/4$ faster than $\\lambda(2n_2,\\alpha$ as $\\alpha \\to \\infty$, where $n_1\\ge 1,\\ n_2 \\ge 1$ are arbitrary given integers.
Equilibrium-torus bifurcation in nonsmooth systems
DEFF Research Database (Denmark)
Zhusubahyev, Z.T.; Mosekilde, Erik
2008-01-01
Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium...... point. We obtain the chart of dynamic modes and show that there is a region of parameter space in which the system has a single stable node equilibrium point. Under variation of the parameters, this equilibrium may disappear as it collides with a discontinuity boundary between two smooth regions...... in the phase space. The disappearance of the equilibrium point is accompanied by the soft appearance of an unstable focus period-1 orbit surrounded by a resonant or ergodic torus. Detailed numerical calculations are supported by a theoretical investigation of the normal form map that represents the piecewise...
Clausius entropy for arbitrary bifurcate null surfaces
International Nuclear Information System (INIS)
Baccetti, Valentina; Visser, Matt
2014-01-01
Jacobson’s thermodynamic derivation of the Einstein equations was originally applied only to local Rindler horizons. But at least some parts of that construction can usefully be extended to give meaningful results for arbitrary bifurcate null surfaces. As presaged in Jacobson’s original article, this more general construction sharply brings into focus the questions: is entropy objectively ‘real’? Or is entropy in some sense subjective and observer-dependent? These innocent questions open a Pandora’s box of often inconclusive debate. A consensus opinion, though certainly not universally held, seems to be that Clausius entropy (thermodynamic entropy, defined via a Clausius relation dS=đQ/T) should be objectively real, but that the ontological status of statistical entropy (Shannon or von Neumann entropy) is much more ambiguous, and much more likely to be observer-dependent. This question is particularly pressing when it comes to understanding Bekenstein entropy (black hole entropy). To perhaps further add to the confusion, we shall argue that even the Clausius entropy can often be observer-dependent. In the current article we shall conclusively demonstrate that one can meaningfully assign a notion of Clausius entropy to arbitrary bifurcate null surfaces—effectively defining a ‘virtual Clausius entropy’ for arbitrary ‘virtual (local) causal horizons’. As an application, we see that we can implement a version of the generalized second law (GSL) for this virtual Clausius entropy. This version of GSL can be related to certain (nonstandard) integral variants of the null energy condition. Because the concepts involved are rather subtle, we take some effort in being careful and explicit in developing our framework. In future work we will apply this construction to generalize Jacobson’s derivation of the Einstein equations. (paper)
Fractional noise destroys or induces a stochastic bifurcation
Energy Technology Data Exchange (ETDEWEB)
Yang, Qigui, E-mail: qgyang@scut.edu.cn [School of Sciences, South China University of Technology, Guangzhou 510640 (China); Zeng, Caibin, E-mail: zeng.cb@mail.scut.edu.cn [School of Sciences, South China University of Technology, Guangzhou 510640 (China); School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Cong, E-mail: wangcong@scut.edu.cn [School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640 (China)
2013-12-15
Little seems to be known about the stochastic bifurcation phenomena of non-Markovian systems. Our intention in this paper is to understand such complex dynamics by a simple system, namely, the Black-Scholes model driven by a mixed fractional Brownian motion. The most interesting finding is that the multiplicative fractional noise not only destroys but also induces a stochastic bifurcation under some suitable conditions. So it opens a possible way to explore the theory of stochastic bifurcation in the non-Markovian framework.
Optimization Design and Application of Underground Reinforced Concrete Bifurcation Pipe
Directory of Open Access Journals (Sweden)
Chao Su
2015-01-01
Full Text Available Underground reinforced concrete bifurcation pipe is an important part of conveyance structure. During construction, the workload of excavation and concrete pouring can be significantly decreased according to optimized pipe structure, and the engineering quality can be improved. This paper presents an optimization mathematical model of underground reinforced concrete bifurcation pipe structure according to real working status of several common pipe structures from real cases. Then, an optimization design system was developed based on Particle Swarm Optimization algorithm. Furthermore, take the bifurcation pipe of one hydropower station as an example: optimization analysis was conducted, and accuracy and stability of the optimization design system were verified successfully.
Arctic melt ponds and bifurcations in the climate system
Sudakov, I.; Vakulenko, S. A.; Golden, K. M.
2015-05-01
Understanding how sea ice melts is critical to climate projections. In the Arctic, melt ponds that develop on the surface of sea ice floes during the late spring and summer largely determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a bifurcation point - an irreversible critical threshold as the system warms, by incorporating geometric information about melt pond evolution. This study is based on a bifurcation analysis of the energy balance climate model with ice-albedo feedback as the key mechanism driving the system to bifurcation points.
FFT Bifurcation Analysis of Routes to Chaos via Quasiperiodic Solutions
Directory of Open Access Journals (Sweden)
L. Borkowski
2015-01-01
Full Text Available The dynamics of a ring of seven unidirectionally coupled nonlinear Duffing oscillators is studied. We show that the FFT analysis presented in form of a bifurcation graph, that is, frequency distribution versus a control parameter, can provide a valuable and helpful complement to the corresponding typical bifurcation diagram and the course of Lyapunov exponents, especially in context of detailed identification of the observed attractors. As an example, bifurcation analysis of routes to chaos via 2-frequency and 3-frequency quasiperiodicity is demonstrated.
Bifurcation of learning and structure formation in neuronal maps
DEFF Research Database (Denmark)
Marschler, Christian; Faust-Ellsässer, Carmen; Starke, Jens
2014-01-01
to map formation in the laminar nucleus of the barn owl's auditory system. Using equation-free methods, we perform a bifurcation analysis of spatio-temporal structure formation in the associated synaptic-weight matrix. This enables us to analyze learning as a bifurcation process and follow the unstable...... states as well. A simple time translation of the learning window function shifts the bifurcation point of structure formation and goes along with traveling waves in the map, without changing the animal's sound localization performance....
CISM Session on Bifurcation and Stability of Dissipative Systems
1993-01-01
The first theme concerns the plastic buckling of structures in the spirit of Hill’s classical approach. Non-bifurcation and stability criteria are introduced and post-bifurcation analysis performed by asymptotic development method in relation with Hutchinson’s work. Some recent results on the generalized standard model are given and their connection to Hill’s general formulation is presented. Instability phenomena of inelastic flow processes such as strain localization and necking are discussed. The second theme concerns stability and bifurcation problems in internally damaged or cracked colids. In brittle fracture or brittle damage, the evolution law of crack lengths or damage parameters is time-independent like in plasticity and leads to a similar mathematical description of the quasi-static evolution. Stability and non-bifurcation criteria in the sense of Hill can be again obtained from the discussion of the rate response.
Bifurcation dynamics of the tempered fractional Langevin equation
Energy Technology Data Exchange (ETDEWEB)
Zeng, Caibin, E-mail: macbzeng@scut.edu.cn; Yang, Qigui, E-mail: qgyang@scut.edu.cn [School of Mathematics, South China University of Technology, Guangzhou 510640 (China); Chen, YangQuan, E-mail: ychen53@ucmerced.edu [MESA LAB, School of Engineering, University of California, Merced, 5200 N. Lake Road, Merced, California 95343 (United States)
2016-08-15
Tempered fractional processes offer a useful extension for turbulence to include low frequencies. In this paper, we investigate the stochastic phenomenological bifurcation, or stochastic P-bifurcation, of the Langevin equation perturbed by tempered fractional Brownian motion. However, most standard tools from the well-studied framework of random dynamical systems cannot be applied to systems driven by non-Markovian noise, so it is desirable to construct possible approaches in a non-Markovian framework. We first derive the spectral density function of the considered system based on the generalized Parseval's formula and the Wiener-Khinchin theorem. Then we show that it enjoys interesting and diverse bifurcation phenomena exchanging between or among explosive-like, unimodal, and bimodal kurtosis. Therefore, our procedures in this paper are not merely comparable in scope to the existing theory of Markovian systems but also provide a possible approach to discern P-bifurcation dynamics in the non-Markovian settings.
Deformable 4DCT lung registration with vessel bifurcations
International Nuclear Information System (INIS)
Hilsmann, A.; Vik, T.; Kaus, M.; Franks, K.; Bissonette, J.P.; Purdie, T.; Beziak, A.; Aach, T.
2007-01-01
In radiotherapy planning of lung cancer, breathing motion causes uncertainty in the determination of the target volume. Image registration makes it possible to get information about the deformation of the lung and the tumor movement in the respiratory cycle from a few images. A dedicated, automatic, landmark-based technique was developed that finds corresponding vessel bifurcations. Hereby, we developed criteria to characterize pronounced bifurcations for which correspondence finding was more stable and accurate. The bifurcations were extracted from automatically segmented vessel trees in maximum inhale and maximum exhale CT thorax data sets. To find corresponding bifurcations in both data sets we used the shape context approach of Belongie et al. Finally, a volumetric lung deformation was obtained using thin-plate spline interpolation and affine registration. The method is evaluated on 10 4D-CT data sets of patients with lung cancer. (orig.)
Multiple bifurcations and periodic 'bubbling' in a delay population model
International Nuclear Information System (INIS)
Peng Mingshu
2005-01-01
In this paper, the flip bifurcation and periodic doubling bifurcations of a discrete population model without delay influence is firstly studied and the phenomenon of Feigenbaum's cascade of periodic doublings is also observed. Secondly, we explored the Neimark-Sacker bifurcation in the delay population model (two-dimension discrete dynamical systems) and the unique stable closed invariant curve which bifurcates from the nontrivial fixed point. Finally, a computer-assisted study for the delay population model is also delved into. Our computer simulation shows that the introduction of delay effect in a nonlinear difference equation derived from the logistic map leads to much richer dynamic behavior, such as stable node → stable focus → an lower-dimensional closed invariant curve (quasi-periodic solution, limit cycle) or/and stable periodic solutions → chaotic attractor by cascading bubbles (the combination of potential period doubling and reverse period-doubling) and the sudden change between two different attractors, etc
Bifurcation theory for hexagonal agglomeration in economic geography
Ikeda, Kiyohiro
2014-01-01
This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distri...
Periodic solutions and bifurcations of delay-differential equations
International Nuclear Information System (INIS)
He Jihuan
2005-01-01
In this Letter a simple but effective iteration method is proposed to search for limit cycles or bifurcation curves of delay-differential equations. An example is given to illustrate its convenience and effectiveness
Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family.
Garcia Costas, Amaya M; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J; Ledbetter, Rhesa N; Fixen, Kathryn R; Seefeldt, Lance C; Adams, Michael W W; Harwood, Caroline S; Boyd, Eric S; Peters, John W
2017-11-01
Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize
Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models
Giona, M.; Brasiello, A.; Crescitelli, S.
2015-11-01
One of the main differences between parabolic transport, associated with Langevin equations driven by Wiener processes, and hyperbolic models related to generalized Kac equations driven by Poisson processes, is the occurrence in the latter of multiple stable invariant densities (Frobenius multiplicity) in certain regions of the parameter space. This phenomenon is associated with the occurrence in linear hyperbolic balance equations of a typical bifurcation, referred to as the ergodicity-breaking bifurcation, the properties of which are thoroughly analyzed.
Bunch lengthening with bifurcation in electron storage rings
Energy Technology Data Exchange (ETDEWEB)
Kim, Eun-San; Hirata, Kohji [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)
1996-08-01
The mapping which shows equilibrium particle distribution in synchrotron phase space for electron storage rings is discussed with respect to some localized constant wake function based on the Gaussian approximation. This mapping shows multi-periodic states as well as double bifurcation in dynamical states of the equilibrium bunch length. When moving around parameter space, the system shows a transition/bifurcation which is not always reversible. These results derived by mapping are confirmed by multiparticle tracking. (author)
Hopf bifurcation of the stochastic model on business cycle
International Nuclear Information System (INIS)
Xu, J; Wang, H; Ge, G
2008-01-01
A stochastic model on business cycle was presented in thas paper. Simplifying the model through the quasi Hamiltonian theory, the Ito diffusion process was obtained. According to Oseledec multiplicative ergodic theory and singular boundary theory, the conditions of local and global stability were acquired. Solving the stationary FPK equation and analyzing the stationary probability density, the stochastic Hopf bifurcation was explained. The result indicated that the change of parameter awas the key factor to the appearance of the stochastic Hopf bifurcation
Iterative Controller Tuning for Process with Fold Bifurcations
DEFF Research Database (Denmark)
Huusom, Jakob Kjøbsted; Poulsen, Niels Kjølstad; Jørgensen, Sten Bay
2007-01-01
Processes involving fold bifurcation are notoriously difficult to control in the vicinity of the fold where most often optimal productivity is achieved . In cases with limited process insight a model based control synthesis is not possible. This paper uses a data driven approach with an improved...... version of iterative feedback tuning to optimizing a closed loop performance criterion, as a systematic tool for tuning process with fold bifurcations....
Bifurcated states of the error-field-induced magnetic islands
International Nuclear Information System (INIS)
Zheng, L.-J.; Li, B.; Hazeltine, R.D.
2008-01-01
We find that the formation of the magnetic islands due to error fields shows bifurcation when neoclassical effects are included. The bifurcation, which follows from including bootstrap current terms in a description of island growth in the presence of error fields, provides a path to avoid the island-width pole in the classical description. The theory offers possible theoretical explanations for the recent DIII-D and JT-60 experimental observations concerning confinement deterioration with increasing error field
Attractors, bifurcations, & chaos nonlinear phenomena in economics
Puu, Tönu
2003-01-01
The present book relies on various editions of my earlier book "Nonlinear Economic Dynamics", first published in 1989 in the Springer series "Lecture Notes in Economics and Mathematical Systems", and republished in three more, successively revised and expanded editions, as a Springer monograph, in 1991, 1993, and 1997, and in a Russian translation as "Nelineynaia Economicheskaia Dinamica". The first three editions were focused on applications. The last was differ ent, as it also included some chapters with mathematical background mate rial -ordinary differential equations and iterated maps -so as to make the book self-contained and suitable as a textbook for economics students of dynamical systems. To the same pedagogical purpose, the number of illus trations were expanded. The book published in 2000, with the title "A ttractors, Bifurcations, and Chaos -Nonlinear Phenomena in Economics", was so much changed, that the author felt it reasonable to give it a new title. There were two new math ematics ch...
Bifurcated equilibria in centrifugally confined plasma
International Nuclear Information System (INIS)
Shamim, I.; Teodorescu, C.; Guzdar, P. N.; Hassam, A. B.; Clary, R.; Ellis, R.; Lunsford, R.
2008-01-01
A bifurcation theory and associated computational model are developed to account for abrupt transitions observed recently on the Maryland Centrifugal eXperiment (MCX) [R. F. Ellis et al. Phys. Plasmas 8, 2057 (2001)], a supersonically rotating magnetized plasma that relies on centrifugal forces to prevent thermal expansion of plasma along the magnetic field. The observed transitions are from a well-confined, high-rotation state (HR-mode) to a lower-rotation, lesser-confined state (O-mode). A two-dimensional time-dependent magnetohydrodynamics code is used to simulate the dynamical equilibrium states of the MCX configuration. In addition to the expected viscous drag on the core plasma rotation, a momentum loss term is added that models the friction of plasma on the enhanced level of neutrals expected in the vicinity of the insulators at the throats of the magnetic mirror geometry. At small values of the external rotation drive, the plasma is not well-centrifugally confined and hence experiences the drag from near the insulators. Beyond a critical value of the external drive, the system makes an abrupt transition to a well-centrifugally confined state in which the plasma has pulled away from the end insulator plates; more effective centrifugal confinement lowers the plasma mass near the insulators allowing runaway increases in the rotation speed. The well-confined steady state is reached when the external drive is balanced by only the viscosity of the core plasma. A clear hysteresis phenomenon is shown.
Bursting oscillations, bifurcation and synchronization in neuronal systems
Energy Technology Data Exchange (ETDEWEB)
Wang Haixia [School of Science, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang Qingyun, E-mail: drwangqy@gmail.com [Department of Dynamics and Control, Beihang University, Beijing 100191 (China); Lu Qishao [Department of Dynamics and Control, Beihang University, Beijing 100191 (China)
2011-08-15
Highlights: > We investigate bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. > Two types of fast-slow bursters are analyzed in detail. > We show the properties of some crucial bifurcation points. > Synchronization transition and the neural excitability are explored in the coupled bursters. - Abstract: This paper investigates bursting oscillations and related bifurcation in the modified Morris-Lecar neuron. It is shown that for some appropriate parameters, the modified Morris-Lecar neuron can exhibit two types of fast-slow bursters, that is 'circle/fold cycle' bursting and 'subHopf/homoclinic' bursting with class 1 and class 2 neural excitability, which have different neuro-computational properties. By means of the analysis of fast-slow dynamics and phase plane, we explore bifurcation mechanisms associated with the two types of bursters. Furthermore, the properties of some crucial bifurcation points, which can determine the type of the burster, are studied by the stability and bifurcation theory. In addition, we investigate the influence of the coupling strength on synchronization transition and the neural excitability in two electrically coupled bursters with the same bursting type. More interestingly, the multi-time-scale synchronization transition phenomenon is found as the coupling strength varies.
Bifurcation magnetic resonance in films magnetized along hard magnetization axis
Energy Technology Data Exchange (ETDEWEB)
Vasilevskaya, Tatiana M., E-mail: t_vasilevs@mail.ru [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation); Sementsov, Dmitriy I.; Shutyi, Anatoliy M. [Ulyanovsk State University, Leo Tolstoy 42, 432017 Ulyanovsk (Russian Federation)
2012-09-15
We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: Black-Right-Pointing-Pointer An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. Black-Right-Pointing-Pointer Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. Black-Right-Pointing-Pointer Both regular and chaotic precession modes are realized within bifurcation resonance range. Black-Right-Pointing-Pointer Appearance of dynamic bistability is typical for bifurcation resonance.
Bifurcation magnetic resonance in films magnetized along hard magnetization axis
International Nuclear Information System (INIS)
Vasilevskaya, Tatiana M.; Sementsov, Dmitriy I.; Shutyi, Anatoliy M.
2012-01-01
We study low-frequency ferromagnetic resonance in a thin film magnetized along the hard magnetization axis performing an analysis of magnetization precession dynamics equations and numerical simulation. Two types of films are considered: polycrystalline uniaxial films and single-crystal films with cubic magnetic anisotropy. An additional (bifurcation) resonance initiated by the bistability, i.e. appearance of two closely spaced equilibrium magnetization states is registered. The modification of dynamic modes provoked by variation of the frequency, amplitude, and magnetic bias value of the ac field is studied. Both steady and chaotic magnetization precession modes are registered in the bifurcation resonance range. - Highlights: ► An additional bifurcation resonance arises in a case of a thin film magnetized along HMA. ► Bifurcation resonance occurs due to the presence of two closely spaced equilibrium magnetization states. ► Both regular and chaotic precession modes are realized within bifurcation resonance range. ► Appearance of dynamic bistability is typical for bifurcation resonance.
Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack
Directory of Open Access Journals (Sweden)
Xin Qi
2015-02-01
Full Text Available Bifurcation analysis and stability design for aircraft longitudinal motion are investigated when the nonlinearity in flight dynamics takes place severely at high angle of attack regime. To predict the special nonlinear flight phenomena, bifurcation theory and continuation method are employed to systematically analyze the nonlinear motions. With the refinement of the flight dynamics for F-8 Crusader longitudinal motion, a framework is derived to identify the stationary bifurcation and dynamic bifurcation for high-dimensional system. Case study shows that the F-8 longitudinal motion undergoes saddle node bifurcation, Hopf bifurcation, Zero-Hopf bifurcation and branch point bifurcation under certain conditions. Moreover, the Hopf bifurcation renders series of multiple frequency pitch oscillation phenomena, which deteriorate the flight control stability severely. To relieve the adverse effects of these phenomena, a stabilization control based on gain scheduling and polynomial fitting for F-8 longitudinal motion is presented to enlarge the flight envelope. Simulation results validate the effectiveness of the proposed scheme.
Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate
Ren, Jingli; Yuan, Qigang
2017-08-01
A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.
Bifurcation and Fractal of the Coupled Logistic Map
Wang, Xingyuan; Luo, Chao
The nature of the fixed points of the coupled Logistic map is researched, and the boundary equation of the first bifurcation of the coupled Logistic map in the parameter space is given out. Using the quantitative criterion and rule of system chaos, i.e., phase graph, bifurcation graph, power spectra, the computation of the fractal dimension, and the Lyapunov exponent, the paper reveals the general characteristics of the coupled Logistic map transforming from regularity to chaos, the following conclusions are shown: (1) chaotic patterns of the coupled Logistic map may emerge out of double-periodic bifurcation and Hopf bifurcation, respectively; (2) during the process of double-period bifurcation, the system exhibits self-similarity and scale transform invariability in both the parameter space and the phase space. From the research of the attraction basin and Mandelbrot-Julia set of the coupled Logistic map, the following conclusions are indicated: (1) the boundary between periodic and quasiperiodic regions is fractal, and that indicates the impossibility to predict the moving result of the points in the phase plane; (2) the structures of the Mandelbrot-Julia sets are determined by the control parameters, and their boundaries have the fractal characteristic.
Secondary Channel Bifurcation Geometry: A Multi-dimensional Problem
Gaeuman, D.; Stewart, R. L.
2017-12-01
The construction of secondary channels (or side channels) is a popular strategy for increasing aquatic habitat complexity in managed rivers. Such channels, however, frequently experience aggradation that prevents surface water from entering the side channels near their bifurcation points during periods of relatively low discharge. This failure to maintain an uninterrupted surface water connection with the main channel can reduce the habitat value of side channels for fish species that prefer lotic conditions. Various factors have been proposed as potential controls on the fate of side channels, including water surface slope differences between the main and secondary channels, the presence of main channel secondary circulation, transverse bed slopes, and bifurcation angle. A quantitative assessment of more than 50 natural and constructed secondary channels in the Trinity River of northern California indicates that bifurcations can assume a variety of configurations that are formed by different processes and whose longevity is governed by different sets of factors. Moreover, factors such as bifurcation angle and water surface slope vary with discharge level and are continuously distributed in space, such that they must be viewed as a multi-dimensional field rather than a single-valued attribute that can be assigned to a particular bifurcation.
Magneto-elastic dynamics and bifurcation of rotating annular plate*
International Nuclear Information System (INIS)
Hu Yu-Da; Piao Jiang-Min; Li Wen-Qiang
2017-01-01
In this paper, magneto-elastic dynamic behavior, bifurcation, and chaos of a rotating annular thin plate with various boundary conditions are investigated. Based on the thin plate theory and the Maxwell equations, the magneto-elastic dynamic equations of rotating annular plate are derived by means of Hamilton’s principle. Bessel function as a mode shape function and the Galerkin method are used to achieve the transverse vibration differential equation of the rotating annular plate with different boundary conditions. By numerical analysis, the bifurcation diagrams with magnetic induction, amplitude and frequency of transverse excitation force as the control parameters are respectively plotted under different boundary conditions such as clamped supported sides, simply supported sides, and clamped-one-side combined with simply-anotherside. Poincaré maps, time history charts, power spectrum charts, and phase diagrams are obtained under certain conditions, and the influence of the bifurcation parameters on the bifurcation and chaos of the system is discussed. The results show that the motion of the system is a complicated and repeated process from multi-periodic motion to quasi-period motion to chaotic motion, which is accompanied by intermittent chaos, when the bifurcation parameters change. If the amplitude of transverse excitation force is bigger or magnetic induction intensity is smaller or boundary constraints level is lower, the system can be more prone to chaos. (paper)
Shells, orbit bifurcations, and symmetry restorations in Fermi systems
Energy Technology Data Exchange (ETDEWEB)
Magner, A. G., E-mail: magner@kinr.kiev.ua; Koliesnik, M. V. [NASU, Institute for Nuclear Research (Ukraine); Arita, K. [Nagoya Institute of Technology, Department of Physics (Japan)
2016-11-15
The periodic-orbit theory based on the improved stationary-phase method within the phase-space path integral approach is presented for the semiclassical description of the nuclear shell structure, concerning themain topics of the fruitful activity ofV.G. Soloviev. We apply this theory to study bifurcations and symmetry breaking phenomena in a radial power-law potential which is close to the realistic Woods–Saxon one up to about the Fermi energy. Using the realistic parametrization of nuclear shapes we explain the origin of the double-humped fission barrier and the asymmetry in the fission isomer shapes by the bifurcations of periodic orbits. The semiclassical origin of the oblate–prolate shape asymmetry and tetrahedral shapes is also suggested within the improved periodic-orbit approach. The enhancement of shell structures at some surface diffuseness and deformation parameters of such shapes are explained by existence of the simple local bifurcations and new non-local bridge-orbit bifurcations in integrable and partially integrable Fermi-systems. We obtained good agreement between the semiclassical and quantum shell-structure components of the level density and energy for several surface diffuseness and deformation parameters of the potentials, including their symmetry breaking and bifurcation values.
Inverse bifurcation analysis: application to simple gene systems
Directory of Open Access Journals (Sweden)
Schuster Peter
2006-07-01
Full Text Available Abstract Background Bifurcation analysis has proven to be a powerful method for understanding the qualitative behavior of gene regulatory networks. In addition to the more traditional forward problem of determining the mapping from parameter space to the space of model behavior, the inverse problem of determining model parameters to result in certain desired properties of the bifurcation diagram provides an attractive methodology for addressing important biological problems. These include understanding how the robustness of qualitative behavior arises from system design as well as providing a way to engineer biological networks with qualitative properties. Results We demonstrate that certain inverse bifurcation problems of biological interest may be cast as optimization problems involving minimal distances of reference parameter sets to bifurcation manifolds. This formulation allows for an iterative solution procedure based on performing a sequence of eigen-system computations and one-parameter continuations of solutions, the latter being a standard capability in existing numerical bifurcation software. As applications of the proposed method, we show that the problem of maximizing regions of a given qualitative behavior as well as the reverse engineering of bistable gene switches can be modelled and efficiently solved.
Stochastic Bifurcation Analysis of an Elastically Mounted Flapping Airfoil
Directory of Open Access Journals (Sweden)
Bose Chandan
2018-01-01
Full Text Available The present paper investigates the effects of noisy flow fluctuations on the fluid-structure interaction (FSI behaviour of a span-wise flexible wing modelled as a two degree-of-freedom elastically mounted flapping airfoil. In the sterile flow conditions, the system undergoes a Hopf bifurcation as the free-stream velocity exceeds a critical limit resulting in a stable limit-cycle oscillation (LCO from a fixed point response. On the other hand, the qualitative dynamics changes from a stochastic fixed point to a random LCO through an intermittent state in the presence of irregular flow fluctuations. The probability density function depicts the most probable system state in the phase space. A phenomenological bifurcation (P-bifurcation analysis based on the transition in the topology associated with the structure of the joint probability density function (pdf of the response variables has been carried out. The joint pdf corresponding to the stochastic fixed point possesses a Dirac delta function like structure with a sharp single peak around zero. As the mean flow speed crosses the critical value, the joint pdf bifurcates to a crater-like structure indicating the occurrence of a P-bifurcation. The intermittent state is characterized by the co-existence of the unimodal as well as the crater like structure.
Sediment sorting at a side channel bifurcation
van Denderen, Pepijn; Schielen, Ralph; Hulscher, Suzanne
2017-04-01
Side channels have been constructed to reduce the flood risk and to increase the ecological value of the river. In various Dutch side channels large aggradation in these channels occurred after construction. Measurements show that the grain size of the deposited sediment in the side channel is smaller than the grain size found on the bed of the main channel. This suggest that sorting occurs at the bifurcation of the side channel. The objective is to reproduce with a 2D morphological model the fining of the bed in the side channel and to study the effect of the sediment sorting on morphodynamic development of the side channel. We use a 2D Delft3D model with two sediment fractions. The first fraction corresponds with the grain size that can be found on the bed of the main channel and the second fraction corresponds with the grain size found in the side channel. With the numerical model we compute several side channel configurations in which we vary the length and the width of the side channel, and the curvature of the upstream channel. From these computations we can derive the equilibrium state and the time scale of the morphodynamic development of the side channel. Preliminary results show that even when a simple sediment transport relation is used, like Engelund & Hansen, more fine sediment enters the side channel than coarse sediment. This is as expected, and is probably related to the bed slope effects which are a function of the Shields parameter. It is expected that by adding a sill at the entrance of the side channel the slope effect increases. This might reduce the amount of coarse sediment which enters the side channel even more. It is unclear whether the model used is able to reproduce the effect of such a sill correctly as modelling a sill and reproducing the correct hydrodynamic and morphodynamic behaviour is not straightforward in a 2D model. Acknowledgements: This research is funded by STW, part of the Dutch Organization for Scientific Research under
EXPERIMENTAL STUDY ON SEDIMENT DISTRIBUTION AT CHANNEL BIFURCATION
Institute of Scientific and Technical Information of China (English)
G.M. Tarekul ISLAM; M.R. KABIR; Ainun NISHAT
2002-01-01
This paper presents the experimental results on the distribution of sediments at channel bifurcation.The experiments have been conducted in a physical model of channel bifurcation. It consists of a straight main channel which bifurcates into two branch channels of different widths. The test rig is a mobile bed with fixed bank. Four different noses have been used to study the phenomenon. For each nose, three upstream discharges viz. 20 l/s, 30 l/s and 40 l/s have been employed. From the measured data, discharges and sediment transport ratios per unit width are calculated in the downstream branches.These data have been set to the general nodal point relation and a set of equations has been developed to describe the distribution of sediments to the downstream branches for different nose angles.
Adaptive Control of Electromagnetic Suspension System by HOPF Bifurcation
Directory of Open Access Journals (Sweden)
Aming Hao
2013-01-01
Full Text Available EMS-type maglev system is essentially nonlinear and unstable. It is complicated to design a stable controller for maglev system which is under large-scale disturbance and parameter variance. Theory analysis expresses that this phenomenon corresponds to a HOPF bifurcation in mathematical model. An adaptive control law which adjusts the PID control parameters is given in this paper according to HOPF bifurcation theory. Through identification of the levitated mass, the controller adjusts the feedback coefficient to make the system far from the HOPF bifurcation point and maintain the stability of the maglev system. Simulation result indicates that adjusting proportion gain parameter using this method can extend the state stability range of maglev system and avoid the self-excited vibration efficiently.
Hopf bifurcation and chaos in macroeconomic models with policy lag
International Nuclear Information System (INIS)
Liao Xiaofeng; Li Chuandong; Zhou Shangbo
2005-01-01
In this paper, we consider the macroeconomic models with policy lag, and study how lags in policy response affect the macroeconomic stability. The local stability of the nonzero equilibrium of this equation is investigated by analyzing the corresponding transcendental characteristic equation of its linearized equation. Some general stability criteria involving the policy lag and the system parameter are derived. By choosing the policy lag as a bifurcation parameter, the model is found to undergo a sequence of Hopf bifurcation. The direction and stability of the bifurcating periodic solutions are determined by using the normal form theory and the center manifold theorem. Moreover, we show that the government can stabilize the intrinsically unstable economy if the policy lag is sufficiently short, but the system become locally unstable when the policy lag is too long. We also find the chaotic behavior in some range of the policy lag
Bifurcated equilibria in two-dimensional MHD with diamagnetic effects
International Nuclear Information System (INIS)
Ottaviani, M.; Tebaldi, C.
1998-12-01
In this work we analyzed the sequence of bifurcated equilibria in two-dimensional reduced magnetohydrodynamics. Diamagnetic effects are studied under the assumption of a constant equilibrium pressure gradient, not altered by the formation of the magnetic island. The formation of an island when the symmetric equilibrium becomes unstable is studied as a function of the tearing mode stability parameter Δ' and of the diamagnetic frequency, by employing fixed-points numerical techniques and an initial value code. At larger values of Δ' a tangent bifurcation takes place, above which no small island solutions exist. This bifurcation persists up to fairly large values of the diamagnetic frequency (of the order of one tenth of the Alfven frequency). The implications of this phenomenology for the intermittent MHD dynamics observed in tokamaks is discussed. (authors)
Bifurcations of propellant burning rate at oscillatory pressure
Energy Technology Data Exchange (ETDEWEB)
Novozhilov, Boris V. [N. N. Semenov Institute of Chemical Physics, Russian Academy of Science, 4 Kosygina St., Moscow 119991 (Russian Federation)
2006-06-15
A new phenomenon, the disparity between pressure and propellant burning rate frequencies, has revealed in numerical studies of propellant burning rate response to oscillatory pressure. As is clear from the linear approximation, under small pressure amplitudes, h, pressure and propellant burning rate oscillations occur with equal period T (T-solution). In the paper, however, it is shown that at a certain critical value of the parameter h the system in hand undergoes a bifurcation so that the T-solution converts to oscillations with period 2T (2T-solution). When the bifurcation parameter h increases, the subsequent behavior of the system becomes complicated. It is obtained a sequence of period doubling to 4T-solution and 8T-solution. Beyond a certain value of the bifurcation parameter h an apparently fully chaotic solution is found. These effects undoubtedly should be taken into account in studies of oscillatory processes in combustion chambers. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Stochastic stability and bifurcation in a macroeconomic model
International Nuclear Information System (INIS)
Li Wei; Xu Wei; Zhao Junfeng; Jin Yanfei
2007-01-01
On the basis of the work of Goodwin and Puu, a new business cycle model subject to a stochastically parametric excitation is derived in this paper. At first, we reduce the model to a one-dimensional diffusion process by applying the stochastic averaging method of quasi-nonintegrable Hamiltonian system. Secondly, we utilize the methods of Lyapunov exponent and boundary classification associated with diffusion process respectively to analyze the stochastic stability of the trivial solution of system. The numerical results obtained illustrate that the trivial solution of system must be globally stable if it is locally stable in the state space. Thirdly, we explore the stochastic Hopf bifurcation of the business cycle model according to the qualitative changes in stationary probability density of system response. It is concluded that the stochastic Hopf bifurcation occurs at two critical parametric values. Finally, some explanations are given in a simply way on the potential applications of stochastic stability and bifurcation analysis
Dynamical systems V bifurcation theory and catastrophe theory
1994-01-01
Bifurcation theory and catastrophe theory are two of the best known areas within the field of dynamical systems. Both are studies of smooth systems, focusing on properties that seem to be manifestly non-smooth. Bifurcation theory is concerned with the sudden changes that occur in a system when one or more parameters are varied. Examples of such are familiar to students of differential equations, from phase portraits. Moreover, understanding the bifurcations of the differential equations that describe real physical systems provides important information about the behavior of the systems. Catastrophe theory became quite famous during the 1970's, mostly because of the sensation caused by the usually less than rigorous applications of its principal ideas to "hot topics", such as the characterization of personalities and the difference between a "genius" and a "maniac". Catastrophe theory is accurately described as singularity theory and its (genuine) applications. The authors of this book, the first printing of w...
Bifurcation analysis of a delayed mathematical model for tumor growth
International Nuclear Information System (INIS)
Khajanchi, Subhas
2015-01-01
In this study, we present a modified mathematical model of tumor growth by introducing discrete time delay in interaction terms. The model describes the interaction between tumor cells, healthy tissue cells (host cells) and immune effector cells. The goal of this study is to obtain a better compatibility with reality for which we introduced the discrete time delay in the interaction between tumor cells and host cells. We investigate the local stability of the non-negative equilibria and the existence of Hopf-bifurcation by considering the discrete time delay as a bifurcation parameter. We estimate the length of delay to preserve the stability of bifurcating periodic solutions, which gives an idea about the mode of action for controlling oscillations in the tumor growth. Numerical simulations of the model confirm the analytical findings
Bifurcations in the optimal elastic foundation for a buckling column
International Nuclear Information System (INIS)
Rayneau-Kirkhope, Daniel; Farr, Robert; Ding, K.; Mao, Yong
2010-01-01
We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.
Bifurcations in the optimal elastic foundation for a buckling column
Energy Technology Data Exchange (ETDEWEB)
Rayneau-Kirkhope, Daniel, E-mail: ppxdr@nottingham.ac.u [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Farr, Robert [Unilever R and D, Olivier van Noortlaan 120, AT3133, Vlaardingen (Netherlands); London Institute for Mathematical Sciences, 22 South Audley Street, Mayfair, London (United Kingdom); Ding, K. [Department of Physics, Fudan University, Shanghai, 200433 (China); Mao, Yong [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom)
2010-12-01
We investigate the buckling under compression of a slender beam with a distributed lateral elastic support, for which there is an associated cost. For a given cost, we study the optimal choice of support to protect against Euler buckling. We show that with only weak lateral support, the optimum distribution is a delta-function at the centre of the beam. When more support is allowed, we find numerically that the optimal distribution undergoes a series of bifurcations. We obtain analytical expressions for the buckling load around the first bifurcation point and corresponding expansions for the optimal position of support. Our theoretical predictions, including the critical exponent of the bifurcation, are confirmed by computer simulations.
Bifurcation-free design method of pulse energy converter controllers
International Nuclear Information System (INIS)
Kolokolov, Yury; Ustinov, Pavel; Essounbouli, Najib; Hamzaoui, Abdelaziz
2009-01-01
In this paper, a design method of pulse energy converter (PEC) controllers is proposed. This method develops a classical frequency domain design, based on the small signal modeling, by means of an addition of a nonlinear dynamics analysis stage. The main idea of the proposed method consists in fact that the PEC controller, designed with an application of the small signal modeling, is tuned after with taking into the consideration an essentially nonlinear nature of the PEC that makes it possible to avoid bifurcation phenomena in the PEC dynamics at the design stage (bifurcation-free design). Also application of the proposed method allows an improvement of the designed controller performance. The application of this bifurcation-free design method is demonstrated on an example of the controller design of direct current-direct current (DC-DC) buck converter with an input electromagnetic interference filter.
An Approach to Robust Control of the Hopf Bifurcation
Directory of Open Access Journals (Sweden)
Giacomo Innocenti
2011-01-01
Full Text Available The paper illustrates a novel approach to modify the Hopf bifurcation nature via a nonlinear state feedback control, which leaves the equilibrium properties unchanged. This result is achieved by recurring to linear and nonlinear transformations, which lead the system to locally assume the ordinary differential equation representation. Third-order models are considered, since they can be seen as proper representatives of a larger class of systems. The explicit relationship between the control input and the Hopf bifurcation nature is obtained via a frequency approach, that does not need the computation of the center manifold.
Three dimensional nilpotent singularity and Sil'nikov bifurcation
International Nuclear Information System (INIS)
Li Xindan; Liu Haifei
2007-01-01
In this paper, by using the normal form, blow-up theory and the technique of global bifurcations, we study the singularity at the origin with threefold zero eigenvalue for nonsymmetric vector fields with nilpotent linear part and 4-jet C ∼ -equivalent toy-bar -bar x+z-bar -bar y+ax 3 y-bar -bar z,with a 0, and analytically prove the existence of Sil'nikov bifurcation, and then of the strange attractor for certain subfamilies of the nonsymmetric versal unfoldings of this singularity under some conditions
Global bifurcations in a piecewise-smooth Cournot duopoly game
International Nuclear Information System (INIS)
Tramontana, Fabio; Gardini, Laura; Puu, Toenu
2010-01-01
The object of the work is to perform the global analysis of the Cournot duopoly model with isoelastic demand function and unit costs, presented in Puu . The bifurcation of the unique Cournot fixed point is established, which is a resonant case of the Neimark-Sacker bifurcation. New properties associated with the introduction of horizontal branches are evidenced. These properties differ significantly when the constant value is zero or positive and small. The good behavior of the case with positive constant is proved, leading always to positive trajectories. Also when the Cournot fixed point is unstable, stable cycles of any period may exist.
Communication: Mode bifurcation of droplet motion under stationary laser irradiation
Energy Technology Data Exchange (ETDEWEB)
Takabatake, Fumi [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan); Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Yoshikawa, Kenichi [Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto 610-0394 (Japan); Ichikawa, Masatoshi, E-mail: ichi@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502 (Japan)
2014-08-07
The self-propelled motion of a mm-sized oil droplet floating on water, induced by a local temperature gradient generated by CW laser irradiation is reported. The circular droplet exhibits two types of regular periodic motion, reciprocal and circular, around the laser spot under suitable laser power. With an increase in laser power, a mode bifurcation from rectilinear reciprocal motion to circular motion is caused. The essential aspects of this mode bifurcation are discussed in terms of spontaneous symmetry-breaking under temperature-induced interfacial instability, and are theoretically reproduced with simple coupled differential equations.
Transportation and concentration inequalities for bifurcating Markov chains
DEFF Research Database (Denmark)
Penda, S. Valère Bitseki; Escobar-Bach, Mikael; Guillin, Arnaud
2017-01-01
We investigate the transportation inequality for bifurcating Markov chains which are a class of processes indexed by a regular binary tree. Fitting well models like cell growth when each individual gives birth to exactly two offsprings, we use transportation inequalities to provide useful...... concentration inequalities.We also study deviation inequalities for the empirical means under relaxed assumptions on the Wasserstein contraction for the Markov kernels. Applications to bifurcating nonlinear autoregressive processes are considered for point-wise estimates of the non-linear autoregressive...
Bifurcated transition of radial transport in the HIEI tandem mirror
International Nuclear Information System (INIS)
Sakai, O.; Yasaka, Y.
1995-01-01
Transition to a high radial confinement mode in a mirror plasma is triggered by limiter biasing. Sheared plasma rotation is induced in the high confinement phase which is characterized by reduction of edge turbulence and a confinement enhancement factor of 2-4. Edge plasma parameters related to radial confinement show a hysteresis phenomenon as a function of bias voltage or bias current, leading to the fact that transition from low to high confinement mode occurs between the bifurcated states. A transition model based on azimuthal momentum balance is employed to clarify physics of the observed bifurcation. copyright 1995 American Institute of Physics
Flow Topology Transition via Global Bifurcation in Thermally Driven Turbulence
Xie, Yi-Chao; Ding, Guang-Yu; Xia, Ke-Qing
2018-05-01
We report an experimental observation of a flow topology transition via global bifurcation in a turbulent Rayleigh-Bénard convection. This transition corresponds to a spontaneous symmetry breaking with the flow becomes more turbulent. Simultaneous measurements of the large-scale flow (LSF) structure and the heat transport show that the LSF bifurcates from a high heat transport efficiency quadrupole state to a less symmetric dipole state with a lower heat transport efficiency. In the transition zone, the system switches spontaneously and stochastically between the two long-lived metastable states.
Bifurcation analysis of nephron pressure and flow regulation
DEFF Research Database (Denmark)
Barfred, Mikael; Mosekilde, Erik; Holstein-Rathlou, N.-H.
1996-01-01
One- and two-dimensional continuation techniques are applied to study the bifurcation structure of a model of renal flow and pressure control. Integrating the main physiological mechanisms by which the individual nephron regulates the incoming blood flow, the model describes the interaction between...... the tubuloglomerular feedback and the response of the afferent arteriole. It is shown how a Hopf bifurcation leads the system to perform self-sustained oscillations if the feedback gain becomes sufficiently strong, and how a further increase of this parameter produces a folded structure of overlapping period...
Discretizing the transcritical and pitchfork bifurcations – conjugacy results
Lóczi, Lajos
2015-01-07
© 2015 Taylor & Francis. We present two case studies in one-dimensional dynamics concerning the discretization of transcritical (TC) and pitchfork (PF) bifurcations. In the vicinity of a TC or PF bifurcation point and under some natural assumptions on the one-step discretization method of order (Formula presented.) , we show that the time- (Formula presented.) exact and the step-size- (Formula presented.) discretized dynamics are topologically equivalent by constructing a two-parameter family of conjugacies in each case. As a main result, we prove that the constructed conjugacy maps are (Formula presented.) -close to the identity and these estimates are optimal.
Hopf bifurcation analysis of Chen circuit with direct time delay feedback
International Nuclear Information System (INIS)
Hai-Peng, Ren; Wen-Chao, Li; Ding, Liu
2010-01-01
Direct time delay feedback can make non-chaotic Chen circuit chaotic. The chaotic Chen circuit with direct time delay feedback possesses rich and complex dynamical behaviours. To reach a deep and clear understanding of the dynamics of such circuits described by delay differential equations, Hopf bifurcation in the circuit is analysed using the Hopf bifurcation theory and the central manifold theorem in this paper. Bifurcation points and bifurcation directions are derived in detail, which prove to be consistent with the previous bifurcation diagram. Numerical simulations and experimental results are given to verify the theoretical analysis. Hopf bifurcation analysis can explain and predict the periodical orbit (oscillation) in Chen circuit with direct time delay feedback. Bifurcation boundaries are derived using the Hopf bifurcation analysis, which will be helpful for determining the parameters in the stabilisation of the originally chaotic circuit
Kan-On, Yukio
2007-04-01
This paper is concerned with the bifurcation structure of positive stationary solutions for a generalized Lotka-Volterra competition model with diffusion. To establish the structure, the bifurcation theory and the interval arithmetic are employed.
Necessary and sufficient conditions for Hopf bifurcation in tri-neuron equation with a delay
International Nuclear Information System (INIS)
Liu Xiaoming; Liao Xiaofeng
2009-01-01
In this paper, we consider the delayed differential equations modeling three-neuron equations with only a time delay. Using the time delay as a bifurcation parameter, necessary and sufficient conditions for Hopf bifurcation to occur are derived. Numerical results indicate that for this model, Hopf bifurcation is likely to occur at suitable delay parameter values.
Local bifurcation analysis in nuclear reactor dynamics by Sotomayor’s theorem
International Nuclear Information System (INIS)
Pirayesh, Behnam; Pazirandeh, Ali; Akbari, Monireh
2016-01-01
Highlights: • When the feedback reactivity is considered as a nonlinear function some complex behaviors may emerge in the system such as local bifurcation phenomenon. • The qualitative behaviors of a typical nuclear reactor near its equilibrium points have been studied analytically. • Comprehensive analytical bifurcation analyses presented in this paper are transcritical bifurcation, saddle- node bifurcation and pitchfork bifurcation. - Abstract: In this paper, a qualitative approach has been used to explore nuclear reactor behaviors with nonlinear feedback. First, a system of four dimensional ordinary differential equations governing the dynamics of a typical nuclear reactor is introduced. These four state variables are the relative power of the reactor, the relative concentration of delayed neutron precursors, the fuel temperature and the coolant temperature. Then, the qualitative behaviors of the dynamical system near its equilibria have been studied analytically by using local bifurcation theory and Sotomayor’s theorem. The results indicated that despite the uncertainty of the reactivity, we can analyze the qualitative behavior changes of the reactor from the bifurcation point of view. Notably, local bifurcations that were considered in this paper include transcritical bifurcation, saddle-node bifurcation and pitchfork bifurcation. The theoretical analysis showed that these three types of local bifurcations may occur in the four dimensional dynamical system. In addition, to confirm the analytical results the numerical simulations are given.
Bifurcation of limit cycles for cubic reversible systems
Directory of Open Access Journals (Sweden)
Yi Shao
2014-04-01
Full Text Available This article is concerned with the bifurcation of limit cycles of a class of cubic reversible system having a center at the origin. We prove that this system has at least four limit cycles produced by the period annulus around the center under cubic perturbations
Chaos and bifurcations in periodic windows observed in plasmas
International Nuclear Information System (INIS)
Qin, J.; Wang, L.; Yuan, D.P.; Gao, P.; Zhang, B.Z.
1989-01-01
We report the experimental observations of deterministic chaos in a steady-state plasma which is not driven by any extra periodic forces. Two routes to chaos have been found, period-doubling and intermittent chaos. The fine structures in chaos such as periodic windows and bifurcations in windows have also been observed
Coronary bifurcation lesions treated with simple or complex stenting
DEFF Research Database (Denmark)
Behan, Miles W; Holm, Niels R; de Belder, Adam J
2016-01-01
AIMS: Randomized trials of coronary bifurcation stenting have shown better outcomes from a simple (provisional) strategy rather than a complex (planned two-stent) strategy in terms of short-term efficacy and safety. Here, we report the 5-year all-cause mortality based on pooled patient-level data...
The Boundary-Hopf-Fold Bifurcation in Filippov Systems
Efstathiou, Konstantinos; Liu, Xia; Broer, Henk W.
2015-01-01
This paper studies the codimension-3 boundary-Hopf-fold (BHF) bifurcation of planar Filippov systems. Filippov systems consist of at least one discontinuity boundary locally separating the phase space to disjoint components with different dynamics. Such systems find applications in several fields,
Stability and Hopf bifurcation analysis of a new system
International Nuclear Information System (INIS)
Huang Kuifei; Yang Qigui
2009-01-01
In this paper, a new chaotic system is introduced. The system contains special cases as the modified Lorenz system and conjugate Chen system. Some subtle characteristics of stability and Hopf bifurcation of the new chaotic system are thoroughly investigated by rigorous mathematical analysis and symbolic computations. Meanwhile, some numerical simulations for justifying the theoretical analysis are also presented.
Pitchfork bifurcation and vibrational resonance in a fractional-order ...
Indian Academy of Sciences (India)
The fractional-order damping mainly determines the pattern of the vibrational resonance. There is a bifurcation point of the fractional order which, in the case of double-well potential, transforms vibrational resonance pattern from a single resonance to a double resonance, while in the case of single-well potential, transforms ...
Nonintegrability of the unfolding of the fold-Hopf bifurcation
Yagasaki, Kazuyuki
2018-02-01
We consider the unfolding of the codimension-two fold-Hopf bifurcation and prove its meromorphic nonintegrability in the meaning of Bogoyavlenskij for almost all parameter values. Our proof is based on a generalized version of the Morales-Ramis-Simó theory for non-Hamiltonian systems and related variational equations up to second order are used.
Bifurcations and complete chaos for the diamagnetic Kepler problem
Hansen, Kai T.
1995-03-01
We describe the structure of bifurcations in the unbounded classical diamagnetic Kepler problem. We conjecture that this system does not have any stable orbits and that the nonwandering set is described by a complete trinary symbolic dynamics for scaled energies larger than ɛc=0.328 782. . ..
Bifurcations and Complete Chaos for the Diamagnetic Kepler Problem
Hansen, Kai T.
1995-01-01
We describe the structure of bifurcations in the unbounded classical Diamagnetic Kepler problem. We conjecture that this system does not have any stable orbits and that the non-wandering set is described by a complete trinary symbolic dynamics for scaled energies larger then $\\epsilon_c=0.328782\\ldots$.
Experimental Investigation of Bifurcations in a Thermoacoustic Engine
Directory of Open Access Journals (Sweden)
Vishnu R. Unni
2015-06-01
Full Text Available In this study, variation in the characteristics of the pressure oscillations in a thermoacoustic engine is explored as the input heat flux is varied. A bifurcation diagram is plotted to study the variation in the qualitative behavior of the acoustic oscillations as the input heat flux changes. At a critical input heat flux (60 Watt, the engine begins to produce acoustic oscillations in its fundamental longitudinal mode. As the input heat flux is increased, incommensurate frequencies appear in the power spectrum. The simultaneous presence of incommensurate frequencies results in quasiperiodic oscillations. On further increase of heat flux, the fundamental mode disappears and second mode oscillations are observed. These bifurcations in the characteristics of the pressure oscillations are the result of nonlinear interaction between multiple modes present in the thermoacoustic engine. Hysteresis in the bifurcation diagram suggests that the bifurcation is subcritical. Further, the qualitative analysis of different dynamic regimes is performed using nonlinear time series analysis. The physical reason for the observed nonlinear behavior is discussed. Suggestions to avert the variations in qualitative behavior of the pressure oscillations in thermoacoustic engines are also provided.
Stability of Bifurcating Stationary Solutions of the Artificial Compressible System
Teramoto, Yuka
2018-02-01
The artificial compressible system gives a compressible approximation of the incompressible Navier-Stokes system. The latter system is obtained from the former one in the zero limit of the artificial Mach number ɛ which is a singular limit. The sets of stationary solutions of both systems coincide with each other. It is known that if a stationary solution of the incompressible system is asymptotically stable and the velocity field of the stationary solution satisfies an energy-type stability criterion, then it is also stable as a solution of the artificial compressible one for sufficiently small ɛ . In general, the range of ɛ shrinks when the spectrum of the linearized operator for the incompressible system approaches to the imaginary axis. This can happen when a stationary bifurcation occurs. It is proved that when a stationary bifurcation from a simple eigenvalue occurs, the range of ɛ can be taken uniformly near the bifurcation point to conclude the stability of the bifurcating solution as a solution of the artificial compressible system.
Long term results of kissing stents in the aortic bifurcation
Hinnen, J.W.; Konickx, M.A.; Meerwaldt, Robbert; Kolkert, J.L.P.; van der Palen, Jacobus Adrianus Maria; Huisman, A.B.
2015-01-01
BACKGROUND: To evaluate the long-term outcome after aortoiliac kissing stent placement and to analyze variables, which potentially influence the outcome of endovascular reconstruction of the aortic bifurcation. METHODS: All patients treated with aortoiliac kissing stents at our institution between
Femoral bifurcation with ipsilateral tibia hemimelia: Early outcome of ...
African Journals Online (AJOL)
Hereby, we present a case report of a 2-year-old boy who first presented in our orthopedic clinic as a 12-day-old neonate, with a grossly deformed right lower limb from a combination of complete tibia hemimelia and ipsilateral femoral bifurcation. Excision of femoral exostosis, knee disarticulation and prosthetic fitting gives ...
Hopf bifurcation formula for first order differential-delay equations
Rand, Richard; Verdugo, Anael
2007-09-01
This work presents an explicit formula for determining the radius of a limit cycle which is born in a Hopf bifurcation in a class of first order constant coefficient differential-delay equations. The derivation is accomplished using Lindstedt's perturbation method.
Direction and stability of bifurcating solutions for a Signorini problem
Czech Academy of Sciences Publication Activity Database
Eisner, J.; Kučera, Milan; Recke, L.
2015-01-01
Roč. 113, January (2015), s. 357-371 ISSN 0362-546X Institutional support: RVO:67985840 Keywords : Signorini problem * variational inequality * bifurcation direction Subject RIV: BA - General Mathematics Impact factor: 1.125, year: 2015 http://www.sciencedirect.com/science/article/pii/S0362546X14003228
Smooth bifurcation for a Signorini problem on a rectangle
Czech Academy of Sciences Publication Activity Database
Eisner, J.; Kučera, Milan; Recke, L.
2012-01-01
Roč. 137, č. 2 (2012), s. 131-138 ISSN 0862-7959 R&D Projects: GA AV ČR IAA100190805 Institutional research plan: CEZ:AV0Z10190503 Keywords : Signorini problem * smooth bifurcation * variational inequality Subject RIV: BA - General Mathematics http://dml.cz/dmlcz/142859
Bifurcation analysis and the travelling wave solutions of the Klein
Indian Academy of Sciences (India)
In this paper, we investigate the bifurcations and dynamic behaviour of travelling wave solutions of the Klein–Gordon–Zakharov equations given in Shang et al, Comput. Math. Appl. 56, 1441 (2008). Under different parameter conditions, we obtain some exact explicit parametric representations of travelling wave solutions by ...
Heteroclinic Bifurcation Behaviors of a Duffing Oscillator with Delayed Feedback
Directory of Open Access Journals (Sweden)
Shao-Fang Wen
2018-01-01
Full Text Available The heteroclinic bifurcation and chaos of a Duffing oscillator with forcing excitation under both delayed displacement feedback and delayed velocity feedback are studied by Melnikov method. The Melnikov function is analytically established to detect the necessary conditions for generating chaos. Through the analysis of the analytical necessary conditions, we find that the influences of the delayed displacement feedback and delayed velocity feedback are separable. Then the influences of the displacement and velocity feedback parameters on heteroclinic bifurcation and threshold value of chaotic motion are investigated individually. In order to verify the correctness of the analytical conditions, the Duffing oscillator is also investigated by numerical iterative method. The bifurcation curves and the largest Lyapunov exponents are provided and compared. From the analysis of the numerical simulation results, it could be found that two types of period-doubling bifurcations occur in the Duffing oscillator, so that there are two paths leading to the chaos in this oscillator. The typical dynamical responses, including time histories, phase portraits, and Poincare maps, are all carried out to verify the conclusions. The results reveal some new phenomena, which is useful to design or control this kind of system.
Bifurcation Analysis and Chaos Control in a Discrete Epidemic System
Directory of Open Access Journals (Sweden)
Wei Tan
2015-01-01
Full Text Available The dynamics of discrete SI epidemic model, which has been obtained by the forward Euler scheme, is investigated in detail. By using the center manifold theorem and bifurcation theorem in the interior R+2, the specific conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation have been derived. Numerical simulation not only presents our theoretical analysis but also exhibits rich and complex dynamical behavior existing in the case of the windows of period-1, period-3, period-5, period-6, period-7, period-9, period-11, period-15, period-19, period-23, period-34, period-42, and period-53 orbits. Meanwhile, there appears the cascade of period-doubling 2, 4, 8 bifurcation and chaos sets from the fixed point. These results show the discrete model has more richer dynamics compared with the continuous model. The computations of the largest Lyapunov exponents more than 0 confirm the chaotic behaviors of the system x→x+δ[rN(1-N/K-βxy/N-(μ+mx], y→y+δ[βxy/N-(μ+dy]. Specifically, the chaotic orbits at an unstable fixed point are stabilized by using the feedback control method.
Epidemic model with vaccinated age that exhibits backward bifurcation
International Nuclear Information System (INIS)
Yang Junyuan; Zhang Fengqin; Li Xuezhi
2009-01-01
Vaccination of susceptibilities is included in a transmission model for a disease that confers immunity. In this paper, interplay of vaccination strategy together with vaccine efficacy and the vaccinated age is studied. In particular, vaccine efficacy can lead to a backward bifurcation. At the same time, we also discuss an abstract formulation of the problem, and establish the well-posedness of the model.
Bifurcation methods of dynamical systems for handling nonlinear ...
Indian Academy of Sciences (India)
physics pp. 863–868. Bifurcation methods of dynamical systems for handling nonlinear wave equations. DAHE FENG and JIBIN LI. Center for Nonlinear Science Studies, School of Science, Kunming University of Science and Technology .... (b) It can be shown from (15) and (18) that the balance between the weak nonlinear.
Bifurcation analysis of wind-driven flows with MOM4
Bernsen, E.; Dijkstra, H.A.; Wubs, F.W.
2009-01-01
In this paper, the methodology of bifurcation analysis is applied to the explicit time-stepping ocean model MOM4 using a Jacobian–Free Newton–Krylov (JFNK) approach. We in detail present the implementation of the JFNK method in MOM4 but restrict the preconditioning technique to the case for which
Chemical reaction systems with a homoclinic bifurcation: an inverse problem
Czech Academy of Sciences Publication Activity Database
Plesa, T.; Vejchodský, Tomáš; Erban, R.
2016-01-01
Roč. 54, č. 10 (2016), s. 1884-1915 ISSN 0259-9791 EU Projects: European Commission(XE) 328008 - STOCHDETBIOMODEL Institutional support: RVO:67985840 Keywords : nonnegative dynamical systems * bifurcations * oscillations Subject RIV: BA - General Mathematics Impact factor: 1.308, year: 2016 http://link.springer.com/article/10.1007%2Fs10910-016-0656-1
Bifurcation Analysis of Spiral Growth Processes in Plants
DEFF Research Database (Denmark)
Andersen, C.A.; Ernstsen, C.N.; Mosekilde, Erik
1999-01-01
In order to examine the significance of different assumptions about the range of the inhibitory forces, we have performed a series of bifurcation analyses of a simple model that can explain the formation of helical structures in phyllotaxis. Computer simulations are used to illustrate the role...
Smooth bifurcation for variational inequalities based on Lagrange multipliers
Czech Academy of Sciences Publication Activity Database
Eisner, Jan; Kučera, Milan; Recke, L.
2006-01-01
Roč. 19, č. 9 (2006), s. 981-1000 ISSN 0893-4983 R&D Projects: GA AV ČR(CZ) IAA100190506 Institutional research plan: CEZ:AV0Z10190503 Keywords : abstract variational inequality * bifurcation * Lagrange multipliers Subject RIV: BA - General Mathematics
Experimental bifurcation analysis of an impact oscillator – Determining stability
DEFF Research Database (Denmark)
Bureau, Emil; Schilder, Frank; Elmegård, Michael
2014-01-01
We propose and investigate three different methods for assessing stability of dynamical equilibrium states during experimental bifurcation analysis, using a control-based continuation method. The idea is to modify or turn off the control at an equilibrium state and study the resulting behavior...
Regularization of the Boundary-Saddle-Node Bifurcation
Directory of Open Access Journals (Sweden)
Xia Liu
2018-01-01
Full Text Available In this paper we treat a particular class of planar Filippov systems which consist of two smooth systems that are separated by a discontinuity boundary. In such systems one vector field undergoes a saddle-node bifurcation while the other vector field is transversal to the boundary. The boundary-saddle-node (BSN bifurcation occurs at a critical value when the saddle-node point is located on the discontinuity boundary. We derive a local topological normal form for the BSN bifurcation and study its local dynamics by applying the classical Filippov’s convex method and a novel regularization approach. In fact, by the regularization approach a given Filippov system is approximated by a piecewise-smooth continuous system. Moreover, the regularization process produces a singular perturbation problem where the original discontinuous set becomes a center manifold. Thus, the regularization enables us to make use of the established theories for continuous systems and slow-fast systems to study the local behavior around the BSN bifurcation.
Topography of Aortic Bifurcation in a Black Kenyan Population ...
African Journals Online (AJOL)
After removal of abdominal viscera, peritoneum, fibrofatty connective tissue, inferior vena cava was removed to expose the termination of abdominal aorta. Vertebral level, angle and asymmetry of bifurcation were recorded. Data were analysed by SPSS version 17.0 for windows and are presented in tables and bar charts.
Numerical bifurcation analysis of conformal formulations of the Einstein constraints
International Nuclear Information System (INIS)
Holst, M.; Kungurtsev, V.
2011-01-01
The Einstein constraint equations have been the subject of study for more than 50 years. The introduction of the conformal method in the 1970s as a parametrization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental nonuniqueness problems with the conformal method as a parametrization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods. We discuss these results and their physical significance, which lead to some interesting remaining questions to
Efficient algorithm for bifurcation problems of variational inequalities
International Nuclear Information System (INIS)
Mittelmann, H.D.
1983-01-01
For a class of variational inequalities on a Hilbert space H bifurcating solutions exist and may be characterized as critical points of a functional with respect to the intersection of the level surfaces of another functional and a closed convex subset K of H. In a recent paper [13] we have used a gradient-projection type algorithm to obtain the solutions for discretizations of the variational inequalities. A related but Newton-based method is given here. Global and asymptotically quadratic convergence is proved. Numerical results show that it may be used very efficiently in following the bifurcating branches and that is compares favorably with several other algorithms. The method is also attractive for a class of nonlinear eigenvalue problems (K = H) for which it reduces to a generalized Rayleigh-quotient interaction. So some results are included for the path following in turning-point problems
Bifurcation and chaos of an axially accelerating viscoelastic beam
International Nuclear Information System (INIS)
Yang Xiaodong; Chen Liqun
2005-01-01
This paper investigates bifurcation and chaos of an axially accelerating viscoelastic beam. The Kelvin-Voigt model is adopted to constitute the material of the beam. Lagrangian strain is used to account for the beam's geometric nonlinearity. The nonlinear partial-differential equation governing transverse motion of the beam is derived from the Newton second law. The Galerkin method is applied to truncate the governing equation into a set of ordinary differential equations. By use of the Poincare map, the dynamical behavior is identified based on the numerical solutions of the ordinary differential equations. The bifurcation diagrams are presented in the case that the mean axial speed, the amplitude of speed fluctuation and the dynamic viscoelasticity is respectively varied while other parameters are fixed. The Lyapunov exponent is calculated to identify chaos. From numerical simulations, it is indicated that the periodic, quasi-periodic and chaotic motions occur in the transverse vibrations of the axially accelerating viscoelastic beam
Bifurcation software in Matlab with applications in neuronal modeling.
Govaerts, Willy; Sautois, Bart
2005-02-01
Many biological phenomena, notably in neuroscience, can be modeled by dynamical systems. We describe a recent improvement of a Matlab software package for dynamical systems with applications to modeling single neurons and all-to-all connected networks of neurons. The new software features consist of an object-oriented approach to bifurcation computations and the partial inclusion of C-code to speed up the computation. As an application, we study the origin of the spiking behaviour of neurons when the equilibrium state is destabilized by an incoming current. We show that Class II behaviour, i.e. firing with a finite frequency, is possible even if the destabilization occurs through a saddle-node bifurcation. Furthermore, we show that synchronization of an all-to-all connected network of such neurons with only excitatory connections is also possible in this case.
Hybrid intravenous digital subtraction angiography of the carotid bifurcation
International Nuclear Information System (INIS)
Burbank, F.H.; Enzmann, D.; Keyes, G.S.; Brody, W.R.
1984-01-01
A hybrid digital subtraction angiography technique and noise-reduction algorithm were used to evaluate the carotid bifurcation. Temporal, hybrid, and reduced-noise hybrid images were obtained in right and left anterior oblique projections, and both single- and multiple-frame images were created with each method. The resulting images were graded on a scale of 1 to 5 by three experienced neuroradiologists. Temporal images were preferred over hybrid images. The percentage of nondiagnostic examinations, as agreed upon by two readers, was higher for temporal alone than temporal + hybrid. In addition, also by agreement between two readers, temporal + hybrid images significantly increased the number of bifurcations seen in two views (87%) compared to temporal subtraction alone
Local bifurcations in differential equations with state-dependent delay.
Sieber, Jan
2017-11-01
A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.
A bifurcation analysis for the Lugiato-Lefever equation
Godey, Cyril
2017-05-01
The Lugiato-Lefever equation is a cubic nonlinear Schrödinger equation, including damping, detuning and driving, which arises as a model in nonlinear optics. We study the existence of stationary waves which are found as solutions of a four-dimensional reversible dynamical system in which the evolutionary variable is the space variable. Relying upon tools from bifurcation theory and normal forms theory, we discuss the codimension 1 bifurcations. We prove the existence of various types of steady solutions, including spatially localized, periodic, or quasi-periodic solutions. Contribution to the Topical Issue: "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Local bifurcations in differential equations with state-dependent delay
Sieber, Jan
2017-11-01
A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.
Synchronization of diffusively coupled oscillators near the homoclinic bifurcation
International Nuclear Information System (INIS)
Postnov, D.; Han, Seung Kee; Kook, Hyungtae
1998-09-01
It has been known that a diffusive coupling between two limit cycle oscillations typically leads to the inphase synchronization and also that it is the only stable state in the weak coupling limit. Recently, however, it has been shown that the coupling of the same nature can result in the distinctive dephased synchronization when the limit cycles are close to the homoclinic bifurcation, which often occurs especially for the neuronal oscillators. In this paper we propose a simple physical model using the modified van der Pol equation, which unfolds the generic synchronization behaviors of the latter kind and in which one may readily observe changes in the synchronization behaviors between the distinctive regimes as well. The dephasing mechanism is analyzed both qualitatively and quantitatively in the weak coupling limit. A general form of coupling is introduced and the synchronization behaviors over a wide range of the coupling parameters are explored to construct the phase diagram using the bifurcation analysis. (author)
Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation
Abdelkefi, Abdessattar
2013-06-18
In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.
Bifurcations and Crises in a Shape Memory Oscillator
Directory of Open Access Journals (Sweden)
Luciano G. Machado
2004-01-01
Full Text Available The remarkable properties of shape memory alloys have been motivating the interest in applications in different areas varying from biomedical to aerospace hardware. The dynamical response of systems composed by shape memory actuators presents nonlinear characteristics and a very rich behavior, showing periodic, quasi-periodic and chaotic responses. This contribution analyses some aspects related to bifurcation phenomenon in a shape memory oscillator where the restitution force is described by a polynomial constitutive model. The term bifurcation is used to describe qualitative changes that occur in the orbit structure of a system, as a consequence of parameter changes, being related to chaos. Numerical simulations show that the response of the shape memory oscillator presents period doubling cascades, direct and reverse, and crises.
Limit cycles bifurcating from a perturbed quartic center
Energy Technology Data Exchange (ETDEWEB)
Coll, Bartomeu, E-mail: dmitcv0@ps.uib.ca [Dept. de Matematiques i Informatica, Universitat de les Illes Balears, Facultat de ciencies, 07071 Palma de Mallorca (Spain); Llibre, Jaume, E-mail: jllibre@mat.uab.ca [Dept. de Matematiques, Universitat Autonoma de Barcelona, Edifici Cc 08193 Bellaterra, Barcelona, Catalonia (Spain); Prohens, Rafel, E-mail: dmirps3@ps.uib.ca [Dept. de Matematiques i Informatica, Universitat de les Illes Balears, Facultat de ciencies, 07071 Palma de Mallorca (Spain)
2011-04-15
Highlights: We study polynomial perturbations of a quartic center. We get simultaneous upper and lower bounds for the bifurcating limit cycles. A higher lower bound for the maximum number of limit cycles is obtained. We obtain more limit cycles than the number obtained in the cubic case. - Abstract: We consider the quartic center x{sup .}=-yf(x,y),y{sup .}=xf(x,y), with f(x, y) = (x + a) (y + b) (x + c) and abc {ne} 0. Here we study the maximum number {sigma} of limit cycles which can bifurcate from the periodic orbits of this quartic center when we perturb it inside the class of polynomial vector fields of degree n, using the averaging theory of first order. We prove that 4[(n - 1)/2] + 4 {<=} {sigma} {<=} 5[(n - 1)/2] + 14, where [{eta}] denotes the integer part function of {eta}.
Fold points and singularity induced bifurcation in inviscid transonic flow
International Nuclear Information System (INIS)
Marszalek, Wieslaw
2012-01-01
Transonic inviscid flow equation of elliptic–hyperbolic type when written in terms of the velocity components and similarity variable results in a second order nonlinear ODE having several features typical of differential–algebraic equations rather than ODEs. These features include the fold singularities (e.g. folded nodes and saddles, forward and backward impasse points), singularity induced bifurcation behavior and singularity crossing phenomenon. We investigate the above properties and conclude that the quasilinear DAEs of transonic flow have interesting properties that do not occur in other known quasilinear DAEs, for example, in MHD. Several numerical examples are included. -- Highlights: ► A novel analysis of inviscid transonic flow and its similarity solutions. ► Singularity induced bifurcation, singular points of transonic flow. ► Projection method, index of transonic flow DAEs, linearization via matrix pencil.
Bifurcation theory applied to buckling states of a cylindrical shell
Chaskalovic, J.; Naili, S.
1995-01-01
Veins, bronchii, and many other vessels in the human body are flexible enough to be capable of collapse if submitted to suitable applied external and internal loads. One way to describe this phenomenon is to consider an inextensible elastic and infinite tube, with a circular cross section in the reference configuration, subjected to a uniform external pressure. In this paper, we establish that the nonlinear equilibrium equation for this model has nontrivial solutions which appear for critical values of the pressure. To this end, the tools we use are the Liapunov-Schmidt decomposition and the bifurcation theorem for simple multiplicity. We conclude with the bifurcation diagram, showing the dependence between the cross-sectional area and the pressure.
Fully developed turbulence via Feigenbaum's period-doubling bifurcations
International Nuclear Information System (INIS)
Duong-van, M.
1987-08-01
Since its publication in 1978, Feigenbaum's predictions of the onset of turbulence via period-doubling bifurcations have been thoroughly borne out experimentally. In this paper, Feigenbaum's theory is extended into the regime in which we expect to see fully developed turbulence. We develop a method of averaging that imposes correlations in the fluctuating system generated by this map. With this averaging method, the field variable is obtained by coarse-graining, while microscopic fluctuations are preserved in all averaging scales. Fully developed turbulence will be shown to be a result of microscopic fluctuations with proper averaging. Furthermore, this model preserves Feigenbaum's results on the physics of bifurcations at the onset of turbulence while yielding additional physics both at the onset of turbulence and in the fully developed turbulence regime
Structural bifurcation of microwave helium jet discharge at atmospheric pressure
International Nuclear Information System (INIS)
Takamura, Shuichi; Kitoh, Masakazu; Soga, Tadasuke
2008-01-01
Structural bifurcation of microwave-sustained jet discharge at atmospheric gas pressure was found to produce a stable helium plasma jet, which may open the possibility of a new type of high-flux test plasma beam for plasma-wall interactions in fusion devices. The fundamental discharge properties are presented including hysteresis characteristics, imaging of discharge emissive structure, and stable ignition parameter area. (author)
Bifurcation analysis of magnetization dynamics driven by spin transfer
International Nuclear Information System (INIS)
Bertotti, G.; Magni, A.; Bonin, R.; Mayergoyz, I.D.; Serpico, C.
2005-01-01
Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined
Bifurcation analysis of magnetization dynamics driven by spin transfer
Energy Technology Data Exchange (ETDEWEB)
Bertotti, G. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Magni, A. [IEN Galileo Ferraris, Strada delle Cacce 91, 10135 Turin (Italy); Bonin, R. [Dipartimento di Fisica, Politecnico di Torino, Corso degli Abbruzzi, 10129 Turin (Italy)]. E-mail: bonin@ien.it; Mayergoyz, I.D. [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Serpico, C. [Department of Electrical Engineering, University of Napoli Federico II, via Claudio 21, 80125 Naples (Italy)
2005-04-15
Nonlinear magnetization dynamics under spin-polarized currents is discussed by the methods of the theory of nonlinear dynamical systems. The fixed points of the dynamics are calculated. It is shown that there may exist 2, 4, or 6 fixed points depending on the values of the external field and of the spin-polarized current. The stability of the fixed points is analyzed and the conditions for the occurrence of saddle-node and Hopf bifurcations are determined.
An alternative bifurcation analysis of the Rose-Hindmarsh model
International Nuclear Information System (INIS)
Nikolov, Svetoslav
2005-01-01
The paper presents an alternative study of the bifurcation behavior of the Rose-Hindmarsh model using Lyapunov-Andronov's theory. This is done on the basis of the obtained analytical formula expressing the first Lyapunov's value (this is not Lyapunov exponent) at the boundary of stability. From the obtained results the following new conclusions are made: Transition to chaos and the occurrence of chaotic oscillations in the Rose-Hindmarsh system take place under hard stability loss
Stability and bifurcation of an SIS epidemic model with treatment
International Nuclear Information System (INIS)
Li Xuezhi; Li Wensheng; Ghosh, Mini
2009-01-01
An SIS epidemic model with a limited resource for treatment is introduced and analyzed. It is assumed that treatment rate is proportional to the number of infectives below the capacity and is a constant when the number of infectives is greater than the capacity. It is found that a backward bifurcation occurs if the capacity is small. It is also found that there exist bistable endemic equilibria if the capacity is low.
Bifurcation in Z2-symmetry quadratic polynomial systems with delay
International Nuclear Information System (INIS)
Zhang Chunrui; Zheng Baodong
2009-01-01
Z 2 -symmetry systems are considered. Firstly the general forms of Z 2 -symmetry quadratic polynomial system are given, and then a three-dimensional Z 2 equivariant system is considered, which describes the relations of two predator species for a single prey species. Finally, the explicit formulas for determining the Fold and Hopf bifurcations are obtained by using the normal form theory and center manifold argument.
Experimental Investigation of Bifurcations in a Thermoacoustic Engine
Vishnu R. Unni; Yogesh M. S. Prasaad; N. T. Ravi; S. Md Iqbal; Bala Pesala; R. I. Sujith
2015-01-01
In this study, variation in the characteristics of the pressure oscillations in a thermoacoustic engine is explored as the input heat flux is varied. A bifurcation diagram is plotted to study the variation in the qualitative behavior of the acoustic oscillations as the input heat flux changes. At a critical input heat flux (60 Watt), the engine begins to produce acoustic oscillations in its fundamental longitudinal mode. As the input heat flux is increased, incommensurate frequencies appear i...
Streamline topology: Patterns in fluid flows and their bifurcations
DEFF Research Database (Denmark)
Brøns, Morten
2007-01-01
Using dynamical systems theory, we consider structures such as vortices and separation in the streamline patterns of fluid flows. Bifurcation of patterns under variation of external parameters is studied using simplifying normal form transformations. Flows away from boundaries, flows close to fix...... walls, and axisymmetric flows are analyzed in detail. We show how to apply the ideas from the theory to analyze numerical simulations of the vortex breakdown in a closed cylindrical container....
Application of the bifurcation method to the modified Boussinesq equation
Directory of Open Access Journals (Sweden)
Shaoyong Li
2014-08-01
Firstly, we give a property of the solutions of the equation, that is, if $1+u(x, t$ is a solution, so is $1-u(x, t$. Secondly, by using the bifurcation method of dynamical systems we obtain some explicit expressions of solutions for the equation, which include kink-shaped solutions, blow-up solutions, periodic blow-up solutions and solitary wave solutions. Some previous results are extended.
Spiral blood flow in aorta-renal bifurcation models.
Javadzadegan, Ashkan; Simmons, Anne; Barber, Tracie
2016-01-01
The presence of a spiral arterial blood flow pattern in humans has been widely accepted. It is believed that this spiral component of the blood flow alters arterial haemodynamics in both positive and negative ways. The purpose of this study was to determine the effect of spiral flow on haemodynamic changes in aorta-renal bifurcations. In this regard, a computational fluid dynamics analysis of pulsatile blood flow was performed in two idealised models of aorta-renal bifurcations with and without flow diverter. The results show that the spirality effect causes a substantial variation in blood velocity distribution, while causing only slight changes in fluid shear stress patterns. The dominant observed effect of spiral flow is on turbulent kinetic energy and flow recirculation zones. As spiral flow intensity increases, the rate of turbulent kinetic energy production decreases, reducing the region of potential damage to red blood cells and endothelial cells. Furthermore, the recirculation zones which form on the cranial sides of the aorta and renal artery shrink in size in the presence of spirality effect; this may lower the rate of atherosclerosis development and progression in the aorta-renal bifurcation. These results indicate that the spiral nature of blood flow has atheroprotective effects in renal arteries and should be taken into consideration in analyses of the aorta and renal arteries.
Bifurcation and category learning in network models of oscillating cortex
Baird, Bill
1990-06-01
A genetic model of oscillating cortex, which assumes “minimal” coupling justified by known anatomy, is shown to function as an associative memory, using previously developed theory. The network has explicit excitatory neurons with local inhibitory interneuron feedback that forms a set of nonlinear oscillators coupled only by long-range excitatory connections. Using a local Hebb-like learning rule for primary and higher-order synapses at the ends of the long-range connections, the system learns to store the kinds of oscillation amplitude patterns observed in olfactory and visual cortex. In olfaction, these patterns “emerge” during respiration by a pattern forming phase transition which we characterize in the model as a multiple Hopf bifurcation. We argue that these bifurcations play an important role in the operation of real digital computers and neural networks, and we use bifurcation theory to derive learning rules which analytically guarantee CAM storage of continuous periodic sequences-capacity: N/2 Fourier components for an N-node network-no “spurious” attractors.
Endodontic-periodontic bifurcation lesions: a novel treatment option.
Lin, Shaul; Tillinger, Gabriel; Zuckerman, Offer
2008-05-01
The purpose of this preliminary clinical report is to suggest a novel treatment modality for periodontal bifurcation lesions of endodontic origin. The study consisted of 11 consecutive patients who presented with periodontal bifurcation lesions of endodontic origin (endo-perio lesions). All patients were followed-up for at least 12 months. Treatment included calcium hydroxide with iodine-potassium iodide placed in the root canals for 90 days followed by canal sealing with gutta-percha and cement during a second stage. Dentin bonding was used to seal the furcation floor to prevent the ingress of bacteria and their by-products to the furcation root area through the accessory canals. A radiographic examination showed complete healing of the periradicular lesion in all patients. Probing periodontal pocket depths decreased to 2 to 4 mm (mean 3.5 mm), and resolution of the furcation involvement was observed in post-operative clinical evaluations. The suggested treatment of endo-perio lesions may result in complete healing. Further studies are warranted. This treatment method improves both the disinfection of the bifurcation area and the healing process in endodontically treated teeth considered to be hopeless.
Ternary choices in repeated games and border collision bifurcations
International Nuclear Information System (INIS)
Dal Forno, Arianna; Gardini, Laura; Merlone, Ugo
2012-01-01
Highlights: ► We extend a model of binary choices with externalities to include more alternatives. ► Introducing one more option affects the complexity of the dynamics. ► We find bifurcation structures which where impossible to observe in binary choices. ► A ternary choice cannot simply be considered as a binary choice plus one. - Abstract: Several recent contributions formalize and analyze binary choices games with externalities as those described by Schelling. Nevertheless, in the real world choices are not always binary, and players have often to decide among more than two alternatives. These kinds of interactions are examined in game theory where, starting from the well known rock-paper-scissor game, several other kinds of strategic interactions involving more than two choices are examined. In this paper we investigate how the dynamics evolve introducing one more option in binary choice games with externalities. The dynamics we obtain are always in a stable regime, that is, the structurally stable dynamics are only attracting cycles, but of any possible positive integer as period. We show that, depending on the structure of the game, the dynamics can be quite different from those existing when considering binary choices. The bifurcation structure, due to border collisions, is explained, showing the existence of so-called big-bang bifurcation points.
Observation of bifurcation phenomena in an electron beam plasma system
International Nuclear Information System (INIS)
Hayashi, N.; Tanaka, M.; Shinohara, S.; Kawai, Y.
1995-01-01
When an electron beam is injected into a plasma, unstable waves are excited spontaneously near the electron plasma frequency f pe by the electron beam plasma instability. The experiment on subharmonics in an electron beam plasma system was performed with a glow discharge tube. The bifurcation of unstable waves with the electron plasma frequency f pe and 1/2 f pe was observed using a double-plasma device. Furthermore, the period doubling route to chaos around the ion plasma frequency in an electron beam plasma system was reported. However, the physical mechanism of bifurcation phenomena in an electron beam plasma system has not been clarified so far. We have studied nonlinear behaviors of the electron beam plasma instability. It was found that there are some cases: the fundamental unstable waves and subharmonics of 2 period are excited by the electron beam plasma instability, the fundamental unstable waves and subharmonics of 3 period are excited. In this paper, we measured the energy distribution functions of electrons and the dispersion relation of test waves in order to examine the physical mechanism of bifurcation phenomena in an electron beam plasma system
Reverse bifurcation and fractal of the compound logistic map
Wang, Xingyuan; Liang, Qingyong
2008-07-01
The nature of the fixed points of the compound logistic map is researched and the boundary equation of the first bifurcation of the map in the parameter space is given out. Using the quantitative criterion and rule of chaotic system, the paper reveal the general features of the compound logistic map transforming from regularity to chaos, the following conclusions are shown: (1) chaotic patterns of the map may emerge out of double-periodic bifurcation and (2) the chaotic crisis phenomena and the reverse bifurcation are found. At the same time, we analyze the orbit of critical point of the compound logistic map and put forward the definition of Mandelbrot-Julia set of compound logistic map. We generalize the Welstead and Cromer's periodic scanning technology and using this technology construct a series of Mandelbrot-Julia sets of compound logistic map. We investigate the symmetry of Mandelbrot-Julia set and study the topological inflexibility of distributing of period region in the Mandelbrot set, and finds that Mandelbrot set contain abundant information of structure of Julia sets by founding the whole portray of Julia sets based on Mandelbrot set qualitatively.
Bifurcation in autonomous and nonautonomous differential equations with discontinuities
Akhmet, Marat
2017-01-01
This book is devoted to bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types. That is, those with jumps present either in the right-hand-side or in trajectories or in the arguments of solutions of equations. The results obtained in this book can be applied to various fields such as neural networks, brain dynamics, mechanical systems, weather phenomena, population dynamics, etc. Without any doubt, bifurcation theory should be further developed to different types of differential equations. In this sense, the present book will be a leading one in this field. The reader will benefit from the recent results of the theory and will learn in the very concrete way how to apply this theory to differential equations with various types of discontinuity. Moreover, the reader will learn new ways to analyze nonautonomous bifurcation scenarios in these equations. The book will be of a big interest both for beginners and experts in the field. For the former group o...
Hopf Bifurcation Control of Subsynchronous Resonance Utilizing UPFC
Directory of Open Access Journals (Sweden)
Μ. Μ. Alomari
2017-06-01
Full Text Available The use of a unified power flow controller (UPFC to control the bifurcations of a subsynchronous resonance (SSR in a multi-machine power system is introduced in this study. UPFC is one of the flexible AC transmission systems (FACTS where a voltage source converter (VSC is used based on gate-turn-off (GTO thyristor valve technology. Furthermore, UPFC can be used as a stabilizer by means of a power system stabilizer (PSS. The considered system is a modified version of the second system of the IEEE second benchmark model of subsynchronous resonance where the UPFC is added to its transmission line. The dynamic effects of the machine components on SSR are considered. Time domain simulations based on the complete nonlinear dynamical mathematical model are used for numerical simulations. The results in case of including UPFC are compared to the case where the transmission line is conventionally compensated (without UPFC where two Hopf bifurcations are predicted with unstable operating point at wide range of compensation levels. For UPFC systems, it is worth to mention that the operating point of the system never loses stability at all realistic compensation degrees and therefore all power system bifurcations have been eliminated.
Nonlinear stability, bifurcation and resonance in granular plane Couette flow
Shukla, Priyanka; Alam, Meheboob
2010-11-01
A weakly nonlinear stability theory is developed to understand the effect of nonlinearities on various linear instability modes as well as to unveil the underlying bifurcation scenario in a two-dimensional granular plane Couette flow. The relevant order parameter equation, the Landau-Stuart equation, for the most unstable two-dimensional disturbance has been derived using the amplitude expansion method of our previous work on the shear-banding instability.ootnotetextShukla and Alam, Phys. Rev. Lett. 103, 068001 (2009). Shukla and Alam, J. Fluid Mech. (2010, accepted). Two types of bifurcations, Hopf and pitchfork, that result from travelling and stationary linear instabilities, respectively, are analysed using the first Landau coefficient. It is shown that the subcritical instability can appear in the linearly stable regime. The present bifurcation theory shows that the flow is subcritically unstable to disturbances of long wave-lengths (kx˜0) in the dilute limit, and both the supercritical and subcritical states are possible at moderate densities for the dominant stationary and traveling instabilities for which kx=O(1). We show that the granular plane Couette flow is prone to a plethora of resonances.ootnotetextShukla and Alam, J. Fluid Mech. (submitted, 2010)
Bifurcation-based approach reveals synergism and optimal combinatorial perturbation.
Liu, Yanwei; Li, Shanshan; Liu, Zengrong; Wang, Ruiqi
2016-06-01
Cells accomplish the process of fate decisions and form terminal lineages through a series of binary choices in which cells switch stable states from one branch to another as the interacting strengths of regulatory factors continuously vary. Various combinatorial effects may occur because almost all regulatory processes are managed in a combinatorial fashion. Combinatorial regulation is crucial for cell fate decisions because it may effectively integrate many different signaling pathways to meet the higher regulation demand during cell development. However, whether the contribution of combinatorial regulation to the state transition is better than that of a single one and if so, what the optimal combination strategy is, seem to be significant issue from the point of view of both biology and mathematics. Using the approaches of combinatorial perturbations and bifurcation analysis, we provide a general framework for the quantitative analysis of synergism in molecular networks. Different from the known methods, the bifurcation-based approach depends only on stable state responses to stimuli because the state transition induced by combinatorial perturbations occurs between stable states. More importantly, an optimal combinatorial perturbation strategy can be determined by investigating the relationship between the bifurcation curve of a synergistic perturbation pair and the level set of a specific objective function. The approach is applied to two models, i.e., a theoretical multistable decision model and a biologically realistic CREB model, to show its validity, although the approach holds for a general class of biological systems.
Bifurcating Particle Swarms in Smooth-Walled Fractures
Pyrak-Nolte, L. J.; Sun, H.
2010-12-01
Particle swarms can occur naturally or from industrial processes where small liquid drops containing thousands to millions of micron-size to colloidal-size particles are released over time from seepage or leaks into fractured rock. The behavior of these particle swarms as they fall under gravity are affected by particle interactions as well as interactions with the walls of the fractures. In this paper, we present experimental results on the effect of fractures on the cohesiveness of the swarm and the formation of bifurcation structures as they fall under gravity and interact with the fracture walls. A transparent cubic sample (100 mm x 100 mm x 100 mm) containing a synthetic fracture with uniform aperture distributions was optically imaged to quantify the effect of confinement within fractures on particle swarm formation, swarm velocity, and swarm geometry. A fracture with a uniform aperture distribution was fabricated from two polished rectangular prisms of acrylic. A series of experiments were performed to determine how swarm movement and geometry are affected as the walls of the fracture are brought closer together from 50 mm to 1 mm. During the experiments, the fracture was fully saturated with water. We created the swarms using two different particle sizes in dilute suspension (~ 1.0% by mass). The particles were 3 micron diameter fluorescent polymer beads and 25 micron diameter soda-lime glass beads. Experiments were performed using swarms that ranged in size from 5 µl to 60 µl. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera illuminated by a 100 mW diode-pumped doubled YAG laser. As a swarm falls in an open-tank of water, it forms a torroidal shape that is stable as long as no ambient or background currents exist in the water tank. When a swarm is released into a fracture with an aperture less than 5 mm, the swarm forms the torroidal shape but it is distorted because of the presence of the walls. The
Modelling, singular perturbation and bifurcation analyses of bitrophic food chains.
Kooi, B W; Poggiale, J C
2018-04-20
Two predator-prey model formulations are studied: for the classical Rosenzweig-MacArthur (RM) model and the Mass Balance (MB) chemostat model. When the growth and loss rate of the predator is much smaller than that of the prey these models are slow-fast systems leading mathematically to singular perturbation problem. In contradiction to the RM-model, the resource for the prey are modelled explicitly in the MB-model but this comes with additional parameters. These parameter values are chosen such that the two models become easy to compare. In both models a transcritical bifurcation, a threshold above which invasion of predator into prey-only system occurs, and the Hopf bifurcation where the interior equilibrium becomes unstable leading to a stable limit cycle. The fast-slow limit cycles are called relaxation oscillations which for increasing differences in time scales leads to the well known degenerated trajectories being concatenations of slow parts of the trajectory and fast parts of the trajectory. In the fast-slow version of the RM-model a canard explosion of the stable limit cycles occurs in the oscillatory region of the parameter space. To our knowledge this type of dynamics has not been observed for the RM-model and not even for more complex ecosystem models. When a bifurcation parameter crosses the Hopf bifurcation point the amplitude of the emerging stable limit cycles increases. However, depending of the perturbation parameter the shape of this limit cycle changes abruptly from one consisting of two concatenated slow and fast episodes with small amplitude of the limit cycle, to a shape with large amplitude of which the shape is similar to the relaxation oscillation, the well known degenerated phase trajectories consisting of four episodes (concatenation of two slow and two fast). The canard explosion point is accurately predicted by using an extended asymptotic expansion technique in the perturbation and bifurcation parameter simultaneously where the small
Codimension-two bifurcation analysis on firing activities in Chay neuron model
International Nuclear Information System (INIS)
Duan Lixia; Lu Qishao
2006-01-01
Using codimension-two bifurcation analysis in the Chay neuron model, the relationship between the electric activities and the parameters of neurons is revealed. The whole parameter space is divided into two parts, that is, the firing and silence regions of neurons. It is found that the transition sets between firing and silence regions are composed of the Hopf bifurcation curves of equilibrium states and the saddle-node bifurcation curves of limit cycles, with some codimension-two bifurcation points. The transitions from silence to firing in neurons are due to the Hopf bifurcation or the fold limit cycle bifurcation, but the codimension-two singularities lead to complexity in dynamical behaviour of neuronal firing
Codimension-Two Bifurcation Analysis in DC Microgrids Under Droop Control
Lenz, Eduardo; Pagano, Daniel J.; Tahim, André P. N.
This paper addresses local and global bifurcations that may appear in electrical power systems, such as DC microgrids, which recently has attracted interest from the electrical engineering society. Most sources in these networks are voltage-type and operate in parallel. In such configuration, the basic technique for stabilizing the bus voltage is the so-called droop control. The main contribution of this work is a codimension-two bifurcation analysis of a small DC microgrid considering the droop control gain and the power processed by the load as bifurcation parameters. The codimension-two bifurcation set leads to practical rules for achieving a robust droop control design. Moreover, the bifurcation analysis also offers a better understanding of the dynamics involved in the problem and how to avoid possible instabilities. Simulation results are presented in order to illustrate the bifurcation analysis.
Global Hopf Bifurcation for a Predator-Prey System with Three Delays
Jiang, Zhichao; Wang, Lin
2017-06-01
In this paper, a delayed predator-prey model is considered. The existence and stability of the positive equilibrium are investigated by choosing the delay τ = τ1 + τ2 as a bifurcation parameter. We see that Hopf bifurcation can occur as τ crosses some critical values. The direction of the Hopf bifurcations and the stability of the bifurcation periodic solutions are also determined by using the center manifold and normal form theory. Furthermore, based on the global Hopf bifurcation theorem for general function differential equations, which was established by J. Wu using fixed point theorem and degree theory methods, the existence of global Hopf bifurcation is investigated. Finally, numerical simulations to support the analytical conclusions are carried out.
Codimension-two bifurcation analysis on firing activities in Chay neuron model
Energy Technology Data Exchange (ETDEWEB)
Duan Lixia [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Lu Qishao [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)]. E-mail: qishaolu@hotmail.com
2006-12-15
Using codimension-two bifurcation analysis in the Chay neuron model, the relationship between the electric activities and the parameters of neurons is revealed. The whole parameter space is divided into two parts, that is, the firing and silence regions of neurons. It is found that the transition sets between firing and silence regions are composed of the Hopf bifurcation curves of equilibrium states and the saddle-node bifurcation curves of limit cycles, with some codimension-two bifurcation points. The transitions from silence to firing in neurons are due to the Hopf bifurcation or the fold limit cycle bifurcation, but the codimension-two singularities lead to complexity in dynamical behaviour of neuronal firing.
Sliding bifurcations and chaos induced by dry friction in a braking system
International Nuclear Information System (INIS)
Yang, F.H.; Zhang, W.; Wang, J.
2009-01-01
In this paper, non-smooth bifurcations and chaotic dynamics are investigated for a braking system. A three-degree-of-freedom model is considered to capture the complicated nonlinear characteristics, in particular, non-smooth bifurcations in the braking system. The stick-slip transition is analyzed for the braking system. From the results of numerical simulation, it is observed that there also exist the grazing-sliding bifurcation and stick-slip chaos in the braking system.
Stability and Hopf Bifurcation in a Delayed SEIRS Worm Model in Computer Network
Directory of Open Access Journals (Sweden)
Zizhen Zhang
2013-01-01
Full Text Available A delayed SEIRS epidemic model with vertical transmission in computer network is considered. Sufficient conditions for local stability of the positive equilibrium and existence of local Hopf bifurcation are obtained by analyzing distribution of the roots of the associated characteristic equation. Furthermore, the direction of the local Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by using the normal form theory and center manifold theorem. Finally, a numerical example is presented to verify the theoretical analysis.
Bifurcation Analysis of the QI 3-D Four-Wing Chaotic System
International Nuclear Information System (INIS)
Sun, Y.; Qi, G.; Wang, Z.; Wyk, B.J. van
2010-01-01
This paper analyzes the pitchfork and Hopf bifurcations of a new 3-D four-wing quadratic autonomous system proposed by Qi et al. The center manifold technique is used to reduce the dimensions of this system. The pitchfork and Hopf bifurcations of the system are theoretically analyzed. The influence of system parameters on other bifurcations are also investigated. The theoretical analysis and simulations demonstrate the rich dynamics of the system. (authors)
Period-doubling bifurcation and chaos control in a discrete-time mosquito model
Directory of Open Access Journals (Sweden)
Qamar Din
2017-12-01
Full Text Available This article deals with the study of some qualitative properties of a discrete-time mosquito Model. It is shown that there exists period-doubling bifurcation for wide range of bifurcation parameter for the unique positive steady-state of given system. In order to control the bifurcation we introduced a feedback strategy. For further confirmation of complexity and chaotic behavior largest Lyapunov exponents are plotted.
Stability and bifurcation of a discrete BAM neural network model with delays
International Nuclear Information System (INIS)
Zheng Baodong; Zhang Yang; Zhang Chunrui
2008-01-01
A map modelling a discrete bidirectional associative memory neural network with delays is investigated. Its dynamics is studied in terms of local analysis and Hopf bifurcation analysis. By analyzing the associated characteristic equation, its linear stability is investigated and Hopf bifurcations are demonstrated. It is found that there exist Hopf bifurcations when the delay passes a sequence of critical values. Numerical simulation is performed to verify the analytical results
International Nuclear Information System (INIS)
Karaoglu, Esra; Merdan, Huseyin
2014-01-01
Highlights: • A ratio-dependent predator–prey system involving two discrete maturation time delays is studied. • Hopf bifurcations are analyzed by choosing delay parameters as bifurcation parameters. • When a delay parameter passes through a critical value, Hopf bifurcations occur. • The direction of bifurcation, the period and the stability of periodic solution are also obtained. - Abstract: In this paper we give a detailed Hopf bifurcation analysis of a ratio-dependent predator–prey system involving two different discrete delays. By analyzing the characteristic equation associated with the model, its linear stability is investigated. Choosing delay terms as bifurcation parameters the existence of Hopf bifurcations is demonstrated. Stability of the bifurcating periodic solutions is determined by using the center manifold theorem and the normal form theory introduced by Hassard et al. Furthermore, some of the bifurcation properties including direction, stability and period are given. Finally, theoretical results are supported by some numerical simulations
Analysis of stability and Hopf bifurcation for a viral infectious model with delay
International Nuclear Information System (INIS)
Sun Chengjun; Cao Zhijie; Lin Yiping
2007-01-01
In this paper, a four-dimensional viral infectious model with delay is considered. The stability of the two equilibria and the existence of Hopf bifurcation are investigated. It is found that there are stability switches and Hopf bifurcations occur when the delay τ passes through a sequence of critical values. Using the normal form theory and center manifold argument [Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981], the explicit formulaes which determine the stability, the direction and the period of bifurcating periodic solutions are derived. Numerical simulations are carried out to illustrate the validity of the main results
Bifurcation structure of localized states in the Lugiato-Lefever equation with anomalous dispersion
Parra-Rivas, P.; Gomila, D.; Gelens, L.; Knobloch, E.
2018-04-01
The origin, stability, and bifurcation structure of different types of bright localized structures described by the Lugiato-Lefever equation are studied. This mean field model describes the nonlinear dynamics of light circulating in fiber cavities and microresonators. In the case of anomalous group velocity dispersion and low values of the intracavity phase detuning these bright states are organized in a homoclinic snaking bifurcation structure. We describe how this bifurcation structure is destroyed when the detuning is increased across a critical value, and determine how a bifurcation structure known as foliated snaking emerges.
Hopf bifurcation in a delayed reaction-diffusion-advection population model
Chen, Shanshan; Lou, Yuan; Wei, Junjie
2018-04-01
In this paper, we investigate a reaction-diffusion-advection model with time delay effect. The stability/instability of the spatially nonhomogeneous positive steady state and the associated Hopf bifurcation are investigated when the given parameter of the model is near the principle eigenvalue of an elliptic operator. Our results imply that time delay can make the spatially nonhomogeneous positive steady state unstable for a reaction-diffusion-advection model, and the model can exhibit oscillatory pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values is also considered, and our results suggest that Hopf bifurcation is more likely to occur when the advection rate increases.
A numerical study of crack initiation in a bcc iron system based on dynamic bifurcation theory
International Nuclear Information System (INIS)
Li, Xiantao
2014-01-01
Crack initiation under dynamic loading conditions is studied under the framework of dynamic bifurcation theory. An atomistic model for BCC iron is considered to explicitly take into account the detailed molecular interactions. To understand the strain-rate dependence of the crack initiation process, we first obtain the bifurcation diagram from a computational procedure using continuation methods. The stability transition associated with a crack initiation, as well as the connection to the bifurcation diagram, is studied by comparing direct numerical results to the dynamic bifurcation theory [R. Haberman, SIAM J. Appl. Math. 37, 69–106 (1979)].
Numerical Hopf bifurcation of Runge-Kutta methods for a class of delay differential equations
International Nuclear Information System (INIS)
Wang Qiubao; Li Dongsong; Liu, M.Z.
2009-01-01
In this paper, we consider the discretization of parameter-dependent delay differential equation of the form y ' (t)=f(y(t),y(t-1),τ),τ≥0,y element of R d . It is shown that if the delay differential equation undergoes a Hopf bifurcation at τ=τ * , then the discrete scheme undergoes a Hopf bifurcation at τ(h)=τ * +O(h p ) for sufficiently small step size h, where p≥1 is the order of the Runge-Kutta method applied. The direction of numerical Hopf bifurcation and stability of bifurcating invariant curve are the same as that of delay differential equation.
Stability and bifurcation analysis in a kind of business cycle model with delay
International Nuclear Information System (INIS)
Zhang Chunrui; Wei Junjie
2004-01-01
A kind of business cycle model with delay is considered. Firstly, the linear stability of the model is studied and bifurcation set is drawn in the appropriate parameter plane. It is found that there exist Hopf bifurcations when the delay passes a sequence of critical values. Then the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are derived, using the normal form method and center manifold theorem. Finally, a group conditions to guarantee the global existence of periodic solutions is given, and numerical simulations are performed to illustrate the analytical results found
Stability, bifurcation and a new chaos in the logistic differential equation with delay
International Nuclear Information System (INIS)
Jiang Minghui; Shen Yi; Jian Jigui; Liao Xiaoxin
2006-01-01
This Letter is concerned with bifurcation and chaos in the logistic delay differential equation with a parameter r. The linear stability of the logistic equation is investigated by analyzing the associated characteristic transcendental equation. Based on the normal form approach and the center manifold theory, the formula for determining the direction of Hopf bifurcation and the stability of bifurcation periodic solution in the first bifurcation values is obtained. By theoretical analysis and numerical simulation, we found a new chaos in the logistic delay differential equation
Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection.
Cao, Hui; Zhou, Yicang; Ma, Zhien
2013-01-01
A discrete SIS epidemic model with the bilinear incidence depending on the new infection is formulated and studied. The condition for the global stability of the disease free equilibrium is obtained. The existence of the endemic equilibrium and its stability are investigated. More attention is paid to the existence of the saddle-node bifurcation, the flip bifurcation, and the Hopf bifurcation. Sufficient conditions for those bifurcations have been obtained. Numerical simulations are conducted to demonstrate our theoretical results and the complexity of the model.
Delay Induced Hopf Bifurcation of an Epidemic Model with Graded Infection Rates for Internet Worms
Directory of Open Access Journals (Sweden)
Tao Zhao
2017-01-01
Full Text Available A delayed SEIQRS worm propagation model with different infection rates for the exposed computers and the infectious computers is investigated in this paper. The results are given in terms of the local stability and Hopf bifurcation. Sufficient conditions for the local stability and the existence of Hopf bifurcation are obtained by using eigenvalue method and choosing the delay as the bifurcation parameter. In particular, the direction and the stability of the Hopf bifurcation are investigated by means of the normal form theory and center manifold theorem. Finally, a numerical example is also presented to support the obtained theoretical results.
Bifurcation of the Kuroshio Extension at the Shatsky Rise
Hurlburt, Harley E.; Metzger, E. Joseph
1998-04-01
A 1/16° six-layer Pacific Ocean model north of 20°S is used to investigate the bifurcation of the Kuroshio Extension at the main Shatsky Rise and the pathway of the northern branch from the bifurcation to the subarctic front. Upper ocean-topographic coupling via a mixed barotropic-baroclinic instability is essential to this bifurcation and to the formation and mean pathway of the northern branch as are several aspects of the Shatsky Rise complex of topography and the latitude of the Kuroshio Extension in relation to the topography. The flow instabilities transfer energy to the abyssal layer where it is constrained by geostrophic contours of the bottom topography. The topographically constrained abyssal currents in turn steer upper ocean currents, which do not directly impinge on the bottom topography. This includes steering of mean pathways. Obtaining sufficient coupling requires very fine resolution of mesoscale variability and sufficient eastward penetration of the Kuroshio as an unstable inertial jet. Resolution of 1/8° for each variable was not sufficient in this case. The latitudinal extent of the main Shatsky Rise (31°N-36°N) and the shape of the downward slope on the north side are crucial to the bifurcation at the main Shatsky Rise, with both branches passing north of the peak. The well-defined, relatively steep and straight eastern edge of the Shatsky Rise topographic complex (30°N-42°N) and the southwestward abyssal flow along it play a critical role in forming the rest of the Kuroshio northern branch which flows in the opposite direction. A deep pass between the main Shatsky Rise and the rest of the ridge to the northeast helps to link the northern fork of the bifurcation at the main rise to the rest of the northern branch. Two 1/16° "identical twin" interannual simulations forced by daily winds 1981-1995 show that the variability in this region is mostly nondeterministic on all timescales that could be examined (up to 7 years in these 15-year
Dynamical Regimes and the Dynamo Bifurcation in Geodynamo Simulations
Petitdemange, L.
2017-12-01
We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core : in a rotating spherical shell with thermally driven motions with no-slip boundaries. Unlike previous studies on dynamo bifurcations, the control parameters have been varied significantly in order to deduce general tendencies. Numerical studies on the stability domain of dipolar magnetic fields found a dichotomy between non-reversing dipole-dominated dynamos and the reversing non-dipole-dominated multipolar solutions. We show that, by considering weak initial fields, the above transition is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. Such a result was also observed in models with free-slip boundaries in which the strong shear of geostrophic zonal flows can develop and gives rise to non-dipolar fields. We show that a similar process develops in no-slip models when viscous effects are reduced sufficiently.Close to the onset of convection (Rac), the axial dipole grows exponentially in the kinematic phase and saturation occurs by marginally changing the flow structure close to the dynamo threshold Rmc. The resulting bifurcation is then supercritical.In the range 3RacIf (Ra/Ra_c>10), important zonal flows develop in non-magnetic models with low viscosity. The field topology depends on the initial magnetic field. The dipolar branch has a subcritical behaviour whereas the multipolar branch is supercritical. By approaching more realistic parameters, the extension of this bistable regime increases (lower Rossby numbers). An hysteretic behaviour questions the common interpretation for geomagnetic reversals. Far above Rm_c$, the Lorentz force becomes dominant, as it is expected in planetary cores.
Dynamic stability and bifurcation analysis in fractional thermodynamics
Béda, Péter B.
2018-02-01
In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity
Technique and results of femoral bifurcation endarterectomy by eversion.
Dufranc, Julie; Palcau, Laura; Heyndrickx, Maxime; Gouicem, Djelloul; Coffin, Olivier; Felisaz, Aurélien; Berger, Ludovic
2015-03-01
This study evaluated, in a contemporary prospective series, the safety and efficacy of femoral endarterectomy using the eversion technique and compared our results with results obtained in the literature for the standard endarterectomy with patch closure. Between 2010 and 2012, 121 patients (76% male; mean age, 68.7 years; diabetes, 28%; renal insufficiency, 20%) underwent 147 consecutive femoral bifurcation endarterectomies using the eversion technique, associating or not inflow or outflow concomitant revascularization. The indications were claudication in 89 procedures (60%) and critical limb ischemia in 58 (40%). Primary, primary assisted, and secondary patency of the femoral bifurcation, clinical improvement, limb salvage, and survival were assessed using Kaplan-Meier life-table analysis. Factors associated with those primary end-points were evaluated with univariate analysis. The technical success of eversion was of 93.2%. The 30-day mortality was 0%, and the complication rate was 8.2%; of which, half were local and benign. Median follow-up was 16 months (range, 1.6-31.2 months). Primary, primary assisted, and secondary patencies were, respectively, 93.2%, 97.2%, and 98.6% at 2 years. Primary, primary assisted, and secondary maintenance of clinical improvement were, respectively, 79.9%, 94.6%, and 98.6% at 2 years. The predictive factors for clinical degradation were clinical stage (Rutherford category 5 or 6, P = .024), platelet aggregation inhibitor treatment other than clopidogrel (P = .005), malnutrition (P = .025), and bad tibial runoff (P = .0016). A reintervention was necessary in 18.3% of limbs at 2 years: 2% involving femoral bifurcation, 6.1% inflow improvement, and 9.5% outflow improvement. The risk factors of reintervention were platelet aggregation inhibitor (other than clopidogrel, P = .049) and cancer (P = .011). Limb preservation at 2 years was 100% in the claudicant population. Limb salvage was 88.6% in the critical limb ischemia population
One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures
DEFF Research Database (Denmark)
Belykh, Vladimir N.; Mosekilde, Erik
1996-01-01
The paper presents a qualitative analysis of coupled map lattices (CMLs) for the case of arbitrary nonlinearity of the local map and with space-shift as well as diffusion coupling. The effect of synchronization where, independently of the initial conditions, all elements of a CML acquire uniform...... dynamics is investigated and stable chaotic time behaviors, steady structures, and traveling waves are described. Finally, the bifurcations occurring under the transition from spatiotemporal chaos to chaotic synchronization and the peculiarities of CMLs with specific symmetries are discussed....
Stochastic Calculus: Application to Dynamic Bifurcations and Threshold Crossings
Jansons, Kalvis M.; Lythe, G. D.
1998-01-01
For the dynamic pitchfork bifurcation in the presence of white noise, the statistics of the last time at zero are calculated as a function of the noise level ∈ and the rate of change of the parameter μ. The threshold crossing problem used, for example, to model the firing of a single cortical neuron is considered, concentrating on quantities that may be experimentally measurable but have so far received little attention. Expressions for the statistics of pre-threshold excursions, occupation density, and last crossing time of zero are compared with results from numerical generation of paths.
Bifurcation and stability analysis of a nonlinear milling process
Weremczuk, Andrzej; Rusinek, Rafal; Warminski, Jerzy
2018-01-01
Numerical investigations of milling operations dynamics are presented in this paper. A two degree of freedom nonlinear model is used to study workpiece-tool vibrations. The analyzed model takes into account both flexibility of the tool and the workpiece. The dynamics of the milling process is described by the discontinuous ordinary differential equation with time delay, which can cause process instability. First, stability lobes diagrams are created on the basis of the parameters determined in impact test of an end mill and workpiece. Next, the bifurcations diagrams are performed for different values of rotational speeds.
Square-lattice random Potts model: criticality and pitchfork bifurcation
International Nuclear Information System (INIS)
Costa, U.M.S.; Tsallis, C.
1983-01-01
Within a real space renormalization group framework based on self-dual clusters, the criticality of the quenched bond-mixed q-state Potts ferromagnet on square lattice is discussed. On qualitative grounds it is exhibited that the crossover from the pure fixed point to the random one occurs, while q increases, through a pitchfork bifurcation; the relationship with Harris criterion is analyzed. On quantitative grounds high precision numerical values are presented for the critical temperatures corresponding to various concentrations of the coupling constants J 1 and J 2 , and various ratios J 1 /J 2 . The pure, random and crossover critical exponents are discussed as well. (Author) [pt
Bifurcation analysis of dengue transmission model in Baguio City, Philippines
Libatique, Criselda P.; Pajimola, Aprimelle Kris J.; Addawe, Joel M.
2017-11-01
In this study, we formulate a deterministic model for the transmission dynamics of dengue fever in Baguio City, Philippines. We analyzed the existence of the equilibria of the dengue model. We computed and obtained conditions for the existence of the equilibrium states. Stability analysis for the system is carried out for disease free equilibrium. We showed that the system becomes stable under certain conditions of the parameters. A particular parameter is taken and with the use of the Theory of Centre Manifold, the proposed model demonstrates a bifurcation phenomenon. We performed numerical simulation to verify the analytical results.
Bifurcations in two-image photometric stereo for orthogonal illuminations
Kozera, R.; Prokopenya, A.; Noakes, L.; Śluzek, A.
2017-07-01
This paper discusses the ambiguous shape recovery in two-image photometric stereo for a Lambertian surface. The current uniqueness analysis refers to linearly independent light-source directions p = (0, 0, -1) and q arbitrary. For this case necessary and sufficient condition determining ambiguous reconstruction is governed by a second-order linear partial differential equation with constant coefficients. In contrast, a general position of both non-colinear illumination directions p and q leads to a highly non-linear PDE which raises a number of technical difficulties. As recently shown, the latter can also be handled for another family of orthogonal illuminations parallel to the OXZ-plane. For the special case of p = (0, 0, -1) a potential ambiguity stems also from the possible bifurcations of sub-local solutions glued together along a curve defined by an algebraic equation in terms of the data. This paper discusses the occurrence of similar bifurcations for such configurations of orthogonal light-source directions. The discussion to follow is supplemented with examples based on continuous reflectance map model and generated synthetic images.
Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System
Directory of Open Access Journals (Sweden)
Wen-Qing Zhang
2013-01-01
Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.
Modal bifurcation in a high-Tc superconducting levitation system
International Nuclear Information System (INIS)
Taguchi, D; Fujiwara, S; Sugiura, T
2011-01-01
This paper deals with modal bifurcation of a multi-degree-of-freedom high-T c superconducting levitation system. As modeling of large-scale high-T c superconducting levitation applications, where plural superconducting bulks are often used, it can be helpful to consider a system constituting of multiple oscillators magnetically coupled with each other. This paper investigates nonlinear dynamics of two permanent magnets levitated above high-T c superconducting bulks and placed between two fixed permanent magnets without contact. First, the nonlinear equations of motion of the levitated magnets were derived. Then the method of averaging was applied to them. It can be found from the obtained solutions that this nonlinear two degree-of-freedom system can have two asymmetric modes, in addition to a symmetric mode and an antisymmetric mode both of which also exist in the linearized system. One of the backbone curves in the frequency response shows a modal bifurcation where the two stable asymmetric modes mentioned above appear with destabilization of the antisymmetric mode, thus leading to modal localization. These analytical predictions have been confirmed in our numerical analysis and experiments of free vibration and forced vibration. These results, never predicted by linear analysis, can be important for application of high-T c superconducting levitation systems.
Local viscosity distribution in bifurcating microfluidic blood flows
Kaliviotis, E.; Sherwood, J. M.; Balabani, S.
2018-03-01
The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.
Prediction of fibre architecture and adaptation in diseased carotid bifurcations.
LENUS (Irish Health Repository)
Creane, Arthur
2011-12-01
Many studies have used patient-specific finite element models to estimate the stress environment in atherosclerotic plaques, attempting to correlate the magnitude of stress to plaque vulnerability. In complex geometries, few studies have incorporated the anisotropic material response of arterial tissue. This paper presents a fibre remodelling algorithm to predict the fibre architecture, and thus anisotropic material response in four patient-specific models of the carotid bifurcation. The change in fibre architecture during disease progression and its affect on the stress environment in the plaque were predicted. The mean fibre directions were assumed to lie at an angle between the two positive principal strain directions. The angle and the degree of dispersion were assumed to depend on the ratio of principal strain values. Results were compared with experimental observations and other numerical studies. In non-branching regions of each model, the typical double helix arterial fibre pattern was predicted while at the bifurcation and in regions of plaque burden, more complex fibre architectures were found. The predicted change in fibre architecture in the arterial tissue during plaque progression was found to alter the stress environment in the plaque. This suggests that the specimen-specific anisotropic response of the tissue should be taken into account to accurately predict stresses in the plaque. Since determination of the fibre architecture in vivo is a difficult task, the system presented here provides a useful method of estimating the fibre architecture in complex arterial geometries.
Partitioning of red blood cell aggregates in bifurcating microscale flows
Kaliviotis, E.; Sherwood, J. M.; Balabani, S.
2017-03-01
Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance.
Bifurcation to Enhanced Performance H-mode on NSTX
Battaglia, D. J.; Chang, C. S.; Gerhardt, S. P.; Kaye, S. M.; Maingi, R.; Smith, D. R.
2015-11-01
The bifurcation from H-mode (H98 Performance (EP)H-mode (H98 = 1.2 - 2.0) on NSTX is found to occur when the ion thermal (χi) and momentum transport become decoupled from particle transport, such that the ion temperature (Ti) and rotation pedestals increase independent of the density pedestal. The onset of the EPH-mode transition is found to correlate with decreased pedestal collisionality (ν*ped) and an increased broadening of the density fluctuation (dn/n) spectrum in the pedestal as measured with beam emission spectroscopy. The spectrum broadening at decreased ν*ped is consistent with GEM simulations that indicate the toroidal mode number of the most unstable instability increases as ν*ped decreases. The lowest ν*ped, and thus largest spectrum broadening, is achieved with low pedestal density via lithium wall conditioning and when Zeff in the pedestal is significantly reduced via large edge rotation shear from external 3D fields or a large ELM. Kinetic neoclassical transport calculations (XGC0) confirm that Zeff is reduced when edge rotation braking leads to a more negative Er that shifts the impurity density profiles inward relative to the main ion density. These calculations also describe the role kinetic neoclassical and anomalous transport effects play in the decoupling of energy, momentum and particle transport at the bifurcation to EPH-mode. This work was sponsored by the U.S. Department of Energy.
Hydrodynamic bifurcation in electro-osmotically driven periodic flows
Morozov, Alexander; Marenduzzo, Davide; Larson, Ronald G.
2018-06-01
In this paper, we report an inertial instability that occurs in electro-osmotically driven channel flows. We assume that the charge motion under the influence of an externally applied electric field is confined to a small vicinity of the channel walls that, effectively, drives a bulk flow through a prescribed slip velocity at the boundaries. Here, we study spatially periodic wall velocity modulations in a two-dimensional straight channel numerically. At low slip velocities, the bulk flow consists of a set of vortices along each wall that are left-right symmetric, while at sufficiently high slip velocities, this flow loses its stability through a supercritical bifurcation. Surprisingly, the flow state that bifurcates from a left-right symmetric base flow has a rather strong mean component along the channel, which is similar to pressure-driven velocity profiles. The instability sets in at rather small Reynolds numbers of about 20-30, and we discuss its potential applications in microfluidic devices.
DEFF Research Database (Denmark)
Maeng, M.; Holm, N. R.; Erglis, A.
2013-01-01
Objectives This study sought to report the 5-year follow-up results of the Nordic Bifurcation Study. Background Randomized clinical trials with short-term follow-up have indicated that coronary bifurcation lesions may be optimally treated using the optional side branch stenting strategy. Methods...... complex strategy of planned stenting of both the main vessel and the side branch. (C) 2013 by the American College of Cardiology Foundation...
Bifurcation Analysis of Gene Propagation Model Governed by Reaction-Diffusion Equations
Directory of Open Access Journals (Sweden)
Guichen Lu
2016-01-01
Full Text Available We present a theoretical analysis of the attractor bifurcation for gene propagation model governed by reaction-diffusion equations. We investigate the dynamical transition problems of the model under the homogeneous boundary conditions. By using the dynamical transition theory, we give a complete characterization of the bifurcated objects in terms of the biological parameters of the problem.
International Nuclear Information System (INIS)
Kwok, Philip Chong-hei; Ng, Wai Fu; Lam, Christine Suk-yee; Tsui, Polly Po; Faruqi, Asma
2003-01-01
Purpose: The relationship of the portalvein bifurcation to the liver capsule in Asians, which is an important landmark for transjugular intrahepatic portosystemic shunt, has not previously been described. Methods: The anatomy of the portal vein bifurcation was studied in 70 adult Chinese cadavers; it was characterized as intrahepatic or extrahepatic. The length of the exposed portion of the right and left portal veins was measured when the bifurcation was extrahepatic. Results: The portal vein bifurcation was intrahepatic in 37 cadavers (53%) and extrahepatic in 33 cadavers (47%). The mean length of the right and left extrahepatic portal veins was 0.96 cm and 0.85 cm respectively.Both were less than or equal to 2 cm in 94% of the cadavers with extrahepatic bifurcation. There was no correlation between the presence of cirrhosis and the location of the portal vein bifurcation(p 1.0). There was no statistically significant difference in liver mass in cadavers with either extrahepatic or intrahepatic bifurcation (p =0.40). Conclusions: These findings suggest that fortransjugular intrahepatic portosystemic shunt placement, a portal vein puncture 2 cm from the bifurcation will be safe in most cases
Hopf bifurcation of a free boundary problem modeling tumor growth with two time delays
International Nuclear Information System (INIS)
Xu Shihe
2009-01-01
In this paper, a free boundary problem modeling tumor growth with two discrete delays is studied. The delays respectively represents the time taken for cells to undergo mitosis and the time taken for the cell to modify the rate of cell loss due to apoptosis. We show the influence of time delays on the Hopf bifurcation when one of delays as a bifurcation parameter.
Bifurcation approach to the predator-prey population models (Version of the computer book)
International Nuclear Information System (INIS)
Bazykin, A.D.; Zudin, S.L.
1993-09-01
Hierarchically organized family of predator-prey systems is studied. The classification is founded on two interacting principles: the biological and mathematical ones. The different combinations of biological factors included correspond to different bifurcations (up to codimension 3). As theoretical so computing methods are used for analysis, especially concerning non-local bifurcations. (author). 6 refs, figs
Bifurcation direction and exchange of stability for variational inequalities on nonconvex sets
Czech Academy of Sciences Publication Activity Database
Eisner, Jan; Kučera, Milan; Recke, L.
2007-01-01
Roč. 67, č. 5 (2007), s. 1082-1101 ISSN 0362-546X R&D Projects: GA AV ČR IAA100190506 Institutional research plan: CEZ:AV0Z10190503 Keywords : multiparameter variational inequality * direction of bifurcation * stability of bifurcating solutions Subject RIV: BA - General Mathematics Impact factor: 1.097, year: 2007
Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays
International Nuclear Information System (INIS)
Song Yongli; Han Maoan; Peng Yahong
2004-01-01
We consider a Lotka-Volterra competition system with two delays. We first investigate the stability of the positive equilibrium and the existence of Hopf bifurcations, and then using the normal form theory and center manifold argument, derive the explicit formulas which determine the stability, direction and other properties of bifurcating periodic solutions
Hopf bifurcation in a dynamic IS-LM model with time delay
International Nuclear Information System (INIS)
Neamtu, Mihaela; Opris, Dumitru; Chilarescu, Constantin
2007-01-01
The paper investigates the impact of delayed tax revenues on the fiscal policy out-comes. Choosing the delay as a bifurcation parameter we study the direction and the stability of the bifurcating periodic solutions. We show when the system is stable with respect to the delay. Some numerical examples are given to confirm the theoretical results
The period adding and incrementing bifurcations: from rotation theory to applications
DEFF Research Database (Denmark)
Granados, Albert; Alseda, Lluis; Krupa, Maciej
2017-01-01
This survey article is concerned with the study of bifurcations of piecewise-smooth maps. We review the literature in circle maps and quasi-contractions and provide paths through this literature to prove sufficient conditions for the occurrence of two types of bifurcation scenarios involving rich...
Analysis of a Stochastic Chemical System Close to a SNIPER Bifurcation of Its Mean-Field Model
Erban, Radek; Chapman, S. Jonathan; Kevrekidis, Ioannis G.; Vejchodský , Tomá š
2009-01-01
A framework for the analysis of stochastic models of chemical systems for which the deterministic mean-field description is undergoing a saddle-node infinite period (SNIPER) bifurcation is presented. Such a bifurcation occurs, for example
Bifurcation and chaos in a Tessiet type food chain chemostat with pulsed input and washout
International Nuclear Information System (INIS)
Wang Fengyan; Hao Chunping; Chen Lansun
2007-01-01
In this paper, we introduce and study a model of a Tessiet type food chain chemostat with pulsed input and washout. We investigate the subsystem with substrate and prey and study the stability of the periodic solutions, which are the boundary periodic solutions of the system. The stability analysis of the boundary periodic solution yields an invasion threshold. By use of standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in substrate, prey and predator. Simple cycles may give way to chaos in a cascade of period-doubling bifurcations. Furthermore, by comparing bifurcation diagrams with different bifurcation parameters, we can see that the impulsive system shows two kinds of bifurcations, whose are period doubling and period halving
Experimental observation of bifurcation nature of radial electric field in CHS heliotron/torsatron
International Nuclear Information System (INIS)
Fujisawa, Akihide; Iguchi, Harukazu; Yoshimura, Yasuo; Minami, Takashi; Tanaka, Kenji; Okamura, Shoichi; Matsuoka, Keisuke; Fujiwara, Masami
1999-01-01
Several interesting phenomena, such as the formation of a particular potential profile with a protuberance around the core and oscillatory stationary states termed electric pulsation, have been discovered using a heavy ion beam probe in the electron cyclotron heated plasmas of the CHS. This paper presents experimental observations which indicate that bifurcation of the radial electric field is responsible for such phenomena; existence of an ECH power threshold to obtain the profile with a protuberance, and its striking sensitivity to density. In particular, Flip-flop behavior of the potential near the power threshold clearly demonstrates bifurcation characteristics. Bifurcation of radial electric field in neoclassical theory is presented, and its qualitative expectation is discussed in the bifurcation phenomena. The neoclassical transition time scale between two bifurcative sates is compared with the experimental observations during the electric pulsation. It is confirmed that the neoclassical transition time is not contradictory with the experimental one. (author)
Bifurcation diagram features of a dc-dc converter under current-mode control
International Nuclear Information System (INIS)
Ruzbehani, Mohsen; Zhou Luowei; Wang Mingyu
2006-01-01
A common tool for analysis of the systems dynamics when the system has chaotic behaviour is the bifurcation diagram. In this paper, the bifurcation diagram of an ideal model of a dc-dc converter under current-mode control is analysed. Algebraic relations that give the critical points locations and describe the pattern of the bifurcation diagram are derived. It is shown that these simple algebraic and geometrical relations are responsible for the complex pattern of the bifurcation diagrams in such circuits. More explanation about the previously observed properties and introduction of some new ones are exposited. In addition, a new three-dimensional bifurcation diagram that can give better imagination of the parameters role is introduced
Li, Li; Xu, Jian
Time delay is inevitable in unidirectionally coupled drive-free vibratory gyroscope system. The effect of time delay on the gyroscope system is studied in this paper. To this end, amplitude death and Hopf bifurcation induced by small time delay are first investigated by analyzing the related characteristic equation. Then, the direction of Hopf bifurcations and stability of Hopf-bifurcating periodic oscillations are determined by calculating the normal form on the center manifold. Next, spatiotemporal patterns of these Hopf-bifurcating periodic oscillations are analyzed by using the symmetric bifurcation theory of delay differential equations. Finally, it is found that numerical simulations agree with the associated analytic results. These phenomena could be induced although time delay is very small. Therefore, it is shown that time delay is an important factor which influences the sensitivity and accuracy of the gyroscope system and cannot be neglected during the design and manufacture.
International Nuclear Information System (INIS)
Xue Yunjing; Gao Peiyi; Lin Yan
2007-01-01
Objective: To investigate flow patterns at carotid bifurcation in vivo by combining computational fluid dynamics (CFD)and MR angiography imaging. Methods: Seven subjects underwent contrast-enhanced MR angiography of carotid artery in Siemens 3.0 T MR. Flow patterns of the carotid artery bifurcation were calculated and visualized by combining MR vascular imaging post-processing and CFD. Results: The flow patterns of the carotid bifurcations in 7 subjects were varied with different phases of a cardiac cycle. The turbulent flow and back flow occurred at bifurcation and proximal of internal carotid artery (ICA) and external carotid artery (ECA), their occurrence and conformation were varied with different phase of a cardiac cycle. The turbulent flow and back flow faded out quickly when the blood flow to the distal of ICA and ECA. Conclusion: CFD combined with MR angiography can be utilized to visualize the cyclical change of flow patterns of carotid bifurcation with different phases of a cardiac cycle. (authors)
Bifurcation structures of a cobweb model with memory and competing technologies
Agliari, Anna; Naimzada, Ahmad; Pecora, Nicolò
2018-05-01
In this paper we study a simple model based on the cobweb demand-supply framework with costly innovators and free imitators. The evolutionary selection between technologies depends on a performance measure which is related to the degree of memory. The resulting dynamics is described by a two-dimensional map. The map has a fixed point which may lose stability either via supercritical Neimark-Sacker bifurcation or flip bifurcation and several multistability situations exist. We describe some sequences of global bifurcations involving attracting and repelling closed invariant curves. These bifurcations, characterized by the creation of homoclinic connections or homoclinic tangles, are described through several numerical simulations. Particular bifurcation phenomena are also observed when the parameters are selected inside a periodicity region.
Analysis of stability and Hopf bifurcation for a delayed logistic equation
International Nuclear Information System (INIS)
Sun Chengjun; Han Maoan; Lin Yiping
2007-01-01
The dynamics of a logistic equation with discrete delay are investigated, together with the local and global stability of the equilibria. In particular, the conditions under which a sequence of Hopf bifurcations occur at the positive equilibrium are obtained. Explicit algorithm for determining the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation are derived by using the theory of normal form and center manifold [Hassard B, Kazarino D, Wan Y. Theory and applications of Hopf bifurcation. Cambridge: Cambridge University Press; 1981.]. Global existence of periodic solutions is also established by using a global Hopf bifurcation result of Wu [Symmetric functional differential equations and neural networks with memory. Trans Amer Math Soc 350:1998;4799-38.
Liu, Xia; Zhang, Tonghua; Meng, Xinzhu; Zhang, Tongqian
2018-04-01
In this paper, we propose a predator-prey model with herd behavior and prey-taxis. Then, we analyze the stability and bifurcation of the positive equilibrium of the model subject to the homogeneous Neumann boundary condition. By using an abstract bifurcation theory and taking prey-tactic sensitivity coefficient as the bifurcation parameter, we obtain a branch of stable nonconstant solutions bifurcating from the positive equilibrium. Our results show that prey-taxis can yield the occurrence of spatial patterns.
Bifurcations and degenerate periodic points in a three dimensional chaotic fluid flow
International Nuclear Information System (INIS)
Smith, L. D.; Rudman, M.; Lester, D. R.; Metcalfe, G.
2016-01-01
Analysis of the periodic points of a conservative periodic dynamical system uncovers the basic kinematic structure of the transport dynamics and identifies regions of local stability or chaos. While elliptic and hyperbolic points typically govern such behaviour in 3D systems, degenerate (parabolic) points also play an important role. These points represent a bifurcation in local stability and Lagrangian topology. In this study, we consider the ramifications of the two types of degenerate periodic points that occur in a model 3D fluid flow. (1) Period-tripling bifurcations occur when the local rotation angle associated with elliptic points is reversed, creating a reversal in the orientation of associated Lagrangian structures. Even though a single unstable point is created, the bifurcation in local stability has a large influence on local transport and the global arrangement of manifolds as the unstable degenerate point has three stable and three unstable directions, similar to hyperbolic points, and occurs at the intersection of three hyperbolic periodic lines. The presence of period-tripling bifurcation points indicates regions of both chaos and confinement, with the extent of each depending on the nature of the associated manifold intersections. (2) The second type of bifurcation occurs when periodic lines become tangent to local or global invariant surfaces. This bifurcation creates both saddle–centre bifurcations which can create both chaotic and stable regions, and period-doubling bifurcations which are a common route to chaos in 2D systems. We provide conditions for the occurrence of these tangent bifurcations in 3D conservative systems, as well as constraints on the possible types of tangent bifurcation that can occur based on topological considerations.
Bifurcation in asymmetric plasma divided by a magnetic filter
International Nuclear Information System (INIS)
Ohi, K.; Naitou, H.; Tauchi, Y.; Fukumasa, O.
2001-05-01
A magnetic filter (MF) reflecting electrons from both sides can separate a low-temperature and low-density subplasma from a high-temperature and high-density main plasma. The one-dimensional numerical simulation by the particle-in-cell code revealed that, depending on the asymmetry, the plasma divided by the MF behaves dynamically or statically [K. Ohi et al., Physics of Plasmas 8, 23 (2001)]. The transition between the two bifurcated states is discontinuous. In the dynamic state, the autonomous potential oscillation in the subplasma is synchronized with the passage of the shock wave structure generated by the modulated ion beam from the main plasma. The stationary phase of the dynamic state appears after the amplitude of the potential oscillation in the subplasma grows exponentially from the thermal noise. In the static state, the system is stable to the growth of the potential oscillation in the subplasma. (author)
Active control of continuous air jet with bifurcated synthetic jets
Directory of Open Access Journals (Sweden)
Dančová Petra
2017-01-01
Full Text Available The synthetic jets (SJs have many significant applications and the number of applications is increasing all the time. In this research the main focus is on the primary flow control which can be used effectively for the heat transfer increasing. This paper deals with the experimental research of the effect of two SJs worked in the bifurcated mode used for control of an axisymmetric air jet. First, the control synthetic jets were measured alone. After an adjustment, the primary axisymmetric jet was added in to the system. For comparison, the primary flow without synthetic jets control was also measured. All experiments were performed using PIV method whereby the synchronization between synthetic jets and PIV system was necessary to do.
Passive band-gap reconfiguration born from bifurcation asymmetry.
Bernard, Brian P; Mann, Brian P
2013-11-01
Current periodic structures are constrained to have fixed energy transmission behavior unless active control or component replacement is used to alter their wave propagation characteristics. The introduction of nonlinearity to generate multiple stable equilibria is an alternative strategy for realizing distinct energy propagation behaviors. We investigate the creation of a reconfigurable band-gap system by implementing passive switching between multiple stable states of equilibrium, to alter the level of energy attenuation in response to environmental stimuli. The ability to avoid potentially catastrophic loads is demonstrated by tailoring the bandpass and band-gap regions to coalesce for two stable equilibria and varying an external load parameter to trigger a bifurcation. The proposed phenomenon could be utilized in remote or autonomous applications where component modifications and active control are impractical.
10th International Workshop on Bifurcation and Degradation in Geomaterials
Zhao, Jidong
2015-01-01
This book contains contributions to the 10th International Workshop on Bifurcation and Degradation in Geomaterials held in Hong Kong, May 28-30, 2014. This event marks the silver Jubilee anniversary of an international conference series dedicated to the research on localization, instability, degradation and failure of geomaterials since 1988 when its first workshop was organized in Germany. This volume of book collects the latest progresses and state-of-the-art research from top researchers around the world, and covers topics including multiscale modeling, experimental characterization and theoretical analysis of various instability and degradation phenomena in geomaterials as well as their relevance to contemporary issues in engineering practice. This book can be used as a useful reference for research students, academics and practicing engineers who are interested in the instability and degradation problems in geomechanics and geotechnical engineering.
Stents in Renal Artery Bifurcation Stenosis: A Case Report
Directory of Open Access Journals (Sweden)
Polytimi Leonardou
2011-01-01
Full Text Available A 39-year-old patient presented with poorly controlled hypertension, and she was referred to renal angiogram and potential renal angioplasty. Renal angiogram showed a bifurcation lesion of the right renal artery. A guide wire was used to cross the upper branch, while the lower branch was protected by another same-type guide wire through the same introducer. Two thin monorail balloons were used to dilate the two branches; however, despite balloon dilatation, the stenosis of the vessels persisted. The “kissing balloon” technique was then attempted by simultaneously inflating both branches using the same balloons, but more than a 70% residual stenosis persisted in each branch. Two stents were finally placed in a “kissing” way through the main renal artery. The imaging and clinical results were good, without any procedure-related complications. Three years clinical followup was also good, without any reason for further interventional approach.
Stents in Renal Artery Bifurcation Stenosis: A Case Report
Leonardou, Polytimi; Pappas, Paris
2011-01-01
A 39-year-old patient presented with poorly controlled hypertension, and she was referred to renal angiogram and potential renal angioplasty. Renal angiogram showed a bifurcation lesion of the right renal artery. A guide wire was used to cross the upper branch, while the lower branch was protected by another same-type guide wire through the same introducer. Two thin monorail balloons were used to dilate the two branches; however, despite balloon dilatation, the stenosis of the vessels persisted. The “kissing balloon” technique was then attempted by simultaneously inflating both branches using the same balloons, but more than a 70% residual stenosis persisted in each branch. Two stents were finally placed in a “kissing” way through the main renal artery. The imaging and clinical results were good, without any procedure-related complications. Three years clinical followup was also good, without any reason for further interventional approach. PMID:21789043
Experimental Bifurcation Analysis Using Control-Based Continuation
DEFF Research Database (Denmark)
Bureau, Emil; Starke, Jens
The focus of this thesis is developing and implementing techniques for performing experimental bifurcation analysis on nonlinear mechanical systems. The research centers around the newly developed control-based continuation method, which allows to systematically track branches of stable...... the resulting behavior, we propose and test three different methods for assessing stability of equilibrium states during experimental continuation. We show that it is possible to determine the stability without allowing unbounded divergence, and that it is under certain circumstances possible to quantify...... and unstable equilibria under variation of parameters. As a test case we demonstrate that it is possible to track the complete frequency response, including the unstable branches, for a harmonically forced impact oscillator with hardening spring nonlinearity, controlled by electromagnetic actuators. The method...
Analysis of Spatiotemporal Dynamic and Bifurcation in a Wetland Ecosystem
Directory of Open Access Journals (Sweden)
Yi Wang
2015-01-01
Full Text Available A wetland ecosystem is studied theoretically and numerically to reveal the rules of dynamics which can be quite accurate to better describe the observed spatial regularity of tussock vegetation. Mathematical theoretical works mainly investigate the stability of constant steady states, the existence of nonconstant steady states, and bifurcation, which can deduce a standard parameter control relation and in return can provide a theoretical basis for the numerical simulation. Numerical analysis indicates that the theoretical works are correct and the wetland ecosystem can show rich dynamical behaviors not only regular spatial patterns. Our results further deepen and expand the study of dynamics in the wetland ecosystem. In addition, it is successful to display tussock formation in the wetland ecosystem may have important consequences for aquatic community structure, especially for species interactions and biodiversity. All these results are expected to be useful in the study of the dynamic complexity of wetland ecosystems.
Stability of River Bifurcations from Bedload to Suspended Load Dominated Conditions
de Haas, T.; Kleinhans, M. G.
2010-12-01
Bifurcations (also called diffluences) are as common as confluences in braided and anabranched rivers, and more common than confluences on alluvial fans and deltas where the network is essentially distributary. River bifurcations control the partitioning of both water and sediment through these systems with consequences for immediate river and coastal management and long-term evolution. Their stability is poorly understood and seems to differ between braided rivers, meandering river plains and deltas. In particular, it is the question to what extent the division of flow is asymmetrical in stable condition, where highly asymmetrical refers to channel closure and avulsion. Recent work showed that bifurcations in gravel bed braided rivers become more symmetrical with increasing sediment mobility, whereas bifurcations in a lowland sand delta become more asymmetrical with increasing sediment mobility. This difference is not understood and our objective is to resolve this issue. We use a one-dimensional network model with Y-shaped bifurcations to explore the parameter space from low to high sediment mobility. The model solves gradually varied flow, bedload transport and morphological change in a straightforward manner. Sediment is divided at the bifurcation including the transverse slope effect and the spiral flow effect caused by bends at the bifurcation. Width is evolved whilst conserving mass of eroded or built banks with the bed balance. The bifurcations are perturbed from perfect symmetry either by a subtle gradient advantage for one branch or a gentle bend at the bifurcation. Sediment transport was calculated with and without a critical threshold for sediment motion. Sediment mobility, determined in the upstream channel, was varied in three different ways to isolate the causal factor: by increasing discharge, increasing channel gradient and decreasing particle size. In reality the sediment mobility is mostly determined by particle size: gravel bed rivers are near
Shell structure and orbit bifurcations in finite fermion systems
Magner, A. G.; Yatsyshyn, I. S.; Arita, K.; Brack, M.
2011-10-01
We first give an overview of the shell-correction method which was developed by V.M. Strutinsky as a practicable and efficient approximation to the general self-consistent theory of finite fermion systems suggested by A.B. Migdal and collaborators. Then we present in more detail a semiclassical theory of shell effects, also developed by Strutinsky following original ideas of M.C. Gutzwiller. We emphasize, in particular, the influence of orbit bifurcations on shell structure. We first give a short overview of semiclassical trace formulae, which connect the shell oscillations of a quantum system with a sum over periodic orbits of the corresponding classical system, in what is usually called the "periodic orbit theory". We then present a case study in which the gross features of a typical double-humped nuclear fission barrier, including the effects of mass asymmetry, can be obtained in terms of the shortest periodic orbits of a cavity model with realistic deformations relevant for nuclear fission. Next we investigate shell structures in a spheroidal cavity model which is integrable and allows for far-going analytical computation. We show, in particular, how period-doubling bifurcations are closely connected to the existence of the so-called "superdeformed" energy minimum which corresponds to the fission isomer of actinide nuclei. Finally, we present a general class of radial power-law potentials which approximate well the shape of a Woods-Saxon potential in the bound region, give analytical trace formulae for it and discuss various limits (including the harmonic oscillator and the spherical box potentials).
Bifurcation Control of an Electrostatically-Actuated MEMS Actuator with Time-Delay Feedback
Directory of Open Access Journals (Sweden)
Lei Li
2016-10-01
Full Text Available The parametric excitation system consisting of a flexible beam and shuttle mass widely exists in microelectromechanical systems (MEMS, which can exhibit rich nonlinear dynamic behaviors. This article aims to theoretically investigate the nonlinear jumping phenomena and bifurcation conditions of a class of electrostatically-driven MEMS actuators with a time-delay feedback controller. Considering the comb structure consisting of a flexible beam and shuttle mass, the partial differential governing equation is obtained with both the linear and cubic nonlinear parametric excitation. Then, the method of multiple scales is introduced to obtain a slow flow that is analyzed for stability and bifurcation. Results show that time-delay feedback can improve resonance frequency and stability of the system. What is more, through a detailed mathematical analysis, the discriminant of Hopf bifurcation is theoretically derived, and appropriate time-delay feedback force can make the branch from the Hopf bifurcation point stable under any driving voltage value. Meanwhile, through global bifurcation analysis and saddle node bifurcation analysis, theoretical expressions about the system parameter space and maximum amplitude of monostable vibration are deduced. It is found that the disappearance of the global bifurcation point means the emergence of monostable vibration. Finally, detailed numerical results confirm the analytical prediction.
A bench top experimental model of bubble transport in multiple arteriole bifurcations
International Nuclear Information System (INIS)
Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph L.
2005-01-01
Motivated by a novel gas embolotherapy technique, a bench top vascular bifurcation model is used to investigate the splitting of long bubbles in a series of liquid-filled bifurcations. The developmental gas embolotherapy technique aims to treat cancer by infarcting tumors with gas emboli that are formed by selective acoustic vaporization of ∼6 μm, intravascular, perfluorcarbon droplets. The resulting gas bubbles are large enough to extend through several vessel bifurcations. The current bench top experiments examine the effects of gravity and flow on bubble transport through multiple bifurcations. The effect of gravity is varied by changing the roll angle of the bifurcating network about its parent tube. Splitting at each bifurcation is nearly even when the roll angle is zero. It is demonstrated that bubbles can either stick at one of the second bifurcations or in the second generation daughter tubes, even though the flow rate in the parent tube is constant. The findings of this work indicate that both gravity and flow are important in determining the bubble transport, and suggest that a treatment strategy that includes multiple doses may be effective in delivering emboli to vessels not occluded by the initial dose
Ishikawa, Takuji; Fujiwara, Hiroki; Matsuki, Noriaki; Yoshimoto, Takefumi; Imai, Yohsuke; Ueno, Hironori; Yamaguchi, Takami
2011-02-01
Bifurcations and confluences are very common geometries in biomedical microdevices. Blood flow at microchannel bifurcations has different characteristics from that at confluences because of the multiphase properties of blood. Using a confocal micro-PIV system, we investigated the behaviour of red blood cells (RBCs) and cancer cells in microchannels with geometrically symmetric bifurcations and confluences. The behaviour of RBCs and cancer cells was strongly asymmetric at bifurcations and confluences whilst the trajectories of tracer particles in pure water were almost symmetric. The cell-free layer disappeared on the inner wall of the bifurcation but increased in size on the inner wall of the confluence. Cancer cells frequently adhered to the inner wall of the bifurcation but rarely to other locations. Because the wall surface coating and the wall shear stress were almost symmetric for the bifurcation and the confluence, the result indicates that not only chemical mediation and wall shear stress but also microscale haemodynamics play important roles in the adhesion of cancer cells to the microchannel walls. These results provide the fundamental basis for a better understanding of blood flow and cell adhesion in biomedical microdevices.
Hopf-pitchfork bifurcation and periodic phenomena in nonlinear financial system with delay
International Nuclear Information System (INIS)
Ding Yuting; Jiang Weihua; Wang Hongbin
2012-01-01
Highlights: ► We derive the unfolding of a financial system with Hopf-pitchfork bifurcation. ► We show the coexistence of a pair of stable small amplitudes periodic solutions. ► At the same time, also there is a pair of stable large amplitudes periodic solutions. ► Chaos can appear by period-doubling bifurcation far away from Hopf-pitchfork value. ► The study will be useful for interpreting economics phenomena in theory. - Abstract: In this paper, we identify the critical point for a Hopf-pitchfork bifurcation in a nonlinear financial system with delay, and derive the normal form up to third order with their unfolding in original system parameters near the bifurcation point by normal form method and center manifold theory. Furthermore, we analyze its local dynamical behaviors, and show the coexistence of a pair of stable periodic solutions. We also show that there coexist a pair of stable small-amplitude periodic solutions and a pair of stable large-amplitude periodic solutions for different initial values. Finally, we give the bifurcation diagram with numerical illustration, showing that the pair of stable small-amplitude periodic solutions can also exist in a large region of unfolding parameters, and the financial system with delay can exhibit chaos via period-doubling bifurcations as the unfolding parameter values are far away from the critical point of the Hopf-pitchfork bifurcation.
Analysis of the flow at a T-bifurcation for a ternary unit
International Nuclear Information System (INIS)
Campero, P; Beck, J; Jung, A
2014-01-01
The motivation of this research is to understand the flow behavior through a 90° T- type bifurcation, which connects a Francis turbine and the storage pump of a ternary unit, under different operating conditions (namely turbine, pump and hydraulic short-circuit operation). As a first step a CFD optimization process to define the hydraulic geometry of the bifurcation was performed. The CFD results show the complexity of the flow through the bifurcation, especially under hydraulic short-circuit operation. Therefore, it was decided to perform experimental investigations in addition to the CFD analysis, in order to get a better understanding of the flow. The aim of these studies was to investigate the flow development upstream and downstream the bifurcation, the estimation of the bifurcation loss coefficients and also to provide comprehensive data of the flow behavior for the whole operating range of the machine. In order to evaluate the development of the velocity field Stereo Particle Image Velocimetry (S-PIV) measurements at different sections upstream and downstream of the bifurcation on the main penstock and Laser Doppler Anemometrie (LDA) measurements at bifurcation inlet were performed. This paper presents the CFD results obtained for the final design for different operating conditions, the model test procedures and the model test results with special attention to: 1) The bifurcation head loss coefficients, and their extrapolation to prototype conditions, 2) S-PIV and LDA measurements. Additionally, criteria to define the minimal uniformity conditions for the velocity profiles entering the turbine are evaluated. Finally, based on the gathered flow information a better understanding to define the preferred location of a bifurcation is gained and can be applied to future projects
Stability and Hopf Bifurcation for a Delayed SLBRS Computer Virus Model
Directory of Open Access Journals (Sweden)
Zizhen Zhang
2014-01-01
Full Text Available By incorporating the time delay due to the period that computers use antivirus software to clean the virus into the SLBRS model a delayed SLBRS computer virus model is proposed in this paper. The dynamical behaviors which include local stability and Hopf bifurcation are investigated by regarding the delay as bifurcating parameter. Specially, direction and stability of the Hopf bifurcation are derived by applying the normal form method and center manifold theory. Finally, an illustrative example is also presented to testify our analytical results.
Stability and Hopf bifurcation for a delayed SLBRS computer virus model.
Zhang, Zizhen; Yang, Huizhong
2014-01-01
By incorporating the time delay due to the period that computers use antivirus software to clean the virus into the SLBRS model a delayed SLBRS computer virus model is proposed in this paper. The dynamical behaviors which include local stability and Hopf bifurcation are investigated by regarding the delay as bifurcating parameter. Specially, direction and stability of the Hopf bifurcation are derived by applying the normal form method and center manifold theory. Finally, an illustrative example is also presented to testify our analytical results.
Analysis of the magnetohydrodynamic equations and study of the nonlinear solution bifurcations
International Nuclear Information System (INIS)
Morros Tosas, J.
1989-01-01
The nonlinear problems related to the plasma magnetohydrodynamic instabilities are studied. A bifurcation theory is applied and a general magnetohydrodynamic equation is proposed. Scalar functions, a steady magnetic field and a new equation for the velocity field are taken into account. A method allowing the obtention of suitable reduced equations for the instabilities study is described. Toroidal and cylindrical configuration plasmas are studied. In the cylindrical configuration case, analytical calculations are performed and two steady bifurcated solutions are found. In the toroidal configuration case, a suitable reduced equation system is obtained; a qualitative approach of a steady solution bifurcation on a toroidal Kink type geometry is carried out [fr
Stability and Hopf bifurcation analysis of a prey-predator system with two delays
International Nuclear Information System (INIS)
Li Kai; Wei Junjie
2009-01-01
In this paper, we have considered a prey-predator model with Beddington-DeAngelis functional response and selective harvesting of predator species. Two delays appear in this model to describe the time that juveniles take to mature. Its dynamics are studied in terms of local analysis and Hopf bifurcation analysis. By analyzing the associated characteristic equation, its linear stability is investigated and Hopf bifurcations are demonstrated. The stability and direction of the Hopf bifurcation are determined by applying the normal form method and the center manifold theory. Numerical simulation results are given to support the theoretical predictions.
Clip reconstruction of a large right MCA bifurcation aneurysm. Case report
Directory of Open Access Journals (Sweden)
Giovani A.
2014-06-01
Full Text Available We report a case of complex large middle cerebral artery (MCA bifurcation aneurysm that ruptured during dissection from the very adherent MCA branches but was successfully clipped and the MCA bifurcation reconstructed using 4 Yasargill clips. Through a right pterional craniotomy the sylvian fissure was largely opened as to allow enough workspace for clipping the aneurysm and placing a temporary clip on M1. The pacient recovered very well after surgery and was discharged after 1 week with no neurological deficit. Complex MCA bifurcation aneurysms can be safely reconstructed using regular clips, without the need of using fenestrated clips or complex by-pass procedures.
Stability and Hopf bifurcation in a simplified BAM neural network with two time delays.
Cao, Jinde; Xiao, Min
2007-03-01
Various local periodic solutions may represent different classes of storage patterns or memory patterns, and arise from the different equilibrium points of neural networks (NNs) by applying Hopf bifurcation technique. In this paper, a bidirectional associative memory NN with four neurons and multiple delays is considered. By applying the normal form theory and the center manifold theorem, analysis of its linear stability and Hopf bifurcation is performed. An algorithm is worked out for determining the direction and stability of the bifurcated periodic solutions. Numerical simulation results supporting the theoretical analysis are also given.
Directory of Open Access Journals (Sweden)
Yan-Ke Du
2013-09-01
Full Text Available We study a class of discrete-time bidirectional ring neural network model with delay. We discuss the asymptotic stability of the origin and the existence of Neimark-Sacker bifurcations, by analyzing the corresponding characteristic equation. Employing M-matrix theory and the Lyapunov functional method, global asymptotic stability of the origin is derived. Applying the normal form theory and the center manifold theorem, the direction of the Neimark-Sacker bifurcation and the stability of bifurcating periodic solutions are obtained. Numerical simulations are given to illustrate the main results.
Bifurcation analysis of the logistic map via two periodic impulsive forces
International Nuclear Information System (INIS)
Jiang Hai-Bo; Li Tao; Zeng Xiao-Liang; Zhang Li-Ping
2014-01-01
The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincaré map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map. (general)
Lassen, Jens Flensted; Burzotta, Francesco; Banning, Adrian P; Lefèvre, Thierry; Darremont, Olivier; Hildick-Smith, David; Chieffo, Alaide; Pan, Manuel; Holm, Niels Ramsing; Louvard, Yves; Stankovic, Goran
2018-01-20
The European Bifurcation Club (EBC) was initiated in 2004 to support a continuous overview of the field of coronary artery bifurcation interventions and aims to facilitate a scientific discussion and an exchange of ideas on the management of bifurcation disease. The EBC hosts an annual, two-day compact meeting, dedicated to bifurcations, which brings together physicians, pathologists, engineers, biologists, physicists, mathematicians, epidemiologists and statisticians for detailed discussions. Every meeting is finalised with a consensus statement that reflects the unique opportunity of combining the opinion of interventional cardiologists with the opinion of a large variety of other scientists on bifurcation management. A series of consensus sessions dedicated to specific topics, to strengthen the consensus debates and focus the discussions, was introduced at this year's meeting. The sessions comprise an intensive overview of the present literature, a pro and con debate and a voting system, to guide the consensus-building process. The present document represents the summary of the up-to-date EBC consensus and recommendations from the 12th annual EBC meeting in 2016 in Rotterdam.
International Nuclear Information System (INIS)
Liu, Yongbao; Wang, Qiang; Xu, Huidong
2017-01-01
The smooth bifurcation and non-smooth grazing bifurcation of periodic solution of three-degree-of-freedom vibro-impact systems with clearance are studied in this paper. Firstly, six-dimensional Poincaré maps are established through choosing suitable Poincaré section and solving periodic solutions of vibro-impact system. Then, as the analytic expressions of all eigenvalues of Jacobi matrix of six-dimensional map are unavailable, the numerical calculations to search for the critical bifurcation values point by point is a laborious job based on the classical critical criterion described by the properties of eigenvalues. To overcome the difficulty from the classical bifurcation criteria, the explicit critical criterion without using eigenvalues calculation of high-dimensional map is applied to determine bifurcation points of Co-dimension-one bifurcations and Co-dimension-two bifurcations, and then local dynamical behaviors of these bifurcations are further analyzed. Finally, the existence of the grazing periodic solution of the vibro-impact system and grazing bifurcation point are analyzed, the discontinuous grazing bifurcation behavior is studied based on the compound normal form map near the grazing point, the discontinuous jumping phenomenon and the co-existing multiple solutions near the grazing bifurcation point are revealed.
Systematic parameter study of dynamo bifurcations in geodynamo simulations
Petitdemange, Ludovic
2018-04-01
We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core, i.e. in a rotating spherical shell with thermally driven motions with no-slip boundaries. Unlike in previous studies on dynamo bifurcations, the control parameters have been varied significantly in order to deduce general tendencies. Numerical studies on the stability domain of dipolar magnetic fields found a dichotomy between non-reversing dipole-dominated dynamos and the reversing non-dipole-dominated multipolar solutions. We show that, by considering weak initial fields, the above transition disappears and is replaced by a region of bistability for which dipolar and multipolar dynamos coexist. Such a result was also observed in models with free-slip boundaries in which the geostrophic zonal flow can develop and participate to the dynamo mechanism for non-dipolar fields. We show that a similar process develops in no-slip models when viscous effects are reduced sufficiently. The following three regimes are distinguished: (i) Close to the onset of convection (Rac) with only the most critical convective mode (wave number) being present, dynamos set in supercritically in the Ekman number regime explored here and are dipole-dominated. Larger critical magnetic Reynolds numbers indicate that they are particularly inefficient. (ii) in the range 3 10) , the relative importance of zonal flows increases with Ra in non-magnetic models. The field topology depends on the magnitude of the initial magnetic field. The dipolar branch has a subcritical behavior whereas the multipolar branch has a supercritical behavior. By approaching more realistic parameters, the extension of this bistable regime increases. A hysteretic behavior questions the common interpretation for geomagnetic reversals. Far above the dynamo threshold (by increasing the magnetic Prandtl number), Lorentz forces contribute to the first order force balance, as predicted for planetary dynamos. When
Stability and Hopf Bifurcation in a Computer Virus Model with Multistate Antivirus
Directory of Open Access Journals (Sweden)
Tao Dong
2012-01-01
Full Text Available By considering that people may immunize their computers with countermeasures in susceptible state, exposed state and using anti-virus software may take a period of time, a computer virus model with time delay based on an SEIR model is proposed. We regard time delay as bifurcating parameter to study the dynamical behaviors which include local asymptotical stability and local Hopf bifurcation. By analyzing the associated characteristic equation, Hopf bifurcation occurs when time delay passes through a sequence of critical value. The linerized model and stability of the bifurcating periodic solutions are also derived by applying the normal form theory and the center manifold theorem. Finally, an illustrative example is also given to support the theoretical results.
Bifurcation and synchronization of synaptically coupled FHN models with time delay
International Nuclear Information System (INIS)
Wang Qingyun; Lu Qishao; Chen Guanrong; Feng Zhaosheng; Duan Lixia
2009-01-01
This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.
Local stability and Hopf bifurcation in small-world delayed networks
International Nuclear Information System (INIS)
Li Chunguang; Chen Guanrong
2004-01-01
The notion of small-world networks, recently introduced by Watts and Strogatz, has attracted increasing interest in studying the interesting properties of complex networks. Notice that, a signal or influence travelling on a small-world network often is associated with time-delay features, which are very common in biological and physical networks. Also, the interactions within nodes in a small-world network are often nonlinear. In this paper, we consider a small-world networks model with nonlinear interactions and time delays, which was recently considered by Yang. By choosing the nonlinear interaction strength as a bifurcation parameter, we prove that Hopf bifurcation occurs. We determine the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation by applying the normal form theory and the center manifold theorem. Finally, we show a numerical example to verify the theoretical analysis
Local stability and Hopf bifurcation in small-world delayed networks
Energy Technology Data Exchange (ETDEWEB)
Li Chunguang E-mail: cgli@uestc.edu.cn; Chen Guanrong E-mail: gchen@ee.cityu.edu.hk
2004-04-01
The notion of small-world networks, recently introduced by Watts and Strogatz, has attracted increasing interest in studying the interesting properties of complex networks. Notice that, a signal or influence travelling on a small-world network often is associated with time-delay features, which are very common in biological and physical networks. Also, the interactions within nodes in a small-world network are often nonlinear. In this paper, we consider a small-world networks model with nonlinear interactions and time delays, which was recently considered by Yang. By choosing the nonlinear interaction strength as a bifurcation parameter, we prove that Hopf bifurcation occurs. We determine the stability of the bifurcating periodic solutions and the direction of the Hopf bifurcation by applying the normal form theory and the center manifold theorem. Finally, we show a numerical example to verify the theoretical analysis.
International Nuclear Information System (INIS)
Laney, D.F.
1996-01-01
On larger and/or more complex sites, remediation of soil and groundwater is sometimes bifurcated. This presents some unique advantages with respect to expedited cleanup of one medium, however, it requires skillful planning and significant forethought to ensure that initial remediation efforts do not preclude some long-term options, and/or unduly influence the subsequent selection of a technology for the other operable units and/or media. this paper examines how the decision to bifurcate should be approached, the various methods of bifurcation, the advantages and disadvantages of bifurcation, and the best methods to build flexibility into the design of initial remediation systems so as to allow for consideration of a fuller range of options for remediation of other operable units and/or media at a later time. Pollutants of concern include: metals; petroleum hydrocarbons; and chlorinated solvents
Hopf bifurcation in a environmental defensive expenditures model with time delay
International Nuclear Information System (INIS)
Russu, Paolo
2009-01-01
In this paper a three-dimensional environmental defensive expenditures model with delay is considered. The model is based on the interactions among visitors V, quality of ecosystem goods E, and capital K, intended as accommodation and entertainment facilities, in Protected Areas (PAs). The tourism user fees (TUFs) are used partly as a defensive expenditure and partly to increase the capital stock. The stability and existence of Hopf bifurcation are investigated. It is that stability switches and Hopf bifurcation occurs when the delay t passes through a sequence of critical values, τ 0 . It has been that the introduction of a delay is a destabilizing process, in the sense that increasing the delay could cause the bio-economics to fluctuate. Formulas about the stability of bifurcating periodic solution and the direction of Hopf bifurcation are exhibited by applying the normal form theory and the center manifold theorem. Numerical simulations are given to illustrate the results.
Phenomenological and ratio bifurcations of a class of discrete time stochastic processes
Diks, C.G.H.; Wagener, F.O.O.
2011-01-01
Zeeman proposed a classification of stochastic dynamical systems based on the Morse classification of their invariant probability densities; the associated bifurcations are the ‘phenomenological bifurcations’ of L. Arnold. The classification is however not invariant under diffeomorphisms of the
Small-bubble transport and splitting dynamics in a symmetric bifurcation
Qamar, Adnan; Warnez, Matthew; Valassis, Doug T.; Guetzko, Megan E.; Bull, Joseph L.
2017-01-01
Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.
Stability and Bifurcation Analysis of a Modified Epidemic Model for Computer Viruses
Directory of Open Access Journals (Sweden)
Chuandong Li
2014-01-01
Full Text Available We extend the three-dimensional SIR model to four-dimensional case and then analyze its dynamical behavior including stability and bifurcation. It is shown that the new model makes a significant improvement to the epidemic model for computer viruses, which is more reasonable than the most existing SIR models. Furthermore, we investigate the stability of the possible equilibrium point and the existence of the Hopf bifurcation with respect to the delay. By analyzing the associated characteristic equation, it is found that Hopf bifurcation occurs when the delay passes through a sequence of critical values. An analytical condition for determining the direction, stability, and other properties of bifurcating periodic solutions is obtained by using the normal form theory and center manifold argument. The obtained results may provide a theoretical foundation to understand the spread of computer viruses and then to minimize virus risks.
Small-bubble transport and splitting dynamics in a symmetric bifurcation
Qamar, Adnan
2017-06-28
Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.
Local and global bifurcations at infinity in models of glycolytic oscillations
DEFF Research Database (Denmark)
Sturis, Jeppe; Brøns, Morten
1997-01-01
We investigate two models of glycolytic oscillations. Each model consists of two coupled nonlinear ordinary differential equations. Both models are found to have a saddle point at infinity and to exhibit a saddle-node bifurcation at infinity, giving rise to a second saddle and a stable node...... at infinity. Depending on model parameters, a stable limit cycle may blow up to infinite period and amplitude and disappear in the bifurcation, and after the bifurcation, the stable node at infinity then attracts all trajectories. Alternatively, the stable node at infinity may coexist with either a stable...... sink (not at infinity) or a stable limit cycle. This limit cycle may then disappear in a heteroclinic bifurcation at infinity in which the unstable manifold from one saddle at infinity joins the stable manifold of the other saddle at infinity. These results explain prior reports for one of the models...
Bifurcation in the Lengyel–Epstein system for the coupled reactors with diffusion
Directory of Open Access Journals (Sweden)
Shaban Aly
2016-01-01
Full Text Available The main goal of this paper is to continue the investigations of the important system of Fengqi et al. (2008. The occurrence of Turing and Hopf bifurcations in small homogeneous arrays of two coupled reactors via diffusion-linked mass transfer which described by a system of ordinary differential equations is considered. I study the conditions of the existence as well as stability properties of the equilibrium solutions and derive the precise conditions on the parameters to show that the Hopf bifurcation occurs. Analytically I show that a diffusion driven instability occurs at a certain critical value, when the system undergoes a Turing bifurcation, patterns emerge. The spatially homogeneous equilibrium loses its stability and two new spatially non-constant stable equilibria emerge which are asymptotically stable. Numerically, at a certain critical value of diffusion the periodic solution gets destabilized and two new spatially nonconstant periodic solutions arise by Turing bifurcation.
Step-by-step manual for planning and performing bifurcation PCI: a resource-tailored approach.
Milasinovic, Dejan; Wijns, William; Ntsekhe, Mpiko; Hellig, Farrel; Mohamed, Awad; Stankovic, Goran
2018-02-02
As bifurcation PCI can often be resource-demanding due to the use of multiple guidewires, balloons and stents, different technical options are sometimes being explored, in different local settings, to meet the need of optimally treating a patient with a bifurcation lesion, while being confronted with limited material resources. Therefore, it seems important to keep a proper balance between what is recognised as the contemporary state of the art, and what is known to be potentially harmful and to be discouraged. Ultimately, the resource-tailored approach to bifurcation PCI may be characterised by the notion of minimum technical requirements for each step of a successful procedure. Hence, this paper describes the logical sequence of steps when performing bifurcation PCI with provisional SB stenting, starting with basic anatomy assessment and ending with the optimisation of MB stenting and the evaluation of the potential need to stent the SB, suggesting, for each step, the minimum technical requirement for a successful intervention.
Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps
International Nuclear Information System (INIS)
Avrutin, V; Granados, A; Schanz, M
2011-01-01
Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs
Delay-induced stochastic bifurcations in a bistable system under white noise
International Nuclear Information System (INIS)
Sun, Zhongkui; Fu, Jin; Xu, Wei; Xiao, Yuzhu
2015-01-01
In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses
Stability and Hopf Bifurcation of a Reaction-Diffusion Neutral Neuron System with Time Delay
Dong, Tao; Xia, Linmao
2017-12-01
In this paper, a type of reaction-diffusion neutral neuron system with time delay under homogeneous Neumann boundary conditions is considered. By constructing a basis of phase space based on the eigenvectors of the corresponding Laplace operator, the characteristic equation of this system is obtained. Then, by selecting time delay and self-feedback strength as the bifurcating parameters respectively, the dynamic behaviors including local stability and Hopf bifurcation near the zero equilibrium point are investigated when the time delay and self-feedback strength vary. Furthermore, the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are obtained by using the normal form and the center manifold theorem for the corresponding partial differential equation. Finally, two simulation examples are given to verify the theory.
Beeftink, Martine M A; Spiering, Wilko; De Jong, Mark R; Doevendans, Pieter A; Blankestijn, Peter J; Elvan, Arif; Heeg, Jan-Evert; Bots, Michiel L; Voskuil, Michiel
2017-04-01
Renal denervation may be more effective if performed distal in the renal artery because of smaller distances between the lumen and perivascular nerves. The authors reviewed the angiographic results of 97 patients and compared blood pressure reduction in relation to the location of the denervation. No significant differences in blood pressure reduction or complications were found between patient groups divided according to their spatial distribution of the ablations (proximal to the bifurcation in both arteries, distal to the bifurcation in one artery and distal in the other artery, or distal to the bifurcation in both arteries), but systolic ambulatory blood pressure reduction was significantly related to the number of distal ablations. No differences in adverse events were observed. In conclusion, we found no reason to believe that renal denervation distal to the bifurcation poses additional risks over the currently advised approach of proximal denervation, but improved efficacy remains to be conclusively established. ©2017 Wiley Periodicals, Inc.
Hopf bifurcation and chaos from torus breakdown in voltage-mode controlled DC drive systems
International Nuclear Information System (INIS)
Dai Dong; Ma Xikui; Zhang Bo; Tse, Chi K.
2009-01-01
Period-doubling bifurcation and its route to chaos have been thoroughly investigated in voltage-mode and current-mode controlled DC motor drives under simple proportional control. In this paper, the phenomena of Hopf bifurcation and chaos from torus breakdown in a voltage-mode controlled DC drive system is reported. It has been shown that Hopf bifurcation may occur when the DC drive system adopts a more practical proportional-integral control. The phenomena of period-adding and phase-locking are also observed after the Hopf bifurcation. Furthermore, it is shown that the stable torus can breakdown and chaos emerges afterwards. The work presented in this paper provides more complete information about the dynamical behaviors of DC drive systems.
Bifurcation and complex dynamics of a discrete-time predator-prey system involving group defense
Directory of Open Access Journals (Sweden)
S. M. Sohel Rana
2015-09-01
Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system involving group defense. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamical behaviors, including phase portraits, period-7, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors.
Delay-induced stochastic bifurcations in a bistable system under white noise
Energy Technology Data Exchange (ETDEWEB)
Sun, Zhongkui, E-mail: sunzk@nwpu.edu.cn; Fu, Jin; Xu, Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Xiao, Yuzhu [Department of Mathematics and Information Science, Chang' an University, Xi' an 710086 (China)
2015-08-15
In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.
Small-bubble transport and splitting dynamics in a symmetric bifurcation.
Qamar, Adnan; Warnez, Matthew; Valassis, Doug T; Guetzko, Megan E; Bull, Joseph L
2017-08-01
Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.
Stability and bifurcation in a simplified four-neuron BAM neural network with multiple delays
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available We first study the distribution of the zeros of a fourth-degree exponential polynomial. Then we apply the obtained results to a simplified bidirectional associated memory (BAM neural network with four neurons and multiple time delays. By taking the sum of the delays as the bifurcation parameter, it is shown that under certain assumptions the steady state is absolutely stable. Under another set of conditions, there are some critical values of the delay, when the delay crosses these critical values, the Hopf bifurcation occurs. Furthermore, some explicit formulae determining the stability and the direction of periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form theory and center manifold reduction. Numerical simulations supporting the theoretical analysis are also included.
Sufficient conditions for a period incrementing big bang bifurcation in one-dimensional maps
Avrutin, V.; Granados, A.; Schanz, M.
2011-09-01
Typically, big bang bifurcation occurs for one (or higher)-dimensional piecewise-defined discontinuous systems whenever two border collision bifurcation curves collide transversely in the parameter space. At that point, two (feasible) fixed points collide with one boundary in state space and become virtual, and, in the one-dimensional case, the map becomes continuous. Depending on the properties of the map near the codimension-two bifurcation point, there exist different scenarios regarding how the infinite number of periodic orbits are born, mainly the so-called period adding and period incrementing. In our work we prove that, in order to undergo a big bang bifurcation of the period incrementing type, it is sufficient for a piecewise-defined one-dimensional map that the colliding fixed points are attractive and with associated eigenvalues of different signs.
International Nuclear Information System (INIS)
Li, Jinhui; Teng, Zhidong; Wang, Guangqing; Zhang, Long; Hu, Cheng
2017-01-01
In this paper, we introduce the saturated treatment and logistic growth rate into an SIR epidemic model with bilinear incidence. The treatment function is assumed to be a continuously differential function which describes the effect of delayed treatment when the medical condition is limited and the number of infected individuals is large enough. Sufficient conditions for the existence and local stability of the disease-free and positive equilibria are established. And the existence of the stable limit cycles also is obtained. Moreover, by using the theory of bifurcations, it is shown that the model exhibits backward bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcations. Finally, the numerical examples are given to illustrate the theoretical results and obtain some additional interesting phenomena, involving double stable periodic solutions and stable limit cycles.
Classification of coronary artery bifurcation lesions and treatments: Time for a consensus!
DEFF Research Database (Denmark)
Louvard, Yves; Thomas, Martyn; Dzavik, Vladimir
2007-01-01
by intention to treat, it is necessary to clearly define which vessel is the distal main branch and which is (are) the side branche(s) and give each branch a distinct name. Each segment of the bifurcation has been named following the same pattern as the Medina classification. The classification......, heterogeneity, and inadequate description of techniques implemented. Methods: The aim is to propose a consensus established by the European Bifurcation Club (EBC), on the definition and classification of bifurcation lesions and treatments implemented with the purpose of allowing comparisons between techniques...... in various anatomical and clinical settings. Results: A bifurcation lesion is a coronary artery narrowing occurring adjacent to, and/or involving, the origin of a significant side branch. The simple lesion classification proposed by Medina has been adopted. To analyze the outcomes of different techniques...
Bifurcation Tools for Flight Dynamics Analysis and Control System Design, Phase II
National Aeronautics and Space Administration — The purpose of the project is the development of a computational package for bifurcation analysis and advanced flight control of aircraft. The development of...
Emergence of the bifurcation structure of a Langmuir–Blodgett transfer model
Kö pf, Michael H; Thiele, Uwe
2014-01-01
© 2014 IOP Publishing Ltd & London Mathematical Society. We explore the bifurcation structure of a modified Cahn-Hilliard equation that describes a system that may undergo a first-order phase transition and is kept permanently out of equilibrium
Li, Chengyuan; Deng, Licai; de Grijs, Richard; Jiang, Dengkai; Xin, Yu
2018-01-01
Bifurcated patterns of blue straggler stars in their color--magnitude diagrams have atracted significant attention. This type of special (but rare) pattern of two distinct blue straggler sequences is commonly interpreted as evidence of cluster core-collapse-driven stellar collisions as an efficient formation mechanism. Here, we report the detection of a bifurcated blue straggler distribution in a young Large MagellanicCloud cluster, NGC 2173. Because of the cluster's low central stellar numbe...
Si'lnikov chaos and Hopf bifurcation analysis of Rucklidge system
International Nuclear Information System (INIS)
Wang Xia
2009-01-01
A three-dimensional autonomous system - the Rucklidge system is considered. By the analytical method, Hopf bifurcation of Rucklidge system may occur when choosing an appropriate bifurcation parameter. Using the undetermined coefficient method, the existence of heteroclinic and homoclinic orbits in the Rucklidge system is proved, and the explicit and uniformly convergent algebraic expressions of Si'lnikov type orbits are given. As a result, the Si'lnikov criterion guarantees that there exists the Smale horseshoe chaos motion for the Rucklidge system.
On the Computation of Degenerate Hopf Bifurcations for n-Dimensional Multiparameter Vector Fields
Directory of Open Access Journals (Sweden)
Michail P. Markakis
2016-01-01
Full Text Available The restriction of an n-dimensional nonlinear parametric system on the center manifold is treated via a new proper symbolic form and analytical expressions of the involved quantities are obtained as functions of the parameters by lengthy algebraic manipulations combined with computer assisted calculations. Normal forms regarding degenerate Hopf bifurcations up to codimension 3, as well as the corresponding Lyapunov coefficients and bifurcation portraits, can be easily computed for any system under consideration.
Bifurcation analysis in delayed feedback Jerk systems and application of chaotic control
International Nuclear Information System (INIS)
Zheng Baodong; Zheng Huifeng
2009-01-01
Jerk systems with delayed feedback are considered. Firstly, by employing the polynomial theorem to analyze the distribution of the roots to the associated characteristic equation, the conditions of ensuring the existence of Hopf bifurcation are given. Secondly, the stability and direction of the Hopf bifurcation are determined by applying the normal form method and center manifold theorem. Finally, the application to chaotic control is investigated, and some numerical simulations are carried out to illustrate the obtained results.
Hopf bifurcation of a ratio-dependent predator-prey system with time delay
International Nuclear Information System (INIS)
Celik, Canan
2009-01-01
In this paper, we consider a ratio dependent predator-prey system with time delay where the dynamics is logistic with the carrying capacity proportional to prey population. By considering the time delay as bifurcation parameter, we analyze the stability and the Hopf bifurcation of the system based on the normal form approach and the center manifold theory. Finally, we illustrate our theoretical results by numerical simulations.
Evidence for bifurcation and universal chaotic behavior in nonlinear semiconducting devices
International Nuclear Information System (INIS)
Testa, J.; Perez, J.; Jeffries, C.
1982-01-01
Bifurcations, chaos, and extensive periodic windows in the chaotic regime are observed for a driven LRC circuit, the capacitive element being a nonlinear varactor diode. Measurements include power spectral analysis; real time amplitude data; phase portraits; and a bifurcation diagram, obtained by sampling methods. The effects of added external noise are studied. These data yield experimental determinations of several of the universal numbers predicted to characterize nonlinear systems having this route to chaos
Cascades of alternating pitchfork and flip bifurcations in H-bridge inverters
DEFF Research Database (Denmark)
Avrutin, Viktor; Zhusubaliyev, Zhanybai T.; Mosekilde, Erik
2017-01-01
be modeled in terms of piecewise smooth maps with an extremely high number of switching manifolds. We have recently shown that models of this type can demonstrate a complicated bifurcation structure associated with the occurrence of border collisions. Considering the example of a PWM H-bridge single...... structure. We explain the observed bifurcation phenomena, show under which conditions they occur, and describe them quantitatively by means of an analytic approximation....
Hopf bifurcation in love dynamical models with nonlinear couples and time delays
International Nuclear Information System (INIS)
Liao Xiaofeng; Ran Jiouhong
2007-01-01
A love dynamical models with nonlinear couples and two delays is considered. Local stability of this model is studied by analyzing the associated characteristic transcendental equation. We find that the Hopf bifurcation occurs when the sum of the two delays varies and passes a sequence of critical values. The stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. Numerical example is given to illustrate our results
Bifurcation analysis on a delayed SIS epidemic model with stage structure
Directory of Open Access Journals (Sweden)
Kejun Zhuang
2007-05-01
Full Text Available In this paper, a delayed SIS (Susceptible Infectious Susceptible model with stage structure is investigated. We study the Hopf bifurcations and stability of the model. Applying the normal form theory and the center manifold argument, we derive the explicit formulas determining the properties of the bifurcating periodic solutions. The conditions to guarantee the global existence of periodic solutions are established. Also some numerical simulations for supporting the theoretical are given.
Stability and Hopf bifurcation in a delayed competitive web sites model
International Nuclear Information System (INIS)
Xiao Min; Cao Jinde
2006-01-01
The delayed differential equations modeling competitive web sites, based on the Lotka-Volterra competition equations, are considered. Firstly, the linear stability is investigated. It is found that there is a stability switch for time delay, and Hopf bifurcation occurs when time delay crosses through a critical value. Then the direction and stability of the bifurcated periodic solutions are determined, using the normal form theory and the center manifold reduction. Finally, some numerical simulations are carried out to illustrate the results found
Liu, Ping; Shi, Junping
2018-01-01
The bifurcation of non-trivial steady state solutions of a scalar reaction-diffusion equation with nonlinear boundary conditions is considered using several new abstract bifurcation theorems. The existence and stability of positive steady state solutions are proved using a unified approach. The general results are applied to a Laplace equation with nonlinear boundary condition and bistable nonlinearity, and an elliptic equation with superlinear nonlinearity and sublinear boundary conditions.
Onset of Fast Magnetic Reconnection via Subcritical Bifurcation
Directory of Open Access Journals (Sweden)
ZHIBIN eGUO
2015-04-01
Full Text Available We report a phase transition model for the onset of fast magnetic reconnection. By investigating the joint dynamics of streaming instability(i.e., current driven ion acoustic in this paper and current gradient driven whistler wave {color{blue} {prior to the onset of fast reconnection}}, we show that the nonlinear evolution of current sheet(CS can be described by a Landau-Ginzburg equation. The phase transition from slow reconnection to fast reconnection occurs at a critical thickness, $Delta_csimeq frac{2}{sqrt{pi}}left|frac{v_{the}}{v_c}right|d_e$, where $v_{the}$ is electron thermal velocity and $v_c$ is the velocity threshold of the streaming instability. For current driven ion acoustic, $Delta_c$ is $leq10d_e$. If the thickness of the CS is narrower than $Delta_c$, the CS subcritically bifurcates into a rough state, which facilitates breakage of the CS, and consequently initiates fast reconnection.
Bifurcation of plasma balls and black holes to Lobed configurations
International Nuclear Information System (INIS)
Cardoso, Vitor; Dias, Oscar J.C.
2009-01-01
At high energy densities any quantum field theory is expected to have an effective hydrodynamic description. When combined with the gravity/gauge duality an unified picture emerges, where gravity itself can have a formal holographic hydrodynamic description. This provides a powerful tool to study black holes in a hydrodynamic setup. We study the stability of plasma balls, holographic duals of Scherck-Schwarz (SS) AdS black holes. We find that rotating plasma balls are unstable against m-lobed perturbations for rotation rates higher than a critical value. This unstable mode signals a bifurcation to a new branch of non-axisymmetric stationary solutions which resemble a 'peanut-like' rotating plasma. The gravitational dual of the rotating plasma ball must then be unstable and possibly decay to a non-axisymmetric long-lived SS AdS black hole. This instability provides therefore a mechanism that bounds the rotation of SS black holes. Our results are strictly valid for the SS AdS gravity theory dual to a SS gauge theory. The latter is particularly important because it shares common features with QCD, namely it is non-conformal, non-supersymmetric and has a confinement/deconfinement phase transition. We focus our analysis in 3-dimensional plasmas dual to SS AdS 5 black holes, but many of our results should extend to higher dimensions and to other gauge theory/gravity dualities with confined/deconfined phases and admitting a fluid description.
Automated Identification of MHD Mode Bifurcation and Locking in Tokamaks
Riquezes, J. D.; Sabbagh, S. A.; Park, Y. S.; Bell, R. E.; Morton, L. A.
2017-10-01
Disruption avoidance is critical in reactor-scale tokamaks such as ITER to maintain steady plasma operation and avoid damage to device components. A key physical event chain that leads to disruptions is the appearance of rotating MHD modes, their slowing by resonant field drag mechanisms, and their locking. An algorithm has been developed that automatically detects bifurcation of the mode toroidal rotation frequency due to loss of torque balance under resonant braking, and mode locking for a set of shots using spectral decomposition. The present research examines data from NSTX, NSTX-U and KSTAR plasmas which differ significantly in aspect ratio (ranging from A = 1.3 - 3.5). The research aims to examine and compare the effectiveness of different algorithms for toroidal mode number discrimination, such as phase matching and singular value decomposition approaches, and to examine potential differences related to machine aspect ratio (e.g. mode eigenfunction shape variation). Simple theoretical models will be compared to the dynamics found. Main goals are to detect or potentially forecast the event chain early during a discharge. This would serve as a cue to engage active mode control or a controlled plasma shutdown. Supported by US DOE Contracts DE-SC0016614 and DE-AC02-09CH11466.
Dansgaard–Oeschger events: bifurcation points in the climate system
Directory of Open Access Journals (Sweden)
A. A. Cimatoribus
2013-02-01
Full Text Available Dansgaard–Oeschger events are a prominent mode of variability in the records of the last glacial cycle. Various prototype models have been proposed to explain these rapid climate fluctuations, and no agreement has emerged on which may be the more correct for describing the palaeoclimatic signal. In this work, we assess the bimodality of the system, reconstructing the topology of the multi-dimensional attractor over which the climate system evolves. We use high-resolution ice core isotope data to investigate the statistical properties of the climate fluctuations in the period before the onset of the abrupt change. We show that Dansgaard–Oeschger events have weak early warning signals if the ensemble of events is considered. We find that the statistics are consistent with the switches between two different climate equilibrium states in response to a changing external forcing (e.g. solar, ice sheets, either forcing directly the transition or pacing it through stochastic resonance. These findings are most consistent with a model that associates Dansgaard–Oeschger with changing boundary conditions, and with the presence of a bifurcation point.
Freeform inkjet printing of cellular structures with bifurcations.
Christensen, Kyle; Xu, Changxue; Chai, Wenxuan; Zhang, Zhengyi; Fu, Jianzhong; Huang, Yong
2015-05-01
Organ printing offers a great potential for the freeform layer-by-layer fabrication of three-dimensional (3D) living organs using cellular spheroids or bioinks as building blocks. Vascularization is often identified as a main technological barrier for building 3D organs. As such, the fabrication of 3D biological vascular trees is of great importance for the overall feasibility of the envisioned organ printing approach. In this study, vascular-like cellular structures are fabricated using a liquid support-based inkjet printing approach, which utilizes a calcium chloride solution as both a cross-linking agent and support material. This solution enables the freeform printing of spanning and overhang features by providing a buoyant force. A heuristic approach is implemented to compensate for the axially-varying deformation of horizontal tubular structures to achieve a uniform diameter along their axial directions. Vascular-like structures with both horizontal and vertical bifurcations have been successfully printed from sodium alginate only as well as mouse fibroblast-based alginate bioinks. The post-printing fibroblast cell viability of printed cellular tubes was found to be above 90% even after a 24 h incubation, considering the control effect. © 2014 Wiley Periodicals, Inc.
The origin of the bifurcating style in Asteraceae (Compositae).
Katinas, Liliana; Hernández, Marcelo P; Arambarri, Ana M; Funk, Vicki A
2016-05-01
The plant family Asteraceae (Compositae) exhibits remarkable morphological variation in the styles of its members. Lack of studies on the styles of the sister families to Asteraceae, Goodeniaceae and Calyceraceae, obscures our understanding of the origin and evolution of this reproductive feature in these groups. The aim of this work was to perform a comparative study of style morphology and to discuss the relevance of important features in the evolution of Asteraceae and its sister families. The histochemistry, venation and general morphology of the styles of members of Goodeniaceae, Calyceraceae and early branching lineages of Asteraceae were analysed and put in a phylogenetic framework to discuss the relevance of style features in the evolution of these families. The location of lipophilic substances allowed differentiation of receptive from non-receptive style papillae, and the style venation in Goodeniaceae and Calyceraceae proved to be distinctive. There were several stages of style evolution from Goodeniaceae to Asteraceae involving connation and elongation of veins, development of bilobation from an initially cup-shaped style, and a redistribution of the receptive and non-receptive papillae. These developments resulted in bifurcation in the styles of Asteraceae, with each branch face having a different function, and it is suggested here as a mechanism that promoted outcrossing, which in turn led to the great diversification in the family. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
European monetary union: limits to growth or bifurcation point
Directory of Open Access Journals (Sweden)
Oleksandr Sharov
2014-02-01
Full Text Available The paper presents the background and process of the EU monetary union establishment with regard to historical experience of European countries involving previous attempts of currency integration between separate countries. The author also analyzes methods of solving various theoretical and practical problems arising during the process. In particular, it is pointed out that the majority of the problems were caused by neglecting monetary integration principles, the need for observing which had been clearly stated yet at the preliminary stages of the integration process. Special emphasis is made on reviewing current development stage of the monetary union, in particular, with regard to problems caused by the financial crisis in "peripheral countries" of the Union as well as by concurrent intensification of cooperation in the field of banking and fiscal issues. In this context, the trends of further European monetary integration development are also considered. As resulted from analysis, the author concludes that the European Monetary Union had exhausted its energy for development along previously assigned trajectory and reached the bifurcation point, whereas its further improvement or gradual preservation and decline depend upon the direction in which the point is passed.
Axisymmetric bifurcations of thick spherical shells under inflation and compression
deBotton, G.; Bustamante, R.; Dorfmann, A.
2013-01-01
Incremental equilibrium equations and corresponding boundary conditions for an isotropic, hyperelastic and incompressible material are summarized and then specialized to a form suitable for the analysis of a spherical shell subject to an internal or an external pressure. A thick-walled spherical shell during inflation is analyzed using four different material models. Specifically, one and two terms in the Ogden energy formulation, the Gent model and an I1 formulation recently proposed by Lopez-Pamies. We investigate the existence of local pressure maxima and minima and the dependence of the corresponding stretches on the material model and on shell thickness. These results are then used to investigate axisymmetric bifurcations of the inflated shell. The analysis is extended to determine the behavior of a thick-walled spherical shell subject to an external pressure. We find that the results of the two terms Ogden formulation, the Gent and the Lopez-Pamies models are very similar, for the one term Ogden material we identify additional critical stretches, which have not been reported in the literature before.© 2012 Published by Elsevier Ltd.
Bifurcation in epigenetics: Implications in development, proliferation, and diseases
Jost, Daniel
2014-01-01
Cells often exhibit different and stable phenotypes from the same DNA sequence. Robustness and plasticity of such cellular states are controlled by diverse transcriptional and epigenetic mechanisms, among them the modification of biochemical marks on chromatin. Here, we develop a stochastic model that describes the dynamics of epigenetic marks along a given DNA region. Through mathematical analysis, we show the emergence of bistable and persistent epigenetic states from the cooperative recruitment of modifying enzymes. We also find that the dynamical system exhibits a critical point and displays, in the presence of asymmetries in recruitment, a bifurcation diagram with hysteresis. These results have deep implications for our understanding of epigenetic regulation. In particular, our study allows one to reconcile within the same formalism the robust maintenance of epigenetic identity observed in differentiated cells, the epigenetic plasticity of pluripotent cells during differentiation, and the effects of epigenetic misregulation in diseases. Moreover, it suggests a possible mechanism for developmental transitions where the system is shifted close to the critical point to benefit from high susceptibility to developmental cues.
Topological chaos, braiding and bifurcation of almost-cyclic sets.
Grover, Piyush; Ross, Shane D; Stremler, Mark A; Kumar, Pankaj
2012-12-01
In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to analyze chaos in the system through application of the Thurston-Nielsen classification theorem (TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al., "Topological chaos and periodic braiding of almost-cyclic sets," Phys. Rev. Lett. 106, 114101 (2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local residence time that act as stirrers or "ghost rods" around which the surrounding fluid appears to be stretched and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a system parameter is varied, which results in a sequence of topologically distinct braids. We show that, for Stokes' flow in a lid-driven cavity, these various braids give good lower bounds on the topological entropy over the respective parameter regimes in which they exist. We make the case that a topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used for analyzing chaos in fluid flows. Hence, we further develop a connection between set-oriented statistical methods and topological methods, which promises to be an important analysis tool in the study of complex systems.
A model of competing species that exhibits zip bifurcation
Directory of Open Access Journals (Sweden)
Luis F. Echeverri
2017-01-01
Full Text Available El objetivo de este trabajo es presentar un modelo concreto d e poblaciones de especies en competición que exhibe la bifurc ación Zip. La bifurcación zip fue introducida por Farkas en 1984 para un si stema tridi- mensional de ecuaciones diferenciales ordinarias que desc ribe un quimiostato. Estudiaremos un sistema tridimensional de ecuaciones dife renciales ordinarias que modela la competición de dos poblaciones distintas de pr edadores por una única población presa. El sistema usa funciones trigonomét ricas concretas pa- ra representar la tasa de crecimiento de la presa y la respues ta funcional del predador. El modelo exhibe diferentes clases de comportami entos y muestra ejemplos de los llamados principio de exclusión competitiva y la competición de un r-estratega contra un k-estratega . Adicionalmente, para ilustrar la bi- furcacion zip, presentaremos algunas simulaciones numéri cas.
International Nuclear Information System (INIS)
Hajihosseini, Amirhossein; Maleki, Farzaneh; Rokni Lamooki, Gholam Reza
2011-01-01
Highlights: → We construct a recurrent neural network by generalizing a specific n-neuron network. → Several codimension 1 and 2 bifurcations take place in the newly constructed network. → The newly constructed network has higher capabilities to learn periodic signals. → The normal form theorem is applied to investigate dynamics of the network. → A series of bifurcation diagrams is given to support theoretical results. - Abstract: A class of recurrent neural networks is constructed by generalizing a specific class of n-neuron networks. It is shown that the newly constructed network experiences generic pitchfork and Hopf codimension one bifurcations. It is also proved that the emergence of generic Bogdanov-Takens, pitchfork-Hopf and Hopf-Hopf codimension two, and the degenerate Bogdanov-Takens bifurcation points in the parameter space is possible due to the intersections of codimension one bifurcation curves. The occurrence of bifurcations of higher codimensions significantly increases the capability of the newly constructed recurrent neural network to learn broader families of periodic signals.
Bifurcating fronts for the Taylor-Couette problem in infinite cylinders
Hărăguş-Courcelle, M.; Schneider, G.
We show the existence of bifurcating fronts for the weakly unstable Taylor-Couette problem in an infinite cylinder. These fronts connect a stationary bifurcating pattern, here the Taylor vortices, with the trivial ground state, here the Couette flow. In order to show the existence result we improve a method which was already used in establishing the existence of bifurcating fronts for the Swift-Hohenberg equation by Collet and Eckmann, 1986, and by Eckmann and Wayne, 1991. The existence proof is based on spatial dynamics and center manifold theory. One of the difficulties in applying center manifold theory comes from an infinite number of eigenvalues on the imaginary axis for vanishing bifurcation parameter. But nevertheless, a finite dimensional reduction is possible, since the eigenvalues leave the imaginary axis with different velocities, if the bifurcation parameter is increased. In contrast to previous work we have to use normalform methods and a non-standard cut-off function to obtain a center manifold which is large enough to contain the bifurcating fronts.
Gaudreault, Mathieu; Drolet, François; Viñals, Jorge
2010-11-01
Analytical expressions for pitchfork and Hopf bifurcation thresholds are given for a nonlinear stochastic differential delay equation with feedback. Our results assume that the delay time τ is small compared to other characteristic time scales, not a significant limitation close to the bifurcation line. A pitchfork bifurcation line is found, the location of which depends on the conditional average , where x(t) is the dynamical variable. This conditional probability incorporates the combined effect of fluctuation correlations and delayed feedback. We also find a Hopf bifurcation line which is obtained by a multiple scale expansion around the oscillatory solution near threshold. We solve the Fokker-Planck equation associated with the slowly varying amplitudes and use it to determine the threshold location. In both cases, the predicted bifurcation lines are in excellent agreement with a direct numerical integration of the governing equations. Contrary to the known case involving no delayed feedback, we show that the stochastic bifurcation lines are shifted relative to the deterministic limit and hence that the interaction between fluctuation correlations and delay affect the stability of the solutions of the model equation studied.
Anatomy and function relation in the coronary tree: from bifurcations to myocardial flow and mass.
Kassab, Ghassan S; Finet, Gerard
2015-01-01
The study of the structure-function relation of coronary bifurcations is necessary not only to understand the design of the vasculature but also to use this understanding to restore structure and hence function. The objective of this review is to provide quantitative relations between bifurcation anatomy or geometry, flow distribution in the bifurcation and degree of perfused myocardial mass in order to establish practical rules to guide optimal treatment of bifurcations including side branches (SB). We use the scaling law between flow and diameter, conservation of mass and the scaling law between myocardial mass and diameter to provide geometric relations between the segment diameters of a bifurcation, flow fraction distribution in the SB, and the percentage of myocardial mass perfused by the SB. We demonstrate that the assessment of the functional significance of an SB for intervention should not only be based on the diameter of the SB but also on the diameter of the mother vessel as well as the diameter of the proximal main artery, as these dictate the flow fraction distribution and perfused myocardial mass, respectively. The geometric and flow rules for a bifurcation are extended to a trifurcation to ensure optimal therapy scaling rules for any branching pattern.
International Nuclear Information System (INIS)
Agliari, Anna
2006-01-01
In this paper we study some global bifurcations arising in the Puu's oligopoly model when we assume that the producers do not adjust to the best reply but use an adaptive process to obtain at each step the new production. Such bifurcations cause the appearance of a pair of closed invariant curves, one attracting and one repelling, this latter being involved in the subcritical Neimark bifurcation of the Cournot equilibrium point. The aim of the paper is to highlight the relationship between the global bifurcations causing the appearance/disappearance of two invariant closed curves and the homoclinic connections of some saddle cycle, already conjectured in [Agliari A, Gardini L, Puu T. Some global bifurcations related to the appearance of closed invariant curves. Comput Math Simul 2005;68:201-19]. We refine the results obtained in such a paper, showing that the appearance/disappearance of closed invariant curves is not necessarily related to the existence of an attracting cycle. The characterization of the periodicity tongues (i.e. a region of the parameter space in which an attracting cycle exists) associated with a subcritical Neimark bifurcation is also discussed
Multistability and gluing bifurcation to butterflies in coupled networks with non-monotonic feedback
International Nuclear Information System (INIS)
Ma Jianfu; Wu Jianhong
2009-01-01
Neural networks with a non-monotonic activation function have been proposed to increase their capacity for memory storage and retrieval, but there is still a lack of rigorous mathematical analysis and detailed discussions of the impact of time lag. Here we consider a two-neuron recurrent network. We first show how supercritical pitchfork bifurcations and a saddle-node bifurcation lead to the coexistence of multiple stable equilibria (multistability) in the instantaneous updating network. We then study the effect of time delay on the local stability of these equilibria and show that four equilibria lose their stability at a certain critical value of time delay, and Hopf bifurcations of these equilibria occur simultaneously, leading to multiple coexisting periodic orbits. We apply centre manifold theory and normal form theory to determine the direction of these Hopf bifurcations and the stability of bifurcated periodic orbits. Numerical simulations show very interesting global patterns of periodic solutions as the time delay is varied. In particular, we observe that these four periodic solutions are glued together along the stable and unstable manifolds of saddle points to develop a butterfly structure through a complicated process of gluing bifurcations of periodic solutions
Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points
Jia, Bing; Gu, Huaguang
2017-06-01
Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.
Emergence of the bifurcation structure of a Langmuir–Blodgett transfer model
Köpf, Michael H
2014-10-07
© 2014 IOP Publishing Ltd & London Mathematical Society. We explore the bifurcation structure of a modified Cahn-Hilliard equation that describes a system that may undergo a first-order phase transition and is kept permanently out of equilibrium by a lateral driving. This forms a simple model, e.g., for the deposition of stripe patterns of different phases of surfactant molecules through Langmuir-Blodgett transfer. Employing continuation techniques the bifurcation structure is numerically investigated using the non-dimensional transfer velocity as the main control parameter. It is found that the snaking structure of steady front states is intertwined with a large number of branches of time-periodic solutions that emerge from Hopf or period-doubling bifurcations and end in global bifurcations (sniper and homoclinic). Overall the bifurcation diagram has a harp-like appearance. This is complemented by a two-parameter study in non-dimensional transfer velocity and domain size (as a measure of the distance to the phase transition threshold) that elucidates through which local and global codimension 2 bifurcations the entire harp-like structure emerges.
A Method to Determine Oscillation Emergence Bifurcation in Time-Delayed LTI System with Single Lag
Directory of Open Access Journals (Sweden)
Yu Xiaodan
2014-01-01
Full Text Available One type of bifurcation named oscillation emergence bifurcation (OEB found in time-delayed linear time invariant (abbr. LTI systems is fully studied. The definition of OEB is initially put forward according to the eigenvalue variation. It is revealed that a real eigenvalue splits into a pair of conjugated complex eigenvalues when an OEB occurs, which means the number of the system eigenvalues will increase by one and a new oscillation mode will emerge. Next, a method to determine OEB bifurcation in the time-delayed LTI system with single lag is developed based on Lambert W function. A one-dimensional (1-dim time-delayed system is firstly employed to explain the mechanism of OEB bifurcation. Then, methods to determine the OEB bifurcation in 1-dim, 2-dim, and high-dimension time-delayed LTI systems are derived. Finally, simulation results validate the correctness and effectiveness of the presented method. Since OEB bifurcation occurs with a new oscillation mode emerging, work of this paper is useful to explore the complex phenomena and the stability of time-delayed dynamic systems.
Nonresonant Double Hopf Bifurcation in Toxic Phytoplankton-Zooplankton Model with Delay
Yuan, Rui; Jiang, Weihua; Wang, Yong
This paper investigates a toxic phytoplankton-zooplankton model with Michaelis-Menten type phytoplankton harvesting. The model has rich dynamical behaviors. It undergoes transcritical, saddle-node, fold, Hopf, fold-Hopf and double Hopf bifurcation, when the parameters change and go through some of the critical values, the dynamical properties of the system will change also, such as the stability, equilibrium points and the periodic orbit. We first study the stability of the equilibria, and analyze the critical conditions for the above bifurcations at each equilibrium. In addition, the stability and direction of local Hopf bifurcations, and the completion bifurcation set by calculating the universal unfoldings near the double Hopf bifurcation point are given by the normal form theory and center manifold theorem. We obtained that the stable coexistent equilibrium point and stable periodic orbit alternate regularly when the digestion time delay is within some finite value. That is, we derived the pattern for the occurrence, and disappearance of a stable periodic orbit. Furthermore, we calculated the approximation expression of the critical bifurcation curve using the digestion time delay and the harvesting rate as parameters, and determined a large range in terms of the harvesting rate for the phytoplankton and zooplankton to coexist in a long term.
Grundeken, Maik J.; Lesiak, Maciej; Asgedom, Solomon; Garcia, Eulogio; Bethencourt, Armando; Norell, Michael S.; Damman, Peter; Woudstra, Pier; Koch, Karel T.; Vis, M. Marije; Henriques, Jose P.; Tijssen, Jan G.; Onuma, Yoshinobu; Foley, David P.; Bartorelli, Antonio L.; Stella, Pieter R.; de Winter, Robbert J.; Wykrzykowska, Joanna J.
2014-01-01
We evaluated differences in clinical outcomes between patients who underwent final kissing balloon inflation (FKBI) and patients who did not undergo FKBI in bifurcation treatment using the Tryton Side Branch Stent (Tryton Medical, Durham, North Carolina, USA). Clinical outcomes were defined as
M.J. Grundeken (Maik); M. Lesiak (MacIej); S. Asgedom (Solomon); E. Garcia (Eulogio); A. Bethencourt (Armando); M.S. Norell (Michael); K. Damman (Kevin); E. Woudstra (Evert); K. Koch (Karel); M.M. Vis (Marije); J.P.S. Henriques (Jose); J.G.P. Tijssen (Jan); Y. Onuma (Yoshinobu); D.P. Foley (David); A. Bartorelli (Antonio); P.R. Stella (Pieter); R.J. de Winter (Robbert); J.J. Wykrzykowska (Joanna)
2014-01-01
textabstractObjective We evaluated differences in clinical outcomes between patients who underwent final kissing balloon inflation (FKBI) and patients who did not undergo FKBI in bifurcation treatment using the Tryton Side Branch Stent (Tryton Medical, Durham, North Carolina, USA). Methods Clinical
Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation
Energy Technology Data Exchange (ETDEWEB)
Ortega, J; Hartman, J; Rodriguez, J; Maitland, D
2008-01-16
Aneurysm re-growth and rupture can sometimes unexpectedly occur following treatment procedures that were initially considered to be successful at the time of treatment and post-operative angiography. In some cases, this can be attributed to surgical clip slippage or endovascular coil compaction. However, there are other cases in which the treatment devices function properly. In these instances, the subsequent complications are due to other factors, perhaps one of which is the post-treatment hemodynamic stress. To investigate whether or not a treatment procedure can subject the parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. The simulations demonstrate that the treatment procedure produces a substantial increase in the wall shear stress. Analysis of the post-treatment flow field indicates that the increase in wall shear stress is due to the impingement of the basilar artery flow upon the aneurysm filling material and to the close proximity of a vortex tube to the artery wall. Calculation of the time-averaged wall shear stress shows that there is a region of the artery exposed to a level of wall shear stress that can cause severe damage to endothelial cells. The results of this study demonstrate that it is possible for a treatment procedure, which successfully excludes the aneurysm from the vascular system and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the immediately adjacent vessel wall.
STABILITY, BIFURCATIONS AND CHAOS IN UNEMPLOYMENT NON-LINEAR DYNAMICS
Directory of Open Access Journals (Sweden)
Pagliari Carmen
2013-07-01
Full Text Available The traditional analysis of unemployment in relation to real output dynamics is based on some empirical evidences deducted from Okun’s studies. In particular the so called Okun’s Law is expressed in a linear mathematical formulation, which cannot explain the fluctuation of the variables involved. Linearity is an heavy limit for macroeconomic analysis and especially for every economic growth study which would consider the unemployment rate among the endogenous variables. This paper deals with an introductive study about the role of non-linearity in the investigation of unemployment dynamics. The main idea is the existence of a non-linear relation between the unemployment rate and the gap of GDP growth rate from its trend. The macroeconomic motivation of this idea moves from the consideration of two concatenate effects caused by a variation of the unemployment rate on the real output growth rate. These two effects are concatenate because there is a first effect that generates a secondary one on the same variable. When the unemployment rate changes, the first effect is the variation in the level of production in consequence of the variation in the level of such an important factor as labour force; the secondary effect is a consecutive variation in the level of production caused by the variation in the aggregate demand in consequence of the change of the individual disposal income originated by the previous variation of production itself. In this paper the analysis of unemployment dynamics is carried out by the use of the logistic map and the conditions for the existence of bifurcations (cycles are determined. The study also allows to find the range of variability of some characteristic parameters that might be avoided for not having an absolute unpredictability of unemployment dynamics (deterministic chaos: unpredictability is equivalent to uncontrollability because of the total absence of information about the future value of the variable to
Longitudinal traveling waves bifurcating from Vlasov plasma equilibria
International Nuclear Information System (INIS)
Holloway, J.P.
1989-01-01
The kinetic equations governing longitudinal motion along a straight magnetic field in a multi-species collisionless plasma are investigated. A necessary condition for the existence of small amplitude spatially periodic equilibria and traveling waves near a given spatially uniform background equilibrium is derived, and the wavelengths which such solutions must approach as their amplitude decreases to zero are discussed. A sufficient condition for the existence of these small amplitude waves is also established. This is accomplished by studying the nonlinear ODE for the potential which arises when the distribution functions are represented in a BGK form; the arbitrary functions of energy that describe the BGK representation are tested as an infinite dimensional set of parameters in a bifurcation theory for the ODE. The positivity and zero current condition in the wave frame of the BGK distribution functions are maintained. The undamped small amplitude nonlinear waves so constructed can be made to satisfy the Vlasov dispersion relation exactly, but in general they need only satisfy it approximately. Numerical calculations reveal that even a thermal equilibrium electron-proton plasma with equal ion and electron temperatures will support undamped traveling waves with phase speeds greater than 1.3 times the electron velocity; the dispersion relation for this case exhibits both Langmuir and ion-acoustic branches as long wavelength limits, and shows how these branches are in fact connected by short wavelength waves of intermediate frequency. In apparent contradiction to the linear theory of Landau, these exact solutions of the kinetic equations do not damp; this contradiction is explained by observing that the linear theory is, in general, fundamentally incapable of describing undamped traveling waves
Directory of Open Access Journals (Sweden)
Yi Zhang
2014-01-01
Full Text Available The objective of this paper is to study systematically the bifurcation and control of a single-species fish population logistic model with the invasion of alien species based on the theory of singular system and bifurcation. It regards Spartina anglica as an invasive species, which invades the fisheries and aquaculture. Firstly, the stabilities of equilibria in this model are discussed. Moreover, the sufficient conditions for existence of the trans-critical bifurcation and the singularity induced bifurcation are obtained. Secondly, the state feedback controller is designed to eliminate the unexpected singularity induced bifurcation by combining harvested effort with the purification capacity. It obviously inhibits the switch of population and makes the system stable. Finally, the numerical simulation is proposed to show the practical significance of the bifurcation and control from the biological point of view.
Bifurcation parameters of a reflected shock wave in cylindrical channels of different roughnesses
Penyazkov, O.; Skilandz, A.
2018-03-01
To investigate the effect of bifurcation on the induction time in cylindrical shock tubes used for chemical kinetic experiments, one should know the parameters of the bifurcation structure of a reflected shock wave. The dynamics and parameters of the shock wave bifurcation, which are caused by reflected shock wave-boundary layer interactions, are studied experimentally in argon, in air, and in a hydrogen-nitrogen mixture for Mach numbers M = 1.3-3.5 in a 76-mm-diameter shock tube without any ramp. Measurements were taken at a constant gas density behind the reflected shock wave. Over a wide range of experimental conditions, we studied the axial projection of the oblique shock wave and the pressure distribution in the vicinity of the triple Mach configuration at 50, 150, and 250 mm from the endwall, using side-wall schlieren and pressure measurements. Experiments on a polished shock tube and a shock tube with a surface roughness of 20 {μ }m Ra were carried out. The surface roughness was used for initiating small-scale turbulence in the boundary layer behind the incident shock wave. The effect of small-scale turbulence on the homogenization of the transition zone from the laminar to turbulent boundary layer along the shock tube perimeter was assessed, assuming its influence on a subsequent stabilization of the bifurcation structure size versus incident shock wave Mach number, as well as local flow parameters behind the reflected shock wave. The influence of surface roughness on the bifurcation development and pressure fluctuations near the wall, as well as on the Mach number, at which the bifurcation first develops, was analyzed. It was found that even small additional surface roughness can lead to an overshoot in pressure growth by a factor of two, but it can stabilize the bifurcation structure along the shock tube perimeter.
Zhang, Yi; Zhang, Qiaoling; Li, Jinghao; Zhang, Qingling
2014-01-01
The objective of this paper is to study systematically the bifurcation and control of a single-species fish population logistic model with the invasion of alien species based on the theory of singular system and bifurcation. It regards Spartina anglica as an invasive species, which invades the fisheries and aquaculture. Firstly, the stabilities of equilibria in this model are discussed. Moreover, the sufficient conditions for existence of the trans-critical bifurcation and the singularity ind...
International Nuclear Information System (INIS)
Fujimura, Kaoru
1995-01-01
This is the abstracts of the Mini-Symposium on Stability and Bifurcation in Fluid Motions held on September 9-10, 1994 at the Tokai Establishment of JAERI and the Tokai Kaikan. Sixteen talks were given on various important subjects related with stability and bifurcation phenomena in fluids. All of them are theoretical and numerical analyses involving linear stability analysis, weakly nonlinear analysis, bifurcation analysis, and direct computation of nonlinearly equilibrium solutions. (author)
Energy Technology Data Exchange (ETDEWEB)
Fujimura, Kaoru [ed.; Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1995-01-01
This is the abstracts of the Mini-Symposium on Stability and Bifurcation in Fluid Motions held on September 9-10, 1994 at the Tokai Establishment of JAERI and the Tokai Kaikan. Sixteen talks were given on various important subjects related with stability and bifurcation phenomena in fluids. All of them are theoretical and numerical analyses involving linear stability analysis, weakly nonlinear analysis, bifurcation analysis, and direct computation of nonlinearly equilibrium solutions. (author).
Directory of Open Access Journals (Sweden)
Zizhen Zhang
2017-01-01
Full Text Available Hopf bifurcation for an SEIRS-V model with delays on the transmission of worms in a wireless sensor network is investigated. We focus on existence of the Hopf bifurcation by regarding the diverse delay as a bifurcation parameter. The results show that propagation of worms in the wireless sensor network can be controlled when the delay is suitably small under some certain conditions. Then, we study properties of the Hopf bifurcation by using the normal form theory and center manifold theorem. Finally, we give a numerical example to support the theoretical results.
Castellanos, Víctor; Castillo-Santos, Francisco Eduardo; Dela-Rosa, Miguel Angel; Loreto-Hernández, Iván
In this paper, we analyze the Hopf and Bautin bifurcation of a given system of differential equations, corresponding to a tritrophic food chain model with Holling functional response types III and IV for the predator and superpredator, respectively. We distinguish two cases, when the prey has linear or logistic growth. In both cases we guarantee the existence of a limit cycle bifurcating from an equilibrium point in the positive octant of ℝ3. In order to do so, for the Hopf bifurcation we compute explicitly the first Lyapunov coefficient, the transversality Hopf condition, and for the Bautin bifurcation we also compute the second Lyapunov coefficient and verify the regularity conditions.
International Nuclear Information System (INIS)
Ding Xiaohua; Su Huan; Liu Mingzhu
2008-01-01
The paper analyzes a discrete second-order, nonlinear delay differential equation with negative feedback. The characteristic equation of linear stability is solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The existence of local Hopf bifurcations is investigated, and the direction and stability of periodic solutions bifurcating from the Hopf bifurcation of the discrete model are determined by the Hopf bifurcation theory of discrete system. Finally, some numerical simulations are performed to illustrate the analytical results found
Wang, Zhen; Wang, Xiaohong; Li, Yuxia; Huang, Xia
2017-12-01
In this paper, the problems of stability and Hopf bifurcation in a class of fractional-order complex-valued single neuron model with time delay are addressed. With the help of the stability theory of fractional-order differential equations and Laplace transforms, several new sufficient conditions, which ensure the stability of the system are derived. Taking the time delay as the bifurcation parameter, Hopf bifurcation is investigated and the critical value of the time delay for the occurrence of Hopf bifurcation is determined. Finally, two representative numerical examples are given to show the effectiveness of the theoretical results.
International Nuclear Information System (INIS)
Xue Yunjing; Gao Peiyi; Lin Yan
2008-01-01
Objective: To investigate variation in the carotid bifurcation geometry of adults of different age by MR angiography images combining image post-processing technique. Methods: Images of the carotid bifurcations of 27 young adults (≤40 years old) and 30 older subjects ( > 40 years old) were acquired via contrast-enhanced MR angiography. Three dimensional (3D) geometries of the bifurcations were reconstructed and geometric parameters were measured by post-processing technique. Results: The geometric parameters of the young versus older groups were as follows: bifurcation angle (70.268 degree± 16.050 degree versus 58.857 degree±13.294 degree), ICA angle (36.893 degree±11.837 degree versus 30.275 degree±9.533 degree), ICA planarity (6.453 degree ± 5.009 degree versus 6.263 degree ±4.250 degree), CCA tortuosity (0.023±0.011 versus 0.014± 0.005), ICA tortuosity (0.070±0.042 versus 0.046±0.022), ICA/CCA diameter ratio (0.693± 0.132 versus 0.728±0.106), ECA/CCA diameter ratio (0.750±0.123 versus 0.809±0.122), ECA/ ICA diameter ratio (1.103±0.201 versus 1.127±0.195), bifurcation area ratio (1.057±0.281 versus 1.291±0.252). There was significant statistical difference between young group and older group in-bifurcation angle, ICA angle, CCA tortuosity, ICA tortuosity, ECA/CCA and bifurcation area ratio (F= 17.16, 11.74, 23.02, 13.38, 6.54, 22.80, respectively, P<0.05). Conclusions: MR angiography images combined with image post-processing technique can reconstruct 3D carotid bifurcation geometry and measure the geometric parameters of carotid bifurcation in vivo individually. It provides a new and convenient method to investigate the relationship of vascular geometry and flow condition with atherosclerotic pathological changes. (authors)
Barnett, William A.; Duzhak, Evgeniya Aleksandrovna
2008-06-01
Grandmont [J.M. Grandmont, On endogenous competitive business cycles, Econometrica 53 (1985) 995-1045] found that the parameter space of the most classical dynamic models is stratified into an infinite number of subsets supporting an infinite number of different kinds of dynamics, from monotonic stability at one extreme to chaos at the other extreme, and with many forms of multiperiodic dynamics in between. The econometric implications of Grandmont’s findings are particularly important, if bifurcation boundaries cross the confidence regions surrounding parameter estimates in policy-relevant models. Stratification of a confidence region into bifurcated subsets seriously damages robustness of dynamical inferences. Recently, interest in policy in some circles has moved to New-Keynesian models. As a result, in this paper we explore bifurcation within the class of New-Keynesian models. We develop the econometric theory needed to locate bifurcation boundaries in log-linearized New-Keynesian models with Taylor policy rules or inflation-targeting policy rules. Central results needed in this research are our theorems on the existence and location of Hopf bifurcation boundaries in each of the cases that we consider.
International Nuclear Information System (INIS)
An, Fengxian; Chen, Fangqi
2016-01-01
Highlights: • The subharmonic bifurcations and chaotic motions are studied by means of Melnikov method. • The critical conditions for the occurrence of chaotic motions and subharmonic bifurcations are obtained. • The chaotic features on the system parameters are discussed. • The theoretical predictions are confirmed by numerical simulations. - Abstract: The subharmonic bifurcations and chaotic motions of the nonlinear viscoelastic plates subjected to subsonic flow and external loads are studied by means of Melnikov method. The critical conditions for the occurrence of chaotic motions are obtained. The chaotic features on the system parameters are discussed in detail. The conditions for subharmonic bifurcations are also obtained. For the system with no structural damping, chaotic motions can occur through infinite subharmonic bifurcations of odd orders. Furthermore, we confirm our theoretical predictions by numerical simulations. The theoretical results obtained here can help us to eliminate or suppress large nonlinear vibrations and chaotic motions of the nonlinear viscoelastic plates. Based on Melnikov method, complex dynamical behaviors of the nonlinear viscoelastic plates can be controlled by modifying the system parameters.
Bifurcation Analysis with Aerodynamic-Structure Uncertainties by the Nonintrusive PCE Method
Directory of Open Access Journals (Sweden)
Linpeng Wang
2017-01-01
Full Text Available An aeroelastic model for airfoil with a third-order stiffness in both pitch and plunge degree of freedom (DOF and the modified Leishman–Beddoes (LB model were built and validated. The nonintrusive polynomial chaos expansion (PCE based on tensor product is applied to quantify the uncertainty of aerodynamic and structure parameters on the aerodynamic force and aeroelastic behavior. The uncertain limit cycle oscillation (LCO and bifurcation are simulated in the time domain with the stochastic PCE method. Bifurcation diagrams with uncertainties were quantified. The Monte Carlo simulation (MCS is also applied for comparison. From the current work, it can be concluded that the nonintrusive polynomial chaos expansion can give an acceptable accuracy and have a much higher calculation efficiency than MCS. For aerodynamic model, uncertainties of aerodynamic parameters affect the aerodynamic force significantly at the stage from separation to stall at upstroke and at the stage from stall to reattach at return. For aeroelastic model, both uncertainties of aerodynamic parameters and structure parameters impact bifurcation position. Structure uncertainty of parameters is more sensitive for bifurcation. When the nonlinear stall flutter and bifurcation are concerned, more attention should be paid to the separation process of aerodynamics and parameters about pitch DOF in structure.
Does the principle of minimum work apply at the carotid bifurcation: a retrospective cohort study
International Nuclear Information System (INIS)
Beare, Richard J; Das, Gita; Ren, Mandy; Chong, Winston; Sinnott, Matthew D; Hilton, James E; Srikanth, Velandai; Phan, Thanh G
2011-01-01
There is recent interest in the role of carotid bifurcation anatomy, geometry and hemodynamic factors in the pathogenesis of carotid artery atherosclerosis. Certain anatomical and geometric configurations at the carotid bifurcation have been linked to disturbed flow. It has been proposed that vascular dimensions are selected to minimize energy required to maintain blood flow, and that this occurs when an exponent of 3 relates the radii of parent and daughter arteries. We evaluate whether the dimensions of bifurcation of the extracranial carotid artery follow this principle of minimum work. This study involved subjects who had computed tomographic angiography (CTA) at our institution between 2006 and 2007. Radii of the common, internal and external carotid arteries were determined. The exponent was determined for individual bifurcations using numerical methods and for the sample using nonlinear regression. Mean age for 45 participants was 56.9 ± 16.5 years with 26 males. Prevalence of vascular risk factors was: hypertension-48%, smoking-23%, diabetes-16.7%, hyperlipidemia-51%, ischemic heart disease-18.7%. The value of the exponent ranged from 1.3 to 1.6, depending on estimation methodology. The principle of minimum work (defined by an exponent of 3) may not apply at the carotid bifurcation. Additional factors may play a role in the relationship between the radii of the parent and daughter vessels
Analysis of the magnetohydrodynamic equations and study of the nonlinear solution bifurcations
International Nuclear Information System (INIS)
Morros Tosas, J.
1989-05-01
The nonlinear saturation of a plasma magnetohydrodynamic instabilities is studied, by means of a bifurcation theory. The work includes: an accurate mathematical method to study the MHD equations, in which the physical content is clear; and the study of the nonlinear solutions of the branch bifurcations, applied to different unstable plasma models. A scalar function representation is proposed for the MHD equations. This representation is characterized by a reference steady magnetic field and by a velocity field, which allow to write the equations for the scalar functions. An approximation method, leading to the obtention of the reduced equations applied in the instability study, is given. The cylindrical or toroidal plasmas are studied by using the nonlinear solutions bifurcation. Concerning the cylindrical plasma, the representation leads to a reduced system which enables the analytical calculations: two different steady bifurcation solutions are obtained. In the case of the toroidal plasma, an appropriate reduced equations system, is obtained. A qualitative approach of the Kink-type steady solution bifurcation, in a toroidal geometry, is performed [fr
Neimark-Sacker bifurcations and evidence of chaos in a discrete dynamical model of walkers
International Nuclear Information System (INIS)
Rahman, Aminur; Blackmore, Denis
2016-01-01
Bouncing droplets on a vibrating fluid bath can exhibit wave-particle behavior, such as being propelled by interacting with its own wave field. These droplets seem to walk across the bath, and thus are dubbed walkers. Experiments have shown that walkers can exhibit exotic dynamical behavior indicative of chaos. While the integro-differential models developed for these systems agree well with the experiments, they are difficult to analyze mathematically. In recent years, simpler discrete dynamical models have been derived and studied numerically. The numerical simulations of these models show evidence of exotic dynamics such as period doubling bifurcations, Neimark–Sacker (N–S) bifurcations, and even chaos. For example, in [1], based on simulations Gilet conjectured the existence of a supercritical N-S bifurcation as the damping factor in his one- dimensional path model. We prove Gilet’s conjecture and more; in fact, both supercritical and subcritical (N-S) bifurcations are produced by separately varying the damping factor and wave-particle coupling for all eigenmode shapes. Then we compare our theoretical results with some previous and new numerical simulations, and find complete qualitative agreement. Furthermore, evidence of chaos is shown by numerically studying a global bifurcation.
Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation
International Nuclear Information System (INIS)
Ji, J.C.; Hansen, Colin H.
2005-01-01
The trivial equilibrium of a nonlinear autonomous system with time delay may become unstable via a Hopf bifurcation of multiplicity two, as the time delay reaches a critical value. This loss of stability of the equilibrium is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. The resultant dynamic behaviour of the corresponding nonlinear non-autonomous system in the neighbourhood of the Hopf bifurcation is investigated based on the reduction of the infinite-dimensional problem to a four-dimensional centre manifold. As a result of the interaction between the Hopf bifurcating periodic solutions and the external periodic excitation, a primary resonance can occur in the forced response of the system when the forcing frequency is close to the Hopf bifurcating periodic frequency. The method of multiple scales is used to obtain four first-order ordinary differential equations that determine the amplitudes and phases of the phase-locked periodic solutions. The first-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration of the delay-differential equation. It is also found that the steady state solutions of the nonlinear non-autonomous system may lose their stability via either a pitchfork or Hopf bifurcation. It is shown that the primary resonance response may exhibit symmetric and asymmetric phase-locked periodic motions, quasi-periodic motions, chaotic motions, and coexistence of two stable motions
Invariants, Attractors and Bifurcation in Two Dimensional Maps with Polynomial Interaction
Hacinliyan, Avadis Simon; Aybar, Orhan Ozgur; Aybar, Ilknur Kusbeyzi
This work will present an extended discrete-time analysis on maps and their generalizations including iteration in order to better understand the resulting enrichment of the bifurcation properties. The standard concepts of stability analysis and bifurcation theory for maps will be used. Both iterated maps and flows are used as models for chaotic behavior. It is well known that when flows are converted to maps by discretization, the equilibrium points remain the same but a richer bifurcation scheme is observed. For example, the logistic map has a very simple behavior as a differential equation but as a map fold and period doubling bifurcations are observed. A way to gain information about the global structure of the state space of a dynamical system is investigating invariant manifolds of saddle equilibrium points. Studying the intersections of the stable and unstable manifolds are essential for understanding the structure of a dynamical system. It has been known that the Lotka-Volterra map and systems that can be reduced to it or its generalizations in special cases involving local and polynomial interactions admit invariant manifolds. Bifurcation analysis of this map and its higher iterates can be done to understand the global structure of the system and the artifacts of the discretization by comparing with the corresponding results from the differential equation on which they are based.
Von Bertalanffy's dynamics under a polynomial correction: Allee effect and big bang bifurcation
Leonel Rocha, J.; Taha, A. K.; Fournier-Prunaret, D.
2016-02-01
In this work we consider new one-dimensional populational discrete dynamical systems in which the growth of the population is described by a family of von Bertalanffy's functions, as a dynamical approach to von Bertalanffy's growth equation. The purpose of introducing Allee effect in those models is satisfied under a correction factor of polynomial type. We study classes of von Bertalanffy's functions with different types of Allee effect: strong and weak Allee's functions. Dependent on the variation of four parameters, von Bertalanffy's functions also includes another class of important functions: functions with no Allee effect. The complex bifurcation structures of these von Bertalanffy's functions is investigated in detail. We verified that this family of functions has particular bifurcation structures: the big bang bifurcation of the so-called “box-within-a-box” type. The big bang bifurcation is associated to the asymptotic weight or carrying capacity. This work is a contribution to the study of the big bang bifurcation analysis for continuous maps and their relationship with explosion birth and extinction phenomena.
Impact of leakage delay on bifurcation in high-order fractional BAM neural networks.
Huang, Chengdai; Cao, Jinde
2018-02-01
The effects of leakage delay on the dynamics of neural networks with integer-order have lately been received considerable attention. It has been confirmed that fractional neural networks more appropriately uncover the dynamical properties of neural networks, but the results of fractional neural networks with leakage delay are relatively few. This paper primarily concentrates on the issue of bifurcation for high-order fractional bidirectional associative memory(BAM) neural networks involving leakage delay. The first attempt is made to tackle the stability and bifurcation of high-order fractional BAM neural networks with time delay in leakage terms in this paper. The conditions for the appearance of bifurcation for the proposed systems with leakage delay are firstly established by adopting time delay as a bifurcation parameter. Then, the bifurcation criteria of such system without leakage delay are successfully acquired. Comparative analysis wondrously detects that the stability performance of the proposed high-order fractional neural networks is critically weakened by leakage delay, they cannot be overlooked. Numerical examples are ultimately exhibited to attest the efficiency of the theoretical results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bifurcations and Chaos of AN Immersed Cantilever Beam in a Fluid and Carrying AN Intermediate Mass
AL-QAISIA, A. A.; HAMDAN, M. N.
2002-06-01
The concern of this work is the local stability and period-doubling bifurcations of the response to a transverse harmonic excitation of a slender cantilever beam partially immersed in a fluid and carrying an intermediate lumped mass. The unimodal form of the non-linear dynamic model describing the beam-mass in-plane large-amplitude flexural vibration, which accounts for axial inertia, non-linear curvature and inextensibility condition, developed in Al-Qaisia et al. (2000Shock and Vibration7 , 179-194), is analyzed and studied for the resonance responses of the first three modes of vibration, using two-term harmonic balance method. Then a consistent second order stability analysis of the associated linearized variational equation is carried out using approximate methods to predict the zones of symmetry breaking leading to period-doubling bifurcation and chaos on the resonance response curves. The results of the present work are verified for selected physical system parameters by numerical simulations using methods of the qualitative theory, and good agreement was obtained between the analytical and numerical results. Also, analytical prediction of the period-doubling bifurcation and chaos boundaries obtained using a period-doubling bifurcation criterion proposed in Al-Qaisia and Hamdan (2001 Journal of Sound and Vibration244, 453-479) are compared with those of computer simulations. In addition, results of the effect of fluid density, fluid depth, mass ratio, mass position and damping on the period-doubling bifurcation diagrams are studies and presented.
Measurement of carotid bifurcation pressure gradients using the Bernoulli principle.
Illig, K A; Ouriel, K; DeWeese, J A; Holen, J; Green, R M
1996-04-01
Current randomized prospective studies suggest that the degree of carotid stenosis is a critical element in deciding whether surgical or medical treatment is appropriate. Of potential interest is the actual pressure drop caused by the blockage, but no direct non-invasive means of quantifying the hemodynamic consequences of carotid artery stenoses currently exists. The present prospective study examined whether preoperative pulsed-Doppler duplex ultrasonographic velocity (v) measurements could be used to predict pressure gradients (delta P) caused by carotid artery stenoses, and whether such measurements could be used to predict angiographic percent diameter reduction. Preoperative Doppler velocity and intraoperative direct pressure measurements were obtained, and per cent diameter angiographic stenosis measured in 76 consecutive patients who underwent 77 elective carotid endarterectomies. Using the Bernoulli principle (delta P = 4v(2), pressure gradients across the stenoses were calculated. The predicted delta P, as well as absolute velocities and internal carotid artery/common carotid velocity ratios were compared with the actual delta P measured intraoperatively and with preoperative angiography and oculopneumoplethysmography (OPG) results. An end-diastolic velocity of > or = 1 m/s and an end-diastolic internal carotid artery/common carotid artery velocity ratio of > or = 10 predicted a 50% diameter angiographic stenosis with 100% specificity. Although statistical significance was reached, preoperative pressure gradients derived from the Bernoulli equation could not predict actual individual intraoperative pressure gradients with enough accuracy to allow decision making on an individual basis. Velocity measurements were as specific and more sensitive than OPG results. Delta P as predicted by the Bernoulli equation is not sufficiently accurate at the carotid bifurcation to be useful for clinical decision making on an individual basis. However, end
Evans, Jennifer A; Elliott, Jeffrey A; Gorman, Michael R
2011-07-01
The endogenous circadian pacemaker of mammals is synchronized to the environmental day by the ambient cycle of relative light and dark. The present studies assessed the actions of light in a novel circadian entrainment paradigm where activity rhythms are bifurcated following exposure to a 24-h light:dark:light:dark (LDLD) cycle. Bifurcated entrainment under LDLD reflects the temporal dissociation of component oscillators that comprise the circadian system and is facilitated when daily scotophases are dimly lit rather than completely dark. Although bifurcation can be stably maintained in LDLD, it is quickly reversed under constant conditions. Here the authors examine whether dim scotophase illumination acts to maintain bifurcated entrainment under LDLD through potential interactions with the parametric actions of bright light during the two daily photophases. In three experiments, wheel-running rhythms of Syrian hamsters were bifurcated under LDLD with dimly lit scotophases, and after several weeks, dim scotophase illumination was either retained or extinguished. Additionally, "full" and "skeleton" photophases were employed under LDLD cycles with dimly lit or completely dark scotophases to distinguish parametric from nonparametric effects of bright light. Rhythm bifurcation was more stable in full versus skeleton LDLD cycles. Dim light facilitated the maintenance of bifurcated entrainment under full LDLD cycles but did not prevent the loss of rhythm bifurcation in skeleton LDLD cycles. These studies indicate that parametric actions of bright light maintain the bifurcated entrainment state; that dim scotophase illumination increases the stability of the bifurcated state; and that dim light interacts with the parametric effects of bright light to increase the stability of rhythm bifurcation under full LDLD cycles. A further understanding of the novel actions of dim light may lead to new strategies for understanding, preventing, and treating chronobiological
Energy Technology Data Exchange (ETDEWEB)
Nagata, Shun-ichi; Kazekawa, Kiyoshi; Matsubara, Shuko [Fukuoka University Chikushi Hospital, Department of Neurosurgery, Chikushino, Fukuoka (Japan); Sugata, Sei [Bironoki Neurosurgical Hospital, Shibushi, Kagoshima (Japan)
2006-08-15
Obstructions of the supraaortic vessels are an important cause of morbidity associated with a variety of symptoms. Percutaneous transluminal angioplasty has evolved as an effective and safe treatment modality for occlusive lesions of the supraaortic vessels. However, the endovascular management of an innominate bifurcation has not previously been reported. A 53-year-old female with a history of systematic hypertension, diabetes mellitus and hypercholesterolemia presented with left hemiparesis and dysarthria. Angiography of the innominate artery showed a stenosis of the innominate bifurcation. The lesion was successfully treated using the retrograde kissing stent technique via a brachial approach and an exposed direct carotid approach. The retrograde kissing stent technique for the treatment of a stenosis of the innominate bifurcation was found to be a safe and effective alternative to conventional surgery. (orig.)
Directory of Open Access Journals (Sweden)
Rong Haiwu
2014-01-01
Full Text Available The erosion of the safe basins and chaotic motions of a nonlinear vibroimpact oscillator under both harmonic and bounded random noise is studied. Using the Melnikov method, the system’s Melnikov integral is computed and the parametric threshold for chaotic motions is obtained. Using the Monte-Carlo and Runge-Kutta methods, the erosion of the safe basins is also discussed. The sudden change in the character of the stochastic safe basins when the bifurcation parameter of the system passes through a critical value may be defined as an alternative stochastic bifurcation. It is founded that random noise may destroy the integrity of the safe basins, bring forward the occurrence of the stochastic bifurcation, and make the parametric threshold for motions vary in a larger region, hence making the system become more unsafely and chaotic motions may occur more easily.
Gap Dependent Bifurcation Behavior of a Nano-Beam Subjected to a Nonlinear Electrostatic Pressure
Directory of Open Access Journals (Sweden)
Mohammad Fathalilou
Full Text Available This paper presents a study on the gap dependent bifurcation behavior of an electro statically-actuated nano-beam. The sizedependent behavior of the beam was taken into account by applying the couple stress theory. Two small and large gap distance regimes have been considered in which the intermolecular vdW and Casimir forces are dominant, respectively. It has been shown that changing the gap size can affect the fundamental frequency of the beam. The bifurcation diagrams for small gap distance revealed that by changing the gap size, the number and type of the fixed points can change. However, for large gap regime, where the Casimir force is the dominant intermolecular force, changing the gap size does not affect the quality of the bifurcation behavior.
On period doubling bifurcations of cycles and the harmonic balance method
International Nuclear Information System (INIS)
Itovich, Griselda R.; Moiola, Jorge L.
2006-01-01
This works attempts to give quasi-analytical expressions for subharmonic solutions appearing in the vicinity of a Hopf bifurcation. Starting with well-known tools as the graphical Hopf method for recovering the periodic branch emerging from classical Hopf bifurcation, precise frequency and amplitude estimations of the limit cycle can be obtained. These results allow to attain approximations for period doubling orbits by means of harmonic balance techniques, whose accuracy is established by comparison of Floquet multipliers with continuation software packages. Setting up a few coefficients, the proposed methodology yields to approximate solutions that result from a second period doubling bifurcation of cycles and to extend the validity limits of the graphical Hopf method
International Nuclear Information System (INIS)
Nagata, Shun-ichi; Kazekawa, Kiyoshi; Matsubara, Shuko; Sugata, Sei
2006-01-01
Obstructions of the supraaortic vessels are an important cause of morbidity associated with a variety of symptoms. Percutaneous transluminal angioplasty has evolved as an effective and safe treatment modality for occlusive lesions of the supraaortic vessels. However, the endovascular management of an innominate bifurcation has not previously been reported. A 53-year-old female with a history of systematic hypertension, diabetes mellitus and hypercholesterolemia presented with left hemiparesis and dysarthria. Angiography of the innominate artery showed a stenosis of the innominate bifurcation. The lesion was successfully treated using the retrograde kissing stent technique via a brachial approach and an exposed direct carotid approach. The retrograde kissing stent technique for the treatment of a stenosis of the innominate bifurcation was found to be a safe and effective alternative to conventional surgery. (orig.)
Bifurcation and Stability in a Delayed Predator-Prey Model with Mixed Functional Responses
Yafia, R.; Aziz-Alaoui, M. A.; Merdan, H.; Tewa, J. J.
2015-06-01
The model analyzed in this paper is based on the model set forth by Aziz Alaoui et al. [Aziz Alaoui & Daher Okiye, 2003; Nindjin et al., 2006] with time delay, which describes the competition between the predator and prey. This model incorporates a modified version of the Leslie-Gower functional response as well as that of Beddington-DeAngelis. In this paper, we consider the model with one delay consisting of a unique nontrivial equilibrium E* and three others which are trivial. Their dynamics are studied in terms of local and global stabilities and of the description of Hopf bifurcation at E*. At the third trivial equilibrium, the existence of the Hopf bifurcation is proven as the delay (taken as a parameter of bifurcation) that crosses some critical values.
Directory of Open Access Journals (Sweden)
Yu-Xuan Fu
2018-02-01
Full Text Available The FitzHugh–Nagumo model is improved to consider the effect of the electromagnetic induction on single neuron. On the basis of investigating the Hopf bifurcation behavior of the improved model, stochastic resonance in the stochastic version is captured near the bifurcation point. It is revealed that a weak harmonic oscillation in the electromagnetic disturbance can be amplified through stochastic resonance, and it is the cooperative effect of random transition between the resting state and the large amplitude oscillating state that results in the resonant phenomenon. Using the noise dependence of the mean of interburst intervals, we essentially suggest a biologically feasible clue for detecting weak signal by means of neuron model with subcritical Hopf bifurcation. These observations should be helpful in understanding the influence of the magnetic field to neural electrical activity.
Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distributed shear
Niu, Ben; Zhang, Jiaming; Wei, Junjie
2018-05-01
In this paper, time delay effect and distributed shear are considered in the Kuramoto model. On the Ott-Antonsen's manifold, through analyzing the associated characteristic equation of the reduced functional differential equation, the stability boundary of the incoherent state is derived in multiple-parameter space. Moreover, very rich dynamical behavior such as stability switches inducing synchronization switches can occur in this equation. With the loss of stability, Hopf bifurcating coherent states arise, and the criticality of Hopf bifurcations is determined by applying the normal form theory and the center manifold theorem. On one hand, theoretical analysis indicates that the width of shear distribution and time delay can both eliminate the synchronization then lead the Kuramoto model to incoherence. On the other, time delay can induce several coexisting coherent states. Finally, some numerical simulations are given to support the obtained results where several bifurcation diagrams are drawn, and the effect of time delay and shear is discussed.
Phase-flip bifurcation in a coupled Josephson junction neuron system
Energy Technology Data Exchange (ETDEWEB)
Segall, Kenneth, E-mail: ksegall@colgate.edu [Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346 (United States); Guo, Siyang; Crotty, Patrick [Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346 (United States); Schult, Dan [Department of Mathematics, Colgate University, Hamilton, NY 13346 (United States); Miller, Max [Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346 (United States)
2014-12-15
Aiming to understand group behaviors and dynamics of neural networks, we have previously proposed the Josephson junction neuron (JJ neuron) as a fast analog model that mimics a biological neuron using superconducting Josephson junctions. In this study, we further analyze the dynamics of the JJ neuron numerically by coupling one JJ neuron to another. In this coupled system we observe a phase-flip bifurcation, where the neurons synchronize out-of-phase at weak coupling and in-phase at strong coupling. We verify this by simulation of the circuit equations and construct a bifurcation diagram for varying coupling strength using the phase response curve and spike phase difference map. The phase-flip bifurcation could be observed experimentally using standard digital superconducting circuitry.
Hopf Bifurcation Analysis for a Stochastic Discrete-Time Hyperchaotic System
Directory of Open Access Journals (Sweden)
Jie Ran
2015-01-01
Full Text Available The dynamics of a discrete-time hyperchaotic system and the amplitude control of Hopf bifurcation for a stochastic discrete-time hyperchaotic system are investigated in this paper. Numerical simulations are presented to exhibit the complex dynamical behaviors in the discrete-time hyperchaotic system. Furthermore, the stochastic discrete-time hyperchaotic system with random parameters is transformed into its equivalent deterministic system with the orthogonal polynomial theory of discrete random function. In addition, the dynamical features of the discrete-time hyperchaotic system with random disturbances are obtained through its equivalent deterministic system. By using the Hopf bifurcation conditions of the deterministic discrete-time system, the specific conditions for the existence of Hopf bifurcation in the equivalent deterministic system are derived. And the amplitude control with random intensity is discussed in detail. Finally, the feasibility of the control method is demonstrated by numerical simulations.
Fabrication of All Glass Bifurcation Microfluidic Chip for Blood Plasma Separation
Directory of Open Access Journals (Sweden)
Hyungjun Jang
2017-02-01
Full Text Available An all-glass bifurcation microfluidic chip for blood plasma separation was fabricated by a cost-effective glass molding process using an amorphous carbon (AC mold, which in turn was fabricated by the carbonization of a replicated furan precursor. To compensate for the shrinkage during AC mold fabrication, an enlarged photoresist pattern master was designed, and an AC mold with a dimensional error of 2.9% was achieved; the dimensional error of the master pattern was 1.6%. In the glass molding process, a glass microchannel plate with negligible shape errors (~1.5% compared to AC mold was replicated. Finally, an all-glass bifurcation microfluidic chip was realized by micro drilling and thermal fusion bonding processes. A separation efficiency of 74% was obtained using the fabricated all-glass bifurcation microfluidic chip.
Bifurcations in a discrete time model composed of Beverton-Holt function and Ricker function.
Shang, Jin; Li, Bingtuan; Barnard, Michael R
2015-05-01
We provide rigorous analysis for a discrete-time model composed of the Ricker function and Beverton-Holt function. This model was proposed by Lewis and Li [Bull. Math. Biol. 74 (2012) 2383-2402] in the study of a population in which reproduction occurs at a discrete instant of time whereas death and competition take place continuously during the season. We show analytically that there exists a period-doubling bifurcation curve in the model. The bifurcation curve divides the parameter space into the region of stability and the region of instability. We demonstrate through numerical bifurcation diagrams that the regions of periodic cycles are intermixed with the regions of chaos. We also study the global stability of the model. Copyright © 2015 Elsevier Inc. All rights reserved.
Stability and Hopf Bifurcation Analysis on a Nonlinear Business Cycle Model
Directory of Open Access Journals (Sweden)
Liming Zhao
2016-01-01
Full Text Available This study begins with the establishment of a three-dimension business cycle model based on the condition of a fixed exchange rate. Using the established model, the reported study proceeds to describe and discuss the existence of the equilibrium and stability of the economic system near the equilibrium point as a function of the speed of market regulation and the degree of capital liquidity and a stable region is defined. In addition, the condition of Hopf bifurcation is discussed and the stability of a periodic solution, which is generated by the Hopf bifurcation and the direction of the Hopf bifurcation, is provided. Finally, a numerical simulation is provided to confirm the theoretical results. This study plays an important role in theoretical understanding of business cycle models and it is crucial for decision makers in formulating macroeconomic policies as detailed in the conclusions of this report.
Directory of Open Access Journals (Sweden)
Randhir Singh Baghel
2012-02-01
Full Text Available In this article, we propose a three dimensional mathematical model of phytoplankton dynamics with the help of reaction-diffusion equations that studies the bifurcation and pattern formation mechanism. We provide an analytical explanation for understanding phytoplankton dynamics with three population classes: susceptible, incubated, and infected. This model has a Holling type II response function for the population transformation from susceptible to incubated class in an aquatic ecosystem. Our main goal is to provide a qualitative analysis of Hopf bifurcation mechanisms, taking death rate of infected phytoplankton as bifurcation parameter, and to study further spatial patterns formation due to spatial diffusion. Here analytical findings are supported by the results of numerical experiments. It is observed that the coexistence of all classes of population depends on the rate of diffusion. Also we obtained the time evaluation pattern formation of the spatial system.
Hybrid control of bifurcation and chaos in stroboscopic model of Internet congestion control system
International Nuclear Information System (INIS)
Ding Dawei; Zhu Jie; Luo Xiaoshu
2008-01-01
Interaction between transmission control protocol (TCP) and random early detection (RED) gateway in the Internet congestion control system has been modelled as a discrete-time dynamic system which exhibits complex bifurcating and chaotic behaviours. In this paper, a hybrid control strategy using both state feedback and parameter perturbation is employed to control the bifurcation and stabilize the chaotic orbits embedded in this discrete-time dynamic system of TCP/RED. Theoretical analysis and numerical simulations show that the bifurcation is delayed and the chaotic orbits are stabilized to a fixed point, which reliably achieves a stable average queue size in an extended range of parameters and even completely eliminates the chaotic behaviour in a particular range of parameters. Therefore it is possible to decrease the sensitivity of RED to parameters. By using the hybrid strategy, we may improve the stability and performance of TCP/RED congestion control system significantly
Li, Chengyuan; Deng, Licai; de Grijs, Richard; Jiang, Dengkai; Xin, Yu
2018-03-01
The bifurcated patterns in the color–magnitude diagrams of blue straggler stars (BSSs) have attracted significant attention. This type of special (but rare) pattern of two distinct blue straggler sequences is commonly interpreted as evidence that cluster core-collapse-driven stellar collisions are an efficient formation mechanism. Here, we report the detection of a bifurcated blue straggler distribution in a young Large Magellanic Cloud cluster, NGC 2173. Because of the cluster’s low central stellar number density and its young age, dynamical analysis shows that stellar collisions alone cannot explain the observed BSSs. Therefore, binary evolution is instead the most viable explanation of the origin of these BSSs. However, the reason why binary evolution would render the color–magnitude distribution of BSSs bifurcated remains unclear. C. Li, L. Deng, and R. de Grijs jointly designed this project.
Voltage Stability Bifurcation Analysis for AC/DC Systems with VSC-HVDC
Directory of Open Access Journals (Sweden)
Yanfang Wei
2013-01-01
Full Text Available A voltage stability bifurcation analysis approach for modeling AC/DC systems with VSC-HVDC is presented. The steady power model and control modes of VSC-HVDC are briefly presented firstly. Based on the steady model of VSC-HVDC, a new improved sequential iterative power flow algorithm is proposed. Then, by use of continuation power flow algorithm with the new sequential method, the voltage stability bifurcation of the system is discussed. The trace of the P-V curves and the computation of the saddle node bifurcation point of the system can be obtained. At last, the modified IEEE test systems are adopted to illustrate the effectiveness of the proposed method.
Hopf bifurcation and chaos in a third-order phase-locked loop
Piqueira, José Roberto C.
2017-01-01
Phase-locked loops (PLLs) are devices able to recover time signals in several engineering applications. The literature regarding their dynamical behavior is vast, specifically considering that the process of synchronization between the input signal, coming from a remote source, and the PLL local oscillation is robust. For high-frequency applications it is usual to increase the PLL order by increasing the order of the internal filter, for guarantying good transient responses; however local parameter variations imply structural instability, thus provoking a Hopf bifurcation and a route to chaos for the phase error. Here, one usual architecture for a third-order PLL is studied and a range of permitted parameters is derived, providing a rule of thumb for designers. Out of this range, a Hopf bifurcation appears and, by increasing parameters, the periodic solution originated by the Hopf bifurcation degenerates into a chaotic attractor, therefore, preventing synchronization.
Renson, Ludovic; Barton, David A. W.; Neild, Simon A.
Control-based continuation (CBC) is a means of applying numerical continuation directly to a physical experiment for bifurcation analysis without the use of a mathematical model. CBC enables the detection and tracking of bifurcations directly, without the need for a post-processing stage as is often the case for more traditional experimental approaches. In this paper, we use CBC to directly locate limit-point bifurcations of a periodically forced oscillator and track them as forcing parameters are varied. Backbone curves, which capture the overall frequency-amplitude dependence of the system’s forced response, are also traced out directly. The proposed method is demonstrated on a single-degree-of-freedom mechanical system with a nonlinear stiffness characteristic. Results are presented for two configurations of the nonlinearity — one where it exhibits a hardening stiffness characteristic and one where it exhibits softening-hardening.
Metamorphosis of plasma turbulence-shear-flow dynamics through a transcritical bifurcation
International Nuclear Information System (INIS)
Ball, R.; Dewar, R.L.; Sugama, H.
2002-01-01
The structural properties of an economical model for a confined plasma turbulence governor are investigated through bifurcation and stability analyses. A close relationship is demonstrated between the underlying bifurcation framework of the model and typical behavior associated with low- to high-confinement transitions such as shear-flow stabilization of turbulence and oscillatory collective action. In particular, the analysis evinces two types of discontinuous transition that are qualitatively distinct. One involves classical hysteresis, governed by viscous dissipation. The other is intrinsically oscillatory and nonhysteretic, and thus provides a model for the so-called dithering transitions that are frequently observed. This metamorphosis, or transformation, of the system dynamics is an important late side-effect of symmetry breaking, which manifests as an unusual nonsymmetric transcritical bifurcation induced by a significant shear-flow drive
Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N
2017-09-19
How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP + oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox
Computing closest saddle node bifurcations in a radial system via conic programming
Energy Technology Data Exchange (ETDEWEB)
Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box 72, Zouk Mikhael, Zouk Mosbeh (Lebanon); Pal, B.C. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2BT (United Kingdom)
2009-07-15
This paper considers the problem of computing the loading limits in a radial system which are (i) locally closest to current operating load powers and (ii) at which saddle node bifurcation occurs. The procedure is based on a known technique which requires iterating between two computational steps until convergence. In essence, step 1 produces a vector normal to the real and/or reactive load solution space boundary, whereas step 2 computes the bifurcation point along that vector. The paper shows that each of the above computational steps can be formulated as a second-order cone program for which polynomial time interior-point methods and efficient implementations exist. The proposed conic programming approach is used to compute the closest bifurcation points and the corresponding worst case load power margins of eleven different distribution systems. The approach is validated graphically and the existence of multiple load power margins is investigated. (author)
Detection of cyclic-fold bifurcation in electrostatic MEMS transducers by motion-induced current
Park, Sangtak; Khater, Mahmoud; Effa, David; Abdel-Rahman, Eihab; Yavuz, Mustafa
2017-08-01
This paper presents a new detection method of cyclic-fold bifurcations in electrostatic MEMS transducers based on a variant of the harmonic detection of resonance method. The electrostatic transducer is driven by an unbiased harmonic signal at half its natural frequency, ω a = 1/2 ω o . The response of the transducer consists of static displacement and a series of harmonics at 2 ω a , 4 ω a , and so on. Its motion-induced current is shifted by the excitation frequency, ω a , to appear at 3 ω a , 5 ω a , and higher odd harmonics, providing higher sensitivity to the measurement of harmonic motions. With this method, we successfully detected the variation in the location of the cyclic-fold bifurcation of an encapsulated electrostatic MEMS transducer. We also detected a regime of tapping mode motions subsequent to the bifurcation.
Detection of cyclic-fold bifurcation in electrostatic MEMS transducers by motion-induced current
International Nuclear Information System (INIS)
Park, Sangtak; Abdel-Rahman, Eihab; Khater, Mahmoud; Effa, David; Yavuz, Mustafa
2017-01-01
This paper presents a new detection method of cyclic-fold bifurcations in electrostatic MEMS transducers based on a variant of the harmonic detection of resonance method. The electrostatic transducer is driven by an unbiased harmonic signal at half its natural frequency, ω a = 1/2 ω o . The response of the transducer consists of static displacement and a series of harmonics at 2 ω a , 4 ω a , and so on. Its motion-induced current is shifted by the excitation frequency, ω a , to appear at 3 ω a , 5 ω a , and higher odd harmonics, providing higher sensitivity to the measurement of harmonic motions. With this method, we successfully detected the variation in the location of the cyclic-fold bifurcation of an encapsulated electrostatic MEMS transducer. We also detected a regime of tapping mode motions subsequent to the bifurcation. (paper)
Phase-flip bifurcation in a coupled Josephson junction neuron system
International Nuclear Information System (INIS)
Segall, Kenneth; Guo, Siyang; Crotty, Patrick; Schult, Dan; Miller, Max
2014-01-01
Aiming to understand group behaviors and dynamics of neural networks, we have previously proposed the Josephson junction neuron (JJ neuron) as a fast analog model that mimics a biological neuron using superconducting Josephson junctions. In this study, we further analyze the dynamics of the JJ neuron numerically by coupling one JJ neuron to another. In this coupled system we observe a phase-flip bifurcation, where the neurons synchronize out-of-phase at weak coupling and in-phase at strong coupling. We verify this by simulation of the circuit equations and construct a bifurcation diagram for varying coupling strength using the phase response curve and spike phase difference map. The phase-flip bifurcation could be observed experimentally using standard digital superconducting circuitry
Bifurcation of cubic nonlinear parallel plate-type structure in axial flow
International Nuclear Information System (INIS)
Lu Li; Yang Yiren
2005-01-01
The Hopf bifurcation of plate-type beams with cubic nonlinear stiffness in axial flow was studied. By assuming that all the plates have the same deflections at any instant, the nonlinear model of plate-type beam in axial flow was established. The partial differential equation was turned into an ordinary differential equation by using Galerkin method. A new algebraic criterion of Hopf bifurcation was utilized to in our analysis. The results show that there's no Hopf bifurcation for simply supported plate-type beams while the cantilevered plate-type beams has. At last, the analytic expression of critical flow velocity of cantilevered plate-type beams in axial flow and the purely imaginary eigenvalues of the corresponding linear system were gotten. (authors)
Energy Technology Data Exchange (ETDEWEB)
Pandey, Vikas; Singh, Suneet, E-mail: suneet.singh@iitb.ac.in
2017-04-15
Highlights: • Non-linear stability analysis of nuclear reactor is carried out. • Global and local stability boundaries are drawn in the parameter space. • Globally stable, bi-stable, and unstable regions have been demarcated. • The identification of the regions is verified by numerical simulations. - Abstract: Nonlinear stability study of the neutron coupled thermal hydraulics instability has been carried out by several researchers for boiling water reactors (BWRs). The focus of these studies has been to identify subcritical and supercritical Hopf bifurcations. Supercritical Hopf bifurcation are soft or safe due to the fact that stable limit cycles arise in linearly unstable region; linear and global stability boundaries are same for this bifurcation. It is well known that the subcritical bifurcations can be considered as hard or dangerous due to the fact that unstable limit cycles (nonlinear phenomena) exist in the (linearly) stable region. The linear stability leads to a stable equilibrium in such regions, only for infinitesimally small perturbations. However, finite perturbations lead to instability due to the presence of unstable limit cycles. Therefore, it is evident that the linear stability analysis is not sufficient to understand the exact stability characteristics of BWRs. However, the effect of these bifurcations on the stability boundaries has been rarely discussed. In the present work, the identification of global stability boundary is demonstrated using simplified models. Here, five different models with different thermal hydraulics feedback have been investigated. In comparison to the earlier works, current models also include the impact of adding the rate of change in temperature on void reactivity as well as effect of void reactivity on rate of change of temperature. Using the bifurcation analysis of these models the globally stable region in the parameter space has been identified. The globally stable region has only stable solutions and
Simplest bifurcation diagrams for monotone families of vector fields on a torus
Baesens, C.; MacKay, R. S.
2018-06-01
In part 1, we prove that the bifurcation diagram for a monotone two-parameter family of vector fields on a torus has to be at least as complicated as the conjectured simplest one proposed in Baesens et al (1991 Physica D 49 387–475). To achieve this, we define ‘simplest’ by sequentially minimising the numbers of equilibria, Bogdanov–Takens points, closed curves of centre and of neutral saddle, intersections of curves of centre and neutral saddle, Reeb components, other invariant annuli, arcs of rotational homoclinic bifurcation of horizontal homotopy type, necklace points, contractible periodic orbits, points of neutral horizontal homoclinic bifurcation and half-plane fan points. We obtain two types of simplest case, including that initially proposed. In part 2, we analyse the bifurcation diagram for an explicit monotone family of vector fields on a torus and prove that it has at most two equilibria, precisely four Bogdanov–Takens points, no closed curves of centre nor closed curves of neutral saddle, at most two Reeb components, precisely four arcs of rotational homoclinic connection of ‘horizontal’ homotopy type, eight horizontal saddle-node loop points, two necklace points, four points of neutral horizontal homoclinic connection, and two half-plane fan points, and there is no simultaneous existence of centre and neutral saddle, nor contractible homoclinic connection to a neutral saddle. Furthermore, we prove that all saddle-nodes, Bogdanov–Takens points, non-neutral and neutral horizontal homoclinic bifurcations are non-degenerate and the Hopf condition is satisfied for all centres. We also find it has four points of degenerate Hopf bifurcation. It thus provides an example of a family satisfying all the assumptions of part 1 except the one of at most one contractible periodic orbit.
Helical bifurcation and tearing mode in a plasma—a description based on Casimir foliation
International Nuclear Information System (INIS)
Yoshida, Z; Dewar, R L
2012-01-01
The relation between the helical bifurcation of a Taylor relaxed state (a Beltrami equilibrium) and a tearing mode is analyzed in a Hamiltonian framework. Invoking an Eulerian representation of the Hamiltonian, the symplectic operator (defining a Poisson bracket) becomes non-canonical, i.e. the symplectic operator has a nontrivial cokernel (dual to its nullspace), foliating the phase space into level sets of Casimir invariants. A Taylor relaxed state is an equilibrium point on a Casimir (helicity) leaf. Changing the helicity, equilibrium points may bifurcate to produce helical relaxed states; a necessary and sufficient condition for bifurcation is derived. Tearing yields a helical perturbation on an unstable equilibrium, producing a helical structure approximately similar to a helical relaxed state. A slight discrepancy found between the helically bifurcated relaxed state and the linear tearing mode viewed as a perturbed, singular equilibrium state is attributed to a Casimir element (named ‘helical flux’) pertinent to a ‘resonance singularity’ of the non-canonical symplectic operator. While the helical bifurcation can occur at discrete eigenvalues of the Beltrami parameter, the tearing mode, being a singular eigenfunction, exists for an arbitrary Beltrami parameter. Bifurcated Beltrami equilibria appearing on the same helicity leaf are isolated by the helical-flux Casimir foliation. The obstacle preventing the tearing mode to develop in the ideal limit turns out to be the shielding current sheet on the resonant surface, preventing the release of the ‘potential energy’. When this current is dissipated by resistivity, reconnection is allowed and tearing instability occurs. The Δ′ criterion for linear tearing instability of Beltrami equilibria is shown to be directly related to the spectrum of the curl operator. (paper)
International Nuclear Information System (INIS)
Pandey, Vikas; Singh, Suneet
2017-01-01
Highlights: • Non-linear stability analysis of nuclear reactor is carried out. • Global and local stability boundaries are drawn in the parameter space. • Globally stable, bi-stable, and unstable regions have been demarcated. • The identification of the regions is verified by numerical simulations. - Abstract: Nonlinear stability study of the neutron coupled thermal hydraulics instability has been carried out by several researchers for boiling water reactors (BWRs). The focus of these studies has been to identify subcritical and supercritical Hopf bifurcations. Supercritical Hopf bifurcation are soft or safe due to the fact that stable limit cycles arise in linearly unstable region; linear and global stability boundaries are same for this bifurcation. It is well known that the subcritical bifurcations can be considered as hard or dangerous due to the fact that unstable limit cycles (nonlinear phenomena) exist in the (linearly) stable region. The linear stability leads to a stable equilibrium in such regions, only for infinitesimally small perturbations. However, finite perturbations lead to instability due to the presence of unstable limit cycles. Therefore, it is evident that the linear stability analysis is not sufficient to understand the exact stability characteristics of BWRs. However, the effect of these bifurcations on the stability boundaries has been rarely discussed. In the present work, the identification of global stability boundary is demonstrated using simplified models. Here, five different models with different thermal hydraulics feedback have been investigated. In comparison to the earlier works, current models also include the impact of adding the rate of change in temperature on void reactivity as well as effect of void reactivity on rate of change of temperature. Using the bifurcation analysis of these models the globally stable region in the parameter space has been identified. The globally stable region has only stable solutions and
Cutting Balloon Angioplasty in the Treatment of Short Infrapopliteal Bifurcation Disease.
Iezzi, Roberto; Posa, Alessandro; Santoro, Marco; Nestola, Massimiliano; Contegiacomo, Andrea; Tinelli, Giovanni; Paolini, Alessandra; Flex, Andrea; Pitocco, Dario; Snider, Francesco; Bonomo, Lorenzo
2015-08-01
To evaluate the safety, feasibility, and effectiveness of cutting balloon angioplasty in the management of infrapopliteal bifurcation disease. Between November 2010 and March 2013, 23 patients (mean age 69.6±9.01 years, range 56-89; 16 men) suffering from critical limb ischemia were treated using cutting balloon angioplasty (single cutting balloon, T-shaped double cutting balloon, or double kissing cutting balloon technique) for 47 infrapopliteal artery bifurcation lesions (16 popliteal bifurcation and 9 tibioperoneal bifurcation) in 25 limbs. Follow-up consisted of clinical examination and duplex ultrasonography at 1 month and every 3 months thereafter. All treatments were technically successful. No 30-day death or adverse events needing treatment were registered. No flow-limiting dissection was observed, so no stent implantation was necessary. The mean postprocedure minimum lumen diameter and acute gain were 0.28±0.04 and 0.20±0.06 cm, respectively, with a residual stenosis of 0.04±0.02 cm. Primary and secondary patency rates were estimated as 89.3% and 93.5% at 6 months and 77.7% and 88.8% at 12 months, respectively; 1-year primary and secondary patency rates of the treated bifurcation were 74.2% and 87.0%, respectively. The survival rate estimated by Kaplan-Meier analysis was 82.5% at 1 year. Cutting balloon angioplasty seems to be a safe and effective tool in the routine treatment of short/ostial infrapopliteal bifurcation lesions, avoiding procedure-related complications, overcoming the limitations of conventional angioplasty, and improving the outcome of catheter-based therapy. © The Author(s) 2015.
Bifurcation analysis of Rössler system with multiple delayed feedback
Directory of Open Access Journals (Sweden)
Meihong Xu
2010-10-01
Full Text Available In this paper, regarding the delay as parameter, we investigate the effect of delay on the dynamics of a Rössler system with multiple delayed feedback proposed by Ghosh and Chowdhury. At first we consider the stability of equilibrium and the existence of Hopf bifurcations. Then an explicit algorithm for determining the direction and the stability of the bifurcating periodic solutions is derived by using the normal form theory and center manifold argument. Finally, we give a numerical simulation example which indicates that chaotic oscillation is converted into a stable steady state or a stable periodic orbit when the delay passes through certain critical values.
A bifurcation result for Sturm-Liouville problems with a set-valued term
Directory of Open Access Journals (Sweden)
Georg Hetzer
1998-11-01
Full Text Available It is established in this note that $-(ku''+g(cdot,uin mu F(cdot,u$, $u'(0=0=u'(1$, has a multiple bifurcation point at $ (0, 0}$ in the sense that infinitely many continua meet at $(0,0$. $F$ is a ``set-valued representation'' of a function with jump discontinuities along the line segment $[0,1]imes{0}$. The proof relies on a Sturm-Liouville version of Rabinowitz's bifurcation theorem and an approximation procedure.
Directory of Open Access Journals (Sweden)
Jianguo Ren
2014-01-01
Full Text Available A new computer virus propagation model with delay and incomplete antivirus ability is formulated and its global dynamics is analyzed. The existence and stability of the equilibria are investigated by resorting to the threshold value R0. By analysis, it is found that the model may undergo a Hopf bifurcation induced by the delay. Correspondingly, the critical value of the Hopf bifurcation is obtained. Using Lyapunov functional approach, it is proved that, under suitable conditions, the unique virus-free equilibrium is globally asymptotically stable if R01. Numerical examples are presented to illustrate possible behavioral scenarios of the mode.
Possibility of internal transport barrier formation and electric field bifurcation in LHD plasma
International Nuclear Information System (INIS)
Sanuki, H.; Itoh, K.; Yokoyama, M.; Fujisawa, A.; Ida, K.; Toda, S.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.
1999-05-01
Theoretical analysis of the electric field bifurcation is made for the LHD plasma. For given shapes of plasma profiles, a region of bifurcation is obtained in a space of the plasma parameters. In this region of plasma parameters, the electric field domain interface is predicted to appear in the plasma column. The reduction of turbulent transport is expected to occur in the vicinity of the interface, inducing a internal transport barrier. Within this simple model, the plasma with internal barriers is predicted to be realized for the parameters of T e (0) ∼ 2 keV and n(0) ≅ 10 18 m -3 . (author)
Streamline Patterns and their Bifurcations near a wall with Navier slip Boundary Conditions
DEFF Research Database (Denmark)
Tophøj, Laust; Møller, Søren; Brøns, Morten
2006-01-01
We consider the two-dimensional topology of streamlines near a surface where the Navier slip boundary condition applies. Using transformations to bring the streamfunction in a simple normal form, we obtain bifurcation diagrams of streamline patterns under variation of one or two external parameters....... Topologically, these are identical with the ones previously found for no-slip surfaces. We use the theory to analyze the Stokes flow inside a circle, and show how it can be used to predict new bifurcation phenomena. ©2006 American Institute of Physics...
Nonlinear dynamics approach of modeling the bifurcation for aircraft wing flutter in transonic speed
DEFF Research Database (Denmark)
Matsushita, Hiroshi; Miyata, T.; Christiansen, Lasse Engbo
2002-01-01
The procedure of obtaining the two-degrees-of-freedom, finite dimensional. nonlinear mathematical model. which models the nonlinear features of aircraft flutter in transonic speed is reported. The model enables to explain every feature of the transonic flutter data of the wind tunnel tests...... conducted at National Aerospace Laboratory in Japan for a high aspect ratio wing. It explains the nonlinear features of the transonic flutter such as the subcritical Hopf bifurcation of a limit cycle oscillation (LCO), a saddle-node bifurcation, and an unstable limit cycle as well as a normal (linear...
Bifurcation structures and transient chaos in a four-dimensional Chua model
Energy Technology Data Exchange (ETDEWEB)
Hoff, Anderson, E-mail: hoffande@gmail.com; Silva, Denilson T. da; Manchein, Cesar, E-mail: cesar.manchein@udesc.br; Albuquerque, Holokx A., E-mail: holokx.albuquerque@udesc.br
2014-01-10
A four-dimensional four-parameter Chua model with cubic nonlinearity is studied applying numerical continuation and numerical solutions methods. Regarding numerical solution methods, its dynamics is characterized on Lyapunov and isoperiodic diagrams and regarding numerical continuation method, the bifurcation curves are obtained. Combining both methods the bifurcation structures of the model were obtained with the possibility to describe the shrimp-shaped domains and their endoskeletons. We study the effect of a parameter that controls the dimension of the system leading the model to present transient chaos with its corresponding basin of attraction being riddled.
Bifurcation and chaos response of a cracked rotor with random disturbance
Leng, Xiaolei; Meng, Guang; Zhang, Tao; Fang, Tong
2007-01-01
The Monte-Carlo method is used to investigate the bifurcation and chaos characteristics of a cracked rotor with a white noise process as its random disturbance. Special attention is paid to the influence of the stiffness change ratio and the rotating speed ratio on the bifurcation and chaos response of the system. Numerical simulations show that the affect of the random disturbance is significant as the undisturbed response of the cracked rotor system is a quasi-periodic or chaos one, and such affect is smaller as the undisturbed response is a periodic one.
Vortex Breakdown Generated by off-axis Bifurcation in a cylinder with rotating covers
DEFF Research Database (Denmark)
Bisgaard, Anders; Brøns, Morten; Sørensen, Jens Nørkær
2006-01-01
Vortex breakdown of bubble type is studied for the flow in a cylinder with rotating top and bottom covers. For large ratios of the angular velocities of the covers, we observe numerically that the vortex breakdown bubble in the steady regime may occur through the creation of an off-axis vortex ring....... This scenario does not occur in existing bifurcation theory based on a simple degeneracy in the flow field. We extend the theory to cover a non-simple degeneracy, and derive the associated bifurcation diagrams. We show that the vortex breakdown scenario involving a vortex ring can be explained from this theory...
Turing instability and bifurcation analysis in a diffusive bimolecular system with delayed feedback
Wei, Xin; Wei, Junjie
2017-09-01
A diffusive autocatalytic bimolecular model with delayed feedback subject to Neumann boundary conditions is considered. We mainly study the stability of the unique positive equilibrium and the existence of periodic solutions. Our study shows that diffusion can give rise to Turing instability, and the time delay can affect the stability of the positive equilibrium and result in the occurrence of Hopf bifurcations. By applying the normal form theory and center manifold reduction for partial functional differential equations, we investigate the stability and direction of the bifurcations. Finally, we give some simulations to illustrate our theoretical results.
Hopf Bifurcation of a Delayed Epidemic Model with Information Variable and Limited Medical Resources
Directory of Open Access Journals (Sweden)
Caijuan Yan
2014-01-01
Full Text Available We consider SIR epidemic model in which population growth is subject to logistic growth in absence of disease. We get the condition for Hopf bifurcation of a delayed epidemic model with information variable and limited medical resources. By analyzing the corresponding characteristic equations, the local stability of an endemic equilibrium and a disease-free equilibrium is discussed. If the basic reproduction ratio ℛ01, we obtain sufficient conditions under which the endemic equilibrium E* of system is locally asymptotically stable. And we also have discussed the stability and direction of Hopf bifurcations. Numerical simulations are carried out to explain the mathematical conclusions.
Bifurcation and Chaos in a Pulse Width modulation controlled Buck Converter
DEFF Research Database (Denmark)
Kocewiak, Lukasz; Bak, Claus Leth; Munk-Nielsen, Stig
2007-01-01
by a system of piecewise-smooth nonautonomous differential equations. The research are focused on chaotic oscillations analysis and analytical search for bifurcations dependent on parameter. The most frequent route to chaos by the period doubling is observed in the second order DC-DC buck converter. Other...... bifurcations as a complex behaviour in power electronic system evidence are also described. In order to verify theoretical study the experimental DC-DC buck converter was build. The results obtained from three sources were presented and compared. A very good agreement between theory and experiment was observed....
On the analysis of local bifurcation and topological horseshoe of a new 4D hyper-chaotic system
International Nuclear Information System (INIS)
Zhou, Leilei; Chen, Zengqiang; Wang, Zhonglin; Wang, Jiezhi
2016-01-01
Highlights: • A new 4D smooth quadratic autonomous system with complex hyper-chaotic dynamics is presented. • The stability of equilibria is observed near the bifurcation points. • The Hopf bifurcation and pitchfork bifurcation are analyzed by using the center manifold theorem and bifurcation theory. • A horseshoe with two-directional expansions in the 4D hyper-chaotic system has been found, which rigorously proves the existence of hyper-chaos in theory. - Abstract: In this paper, a new four-dimensional (4D) smooth quadratic autonomous system with complex hyper-chaotic dynamics is presented and analyzed. The Lyapunov exponent (LE) spectrum, bifurcation diagram and various phase portraits of the system are provided. The stability, Hopf bifurcation and pitchfork bifurcation of equilibrium point are discussed by using the center manifold theorem and bifurcation theory. Numerical simulation results are consistent with the theoretical analysis. Besides, by combining the topological horseshoe theory with a computer-assisted method of Poincaré maps and utilizing the algorithm for finding horseshoes in 3D hyper-chaotic maps, a horseshoe with two-directional expansions in the 4D hyper-chaotic system is successfully found, which rigorously proves the existence of hyper-chaos in theory.
Meng, Xin-You; Wu, Yu-Qian
In this paper, a delayed differential algebraic phytoplankton-zooplankton-fish model with taxation and nonlinear fish harvesting is proposed. In the absence of time delay, the existence of singularity induced bifurcation is discussed by regarding economic interest as bifurcation parameter. A state feedback controller is designed to eliminate singularity induced bifurcation. Based on Liu’s criterion, Hopf bifurcation occurs at the interior equilibrium when taxation is taken as bifurcation parameter and is more than its corresponding critical value. In the presence of time delay, by analyzing the associated characteristic transcendental equation, the interior equilibrium loses local stability when time delay crosses its critical value. What’s more, the direction of Hopf bifurcation and stability of the bifurcating periodic solutions are investigated based on normal form theory and center manifold theorem, and nonlinear state feedback controller is designed to eliminate Hopf bifurcation. Furthermore, Pontryagin’s maximum principle has been used to obtain optimal tax policy to maximize the benefit as well as the conservation of the ecosystem. Finally, some numerical simulations are given to demonstrate our theoretical analysis.
Stability and Hopf bifurcation on a model for HIV infection of CD4{sup +} T cells with delay
Energy Technology Data Exchange (ETDEWEB)
Wang Xia [College of Mathematics and Information Science, Xinyang Normal University, Xinyang, Henan 464000 (China)], E-mail: xywangxia@163.com; Tao Youde [College of Mathematics and Information Science, Xinyang Normal University, Xinyang, Henan 464000 (China); Beijing Institute of Information Control, Beijing 100037 (China); Song Xinyu [College of Mathematics and Information Science, Xinyang Normal University, Xinyang, Henan 464000 (China) and Research Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091 (China)], E-mail: xysong88@163.com
2009-11-15
In this paper, a delayed differential equation model that describes HIV infection of CD4{sup +} T cells is considered. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated. In succession, using the normal form theory and center manifold argument, we derive the explicit formulas which determine the stability, direction and other properties of bifurcating periodic solutions.
Barman, Prasenjit; Faponle, Abayomi S; Vardhaman, Anil Kumar; Angelone, Davide; Löhr, Anna-Maria; Browne, Wesley R; Comba, Peter; Sastri, Chivukula V; de Visser, Sam P
2016-01-01
Reaction bifurcation processes are often encountered in the oxidation of substrates by enzymes and generally lead to a mixture of products. One particular bifurcation process that is common in biology relates to electron transfer versus oxygen atom transfer by high-valent iron(IV)-oxo complexes,
Electron Bifurcation and Confurcation in Methanogenesis and Reverse Methanogenesis
Directory of Open Access Journals (Sweden)
Zhen Yan
2018-06-01
Full Text Available Reduction of the disulfide of coenzyme M and coenzyme B (CoMS–SCoB by heterodisulfide reductases (HdrED and HdrABC is the final step in all methanogenic pathways. Flavin-based electron bifurcation (FBEB by soluble HdrABC homologs play additional roles in driving essential endergonic reactions at the expense of the exergonic reduction of CoMS–SCoM. In the first step of the CO2 reduction pathway, HdrABC complexed with hydrogenase or formate dehydrogenase generates reduced ferredoxin (Fdx2- for the endergonic reduction of CO2 coupled to the exergonic reduction of CoMS–SCoB dependent on FBEB of electrons from H2 or formate. Roles for HdrABC:hydrogenase complexes are also proposed for pathways wherein the methyl group of methanol is reduced to methane with electrons from H2. The HdrABC complexes catalyze FBEB-dependent oxidation of H2 for the endergonic reduction of Fdx driven by the exergonic reduction of CoMS–SCoB. The Fdx2- supplies electrons for reduction of the methyl group to methane. In H2- independent pathways, three-fourths of the methyl groups are oxidized producing Fdx2- and reduced coenzyme F420 (F420H2. The F420H2 donates electrons for reduction of the remaining methyl groups to methane requiring transfer of electrons from Fdx2- to F420. HdrA1B1C1 is proposed to catalyze FBEB-dependent oxidation of Fdx2- for the endergonic reduction of F420 driven by the exergonic reduction of CoMS–SCoB. In H2- independent acetotrophic pathways, the methyl group of acetate is reduced to methane with electrons derived from oxidation of the carbonyl group mediated by Fdx. Electron transport involves a membrane-bound complex (Rnf that oxidizes Fdx2- and generates a Na+ gradient driving ATP synthesis. It is postulated that F420 is reduced by Rnf requiring HdrA2B2C2 catalyzing FBEB-dependent oxidation of F420H2 for the endergonic reduction of Fdx driven by the exergonic reduction of CoMS–SCoB. The Fdx2- is recycled by Rnf and HdrA2B2C2 thereby
Peters, John W; Beratan, David N; Schut, Gerrit J; Adams, Michael W W
2018-04-19
Bifurcating electrons to couple endergonic and exergonic electron-transfer reactions has been shown to have a key role in energy conserving redox enzymes. Bifurcating enzymes require a redox center that is capable of directing electron transport along two spatially separate pathways. Research into the nature of electron bifurcating sites indicates that one of the keys is the formation of a low potential oxidation state to satisfy the energetics required of the endergonic half reaction, indicating that any redox center (organic or inorganic) that can exist in multiple oxidation states with sufficiently separated redox potentials should be capable of electron bifurcation. In this Feature Article, we explore a paradigm for bifurcating electrons down independent high and low potential pathways, and describe redox cofactors that have been demonstrated or implicated in driving this unique biochemistry.
Bieniek, M. S.; Santos, D. F. N.; Almeida, P. G. C.; Benilov, M. S.
2018-04-01
General scenarios of transitions between different spot patterns on electrodes of DC gas discharges and their relation to bifurcations of steady-state solutions are analyzed. In the case of cathodes of arc discharges, it is shown that any transition between different modes of current transfer is related to a bifurcation of steady-state solutions. In particular, transitions between diffuse and spot modes on axially symmetric cathodes, frequently observed in the experiment, represent an indication of the presence of pitchfork or fold bifurcations of steady-state solutions. Experimental observations of transitions on cathodes of DC glow microdischarges are analyzed and those potentially related to bifurcations of steady-state solutions are identified. The relevant bifurcations are investigated numerically and the computed patterns are found to conform to those observed in the course of the corresponding transitions in the experiment.
Energy Technology Data Exchange (ETDEWEB)
Lee, Cheng-Hung [Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan (China); Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan (China); Jhong, Guan-Heng [Graduate Institute of Medical Mechatronics, Chang Gung University, Tao-Yuan, Taiwan (China); Hsu, Ming-Yi; Wang, Chao-Jan [Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan (China); Liu, Shih-Jung, E-mail: shihjung@mail.cgu.edu.tw [Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan (China); Hung, Kuo-Chun [Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Chang Gung University College of Medicine, Tao-Yuan, Taiwan (China)
2014-05-28
The deployment of metallic stents during percutaneous coronary intervention has become common in the treatment of coronary bifurcation lesions. However, restenosis occurs mostly at the bifurcation area even in present era of drug-eluting stents. To achieve adequate deployment, physicians may unintentionally apply force to the strut of the stents through balloon, guiding catheters, or other devices. This force may deform the struts and impose excessive mechanical stresses on the arterial vessels, resulting in detrimental outcomes. This study investigated the relationship between the distribution of stress in a stent and bifurcation angle using finite element analysis. The unintentionally applied force following stent implantation was measured using a force sensor that was made in the laboratory. Geometrical information on the coronary arteries of 11 subjects was extracted from contrast-enhanced computed tomography scan data. The numerical results reveal that the application of force by physicians generated significantly higher mechanical stresses in the arterial bifurcation than in the proximal and distal parts of the stent (post hoc P < 0.01). The maximal stress on the vessels was significantly higher at bifurcation angle <70° than at angle ≧70° (P < 0.05). The maximal stress on the vessels was negatively correlated with bifurcation angle (P < 0.01). Stresses at the bifurcation ostium may cause arterial wall injury and restenosis, especially at small bifurcation angles. These finding highlight the effect of force-induced mechanical stress at coronary artery bifurcation stenting, and potential mechanisms of in-stent restenosis, along with their relationship with bifurcation angle.
International Nuclear Information System (INIS)
Lee, Cheng-Hung; Jhong, Guan-Heng; Hsu, Ming-Yi; Wang, Chao-Jan; Liu, Shih-Jung; Hung, Kuo-Chun
2014-01-01
The deployment of metallic stents during percutaneous coronary intervention has become common in the treatment of coronary bifurcation lesions. However, restenosis occurs mostly at the bifurcation area even in present era of drug-eluting stents. To achieve adequate deployment, physicians may unintentionally apply force to the strut of the stents through balloon, guiding catheters, or other devices. This force may deform the struts and impose excessive mechanical stresses on the arterial vessels, resulting in detrimental outcomes. This study investigated the relationship between the distribution of stress in a stent and bifurcation angle using finite element analysis. The unintentionally applied force following stent implantation was measured using a force sensor that was made in the laboratory. Geometrical information on the coronary arteries of 11 subjects was extracted from contrast-enhanced computed tomography scan data. The numerical results reveal that the application of force by physicians generated significantly higher mechanical stresses in the arterial bifurcation than in the proximal and distal parts of the stent (post hoc P < 0.01). The maximal stress on the vessels was significantly higher at bifurcation angle <70° than at angle ≧70° (P < 0.05). The maximal stress on the vessels was negatively correlated with bifurcation angle (P < 0.01). Stresses at the bifurcation ostium may cause arterial wall injury and restenosis, especially at small bifurcation angles. These finding highlight the effect of force-induced mechanical stress at coronary artery bifurcation stenting, and potential mechanisms of in-stent restenosis, along with their relationship with bifurcation angle.
Kleinhans, M.G.; Wilbers, A.W.E.; Brinke, W.B.M. ten
2007-01-01
At river bifurcations water and sediment is divided among the downstream branches. Prediction of the sediment transport rate and divisionthereof at bifurcations is of utmost importance for understanding the evolution of the bifurcates for short-term management purposes and forlong-term fluvial plain
Bifurcation analysis of 3D ocean flows using a parallel fully-implicit ocean model
Thies, J.; Wubs, F.W.; Dijkstra, H.A.
2009-01-01
To understand the physics and dynamics of the ocean circulation, techniques of numerical bifurcation theory such as continuation methods have proved to be useful. Up to now these techniques have been applied to models with relatively few degrees of freedom such as multi-layer quasi-geostrophic and
DEFF Research Database (Denmark)
Willerslev, Anne; Li, Xiao Q; Munch, Inger C
2014-01-01
PURPOSE: To study intravascular characteristics of flowing blood in retinal vessels using spectral-domain optical coherence tomography (SD-OCT). METHODS: Examination of selected arterial bifurcations and venous sites of confluence in 25 healthy 11-year-old children recruited as an ad hoc subsample...
Bifurcation to a chiral-symmetry-breaking state in continuum quantum electrodynamics
International Nuclear Information System (INIS)
Rembiesa, P.
1990-01-01
Dyson-Schwinger equations for a fermion propagator in the Landau gauge are studied in the approximation of a small-momentum-transfer vertex function. There exists a critical value of the coupling constant above which the ordinary solution bifurcates to another, chiral-symmetry-breaking solution. The new solution does not require either infrared or ultraviolet momentum cutoffs
Limit cycles bifurcating from the periodic annulus of cubic homogeneous polynomial centers
Directory of Open Access Journals (Sweden)
Jaume Llibre
2015-10-01
Full Text Available We obtain an explicit polynomial whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of any cubic homogeneous polynomial center when it is perturbed inside the class of all polynomial differential systems of degree n.
Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations
Zhang, Linghai
2017-10-01
The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.
Yu, Yue; Zhang, Zhengdi; Han, Xiujing
2018-03-01
In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlled Lü system. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.
Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.
Wang, Zhen; Campbell, Sue Ann
2017-11-01
We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.
Grimme, F.A.B.; Spithoven, J.H.; Zeebregts, C.J.A.; Scharn, D.M.; Reijnen, M.M.
2015-01-01
PURPOSE: To determine the clinical outcomes of polytetrafluoroethylene covered balloon expandable stents (CBESs) in occlusive lesions of the aortic bifurcation in a kissing stent configuration. MATERIALS AND METHODS: The study included 69 consecutive patients (29 men, 40 women) who underwent kissing
Grimme, Frederike A. B.; Spithoven, J. Hans; Zeebregts, Clark J.; Scharn, Dirk M.; Reijnen, Michel M. P. J.
Purpose: To determine the clinical outcomes of polytetrafluoroethylene covered balloon expandable stents (CBESs) in occlusive lesions of the aortic bifurcation in a kissing stent configuration. Materials and Methods: The study included 69 consecutive patients (29 men, 40 women) who underwent kissing
Czech Academy of Sciences Publication Activity Database
Eisner, J.; Väth, Martin
2016-01-01
Roč. 135, April (2016), s. 158-193 ISSN 0362-546X Institutional support: RVO:67985840 Keywords : reaction-diffusion system * turing instability * global bifurcation Subject RIV: BA - General Mathematics Impact factor: 1.192, year: 2016 http://www.sciencedirect.com/science/article/pii/S0362546X16000146
Towards classification of the bifurcation structure of a spherical cavitation bubble.
Behnia, Sohrab; Sojahrood, Amin Jafari; Soltanpoor, Wiria; Sarkhosh, Leila
2009-12-01
We focus on a single cavitation bubble driven by ultrasound, a system which is a specimen of forced nonlinear oscillators and is characterized by its extreme sensitivity to the initial conditions. The driven radial oscillations of the bubble are considered to be implicated by the principles of chaos physics and owing to specific ranges of control parameters, can be periodic or chaotic. Despite the growing number of investigations on its dynamics, there is not yet an inclusive yardstick to sort the dynamical behavior of the bubble into classes; also, the response oscillations are so complex that long term prediction on the behavior becomes difficult to accomplish. In this study, the nonlinear dynamics of a bubble oscillator was treated numerically and the simulations were proceeded with bifurcation diagrams. The calculated bifurcation diagrams were compared in an attempt to classify the bubble dynamic characteristics when varying the control parameters. The comparison reveals distinctive bifurcation patterns as a consequence of driving the systems with unequal ratios of R(0)lambda (where R(0) is the bubble initial radius and lambda is the wavelength of the driving ultrasonic wave). Results indicated that systems having the equal ratio of R(0)lambda, share remarkable similarities in their bifurcating behavior and can be classified under a unit category.
Side-branch wire entrapment during bifurcation PCI: avoidance and management.
Burns, Andrew T; Gutman, Jack; Whitbourn, Rob
2010-02-15
An LAD/D1 bifurcation intervention was complicated by side-branch wire entrapment and unravelling requiring goose-neck snare removal. Residual microfilaments were retrieved from the main branch after further balloon inflations with a satisfactory final angiographic result and one-year follow-up. Various methods are available to avoid and deal with this complication.
Hopf bifurcation in a partial dependent predator-prey system with delay
International Nuclear Information System (INIS)
Zhao Huitao; Lin Yiping
2009-01-01
In this paper, a partial dependent predator-prey model with time delay is studied by using the theory of functional differential equation and Hassard's method, the condition on which positive equilibrium exists and Hopf bifurcation occurs are given. Finally, numerical simulations are performed to support the analytical results, and the chaotic behaviors are observed.
Neimark-Sacker bifurcation for the discrete-delay Kaldor model
International Nuclear Information System (INIS)
Dobrescu, Loretti I.; Opris, Dumitru
2009-01-01
We consider a discrete-delay time, Kaldor nonlinear business cycle model in income and capital. Given an investment function, resembling the one discussed by Rodano, we use the linear approximation analysis to state the local stability property and local bifurcations, in the parameter space. Finally, we will give some numerical examples to justify the theoretical results.
Treatment of an ostial and a bifurcation lesion with a new directional atherectomy device
Favero, L; Simpson, J B; Reimers, B
2004-01-01
Two cases of directional coronary atherectomy performed with a new 8 French monorail device for selective plaque excision are illustrated. This report underlines the technical characteristics of this new device, which allows the negotiation of complex coronary anatomy and emphasises the potential utility of directional coronary atherectomy in bifurcation and ostial lesions. PMID:15253988
Electric field bifurcation and transition in the core plasma of CHS
International Nuclear Information System (INIS)
Fujisawa, A.; Iguchi, H.; Sanuki, H.; Itoh, K.; Okamura, S.; Matsuoka, K.; Hamada, Y.; Itoh, S.-I.
1997-01-01
In the CHS heliotron/torsatron, dynamic phenomena associated with transitions in radial electric field were observed during combined ECH+NBI heated plasmas. The observations with high temporal resolution confirmed a nonlinear relation between radial electric field and radial current to cause these phenomena associated with electric field bifurcation. (author)
Complex bifurcation patterns in a discrete predator–prey model with ...
Indian Academy of Sciences (India)
We consider the simplest model in the family of discrete predator–prey system and introduce for the first time an environmental factor in the evolution of the system by periodically modulating the natural death rateof the predator.We show that with the introduction of environmental modulation, the bifurcation structure ...
Bifurcation analysis of a product inhibition model of a continuous fermentation process
Energy Technology Data Exchange (ETDEWEB)
Lenbury, Y; Chiaranai, C
1987-03-01
A product inhibition model of a continuous fermentation process is considered. If the yield term is a variable function of ethanol concentration, oscillation in the cell and ethanol concentrations is shown to be a Hopf bifurcation in the underlying system of nonlinear, ordinary differential equations which comprises the model.
Hopf bifurcations in a fractional reaction–diffusion model for the ...
African Journals Online (AJOL)
The phenomenon of hopf bifurcation has been well-studied and applied to many physical situations to explain behaviour of solutions resulting from differential and partial differential equations. This phenomenon is applied to a fractional reaction diffusion model for tumor invasion and development. The result suggests that ...
The bifurcation and peakons for the special C(3,2,2) equation
Indian Academy of Sciences (India)
Keywords. C(3, 2, 2) equation; peakons; bell-shaped solitary waves; periodic cusp waves. .... In other words, the function φ is not well defined on ... Figure 2. The phase portrait bifurcation of system (22). 336. Pramana – J. Phys., Vol. 83, No.
Bifurcation and chaotic behavior in the Euler method for a Kaplan-Yorke prototype delay model
International Nuclear Information System (INIS)
Peng Mingshu
2004-01-01
A discrete model with a simple cubic nonlinearity term is treated in the study the rich dynamics of a prototype delayed dynamical system under Euler discretization. The effect of breaking the symmetry of the system is to create a wide complex operating conditions which would not otherwise be seen. These include multiple steady states, complex periodic oscillations, chaos by period doubling bifurcations
Directory of Open Access Journals (Sweden)
Kanchan Kulkarni
2015-01-01
Full Text Available Sudden cardiac death instigated by ventricular fibrillation (VF is the largest cause of natural death in the USA. Alternans, a beat-to-beat alternation in the action potential duration, has been implicated as being proarrhythmic. The onset of alternans is mediated via a bifurcation, which may occur through either a smooth or a border-collision mechanism. The objective of this study was to characterize the mechanism of bifurcation to alternans based on experiments in isolated whole rabbit hearts. High resolution optical mapping was performed and the electrical activity was recorded from the left ventricle (LV epicardial surface of the heart. Each heart was paced using an “alternate pacing protocol,” where the basic cycle length (BCL was alternatively perturbed by ±δ. Local onset of alternans in the heart, BCLstart, was measured in the absence of perturbations (δ=0 and was defined as the BCL at which 10% of LV exhibited alternans. The influences of perturbation size were investigated at two BCLs: one prior to BCLstart (BCLprior=BCLstart+20 ms and one preceding BCLprior (BCLfar=BCLstart+40 ms. Our results demonstrate significant spatial correlation of the region exhibiting alternans with smooth bifurcation characteristics, indicating that transition to alternans in isolated rabbit hearts occurs predominantly through smooth bifurcation.
Impact adding bifurcation in an autonomous hybrid dynamical model of church bell
Brzeski, P.; Chong, A. S. E.; Wiercigroch, M.; Perlikowski, P.
2018-05-01
In this paper we present the bifurcation analysis of the yoke-bell-clapper system which corresponds to the biggest bell "Serce Lodzi" mounted in the Cathedral Basilica of St Stanislaus Kostka, Lodz, Poland. The mathematical model of the system considered in this work has been derived and verified based on measurements of dynamics of the real bell. We perform numerical analysis both by direct numerical integration and path-following method using toolbox ABESPOL (Chong, 2016). By introducing the active yoke the position of the bell-clapper system with respect to the yoke axis of rotation can be easily changed and it can be used to probe the system dynamics. We found a wide variety of periodic and non-periodic solutions, and examined the ranges of coexistence of solutions and transitions between them via different types of bifurcations. Finally, a new type of bifurcation induced by a grazing event - an "impact adding bifurcation" has been proposed. When it occurs, the number of impacts between the bell and the clapper is increasing while the period of the system's motion stays the same.
Chiral symmetry breaking in QED3: bifurcation of the fermionic self-energy
International Nuclear Information System (INIS)
Almeida, L.D.; Natale, A.A.
1989-01-01
The existence of a bifurcation point in the Scwinger-Dyson equation of 2+1 dimensional quantum electrodynamics with N fermions, is studied. It is found an evidence for the existence of a critical behavior, such that chiral symmetry breaking may occur only for a small number of flavors. (author) [pt
Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control
Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming
2015-05-01
With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.
Complete Chiral Resolution Using Additive-Induced Crystal Size Bifurcation During Grinding
Noorduin, Wim L.; Asdonk, Pim van der; Meekes, Hugo; Enckevort, Willem J.P. van; Kaptein, Bernard; Leeman, Michel; Kellogg, Richard M.; Vlieg, Elias
2009-01-01
Grinding them down: By using a tailor-made additive, even in the absence of racemization in solution, abrasive grinding can yield an enantiopure solid state. This novel chiral resolution technique is based on an asymmetric bifurcation in the crystal size distribution as a result of stereoselective
International Nuclear Information System (INIS)
Guo, Yu; Luo, Albert C.J.
2015-01-01
In this paper, analytically predicted are complex periodic motions in the periodically forced, damped, hardening Duffing oscillator through discrete implicit maps of the corresponding differential equations. Bifurcation trees of periodic motions to chaos in such a hardening Duffing oscillator are obtained. The stability and bifurcation analysis of periodic motion in the bifurcation trees is carried out by eigenvalue analysis. The solutions of all discrete nodes of periodic motions are computed by the mapping structures of discrete implicit mapping. The frequency-amplitude characteristics of periodic motions are computed that are based on the discrete Fourier series. Thus, the bifurcation trees of periodic motions are also presented through frequency-amplitude curves. Finally, based on the analytical predictions, the initial conditions of periodic motions are selected, and numerical simulations of periodic motions are carried out for comparison of numerical and analytical predictions. The harmonic amplitude spectrums are also given for the approximate analytical expressions of periodic motions, which can also be used for comparison with experimental measurement. This study will give a better understanding of complex periodic motions in the hardening Duffing oscillator.
Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks
Wang, Zhen; Campbell, Sue Ann
2017-11-01
We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with ZN symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.
Mixed-Mode Oscillations Due to a Singular Hopf Bifurcation in a Forest Pest Model
DEFF Research Database (Denmark)
Brøns, Morten; Desroches, Mathieu; Krupa, Martin
2015-01-01
In a forest pest model, young trees are distinguished from old trees. The pest feeds on old trees. The pest grows on a fast scale, the young trees on an intermediate scale, and the old trees on a slow scale. A combination of a singular Hopf bifurcation and a “weak return” mechanism, characterized...
Bifurcation and chaos in high-frequency peak current mode Buck converter
Chang-Yuan, Chang; Xin, Zhao; Fan, Yang; Cheng-En, Wu
2016-07-01
Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode (CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i L-v C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that, with the increase of reference current I ref, the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding I ref decreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller. Project supported by the National Natural Science Foundation of China (Grant No. 61376029), the Fundamental Research Funds for the Central Universities, China, and the College Graduate Research and Innovation Program of Jiangsu Province, China (Grant No. SJLX15_0092).
Allee’s dynamics and bifurcation structures in von Bertalanffy’s population size functions
Leonel Rocha, J.; Taha, Abdel-Kaddous; Fournier-Prunaret, D.
2018-03-01
The interest and the relevance of the study of the population dynamics and the extinction phenomenon are our main motivation to investigate the induction of Allee Effect in von Bertalanffy’s population size functions. The adjustment or correction factor of rational type introduced allows us to analyze simultaneously strong and weak Allee’s functions and functions with no Allee effect, whose classification is dependent on the stability of the fixed point x = 0. This classification is founded on the concepts of strong and weak Allee’s effects to the population growth rates associated. The transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is verified with the evolution of the rarefaction critical density or Allee’s limit. The existence of cusp points on a fold bifurcation curve is related to this phenomenon of transition on Allee’s dynamics. Moreover, the “foliated” structure of the parameter plane considered is also explained, with respect to the evolution of the Allee limit. The bifurcation analysis is based on the configurations of fold and flip bifurcation curves. The chaotic semistability and the nonadmissibility bifurcation curves are proposed to this family of 1D maps, which allow us to define and characterize the corresponding Allee effect region.
2D nonlocal versus 3D bifurcation studies for biaxially loaded plates
DEFF Research Database (Denmark)
Benallal, A.; Tvergaard, Viggo
1998-01-01
The main objective of this work is to analyse how a two-dimensional second gradient plasticity model is able to reproduce the three-dimensional bifurcation behaviour for a biaxially loaded flat plate. While it is found that the simple model used here is able to capture them qualitatively for the ...
Bifurcation and complex dynamics of a discrete-time predator-prey system
Directory of Open Access Journals (Sweden)
S. M. Sohel Rana
2015-06-01
Full Text Available In this paper, we investigate the dynamics of a discrete-time predator-prey system of Holling-I type in the closed first quadrant R+2. The existence and local stability of positive fixed point of the discrete dynamical system is analyzed algebraically. It is shown that the system undergoes a flip bifurcation and a Neimark-Sacker bifurcation in the interior of R+2 by using bifurcation theory. It has been found that the dynamical behavior of the model is very sensitive to the parameter values and the initial conditions. Numerical simulation results not only show the consistence with the theoretical analysis but also display the new and interesting dynamic behaviors, including phase portraits, period-9, 10, 20-orbits, attracting invariant circle, cascade of period-doubling bifurcation from period-20 leading to chaos, quasi-periodic orbits, and sudden disappearance of the chaotic dynamics and attracting chaotic set. In particular, we observe that when the prey is in chaotic dynamic, the predator can tend to extinction or to a stable equilibrium. The Lyapunov exponents are numerically computed to characterize the complexity of the dynamical behaviors. The analysis and results in this paper are interesting in mathematics and biology.
Explicit Solutions and Bifurcations for a Class of Generalized Boussinesq Wave Equation
International Nuclear Information System (INIS)
Ma Zhi-Min; Sun Yu-Huai; Liu Fu-Sheng
2013-01-01
In this paper, the generalized Boussinesq wave equation u tt — u xx + a(u m ) xx + bu xxxx = 0 is investigated by using the bifurcation theory and the method of phase portraits analysis. Under the different parameter conditions, the exact explicit parametric representations for solitary wave solutions and periodic wave solutions are obtained. (general)
Bifurcation analysis of 3D ocean flows using a parallel fully-implicit ocean model
Thies, Jonas; Wubs, Fred; Dijkstra, Henk A.
2009-01-01
To understand the physics and dynamics of the ocean circulation, techniques of numerical bifurcation theory such as continuation methods have proved to be useful. Up to now these techniques have been applied to models with relatively few (O(10(5))) degrees of freedom such as multi-layer
Degenerate Hopf bifurcation in a self-exciting Faraday disc dynamo
Indian Academy of Sciences (India)
Weiquan Pan
2017-05-31
May 31, 2017 ... Recently, self-exciting Faraday disk dynamo is also a topic of con- cern [16–20]. ..... Hopf bifurcation. (a) Projected on the x–z plane and (b) pro- ... Key Lab of Com- plex System Optimization and Big Data Processing. (No.
Hypercrater Bifurcations, Attractor Coexistence, and Unfolding in a 5D Model of Economic Dynamics
Directory of Open Access Journals (Sweden)
Toichiro Asada
2011-01-01
Full Text Available Complex dynamical features are explored in a discrete interregional macrodynamic model proposed by Asada et al., using numerical methods. The model is five-dimensional with four parameters. The results demonstrate patterns of dynamical behaviour, such as bifurcation processes and coexistence of attractors, generated by high-dimensional discrete systems. In three cases of two-dimensional parameter subspaces the stability of equilibrium region is determined and its boundaries, the flip and Neimark-Hopf bifurcation curves, are identified by means of necessary coefficient criteria. In the first case closed invariant curves (CICs are found to occur through 5D-crater-type bifurcations, and for certain ranges of parameter values a stable equilibrium coexists with an unstable CIC associated with the subcritical bifurcation, as well as with an outer stable CIC. A remarkable feature of the second case is the coexistence of two attracting CICs outside the stability region. In both these cases the related hysteresis effects are illustrated by numerical simulations. In the third case a remarkable feature is the apparent unfolding of an attracting CIC before it evolves to a chaotic attractor. Examples of CICs and chaotic attractors are given in subspaces of phase space.
Bifurcation and chaos in a dc-driven long annular Josephson junction
DEFF Research Database (Denmark)
Grnbech-Jensen, N.; Lomdahl, Peter S.; Samuelsen, Mogens Rugholm
1991-01-01
Simulations of long annular Josephson junctions in a static magnetic field show that in large regions of bias current the system can exhibit a period-doubling bifurcation route to chaos. This is in contrast to previously studied Josephson-junction systems where chaotic behavior has primarily been...
Bifurcating Solutions to the Monodomain Model Equipped with FitzHugh-Nagumo Kinetics
Directory of Open Access Journals (Sweden)
Robert Artebrant
2009-01-01
cells surrounded by collections of normal cells. Thus, the cell model features a discontinuous coefficient. Analytical techniques are applied to approximate the time-periodic solution that arises at the Hopf bifurcation point. Accurate numerical experiments are employed to complement our findings.
Treatment of bifurcation lesions by bail-out TAP or culotte
DEFF Research Database (Denmark)
Burzotta, Francesco; Lefèvre, Thierry; Lassen, Jens Flensted
2017-01-01
BACKGROUND: Coronary bifurcated lesions (CBL) represent a hot topic of interventional cardiology. Provisional stenting, i.e. implantation of a drug-eluting (DES) in the main branch followed by side-branch (SB) intervention in case of suboptimal SB result, represents the gold standard to treat the...
Phase diagram of N = 2 superconformal field theories and bifurcation sets in catastrophe theory
International Nuclear Information System (INIS)
Kei Ito.
1989-08-01
Phase diagrams of N=2 superconformal field theories are mapped out. It is shown that they coincide with bifurcation sets in catastrophe theory. The results are applied to the determination of renormalization group flows triggered by a combination of two or more relevant operators. (author). 13 refs, 2 figs
DEFF Research Database (Denmark)
Elmegård, Michael; Krauskopf, B.; Osinga, H.M.
2014-01-01
bifurca tions disappear when the transition of the switching is sufficiently and increasingly localized as the impact becomes harder. The bifurcation structure of the impact oscillator response is investigated via the one- and twoparameter continuation of periodic orbits in the driving frequency and....../or forcing amplitude. The results are in good agreement with experimental measurements....
Global Hopf bifurcation analysis on a BAM neural network with delays
Sun, Chengjun; Han, Maoan; Pang, Xiaoming
2007-01-01
A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large.
Xiao, Min; Zheng, Wei Xing; Cao, Jinde
2013-01-01
Recent studies on Hopf bifurcations of neural networks with delays are confined to simplified neural network models consisting of only two, three, four, five, or six neurons. It is well known that neural networks are complex and large-scale nonlinear dynamical systems, so the dynamics of the delayed neural networks are very rich and complicated. Although discussing the dynamics of networks with a few neurons may help us to understand large-scale networks, there are inevitably some complicated problems that may be overlooked if simplified networks are carried over to large-scale networks. In this paper, a general delayed bidirectional associative memory neural network model with n + 1 neurons is considered. By analyzing the associated characteristic equation, the local stability of the trivial steady state is examined, and then the existence of the Hopf bifurcation at the trivial steady state is established. By applying the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction and stability of the bifurcating periodic solution. Furthermore, the paper highlights situations where the Hopf bifurcations are particularly critical, in the sense that the amplitude and the period of oscillations are very sensitive to errors due to tolerances in the implementation of neuron interconnections. It is shown that the sensitivity is crucially dependent on the delay and also significantly influenced by the feature of the number of neurons. Numerical simulations are carried out to illustrate the main results.
Global Hopf bifurcation analysis on a BAM neural network with delays
International Nuclear Information System (INIS)
Sun Chengjun; Han Maoan; Pang Xiaoming
2007-01-01
A delayed differential equation that models a bidirectional associative memory (BAM) neural network with four neurons is considered. By using a global Hopf bifurcation theorem for FDE and a Bendixon's criterion for high-dimensional ODE, a group of sufficient conditions for the system to have multiple periodic solutions are obtained when the sum of delays is sufficiently large
Bifurcation from infinity and nodal solutions of quasilinear elliptic differential equations
Directory of Open Access Journals (Sweden)
Bian-Xia Yang
2014-01-01
Full Text Available In this article, we establish a unilateral global bifurcation theorem from infinity for a class of $N$-dimensional p-Laplacian problems. As an application, we study the global behavior of the components of nodal solutions of the problem $$\\displaylines{ \\operatorname{div}(\\varphi_p(\
Arnold, Vladimir I; Khesin, Boris; Marsden, Jerrold E; Varchenko, AN; Vassiliev, Victor A; Viro, Oleg Yanovich; Zakalyukin, Vladimir
2013-01-01
Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This second volume of his ""Collected Works"" focuses on hydrodynamics, bifurcation theory, and algebraic geometry.
Directory of Open Access Journals (Sweden)
I Putu Dody Lesmana
2012-09-01
Full Text Available Abstract: Biometric is a development of basic method of identification using human natural characteristics as its basic. One of the biometric system that is often used is fingerprint. Fingerprint matching system can be obtained by extraction of minutiae information. Information from minutiae extraction generated ridge ending and bifurcation. The technique coffered in this paper is based on the extraction of minutiae from fingerprint image using crossing number (CN method to get ridge ending and bifurcation point by scanning each of ridges point. False identification of minutiae structure may be introduced into the fingerprint image due to hole and spur structure. It is necessary to test the validity of each minutiae point to eliminate false minutiae. Experiments are firstly conducted to assess how well the crossing number method is able to extract the minutiae point. The minutiae validation algorithm is then evaluated to see how effective the algorithm is in detecting the false minutiae. From experiments result using crossing number method, it can be deduced that all ridge points corresponding to ridge ending and bifurcation point have been detected successfully. However, there are a few cases where the extracted minutiae do not correspond to true minutiae points due to hole and spur structure. Applying minutiae validation algorithm is able to cancel out the false ridge endings created by the spur structure and bifurcations created by the hole structures.
ΔI=4 bifurcation in a superdeformed band: Evidence for a C4 symmetry
International Nuclear Information System (INIS)
Flibotte, S.; Andrews, H.R.; Ball, G.C.; Beausang, C.W.; Beck, F.A.; Belier, G.; Byrski, T.; Curien, D.; Dagnall, P.J.; de France, G.; Disdier, D.; Duchene, G.; Finck, C.; Haas, B.; Hackman, G.; Haslip, D.S.; Janzen, V.P.; Kharraja, B.; Lisle, J.C.; Merdinger, J.C.; Mullins, S.M.; Nazarewicz, W.; Radford, D.C.; Rauch, V.; Savajols, H.; Styczen, J.; Theisen, C.; Twin, P.J.; Vivien, J.P.; Waddington, J.C.; Ward, D.; Zuber, K.; Aberg, S.
1993-01-01
The moment of inertia of the yrast superdeformed band in 149 Gd exhibits an unexpected bifurcation at high rotational frequency. States differing by four units of angular momentum show an energy shift of about 60 eV. This indicates the remnant of a new quantum number associated with the fourfold rotational symmetry
DEFF Research Database (Denmark)
Yang, Li Hui; Xu, Zhao; Østergaard, Jacob
2010-01-01
This paper first presents the Hopf bifurcation analysis for a vector-controlled doubly fed induction generator (DFIG) which is widely used in wind power conversion systems. Using three-phase back-to-back pulse-width-modulated (PWM) converters, DFIG can keep stator frequency constant under variabl...
Bifurcations and feedback control of a stage-structure exploited prey ...
African Journals Online (AJOL)
The reasons behind the different nature of the interior equilibriums for zero and positive profit are discussed in conclusion section. Some numerical simulations are given to verify the analytical results. How the maximum profit hampers the system is provided through saddle-node bifurcation in the last subsection of numerical ...
A Practice-Oriented Bifurcation Analysis for Pulse Energy Converters. Part 2: An Operating Regime
Kolokolov, Yury; Monovskaya, Anna
The paper continues the discussion on bifurcation analysis for applications in practice-oriented solutions for pulse energy conversion systems (PEC-systems). Since a PEC-system represents a nonlinear object with a variable structure, then the description of its dynamics evolution involves bifurcation analysis conceptions. This means the necessity to resolve the conflict-of-units between the notions used to describe natural evolution (i.e. evolution of the operating process towards nonoperating processes and vice versa) and the notions used to describe a desirable artificial regime (i.e. an operating regime). We consider cause-effect relations in the following sequence: nonlinear dynamics-output signal-operating characteristics, where these characteristics include stability and performance. Then regularities of nonlinear dynamics should be translated into regularities of the output signal dynamics, and, after, into an evolutional picture of each operating characteristic. In order to make the translation without losses, we first take into account heterogeneous properties within the structures of the operating process in the parametrical (P-) and phase (X-) spaces, and analyze regularities of the operating stability and performance on the common basis by use of the modified bifurcation diagrams built in joint PX-space. Then, the correspondence between causes (degradation of the operating process stability) and effects (changes of the operating characteristics) is decomposed into three groups of abnormalities: conditionally unavoidable abnormalities (CU-abnormalities); conditionally probable abnormalities (CP-abnormalities); conditionally regular abnormalities (CR-abnormalities). Within each of these groups the evolutional homogeneity is retained. After, the resultant evolution of each operating characteristic is naturally aggregated through the superposition of cause-effect relations in accordance with each of the abnormalities. We demonstrate that the practice
Direct numerical simulation of particle laden flow in a human airway bifurcation model
International Nuclear Information System (INIS)
Stylianou, Fotos S.; Sznitman, Josué; Kassinos, Stavros C.
2016-01-01
Highlights: • An anatomically realistic model of a human airway bifurcation is constructed. • Direct numerical simulations are used to study laminar and turbulent airflow. • Aerosol deposition in the bifurcation is studied with lagrangian particle tracking. • Carinal vortices forming during steady expiration are reported for the first time. • Stokes number determines deposition differences between inspiration and expiration. - Abstract: During the delivery of inhaled medicines, and depending on the size distribution of the particles in the formulation, airway bifurcations are areas of preferential deposition. Previous studies of laminar flow through airway bifurcations point to an interplay of inertial and centrifugal forces that leads to rich flow phenomena and controls particle deposition patterns. However, recent computational studies have shown that the airflow in the upper human airways is turbulent during much of the respiratory cycle. The question of how the presence of turbulence modifies these effects remains open. In this study, we perform for the first time Direct Numerical Simulations (DNS) of fully developed turbulent flow through a single human airway bifurcation model, emulating steady prolonged inspiration and expiration. We use the rich information obtained from the DNS in order to identify key structures in the flow field and scrutinize their role in determining deposition patterns in the bifurcation. We find that the vortical structures present in the bifurcation during expiration differ from those identified during inspiration. While Dean vortices are present in both cases, a set of three dimensional “carinal vortices” are identified only during expiration. A set of laminar simulations in the same geometries, but at lower Reynolds numbers, allow us to identify key differences in aerosol deposition patterns between laminar and turbulent respiration. We also report deposition fractions for representative Stokes numbers for both
Detection of bifurcations in noisy coupled systems from multiple time series
Williamson, Mark S.; Lenton, Timothy M.
2015-03-01
We generalize a method of detecting an approaching bifurcation in a time series of a noisy system from the special case of one dynamical variable to multiple dynamical variables. For a system described by a stochastic differential equation consisting of an autonomous deterministic part with one dynamical variable and an additive white noise term, small perturbations away from the system's fixed point will decay slower the closer the system is to a bifurcation. This phenomenon is known as critical slowing down and all such systems exhibit this decay-type behaviour. However, when the deterministic part has multiple coupled dynamical variables, the possible dynamics can be much richer, exhibiting oscillatory and chaotic behaviour. In our generalization to the multi-variable case, we find additional indicators to decay rate, such as frequency of oscillation. In the case of approaching a homoclinic bifurcation, there is no change in decay rate but there is a decrease in frequency of oscillations. The expanded method therefore adds extra tools to help detect and classify approaching bifurcations given multiple time series, where the underlying dynamics are not fully known. Our generalisation also allows bifurcation detection to be applied spatially if one treats each spatial location as a new dynamical variable. One may then determine the unstable spatial mode(s). This is also something that has not been possible with the single variable method. The method is applicable to any set of time series regardless of its origin, but may be particularly useful when anticipating abrupt changes in the multi-dimensional climate system.
Equivariant bifurcation in a coupled complex-valued neural network rings
International Nuclear Information System (INIS)
Zhang, Chunrui; Sui, Zhenzhang; Li, Hongpeng
2017-01-01
Highlights: • Complex value Hopfield-type network with Z4 × Z2 symmetry is discussed. • The spatio-temporal patterns of bifurcating periodic oscillations are obtained. • The oscillations can be in phase or anti-phase depending on the parameters and delay. - Abstract: Network with interacting loops and time delays are common in physiological systems. In the past few years, the dynamic behaviors of coupled interacting loops neural networks have been widely studied due to their extensive applications in classification of pattern recognition, signal processing, image processing, engineering optimization and animal locomotion, and other areas, see the references therein. In a large amount of applications, complex signals often occur and the complex-valued recurrent neural networks are preferable. In this paper, we study a complex value Hopfield-type network that consists of a pair of one-way rings each with four neurons and two-way coupling between each ring. We discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. The existence of multiple branches of bifurcating periodic solution is obtained. We also found that the spatio-temporal patterns of bifurcating periodic oscillations alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural network oscillators. The oscillations of corresponding neurons in the two loops can be in phase or anti-phase depending on the parameters and delay. Some numerical simulations support our analysis results.