WorldWideScience

Sample records for bifunctional phosphinic acid

  1. Complexation and biodistribution study of 111In complexes of bifunctional phosphinic acid analogues of H4DOTA

    Czech Academy of Sciences Publication Activity Database

    Forsterová, Michaela; Zimová, Jana; Petrík, M.; Lázníček, M.; Lázníčková, A.; Hermann, P.; Melichar, František

    2007-01-01

    Roč. 2, č. 337 (2007), s. 34-34 ISSN 1619-7070 R&D Projects: GA AV ČR 1QS100480501 Institutional research plan: CEZ:AV0Z10480505 Keywords : bifunctional H4DOTA ligands * phosphinic acid analogues, * complexation of 111In Subject RIV: FR - Pharmacology ; Medidal Chemistry

  2. Recovery of plutonium from nitric acid containing oxalate and fluoride by a macroporous bifunctional phosphinic acid resin (MPBPA)

    International Nuclear Information System (INIS)

    Venugopal Chetty, K.; Godbole, A.G.; Swarup, R.; Vaidya, V.N.; Venugopal, V.; Vasudeva Rao, P.R.

    2006-01-01

    The sorption of Pu from nitric acid solutions containing oxalate/fluoride was studied using an indigenously available macroporous bifunctional phosphinic acid (MPBPA) resin. Batch experiments were carried out to obtain the distribution data of Pu(IV) with a view to optimize conditions for its recovery from nitric acid waste solutions containing oxalate or fluoride ions. The measurements showed high distribution ratio (D) values even in the presence of strong complexing ions, like oxalate and fluoride, indicating the possibility of recovery of Pu from these types of waste solution. Column studies were carried out using this resin to recover Pu from the oxalate supernatant waste solution, which showed that up to 99% of Pu could be adsorbed on the resin. Elution of Pu loaded on the resin was studied using different eluting agents. (author)

  3. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  4. Hydrophosphorylation of alkynes with phosphinous acids

    International Nuclear Information System (INIS)

    Nifant'ev, E.E.; Solovetskaya, L.A.; Magdeeva, R.K.

    1986-01-01

    A feature of the homolytic hydrophosphorylation of alkynes, as compared with alkenes, is more ready addition of phosphinous acids in presence of benzoyl peroxides. A difference was found in the hydrophosphorylation of acetylenes with dibutylphosphinous acid and with diarylphosphinous acids: the latter tend to form diaddition products

  5. Uptake of actinides by sulphonated phosphinic acid resin from acid medium

    International Nuclear Information System (INIS)

    Jaya Mohandas; Srinivasa Rao, V.; Vijayakumar, N.; Kumar, T.; Velmurugan, S.; Narasimhan, S.V.

    2014-01-01

    The removal of uranium and americium from nitric acid solutions by sulphonated phosphinic acid resin has been investigated. The capacity of the sulphonated resin exceeds the capacities of phosphinic acid resin and commercial cation exchange resin. Other advantages of the sulphonated resin for uranium and americium removal include reduced sensitivity to acidity and inert salt concentration. (author)

  6. Gas chromatography of alkylphosphonic and dialkyl phosphinic acids

    International Nuclear Information System (INIS)

    Gasco Sanchez, L.; Barrera Pinero, R.; Ramirez Caceres, A.; Martin Munoz, M.

    1978-01-01

    After carrying out an optimization study on the separation conditions for the TMSr- derivatives, of the hexyl-, cyclohexyl-, heptyl-, and octyl-phosphonic acids; dihexyl dicyclohexyl-, heptyl-, and octyl-phosphinic acids, and dioctyl phosphine oxide, their retention indices (I) at two temperatures and on the OV-1 and OV-17 stationary phase were determined. Correlations between I and molecular structure were established. Calibration factors of these compounds in the flame ionization detector were studied, and the results analyzed taking into account the variables affecting the quantitative results, These results were unbiased but they had a lower precision than that usually achievable in gas chromatography. (Author) 24 refs

  7. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications.

    Science.gov (United States)

    Notni, Johannes; Šimeček, Jakub; Wester, Hans-Jürgen

    2014-06-01

    Given the wide application of positron emission tomography (PET), positron-emitting metal radionuclides have received much attention recently. Of these, gallium-68 has become particularly popular, as it is the only PET nuclide commercially available from radionuclide generators, therefore allowing local production of PET radiotracers independent of an on-site cyclotron. Hence, interest in optimized bifunctional chelators for the elaboration of (68) Ga-labeled bioconjugates has been rekindled as well, resulting in the development of improved triazacyclononane-triphosphinate (TRAP) ligand structures. The most remarkable features of these ligands are unparalleled selectivity for Ga(III) , rapid Ga(III) complexation kinetics, extraordinarily high thermodynamic stability, and kinetic inertness of the respective Ga(III) chelates. As a result, TRAP chelators exhibit very favorable (68) Ga-labeling properties. Based on the scaffolds NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) and TRAP-Pr, tailored for convenient preparation of (68) Ga-labeled monomeric and multimeric bioconjugates, a variety of novel (68) Ga radiopharmaceuticals have been synthesized. These include bisphosphonates, somatostatin receptor ligands, prostate-specific membrane antigen (PSMA)-targeting peptides, and cyclic RGD pentapeptides, for in vivo PET imaging of bone, neuroendocrine tumors, prostate cancer, and integrin expression, respectively. Furthermore, TRAP-based (68) Ga-labeled gadolinium(III) complexes have been proposed as bimodal probes for PET/MRI, and a cyclen-based analogue of TRAP-Pr has been suggested for the elaboration of targeted radiotherapeutics comprising radiolanthanide ions. Thus, polyazacycloalkane-based polyphosphinic acid chelators are a powerful toolbox for pharmaceutical research, particularly for the development of (68) Ga radiopharmaceuticals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then

  9. Methylene-bis[(aminomethyl)phosphinic acids]: synthesis, acid-base and coordination properties.

    Science.gov (United States)

    David, Tomáš; Procházková, Soňa; Havlíčková, Jana; Kotek, Jan; Kubíček, Vojtěch; Hermann, Petr; Lukeš, Ivan

    2013-02-21

    Three symmetrical methylene-bis[(aminomethyl)phosphinic acids] bearing different substituents on the central carbon atom, (NH(2)CH(2))PO(2)H-C(R(1))(R(2))-PO(2)H(CH(2)NH(2)) where R(1) = OH, R(2) = Me (H(2)L(1)), R(1) = OH, R(2) = Ph (H(2)L(2)) and R(1),R(2) = H (H(2)L(3)), were synthesized. Acid-base and complexing properties of the ligands were studied in solution as well as in the solid state. The ligands show unusually high basicity of the nitrogen atoms (log K(1) = 9.5-10, log K(2) = 8.5-9) if compared with simple (aminomethyl)phosphinic acids and, consequently, high stability constants of the complexes with studied divalent metal ions. The study showed the important role of the hydroxo group attached to the central carbon atom of the geminal bis(phosphinate) moiety. Deprotonation of the hydroxo group yields the alcoholate anion which tends to play the role of a bridging ligand and induces formation of polynuclear complexes. Solid-state structures of complexes [H(2)N=C(NH(2))(2)][Cu(2)(H(-1)L(2))(2)]CO(3)·10H(2)O and Li(2)[Co(4)(H(-1)L(1))(3)(OH)]·17.5H(2)O were determined by X-ray diffraction. The complexes show unexpected geometries forming dinuclear and cubane-like structures, respectively. The dinuclear copper(II) complex contains a bridging μ(2)-alcoholate group with the (-)O-P(=O)-CH(2)-NH(2) fragments of each ligand molecule chelated to the different central ion. In the cubane cobalt(II) complex, one μ(3)-hydroxide and three μ(3)-alcoholate anions are located in the cube vertices and both phosphinate groups of one ligand molecule are chelating the same cobalt(II) ion while each of its amino groups are bound to different neighbouring metal ions. All such three metal ions are bridged by the alcoholate group of a given ligand.

  10. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  11. Phosphinic acid functionalized carbon nanotubes for sensitive and selective sensing of chromium(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Deep, Akash, E-mail: dr.akashdeep@csio.res.in; Sharma, Amit L.; Tuteja, Satish K.; Paul, A.K.

    2014-08-15

    Highlights: • SWCNTs have been conjugated with bis(2,4,4-trimethylpentyl) phosphinic acid (PA/d). • SWCNT-PA/d adduct is demonstrated for electrochemical sensing of Cr(VI). • Linear response is obtained for 0.01–10 ppb Cr(VI). • Sensitivity and the limit of detection are 35 ± 4 nA/ppb and 0.01 ppb, respectively. • Proposed sensing of Cr(VI) is selective with respect to many other metals. - Abstract: Single-walled carbon nanotubes (SWCNTs) have been functionalized with a phosphinic acid derivative ‘bis(2,4,4-trimethylpentyl) phosphinic acid’ (PA/d). It has been achieved by treating the chlorinated SWCNTs with PA/d at 80 °C. Successful functionalization and different nanomaterial properties have been investigated by UV–vis–NIR, FTIR, Raman spectroscopy, AFM and FE-SEM. PA/d conjugated SWCNTs (CNT–PA) are dispersible in some common organic solvents, e.g. CH{sub 2}Cl{sub 2}, DMF, CHCl{sub 3}, and THF. The ‘CNT–PA’ complex was spin-casted on boron doped silicon wafer. Thus fabricated sensing electrode is demonstrated for sensitive and selective electrochemical sensing of chromium(VI) ions. A linear response is obtained over a wide range of Cr(VI) concentration (0.01–10 ppb). The sensor's sensitivity and the limit of detection are observed to be 35 ± 4 nA/ppb and 0.01 ppb, respectively. The practical utility of the proposed sensor is demonstrated by determining the Cr(VI) concentration in an industrial effluent sample and an underground water sample.

  12. Gas chromatography of alkylphosphonic and dialkyl phosphinic acids; Cromatografia en fase gaseosa de acidos alquifosfonicos y dialquilfosinicos

    Energy Technology Data Exchange (ETDEWEB)

    Gasco Sanchez, L; Barrera Peniero, R; Ramirez Caceres, A; Marin Munoz, M

    1978-07-01

    After carrying out an optimization study on the separation conditions for the TMSr- derivatives, of the hexyl-, cyclohexyl-, heptyl-, and octyl-phosphonic acids; dihexyl dicyclohexyl-, heptyl-, and octyl-phosphinic acids, and dioctyl phosphine oxide, their retention indices (I) at two temperatures and on the OV-1 and OV-17 stationary phase were determined. Correlations between I and molecular structure were established. Calibration factors of these compounds in the flame ionization detector were studied, and the results analyzed taking into account the variables affecting the quantitative results, These results were unbiased but they had a lower precision than that usually achievable in gas chromatography. (Author) 24 refs.

  13. Asymmetric organocatalytic Michael addition of Meldrum's acid to nitroalkenes: probing the mechanism of bifunctional thiourea organocatalysts

    OpenAIRE

    Kataja, Antti O.; Koskinen, Ari M.P.

    2010-01-01

    The asymmetric Michael addition of Meldrum’s acid to nitroalkenes was studied using a novel type of Cinchona alkaloid-based bifunctional thiourea organocatalyst. The functionality of the thiourea catalysts was also probed by preparing and testing thiourea-N-methylated analogues of the well-known bis-(3,5-trifluoromethyl)phenyl-substituted catalyst. Peer reviewed

  14. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofang [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Zou, Yongcun [State Key Laboratory of Inoranic Synthesis and Preparative Chemistryg, College of Chemistry, Jilin University, Changchun 130012 (China); Wu, Shujie; Liu, Heng [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China)

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  15. Flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid to cassiterite

    International Nuclear Information System (INIS)

    Li, Fangxu; Zhong, Hong; Zhao, Gang; Wang, Shuai; Liu, Guangyi

    2015-01-01

    Highlights: • Flotation of cassiterite is carried out using a new collector HPA. • Phosphorous and oxygen of HPA forms chelation with Sn. • HPA exhibits good selectivity to cassiterite against magnetite and hematite. • HPA chemisorbs on cassiterite surface by form of Sn–P and Sn–O–P bond. - Abstract: In this paper, the flotation performances and adsorption mechanism of α-hydroxyoctyl phosphinic acid (HPA) to cassiterite were investigated by adsorption experiments, micro-flotation tests, zeta potential measurements, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The micro-flotation results indicated that compared with styrene phosphonic acid (SPA), diphosphonic acid (DPA), benzohydroxamic acid (BHA) and salicylhydroxamic acid (SHA), HPA exhibited excellent collecting power to cassiterite and superior selectivity against magnetite or hematite over a wide pH range. The results of adsorption experiments and zeta potential deduced that HPA chemisorb on cassiterite surfaces. The results of FTIR inferred HPA chemisorb onto cassiterite surfaces through its P and O atoms with the P–H and O–H bonds broken. XPS analysis further demonstrated HPA react with Sn species by formation of Sn–O–P and Sn–P bond.

  16. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    Directory of Open Access Journals (Sweden)

    Motahareh Soltani

    2016-08-01

    Full Text Available Objectives: Aluminium phosphide (AlP is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3, a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01. Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01. A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.

  17. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  18. Structures of metal complexes with anions of di(hydroxymethyl)phosphinic and di(chloromethyl)phosphinic acids

    International Nuclear Information System (INIS)

    Sergienko, V.S.; Aleksandrov, G.G.

    2001-01-01

    The structural peculiarities of the different metals [Cu, Ni, rare earths (La, Nd, Er, Lu), Ag, Li, Na, Sr] with anions of di-substituted monophosphonic acids - di(hydroxymethyl) phosphonic acid (HOCH 2 ) 2 PO 2 - (L 1 ) and di(chloromethyl) phosphonic acid (ClCH 2 ) 2 PO 2 - (L 2 ), and the methods of coordinating ligands L 1 and L 2 with these metals were viewed. Coordination number of metal decreases from eight in the case of La, Nd to seven for Er, and further to six for Lu with decreasing size of rare earth element. M-O bond lengths decrease the same way. The LiL 2 · H 2 O structure was determined, Li atom shows tetrahedron coordination by three oxygen atoms of the three ligands L 2 and atom O(ω) of water molecule. The ligand L 1 are acting as a tetradentate chelate μ 3 -bridge function in the structure of the Sr(L 1 ) 2 compound. The interval of Sr-O distances comprises 2.521 - 2.683 A [ru

  19. Benzimidazolyl methyliminodiacetic acids: new bifunctional chelators of technetium for hepatobiliary scintigraphy

    International Nuclear Information System (INIS)

    Hunt, F.C.; Wilson, J.G.; Maddalena, D.J.

    1979-01-01

    Dimethyl- and chloro- substituted benzimidazolyl methyliminodiacetic acids have been synthesized and evaluated as new bifunctional chelators of /sup 99m/Tc. Stannous chelates of these compounds were prepared as freeze-dried kits and labeled with /sup 99m/Tc. The radiopharmaceuticals thus prepared were rapidly excreted by the hepatobiliary system of rats and rabbits with little urinary excretion. The chloro- compound had a higher biliary and lesser urinary excretion than the dimethyl- however both technetium complexes provided good scintigraphic images of the hepatobiliary system in animals. The compounds behaved similarly to the /sup 99m/Tc-lidocaine iminodiacetic acid [HIDA] complexes with respect to their biliary elimination

  20. Cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells with dichloromethyl phosphinic acid as a cross-linker

    DEFF Research Database (Denmark)

    Noye, Pernille; Li, Qingfeng; Pan, Chao

    2008-01-01

    Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP. The produ......Phosphoric acid doped polybenzimidazole (PBI) membranes have been covalently cross-linked with dichloromethyl phosphinic acid (DCMP). FT-IR measurements showed new bands originating from bonds between the hydrogen bearing nitrogen in the imidazole group of PBI and the CH2 group in DCMP.......e. within the temperature range of operation of PBI-based fuel cells....

  1. Iminodiacetic acid as bifunctional linker for dimerization of cyclic RGD peptides

    International Nuclear Information System (INIS)

    Xu, Dong; Zhao, Zuo-Quan; Chen, Shu-Ting; Yang, Yong; Fang, Wei; Liu, Shuang

    2017-01-01

    Introduction: In this study, I2P-RGD 2 was used as the example to illustrate a novel approach for dimerization of cyclic RGD peptides. The main objective of this study was to explore the impact of bifunctional linkers (glutamic acid vs. iminodiacetic acid) on tumor-targeting capability and excretion kinetics of the 99m Tc-labeled dimeric cyclic RGD peptides. Methods: HYNIC-I2P-RGD 2 was prepared by reacting I2P-RGD 2 with HYNIC-OSu in the presence of diisopropylethylamine, and was evaluated for its α v β 3 binding affinity against 125 I-echistatin bound to U87MG glioma cells. 99m Tc-I2P-RGD 2 was prepared with high specific activity (~185 GBq/μmol). The athymic nude mice bearing U87MG glioma xenografts were used to evaluate its biodistribution properties and image quality in comparison with those of 99m Tc-3P-RGD 2 . Results: The IC 50 value for HYNIC-I2P-RGD 2 was determined to be 39 ± 6 nM, which was very close to that (IC 50 = 33 ± 5 nM) of HYNIC-3P-RGD 2 . Replacing glutamic acid with iminodiacetic acid had little impact on α v β 3 binding affinity of cyclic RGD peptides. 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 shared similar tumor uptake values over the 2 h period, and its α v β 3 -specificity was demonstrated by a blocking experiment. The uptake of 99m Tc-I2P-RGD 2 was significantly lower than 99m Tc-3P-RGD 2 in the liver and kidneys. The U87MG glioma tumors were visualized by SPECT with excellent contrast using both 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 . Conclusion: Iminodiacetic acid is an excellent bifunctional linker for dimerization of cyclic RGD peptides. Bifunctional linkers have significant impact on the excretion kinetics of 99m Tc radiotracers. Because of its lower liver uptake and better tumor/liver ratios, 99m Tc-I2P-RGD 2 may have advantages over 99m Tc-3P-RGD 2 for diagnosis of tumors in chest region. -- Graphical abstract: This report presents novel approach for dimerization of cyclic RGD peptides using iminodiacetic acid as a

  2. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    Science.gov (United States)

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  3. Construction of Bifunctional Co/H-ZSM-5 Catalysts for the Hydrodeoxygenation of Stearic Acid to Diesel-range Alkanes.

    Science.gov (United States)

    Wu, Guangjun; Zhang, Nan; Dai, Weili; Guan, Naijia; Li, Landong

    2018-04-27

    Bifunctional Co/H-ZSM-5 zeolites were prepared by surface organometallic chemistry grafting route, namely by the stoichiometric reaction between cobaltocene and the Brønsted acid sites in zeolites, and applied to the model reaction of stearic acid catalytic hydrodeoxygenation. Cobalt species existed in the form of isolated Co2+ ions at exchange positions after grafting, transformed to CoO species on the surface of zeolite and stabilized inside zeolite channels upon calcination in air, and finally reduced to metallic cobalt species of homogeneous clusters of ca. 1.5 nm by hydrogen. During this process, the Brønsted acid sites of H-ZSM-5 zeolites could be preserved with acid strength slightly reduced. The as-prepared bifunctional catalyst exhibited a ~16 times higher activity in stearic acid hydrodeoxygenation (2.11 gSAgcat-1h-1) than the reference catalyst (0.13 gSAgcat-1h-1) prepared by solid-state ion exchange, and a high C18/C17 ratio of ~24 was achieved as well. The remarkable hydrodeoxygenation performance of bifunctional Co/H-ZSM-5 could be explained from the effective synergy between the uniformed metallic cobalt clusters and the Brønsted acid sites in H-ZSM-5 zeolite. The simplified reaction network and kinetics of stearic acid hydrodeoxygenation catalyzed by the as-prepared bifunctional Co/H-ZSM-5 zeolites were also investigated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Post-modified acid-base bifunctional MIL-101(Cr) for one-pot deacetalization-Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Manman [Tianjin University, School of Science (China); Yan, Xilong; Li, Yang; Chen, Ligong, E-mail: lgchen@tju.edu.cn [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2017-04-15

    A novel and convenient approach for the construction of the bifunctional MIL-101 material bearing sulfonic acid and amino groups was established via the post-synthetic modification. This material possesses high BET surface area (1446 m{sup 2}/g) and large pore volume (0.77 cm{sup 3}/g). Significantly, this material could serve as a bifunctional heterogeneous catalyst and was initially employed for one-pot deacetalization-Knoevenagel reaction, exhibiting excellent catalytic performance (yield 99.74%). More importantly, it can be easily recovered and reused at least three times. Finally, our proposed catalytic mechanism indicated that amino and the sulfonic acid groups played a synergistic effect on this one-pot deacetalization-Knoevenagel reaction.

  5. Highly Enantioselective Construction of Tertiary Thioethers and Alcohols via Phosphine-Catalyzed Asymmetric γ-Addition reactions of 5H-Thiazol-4-ones and 5H-Oxazol-4-ones: Scope and Mechanistic Understandings

    KAUST Repository

    Wang, Tianli

    2015-06-02

    Phosphine-catalyzed highly enantioselective γ-additions of 5H-thiazol-4-ones and 5H-oxazol-4-ones to allenoates have been developed for the first time. With the employment of amino-acid derived bifunctional phosphines, a wide range of substituted 5H-thiazol-4-one and 5H-oxazol-4-one derivatives bearing heteroarom (S or O)-containing tertiary chiral centers were constructed in high yields and excellent enantioselectivities. The reported method provides a facile access to enantioenriched tertiary thioether/alcohols. The mechanism of γ-addition reaction was investigated by performing DFT calculations, and the hydrogen bonding interactions between the Brønsted acid moiety of the phosphine catalysts and the “C=O” unit of donor molecules were shown to be crucial in asymmetric induction.

  6. Highly Enantioselective Construction of Tertiary Thioethers and Alcohols via Phosphine-Catalyzed Asymmetric γ-Addition reactions of 5H-Thiazol-4-ones and 5H-Oxazol-4-ones: Scope and Mechanistic Understandings

    KAUST Repository

    Wang, Tianli; Yu, Zhaoyuan; Hoon, Ding Long; Huang, Kuo-Wei; Lan, Yu; Lu, Yixin

    2015-01-01

    Phosphine-catalyzed highly enantioselective γ-additions of 5H-thiazol-4-ones and 5H-oxazol-4-ones to allenoates have been developed for the first time. With the employment of amino-acid derived bifunctional phosphines, a wide range of substituted 5H-thiazol-4-one and 5H-oxazol-4-one derivatives bearing heteroarom (S or O)-containing tertiary chiral centers were constructed in high yields and excellent enantioselectivities. The reported method provides a facile access to enantioenriched tertiary thioether/alcohols. The mechanism of γ-addition reaction was investigated by performing DFT calculations, and the hydrogen bonding interactions between the Brønsted acid moiety of the phosphine catalysts and the “C=O” unit of donor molecules were shown to be crucial in asymmetric induction.

  7. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Patrick D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Ellis, Lucas D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Griffin, Michael B. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Schwartz, Daniel K. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Medlin, J. Will [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States

    2018-03-01

    Cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al2O3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivity for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al2O3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.

  8. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions

    KAUST Repository

    Arayachukiat, Sunatda

    2017-07-14

    Readily available ascorbic acid was discovered as an environmentally benign hydrogen bond donor (HBD) for the synthe-sis of cyclic organic carbonates from CO2 and epoxides in the presence of nucleophilic co-catalysts. The ascorbic acid/TBAI (TBAI: tetrabutylammonium iodide) binary system could be applied for the cycloaddition of CO2 to various epoxides under ambient or mild conditions. DFT calculations and catalysis experiments revealed an intriguing bifunctional mechanism in the step of CO2 insertion involving different hydroxyl moieties (enediol, ethyldiol) of the ascorbic acid scaffold.

  9. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions

    KAUST Repository

    Arayachukiat, Sunatda; Kongtes, Chutima; Barthel, Alexander; Vummaleti, Sai V. C.; Poater, Albert; Wannakao, Sippakorn; Cavallo, Luigi; D'Elia, Valerio

    2017-01-01

    Readily available ascorbic acid was discovered as an environmentally benign hydrogen bond donor (HBD) for the synthe-sis of cyclic organic carbonates from CO2 and epoxides in the presence of nucleophilic co-catalysts. The ascorbic acid/TBAI (TBAI: tetrabutylammonium iodide) binary system could be applied for the cycloaddition of CO2 to various epoxides under ambient or mild conditions. DFT calculations and catalysis experiments revealed an intriguing bifunctional mechanism in the step of CO2 insertion involving different hydroxyl moieties (enediol, ethyldiol) of the ascorbic acid scaffold.

  10. Production of R-Mandelic Acid Using Nitrilase from Recombinant E. coli Cells Immobilized with Tris(Hydroxymethyl)Phosphine.

    Science.gov (United States)

    Zhang, Xin-Hong; Liu, Zhi-Qiang; Xue, Ya-Ping; Wang, Yuan-Shan; Yang, Bo; Zheng, Yu-Guo

    2018-03-01

    Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L -1  day -1 and the space-time productivity of 143.2 mmol L -1  h -1  g -1 . The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.

  11. Study of application properties of novel trisazo hetero bi-functional reactive dyes based on j-acid derivatives for cotton

    International Nuclear Information System (INIS)

    Mokhtari, Javad; Akbarzadeh, A; Phillips, D A S; Taylor, J A

    2009-01-01

    Three novel trisazo hetero bi-functional reactive dyes based on J-acid derivatives were prepared using the diazonium salt of [4-(4-sulphophenylazo-)-2,5-dimethylazobenzene-2-sulphonic acid] and a hetero bi-functional coupling component, derived from 1-hydroxy-6-aminonapthalene-3-sulphonic acid (J-acid), 1-hydroxy-6- methylaminonapthalene-3-sulphonic acid (methyl J-acid), and 1-hydroxy-6-aminonaphthalene-3,5-disulphonic acid (sulpho J-acid). On balance, the dye derived from sulpho J-acid displayed the most attractive set of technical properties, building up and fixing more efficiently than those derived from J-acid and methyl J-acid. In addition, the sulpho J-acid based dye offered better migration and, therefore, level dyeing and ease of wash off. (author)

  12. Nb-Based Zeolites: Efficient bi-Functional Catalysts for the One-Pot Synthesis of Succinic Acid from Glucose

    Directory of Open Access Journals (Sweden)

    Magdi El Fergani

    2017-12-01

    Full Text Available The one-pot production of succinic acid from glucose was investigated in pure hot water as solvent using Nb (0.02 and 0.05 moles%-Beta zeolites obtained by a post-synthesis methodology. Structurally, they are comprised of residual framework Al-acid sites, extra-framework isolated Nb (V and Nb2O5 pore-encapsulated clusters. The Nb-modified Beta-zeolites acted as bi-functional catalysts in which glucose is dehydrated to levulinic acid (LA which, further, suffers an oxidation process to succinic acid (SA. After the optimization of the reaction conditions, that is, at 180 °C, 18 bar O2, and 12 h reaction time, the oxidation of glucose occurred with a selectivity to succinic acid as high as 84% for a total conversion.

  13. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  14. Studies on thermo-acoustic parameters in binary liquid mixtures of phosphinic acid (Cyanex 272) with different diluents at temperature 303.15 K: an ultrasonic study

    International Nuclear Information System (INIS)

    Kamila, Susmita; Jena, Satyaban; Swain, Bipin Bihari

    2005-01-01

    Acoustical investigations for the binary mixtures of phosphinic acid (Cyanex 272), used as liquid-liquid extractant, have been made in various diluents such as benzene, toluene, and xylene from ultrasonic velocity and density measurements at temperature 303.15 K and atmospheric pressure. This study involves evaluation of different thermo-acoustic parameters along with the excess properties, which are interpreted in the light of molecular interaction between a polar extractant, Cyanex 272 with non-polar diluent, benzene and weakly polar diluents, toluene and xylene. The excess values are correlated using Redlich-Kister polynomial equation, and corresponding adjustable parameters are derived

  15. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  16. Synergistic extraction and separation of yttrium from heavy rare earths using mixture of sec-octylphenoxy acetic acid and bis(2,4,4-trimethylpentyl)phosphinic acid

    International Nuclear Information System (INIS)

    Sun Xiaobo; Zhao Junmei; Meng Shulan; Li Deqian

    2005-01-01

    Synergistic extraction and separation of yttrium (Y) from heavy rare earths (HRE) in chloride medium using mixture of sec-octylphenoxy acetic acid (CA-12, HA) and bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex272, HL) in n-heptane has been investigated. The synergistic enhancement coefficients, R max , were obtained for Ho 3+ (5.12), Y 3+ (5.34), Er 3+ (7.04), Tm 3+ (7.50), Yb 3+ (13.12) and Lu 3+ (17.58). The separation factors (SF) between Y 3+ and HRE were obtained, and it was found that Er 3+ would form the new complex as ErH 6 A 4 L 5 in the mixture system. A cation exchange mechanism was proposed. The equilibrium constant, formation constant and thermodynamic parameters such as ΔG = -18.48 kJ/mol, ΔH = -1.36 kJ/mol and ΔS = 0.058 kJ/mol were determined. The CA-12 and Cyanex272 mixture system showed higher extraction efficiency, larger separation factors as well as excellent stripping behaviors. The application potential of the mixture system to separate Y from HRE has been discussed

  17. Mechanisms of Phosphine Toxicity

    Directory of Open Access Journals (Sweden)

    Nisa S. Nath

    2011-01-01

    Full Text Available Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH3, the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N and arsenic (As, which also produce toxic hydrides, namely, NH3 and AsH3. The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.

  18. Polymer producing palladium complexes of unidentate phosphines in the methoxycarbonylation of ethene.

    Science.gov (United States)

    Smith, Graeme; Vautravers, Nicolas R; Cole-Hamilton, David J

    2009-02-07

    A wide range of unidentate phosphines have been studied as ligands for the palladium-catalysed methoxycarbonylation of ethene in the presence of methanesulfonic acid using methanol as the solvent. At high phosphine to Pd ratios, methyl propanoate is formed at a low rate. However, at P-Pd ratios of 4 : 1, some unidentate phosphines promote the formation of polyketone with moderate rates. Analysis of all the phosphines shows that good electron donating power, combined with small size, favours polyketone formation.

  19. Selective separation of uranium from nuclear waste solution by bis (2,4,4-trimethylpentyl phosphinic) acid in ionic liquid and molecular diluents: a comparative study

    International Nuclear Information System (INIS)

    Singh, Manpreet; Sengupta, Arijit; Murali, M.S.; Adya, V.C.; Kadam, R.M.

    2016-01-01

    Room temperature ionic liquid has been world-wide considered as the potential 'green' alternatives to the molecular diluents. A comparative study was carried out for studying selective separation of uranium from radioactive waste solution using Bis(2,4,4-trimethylpentyl phosphinic) acid in molecular diluent (xylene) and ionic liquid (C 8 mimNTf 2 ). For ionic liquid based system, the extraction kinetics was found to be slower compared to the molecular diluents. This was attributed to the higher viscosity of ionic liquid. In ionic liquid the extraction occurs with the predominance of 'ion exchange' mechanism through (UO 2 (NO 3 ). 2L) + species, while for xylene based system 'solvation' mechanism predominates at higher feed acidity. The extraction process in ionic liquid was found to be thermodynamically more favoured than in xylene. The nature of the extracted species was found to be different in ionic liquid and xylene as obtained from difference in luminescence emission profiles and lifetime of the extracted complex. Ionic liquid based system was found to be radiolytically more stable than the molecular diluents based solvent system. Na 2 CO 3 solution was found to back extract the uranyl ion almost quantitatively (99.9 %) from the loaded organic phase but overall stripping from ionic liquid phase is comparatively poorer than that of xylene phase. The processing of Simulated High Level Waste (SHLW) of Pressurized Heavy Water Reactor (PHWR) or Research Reactor (RR) origin revealed that bis(2,4,4-trimethylpentyl phosphinic) acid can effectively be used for the preferential extraction of U with better selectivity for ionic liquid phase. But the ion exchange mechanism is one of the disadvantages for its plant scale application. (author)

  20. Bifunctional viscous nanovesicles co-loaded with resveratrol and gallic acid for skin protection against microbial and oxidative injuries.

    Science.gov (United States)

    Vitonyte, Justina; Manca, Maria Letizia; Caddeo, Carla; Valenti, Donatella; Peris, Josè Esteban; Usach, Iris; Nacher, Amparo; Matos, Maria; Gutiérrez, Gemma; Orrù, Germano; Fernàndez-Busquets, Xavier; Fadda, Anna Maria; Manconi, Maria

    2017-05-01

    Resveratrol and gallic acid were co-loaded in phospholipid vesicles aiming at protecting the skin from external injuries, such as oxidative stress and microbial infections. Liposomes were prepared using biocompatible phospholipids dispersed in water. To improve vesicle stability and applicability, the phospholipids and the phenols were dispersed in water/propylene glycol or water/glycerol, thus obtaining PEVs and glycerosomes, respectively. The vesicles were characterized by size, morphology, physical stability, and their therapeutic efficacy was investigated in vitro. The vesicles were spherical, unilamellar and small in size: liposomes and glycerosomes were around 70nm in diameter, while PEVs were larger (∼170nm). The presence of propylene glycol or glycerol increased the viscosity of the vesicle systems, positively affecting their stability. The ability of the vesicles to promote the accumulation of the phenols (especially gallic acid) in the skin was demonstrated, as well as their low toxicity and great ability to protect keratinocytes and fibroblasts from oxidative damage. Additionally, an improvement of the antimicrobial activity of the phenols was shown against different skin pathogens. The co-loading of resveratrol and gallic acid in modified phospholipid vesicles represents an innovative, bifunctional tool for preventing and treating skin affections. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Novel Bifunctional Quinolonyl Diketo Acid Derivatives as HIV-1 Integrase Inhibitors: Design, Synthesis, Biological Activities and Mechanism of Action

    Science.gov (United States)

    Di Santo, Roberto; Costi, Roberta; Roux, Alessandra; Artico, Marino; Lavecchia, Antonio; Marinelli, Luciana; Novellino, Ettore; Palmisano, Lucia; Andreotti, Mauro; Amici, Roberta; Galluzzo, Clementina Maria; Nencioni, Lucia; Palamara, Anna Teresa; Pommier, Yves; Marchand, Christophe

    2008-01-01

    The virally encoded integrase protein is an essential enzyme in the life cycle of the HIV-1 virus and represents an attractive and validated target in the development of therapeutics against HIV infection. Drugs that selectively inhibit this enzyme, when used in combination with inhibitors of reverse transcriptase and protease, are believed to be highly effective in suppressing the viral replication. Among the HIV-1 integrase inhibitors, the β-diketo acids (DKAs) represent a major lead for anti-HIV-1drug development. In this study, novel bifunctional quinolonyl diketo acid derivatives were designed, synthesized and tested for their inhibitory ability against HIV-1 integrase. The compounds are potent inhibitors of integrase activity. Particularly, derivative 8 is a potent IN inhibitor for both steps of the reaction (3′-processing and strand transfer) and exhibits both high antiviral activity against HIV-1 infected cells and low cytotoxicity. Molecular modeling studies provide a plausible mechanism of action, which is consistent with ligand SARs and enzyme photo-crosslinking experiments. PMID:16539381

  2. A structural insight into the P1S1 binding mode of diaminoethylphosphonic and phosphinic acids, selective inhibitors of alanine aminopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata; Nocek, Bogusław; Joachimiak, Andrzej; Mucha, Artur

    2016-07-01

    N0 -substituted 1,2-diaminoethylphosphonic acids and 1,2-diaminoethylphosphinic dipeptides were explored to unveil the structural context of the unexpected selectivity of these inhibitors of M1 alanine aminopeptidases (APNs) versus M17 leucine aminopeptidase (LAP). The diaminophosphonic acids were obtained via aziridines in an improved synthetic procedure that was further expanded for the phosphinic pseudodipeptide system. The inhibitory activity, measured for three M1 and one M17 metalloaminopeptidases of different sources (bacterial, human and porcine), revealed several potent compounds (e.g., Ki ¼ 65 nM of 1u for HsAPN). Two structures of an M1 representative (APN from Neisseria meningitidis) in complex with N-benzyl-1,2-diaminoethylphosphonic acid and N-cyclohexyl-1,2- diaminoethylphosphonic acid were determined by the X-ray crystallography. The analysis of these structures and the models of the phosphonic acid complexes of the human ortholog provided an insight into the role of the additional amino group and the hydrophobic substituents of the ligands within the S1 active site region.

  3. A new approach in the preparation of dendrimer-based bifunctional diethylenetriaminepentaacetic acid MR contrast agent derivatives.

    Science.gov (United States)

    Nwe, Kido; Xu, Heng; Regino, Celeste Aida S; Bernardo, Marcelino; Ileva, Lilia; Riffle, Lisa; Wong, Karen J; Brechbiel, Martin W

    2009-07-01

    In this paper, we report a new method to prepare and characterize a contrast agent based on a fourth-generation (G4) polyamidoamine (PAMAM) dendrimer conjugated to the gadolinium complex of the bifunctional diethylenetriamine pentaacetic acid derivative (1B4M-DTPA). The method involves preforming the metal-ligand chelate in alcohol prior to conjugation to the dendrimer. The dendrimer-based agent was purified by a Sephadex G-25 column and characterized by elemental analysis. The analysis and SE-HPLC data gave a chelate to dendrimer ratio of 30:1 suggesting conjugation at approximately every other amine terminal on the dendrimer. Molar relaxivity of the agent measured at pH 7.4 displayed a higher value than that of the analogous G4 dendrimer based agent prepared by the postmetal incorporation method (r(1) = 26.9 vs 13.9 mM(-1) s(-1) at 3 T and 22 degrees C). This is hypothesized to be due to the higher hydrophobicity of this conjugate and the lack of available charged carboxylate groups from noncomplexed free ligands that might coordinate to the metal and thus also reduce water exchange sites. Additionally, the distribution populations of compounds that result from the postmetal incorporation route are eliminated from the current product simplifying characterization as quality control issues pertaining to the production of such agents for clinical use as MR contrast agents. In vivo imaging in mice showed a reasonably fast clearance (t(1/2) = 24 min) suggesting a viable agent for use in clinical application.

  4. Phosphine from rocks: mechanically driven phosphate reduction?

    Science.gov (United States)

    Glindemann, Dietmar; Edwards, Marc; Morgenstern, Peter

    2005-11-01

    Natural rock and mineral samples released trace amounts of phosphine during dissolution in mineral acid. An order of magnitude more phosphine (average 1982 ng PH3 kg rock and maximum 6673 ng PH3/kg rock) is released from pulverized rock samples (basalt, gneiss, granite, clay, quartzitic pebbles, or marble). Phosphine was correlated to hardness and mechanical pulverization energy of the rocks. The yield of PH3 ranged from 0 to 0.01% of the total P content of the dissolved rock. Strong circumstantial evidence was gathered for reduction of phosphate in the rock via mechanochemical or "tribochemical" weathering at quartz and calcite/marble inclusions. Artificial reproduction of this mechanism by rubbing quartz rods coated with apatite-phosphate to the point of visible triboluminescence, led to detection of more than 70 000 ng/kg PH3 in the apatite. This reaction pathway may be considered a mechano-chemical analogue of phosphate reduction from lightning or electrical discharges and may contribute to phosphine production via tectonic forces and processing of rocks.

  5. Evolution of Conifer Diterpene Synthases: Diterpene Resin Acid Biosynthesis in Lodgepole Pine and Jack Pine Involves Monofunctional and Bifunctional Diterpene Synthases1[W][OA

    Science.gov (United States)

    Hall, Dawn E.; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L.; Yuen, Macaire; Bohlmann, Jörg

    2013-01-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs. PMID:23370714

  6. Evolution of conifer diterpene synthases: diterpene resin acid biosynthesis in lodgepole pine and jack pine involves monofunctional and bifunctional diterpene synthases.

    Science.gov (United States)

    Hall, Dawn E; Zerbe, Philipp; Jancsik, Sharon; Quesada, Alfonso Lara; Dullat, Harpreet; Madilao, Lina L; Yuen, Macaire; Bohlmann, Jörg

    2013-02-01

    Diterpene resin acids (DRAs) are major components of pine (Pinus spp.) oleoresin. They play critical roles in conifer defense against insects and pathogens and as a renewable resource for industrial bioproducts. The core structures of DRAs are formed in secondary (i.e. specialized) metabolism via cycloisomerization of geranylgeranyl diphosphate (GGPP) by diterpene synthases (diTPSs). Previously described gymnosperm diTPSs of DRA biosynthesis are bifunctional enzymes that catalyze the initial bicyclization of GGPP followed by rearrangement of a (+)-copalyl diphosphate intermediate at two discrete class II and class I active sites. In contrast, similar diterpenes of gibberellin primary (i.e. general) metabolism are produced by the consecutive activity of two monofunctional class II and class I diTPSs. Using high-throughput transcriptome sequencing, we discovered 11 diTPS from jack pine (Pinus banksiana) and lodgepole pine (Pinus contorta). Three of these were orthologous to known conifer bifunctional levopimaradiene/abietadiene synthases. Surprisingly, two sets of orthologous PbdiTPSs and PcdiTPSs were monofunctional class I enzymes that lacked functional class II active sites and converted (+)-copalyl diphosphate, but not GGPP, into isopimaradiene and pimaradiene as major products. Diterpene profiles and transcriptome sequences of lodgepole pine and jack pine are consistent with roles for these diTPSs in DRA biosynthesis. The monofunctional class I diTPSs of DRA biosynthesis form a new clade within the gymnosperm-specific TPS-d3 subfamily that evolved from bifunctional diTPS rather than monofunctional enzymes (TPS-c and TPS-e) of gibberellin metabolism. Homology modeling suggested alterations in the class I active site that may have contributed to their functional specialization relative to other conifer diTPSs.

  7. Biological Cleavage of the C–P Bond in Perfluoroalkyl Phosphinic Acids in Male Sprague-Dawley Rats and the Formation of Persistent and Reactive Metabolites

    Science.gov (United States)

    Yeung, Leo W.Y.; Mabury, Scott A.

    2017-01-01

    Background: Perfluoroalkyl phosphinic acids (PFPiAs) have been detected in humans, wildlife, and various environmental matrices. These compounds have been used with perfluoroalkyl phosphonic acids (PFPAs) as surfactants in consumer products and as nonfoaming additives in pesticide formulations. Unlike the structurally related perfluoroalkyl sulfonic and carboxylic acids, little is known about the biological fate of PFPiAs. Objectives: We determined the biotransformation products of PFPiAs and some pharmacokinetic parameters in a rat model. Methods: Male Sprague-Dawley rats received an oral gavage dose of either C6/C8PFPiA, C8/C8PFPiA, or C8PFPA. Blood was sampled over time, and livers were harvested upon sacrifice. Analytes were quantified using ultra-high-performance liquid chromatography–tandem mass spectrometry or gas chromatography–mass spectrometry. Results: PFPiAs were metabolized to the corresponding PFPAs and 1H-perfluoroalkanes (1H-PFAs), with 70% and 75% biotransformation 2 wk after a single bolus dose for C6/C8PFPiA and C8/C8PFPiA, respectively. This is the first reported cleavage of a C-P bond in mammals, and the first attempt, with a single-dose exposure, to characterize the degradation of any perfluoroalkyl acid. Elimination half-lives were 1.9±0.5 and 2.8±0.8 days for C6/C8PFPiA and C8/C8PFPiA, respectively, and 0.95±0.17 days for C8PFPA. Although elimination half-lives were not determined for 1H-PFAs, concentrations were higher than the corresponding PFPAs 48 h after rats were dosed with PFPiAs, suggestive of slower elimination. Conclusions: PFPiAs were metabolized in Sprague-Dawley rats to form persistent PFPAs as well as 1H-PFAs, which contain a labile hydrogen that may undergo further metabolism. These results in rats produced preliminary findings of the pharmacokinetics and metabolism of PFPiAs, which should be further investigated in humans. If there is a parallel between the disposition of these chemicals in humans and rats, then

  8. CONFIRMATION OF CIRCUMSTELLAR PHOSPHINE

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, M.; Cernicharo, J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco (Spain); Decin, L. [Sterrenkundig Instituut Anton Pannekoek, University of Amsterdam, Science Park 904, NL-1098 Amsterdam (Netherlands); Encrenaz, P. [LERMA, Observatoire de Paris, 61 Av. de l' Observatoire, F-75014 Paris (France); Teyssier, D. [European Space Astronomy Centre, Urb. Villafranca del Castillo, P.O. Box 50727, E-28080 Madrid (Spain)

    2014-08-01

    Phosphine (PH{sub 3}) was tentatively identified a few years ago in the carbon star envelopes IRC +10216 and CRL 2688 from observations of an emission line at 266.9 GHz attributable to the J = 1-0 rotational transition. We report the detection of the J = 2-1 rotational transition of PH{sub 3} in IRC +10216 using the HIFI instrument on board Herschel, which definitively confirms the identification of PH{sub 3}. Radiative transfer calculations indicate that infrared pumping in excited vibrational states plays an important role in the excitation of PH{sub 3} in the envelope of IRC +10216, and that the observed lines are consistent with phosphine being formed anywhere between the star and 100 R {sub *} from the star, with an abundance of 10{sup –8} relative to H{sub 2}. The detection of PH{sub 3} challenges chemical models, none of which offer a satisfactory formation scenario. Although PH{sub 3} holds just 2% of the total available phosphorus in IRC +10216, it is, together with HCP, one of the major gas phase carriers of phosphorus in the inner circumstellar layers, suggesting that it could also be an important phosphorus species in other astronomical environments. This is the first unambiguous detection of PH{sub 3} outside the solar system, and is a further step toward a better understanding of the chemistry of phosphorus in space.

  9. Organotin complexes with phosphines

    International Nuclear Information System (INIS)

    Passos, B. de F.T.; Jesus Filho, M.F. de; Filgueiras, C.A.L.; Abras, A.

    1988-01-01

    A series of organotin complexes was prepared involving phosphines bonded to the organotin moiety. The series include derivatives of SnCl x Ph 4-x (where x varied from zero to four with the phosphines Ph 3 P, (Ph 2 P)CH 2 , (Ph 2 P) 2 (CH 2 ) 2 , cis-(Ph 2 P)CH 2 , and CH 3 C(CH 2 PPh 2 ) 3 . A host of new complexes was obtained, showing different stoichiometries, bonding modes, and coordination numbers around the tin atom. These complexes were characterized by several different chemical and physical methods. The 119 Sn Moessbauer parameters varied differently. Whereas isomer shift values did not great variation for each group of complexs with the same organotin parent (SnCl x Ph 4-x ), reflecting a small change in s charge distribution on the Sn atom upon complexation, quadrupole splitting results varied widely, however, when the parent organotin compound was wholly symmetric (SnCl 4 and SnPPh 4 ), the complexes also tended to show quadrupole splitting values approaching zero. (author)

  10. Synthesis and Characterization of Bifunctional Organic-Glasses Based on Diphenylhydrazone and Barbituric Acid Derivative for Photorefractive Application

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Hong [KIST, Seoul (Korea, Republic of); Lee, Sang Ho; Choi, Chil Sung; Kim, Nak Joong [Hanyang University, Seoul (Korea, Republic of); Choi, Dong Hoon [Kyunghee University, Youngin (Korea, Republic of)

    2003-12-15

    A series of amorphous molecules that possess both photoconductive and electro-optic properties was synthesized in order to investigate photorefractive properties of bifunctional organic-glasses. Diethylaminobenzaldehyde- diphenylhydrazone was covalently attached to 5-(4-diethylamino-benzylidene)-1,3-dimethylpyrimidine- 2,4,6-trione through a flexible alkyl chain (3, 4, 5, 6 and 10 carbons) containing two ether linkages. The longer linkage not only lowered the glass transition temperature (Tg) of the molecules, but also allowed faster orientation of the chromophore. To examine the photorefractive properties, a 50 μm-thick film was prepared from the mixture of a bifunctional molecule, butyl benzyl phthalate, and C{sup 60}. The photoconductivity of this composite was as high as 8.01 x 10{sup -12} S/cm at 60 V/μm, and the maximum diffraction efficiency (ηmax) of 50 μm-thick film was about 5% at 80 V/μm.

  11. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box-Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA.

    Science.gov (United States)

    Liu, Wei; Yin, Ping; Liu, Xiguang; Qu, Rongjun

    2014-12-01

    Biodiesel production has become an intense research area because of rapidly depleting energy reserves and increasing petroleum prices together with environmental concerns. This paper focused on the optimization of the catalytic performance in the esterification reaction of oleic acid for biodiesel production over the bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate ATMP-FA. The reaction parameters including catalyst amount, ethanol to oleic acid molar ratio and reaction temperature have been optimized by response surface methodology (RSM) using the Box-Behnken model. It was found that the reaction temperature was the most significant factor, and the best conversion ratio of oleic acid could reach 93.17% under the reaction conditions with 9.53% of catalyst amount and 8.62:1 of ethanol to oleic acid molar ratio at 91.0 °C. The research results show that two catalytic species could work cooperatively to promote the esterification reaction, and the bifunctional ATMP-FA is a potential catalyst for biodiesel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly

    International Nuclear Information System (INIS)

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-01-01

    Graphical abstract: -- Highlights: •A new highly sensitive bifunctional electrochemical sensor developed. •As-prepared sensor fabricated by alternate assembly of HA and exfoliated LDH nanosheets. •Such a newly designed sensor combining the individual properties of HA and LDH nanosheets. •Simultaneous determination of pentachlorophenol and copper ions achieved. •Practical applications demonstrated in water samples. -- Abstract: A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu 2+ ) has been developed, where organic–inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg–Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV–vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA) n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu 2+ , much below the guideline value (2.0 mg L −1

  13. Biomolecule conjugation strategy using novel water-soluble phosphine-based chelating agents

    Science.gov (United States)

    Katti, Kattesh V.; Gali, Hariprasad; Volkert, Wynn A.

    2004-08-24

    This invention describes a novel strategy to produce phosphine-functionalized biomolecules (e.g. peptides or proteins) for potential use in the design and development of site-specific radiopharmaceuticals for diagnosis or therapy of specific cancers. Hydrophilic alkyl phosphines, in general, tend to be oxidatively unstable. Therefore, incorporation of such phosphine functionalities on peptide (and other biomolecule) backbones, without oxidizing the P.sup.III centers, is difficult. In this context this discovery reports on a new technology by which phosphines, in the form of bifunctional chelating agents, can be directly incorporated on biomolecular backbones using manual synthetic or solid phase peptide synthesis methodologies. The superior ligating abilities of phosphine ligands, with various diagnostically (e.g. TC-99m) or therapeutically (e.g. Re186/188, Rh-105, Au-199) useful radiometals, coupled with the findings that the resulting complexes demonstrate high in vivo stability makes this approach useful in the development of radiolabeled biomolecules for applications in the design of tumor-specific radiopharmaceuticals.

  14. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    International Nuclear Information System (INIS)

    Xu, Ling; Wang, Chunhua; Guan, Jingqi

    2014-01-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH 2 containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH 3 -TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH 2 with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH 2 within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH 2 shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction

  15. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling [College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028000 (China); Wang, Chunhua [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China)

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.

  16. Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid for radiolabeling proteins

    International Nuclear Information System (INIS)

    Chappell, L.L.; Ma, D.; Milenic, D.E.; Garmestani, K.; Venditto, V.; Beitzel, M.P.; Brechbiel, M.W.

    2003-01-01

    Detailed synthesis of the bifunctional chelating agents 2-methyl-6-(p-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10 -tetraacetic acid (1B4M-DOTA) and 2-(p-isothiocyanatobenzyl)-5, 6-cyclohexano-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (CHX-DOTA) are reported. These chelating agents were compared to 2-(p-isothiocyanatobenzyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (C-DOTA) and 1, 4, 7, 10-Tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N', N'', N'''-tris(acetic acid) cyclododecane (PA-DOTA) as their 177 Lu radiolabeled conjugates with Herceptin TM . In vitro stability of the immunoconjugates radiolabeled with 177 Lu was assessed by serum stability studies. The in vivo stability of the radiolabeled immunoconjugates and their targeting characteristics were determined by biodistribution studies in LS-174T xenograft tumor-bearing mice. Relative radiolabeling rates and efficiencies were determined for all four immunoconjugates. Insertion of the 1B4M moiety into the DOTA backbone increases radiometal chelation rate and provides complex stability comparable to C-DOTA and PA-DOTA while the CHX-DOTA appears to not form as stable a 177 Lu complex while exhibiting a substantial increase in formation rate. The 1B4M-DOTAmay have potential for radioimmunotherapy applications. Published by Elsevier Inc. All rights reserved

  17. Novel phosphine-peptide hybrids as selective catalysts

    DEFF Research Database (Denmark)

    Nygaard, David

    (His(Trt), Gln, Gln(Trt), Cys(tBu), Thr(OtBu), azido- Dab, Asp(OtBu), Arg(Pmc))) yielding a range of novel modified peptides. Peptides containing one secondary amine were phosphinylated and captured as either phosphine-boranes or oxides. Both borane and oxide protection of phosphine-peptide hybrids...... was discovered and the compounds were structurally elucidated via NMR and mass spectroscopy. Two of these compounds were incorporated into peptides. An existing method of obtaining peptides containing secondary amines in the peptide backbone have been expanded for incorporation of functional amino acids as well...... palladium chloride dimer did not yield an observable phosphine-palladium complex. A peptide containing two secondary amine sites was synthesized, phosphinylated and complexed to respectively palladium and copper. The palladium complex was utilized successfully as a palladium catalyst in a model Sonogashira...

  18. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.

    Science.gov (United States)

    Bohre, Ashish; Saha, Basudeb; Abu-Omar, Mahdi M

    2015-12-07

    Design and synthesis of effective heterogeneous catalysts for the conversion of biomass intermediates into long chain hydrocarbon precursors and their subsequent deoxygenation to hydrocarbons is a viable strategy for upgrading lignocellulose into distillate range drop-in biofuels. Herein, we report a two-step process for upgrading 5-hydroxymethylfurfural (HMF) to C9 and C11 fuels with high yield and selectivity. The first step involves aldol condensation of HMF and acetone with a water tolerant solid base catalyst, zirconium carbonate (Zr(CO3 )x ), which gave 92 % C9 -aldol product with high selectivity at nearly 100 % HMF conversion. The as-synthesised Zr(CO3 )x was analysed by several analytical methods for elucidating its structural properties. Recyclability studies of Zr(CO3 )x revealed a negligible loss of its activity after five consecutive cycles over 120 h of operation. Isolated aldol product from the first step was hydrodeoxygenated with a bifunctional Pd/Zeolite-β catalyst in ethanol, which showed quantitative conversion of the aldol product to n-nonane and 1-ethoxynonane with 40 and 56 % selectivity, respectively. 1-Ethoxynonane, a low oxygenate diesel range fuel, which we report for the first time in this paper, is believed to form through etherification of the hydroxymethyl group of the aldol product with ethanol followed by opening of the furan ring and hydrodeoxygenation of the ether intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Bifunctional redox flow battery

    International Nuclear Information System (INIS)

    Wen, Y.H.; Cheng, J.; Xun, Y.; Ma, P.H.; Yang, Y.S.

    2008-01-01

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O 2 ), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm -2 . Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes

  20. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Souvik [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Nguyen, Thuy-Ai D. [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Gan, Lu [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA; Jones, Anne K. [Department of Chemistry and Biochemistry; Arizona State University; Tempe, USA

    2015-01-01

    Peptide based models for [FeFe]-hydrogenase were synthesized utilizing unnatural phosphine-amino acids and their electrocatalytic properties were investigated in mixed aqueous-organic solvents.

  1. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    Science.gov (United States)

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  2. A Novel Bifunctional Amino Acid Racemase With Multiple Substrate Specificity, MalY From Lactobacillus sakei LT-13: Genome-Based Identification and Enzymological Characterization

    Directory of Open Access Journals (Sweden)

    Shiro Kato

    2018-03-01

    addition, Tyr123 was a catalytic residue in the amino acid racemase reaction but strongly affected β-lyase activity. These results showed that Ls-MalY is a novel bifunctional amino acid racemase with multiple substrate specificity; both the amino acid racemase and β-lyase reactions of Ls-MalY were catalyzed at the same active site.

  3. Unprecedented selective aminolysis: Aminopropyl phosphine as a building block for a new family of air stable mono-, bis-, and tris-primary phosphines

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, K.R.; Pillarsetty, N.; Gali, H.; Katti, K.V.

    2000-02-23

    A serious impediment to using primary and secondary phosphines as general-purpose reagents to develop new chemistry is associated with their unpleasant pyrophoric nature and extreme hydrolytic, thermal, and oxidative instabilities. In particular, primary phosphines with ``user friendly'' properties (e.g., good oxidative/thermal stability, low volatility) would be extremely important not only from the synthetic point of view but also for potential application (e.g., in dendrimers formation). As part of ongoing research on the fundamental main group and organic chemistry of functionalized phosphorus compounds, the authors report, herein, unprecedented selectivity in the reaction of 3-aminopropyl primary phosphine 3, with the methyl ester in the presence of free acid, amide, and thiol to produce air stable amide, carboxylate, and thiol functionalized primary phosphines.

  4. Selective extraction of plutonium from nitric acid medium by bifunctional polyethersulfone beads for quantification with thermal ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Paul, Sumana; Aggarwal, S.K.; Pandey, A.K.

    2015-01-01

    Polyethersulfone (PES) magnetic beads were prepared by phase inversion technique. The beads were grafted with two monomers, viz. 2-hydroxyethylmethacrylate phosphoric acid (HEMP) and (3-acrylamidopropyl)trimethyl ammonium chloride (AMAC), by photo-induced free radical polymerization. Effect of different HNO 3 concentrations on the sorption profiles of Am(III) and Pu(IV) was studied using the grafted PES beads. The beads were found to extract plutonium quantitatively from high nitric acid medium (3-8 M). The effect of presence of competing actinide, e.g. U(VI), on the sorption of Pu(IV) was also studied. (author)

  5. Coordination chemistry with phosphine and phosphine oxide-substituted hydroxyferrocenes.

    Science.gov (United States)

    Atkinson, Robert C J; Gibson, Vernon C; Long, Nicholas J; White, Andrew J P

    2010-08-28

    New unsymmetrical hydroxyferrocenes were synthesised from dibromoferrocene. The oxygen heteroatom was introduced via lithiation and quenching with bis-trimethylsilylperoxide followed by hydrolysis to unmask the hydroxyl functionality. The coordination chemistry of 1'-(diphenylphosphino)-1-hydroxyferrocene 2 was explored with palladium and rhodium precursors. A dinuclear palladium methyl complex with bridging ferrocenyloxo groups was obtained from the reaction between 2 and (cyclooctadiene)methylchloropalladium(II). With tetracarbonyldichlorodirhodium(I), two complexes were isolated. The major product was a bis ligand cis phosphine ligated complex with one ligand bound in a chelating mode and one with a pendant hydroxyl group. A minor product was crystallographically characterised as a dinuclear ferrocenyloxo-bridged rhodium carbonyl complex. The coordination chemistry of 2 and the corresponding phosphine oxide 3 was examined with group 4 metals and the resulting complexes examined as ethylene polymerisation catalysts. The ligands were found to bind in either a chelating fashion or with pendant phosphine donors. In all cases, low to moderately active ethylene polymerisation catalysts were found. The catalysts were very unstable and catalyst residues were observed in the isolated polymer indicating a short catalyst lifetime.

  6. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    Science.gov (United States)

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  7. Nucleoside-O-Methyl-(H)-Phosphinates: Novel Monomers for the Synthesis of Methylphosphonate Oligonucleotides Using H-Phosphonate Chemistry.

    Science.gov (United States)

    Kostov, Ondřej; Páv, Ondřej; Rosenberg, Ivan

    2017-09-18

    This unit comprises the straightforward synthesis of protected 2'-deoxyribonucleoside-O-methyl-(H)-phosphinates in both 3'- and 5'-series. These compounds represent a new class of monomers compatible with the solid-phase synthesis of oligonucleotides using H-phosphonate chemistry and are suitable for the preparation of both 3'- and 5'-O-methylphosphonate oligonucleotides. The synthesis of 4-toluenesulfonyloxymethyl-(H)-phosphinic acid as a new reagent for the preparation of O-methyl-(H)-phosphinic acid derivatives is described. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  8. Fat & fabulous: bifunctional lipids in the spotlight.

    Science.gov (United States)

    Haberkant, Per; Holthuis, Joost C M

    2014-08-01

    Understanding biological processes at the mechanistic level requires a systematic charting of the physical and functional links between all cellular components. While protein-protein and protein-nucleic acid networks have been subject to many global surveys, other critical cellular components such as membrane lipids have rarely been studied in large-scale interaction screens. Here, we review the development of photoactivatable and clickable lipid analogues-so-called bifunctional lipids-as novel chemical tools that enable a global profiling of lipid-protein interactions in biological membranes. Recent studies indicate that bifunctional lipids hold great promise in systematic efforts to dissect the elaborate crosstalk between proteins and lipids in live cells and organisms. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Comparative effects of gamma irradiation and phosphine fumigation on the quality of white ginseng

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J.-H.Joong-Ho; Byun, M.-W.Myung-Woo; Kim, K.-S.Kang-Soo; Kang, I.-J.Il-Jun

    2000-03-01

    The hygienic, physicochemical, and organoleptic qualities of white ginseng were monitored during 6 months under accelerated conditions (40 deg. C, 90% r.h.) by observing its microbial populations, disinfestation, and some quality attributes following either gamma irradiation at 2.5-10 kGy or commercial phosphine (PH{sub 3}) fumigation. In a comparative study, both treatments were found to be effective for disinfecting the stored samples. Phosphine showed no appreciable decontaminating effects on microorganisms contaminated including coliforms, while 5 kGy irradiation was sufficient to control all microorganisms related to the quality of the packed samples. Irradiation at 5 kGy caused negligible changes in physicochemical attributes of the samples, such as ginsenosides, amino acids, fatty acids, and organoleptic properties, whereas phosphine fumigation was found detrimental to sensory flavor (P<0.01). Quality deterioration occurred in the commercially-packed samples was in the following order: the control, 10 kGy-, phosphine-, and 2.5-5 kGy-treated samples. Accordingly, irradiation at <5 kGy was found to be an effective alternative to phosphine fumigation for white ginseng. (author)

  10. Consecutive dynamic resolutions of phosphine oxides

    NARCIS (Netherlands)

    Kortmann, Felix A.; Chang, Mu-Chieh; Otten, Edwin; Couzijn, Erik P. A.; Lutz, Martin; Minnaard, Adriaan J.

    2013-01-01

    A crystallization-induced asymmetric transformation (CIAT) involving a radical-mediated racemization provides access to enantiopure secondary phosphine oxides. A consecutive CIAT is used to prepare enantio-and diastereo-pure tert-butyl(hydroxyalkyl)phenylphosphine oxides.

  11. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal

    OpenAIRE

    Arora, Jasbir S.; Oe, Tomoyuki; Blair, Ian A.

    2011-01-01

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2(E)-nonenal and 4-oxo-2(E)-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α,β-unsaturated aldehyde that can react in multiple ways and w...

  12. Astaxanthin diferulate as a bifunctional antioxidant

    DEFF Research Database (Denmark)

    Papa, T.B.R.; Pinho, V.D.; Nascimento, E.P. do

    2015-01-01

    Abstract Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(- 1)s(- 1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(- 1)s(- 1). The ferulate moiety in the astaxanthin diester is a better radical....... The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability....

  13. Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline

    Directory of Open Access Journals (Sweden)

    Miguel Rubio

    2010-10-01

    Full Text Available The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, has improved the enantioselectivity of the reaction up to 73% ee. The influence of additives in this reaction has also been investigated. Contrary to the beneficial influence observed in related catalytic systems, iodine has a deleterious effect in the present case. Otherwise, aryl phosphoric acids produce a positive impact on catalyst activity without a decrease on enantioselectivity.

  14. Synergistic Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the Selective Hydrodeoxygenation of Phenols.

    Science.gov (United States)

    Luska, Kylie L; Migowski, Pedro; El Sayed, Sami; Leitner, Walter

    2015-12-21

    Ruthenium nanoparticles immobilized on acid-functionalized supported ionic liquid phases (Ru NPs@SILPs) act as efficient bifunctional catalysts in the hydrodeoxygenation of phenolic substrates under batch and continuous flow conditions. A synergistic interaction between the metal sites and acid groups within the bifunctional catalyst leads to enhanced catalytic activities for the overall transformation as compared to the individual steps catalyzed by the separate catalytic functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 'Click' dendritic phosphines: design, synthesis, application in Suzuki coupling, and recycling by nanofiltration

    NARCIS (Netherlands)

    Janssen, M.C.C.; Vogt, D.; Müller, C.

    2009-01-01

    A new synthetic route towards stable molecular-weight enlarged monodentate phosphine ligands via click chemistry was developed. These ligands were applied in the Pd-catalyzed Suzuki-Miyaura coupling of aryl halides and phenyl boronic acid. The supported systems show very similar activities compared

  16. The lithiation and acyl transfer reactions of phosphine oxides, sulfides and boranes in the synthesis of cyclopropanes

    DEFF Research Database (Denmark)

    Clarke, Celia; Fox, David J; Pedersen, Daniel Sejer

    2009-01-01

    Phosphine oxides are lithiated much faster than phosphine sulfides and phosphine boranes. Phosphine sulfides are in turn lithiated much more readily than phosphine boranes. It was possible to trap a phosphine sulfide THF in one case which upon treatment with t-BuOK gave cyclopropane, showing...... that phosphine sulfides readily undergo both phosphinoyl transfer and cyclopropane ring closure just like their phosphine oxide counterparts. The obtained data show that phosphine oxides are easily lithiated and undergo phosphoryl transfer much more readily and faster than phosphine sulfides and phosphine...... boranes. The observations suggest that it would be possible to perform reactions involving phosphine oxides in the presence of phosphine boranes or phosphine sulfides, potentially allowing regioselective alkylation of phosphine oxides in the presence of phosphine boranes or phosphine sulfides....

  17. Dual mechanism bifunctional polymers for the complexation of lanthanides and actinides

    International Nuclear Information System (INIS)

    Alexandratos, S.D.; Quillen, D.R.; McDowell, W.J.

    1985-01-01

    Phosphinic acid ion exchange/redox resins are synthesized by the reaction between polystyrene beads and phosphorus trichloride followed by base hydrolysis. The reaction requires a temperature of 73 0 C for full functionalization to occur. The effect of lower functionalization temperatures on resin acid capacity was determined and the concomitant effect on ion exchange investigated. The acid capacity was found to vary from 1.09 mequiv/g to 4.79 mequiv/g in the functionalization temperature range studied (15 0 C to 73 0 C). The percent resin sites loaded with zinc ions is independent of the actual capacity but the time to attain that percent loading increases from 5 minutes to 60 minutes as the absolute amount of zinc loaded increases. The extracting ability of the phosphinic acid resin for europium, thorium, uranium, americium, and plutonium was examined as a function of acid concentration from acid nitrate solutions both at varying and constant ionic strength. The phosphinic resins show better extraction for these ions than the sulfonic resins, especially from high acid solution (4M HNO 3 ) due to the superior coordination ability of the phosphoryl oxygen. They also show a much higher selectivity for the ions tested over sodium. For example, under conditions where sulfonic resins absorb 53% of the plutonium in solution, the phosphinic acid resins absorb 99%

  18. Consecutive dynamic resolutions of phosphine oxides

    NARCIS (Netherlands)

    Kortmann, Felix A.; Chang, Mu Chieh; Otten, Edwin; Couzijn, Erik P A; Lutz, Martin|info:eu-repo/dai/nl/304828971; Minnaard, Adriaan J.

    2014-01-01

    A crystallization-induced asymmetric transformation (CIAT) involving a radical-mediated racemization provides access to enantiopure secondary phosphine oxides. A consecutive CIAT is used to prepare enantio- and diastereo-pure tert-butyl(hydroxyalkyl)phenylphosphine oxides. © 2014 The Royal Society

  19. Phosphine resistance in Rhyzopertha dominica (Fabricius ...

    African Journals Online (AJOL)

    This study was carried out to determine the level of phosphine resistance in 16 Rhyzopertha dominica (Fabricius) populations that were collected from ten provinces and one municipality in China following the Food and Agriculture Organization's (FAO) standard method. Results showed that the 50% lethal concentration ...

  20. Mitochondrial modulation of phosphine toxicity and resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Zuryn, Steven; Kuang, Jujiao; Ebert, Paul

    2008-03-01

    Phosphine is a fumigant used to protect stored commodities from infestation by pest insects, though high-level phosphine resistance in many insect species threatens the continued use of the fumigant. The mechanisms of toxicity and resistance are not clearly understood. In this study, the model organism, Caenorhabditis elegans, was employed to investigate the effects of phosphine on its proposed in vivo target, the mitochondrion. We found that phosphine rapidly perturbs mitochondrial morphology, inhibits oxidative respiration by 70%, and causes a severe drop in mitochondrial membrane potential (DeltaPsim) within 5 h of exposure. We then examined the phosphine-resistant strain of nematode, pre-33, to determine whether resistance was associated with any changes to mitochondrial physiology. Oxygen consumption was reduced by 70% in these mutant animals, which also had more mitochondrial genome copies than wild-type animals, a common response to reduced metabolic capacity. The mutant also had an unexpected increase in the basal DeltaPsim, which protected individuals from collapse of the membrane potential following phosphine treatment. We tested whether directly manipulating mitochondrial function could influence sensitivity toward phosphine and found that suppression of mitochondrial respiratory chain genes caused up to 10-fold increase in phosphine resistance. The current study confirms that phosphine targets the mitochondria and also indicates that direct alteration of mitochondrial function may be related to phosphine resistance.

  1. Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects

    Science.gov (United States)

    Wu, Kevin; Doyle, Abigail G.

    2017-08-01

    The field of Ni-catalysed cross-coupling has seen rapid recent growth because of the low cost of Ni, its earth abundance, and its ability to promote unique cross-coupling reactions. Whereas advances in the related field of Pd-catalysed cross-coupling have been driven by ligand design, the development of ligands specifically for Ni has received minimal attention. Here, we disclose a class of phosphines that enable the Ni-catalysed Csp3 Suzuki coupling of acetals with boronic acids to generate benzylic ethers, a reaction that failed with known ligands for Ni and designer phosphines for Pd. Using parameters to quantify phosphine steric and electronic properties together with regression statistical analysis, we identify a model for ligand success. The study suggests that effective phosphines feature remote steric hindrance, a concept that could guide future ligand design tailored to Ni. Our analysis also reveals that two classic descriptors for ligand steric environment—cone angle and % buried volume—are not equivalent, despite their treatment in the literature.

  2. Phosphine and methylphosphine production by simulated lightning - s study for the volatile phosphorus cycle and cloud formation in the earth atmosphere

    OpenAIRE

    Glindemann, D.; Edwards, M.; Schrems, Otto

    2004-01-01

    Phosphine (PH3), was recently found worldwide even in the remote atmosphere (Naturwissenschaften 83 (1996a,131, Atmos. Environ. 37 (2003) 2429). It is of interest to find natural mechanisms which could produce phosphine gas and drive a volatile link of the atmospheric phosphorus cycle and the formation of phosphoric acid as possible condensation nuclei for clouds.Here we report on simulated lightning exposing sodium phosphate in a reducing medium (methane model atmosphere or organic matter) f...

  3. Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains.

    Science.gov (United States)

    Jacewicz, Agata; Shuman, Stewart

    2015-08-01

    Mycobacterium smegmatis encodes several DNA repair polymerases that are adept at incorporating ribonucleotides, which raises questions about how ribonucleotides in DNA are sensed and removed. RNase H enzymes, of which M. smegmatis encodes four, are strong candidates for a surveillance role. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of M. smegmatis RnhC, a bifunctional RNase H and acid phosphatase. We report that (i) the RnhC nuclease is stringently specific for RNA:DNA hybrid duplexes; (ii) RnhC does not selectively recognize and cleave DNA-RNA or RNA-DNA junctions in duplex nucleic acid; (iii) RnhC cannot incise an embedded monoribonucleotide or diribonucleotide in duplex DNA; (iv) RnhC can incise tracts of 4 or more ribonucleotides embedded in duplex DNA, leaving two or more residual ribonucleotides at the cleaved 3'-OH end and at least one or two ribonucleotides on the 5'-PO4 end; (v) the RNase H activity is inherent in an autonomous 140-amino-acid (aa) N-terminal domain of RnhC; and (vi) the C-terminal 211-aa domain of RnhC is an autonomous acid phosphatase. The cleavage specificity of RnhC is clearly distinct from that of Escherichia coli RNase H2, which selectively incises at an RNA-DNA junction. Thus, we classify RnhC as a type I RNase H. The properties of RnhC are consistent with a role in Okazaki fragment RNA primer removal or in surveillance of oligoribonucleotide tracts embedded in DNA but not in excision repair of single misincorporated ribonucleotides. RNase H enzymes help cleanse the genome of ribonucleotides that are present either as ribotracts (e.g., RNA primers) or as single ribonucleotides embedded in duplex DNA. Mycobacterium smegmatis encodes four RNase H proteins, including RnhC, which is characterized in this study. The nucleic acid substrate and cleavage site specificities of RnhC are consistent with a role in initiating the removal of ribotracts but not in single-ribonucleotide surveillance. Rnh

  4. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  5. Lanthanum tris[di(chloromethyl)phosphinate] dihydrate: crystal structure

    International Nuclear Information System (INIS)

    Aleksandrov, G.G.; Sergienko, V.S.; Afonin, E.G.

    2001-01-01

    X-ray diffraction analysis of the LaL 3 · 2H 2 O crystals, HL - di(chloromethyl)phosphinic acid, is conducted. Every of two crystallografically non-equivalent atoms La(1), La(2) is bound with six O(P) atoms of six L - anions performing function of bidentate μ 2 -bridge ligand in the top of pentagonal bipyramid and with O(w) atom of water molecule. La(H 2 O)L 3 particles of the both types are associated in polymer chains along the x axis of the crystal. Chains are conducted through hydrogen bonds O-H···O between coordinated and crystallization molecules of water as well as through short contacts Cl···Cl. Monophase state of polycrystal sample of complex was shown by method of X-ray diffraction of powder [ru

  6. Design, synthesis and evaluation of carbamoyl-methyl-phosphine sulfide (CMPS)-based chelates for separation of lanthanides and actinides

    Energy Technology Data Exchange (ETDEWEB)

    Matlokaa, K.; Saha, A.K.; Srinivasan, P.; Scott, M.J. [Florida Univ., Dept. of Chemistry, FL (United States)

    2007-10-15

    C{sub 3}-symmetric tri-phenoxy-methane platforms were substituted with carbamoyl-methyl-phosphine sulfide arms and these tris-CMPS compounds were evaluated as extractants for f-element metal ions from 1 M nitric acid solution. Their properties were compared to the carbamoyl-methyl-phosphine oxide derivatives on the same tri-phenoxy-methane platform (tris-CMPO). The terbium complex of tris-CMPS was crystallized and examined via X-ray structural analysis to provide valuable insight into the binding properties of the soft tripodal chelate. (authors)

  7. The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2.

    Science.gov (United States)

    Palma, Margarida; Dias, Paulo Jorge; Roque, Filipa de Canaveira; Luzia, Laura; Guerreiro, Joana Fernandes; Sá-Correia, Isabel

    2017-01-13

    The food spoilage yeast species Zygosaccharomyces bailii exhibits an extraordinary capacity to tolerate weak acids, in particular acetic acid. In Saccharomyces cerevisiae, the transcription factor Haa1 (ScHaa1) is considered the main player in genomic expression reprogramming in response to acetic acid stress, but the role of its homologue in Z. bailii (ZbHaa1) is unknown. In this study it is demonstrated that ZbHaa1 is a ScHaa1 functional homologue by rescuing the acetic acid susceptibility phenotype of S. cerevisiae haa1Δ. The disruption of ZbHAA1 in Z. bailii IST302 and the expression of an extra ZbHAA1 copy confirmed ZbHAA1 as a determinant of acetic acid tolerance. ZbHaa1 was found to be required for acetic acid stress-induced transcriptional activation of Z. bailii genes homologous to ScHaa1-target genes. An evolutionary analysis of the Haa1 homologues identified in 28 Saccharomycetaceae species genome sequences, including Z bailii, was carried out using phylogenetic and gene neighbourhood approaches. Consistent with previous studies, this analysis revealed a group containing pre-whole genome duplication species Haa1/Cup2 single orthologues, including ZbHaa1, and two groups containing either Haa1 or Cup2 orthologues from post-whole genome duplication species. S. cerevisiae Cup2 (alias Ace1) is a transcription factor involved in response and tolerance to copper stress. Taken together, these observations led us to hypothesize and demonstrate that ZbHaa1 is also involved in copper-induced transcriptional regulation and copper tolerance. The transcription factor ZbHaa1 is required for adaptive response and tolerance to both acetic acid and copper stresses. The subfunctionalization of the single ancestral Haa1/Cup2 orthologue that originated Haa1 and Cup2 paralogues after whole genome duplication is proposed.

  8. Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Verkuijl, B.J.V.; Schuur, B.; Minnaard, A.J.; Vries, de J.G.; Feringa, B.L.

    2010-01-01

    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine

  9. Resistance of stored-product insects to phosphine

    International Nuclear Information System (INIS)

    Pimentel, Marco Aurelio Guerra; Faroni, Leda Rita D'Antonino; Batista, Maurilio Duarte; Silva, Felipe Humberto da

    2008-01-01

    The objectives of this work were to assess phosphine resistance in insect populations (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais and Oryzaephilus surinamensis) from different regions of Brazil and to verify if the prevailing mechanism of phosphine resistance in these populations involves reduced respiration rates. Sixteen populations of T. castaneum, 15 of R. dominica, 27 of S. zeamais and eight of O. surinamensis were collected from 36 locations over seven Brazilian states. Each population was tested for resistance to phosphine, based on the response of adults to discriminating concentrations, according to FAO standard method. For each insect species, the production of carbon dioxide of the most resistant and of the most susceptible populations was inversely related to their phosphine resistance. The screening tests identified possible phosphine resistant populations. R. dominica and O. surinamensis were less susceptible to phosphine than the other two species. The populations with lower respiration rate showed a lower mortality at discriminating concentration, possibly related to a phosphine resistance mechanism. Phosphine resistance occurs in stored-product insects, in different regions of Brazil, and the resistance mechanism involves reduced respiration rate. (author)

  10. Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst.

    Science.gov (United States)

    Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V

    2012-07-21

    Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.

  11. Synthesis of 2-azaspiro[4.4]nonan-1-ones via phosphine-catalysed [3+2]-cycloadditions

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Sarah R.; Williams, Morwenna C.; Pyne, Stephen G.; Ung, Alison T.; Skelton, Brian W.; White, Allan H.; Turner, Peter (UWA); (Wollongong); (Sydney)

    2008-10-03

    The phosphine-catalyzed [3+2]-cycloaddition of the 2-methylene {gamma}-lactams 4 and 5 and the acrylate 6 with the ylides derived from the ethyl ester, the amide or the chiral camphor sultam derivative of 2-butynoic acid (7a-c) give directly, or indirectly after reductive cyclization, spiro-heterocyclic products. The acid 32 underwent Curtius rearrangement and then acid hydrolysis to give two novel spiro-cyclic ketones, 41 and 42.

  12. Communication: Tunnelling splitting in the phosphine molecule

    Science.gov (United States)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  13. Communication: Tunnelling splitting in the phosphine molecule

    Energy Technology Data Exchange (ETDEWEB)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-09-07

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν{sub 2} bending mode starting with 4ν{sub 2}.

  14. Mycobacterium tuberculosis thymidylate synthase gene thyX is essential and potentially bifunctional, while thyA deletion confers resistance to p-aminosalicylic acid.

    Science.gov (United States)

    Fivian-Hughes, Amanda S; Houghton, Joanna; Davis, Elaine O

    2012-02-01

    Thymidylate synthase (TS) enzymes catalyse the biosynthesis of deoxythymidine monophosphate (dTMP or thymidylate), and so are important for DNA replication and repair. Two different types of TS proteins have been described (ThyA and ThyX), which have different enzymic mechanisms and unrelated structures. Mycobacteria are unusual as they encode both thyA and thyX, and the biological significance of this is not yet understood. Mycobacterium tuberculosis ThyX is thought to be essential and a potential drug target. We therefore analysed M. tuberculosis thyA and thyX expression levels, their essentiality and roles in pathogenesis. We show that both thyA and thyX are expressed in vitro, and that this expression significantly increased within murine macrophages. Under all conditions tested, thyA expression exceeded that of thyX. Mutational studies show that M. tuberculosis thyX is essential, confirming that the enzyme is a plausible drug target. The requirement for M. tuberculosis thyX in the presence of thyA implies that the essential function of ThyX is something other than dTM synthesis [corrected].We successfully deleted thyA from the M. tuberculosis genome, and this deletion conferred an in vitro growth defect that was not observed in vivo. Presumably ThyX performs TS activity within M. tuberculosis ΔthyA at a sufficient rate in vivo for normal growth, but the rate in vitro is less than optimal. We also demonstrate that thyA deletion confers M. tuberculosis p-aminosalicylic acid resistance, and show by complementation studies that ThyA T202A and V261G appear to be functional and non-functional, respectively.

  15. Emission and distribution of phosphine in paddy fields and its relationship with greenhouse gases.

    Science.gov (United States)

    Chen, Weiyi; Niu, Xiaojun; An, Shaorong; Sheng, Hong; Tang, Zhenghua; Yang, Zhiquan; Gu, Xiaohong

    2017-12-01

    Phosphine (PH 3 ), as a gaseous phosphide, plays an important role in the phosphorus cycle in ecosystems. In this study, the emission and distribution of phosphine, carbon dioxide (CO 2 ) and methane (CH 4 ) in paddy fields were investigated to speculate the future potential impacts of enhanced greenhouse effect on phosphorus cycle involved in phosphine by the method of Pearson correlation analysis and multiple linear regression analysis. During the whole period of rice growth, there was a significant positive correlation between CO 2 emission flux and PH 3 emission flux (r=0.592, p=0.026, n=14). Similarly, a significant positive correlation of emission flux was also observed between CH 4 and PH 3 (r=0.563, p=0.036, n=14). The linear regression relationship was determined as [PH 3 ] flux =0.007[CO 2 ] flux +0.063[CH 4 ] flux -4.638. No significant differences were observed for all values of matrix-bound phosphine (MBP), soil carbon dioxide (SCO 2 ), and soil methane (SCH 4 ) in paddy soils. However, there was a significant positive correlation between MBP and SCO 2 at heading, flowering and ripening stage. The correlation coefficients were 0.909, 0.890 and 0.827, respectively. In vertical distribution, MBP had the analogical variation trend with SCO 2 and SCH 4 . Through Pearson correlation analysis and multiple stepwise linear regression analysis, pH, redox potential (Eh), total phosphorus (TP) and acid phosphatase (ACP) were identified as the principal factors affecting MBP levels, with correlative rankings of Eh>pH>TP>ACP. The multiple stepwise regression model ([MBP]=0.456∗[ACP]+0.235∗[TP]-1.458∗[Eh]-36.547∗[pH]+352.298) was obtained. The findings in this study hold great reference values to the global biogeochemical cycling of phosphorus in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    International Nuclear Information System (INIS)

    Li, Hu; Govind, Khokarale Santosh; Kotni, Ramakrishna; Shunmugavel, Saravanamurugan; Riisager, Anders; Yang, Song

    2014-01-01

    Graphical abstract: Catalytic conversion of carbohydrates into HMF and EMF in ethanol/DMSO with acid–base bifunctional hybrid nanospheres prepared from self-assembly of corresponding basic amino acids and HPA. - Highlights: • Acid–base bifunctional nanospheres were efficient for production of EMF from sugars. • Synthesis of EMF in a high yield of 76.6% was realized from fructose. • Fructose based biopolymers could also be converted into EMF with good yields. • Ethyl glucopyranoside was produced in good yields from glucose in ethanol. - Abstract: A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl glucopyranoside in good yields could be obtained from glucose in ethanol. Moreover, the nanocatalyst functionalized with acid and basic sites was able to be reused several times with no significant loss in catalytic activity

  17. Oxygen enhances phosphine toxicity for postharvest pest control.

    Science.gov (United States)

    Liu, Yong-Biao

    2011-10-01

    Phosphine fumigations under superatmospheric oxygen levels (oxygenated phosphine fumigations) were significantly more effective than the fumigations under the normal 20.9% atmospheric oxygen level against western flower thrips [Frankliniella occidentalis (Pergande)] adults and larvae, leafminer Liriomyza langei Frick pupae, grape mealybug [Pseudococcus maritimus (Ehrhorn)] eggs, and Indianmeal moth [Plodia interpunctella (Hübner)] eggs and pupae. In 5-h fumigations with 1,000 ppm phosphine at 5 degrees C, mortalities of western flower thrips increased significantly from 79.5 to 97.7% when oxygen was increased from 20.9 to 40% and reached 99.3% under 80% O2. Survivorships of leafminer pupae decreased significantly from 71.2% under 20.9% O2 to 16.2% under 40% O2 and reached 1.1% under 80% O2 in 24-h fumigations with 500 ppm phosphine at 5 degrees C. Complete control of leafminer pupae was achieved in 24-h fumigations with 1,000 ppm phosphine at 5 degrees C under 60% O2 or higher. Survivorships of grape mealybug eggs also decreased significantly in 48-h fumigations with 1,000 ppm phosphine at 2 degrees C under 60% O2 compared with the fumigations under 20.9% O2. Indian meal moth egg survivorships decreased significantly from 17.4 to 0.5% in responses to an oxygen level increase from 20.9 to 40% in 48-h fumigations with 1,000 ppm phosphine at 10 degrees C and reached 0.2% in fumigations under 80% O2. When the oxygen level was reduced from 20.9 to 15 and 10% in fumigations, survivorships of Indianmeal moth eggs increased significantly from 17.4 to 32.9 and 39.9%, respectively. Increased O2 levels also resulted in significantly lower survival rates of Indianmeal moth pupae in response to 24-h fumigations with 500 and 1,000 ppm phosphine at 10 degrees C and a complete control was achieved in the 1,000 ppm phosphine fumigations under 60% O2. Oxygenated phosphine fumigations have marked potential to improve insecticidal efficacy. Advantages and limitations of oxygenated

  18. Tris[2-(deuteriomethylsulfanylphenyl]phosphine deuteriochloroform 0.125-solvate

    Directory of Open Access Journals (Sweden)

    Seik Weng Ng

    2008-05-01

    Full Text Available The title deuterated tripodal phosphine, C21H12D9PS3·0.125CDCl3, crystallizes as two independent molecules, one of which lies on a general position and the other about a threefold rotation axis, and as a deuteriochloroform solvate. The solvent molecule is disordered about a site of symmetry 3, so that the ratio of phosphine to solvent is 8:1. The P atom adopts a pyramidal coordination geometry.

  19. 67Ga(NODASA): a new potential bifunctional radioligand for coupling to peptides

    International Nuclear Information System (INIS)

    Andre, J.P.; Maecke, H.R.; Zehnder, M.; Macko, L.; Kaspar, A.

    1998-01-01

    A new bifunctional chelator NODASA (1,4,7-triazacyclononane-1-succinic acid-4,7-diacetic acid) has been synthesised and its Ga(III) complex was crystallographically characterized by X-ray diffraction. The complex showed to be stable in serum and in acidic conditions and its stability constant was determined using a competition method with an auxiliary ligand. The conjugation of Ga(NODASA) to a model aminoacidamide proved the feasibility of a prelabelling approach. (author)

  20. Rhenium and technetium complexes with phenylbis(2-pyridyl)phosphine and tris(2-pyridyl)phosphine

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo A, S. A. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Hagenbach, A.; Abram, U., E-mail: ssaucedo@uaz.edu.m [Institut fur Chemie und Biochemie, Freie Universitat Berlin, Fabeckstr. 34-36, D-14195, Berlin (Germany)

    2010-10-15

    Reactions of common technetium and rhenium precursors with 2-pyridyl phosphines produce novel, air stable tricarbonyl and oxo complexes. (NEt{sub 4}){sub 2}[Re(CO){sub 3}Br{sub 3}] or (NEt{sub 4}){sub 2}[Tc(CO){sub 3}Cl{sub 3}] react with phenylbis(2-pyridyl)phosphine (PPhpy{sub 2}) or tris(2-pyridyl)phosphine (Ppy{sub 3}) under formation of neutral tricarbonyl complexes of the composition [M(CO){sub 3}X(L)] (M = Re, X = Br; M = Tc, X = Cl, L = PPhpy{sub 2} or Ppy{sub 3}), where the ligands coordinate only with two for their nitrogen atoms. Removal of the bromo ligands from (NEt{sub 4}){sub 2}[Re(CO){sub 3}(Br){sub 3}] with AgNO{sub 3}, to force a tripodal coordination, and the subsequent reaction with the Ppy{sub 3} results in the formation of the complex [Re(CO){sub 3}(NO{sub 3})(Ppy{sub 3}{sup -}N,N{sup '})] with a monodentate coordinated nitrato ligand. (NBu{sub 4})[ReOCl{sub 4}] reacts with PPhpy{sub 2} to give the asymmetric, oxo-bridged rhenium (V) dimer (NBu{sub 4})[Re{sub 2}O{sub 2}Cl{sub 5}({mu}-PPhpy{sub 2}{sup -}P,N,N,N{sup '})({mu}-O)], while a similar reaction with (ReOCl{sub 3}(PPh{sub 3}){sub 2}] in boiling Thf results in reduction of the metal and gives (ReCl{sub 3}(OPPhpy{sub 2})(PPh{sub 3})]. The products have been characterized spectroscopically and by X-ray structure analyses. (Author)

  1. Hydrogenation of unactivated enamines to tertiary amines: rhodium complexes of fluorinated phosphines give marked improvements in catalytic activity

    Directory of Open Access Journals (Sweden)

    Sergey Tin

    2015-05-01

    Full Text Available In the hydrogenation of sluggish unactivated enamine substrates, Rh complexes of electron-deficient phosphines are demonstrated to be far more reactive catalysts than those derived from triphenylphosphine. These operate at low catalyst loadings (down to 0.01 mol % and are able to reduce tetrasubstituted enamines. The use of the sustainable and environmentally benign solvent (R-limonene for the reaction is also reported with the amine isolated by acid extraction.

  2. Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanocluster

    KAUST Repository

    Aljuhani, Maha A.; Bootharaju, Megalamane Siddaramappa; Sinatra, Lutfan; Basset, Jean-Marie; Mohammed, Omar F.; Bakr, Osman

    2016-01-01

    While monothiols and simple phosphines are commonly exploited for size-controlled synthesis of atomically precise gold nanoclusters (NCs), dithiols or dithiol-phosphine combinations are seldom applied. Herein, we used a dithiol (benzene-1,3-dithiol

  3. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas : A review

    NARCIS (Netherlands)

    Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The combination of acidic zeolites and Fischer–Tropsch synthesis (FTS) catalysts for one-step production of liquid fuels from syngas is critically reviewed. Bifunctional systems are classified by the proximity between FTS and acid functionalities on three levels: reactor, catalyst particle, and

  4. (R)-(3-amino-2-fluoropropyl) phosphinic acid (AZD3355), a novel GABAB receptor agonist, inhibits transient lower esophageal sphincter relaxation through a peripheral mode of action

    DEFF Research Database (Denmark)

    Lehmann, Anders; Antonsson, Madeleine; Holmberg, Ann Aurell

    2009-01-01

    Gastroesophageal reflux disease (GERD) affects >10% of the Western population. Conventionally, GERD is treated by reducing gastric acid secretion, which is effective in most patients but inadequate in a significant minority. We describe a new therapeutic approach for GERD, based on inhibition...

  5. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2012-06-01

    Low temperature regular phosphine fumigations under the normal oxygen level and oxygenated phosphine fumigations under superatmospheric oxygen levels were compared for efficacy against the aphid, Nasonovia ribisnigri (Mosley), and effects on postharvest quality of romaine and head lettuce. Low temperature regular phosphine fumigation was effective against the aphid. However, a 3 d treatment with high phosphine concentrations of > or = 2,000 ppm was needed for complete control of the aphid. Oxygen greatly increased phosphine toxicity and significantly reduced both treatment time and phosphine concentration for control of N. ribisnigri. At 1,000 ppm phosphine, 72 h regular fumigations at 6 degrees C did not achieve 100% mortality of the aphid. The 1,000 ppm phosphine fumigation under 60% O2 killed all aphids in 30 h. Both a 72 h regular fumigation with 2,200 ppm phosphine and a 48 h oxygenated fumigation with 1,000 ppm phosphine under 60% O2 were tested on romaine and head lettuce at 3 degrees C. Both treatments achieved complete control of N. ribisnigri. However, the 72 h regular fumigation resulted in significantly higher percentages of lettuce with injuries and significantly lower lettuce internal quality scores than the 48 h oxygenated phosphine fumigation. Although the oxygenated phosphine fumigation also caused injuries to some treated lettuce, lettuce quality remained very good and the treatment is not expected to have a significant impact on marketability of the lettuce. This study demonstrated that oxygenated phosphine fumigation was more effective and less phytotoxic for controlling N. ribisnigri on harvested lettuce than regular phosphine fumigation and is promising for practical use.

  6. Polymerization behavior of butyl bis(hydroxymethyl)phosphine oxide ...

    Indian Academy of Sciences (India)

    lenovo

    Polymerization behavior of butyl bis(hydroxymethyl)phosphine oxide: Phosphorus containing polyethers for. Li‒ion conductivities. Heeralal Vignesh Babu, Billakanti Srinivas and Krishnamurthi Muralidharan*. School of Chemistry, University of Hyderabad, Hyderabad - 500046, India. Table of Contents. TGA plots of SPE2.

  7. Hydrogen Bonding in Phosphine Oxide/Phosphate-Phenol Complexes

    NARCIS (Netherlands)

    Cuypers, R.; Sudhölter, E.J.R.; Zuilhof, H.

    2010-01-01

    To develop a new solvent-impregnated resin (SIR) system for the removal of phenols and thiophenols from water, complex formation by hydrogen bonding of phosphine oxides and phosphates is studied using isothermal titration calorimetry (ITC) and quantum chemical modeling. Six different computational

  8. Phosphine Exposure Among Emergency Responders - Amarillo, Texas, January 2017.

    Science.gov (United States)

    Hall, Emily M; Patel, Ketki; Victory, Kerton R; Calvert, Geoffrey M; Nogueira, Leticia M; Bojes, Heidi K

    2018-04-06

    Phosphine is a highly toxic gas that forms when aluminum phosphide, a restricted-use pesticide* typically used in agricultural settings, reacts with water. Acute exposure can lead to a wide range of respiratory, cardiovascular, and gastrointestinal symptoms, and can be fatal (1). On January 2, 2017, the Texas Department of State Health Services (DSHS) was notified by the Texas Panhandle Poison Center of an acute phosphine exposure incident in Amarillo, Texas. DSHS investigated potential occupational phosphine exposures among the 51 on-scene emergency responders; 40 (78.4%) did not use respiratory protection during response operations. Fifteen (37.5%) of these 40 responders received medical care for symptoms or as a precaution after the incident, and seven (17.5%) reported new or worsening symptoms consistent with phosphine exposure within 24 hours of the incident. Emergency response organizations should ensure that appropriate personal protective equipment (PPE) is used during all incidents when an unknown hazardous substance is suspected. Additional evaluation is needed to identify targeted interventions that increase emergency responder PPE use during this type of incident.

  9. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Science.gov (United States)

    2010-07-01

    ... are: (i) Industrial, commercial, and consumer activities. Requirements as specified in § 721.80(s... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide (generic). 721.10087 Section 721.10087 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  10. Characterizing Exoplanet Atmospheres : A Complete Line List for Phosphine

    Science.gov (United States)

    Sousa-Silva, C.; Yurchenko, S. N.; Tennyson, J.

    2013-09-01

    The ability to characterise the atmospheres of cool stars, brown dwarfs and exoplanets requires fundamental data for all species contributing significantly to their opacity. However, with notable exceptions such as water and ammonia, existing molecular line lists are not sufficiently accurate or complete to allow for a full spectroscopic analysis of these bodies. ExoMol (www.exomol.com [1]) is a project that aims to rectify this by generating comprehensive line lists for all molecules likely to be detected in the atmospheres of cool astrophysical objects in the foreseeable future. The spectral data is generated by employing ab initio quantum mechanical methods, performing empirical refinement based on experimental spectroscopic data and harnessing high performance computing. Here we present our work on phosphine, (PH3), an equilateral pyramidal molecule (the phosphorus analogue to ammonia). Phosphine is known to be important for the atmospheres of giant-planets, cool stars and many other astronomical bodies. Rotational transition features of phosphine have been found in the far- infrared spectra of Saturn and Jupiter [2, 3], where it is a marker for vertical convection zones. A computed room temperature line list of phosphine is presented here [4], illustrated in the accompanying figure 1. This line list is a precursor to a high temperature equivalent to be produced in the near future, necessary for the analysis of cool stars and brown dwarfs. All the transitions' energy levels and Einstein A-coefficients were computed using the program TROVE [5].

  11. Neurodegeneration in D-bifunctional protein deficiency: diagnostic clues and natural history using serial magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Aneal [University of Calgary, Department of Medical Genetics and Pediatrics, Alberta Children' s Hospital, Calgary, AB (Canada); Wei, Xing-Chang [University of Calgary, Department of Radiology, Alberta Children' s Hospital, Calgary, AB (Canada); Snyder, Floyd F. [Alberta Children' s Hospital, Biochemical Genetics Laboratory, Calgary, AB (Canada); Mah, Jean K. [University of Calgary, Division of Neurology, Department of Pediatrics, Calgary, AB (Canada); Waterham, Hans; Wanders, Ronald J.A. [University of Amsterdam, Academic Medical Center, Lab Genetic Metabolic Diseases, Amsterdam (Netherlands)

    2010-12-15

    We report serial neurodegenerative changes on neuroimaging in a rare peroxisomal disease called D-bifunctional protein deficiency. The pattern of posterior to anterior demyelination with white matter disease resembles X-linked adrenoleukodystrophy. We feel this case is important to (1) highlight that D-bifunctional protein deficiency should be considered in cases where the neuroimaging resembles X-linked adrenoleukodystrophy, (2) to show different stages of progression to help identify this disease using neuroimaging in children, and (3) to show that neuroimaging suggesting a leukodystrophy can warrant peroxisomal beta-oxidation studies in skin fibroblasts even when plasma very long chain fatty acids are normal. (orig.)

  12. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.

    1977-01-01

    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a factor...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  13. Identifying and annotating human bifunctional RNAs reveals their versatile functions.

    Science.gov (United States)

    Chen, Geng; Yang, Juan; Chen, Jiwei; Song, Yunjie; Cao, Ruifang; Shi, Tieliu; Shi, Leming

    2016-10-01

    Bifunctional RNAs that possess both protein-coding and noncoding functional properties were less explored and poorly understood. Here we systematically explored the characteristics and functions of such human bifunctional RNAs by integrating tandem mass spectrometry and RNA-seq data. We first constructed a pipeline to identify and annotate bifunctional RNAs, leading to the characterization of 132 high-confidence bifunctional RNAs. Our analyses indicate that bifunctional RNAs may be involved in human embryonic development and can be functional in diverse tissues. Moreover, bifunctional RNAs could interact with multiple miRNAs and RNA-binding proteins to exert their corresponding roles. Bifunctional RNAs may also function as competing endogenous RNAs to regulate the expression of many genes by competing for common targeting miRNAs. Finally, somatic mutations of diverse carcinomas may generate harmful effect on corresponding bifunctional RNAs. Collectively, our study not only provides the pipeline for identifying and annotating bifunctional RNAs but also reveals their important gene-regulatory functions.

  14. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: A review

    OpenAIRE

    Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The combination of acidic zeolites and Fischer–Tropsch synthesis (FTS) catalysts for one-step production of liquid fuels from syngas is critically reviewed. Bifunctional systems are classified by the proximity between FTS and acid functionalities on three levels: reactor, catalyst particle, and active phase. A thorough analysis of the published literature on this topic reveals that efficiency in the production of liquid fuels correlates well with the proximity of FTS and acid sites. Moreover,...

  15. Different in vitro and in vivo profiles of substituted 3-aminopropylphosphinate and 3-aminopropyl(methyl)phosphinate GABAB receptor agonists as inhibitors of transient lower oesophageal sphincter relaxation

    Science.gov (United States)

    Lehmann, A; Antonsson, M; Aurell-Holmberg, A; Blackshaw, LA; Brändén, L; Elebring, T; Jensen, J; Kärrberg, L; Mattsson, JP; Nilsson, K; Oja, SS; Saransaari, P; von Unge, S

    2012-01-01

    BACKGROUND AND PURPOSE Gastro-oesophageal reflux is predominantly caused by transient lower oesophageal sphincter relaxation (TLOSR) and GABAB receptor stimulation inhibits TLOSR. Lesogaberan produces fewer CNS side effects than baclofen, which has been attributed to its affinity for the GABA transporter (GAT), the action of which limits stimulation of central GABAB receptors. To understand the structure–activity relationship for analogues of lesogaberan (3-aminopropylphosphinic acids), and corresponding 3-aminopropyl(methyl)phosphinic acids, we have compared representatives of these classes in different in vitro and in vivo models. EXPERIMENTAL APPROACH The compounds were characterized in terms of GABAB agonism in vitro. Binding to GATs and cellular uptake was done using rat brain membranes and slices respectively. TLOSR was measured in dogs, and CNS side effects were evaluated as hypothermia in mice and rats. KEY RESULTS 3-Aminopropylphosphinic acids inhibited TLOSR with a superior therapeutic index compared to 3-aminopropyl(methyl)phosphinic acids. This difference was most likely due to differential GAT-mediated uptake into brain cells of the former but not latter. In agreement, 3-aminopropyl(methyl)phosphinic acids were much more potent in producing hypothermia in rats even when administered i.c.v. CONCLUSIONS AND IMPLICATIONS An enhanced therapeutic window for 3-aminopropylphosphinic acids compared with 3-aminopropyl(methyl)phosphinic acids with respect to inhibition of TLOSR was observed and is probably mechanistically linked to neural cell uptake of the former but not latter group of compounds. These findings offer a platform for discovery of new GABAB receptor agonists for the treatment of reflux disease and other conditions where selective peripheral GABAB receptor agonism may afford therapeutic effects. PMID:21950457

  16. The resolution of acyclic P-stereogenic phosphine oxides via the formation of diastereomeric complexes: A case study on ethyl-(2-methylphenyl)-phenylphosphine oxide.

    Science.gov (United States)

    Bagi, Péter; Varga, Bence; Szilágyi, András; Karaghiosoff, Konstantin; Czugler, Mátyás; Fogassy, Elemér; Keglevich, György

    2018-04-01

    As an example of acyclic P-chiral phosphine oxides, the resolution of ethyl-(2-methylphenyl)-phenylphosphine oxide was elaborated with TADDOL derivatives, or with calcium salts of the tartaric acid derivatives. Besides the study on the resolving agents, several purification methods were developed in order to prepare enantiopure ethyl-(2-methylphenyl)-phenylphosphine oxide. It was found that the title phosphine oxide is a racemic crystal-forming compound, and the recrystallization of the enantiomeric mixtures could be used for the preparation of pure enantiomers. According to our best method, the (R)-ethyl-(2-methylphenyl)-phenylphosphine oxide could be obtained with an enantiomeric excess of 99% and in a yield of 47%. Complete racemization of the enantiomerically enriched phosphine oxide could be accomplished via the formation of a chlorophosphonium salt. Characterization of the crystal structures of the enantiopure phosphine oxide was complemented with that of the diastereomeric intermediate. X-ray analysis revealed the main nonbonding interactions responsible for enantiomeric recognition. © 2018 Wiley Periodicals, Inc.

  17. Plutonium and americium extraction studies with bifunctional organophosphorus extractants

    International Nuclear Information System (INIS)

    Navratil, J.D.

    1985-01-01

    Neutral bifunctional organophosphorus extractants, such as octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and dihexyl-N,N-diethylcarbamoylmethylphosphonate (CMP), are under study at the Rocky Flats Plant (RFP) to remove plutonium and americium from the 7M nitric acid waste. These compounds extract trivalent actinides from strong nitric acid, a property which distinguishes them from monofunctional organiphosphorus reagents. Furthermore, the reagents extract hydroytic plutonium (IV) polymer which is present in the acid waste stream. The compounds extract trivalent actinides with a 3:1 stoichiometry, whereas tetra- and hexavalent actinides extract with a stoichiometry of 2:1. Preliminary studies indicate that the extracted plutonium polymer complex contains one to two molecules of CMP per plutonium ion and the plutonium(IV) maintains a polymeric structure. Recent studies by Horwitz and co-workers conclude that the CMPO and CMP reagents behave as monodentate ligands. At RFP, three techniques are being tested for using CMP and CMPO to remove plutonium and americium from nitric acid waste streams. The different techniques are liquid-liquid extraction, extraction chromatography, and solid-supported liquid membranes. Recent tests of the last two techniques will be briefly described. In all the experiments, CMP was an 84% pure material from Bray Oil Co. and CMPO was 98% pure from M and T Chemicals

  18. Theoretical study of adsorption of organic phosphines on transition metal surfaces

    Science.gov (United States)

    Lou, Shujie; Jiang, Hong

    2018-04-01

    The adsorption properties of organic phosphines on transition metal (TM) surfaces (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt, and Au) have been studied to explore the possibility of building novel heterogeneous chiral catalytic systems based on organic phosphines. Preferred adsorption sites, adsorption energies and surface electronic structures of a selected set of typical organic phosphines adsorbed on TM surfaces are calculated with density-functional theory to obtain a systematic understanding on the nature of adsorption interactions. All organic phosphines considered are found to chemically adsorb on these TM surfaces with the atop site as the most preferred one, and the TM-P bond is formed via the lone-pair electrons of the P atom and the directly contacted TM atom. These findings imply that it is indeed possible to build heterogeneous chiral catalytic systems based on organic phosphines adsorbed on TM surfaces, which, however, requires a careful design of molecular structure of organic phosphines.

  19. Study on Effects of Electron Donors on Phosphine Production from Anaerobic Activated Sludge

    Directory of Open Access Journals (Sweden)

    Jianping Cao

    2017-07-01

    Full Text Available The effects of different types and concentrations of electron donors (glucose, starch, methanol and sodium acetate on the formation of phosphine from anaerobic activated sludge that has been domesticated for a prolonged period were studied in small batch experiments. The results show that types and concentrations of electron donor have significant effects on the production of phosphine from anaerobic activated sludge. Among them, glucose was the most favourable electron donor, whereas sodium acetate was the least favourable electron donor for the removal of phosphorus and the production of phosphine. Higher concentrations of electron donors were more favourable for the reduction of phosphate into phosphine, and supplying more than nine times the amount of electron donor as theoretically required for the reduction of phosphate into phosphine was favourable for the production of phosphine.

  20. Bifunctional organocatalysts for the asymmetric synthesis of axially chiral benzamides

    Directory of Open Access Journals (Sweden)

    Ryota Miyaji

    2017-08-01

    Full Text Available Bifunctional organocatalysts bearing amino and urea functional groups in a chiral molecular skeleton were applied to the enantioselective synthesis of axially chiral benzamides via aromatic electrophilic bromination. The results demonstrate the versatility of bifunctional organocatalysts for the enantioselective construction of axially chiral compounds. Moderate to good enantioselectivities were afforded with a range of benzamide substrates. Mechanistic investigations were also carried out.

  1. Phosphine Toxicity: A Story of Disrupted Mitochondrial Metabolism

    Science.gov (United States)

    2016-05-24

    Phosphine and selected metal phosphides. Environ. Health Criteria 73. 5. Reeve, I. 2014. Estimation of exposure to persons in Califor- nia ...Gill. 2011. Aluminum phosphide poisoning: an unsolved riddle. J. Appl. Toxicol. 31: 499– 505 . 9. Lam, W.W., R.F. Toia & J. Casida. 1991. Oxidatively...Trends Biochem. Sci. 35: 505 –513. 43. Turrens, J.F. 2003. Mitochondrial formation of reactive oxy- gen species. J. Physiol. 552: 335–344. 44. Fridovich

  2. Phosphinic acid compounds in biochemistry, biology and medicine

    Czech Academy of Sciences Publication Activity Database

    Collinsová, Michaela; Jiráček, Jiří

    2000-01-01

    Roč. 7, - (2000), s. 629-647 ISSN 0929-8673 R&D Projects: GA ČR GA203/97/0039; GA AV ČR KSK2055603 Institutional research plan: CEZ:AV0Z4055905 Subject RIV: CE - Biochemistry Impact factor: 4.909, year: 2000

  3. Separation of lanthanides (III) and actinides (III) by calixarenes containing acetamide-phosphine oxides functions

    International Nuclear Information System (INIS)

    Garcia Carrera, A.; Dozol, J.F.; Rouquette, H.

    2001-01-01

    The carbamoyl methyl phosphine oxide CMPO is the well known extractant of the TRUEX process for extraction of actinides from highly salted acidic wastes. In the framework of an European research contract coordinated by CEA/DDCC. V. Boehmer (Mainz, Germany) synthesized calix(4)arenes bearing CMPO moieties either on the wide rim, or on the narrow rim. Some of these calixarenes used at a concentration 10 -3 M are more efficient than CMPO used at a two hundred fifty fold higher concentration. Moreover, calixarene skeleton leads to a strong selectivity among lanthanides, this selectivity is much less obvious for CMPO. Selectivity order is reversed according to whether CMPO unit is borne by the wide rim or the narrow rim. The most efficient calixarenes allow actinides to be separated from most of the lanthanides except the lightest ones. (authors)

  4. Electrochemical chiral recognition by microparticle coatings of Pd complexes with bridging cyclometalated phosphines

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio [Departament de Quimica Analitica, Facultat de Quimica, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)], E-mail: antonio.domenech@uv.es; Koshevoy, Igor O.; Penno, Dirk; Ubeda, Maria Angeles [Departament de Quimica Inorganica, Facultat de Quimica, Universitat de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia (Spain)

    2008-03-10

    The palladium(II) dinuclear complex with bridging cyclometalated phosphines, {l_brace}Pd{sub 2}[{mu}-(C{sub 6}H{sub 4})PPh{sub 2}]{sub 2}({mu}-O{sub 2}CCH{sub 3}){sub 2}{r_brace} (Pd{sub 2}L{sub 2}), having a paddlewheel structure, is reversibly oxidized in CH{sub 2}Cl{sub 2} to a dinuclear palladium(III) analogue via two successive one-electron steps. Solid state voltammetry of Pd{sub 2}L{sub 2} in contact with aqueous electrolytes produce as one-electron oxidation with two competing mechanisms involving anion intercalation/anion binding between/to metal centres, chloride ions acting as inhibitors for the first pathway. R- and S-Pd{sub 2}L{sub 2} produces a significant stereoselective electrocatalytic activity with respect to the oxidation of L- and D-glutamic acid in alkaline media.

  5. Preparation of nuclear pure uranium trioxide from El Atshan crude yellow cake using Tri-octyl-phosphine oxide

    International Nuclear Information System (INIS)

    Hammad, A.K.; Serag, H.M.; Abdallah, A.M.

    1995-01-01

    Tri n-octyl phosphine oxide (TOPO) has been investigated as a refinery extractant for crude yellow cake prepared from El Atshan ore, Eastern Desert, Egypt. Relevant factors namely: type and concentration of acid, TOPO concentration, effect of temperature, residence time and organic/ aqueous ratio have been studied and optimized. The required number of extraction and stages was determined. Further purification could be achieved for the final product by selective precipitation of uranium peroxide from the stripped solution using hydrogen peroxide followed by its calcination. Complete chemical analysis of the final product has proved its nuclear purity. 8 figs., 3 tabs

  6. Preparation of nuclear pure uranium trioxide from El Atshan crude yellow cake using Tri-octyl-phosphine oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, A K; Serag, H M [Nuclear materials authority, (Egypt); Abdallah, A M [Faculty of science, university of mansoura, (Egypt)

    1995-10-01

    Tri n-octyl phosphine oxide (TOPO) has been investigated as a refinery extractant for crude yellow cake prepared from El Atshan ore, Eastern Desert, Egypt. Relevant factors namely: type and concentration of acid, TOPO concentration, effect of temperature, residence time and organic/ aqueous ratio have been studied and optimized. The required number of extraction and stages was determined. Further purification could be achieved for the final product by selective precipitation of uranium peroxide from the stripped solution using hydrogen peroxide followed by its calcination. Complete chemical analysis of the final product has proved its nuclear purity. 8 figs., 3 tabs.

  7. Synthesis of Carbocyclic Hydantocidins via Regioselective and Diastereoselective Phosphine-Catalyzed [3 + 2]-Cycloadditions to 5-Methylenehydantoins

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Tien Q.; Pyne, Stephen G.; Skelton, Brian W.; White, Allan H. (UWA); (Wollongong)

    2010-07-20

    The phosphine-catalyzed [3 + 2]-cycloaddition of 5-methylenehydantoins 4 with the ylides 5, derived from addition of tributylphosphine to the 2-butynoic acid derivatives, 6a-d, gives spiro-heterocyclic products. The camphor sultam derivative 6b gives optically active products. Noteable was that the ylides derived from ethyl 2-butynoate and the 3-(2-butynoyl)-1,3-oxazolidin-2-one derivatives 6c and 6d gave spiro-heterocyclic products with reverse regioselectivities. The N,N-dibenzylprotected cycloadduct has been converted to carbocyclic hydantocidin and 6,7-diepi-carbocyclic hydantocidin.

  8. Bifunctional groups grafted polyethersulfone magnetic beads for selective sequestration of plutonium

    International Nuclear Information System (INIS)

    Paul, Sumana; Aggarwal, S.K.; Pandey, A.K.

    2014-01-01

    The present study involves synthesis of polyethersulfone (PES) beads grafted with two different monomers viz. 2-hydroxyethylmethacrylate phosphoric acid ester (HEMP) and 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) by photo-induced free radical polymerization method. The selection of bifunctional polymer was based on our previous studies, which indicated its efficacy for selective preconcentration of Pu from 3-4 mol L -1 HNO 3 . The HEMP-co-AMPS grafted PES beads were used for selective extraction of plutonium from dissolver solution

  9. Bifunctional bridging linker-assisted synthesis and characterization of TiO{sub 2}/Au nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Žunič, Vojka, E-mail: vojka.zunic@ijs.si, E-mail: vojka13@gmail.com; Kurtjak, Mario; Suvorov, Danilo [Jožef Stefan Institute, Advanced Materials Department (Slovenia)

    2016-11-15

    Using a simple organic bifunctional bridging linker, titanium dioxide (TiO{sub 2}) nanoparticles were coupled with the Au nanoparticles to form TiO{sub 2}/Au nanocomposites with a variety of Au loadings. This organic bifunctional linker, meso-2,3-dimercaptosuccinic acid, contains two types of functional groups: (i) the carboxyl group, which enables binding to the TiO{sub 2}, and (ii) the thiol group, which enables binding to the Au. In addition, the organic bifunctional linker acts as a stabilizing agent to prevent the agglomeration and growth of the Au particles, resulting in the formation of highly dispersed Au nanoparticles. To form the TiO{sub 2}/Au nanocomposites in a simple way, we deliberately applied a synthetic method that simultaneously ensures: (i) the capping of the Au nanoparticles and (ii) the binding of different amounts of Au to the TiO{sub 2}. The TiO{sub 2}/Au nanocomposites formed with this method show enhanced UV and Vis photocatalytic activities when compared to the pure TiO{sub 2} nanopowders.Graphical Abstract.

  10. Bifunctional electrodes for unitised regenerative fuel cells

    International Nuclear Information System (INIS)

    Altmann, Sebastian; Kaz, Till; Friedrich, Kaspar Andreas

    2011-01-01

    Research highlights: → Different oxygen electrode configurations for the operation in a unitised reversible fuel cell were tested. → Polarisation curves and EIS measurements were recorded. → The mixture of catalysts performs best for the present stage of electrode development. → Potential improvements for the different compositions are discussed. - Abstract: The effects of different configurations and compositions of platinum and iridium oxide electrodes for the oxygen reaction of unitised regenerative fuel cells (URFC) are reported. Bifunctional oxygen electrodes are important for URFC development because favourable properties for the fuel cell and the electrolysis modes must be combined into a single electrode. The bifunctional electrodes were studied under different combinations of catalyst mixtures, multilayer arrangements and segmented configurations with single catalyst areas. Distinct electrochemical behaviour was observed for both modes and can be explained on the basis of impedance spectroscopy. The mixture of both catalysts performs best for the present stage of electrode development. Also, the multilayer electrodes yielded good results with the potential for optimisation. The influence of ionic and electronic resistances on the relative performance is demonstrated. However, penalties due to cross currents in the heterogeneous electrodes were identified and explained by comparing the performance curves with electrodes composed of a single catalyst. Potential improvements for the different compositions are discussed.

  11. Prevention of phosphine-induced cytotoxicity by nutrients in HepG2 cells

    Directory of Open Access Journals (Sweden)

    Marzieh Rashedinia

    2016-01-01

    Interpretation & conclusions: The results supported the hypothesis that phosphine-induced cytotoxicity was due to decrease of ATP levels. ATP suppliers could prevent its toxicity by generating ATP through glycolysis. α-keto compounds such as dihydroxyacetone and α-ketoglutarate may bind to phosphine and restore mitochondrial respiration.

  12. Resistance of stored-product insects to phosphine; Resistencia de insetos de produtos armazenados a fosfina

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marco Aurelio Guerra [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Biologia Animal. Setor de Entomologia]. E-mail: marcoagp@gmail.com; Faroni, Leda Rita D' Antonino; Batista, Maurilio Duarte; Silva, Felipe Humberto da [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola. Setor de Armazenamento]. E-mail: lfaroni@ufv.br; mauriliodbatista@yahoo.com.br; felipehumberto@gmail.com

    2008-12-15

    The objectives of this work were to assess phosphine resistance in insect populations (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais and Oryzaephilus surinamensis) from different regions of Brazil and to verify if the prevailing mechanism of phosphine resistance in these populations involves reduced respiration rates. Sixteen populations of T. castaneum, 15 of R. dominica, 27 of S. zeamais and eight of O. surinamensis were collected from 36 locations over seven Brazilian states. Each population was tested for resistance to phosphine, based on the response of adults to discriminating concentrations, according to FAO standard method. For each insect species, the production of carbon dioxide of the most resistant and of the most susceptible populations was inversely related to their phosphine resistance. The screening tests identified possible phosphine resistant populations. R. dominica and O. surinamensis were less susceptible to phosphine than the other two species. The populations with lower respiration rate showed a lower mortality at discriminating concentration, possibly related to a phosphine resistance mechanism. Phosphine resistance occurs in stored-product insects, in different regions of Brazil, and the resistance mechanism involves reduced respiration rate. (author)

  13. Passivation of nanocrystalline TiO2 junctions by surface adsorbed phosphinate amphiphiles enhances the photovoltaic performance of dye sensitized solar cells

    KAUST Repository

    Wang, Mingkui

    2009-01-01

    We report a new class of molecular insulators that electronically passivate the surface of nanocrystalline titania films for high performance dye sensitized solar cells (DSC). Using electrical impedance measurements we demonstrate that co-adsorption of dineohexyl bis-(3,3-dimethyl-butyl)-phosphinic acid (DINHOP), along with the amphiphilic ruthenium sensitizer Z907Na increased substantially the power output of the cells mainly due to a retardation of interfacial recombination of photo-generated charge carriers. The use of phosphinates as anchoring groups opens up new avenues for modification of the surface by molecular insulators, sensitizers and other electro-active molecules to realize the desired optoelectronic performance of devices based on oxide junctions. © 2009 The Royal Society of Chemistry.

  14. Synthesis of novel bifunctional chelators and their use in preparing monoclonal antibody conjugates for tumor targeting

    International Nuclear Information System (INIS)

    Westerberg, D.A.; Carney, P.L.; Rogers, P.E.; Kline, S.J.; Johnson, D.K.

    1989-01-01

    Bifunctional derivatives of the chelating agents ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid, in which a p-isothiocyanatobenzyl moiety is attached at the methylene carbon atom of one carboxymethyl arm, was synthesized by reductive alkylation of the relevant polyamine with (p-nitrophenyl)pyruvic acid followed by carboxymethylation, reduction of the nitro group, and reaction with thiophosgene. The resulting isothiocyanate derivatives reacted with monoclonal antibody B72.3 to give antibody-chelator conjugates containing 3 mol of chelator per mole of immunoglobulin, without significant loss of immunological activity. Such conjugates, labeled with the radioisotopic metal indium-111, selectively bound a human colorectal carcinoma implanted in nude mice when given intravenously. Uptake into normal tissues was comparable to or lower than that reported for analogous conjugates with known bifunctional chelators. It is concluded that substitution with a protein reactive group at this position in polyaminopolycarboxylate chelators does not alter the chelating properties of these molecules to a sufficient extent to adversely affect biodistribution and thus provides a general method for the synthesis of such chelators

  15. Phosphine synthetic route features and postsynthetic treatment of InP quantum dots

    International Nuclear Information System (INIS)

    Mordvinova, Natalia; Vinokurov, Alexander; Dorofeev, Sergey; Kuznetsova, Tatiana; Znamenkov, Konstantin

    2014-01-01

    Highlights: • Quantum dots with average diameter of 3–5 nm were synthesized. • PH 3 was used as novel phosphorous precursor. • Electrophoresis was demonstrated to be an effective method of purification of QDs. • Photoeching leads to quantum yields about 20%. • The concentration and time dependencies for photoetching of QDs were obtained. -- Abstract: In this paper we report on the development of synthesis of InP quantum dots with a gaseous phosphine PH 3 as a source of phosphorus and myristic acid and TOP/TOPO as stabilizers. Samples synthesized using myristic acid as stabilizer at relatively low temperatures were found to contain admixture of In(OH) 3 . We studied the influence of HF concentration and duration of illumination on luminescence properties of InP quantum dots during photoetching process. Quantum yields of photoetched samples reached about 20%. Additionally, electrophoresis as a new technique of purification and size-depended separation of synthesized quantum dots was developed

  16. Different in vitro and in vivo profiles of substituted 3-aminopropylphosphinate and 3-aminopropyl(methyl)phosphinate GABA(B) receptor agonists as inhibitors of transient lower oesophageal sphincter relaxation.

    Science.gov (United States)

    Lehmann, A; Antonsson, M; Aurell-Holmberg, A; Blackshaw, L A; Brändén, L; Elebring, T; Jensen, J; Kärrberg, L; Mattsson, J P; Nilsson, K; Oja, S S; Saransaari, P; von Unge, S

    2012-03-01

    Gastro-oesophageal reflux is predominantly caused by transient lower oesophageal sphincter relaxation (TLOSR) and GABA(B) receptor stimulation inhibits TLOSR. Lesogaberan produces fewer CNS side effects than baclofen, which has been attributed to its affinity for the GABA transporter (GAT), the action of which limits stimulation of central GABA(B) receptors. To understand the structure-activity relationship for analogues of lesogaberan (3-aminopropylphosphinic acids), and corresponding 3-aminopropyl(methyl)phosphinic acids, we have compared representatives of these classes in different in vitro and in vivo models. The compounds were characterized in terms of GABA(B) agonism in vitro. Binding to GATs and cellular uptake was done using rat brain membranes and slices respectively. TLOSR was measured in dogs, and CNS side effects were evaluated as hypothermia in mice and rats. 3-Aminopropylphosphinic acids inhibited TLOSR with a superior therapeutic index compared to 3-aminopropyl(methyl)phosphinic acids. This difference was most likely due to differential GAT-mediated uptake into brain cells of the former but not latter. In agreement, 3-aminopropyl(methyl)phosphinic acids were much more potent in producing hypothermia in rats even when administered i.c.v. An enhanced therapeutic window for 3-aminopropylphosphinic acids compared with 3-aminopropyl(methyl)phosphinic acids with respect to inhibition of TLOSR was observed and is probably mechanistically linked to neural cell uptake of the former but not latter group of compounds. These findings offer a platform for discovery of new GABA(B) receptor agonists for the treatment of reflux disease and other conditions where selective peripheral GABA(B) receptor agonism may afford therapeutic effects. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  17. Bifunctional Phosphorus Dendrimers and Their Properties.

    Science.gov (United States)

    Caminade, Anne-Marie; Majoral, Jean-Pierre

    2016-04-23

    Dendrimers are hyperbranched and monodisperse macromolecules, generally considered as a special class of polymers, but synthesized step-by-step. Most dendrimers have a uniform structure, with a single type of terminal function. However, it is often desirable to have at least two different functional groups. This review will discuss the case of bifunctional phosphorus-containing dendrimers, and the consequences for their properties. Besides the terminal functions, dendritic structures may have also a function at the core, or linked off-center to the core, or at the core of dendrons (dendritic wedges). Association of two dendrons having different terminal functions leads to Janus dendrimers (two faces). The internal structure can also possess functional groups on one layer, or linked to one layer, or on several layers. Finally, there are several ways to have two types of terminal functions, besides the case of Janus dendrimers: either each terminal function bears two functions sequentially, or two different functions are linked to each terminal branching point. Examples of each type of structure will be given in this review, as well as practical uses of such sophisticated structures in the fields of fluorescence, catalysis, nanomaterials and biology.

  18. Tertiary phosphine complexes of rhenium: a spectroscopic study

    International Nuclear Information System (INIS)

    Fergusson, J.E.; Heveldt, P.F.

    1976-01-01

    Complexes of the type ReOX 3 L 2 , ReNX 2 L 3 , ReX 3 (NO)L 2 and ReX 2 (NO)L 3 have been studied using, UV visible, IR and H 1 , C 13 NMR spectroscopy. (X is a halogen, Cl, Br, I and L is a tertiary phosphine Et 3 P and Et 2 PhP). Evidence obtained on the blue cis isomer ReOCl 3 L 2 suggests that the halogens are arranged on a face of the octahedral complex. Assignments of ν(Re-X) and ν(Re-P) vibrations have been made. Three complexes of technetium, [TcCl 4 (Ph 3 P) 2 ], [TcCl 3 (Et 2 PhP) 3 ] and [TcCl 3 (NO)(Et 2 PhP) 2 ] have been isolated. (author)

  19. Reaction paths of phosphine dissociation on silicon (001)

    Energy Technology Data Exchange (ETDEWEB)

    Warschkow, O.; McKenzie, D. R. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Curson, N. J. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia); London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Schofield, S. R. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia); London Centre for Nanotechnology and Department of Physics and Astronomy, University College, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Marks, N. A. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Discipline of Physics & Astronomy, Curtin University, GPO Box U1987, Perth, WA (Australia); Wilson, H. F. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); CSIRO Virtual Nanoscience Laboratory, Parkville, VIC 3052 (Australia); School of Applied Sciences, RMIT University, Melbourne, VIC 3000 (Australia); Radny, M. W.; Smith, P. V. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Reusch, T. C. G.; Simmons, M. Y. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia)

    2016-01-07

    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH{sub 3}) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH{sub 2}+H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH{sub 2} fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH{sub 3} stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments.

  20. Reaction paths of phosphine dissociation on silicon (001)

    International Nuclear Information System (INIS)

    Warschkow, O.; McKenzie, D. R.; Curson, N. J.; Schofield, S. R.; Marks, N. A.; Wilson, H. F.; Radny, M. W.; Smith, P. V.; Reusch, T. C. G.; Simmons, M. Y.

    2016-01-01

    Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH 3 ) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH 2 +H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH 2 fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH 3 stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments

  1. A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines

    KAUST Repository

    Bootharaju, Megalamane Siddaramappa

    2016-10-10

    Thiols and phosphines are the most widely used organic ligands to attain atomically precise metal nanoclusters (NCs). Here, we used simple hydrides (e.g., H–) as ligands along with phosphines, such as triphenylphosphine (TPP), 1,2-bis(diphenylphosphino)ethane [DPPE], and tris(4-fluorophenyl)phosphine [TFPP] to design and synthesize a new class of hydride-rich silver NCs. This class includes [Ag18H16(TPP)10]2+, [Ag25H22(DPPE)8]3+, and [Ag26H22(TFPP)13]2+. Our work reveals a new family of atomically precise NCs protected by H– ligands and labile phosphines, with potentially more accessible active metal sites for functionalization and provides a new set of stable NC sizes with simpler ligand–metal bonding for researchers to explore both experimentally and computationally.

  2. Development of chiral terminal-alkene-phosphine hybrid ligands for palladium-catalyzed asymmetric allylic substitutions.

    Science.gov (United States)

    Liu, Zhaoqun; Du, Haifeng

    2010-07-02

    A variety of novel chiral terminal-alkene-phosphine hybrid ligands were successfully developed from diethyl L-tartrate for palladium-catalyzed asymmetric allylic alkylations, etherifications, and amination to give the desired products in excellent yields and ee's.

  3. Synthesis of quaternary aryl phosphonium salts: photoredox-mediated phosphine arylation.

    Science.gov (United States)

    Fearnley, A F; An, J; Jackson, M; Lindovska, P; Denton, R M

    2016-04-11

    We report a synthesis method for the construction of quaternary aryl phoshonium salts at ambient temperature. The regiospecific reaction involves the coupling of phosphines with aryl radicals derived from diaryliodonium salts under photoredox conditions.

  4. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal.

    Science.gov (United States)

    Arora, Jasbir S; Oe, Tomoyuki; Blair, Ian A

    2011-05-15

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2( E )-nonenal and 4-oxo-2( E )-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α , β -unsaturated aldehyde that can react in multiple ways and with glutathione, proteins and DNA. Heavy isotope-labeled analogs of ONE are not readily available for conducting mechanistic studies or for use as internal standards in mass spectrometry (MS)-based assays. An efficient onestep cost-effective method has been developed for the preparation of C-9 deuterium-labeled ONE. In addition, a method for specific deuterium labeling of ONE at C-2, C-3 or both C-2 and C-3 has been developed. This latter method involved the selective reduction of an intermediate alkyne either by lithium aluminum hydride or lithium aluminum deuteride and quenching with water or deuterium oxide. The availability of these heavy isotope analogs will be useful as internal standards for quantitative studies employing MS and for conducting mechanistic studies of complex interactions between ONE and DNA bases as well as between ONE and proximal amino acid residues in peptides and proteins.

  5. Carbon in bifunctional air electrodes in alkaline solution

    International Nuclear Information System (INIS)

    Tryk, D.; Aldred, W.; Yeager, E.

    1983-01-01

    Bifunctional O 2 electrodes can be used both to reduce and to generate O 2 in rechargeable metal-air batteries and fuel cells. The factors controlling the O 2 reduction and generation reactions in gas-diffusional bifunctional O 2 electrodes are discussed. The resistance of such electrodes, as established from voltammetry curves, has been found to increase markedly during anodic polarization and to be dependent upon the electrode fabrication technique. Carbon blacks with more graphitic structure than Shawinigan black have been found to be more resistant to electro-oxidation. The further extension of cycle life of bifunctional electrodes using carbon is critically dependent on finding more oxidation-resistant carbons that at the same time have other surface properties meeting the requirements for catalyzed gas-diffusion electrodes

  6. Main regularities of radiolytic transformations of bifunctional organic compounds

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Shadyro, O.I.

    1985-01-01

    General regularities of the radiolysis of bifunctional organic compounds (α-diols, ethers of α-diols, amino alcohols, hydroxy aldehydes and hydroxy asids) in aqueous solutions from the early stages of the process to formation of finite products are traced. It is pointed out that the most characteristic course of radiation-chemical, transformation of bifunctional compounds in agueous solutions in the fragmentation process with monomolecular decomposition of primary radicals of initial substrances and simultaneous scission of two vicinal in respect to radical centre bonds via five-membered cyclic transient state. The data obtained are of importance for molecular radiobiology

  7. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC.

    Science.gov (United States)

    Marmor, S; Petersen, C P; Reck, F; Yang, W; Gao, N; Fisher, S L

    2001-10-09

    The bacterial UDP-N-acetylmuramyl-L-alanine ligase (MurC) from Escherichia coli, an essential, cytoplasmic peptidoglycan biosynthetic enzyme, catalyzes the ATP-dependent ligation of L-alanine (Ala) and UDP-N-acetylmuramic acid (UNAM) to form UDP-N-acetylmuramyl-L-alanine (UNAM-Ala). The phosphinate inhibitor 1 was designed and prepared as a multisubstrate/transition state analogue. The compound exhibits mixed-type inhibition with respect to all three enzyme substrates (ATP, UNAM, Ala), suggesting that this compound forms dead-end complexes with multiple enzyme states. Results from isothermal titration calorimetry (ITC) studies supported these findings as exothermic binding was observed under conditions with free enzyme (K(d) = 1.80-2.79 microM, 95% CI), enzyme saturated with ATP (K(d) = 0.097-0.108 microM, 95% CI), and enzyme saturated with the reaction product ADP (K(d) = 0.371-0.751 microM, 95% CI). Titrations run under conditions of saturating UNAM or the product UNAM-Ala did not show heat effects consistent with competitive compound binding to the active site. The potent binding affinity observed in the presence of ATP is consistent with the inhibitor design and the proposed Ordered Ter-Ter mechanism for this enzyme; however, the additional binding pathways suggest that the inhibitor can also serve as a product analogue.

  8. THE COMBINED EFFECT OF ORGANIC PHOSPHINATE BASED FLAME RETARDANT AND ZINC BORATE ON THE FIRE BEHAVIOR OF POLY(BUTYLENE TEREPHTHALATE

    Directory of Open Access Journals (Sweden)

    Mustafa Erdem ÜREYEN

    2016-12-01

    Full Text Available Neat poly(butylene terephthalate is highly combustible. It is not self-extinguishing, and after ignition it burns with dripping. To meet the fire safety requirements, it should be rendered flame retardant. The most common flame retardants for PBT are based on halogenated (most often brominated or phosphorus compounds. Although their efficiency is lower than halogen based flame retardants, expensive phosphorus based flame retardants for polyester are preferred, because of low smoke generation, nontoxicity and low corrosion properties. Zinc borate has been widely used with other flame retardants in wood products and in several polymers. In this work the fire behavior of zinc borate, phosphinic acid and zinc borate/phosphinic acid combination doped poly(butylene terephthalate was investigated. Firstly, the mean particle size of zinc borate (2ZnO.3B2O3.3.5H2O powders were reduced by attrition milling. Samples were produced by twin screw micro compounder. The fire properties of the ZnB, DPA and ZnB/DPA doped PBT were investigated and compared to each other by LOI and thermal analysis. LOI values of ZnB/PBT samples were found very low even with higher filling content. At higher loading of ZnB, the dripping of the sample strongly decreased and char residue increased. It was seen that organic diethyl phosphinic acid based additives DPA is particularly effective with PBT. It was found that the combination of DPA and ZnB can be used to increase the char residue, decrease spread of flame and the melt dripping of PBT.

  9. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  10. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications

    Science.gov (United States)

    Kotsyuda, Sofiya S.; Tomina, Veronika V.; Zub, Yuriy L.; Furtat, Iryna M.; Lebed, Anastasia P.; Vaclavikova, Miroslava; Melnyk, Inna V.

    2017-10-01

    Spherical silica particles with bifunctional (tbnd Si(CH2)3NH2/tbnd SiC6H5) surface layers were synthesized by the Stöber method using ternary alkoxysilanes systems. The influence of the synthesis conditions, such as temperature and stirring time on the process of nanoparticles formation was studied. The presence of introduced functional groups was confirmed by FTIR. The composition of the surface layers examined by elemental analysis and acid-base titration was shown to be independent from the synthesis temperature. However, the size of the obtained particles depends on the synthesis temperature and, according to photon cross-correlation spectroscopy, can be varied from 50 to 846 nm. The variation of electric charges of N-functional groups was disclosed in obtained nanospheres and attributed to different surface location of these groups and their surrounding with other groups. The sorption of Cu(II) ions by functionalized silicas depends on the concentration of amino groups, which correlates with the isoelectric point values (determined to vary from 8.26 to 9.21). Bifunctional nanoparticles adsorb 99.0 mg/g of methylene blue, compared with 48.0 mg/g by silica sample with only amino groups. The nanospheres, both with and without adsorbed Cu2+, demonstrate reasonable antibacterial activity against S. aureus ATCC 25923, depending on particle concentration in water suspension.

  11. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Bifunctional xylanases and their potential use in biotechnology

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Numan, M.Th.

    . J Chromatography 919:389–394 33. Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ, Cho YU, Kim H, Yun HD (2006) Assembling a novel bifunctional cel- lulase–xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol Lett 28:1857–1862 34...

  13. Single flexible nanofiber to simultaneously realize electricity-magnetism bifunctionality

    International Nuclear Information System (INIS)

    Yang, Ming; Sheng, Shujuan; Ma, Qianli; Lv, Nan; Yu, Wensheng; Wang, Jinxian; Dong, Xiangting; Liu, Guixia

    2016-01-01

    In order to develop new-typed multifunctional composite nanofibers, PANI/Fe 3 O 4 /PVP flexible bifunctional composite nanofibers with simultaneous electrical conduction and magnetism have been successfully fabricated via a facile electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of polyaniline (PANI) and Fe 3 O 4 nanoparticles (NPs). The bifunctional composite nanofibers simultaneously possess excellent electrical conductivity and magnetic properties. The electrical conductivity reaches up to the order of 10 -3 S·cm -1 . The electrical conductivity and saturation magnetization of the composite nanofibers can be respectively tuned by adding various amounts of PANI and Fe 3 O 4 NPs. The obtained electricity-magnetism bifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, special coating, microwave absorption, molecular electronics and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other bifunctional one-dimensional nanostructures. (author)

  14. Single flexible nanofiber to simultaneously realize electricity-magnetism bifunctionality

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Sheng, Shujuan; Ma, Qianli; Lv, Nan; Yu, Wensheng; Wang, Jinxian; Dong, Xiangting; Liu, Guixia, E-mail: wenshengyu2009@sina.com, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2016-03-15

    In order to develop new-typed multifunctional composite nanofibers, PANI/Fe{sub 3}O{sub 4}/PVP flexible bifunctional composite nanofibers with simultaneous electrical conduction and magnetism have been successfully fabricated via a facile electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of polyaniline (PANI) and Fe{sub 3}O{sub 4} nanoparticles (NPs). The bifunctional composite nanofibers simultaneously possess excellent electrical conductivity and magnetic properties. The electrical conductivity reaches up to the order of 10{sup -3} S·cm{sup -1}. The electrical conductivity and saturation magnetization of the composite nanofibers can be respectively tuned by adding various amounts of PANI and Fe{sub 3}O{sub 4} NPs. The obtained electricity-magnetism bifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, special coating, microwave absorption, molecular electronics and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other bifunctional one-dimensional nanostructures. (author)

  15. A computed room temperature line list for phosphine

    Science.gov (United States)

    Sousa-Silva, Clara; Yurchenko, Sergei N.; Tennyson, Jonathan

    2013-06-01

    An accurate and comprehensive room temperature rotation-vibration transition line list for phosphine (31PH3) is computed using a newly refined potential energy surface and a previously constructed ab initio electric dipole moment surface. Energy levels, Einstein A coefficients and transition intensities are computed using these surfaces and a variational approach to the nuclear motion problem as implemented in the program TROVE. A ro-vibrational spectrum is computed, covering the wavenumber range 0-8000 cm-1. The resulting line list, which is appropriate for temperatures up to 300 K, consists of a total of 137 million transitions between 5.6 million energy levels. Several of the band centres are shifted to better match experimental transition frequencies. The line list is compared to the most recent HITRAN database and other laboratorial sources. Transition wavelengths and intensities are generally found to be in good agreement with the existing experimental data, with particularly close agreement for the rotational spectrum. An analysis of the comparison between the theoretical data created and the existing experimental data is performed, and suggestions for future improvements and assignments to the HITRAN database are made.

  16. Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-based supported liquid membrane

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dudwadkar, N.L.; Chitnis, R.R.; Mathur, J.N.

    1999-01-01

    The present studies deal with the application of the supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin. The process uses a solution of octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO) in n-dodecane as a carrier with a polytetrafluoroethylene support and a mixture of citric acid, formic acid, and hydrazine hydrate as the receiving phase. The studies involve the investigation of such parameters as carrier concentration in SLM, acidity of the feed, and the feed composition. The studies indicated good transport of actinides like neptunium, americium, and plutonium across the membrane from nitric acid medium. A high concentration of uranium in the feed retards the transport of americium, suggesting the need for prior removal of uranium from the waste. The separation of actinides from uranium-lean simulated samples as well as actual high level waste has been found to be feasible using the above technique

  17. Hydroformylation of propene and 1-hexene catalysed by a alpha-zirconium phosphate supported rhodium-phosphine complex

    DEFF Research Database (Denmark)

    Karlsson, Magnus; Andersson, C; Hjortkjær, Jes

    2001-01-01

    The reaction of the amphiphilic ligand {4-[bis(diethylaminoethyl)aminomethyl]diphenyl}phosphine with alpha -zirconium phosphate, of intermediate surface area (24m(2) g(-1)), provided a phosphine functionalised support in which electrostatic interaction between ammonium groups on the ligand and de......-protonated surface hydroxyl groups on the support provided the binding force. The X-ray powder diffractogram of the material showed that the binding lowers the crystallinity of the carrier and that the ligand is not intercalated but bound at the outer surface and at the entrances to the interlamellar space. Reaction...... of the phosphine functionalised support with Rh(CO)(2)(acac) led to CO-phosphine exchange and formation of an immobilised complex of the composition LRh(CO)(acac) (L = surface bound phosphine). When applied as catalyst in continuous gas-phase hydroformylation of propene and in liquid phase hydroformylation of 1...

  18. Secondary emission from a CuBe target due to bombardment with parent and fragment ions of ammonia and phosphine

    International Nuclear Information System (INIS)

    Maerk, T.D.

    1977-01-01

    The secondary electron emission of the first dynode of a CuBe alloy sixteen dynode electron multiplier has been studied in the course of electron impact ionization studies of ammonia and phosphine. Relative secondary electron emission coefficients have been obtained for the singly and doubly charged parent and fragment ions of ammonia, ammonia-d 3 , phosphine and phosphine-d 3 for kinetic energies of 5,25 and 10,5 keV. It has been found, that in general deuterated ions have smaller γ coefficients, that ammonia ions have larger γ coefficients than corresponding phosphine ions, and that the γ coefficients increase with the complexity of the ion under study. (Auth.)

  19. Growth and optical characterization of colloidal CdTe nanoparticles capped by a bifunctional molecule

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-sadek, M.S., E-mail: el_sadek_99@email.co [Nanomaterial Laboratory, Physics Department, Faculty of Science, South Valley University, Qena-83523 (Egypt); Crystal Growth Centre, Anna University Chennai, Chennai-600025 (India); Moorthy Babu, S. [Crystal Growth Centre, Anna University Chennai, Chennai-600025 (India)

    2010-08-15

    Thiol-capped CdTe nanoparticles were synthesized in aqueous solution by wet chemical route. CdTe nanoparticles with bifunctional molecule mercaptoacetic acid as a stabilizer were synthesized at pH{approx}11.2 and using potassium tellurite as tellurium source. The effect of refluxing time on the preparation of these samples was measured using UV-vis absorption and photoluminescence analysis. By increasing the refluxing time the UV-vis absorption and photoluminescence results show that the band edge emission is redshifted. The synthesized thiol-capped CdTe were characterized with FT-IR, TEM and TG-DTA. The particle size was calculated by the effective mass approximation (EMA). The role of precursors, their composition, pH and reaction procedure on the development of nanoparticles are analyzed.

  20. Structure-Guided, Single-Point Modifications in the Phosphinic Dipeptide Structure Yield Highly Potent and Selective Inhibitors of Neutral Aminopeptidases

    Energy Technology Data Exchange (ETDEWEB)

    Vassiliou, Stamatia; Węglarz-Tomczak, Ewelina; Berlicki, Łukasz; Pawełczak, Małgorzata; Nocek, Bogusław; Mulligan, Rory; Joachimiak, Andrzej; Mucha, Artur

    2014-10-09

    Seven crystal structures of alanyl aminopeptidase from Neisseria meningitides (the etiological agent of meningitis, NmAPN) complexed with organophosphorus compounds were resolved to determine the optimal inhibitor-enzyme interactions. The enantiomeric phosphonic acid analogs of Leu and hPhe, which correspond to the P1 amino acid residues of well-processed substrates, were used to assess the impact of the absolute configuration and the stereospecific hydrogen bond network formed between the aminophosphonate polar head and the active site residues on the binding affinity. For the hPhe analog, an imperfect stereochemical complementarity could be overcome by incorporating an appropriate P1 side chain. The constitution of P1'-extended structures was rationally designed and the lead, phosphinic dipeptide hPhePψ[CH2]Phe, was modified in a single position. Introducing a heteroatom/heteroatom-based fragment to either the P1 or P1' residue required new synthetic pathways. The compounds in the refined structure were low nanomolar and subnanomolar inhibitors of N. meningitides, porcine and human APNs, and the reference leucine aminopeptidase (LAP). The unnatural phosphinic dipeptide analogs exhibited a high affinity for monozinc APNs associated with a reasonable selectivity versus dizinc LAP. Another set of crystal structures containing the NmAPN dipeptide ligand were used to verify and to confirm the predicted binding modes; furthermore, novel contacts, which were promising for inhibitor development, were identified, including a π-π stacking interaction between a pyridine ring and Tyr372.

  1. Phosphine-catalyzed cycloadditions of allenic ketones: new substrates for nucleophilic catalysis.

    Science.gov (United States)

    Wallace, Debra J; Sidda, Rachel L; Reamer, Robert A

    2007-02-02

    A range of phosphine-catalyzed cycloaddition reactions of allenic ketones have been studied, extending the scope of these processes from the more widely used 2,3-butadienoates to allow access to a number of synthetically useful products. Reaction of allenyl methyl ketone 4 with exo-enones afforded spirocyclic compounds in good regioselectivity and promising enantioselectivity via a [2 + 3] cycloaddtion. Aromatic allenyl ketones undergo a phosphine-promoted dimerization to afford functionalized pyrans, leading to a formal [2 + 4] Diels-Alder product, but did not react in the [2 + 3] cycloaddition. The results from other reactions that had found utility with 2,3-butadienoates are also reported.

  2. Complexation of diphenyl(phenylacetenyl)phosphine to rhodium(III) tetraphenyl porphyrins

    DEFF Research Database (Denmark)

    Stulz, Eugen; Scott, Sonya M; Bond, Andrew D

    2003-01-01

    ). The methylide on rhodium in 3 is not displaced, leading selectively to the mono-phosphine complex (DPAP)(Me)Rh(TPP) (5). The first and second association constants, as determined by isothermal titration calorimetry and UV-vis titrations, are in the range 10(4)-10(7) M(-1) (in CH(2)Cl(2)). Using LDI-TOF mass....... The largest values of DeltaG degrees are found for 6. The thermodynamic and UV-vis data reveal that the methylide and the phosphine ligand have an almost identical electronic trans-influence on the sixth ligand....

  3. The aminoindanol core as a key scaffold in bifunctional organocatalysts

    Directory of Open Access Journals (Sweden)

    Isaac G. Sonsona

    2016-03-01

    Full Text Available The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thioureas, squaramides, quinolinium thioamide, etc. in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel–Crafts alkylation, Michael addition, Diels–Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts.

  4. Bifunctional chelates of Rh-105 and Au-199 as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    Troutner, D.E.; Schlemper, E.O.

    1990-01-01

    Since last year we have: continued the synthesis of pentadentate bifunctional chelating agents based on diethylene triamine; studied the chelation Rh-105, Au-198 (as model for Au-199) and Tc-99m with these agents as well as chelation of Pd-109, Cu-67, In-111, and Co-57 with some of them; synthesized a new class of potential bifunctional chelating agents based on phenylene diamine; investigated the behavior of Au-198 as a model for Au-199; begun synthesis of bifunctional chelating agents based on terpyridly and similar ligands; and continued attempts to produce tetradentate bifunctional chelates based on diaminopropane. Each of these will be addressed in this report

  5. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III)

  6. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  7. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  8. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Baker, Erin M.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  9. Zwitterion enhanced performance in palladium-​phosphine catalyzed ethylene methoxycarbonylation

    DEFF Research Database (Denmark)

    Khokarale, Santosh Govind; Garcia-Suarez, Eduardo J.; Xiong, Jianmin

    2014-01-01

    Zwitterions were used for the first time as promoters in ethylene methoxycarbonylation for the production of methyl propionate. They were found to improve the catalytic performance of the Pd–phosphine system. The presence of zwitterions could contribute to stabilize transition states and active...

  10. The mechanism of the phosphine-free palladium-catalyzed hydroarylation of alkynes

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fabrizi, G.; Cacchi, S.

    2006-01-01

    The mechanism of the Pd-catalyzed hydroarylation and hydrovinylation reaction of alkynes has been studied by a combination of experimental and theoretical methods (B3LYP), with an emphasis on the phosphine-free version. The regioselectivity of the hydroarylation and hydrovinylation shows unexpected...

  11. Cu-Catalyzed Asymmetric Allylic Alkylation of Phosphonates and Phosphine Oxides with Grignard Reagents

    NARCIS (Netherlands)

    Hornillos, Valentin; Perez, Manuel; Fananas-Mastral, Martin; Feringa, Ben L.

    An efficient and highly enantioselective copper-catalyzed allylic alkylation of phosphonates and phosphine oxides with Grignard reagents and Taniaphos or phosphoramidites as chiral ligands is reported. Transformation of these products leads to a variety of new phosphorus-containing chiral

  12. Factors Affecting Energy Barriers for Pyramidal Inversion in Amines and Phosphines: A Computational Chemistry Lab Exercise

    Science.gov (United States)

    Montgomery, Craig D.

    2013-01-01

    An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…

  13. Tri(t-butyl)phosphine-assisted selective hydrosilylation of terminal alkynes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A highly efficient and regio-/stereoselective method of hydrosilylating terminal alkynes was developed using Pt(DVDS)-tri(t-butyl) phosphine catalyst system at room temperature.Trans-products or alpha-products were obtained almost exclusively depending on the alkynes and silanes employed.

  14. LaCl 3. 7H 2 O: An efficient catalyst for the synthesis of phosphinates ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 1 ... Abstract. An expeditious neat procedure was developed for the synthesis of a series of new methyl phenyl heterocyclic phosphinates (3a-l) through Michaelis-Arbuzov reaction by the reaction of various heterocyclic halides (Cl or Br) (1a-l) with dimethyl ...

  15. Intumescent formulations based on lignin and phosphinates for the bio-based textiles

    Science.gov (United States)

    Mandlekar, N.; Cayla, A.; Rault, F.; Giraud, S.; Salaün, F.; Malucelli, G.; Guan, J.

    2017-10-01

    This study investigates new intumescent formulations based on lignin and phosphinates to improve the flame retardant properties of Polyamide 11, while preserving the bio-based characteristics of this latter. Lignin has the advantage of being a bio-based compound and can be effectively used as carbon source for the design of intumescent systems in combination with other flame retardant additives. Metal phosphinates belong to a novel class of phosphorus flame retardants. Despite their increasing use, there is lack of scientific understanding as far as their fire retardancy mechanism is considered, especially in char forming polymeric materials. In this context, Polyamide 11 was melt blended with lignin and metal phosphinates. The possibility of melt spinning the prepared blends were assessed through melt flow index (MFI) tests; thermogravimetric (TG) analyses and cone calorimetry tests were exploited for investigating the thermal stability and the combustion behaviour of the obtained products, respectively. MFI results indicate that some formulations are suitable for melt spinning processes to generate flame retardant multifilament. Furthermore, the combination of lignin and phosphinates provides charring properties to polyamide 11. Finally, cone calorimetry data confirmed that the designed intumescent formulations could remarkably reduce PHRR through formation of protective char layer, hence slowing down the combustion process.

  16. Supported Rh-phosphine complex catalysts for continuous gas-phase decarbonylation of aldehydes

    DEFF Research Database (Denmark)

    Malcho, Phillip; Garcia-Suarez, Eduardo J.; Mentzel, Uffe Vie

    2014-01-01

    Heterogeneous silica supported rhodium-phosphine complex catalysts are employed for the first time in the catalytic decarbonylation of aldehydes in continuous gas-phase. The reaction protocol is exemplified for the decarbonylation of p-tolualdehyde to toluene and further extended to other aromatic...

  17. Effects of Outside Air Temperature on Movement of Phosphine Gas in Concrete Elevator Bins

    Science.gov (United States)

    Studies that measured the movement and concentration of phosphine gas in upright concrete bins over time indicated that fumigant movement was dictated by air currents, which in turn, were a function of the difference between the average grain temperature and the average outside air temperature durin...

  18. Technetium(I) complexes Tc(CO)3BrL2 (L = phosphine, pyridine, isocyanide)

    International Nuclear Information System (INIS)

    Lorenz, B.; Findeisen, M.; Olk, B.; Schmidt, K.

    1988-01-01

    Technetium pentacarbonyl bromide reacts with π-acceptor ligands L (L = phosphine, pyridine, isocyanide) to form disubstituted compounds of the type Tc(CO) 3 BrL 2 . The stereochemistry of the complexes was established by infrared and 1 H-NMR measurement. Chemical shifts and the half-widths of the 99 Tc-NMR signals are discussed. (author)

  19. Occupational phosphine gas poisoning at veterinary hospitals from dogs that ingested zinc phosphide--Michigan, Iowa, and Washington, 2006-2011.

    Science.gov (United States)

    2012-04-27

    Zinc phosphide (Zn3P2) is a readily available rodenticide that, on contact with stomach acid and water, produces phosphine (PH3), a highly toxic gas. Household pets that ingest Zn3P2 often will regurgitate, releasing PH3 into the air. Veterinary hospital staff members treating such animals can be poisoned from PH3 exposure. During 2006-2011, CDC's National Institute for Occupational Safety and Health (NIOSH) received reports of PH3 poisonings at four different veterinary hospitals: two in Michigan, one in Iowa, and one in Washington. Each of the four veterinary hospitals had treated a dog that ingested Zn3P2. Among hospital workers, eight poisoning victims were identified, all of whom experienced transient symptoms related to PH3 inhalation. All four dogs recovered fully. Exposure of veterinary staff members to PH3 can be minimized by following phosphine product precautions developed by the American Veterinary Medical Association (AVMA). Exposure of pets, pet owners, and veterinary staff members to PH3 can be minimized by proper storage, handling, and use of Zn3P2 and by using alternative methods for gopher and mole control, such as snap traps.

  20. Metabolism of aspirin and procaine in mice pretreated with O-4-nitrophenyl methyl(phenyl)phosphinate or O-4-nitrophenyl diphenylphosphinate

    International Nuclear Information System (INIS)

    Joly, J.M.; Brown, T.M.

    1986-01-01

    Concentrations of [carboxyl- 14 C]procaine in blood of mice were increased threefold for 27 min by exposure to O-4-nitrophenyl diphenylphosphinate 2 hr prior to [carboxyl- 14 C]procaine injection ip, while there was no effect of O-4-nitrophenyl methyl(phenyl)phosphinate pretreatment. There was no effect of either organophosphinate on the primary hydrolysis of [acetyl-l- 14 C]aspirin when assessed by the expiration of [ 14 C]carbon dioxide; however, O-4-nitrophenyl diphenylphosphinate pretreatment produced transient increases in blood concentrations of both [carboxyl- 14 C]aspirin and [carboxyl- 14 C]salicylic acid following administration of [carboxyl- 14 C]aspirin. Liver carboxylesterase activity in O-4-nitrophenyl diphenylphosphinate pretreated mice was 11% of control activity. These results indicate the potential for drug interaction with O-4-nitrophenyl diphenylphosphinate but not with O-4-nitrophenyl methyl(phenyl)phosphinate. It appears that liver carboxylesterase activity has a minor role in hydrolysis of aspirin in vivo, but may be more important in procaine metabolism

  1. Arabidopsis RIBA Proteins: Two out of Three Isoforms Have Lost Their Bifunctional Activity in Riboflavin Biosynthesis

    Science.gov (United States)

    Hiltunen, Hanna-Maija; Illarionov, Boris; Hedtke, Boris; Fischer, Markus; Grimm, Bernhard

    2012-01-01

    Riboflavin serves as a precursor for flavocoenzymes (FMN and FAD) and is essential for all living organisms. The two committed enzymatic steps of riboflavin biosynthesis are performed in plants by bifunctional RIBA enzymes comprised of GTP cyclohydrolase II (GCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS). Angiosperms share a small RIBA gene family consisting of three members. A reduction of AtRIBA1 expression in the Arabidopsis rfd1mutant and in RIBA1 antisense lines is not complemented by the simultaneously expressed isoforms AtRIBA2 and AtRIBA3. The intensity of the bleaching leaf phenotype of RIBA1 deficient plants correlates with the inactivation of AtRIBA1 expression, while no significant effects on the mRNA abundance of AtRIBA2 and AtRIBA3 were observed. We examined reasons why both isoforms fail to sufficiently compensate for a lack of RIBA1 expression. All three RIBA isoforms are shown to be translocated into chloroplasts as GFP fusion proteins. Interestingly, both AtRIBA2 and AtRIBA3 have amino acid exchanges in conserved peptides domains that have been found to be essential for the two enzymatic functions. In vitro activity assays of GCHII and DHBPS with all of the three purified recombinant AtRIBA proteins and complementation of E. coli ribA and ribB mutants lacking DHBPS and GCHII expression, respectively, confirmed the loss of bifunctionality for AtRIBA2 and AtRIBA3. Phylogenetic analyses imply that the monofunctional, bipartite RIBA3 proteins, which have lost DHBPS activity, evolved early in tracheophyte evolution. PMID:23203051

  2. Geographic Variation in Phosphine Resistance Among North American Populations of the Red Flour Beetle (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Cato, A J; Elliott, Brent; Nayak, Manoj K; Phillips, Thomas W

    2017-06-01

    The red flour beetle, Tribolium castaneum (Herbst), is a common stored-product pest found worldwide. Phosphine, hydrogen phosphide (PH3), is the most commonly used fumigant for stored grains, for which genetically based resistance has been recorded for several pest species. This study assessed phosphine resistance in 25 T. castaneum populations from across the United States and Canada using a discriminating dose bioassay. Dose-mortality assays were conducted with adults from seven of these populations to categorize weak and strong resistance phenotypes. Phosphine resistance was detected in 12 out of the 25 populations, and the frequency of resistance within populations varied from 2% in Victoria, TX, to 100% in Red Level, AL. Two resistant populations from Kansas that had been sampled three years earlier were found to have similar resistance frequencies in the current study. None of the four Canadian populations had any detectable resistance among the insects tested. Resistance ratio calculations from LC50 value in resistant populations relative to the LC50 for the laboratory susceptible strain allowed resistance phenotypes to be assigned as either weak resistance, at 5- to 26-fold resistance relative to susceptible, or strong resistance at 95- to 127-fold relative to susceptible. This study suggests that proper resistance assessment techniques can help to determine occurrence of phosphine resistance in populations of T. castaneum and can further characterize the strength of resistance present. These data can be used to support resistance management programs that consider either cessation or modification of phosphine fumigation to control T. castaneum. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Interaction of tertiary phosphines with lignin-type, alpha,beta-unsaturated aldehydes in water.

    Science.gov (United States)

    Moiseev, Dmitry V; Patrick, Brian O; James, Brian R; Hu, Thomas Q

    2007-10-29

    To learn more about the bleaching action of pulps by (hydroxymethyl)phosphines, lignin chromophores, such as the alpha,beta-unsaturated aromatic aldehydes, sinapaldehyde, coniferylaldehyde, and coumaraldehyde, were reacted with the tertiary phosphines R2R'P [R = R' = Me, Et, (CH2)3OH, iPr, cyclo-C6H11, (CH2)2CN; R = Me or Et, R' = Ph; R = Ph, R' = Me, m-NaSO3-C6H4] in water at room temperature under argon. In all cases, initial nucleophilic attack of the phosphine occurs at the activated C=C bond to form a zwitterionic monophosphonium species. With the phosphines PR3 [R = Me, Et, (CH2)3OH] and with R2R'P (R = Me or Et, R' = Ph), the zwitterion undergoes self-condensation to give a bisphosphonium zwitterion that can react with aqueous HCl to form the corresponding dichloride salts (as a mixture of R,R- and S,S-enantiomers); X-ray structures are presented for the bisphosphonium chlorides synthesized from the Et3P and Me3P reactions with sinapaldehyde. With the more bulky phosphines, iPr3P, MePPh2, (cyclo-C6H11)3P, and Na[Ph2P(m-SO3-C6H4)], only an equilibrium of the monophosphonium zwitterion with the reactant aldehyde is observed. The weakly nucleophilic [NC(CH2)2]3P does not react with sinapaldehyde. An analysis of some exceptional 1H NMR data within the prochiral phosphorus centers of the bisphosphonium chlorides is also presented.

  4. Achieving bifunctional cloak via combination of passive and active schemes

    Science.gov (United States)

    Lan, Chuwen; Bi, Ke; Gao, Zehua; Li, Bo; Zhou, Ji

    2016-11-01

    In this study, a simple and delicate approach to realizing manipulation of multi-physics field simultaneously through combination of passive and active schemes is proposed. In the design, one physical field is manipulated with passive scheme while the other with active scheme. As a proof of this concept, a bifunctional device is designed and fabricated to behave as electric and thermal invisibility cloak simultaneously. It is found that the experimental results are consistent with the simulated ones well, confirming the feasibility of our method. Furthermore, the proposed method could also be extended to other multi-physics fields, which might lead to potential applications in thermal, electric, and acoustic areas.

  5. New Flame-Retardant Poly(ester-imide)s Containing Phosphine Oxide Moieties in the Main Chain: Synthesis and Properties

    OpenAIRE

    FAGHIHI, Khalil

    2014-01-01

    Six new flame-retardant poly(ester-imide)s (9a-f) with high inherent viscosity and containing phosphine oxide moieties in the main chain were synthesized from the polycondensation reaction of N,N-(3,3-diphenylphenyl phosphine oxide) bistrimellitimide diacid chloride (7) with 6 aromatic diols (8a-f) by 2 different methods:--solution and microwave-assisted polycondensation. The results showed that compared to solution polycondensation, the microwave-assisted polycondensation reaction us...

  6. Influence of bidentate structure of an aryl phosphine oxide ligand on photophysical properties of its Eu~Ⅲ complex

    Institute of Scientific and Technical Information of China (English)

    许辉; 魏莹; 赵保敏; 黄维

    2010-01-01

    The bidentate phosphine oxide ligand 1,8-bis(diphenylphosphino) naphthalene oxide (NAPO) and its EuⅢ complex 1 Eu(TTA)3(NAPO) (TTA=2-thenoyltrifluoroacetonate) were chosen to study the effect of bidentate phosphine oxide ligand on the photophysical properties of the corresponding complex. The intramolecular energy transfer processes of 1 were studied. The investigation showed that with bidentate structure NAPO could suppress solvent-induced quenching by enforcing the ligand-ligand interaction and the rigidi...

  7. Rate and mechanism of facilitated americium(III) transport through a supported liquid membrane containing a bifunctional organophosphorus mobile carrier

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.G.

    1983-01-01

    The facilitated transport of Am(III) from aqueous nitrate solutions to formic acid aqueous solutions through a supported liquid membrane (SLM) is described. The supported liquid membrane consists of a solution of a new (carbamoylmethyl)phosphine oxide in diethylbenzene (DEB) absorbed into a 48 μm thick microporous polypropylene film. The transport mechanism consists of a diffusion process through an aqueous diffusion film, a fast interfacial chemical reaction, and diffusion through the membrane itself. Equations describing the rate of transport are derived. They correlate the membrane permeability coefficient to diffusional parameters and to the chemical composition of the system. Different rate-controlling processes are shown to control the membrane permeability when the composition of the system is varied and as long as the transport occurs. The experimental data are quantitatively explained with the derived equations. The diffusion coefficient of the permeating species and the equilibrium constant of the fast interfacial reactions are evaluated. 13 figures, 1 table

  8. Perspectives in the development of hybrid bifunctional antitumour agents.

    Science.gov (United States)

    Musso, Loana; Dallavalle, Sabrina; Zunino, Franco

    2015-08-15

    In spite of the development of a large number of novel target-specific antitumour agents, the single-agent therapy is in general not able to provide an effective durable control of the malignant process. The limited efficacy of the available agents (both conventional cytotoxic and novel target-specific) reflects not only the expression of defence mechanisms, but also the complexity of tumour cell alterations and the redundancy of survival pathways, thus resulting in tumour cell ability to survive under stress conditions. A well-established strategy to improve the efficacy of antitumour therapy is the rational design of drug combinations aimed at achieving synergistic effects and overcoming drug resistance. An alternative strategy could be the use of agents designed to inhibit simultaneously multiple cellular targets relevant to tumour growth/survival. Among these novel agents are hybrid bifunctional drugs, i.e. compounds resulting by conjugation of different drugs or containing the pharmocophores of different drugs. This strategy has been pursued using various conventional or target-specific agents (with DNA damaging agents and histone deacetylase inhibitors as the most exploited compounds). A critical overview of the most representative compounds is provided with emphasis on the HDAC inhibitor-based hybrid agents. In spite of some promising results, the actual pharmacological advantages of the hybrid agents remain to be defined. This commentary summarizes the recent advances in this field and highlights the pharmacological basis for a rational design of hybrid bifunctional agents. Copyright © 2015. Published by Elsevier Inc.

  9. Rate constant for the reaction of atomic oxygen with phosphine at 298 K

    Science.gov (United States)

    Stief, L. J.; Payne, W. A.; Nava, D. F.

    1987-01-01

    The rate constant for the reaction of atomic oxygen with phosphine has been measured at 298 K using flash photolysis combined with time-resolved detection of O(3P) via resonance fluorescence. Atomic oxygen was produced by flash photolysis of N2O or NO highly diluted in argon. The results were shown to be independent of (PH3), (O), total pressure and the source of O(3P). The mean value of all the experiments is k1 = (3.6 + or -0.8) x 10 to the -11th cu cm/s (1 sigma). Two previous measurements of k1 differed by more than an order of magnitude, and the results support the higher value obtained in a discharge flow-mass spectrometry study. A comparison with rate data for other atomic and free radical reactions with phosphine is presented, and the role of these reactions in the aeronomy or photochemistry of Jupiter and Saturn is briefly considered.

  10. A novel bifunctional Ni-doped TiO2 inverse opal with enhanced SERS performance and excellent photocatalytic activity

    Science.gov (United States)

    Li, Xuehong; Wu, Yun; Shen, Yuhua; Sun, Yan; Yang, Ying; Xie, Anjian

    2018-01-01

    Three-dimensional inverse opal photonic microarray (IOPM) structure exhibits good qualities in structural regularity and interconnectivity, such as high specific surface area, large pore volume, uniform pore size, and ordered periodic construction. Here, a novel nickel-doped titanium dioxide IOPM (Ni-TiO2 IOPM) was fabricated for the first time as a bifunctional material for the applications of surface-enhanced Raman scattering (SERS) substrate and photocatalyst. The Ni doping could change the defect concentration of the substrate to enhance the SERS effect, and could increase the light absorption of the substrate in visible region. The synergistic effect of Ni doping and the periodically ordered porous structure enhanced both SERS sensitivity and photocatalytic activity. As a SERS substrate, the Ni-TiO2 IOPM exhibited highly sensitive detection capability for 4-mercaptobenzoic acid (4-MBA) at a concentration as low as 1 × 10-11 M. Under simulated sunlight, about 95% of the methylene blue (MB) was degraded within 90 min when Ni-TiO2 IOPM was used as the photocatalytst. The Ni-TiO2 IOPM prepared in this work may be a promising bifunctional SERS substrate candidate for organic sewage detection and environment protection. In addition, the fabrication strategy can be extended to synthesize other nanomaterials with orderly and porous structure.

  11. Palladium(II) complexes supported by a bidentate bis(secondary)phosphine linked by pyridine

    KAUST Repository

    Winston, Matthew S.; Bercaw, John E.

    2014-01-01

    A series of complexes of the type (PNP-H2)PdX2 (X=Cl, Br, I) have been synthesized, where PNP-H2 is a bis(secondary)phosphine ligand linked by a pyridine, 2,6-(2'-(Ph(H)P)(C6H4))2(C5H3N). Due to chirality at phosphorus, the parent ligand exists as a

  12. Determination of pKa values of diastereomers of phosphinic pseudopeptides by CZE

    Czech Academy of Sciences Publication Activity Database

    Koval, Dušan; Kašička, Václav; Jiráček, Jiří; Collinsová, Michaela

    2006-01-01

    Roč. 27, č. 23 (2006), s. 4648-4657 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA203/04/0098; GA ČR(CZ) GA203/05/2539 Institutional research plan: CEZ:AV0Z40550506 Keywords : diastereomer separation * phosphinic pseudopeptides * pKa determination Subject RIV: CC - Organic Chemistry Impact factor: 4.101, year: 2006

  13. Redox reactions of [FeFe]-hydrogenase models containing an internal amine and a pendant phosphine.

    Science.gov (United States)

    Zheng, Dehua; Wang, Mei; Chen, Lin; Wang, Ning; Sun, Licheng

    2014-02-03

    A diiron dithiolate complex with a pendant phosphine coordinated to one of the iron centers, [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe2(CO)5}] (1), was prepared and structurally characterized. The pendant phosphine is dissociated together with a CO ligand in the presence of excess PMe3, to afford [(μ-SCH2)2N(CH2C6H4-o-PPh2){Fe(CO)2(PMe3)}2] (2). Redox reactions of 2 and related complexes were studied in detail by in situ IR spectroscopy. A series of new Fe(II)Fe(I) ([3](+) and [6](+)), Fe(II)Fe(II) ([4](2+)), and Fe(I)Fe(I) (5) complexes relevant to Hox, Hox(CO), and Hred states of the [FeFe]-hydrogenase active site were detected. Among these complexes, the molecular structures of the diferrous complex [4](2+) with the internal amine and the pendant phosphine co-coordinated to the same iron center and the triphosphine diiron complex 5 were determined by X-ray crystallography. To make a comparison, the redox reactions of an analogous complex, [(μ-SCH2)2N(CH2C6H5){Fe(CO)2(PMe3)}2] (7), were also investigated by in situ IR spectroscopy in the absence or presence of extrinsic PPh3, which has no influence on the oxidation reaction of 7. The pendant phosphine in the second coordination sphere makes the redox reaction of 2 different from that of its analogue 7.

  14. Diphosphine is an intermediate in the photolysis of phosphine to phosphorus and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, J P; Benson, R [Rensselaer Polytechnic Inst., Troy, NY (USA). Dept. of Chemistry

    1980-05-15

    Photolysis of phosphine (PH/sub 3/) has been investigated because of its potential significance in the atmosphere chemistry of Jupiter. It is reported that P/sub 2/H/sub 4/is the initial product of PH/sub 3/ photolysis and that it is the principal intermediate in the formation of red phosphorus. It is stated that these findings require substantial revision of the previously accepted mechanism for PH/sub 3/ photolysis.

  15. Acute phosphine poisoning on board a bulk carrier: analysis of factors leading to a fatal case.

    Science.gov (United States)

    Loddé, Brice; Lucas, David; Letort, Jean-Marie; Jegaden, Dominique; Pougnet, Richard; Dewitte, Jean-Dominique

    2015-01-01

    To determine accidental factors, clinical presentation and medical care in cases of seafarers presenting phosphine poisoning symptoms on board a bulk carrier. To consider primary prevention of this pathology, which can have extremely severe consequences. To analyse circumstances resulting in toxic exposure to phosphine in the sea transport sector. To obtain information from medical reports regarding the seafarer's rescue. To identify the causes of this accidental poisoning and how to establish an early, appropriate diagnosis thus avoiding other cases. In February 2008, on board a bulk carrier with a cargo of peas, a 56-year-old seafarer with intense abdominal and chest pains, associated with dizziness, was rescued by helicopter 80 miles away from the coast. Despite being admitted rapidly to hospital, his heart rate decreased associated with respiratory distress. He lost consciousness and convulsed. He finally died of pulmonary oedema, major metabolic acidosis and acute multi organ failure. The following day, the captain issued a rescue call from the same vessel for a 41-year-old man also with abdominal pain, vomiting and dizziness. The ECG only revealed type 1 Brugada syndrome. Then 11 other seafarers were evacuated for observation. 3 showed clinical abnormalities. Collective poisoning was suspected. Medical team found out that aluminium phosphide pellets had been put in the ship's hold for pest control before the vessel's departure. Seafarers were poisoned by phosphine gas spreading through cabins above the hold. It was found that the compartments and ducts were not airtight. Unfortunately, a seafarer on board a bulk carrier died in 2008 because of acute phosphine poisoning. Fumigation performed using this gas needs to be done with extreme care. Systematic checks need to be carried out before sailing to ensure that the vessel's compartments are airtight.

  16. Synthesis and Optical Properties of a Dithiolate/Phosphine-Protected Au28 Nanocluster

    KAUST Repository

    Aljuhani, Maha A.

    2016-12-17

    While monothiols and simple phosphines are commonly exploited for size-controlled synthesis of atomically precise gold nanoclusters (NCs), dithiols or dithiol-phosphine combinations are seldom applied. Herein, we used a dithiol (benzene-1,3-dithiol, BDT) and a phosphine (triphenylphosphine, TPP) together as ligands and synthesized an atomically precise gold NC with the formula [Au28(BDT)4(TPP)9]2+. This NC exhibited multiple absorption features and a charge of +2, which are distinctly different from the reported all-thiolated [Au28(SR)20]0 NC (SR: monothiolate). The composition of [Au28(BDT)4(TPP)9]2+ NC was deduced from high-resolution electrospray ionization mass spectrometry (ESI MS) and it was further corroborated by thermogravimetric analysis (TGA). Differential pulse voltammetry (DPV) revealed a HOMO–LUMO gap of 1.27 eV, which is in good agreement with the energy gap of 1.3 eV obtained from its UV–vis spectrum. The successful synthesis of atomically precise, dithiol-protected Au28 NC would stimulate theoretical and experimental research into bidentate ligands as a new path for expanding the library of different metal NCs, which have so far been dominated by monodentate thiols.

  17. High-rate synthesis of phosphine-stabilized undecagold nanoclusters using a multilayered micromixer

    International Nuclear Information System (INIS)

    Jin, Hyung Dae; Chang, Chih-Hung; Garrison, Anna; Tseng, T; Paul, Brian K

    2010-01-01

    Growth in the potential applications of nanomaterials has led to a focus on the development of new manufacturing approaches for these materials. In particular, an increased demand due to the unique properties of nanomaterials requires a substantial yield of high-performance materials and a simultaneous reduction in the environmental impact of these processes. In this paper, a high-rate production of phosphine-stabilized undecagold nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 μm thick was used to step up the production of phosphine-stabilized undecagold nanoclusters. The continuous production of highly monodispersed phosphine-stabilized undecagold nanoclusters at a rate of about 11.8 (mg s -1 ) was achieved using a microreactor with a size of 1.687 cm 3 . This result is about 500 times over conventional batch syntheses based on the production rate per reactor volume.

  18. Extractants for uranium recovery from wet phosphoric acid

    International Nuclear Information System (INIS)

    Musikas, C.; Benjelloun, N.; Lours, S.

    1982-01-01

    Synergistic mixtures containing phosphine oxide plus one of the acidic extractants: dialkyldithiophosphoric acid, dialkylthiophosphoric acid and dialkylphosphoric acid have been compared with respect to U(VI) and Fe(III) extraction from wet phosphoric acid. Distribution curves slope analysis showed that U(VI) extraction mechanisms are totally different. It has been found that U(VI) is extracted as: UO 2 (H 2 PO 4 )(DEHDTP)(TOPO) ; UO 2 (H 2 PO 4 )(DBTP)(POX) 2 and UO 2 (DEHP)(HDEHP) 2 TOPO in dodecane solutions containing di 2 ethylhexyldithiophosphoric acid (HDEHDTP) or dibutylthiophosphoric acid (HDBTP) or di-2-ethylhexylphosphoric acid (HDEHP) plus a phosphine oxide (TOPO or dihexylmethoxyoctylphosphine oxide (POX 11)). The synergistic mixtures containing HDEHDTP gave the highest U(VI) distribution coefficients. Back extraction with oxalic solutions can be achieved only with the synergistic mixtures containing the acidic thiophosphoric donors

  19. The Mycobacterium tuberculosis Rv2540c DNA sequence encodes a bifunctional chorismate synthase

    Directory of Open Access Journals (Sweden)

    Santos Diógenes S

    2008-04-01

    Full Text Available Abstract Background The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB. The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS, molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMNox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and

  20. Pd-catalyzed ethylene methoxycarbonylation with Brønsted acid ionic liquids as promoter and phase-separable reaction media

    DEFF Research Database (Denmark)

    Garcia-Suarez, Eduardo J.; Khokarale, Santosh Govind; Nguyen van Buu, Olivier

    2014-01-01

    Brønsted acid ionic liquids (BAILs) were prepared and applied as combined acid promoters and reaction media in Pd–phosphine catalyzed methoxycarbonylation of ethylene to produce methyl propionate. The BAILs served as alternatives to common mineral acids required for the reaction, e.g. methanesulf......Brønsted acid ionic liquids (BAILs) were prepared and applied as combined acid promoters and reaction media in Pd–phosphine catalyzed methoxycarbonylation of ethylene to produce methyl propionate. The BAILs served as alternatives to common mineral acids required for the reaction, e...

  1. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  2. Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests.

    Science.gov (United States)

    Jagadeesan, Rajeswaran; Nayak, Manoj K

    2017-07-01

    Susceptibility to phosphine (PH 3 ) and sulfuryl fluoride (SF) and cross-resistance to SF were evaluated in two life stages (eggs and adults) of key grain insect pests, Rhyzopertha dominca (F.), Sitophilus oryzae (L.), Cryptolestes ferrugineus (Stephens), and Tribolium castaneum (Herbst). This study was performed with an aim to integrate SF into phosphine resistance management programmes in Australia. Characterisation of susceptibility and resistance to phosphine in eggs and adults showed that C. ferrugineus was the most tolerant as well as resistant species. Mortality responses of eggs and adults to SF at 25 °C revealed T. castaneum to be the most tolerant species followed by S. oryzae, C. ferrugineus and R. dominica. A high dose range of SF, 50.8-62.2 mg L -1 over 48 h, representing c (concentration) × t (time) products of 2438-2985 gh m -3 , was required for complete control of eggs of T. castaneum, whereas eggs of the least tolerant R. dominca required only 630 gh m -3 for 48 h (13.13 mg L -1 ). Mortality response of eggs and adults of phosphine-resistant strains to SF in all four species confirmed the lack of cross-resistance to SF. Our research concludes that phosphine resistance does not confer cross-resistance to SF in grain insect pests irrespective of the variation in levels of tolerance to SF itself or resistance to phosphine in their egg and adult stages. While our study confirms that SF has potential as a 'phosphine resistance breaker', the observed higher tolerance in eggs stresses the importance of developing SF fumigation protocols with longer exposure periods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    International Nuclear Information System (INIS)

    Dadachova, E.; Chappell, L.L.; Brechbiel, M.W.

    1999-01-01

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  4. Biomedical Applications of Gold Nanoparticles Functionalized Using Hetero-Bifunctional Poly(ethylene glycol) Spacer

    National Research Council Canada - National Science Library

    Fu, Wei; Shenoy, Dinesh; Li, Jane; Crasto, Curtis; Jones, Graham; Dimarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor

    2005-01-01

    To increase the targeting potential, circulation time, and the flexibility of surface-attached biomedically-relevant ligands on gold nanoparticles, hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500...

  5. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  6. Design and Testing of Bi-Functional, P-Loop-Targeted MDM2 Inhibitors

    National Research Council Canada - National Science Library

    Prives, Carol L; Stockwell, Brent R

    2007-01-01

    Our proposal is to design and evaluate a novel class of bifunctional MDM2 inhibitors, based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus...

  7. Design and Testing of Bi-Functional, P-Loop-Targeted MDM2 Inhibitors

    National Research Council Canada - National Science Library

    Prives, Carol L

    2006-01-01

    This proposal is to design and evaluate a novel class of bifunctional MDM2 inhibitors, based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus...

  8. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao; Xiong, Liming

    2011-01-01

    has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling

  9. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.

    Science.gov (United States)

    Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2014-07-01

    A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.

    2010-10-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  11. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.; Streuff, Jan; Mukherjee, Herschel; Virgil, Scott C.; Stoltz, Brian M.

    2010-01-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  12. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.

    Science.gov (United States)

    Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy

    2017-05-22

    Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Photoemission on gold-55-clusters derived from gold-phosphine AuP(C6H5)3Cl

    International Nuclear Information System (INIS)

    Quinten, M.; Sander, I.; Steiner, P.; Kreibig, U.; Fauth, K.; Schmid, G.

    1991-01-01

    We measured XPS and UPS spectra of gold clusters with 55 atoms, embedded in an electrically isolating phosphine matrix, and of gold-phosphine, from which the clusters were chemically derived. Compared to the spectra of bulk gold the valence band spectrum and the core level spectra of the clusters showed shifts of the peaks and the fermi level to higher binding energies. The shift of the peaks could qualitatively be interpreted by a final state effect. We succeeded in a separation of bulk and surface contributions to the core level spectra and in a reasonable quantitative analysis of the valence band spectrum of the clusters. The Au 4f core level spectrum of gold-phosphine showed two peaks at 1.5 eV higher binding energies than the corresponding peaks of the clusters. (orig.)

  14. Control of morphology and crystal purity of InP nanowires by variation of phosphine flux during selective area MOMBE

    Science.gov (United States)

    Kelrich, A.; Dubrovskii, V. G.; Calahorra, Y.; Cohen, S.; Ritter, D.

    2015-02-01

    We present experimental results showing how the growth rate, morphology and crystal structure of Au-catalyzed InP nanowires (NWs) fabricated by selective area metal organic molecular beam epitaxy can be tuned by the growth parameters: temperature and phosphine flux. The InP NWs with 20-65 nm diameters are grown at temperatures of 420 and 480 °C with the PH3 flow varying from 1 to 9 sccm. The NW tapering is suppressed at a higher temperature, while pure wurtzite crystal structure is preferred at higher phosphine flows. Therefore, by combining high temperature and high phosphine flux, we are able to fabricate non-tapered and stacking fault-free InP NWs with the quality that other methods rarely achieve. We also develop a model for NW growth and crystal structure which explains fairly well the observed experimental tendencies.

  15. Mechanish of dTTP Inhibition of the Bifunctional dCTP Deaminase:dUTPase Encoded by Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Helt, Signe Smedegaard; Thymark, Majbritt; Harris, Pernille

    2008-01-01

    Recombinant deoxycytidine triphosphate (dCTP) deaminase from Mycobacterium tuberculosis was produced in Escherichia coli and purified. The enzyme proved to be a bifunctional dCTP deaminase:deoxyuridine triphosphatase. As such, the M. tuberculosis enzyme is the second bifunctional enzyme to be cha......Recombinant deoxycytidine triphosphate (dCTP) deaminase from Mycobacterium tuberculosis was produced in Escherichia coli and purified. The enzyme proved to be a bifunctional dCTP deaminase:deoxyuridine triphosphatase. As such, the M. tuberculosis enzyme is the second bifunctional enzyme...

  16. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches.

    Science.gov (United States)

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B

    2018-01-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of

  17. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Max Hirte

    2018-04-01

    Full Text Available Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially

  18. Insights into the bifunctional Aphidicolan-16-ß-ol synthase through rapid biomolecular modelling approaches

    Science.gov (United States)

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B.

    2018-04-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modelling techniques offer an alternative route to study the enzyme’s reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modelling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modelling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789 and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modelling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location

  19. A Search for Phosphine in Circumstellar Envelopes: PH3 in IRC +10216 and CRL 2688?

    Science.gov (United States)

    Tenenbaum, E. D.; Ziurys, L. M.

    2008-06-01

    We present the results of a search for the JK = 10→ 00 transition of PH3 (phosphine) at 267 GHz toward several circumstellar envelopes using the Arizona Radio Observatory 10 m Submillimeter Telescope (SMT). In the carbon-rich shells of IRC +10216 and CRL 2688, we have detected emission lines exactly at the PH3 frequency. Toward the oxygen-rich supergiant VY Canis Majoris, only an upper limit was obtained, while in the evolved carbon-rich proto-planetary nebula CRL 618, the transition is contaminated by vibrationally excited HC3N (ν7 = 4). The line shape in IRC +10216 appears to consist of two distinct components: a flat-topped profile with a width of ~28 km s-1, as is typical for this source, and a narrower feature approximately 4 km s-1 wide. The narrow component likely arises from the inner envelope (r < 8R*) where the gas has not reached the terminal expansion velocity, or it is nonthermal emission. Based on the broader component, the abundance of PH3 with respect to H2 is estimated to be 5 × 10-8 in a region with a radius of r < 150R*. If the narrower component is thermal, it implies a phosphine abundance of ~5 × 10-7 close to the stellar photosphere (r < 8R*). In CRL 2688, the PH3 abundance is less constrained, with plausible values ranging from 3 × 10-8 to 4 × 10-7, assuming a spherical distribution. Phosphine appears to be present in large concentrations in the inner envelope of C-rich AGB stars, and thus may function as a parent molecule for other phosphorus species.

  20. Oxygenated Phosphine Fumigation for Control of Light Brown Apple Moth (Lepidoptera: Tortricidae) Eggs on Cut-Flowers.

    Science.gov (United States)

    Liu, Samuel S; Liu, Yong-Biao; Simmons, Gregory S

    2015-08-01

    Light brown apple moth, Epiphyas postvittana (Walker), eggs were subjected to oxygenated phosphine fumigation treatments under 70% oxygen on cut flowers to determine efficacy and safety. Five cut flower species: roses, lilies, tulips, gerbera daisy, and pompon chrysanthemums, were fumigated in separate groups with 2,500 ppm phosphine for 72 h at 5°C. Egg mortality and postharvest quality of cut flowers were determined after fumigation. Egg mortalities of 99.7-100% were achieved among the cut flower species. The treatment was safe to all cut flowers except gerbera daisy. A 96-h fumigation treatment with 2,200 ppm phosphine of eggs on chrysanthemums cut flowers also did not achieve complete control of light brown apple moth eggs. A simulation of fumigation in hermetically sealed fumigation chambers with gerbera daisy showed significant accumulations of carbon dioxide and ethylene by the end of 72-h sealing. However, oxygenated phosphine fumigations with carbon dioxide and ethylene absorbents did not reduce the injury to gerbera daisy, indicating that it is likely that phosphine may directly cause the injury to gerbera daisy cut flowers. The study demonstrated that oxygenated phosphine fumigation is effective against light brown apple moth eggs. However, it may not be able to achieve the probit9 quarantine level of control and the treatment was safe to most of the cut flower species. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  1. Accidental Phosphine Gas Poisoning with Fatal Myocardial Dysfunction in Two Families

    International Nuclear Information System (INIS)

    Akhtar, S.; Rehman, A.; Haque, A.; Bano, S.

    2015-01-01

    Aluminum phosphide is commonly used as a rodenticide and insecticide and is one of the most fatal poisons. The active ingredient is Phosphine gas which inhibits cytochrome oxidase and cellular oxygen utilization. The clinical symptoms are due to multiorgan involvement including cardiac toxicity which is the most common cause of mortality. Severity of clinical manifestations depends upon the amount of the gas to which a person is exposed. There is no specific antidote available. High index of suspicion and early aggressive treatment is the key to success. We report 2 cases of aluminum phosphide toxicity in 2 families due to incidental exposure after fumigation. (author)

  2. A theoretical study on the photoionization of the valence orbitals of phosphine

    Directory of Open Access Journals (Sweden)

    Nascimento Edmar M.

    2006-01-01

    Full Text Available We report a theoretical study on the photoionization of phosphine in the static-exchange level and frozen core approximation, using the method of continued fractions. The main subject of the present study is to investigate in which extent the Hartree-Fock description of the target applied to molecular photoionization is valid. Also, the role played by multichannel coupling is analysed. Our study shows that single-channel Hartree-Fock calculations can provide reliable results except for photon energies near the photoionization threshold.

  3. Permanent magnetism in phosphine- and chlorine-capped gold: from clusters to nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Marquez, Miguel A., E-mail: miguel.angel@icmse.csic.es; Guerrero, Estefania; Fernandez, Asuncion [Instituto de Ciencia de Materiales de Sevilla (CSIC-US) (Spain); Crespo, Patricia; Hernando, Antonio [Instituto de Magnetismo Aplicado (UCM-ADIF-CSIC) (Spain); Lucena, Raquel; Conesa, Jose C. [Instituto de Catalisis y Petroleoquimica (CSIC) (Spain)

    2010-05-15

    Magnetometry results have shown that gold NPs ({approx}2 nm in size) protected with phosphine and chlorine ligands exhibit permanent magnetism. When the NPs size decreases down to the subnanometric size range, e.g. undecagold atom clusters, the permanent magnetism disappears. The near edge structure of the X-ray absorption spectroscopy data points out that charge transfer between gold and the capping system occurs in both cases. These results strongly suggest that nearly metallic Au bonds are also required for the induction of a magnetic response. Electron paramagnetic resonance observations indicate that the contribution to magnetism from eventual iron impurities can be disregarded.

  4. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  5. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    Science.gov (United States)

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  6. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    Science.gov (United States)

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  7. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy.

    Science.gov (United States)

    Shan, Lingling; Zhuo, Xin; Zhang, Fuwu; Dai, Yunlu; Zhu, Guizhi; Yung, Bryant C; Fan, Wenpei; Zhai, Kefeng; Jacobson, Orit; Kiesewetter, Dale O; Ma, Ying; Gao, Guizhen; Chen, Xiaoyuan

    2018-01-01

    Folate receptor (FR) has proven to be a valuable target for chemotherapy using folic acid (FA) conjugates. However, FA-conjugated chemotherapeutics still have low therapeutic efficacy accompanied with side effects, resulting from complications such as short circulation half-life, limited tumor delivery, as well as high kidney accumulation. Herein, we present a novel FA-conjugated paclitaxel (PTX) prodrug which was additionally conjugated with an Evans blue (EB) derivative for albumin binding. The resulting bifunctional prodrug prolonged blood circulation, enhanced tumor accumulation, and consequently improved tumor therapeutic efficacy. Methods: Fmoc-Cys(Trt)-OH was coupled onto PTX at the 7'-OH position for further synthesis of ester prodrug FA-PTX-EB. The targeting ability was investigated using confocal microscopy and flow cytometry. The pharmacokinetics of this bifunctional compound was also studied. Meanwhile, cell viability was evaluated in normal cells and three cancer cell lines by MTT assay. In vivo therapeutic effect was tested on FR-α overexpressing MDA-MB-231 tumor model. Results: Compared with free PTX, the FA-PTX, PTX-EB and FA-PTX-EB prodrugs increased circulation half-life in mice from 2.19 to 3.82, 4.41, and 7.51 h, respectively. Pharmacokinetics studies showed that the FA-PTX-EB delivered more PTX to tumors than FA-PTX and free PTX. In vitro and in vivo studies demonstrated that FA-EB-conjugated PTX induced potent antitumor activity. Conclusion: FA-PTX-EB showed prolonged blood circulation, enhanced drug accumulation in tumors, higher therapeutic index, and lower side effects than either free PTX or monofunctional FA-PTX and EB-PTX. The results support the potential of using EB for the development of long-acting therapeutics.

  8. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    Science.gov (United States)

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a "Smart" Probe Answer!

    Science.gov (United States)

    Ali, Moussa; Dondaine, Lucile; Adolle, Anais; Sampaio, Carla; Chotard, Florian; Richard, Philippe; Denat, Franck; Bettaieb, Ali; Le Gendre, Pierre; Laurens, Véronique; Goze, Christine; Paul, Catherine; Bodio, Ewen

    2015-06-11

    Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. The in vitro biological action of the gold complexes and the phosphonium derivative were investigated, and a preliminary in vivo study in healthy zebrafish larvae allowed us to evaluate gold complex biodistribution and toxicity. The different analyses carried out showed that these gold complexes were stable and behaved differently from phosphonium and auranofin, both in vitro and in vivo. Two-photon microscopy experiments demonstrated that the cellular targets of these gold complexes are not the same as those of the phosphonium analogue. Moreover, despite similar IC50 values in some cancer cell lines, gold complexes displayed a low toxicity in vivo, in contrast to the phosphonium salt. They are therefore suitable for future in vivo investigations.

  10. Studies on the effects of phosphine on Salmonella enterica serotype Enteritidis in culture medium and in black pepper (Piper nigrum).

    Science.gov (United States)

    Castro, M F P M; Rezende, A C B; Benato, E A; Valentini, S R T; Furlani, R P Z; Tfouni, S A V

    2011-04-01

    The effect of phosphine on Salmonella enterica serotype Enteritidis inoculated in culture medium and in black pepper grains (Piper nigrum), as well as on the reduction of the microbial load of the dried and moisturized product, was verified. The postfumigation effect was verified in inoculated samples with 0.92 and 0.97 water activity (a(w)) exposed to 6 g/m(3) phosphine for 72 h, dried to 0.67 a(w), and stored for 24, 48, and 72 h. No decreases were observed in Salmonella Enteritidis populations in culture medium when fumigant concentrations up to 6 g/m(3) were applied for 48 h at 35°C. However, the colonies showed reductions in size and atypical coloration as the phosphine concentration increased. No reduction in Salmonella counts occurred on the inoculated dried samples after fumigation. On the other hand, when phosphine at concentrations of 6 g/m(3) was applied on moisturized black pepper for 72 h, decreases in Salmonella counts of around 80% were observed. The counts of total aerobic mesophilic bacterium populations of the dried and moisturized black pepper were not affected by the fumigant treatment. The results of the postfumigation studies indicated that Salmonella Enteritidis was absent in the fumigated grains after drying and storage for 72 h, indicating a promising application for this technique. It was concluded that for Salmonella Enteritidis control, phosphine fumigation could be applied to black pepper grains before drying and the producers should rigidly follow good agricultural practices, mainly during the drying process, in order to avoid product recontamination. Additional work is needed to confirm the findings with more Salmonella serotypes and strains.

  11. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    Science.gov (United States)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  12. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    Science.gov (United States)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  13. phosphine oxide

    Indian Academy of Sciences (India)

    School of Chemistry, University of Hyderabad, Gachibowli, Hyderabad 500 046, India e-mail: ... batteries is always in demand to replace the organic liquid electrolyte. Wright and ... by distillation under nitrogen atmosphere. The com- pounds ...

  14. Investigations on synthesis, coordination behaviour and actinide recovery of unexplored phosphine oxides

    International Nuclear Information System (INIS)

    Veerashekhar Goud, E.; Pavankumar, B.B.; Das, Dhrubajyothi

    2016-01-01

    The search for the development of an optimum extractant for effective separation of a particular metal from a mixture is an active field of research in both chemistry and chemical engineering. These extractants find extensive application in extractive metallurgy and in nuclear fuel cycle (for the separation of actinides from other fission products). In the case of the latter, solvent extraction and ion exchange are two widely employed separation techniques. In this connection, the present paper reports synthesis and structural characterization of various new phosphine oxide derivatives. The coordination behavior of these ligands is studied with some selected lanthanides and actinides shows the proposed structures of La(III) and Th(IV) metal complexes. The purity and structural characterization of the ligands and their corresponding metal complexes are analyzed by various analytical and spectroscopic techniques. Additionally, we have applied Density functional theory (DFT) calculations to understand the electronic structure of some metal complexes formed during the extraction process. (author)

  15. Palladium(II) complexes supported by a bidentate bis(secondary)phosphine linked by pyridine

    KAUST Repository

    Winston, Matthew S.

    2014-10-01

    A series of complexes of the type (PNP-H2)PdX2 (X=Cl, Br, I) have been synthesized, where PNP-H2 is a bis(secondary)phosphine ligand linked by a pyridine, 2,6-(2\\'-(Ph(H)P)(C6H4))2(C5H3N). Due to chirality at phosphorus, the parent ligand exists as a mixture of nearly equivalent rac and meso diastereomers non-interconverting at room temperature. When ligated to Pd(II) halides, however, the diastereomeric ratio is dependent upon the halide. The chloro, bromo, and iodo complexes have been characterized crystallographically. Conformationally similar meso diastereomers of each dihalide are roughly C s symmetric in the solid state, while the rac diastereomers (identified only for X=Br, I) show substantially different solid-state conformations. © 2014 Elsevier B.V.

  16. Phosphine reduced IgG. A new method for 99mTc labeling immunoglobulins

    International Nuclear Information System (INIS)

    Arteaga de Murphy, C.; Melendez-Alafort, L.; Martinez-Rivero, O.; Gomez, E.; Ferro-Flores, G.

    1997-01-01

    A new technetium labeling method for immunoglobulins reduced with tris(2-carboxy-ethyl)phosphine hydrochloride is presented. The Sandoglobulina IgG source was assayed for purity and optimum reagent's concentration and incubation times were determined. It was purified by column chromatography and labelled with Sn 2+ reduced technetium in the presence of MDP. The kit is easy to prepare, labeling efficiency is >(97±1.9)% and stable for 6 hours.The immunoreactivity of the 99 Tc-IgG was verified by electrophoresis and Western blot tests. The IgG retained its structure after both the reducing and labeling processes and it was the only labeled species. (author)

  17. Phosphine-functionalized graphene oxide, a high-performance electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Ensafi, Ali A.; Golbon Haghighi, Mohsen; Jafari-Asl, Mehdi

    2018-01-01

    Here, a new approach for the synthesis of phosphine-functionalized graphene oxide (GO-PPh2) was developed. Using a simple method, diphenylphosphine group was linked to the hydroxyl group of OH-functionalized graphene that existing at the graphene surface. The electrochemical activity of GO-PPh2 for electrochemical oxygen reduction was checked. The results demonstrated that the new carbon hybrid material has a powerful potential for electrochemical oxygen reduction reaction (ORR). Moreover, GO-PPh2 as an electrocatalyst for ORR exhibited tolerance for methanol or ethanol as a result of crossover effect. In comparison with commercial Pt/C and Pt/rGO electrocatalysts, results showed that GO-PPh2 has a much higher selectivity, better durability, and much better electrochemical stability towards the ORR. The proposed method based on GO-PPh2 introduce an efficient electrocatalyst for further application in fuel cells.

  18. Phosphine reduced IgG. A new method for {sup 99m}Tc labeling immunoglobulins

    Energy Technology Data Exchange (ETDEWEB)

    Arteaga de Murphy, C; Melendez-Alafort, L [Radiofarmacia Departamento de Medicina Nuclear, Instituto Nacional de Nutricion Salvador Zubiran, Mexico (Mexico); Martinez-Rivero, O [Laboratorio de Quimica Organica, Facultad de Quimica, Universidad de la Habana, Habana (Cuba); Gomez, E [Departamento de Fisiologia de la Nutricion, Instituto Nacional de Nutricion Salvador Zubiran, Mexico (Mexico); Ferro-Flores, G [Depeartamento del Reactor y Materiales Radioactivos, Instituto Nacional de Investigaciones Nucleares, Mexico (Mexico)

    1997-09-01

    A new technetium labeling method for immunoglobulins reduced with tris(2-carboxy-ethyl)phosphine hydrochloride is presented. The Sandoglobulina IgG source was assayed for purity and optimum reagent`s concentration and incubation times were determined. It was purified by column chromatography and labelled with Sn{sup 2+} reduced technetium in the presence of MDP. The kit is easy to prepare, labeling efficiency is >(97{+-}1.9)% and stable for 6 hours.The immunoreactivity of the {sup 99}Tc-IgG was verified by electrophoresis and Western blot tests. The IgG retained its structure after both the reducing and labeling processes and it was the only labeled species. (author). 11 refs.

  19. Time-dependent density functional theory study of the luminescence properties of gold phosphine thiolate complexes.

    Science.gov (United States)

    Guidez, Emilie B; Aikens, Christine M

    2015-04-09

    The origin of the emission of the gold phosphine thiolate complex (TPA)AuSCH(CH3)2 (TPA = 1,3,5-triaza-7-phosphaadamantanetriylphosphine) is investigated using time-dependent density functional theory (TDDFT). This system absorbs light at 3.6 eV, which corresponds mostly to a ligand-to-metal transition with some interligand character. The P-Au-S angle decreases upon relaxation in the S1 and T1 states. Our calculations show that these two states are strongly spin-orbit coupled at the ground state geometry. Ligand effects on the optical properties of this complex are also discussed by looking at the simple AuP(CH3)3SCH3 complex. The excitation energies differ by several tenths of an electronvolt. Excited state optimizations show that the excited singlet and triplet of the (TPA)AuSCH(CH3)2 complex are bent. On the other hand, the Au-S bond breaks in the excited state for the simple complex, and TDDFT is no longer an adequate method. The excited state energy landscape of gold phosphine thiolate systems is very complex, with several state crossings. This study also shows that the formation of the [(TPA)AuSCH(CH3)2]2 dimer is favorable in the ground state. The inclusion of dispersion interactions in the calculations affects the optimized geometries of both ground and excited states. Upon excitation, the formation of a Au-Au bond occurs, which results in an increase in energy of the low energy excited states in comparison to the monomer. The experimentally observed emission of the (TPA)AuSCH(CH3)2 complex at 1.86 eV cannot be unambiguously assigned and may originate from several excited states.

  20. Strong ligand field effects of blue phosphorescent Ir(III) complexes with phenylpyrazole and phosphines.

    Science.gov (United States)

    Park, Se Won; Ham, Ho Wan; Kim, Young Sik

    2012-04-01

    In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.

  1. A comparative evaluation of synergistic extraction behaviour of hexavalent uranium with thenoyl tri-fluoro-acetone (HTTA) and 1-phenyl, 3-methyl, 4-benzoyl pyrazolone-5 (HPMBP) using mono-functional and bi-functional neutral donors

    International Nuclear Information System (INIS)

    Pai, S.A.; Lohithakshan, K.V.; Mithapara, P.D.; Aggarwal, S.K.

    2002-01-01

    Synergistic extraction of hexavalent uranium was studied using acidic extractants HTTA/HPMBP with two different bifunctional neutral donors, DHDECMP and CMPO, from HNO 3 medium at various fixed temperatures. The equilibrium constants for the organic phase addition reaction (log K s ) were correlated with the basicity (K h ) of the neutral donors. The data reported earlier for monofunctional neutral donors (DPSO, TBP, TOPO) were used for the comparison. A linear correlation between log K s and log K h was observed for U(VI)/HTTA/S (S = neutral donor) system. However, in U(VI)/HPMBP/S system, the observed log K s values for bifunctional neutral donors were much lower than those expected from linear correlation. This was attributed to the different mechanisms operative in the synergistic extraction i.e. substitution in the former vs. addition in the latter. These conclusions are also supported by the thermodynamic data obtained in the present studies. Nevertheless, it is seen that bifunctional neutral donors act only as monofunctional with both HTTA and HPMBP. (orig.)

  2. A New Flame-Retardant Polyamide Containing Phosphine Oxide and N,N-(4,4-diphenylether) Moieties in the Main Chain: Synthesis and Characterization

    OpenAIRE

    FAGHIHI, Khalil

    2014-01-01

    A new flame-retardant polyamide containing phosphine oxide moieties in the main chain was synthesized from the solution polycondensation reaction of bis(3-aminophenyl) phenyl phosphine oxide with N,N-(4,4-diphenylether) bis trimellitimide, using thionyl chloride, N-methyl-2-pyrolidone, and pyridine as condensing agents. This new polymer was obtained in high yield (92%), has high inherent viscosity (0.73 dL/g), and was characterized by elemental analysis, FT-IR spectroscopy, thermal gr...

  3. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y.

    Science.gov (United States)

    Wang, Hongliang; Ruan, Hao; Feng, Maoqi; Qin, Yuling; Job, Heather; Luo, Langli; Wang, Chongmin; Engelhard, Mark H; Kuhn, Erik; Chen, Xiaowen; Tucker, Melvin P; Yang, Bin

    2017-04-22

    The synthesis of high-efficiency and low-cost catalysts for hydrodeoxygenation (HDO) of waste lignin to advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, and Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth-abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low-molecular-weight gaseous products. Among these catalysts, Ru-Cu/HY showed the best HDO performance, affording the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably a result of the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, and (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all bifunctional catalysts proved to be superior over the combination catalysts of Ru/Al 2 O 3 and HY zeolite. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Ruan, Hao [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Feng, Maoqi [Chemistry & Chemical Engineering Division, Southwest Research Institute, San Antonio TX 78238 USA; Qin, Yuling [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA; Job, Heather [Pacific Northwest National Laboratory, 902 Battelle Blvd Richland WA 99354 USA; Luo, Langli [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, 3335 Q Ave Richland WA 99354 USA; Kuhn, Erik [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Chen, Xiaowen [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Tucker, Melvin P. [National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO. 80401 USA; Yang, Bin [Department of Biological Systems Engineering, Washington State University, Richland WA 99354 USA

    2017-03-16

    The synthesis of high-efficiency and low-cost multifunctional catalysts for hydrodeoxygenation (HDO) of waste lignin into advanced biofuels is crucial for enhancing current biorefinery processes. Inexpensive transition metals, including Fe, Ni, Cu, Zn, were severally co-loaded with Ru on HY zeolite to form bimetallic and bifunctional catalysts. These catalysts were subsequently tested for HDO conversion of softwood lignin and several lignin model compounds. Results indicated that the inexpensive earth abundant metals could modulate the hydrogenolysis activity of Ru and decrease the yield of low molecular weight gaseous side-products. Among all the prepared catalysts, Ru-Cu/HY showed the best HDO performance, giving the highest selectivity to hydrocarbon products. The improved catalytic performance of Ru-Cu/HY was probably due to the following three factors: (1) high total and strong acid sites, (2) good dispersion of metal species and limited segregation, (3) high adsorption capacity for polar fractions, including hydroxyl groups and ether bonds. Moreover, all the bifunctional catalysts were proven to be superior over the combination catalysts of Ru/Al2O3 and HY zeolite, and this could be attributed to the “intimacy criterion”. The practical use of the designed catalysts would be promising in lignin valorization.

  5. Synthesis, characterization and use of ATRP bifunctional initiator with trichloromethyl end-groups

    Czech Academy of Sciences Publication Activity Database

    Toman, Luděk; Janata, Miroslav; Spěváček, Jiří; Masař, Bohumil; Vlček, Petr; Látalová, Petra

    2002-01-01

    Roč. 43, č. 2 (2002), s. 18-19 ISSN 0032-3934 R&D Projects: GA ČR GA203/01/0513 Institutional research plan: CEZ:AV0Z4050913 Keywords : bifunctional initiator * ATRP polymerization * trichloromethyl end-groups Subject RIV: CD - Macromolecular Chemistry

  6. Bi-functional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides

    DEFF Research Database (Denmark)

    Laursen, Tomas; Stonebloom, Solomon H; Pidatala, Venkataramana R

    2018-01-01

    . Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bi-functionality of AtGALS1 may suggest that plants can produce the incredible structural...

  7. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H [on leave from NTT Laboratories (Japan); Mueller, S; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  8. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    DEFF Research Database (Denmark)

    Li, Hu; Khokarale, Santosh Govind; Kotni, Ramakrishna

    2014-01-01

    carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl...

  9. D-bifunctional protein deficiency associated with drug resistant infantile spasms

    NARCIS (Netherlands)

    Buoni, Sabrina; Zannolli, Raffaella; Waterham, Hans; Wanders, Ronald; Fois, Alberto

    2007-01-01

    Peroxisomal disorders appear with a frequency of about 1:5000 in newborns. Peroxisomal D-bifunctional protein (D-BP), encoded by the HSD17B4 gene (gene ID: 3294; locus tag: HGNC:5213, chromosome 5q2; official symbol: HSD17B4; name: hydroxysteroid (17-beta) dehydrogenase; gene type: protein coding)

  10. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts.

    Science.gov (United States)

    Hong, Do-Young; Miller, Stephen J; Agrawal, Pradeep K; Jones, Christopher W

    2010-02-21

    Pt supported on HY zeolite is successfully used as a bifunctional catalyst for phenol hydrodeoxygenation in a fixed-bed configuration at elevated hydrogen pressures, leading to hydrogenation-hydrogenolysis ring-coupling reactions producing hydrocarbons, some with enhanced molecular weight.

  11. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Science.gov (United States)

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  12. Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction.

    Science.gov (United States)

    Back, Seoin; Kim, Jun-Hyuk; Kim, Yong-Tae; Jung, Yousung

    2016-09-07

    Gold is known currently as the most active single-element electrocatalyst for CO2 electroreduction reaction to CO. In this work, we combine Au with a second metal element, Cu, to reduce the amount of precious metal content by increasing the surface-to-mass ratio and to achieve comparable activity to Au-based catalysts. In particular, we demonstrate that the introduction of a Au-Cu bifunctional "interface" is more beneficial than a simple and conventional homogeneous alloying of Au and Cu in stabilizing the key intermediate species, *COOH. The main advantages of the proposed metal-metal bifunctional interfacial catalyst over the bimetallic alloys include that (1) utilization of active materials is improved, and (2) intrinsic properties of metals are less affected in bifunctional catalysts than in alloys, which can then facilitate a rational bifunctional design. These results demonstrate for the first time the importance of metal-metal interfaces and morphology, rather than the simple mixing of the two metals homogeneously, for enhanced catalytic synergies.

  13. Bifunctional catalysts for the direct production of liquid fuels from syngas

    NARCIS (Netherlands)

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve

  14. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

    Science.gov (United States)

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan

    2017-08-09

    Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β 12 boron monolayer (Ni 1 /β 12 -BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni 1 /β 12 -BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

  15. Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles.

    Science.gov (United States)

    Fu, Gengtao; Yan, Xiaoxiao; Chen, Yifan; Xu, Lin; Sun, Dongmei; Lee, Jong-Min; Tang, Yawen

    2018-02-01

    Electrocatalysts for oxygen-reduction and oxygen-evolution reactions (ORR and OER) are crucial for metal-air batteries, where more costly Pt- and Ir/Ru-based materials are the benchmark catalysts for ORR and OER, respectively. Herein, for the first time Ni is combined with MnO species, and a 3D porous graphene aerogel-supported Ni/MnO (Ni-MnO/rGO aerogel) bifunctional catalyst is prepared via a facile and scalable hydrogel route. The synthetic strategy depends on the formation of a graphene oxide (GO) crosslinked poly(vinyl alcohol) hydrogel that allows for the efficient capture of highly active Ni/MnO particles after pyrolysis. Remarkably, the resulting Ni-MnO/rGO aerogels exhibit superior bifunctional catalytic performance for both ORR and OER in an alkaline electrolyte, which can compete with the previously reported bifunctional electrocatalysts. The MnO mainly contributes to the high activity for the ORR, while metallic Ni is responsible for the excellent OER activity. Moreover, such bifunctional catalyst can endow the homemade Zn-air battery with better power density, specific capacity, and cycling stability than mixed Pt/C + RuO 2 catalysts, demonstrating its potential feasibility in practical application of rechargeable metal-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Structure and potential applications of amido lanthanide complexes chelated by bifunctional b-diketiminate ligand

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Padělková, Z.; Fridrichová, A.; Horáček, Michal; Merna, J.; Růžička, A.

    2014-01-01

    Roč. 759, JUN 2014 (2014), s. 1-10 ISSN 0022-328X R&D Projects: GA ČR GAP106/10/0924 Institutional support: RVO:61388955 Keywords : Bifunctional b-diketiminates * lanthanides * hydroamination Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.173, year: 2014

  17. The influence of tri-n-octyl phosphine oxide and extraction stage on purification of Thorium concentrate

    International Nuclear Information System (INIS)

    M-V-Purwani; Moch-Setyadji

    2015-01-01

    The extraction of thorium oxalate concentrate as processing product of monazite using Tri Octyl Phosphine Oxide (TOPO) has been done. The most impurities contained in thorium oxalate concentrate are Ce (cerium) and La (lanthanum). The purpose of this study is to purify Th by separating Ce and La using extraction process. The extraction is done by batch and multistage. The solution of feed or water phase is 10 grams of Th oxalate concentrate dissolved in 10.08 M HNO 3 so that the volume becomes 100 mL and the organic phase is TOPO in kerosene. Stripping in each stage conducted three times, first stripping use water, second stripping use 5 % oxalic acid and the third stripping use water. Extraction time at every stage is 15 minutes and stripping time at every stage is 5 minutes with ratio of aqueous phase to organic phase = 1 : 1 . The parameters were studied % TOPO - kerosene and number of extraction stage. The optimum usage of TOPO in kerosene is 5 %. On extraction I obtained Ce concentrate and on extraction II and III obtained Th concentrates. The extraction II efficiency of Th is 39.76 % and extraction III efficiency of Th is 26.33 % . Coefficient of distribution (Kd) of Th in stage II is 0.7587 and Kd of Th in stage III is 1.0096. Total extraction efficiency of Th is 80.08 %, total extraction efficiency of Ce is 56.12 %, and total extraction efficiency of La is 1.54 %. The separation factor of Th – Ce in extraction I is 1.00 and separation factor of Th – La in extraction I is 92.0, separation factor of Th – Ce in extraction II is 250.24, and separation factor of Th – La in extraction II is ∞. Separation factor of Th – Ce in extraction III is 124.22 and separation factor of Th – La in extraction III is ∞. Total separation factor of Th – Ce is 1.4270 and total separation factor of Th – La is 4.0459. The content of Th oxalate in stripping product from the extraction II is 97.06 % and in stripping product from the extraction III is 98

  18. Malonamide, phosphine oxide and calix[4]arene functionalized ionic liquids: synthesis and extraction of actinides and lanthanides

    International Nuclear Information System (INIS)

    Ternova, Dariia

    2014-01-01

    Radioactive waste treatment is a crucial problem nowadays. This work was dedicated to the development of the new extracting systems for radionuclides on the basis of 'green' solvents Ionic Liquids (Ils). For this purpose Ils were functionalized with various extracting patterns: phosphine oxide, carbamoyl phosphine oxide groups and malonamide fragment. Also the calix[4]arene platforms were used for the synthesis of functionalized ionic liquids (Fils) and their precursors. The Fils of both types cationic and anionic have been obtained. The synthesized Fils were tested for the liquid-liquid extraction of radionuclides. lt was found that extraction well occurs due to the extracting patterns, however a charge of a modified ion influences extraction.The various extracting experiments and mathematical modelling have been performed to determine the mechanisms of extraction. These studies showed that each extracting system is characterized by a different set of extracting equilibria, based mostly on cationic exchange. (author)

  19. Development of novel highly selective phosphinic pseudopeptide inhibitors of Zn-metalloenzyme betaine: homocysteine S-methyltransferase

    Czech Academy of Sciences Publication Activity Database

    Collinsová, Michaela

    2002-01-01

    Roč. 96, č. 4 (2002), s. 210-211 ISSN 0009-2770. [Sigma-Aldrich konference mladých chemiků, biochemiků a molekulárních biologů. 22.05.2002-25.05.2002, Velké Meziříčí] Institutional research plan: CEZ:AV0Z4055905 Keywords : phosphinic pseudopeptides Subject RIV: CE - Biochemistry

  20. Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Lin, Zekai; Boures, Dean; An, Bing; Wang, Cheng; Lin, Wenbin (UC); (Xiamen)

    2016-08-10

    Mono(phosphine)–M (M–PR3; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal–organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C–H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M–PR3 intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles.

  1. Synthesis and properties of hexafluoroisopropylidene-containing sulfonated poly(arylene thioether phosphine oxide)s for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Longyong; Zhang, Chunjie; Kang, Sen; Tan, Ning; Xiao, Guyu; Yan, Deyue [College of Chemistry and Chemical Engineering, The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2010-03-15

    A series of novel sulfonated poly(arylene thioether phosphine oxide)s with hexafluoroisopropylidene moieties (sPTPOF) were prepared by polycondensation of sulfonated bis(4-fluorophenyl)phenyl phosphine oxide and bis(4-fluorophenyl)phenyl phosphine oxide with 4,4'-(hexafluoroisopropylidene) diphenthiol. The incorporation of hexafluoroisopropylidene moieties to the resulting polymers is effective to increase the hydrophobicity of non-sulfonated segments and to decrease the swelling while maintaining high proton conductivity. For instance, sPTPOF-100 showed a proton conductivity of 0.090 S/cm as well as a swelling of 5.3% at 80 C. In addition, the sPTPOF polymers exhibited excellent thermal properties and oxidative stability. AFM phase images illustrated that the sPTPOF membranes show a special nanophase-separated morphology, namely, the connectivity of ionic channels increased obviously but their width only slightly increased with increasing sulfonation degree. This special microstructure is favorable for promoting proton transport and restraining the swelling. The sPTPOF polymers are a promising material for proton exchange membranes. (author)

  2. Tris(2-ethylhexyl)phosphine oxide as an effective solvent mediator for constructing a serotonin-selective membrane electrode

    International Nuclear Information System (INIS)

    Ueda, Keisuke; Yonemoto, Rei; Komagoe, Keiko; Masuda, Kazufumi; Hanioka, Nobumitsu; Narimatsu, Shizuo; Katsu, Takashi

    2006-01-01

    A series of solvent mediators containing a phosphoryl (P=O) group, such as tris(2-ethylhexyl)phosphate, bis(2-ethylhexyl) 2-ethylhexylphosphonate, 2-ethylhexyl bis(2-ethylhexyl)phosphinate, and tris(2-ethylhexyl)phosphine oxide, were used to construct serotonin-selective membrane electrodes. We found that replacing the alkoxy groups attached to phosphorus atoms in P=O groups with alkyl groups strengthened the response of the electrode to serotonin, suppressing remarkably interference from inorganic cations, such as Na + . Thus, an electrode combining tris(2-ethylhexyl)phosphine oxide with an ion-exchanger, sodium tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate, gave a detection limit of 9 x 10 -6 M with a slope of 55.2 mV per concentration decade in physiological saline containing 150 mM NaCl and 10 mM NaH 2 PO 4 /Na 2 HPO 4 (pH 7.4). This is the best detection limit of any serotonin-selective electrode developed to date. The selectivity of this electrode for serotonin was over 10 3 times that for inorganic cations, such as Na + and K + , and lipophilic quaternary ammonium ions, such as acetylcholine and (C 2 H 5 ) 4 N + . Using the electrode, we measured the amount of serotonin released from platelets and found that the results agreed well with those obtained by a conventional fluorimetric assay of serotonin

  3. ExoMol line lists - VII. The rotation-vibration spectrum of phosphine up to 1500 K

    Science.gov (United States)

    Sousa-Silva, Clara; Al-Refaie, Ahmed F.; Tennyson, Jonathan; Yurchenko, Sergei N.

    2015-01-01

    A comprehensive hot line list is calculated for 31PH3 in its ground electronic state. This line list, called SAlTY, contains almost 16.8 billion transitions between 7.5 million energy levels and it is suitable for simulating spectra up to temperatures of 1500 K. It covers wavelengths longer than 1 μm and includes all transitions to upper states with energies below hc × 18 000 cm-1 and rotational excitation up to J = 46. The line list is computed by variational solution of the Schrödinger equation for the rotation-vibration motion employing the nuclear-motion program TROVE. A previously reported ab initio dipole moment surface is used as well as an updated `spectroscopic' potential energy surface, obtained by refining an existing ab initio surface through least-squares fitting to the experimentally derived energies. Detailed comparisons with other available sources of phosphine transitions confirms SAlTY's accuracy and illustrates the incompleteness of previous experimental and theoretical compilations for temperatures above 300 K. Atmospheric models are expected to severely underestimate the abundance of phosphine in disequilibrium environments, and it is predicted that phosphine will be detectable in the upper troposphere of many substellar objects. This list is suitable for modelling atmospheres of many astrophysical environments, namely carbon stars, Y dwarfs, T dwarfs, hot Jupiters and Solar system gas giant planets. It is available in full from the Strasbourg data centre, CDS, and at www.exomol.com.

  4. Insights into functional-group-tolerant polymerization catalysis with phosphine-sulfonamide palladium (II) complexes

    KAUST Repository

    Jian, Zhongbao

    2014-12-08

    Two series of cationic palladium(II) methyl complexes {[(2-MeOC6H4)2PC6H4SO2NHC6H3(2,6-R1,R2)]PdMe}2[A]2 (X1+-A: R1=R2=H: H1+-A; R1=R2=CH(CH3)2: DIPP1+-A; R1=H, R2=CF3: CF31+-A; A=BF4 or SbF6) and neutral palladium(II) methyl complexes {[(2-MeOC6H4)2PC6H4SO2NC6H3(2,6-R1,R2)]PdMe(L)} (X1-acetone: L=acetone; X1-dmso: L=dimethyl sulfoxide; X1-pyr: L=pyridine) chelated by a phosphine-sulfonamide were synthesized and fully characterized. Stoichiometric insertion of methyl acrylate (MA) into all complexes revealed that a 2,1 regiochemistry dominates in the first insertion of MA. Subsequently, for the cationic complexes X1+-A, β-H elimination from the 2,1-insertion product X2+-AMA-2,1 is overwhelmingly favored over a second MA insertion to yield two major products X4+-AMA-1,2 and X5+-AMA. By contrast, for the weakly coordinated neutral complexes X1-acetone and X1-dmso, a second MA insertion of the 2,1-insertion product X2MA-2,1 is faster than β-H elimination and gives X3MA as major products. For the strongly coordinated neutral complexes X1-pyr, no second MA insertion and no β-H elimination (except for DIPP2-pyrMA-2,1) were observed for the 2,1-insertion product X2-pyrMA-2,1. The cationic complexes X1+-A exhibited high catalytic activities for ethylene dimerization, affording butenes (C4) with a high selectivity of up to 97.7% (1-butene: 99.3%). Differences in activities and selectivities suggest that the phosphine-sulfonamide ligands remain coordinated to the metal center in a bidentate fashion in the catalytically active species. By comparison, the neutral complexes X1-acetone, X1-dmso, and X1-pyr showed very low activity towards ethylene to give traces of oligomers. DFT analyses taking into account the two possible coordination modes (O or N) of the sulfonamide ligand for the cationic system CF31+ suggested that the experimentally observed high activity in ethylene dimerization is the result of a facile first ethylene insertion into the O-coordinated PdMe isomer and

  5. Bi-functional modified-phosphate catalyzed the synthesis of α-α′-(EE)-bis(benzylidene)-cycloalkanones: Microwave versus conventional-heating

    KAUST Repository

    Solhy, Abderrahim

    2011-02-01

    The impregnation of hydroxyapatite (HAP) by NaNO3 leads to a modified-hydroxyapatite which has a bi-functional acid-base property. Sodium-modified-hydroxyapatite (Na-HAP) efficiently catalyzed the cross-aldol condensation of arylaldehydes and cycloketones to afford α-α′- (EE)-bis(benzylidene)-cycloalkanones in good yields under microwave irradiation. Moreover, the methodology described in this paper provides a very easy and efficient synthesis carried out in water as the greenest available solvent under conventional heating. A comparison study between these two different modes of heating was investigated. The catalyst was easily recovered and efficiently re-used. © 2010 Elsevier B.V.

  6. Catalytic characterization of bi-functional catalysts derived from Pd ...

    Indian Academy of Sciences (India)

    Unknown

    1995; Lyubovsky and Pfefferle 1999; Sales et al 1999;. Hill et al 2000). ... For a catalytic system, whose activity ... catalytic systems containing Pd, supported on various acid- ..... Further studies are needed to optimize a balance between.

  7. Free atmospheric phosphine concentrations and fluxes in different wetland ecosystems, China

    International Nuclear Information System (INIS)

    Han Chao; Geng Jinju; Hong Yuning; Zhang Rui; Gu Xueyuan; Wang Xiaorong; Gao Shixiang; Glindemann, Dietmar

    2011-01-01

    Atmospheric phosphine (PH 3 ) fluxes from typical types of wetlands and PH 3 concentrations in adjacent atmospheric air were measured. The seasonal distribution of PH 3 in marsh and paddy fields were observed. Positive PH 3 fluxes are significantly related to high air temperature (summer season) and increased vegetation. It is concluded that vegetation speeds up the liberation of PH 3 from soils, while water coverage might function as a diffusion barrier from soils or sediments to the atmosphere. The concentrations of atmospheric PH 3 (ng m -3 ) above different wetlands decrease in the order of paddy fields (51.8 ± 3.1) > marsh (46.5 ± 20.5) > lake (37.0 ± 22.7) > coastal wetland (1.71 ± 0.73). Highest atmospheric PH 3 levels in marsh are found in summer. In paddy fields, atmospheric PH 3 concentrations in flourishing stages are higher than those in slowly growing stages. - Research highlights: → P could migrate as PH 3 gas in different wetland ecosystems. → Wetlands act as a source and sink of atmospheric PH 3 . → Positive PH 3 fluxes are significantly related to high temperature and increased vegetation. → Environmental PH 3 concentrations in China are generally higher. - Environmental PH 3 concentrations in China are generally higher compared to other parts of the world.

  8. 153Sm -DOTA-phosphine-ruthenium and gold bimetallic complexes as new radio-theranostics

    International Nuclear Information System (INIS)

    Adriaenssens, L.; Liu, Q.; Picquet, F.; Picquet, M.; Denat, F.; Le Gendre, P.; Bodio, E.; Mendes, F.; Campello, P.; Marques, F.; Marques, C.; Gano, L.; Santos, I.

    2015-01-01

    Full text of publication follows. Since the pioneer discovery of cisplatin for biological applications by Rosenberg in the 1960's [Ref.1] metal complexes have become the most currently investigated and used class of compounds in cancer chemotherapy [Ref.2]. However in most cases, their mechanisms of action are still poorly understood. Imaging drugs aimed at understanding their mechanism of action and studying their pharmacokinetics is thus one of the key challenges of medicinal chemists today. To take up this challenge new DOTA-phosphine compounds were synthesized. It is a versatile tool to image organometallic complexes, and allowed the access to an unprecedented family of theranostics featuring Au and Ru complexes for the therapeutic moiety and 153 Sm for the imaging part. The radiolabelling of the ligand was studied and the stability of corresponding complexes was evaluated. Their cytotoxicity was also tested on cancer cells, and their biodistribution was determined in vivo. References: [1] Rosenberg, B.; VanCamp, L.; Krigas, T., Inhibition of Cell Division in Escherichia coli by Electrolysis Products from a Platinum Electrode, Nature 1965, 205, 698-699; [2] Zhang, C. X.; Lippard, S. J., New metal complexes as potential therapeutics, Curr. Opin. Chem. Biol. 2003, 7, 481-489. (authors)

  9. Phosphine Plasma Activation of α-Fe 2 O 3 for High Energy Asymmetric Supercapacitors

    KAUST Repository

    Liang, Hanfeng

    2018-04-12

    We report a phosphine (PH3) plasma activation strategy for significantly boosting the electrochemical performance of supercapacitor electrodes. Using Fe2O3 as a demonstration, we show that the plasma activation simultaneously improves the conductivity, creates atomic-scale vacancies (defects), as well as increases active surface area, and thus leading to a greatly enhanced performance with a high areal capacitance of 340 mF cm-2 at 1 mA cm-2, compared to 66 mF cm-2 of pristine Fe2O3. Moreover, the asymmetric supercapacitor devices based on plasma-activated Fe2O3 anodes and electrodeposited MnO2 cathodes can achieve a high stack energy density of 0.42 mWh cm-3 at a stack power density of 10.3 mW cm-3 along with good stability (88% capacitance retention after 9000 cycles at 10 mA cm-2). Our work provides a simple yet effective strategy to greatly enhance the electrochemical performance of Fe2O3 anodes and to further promote their application in asymmetric supercapacitors.

  10. Rhodium Phosphine-π-Arene Intermediates in the Hydroamination of Alkenes

    Science.gov (United States)

    Liu, Zhijian; Yamamichi, Hideaki; Madrahimov, Sherzod T.; Hartwig, John F.

    2011-01-01

    A detailed mechanistic study of the intramolecular hydroamination of alkenes with amines catalyzed by rhodium complexes of a biaryldialkylphosphine are reported. The active catalyst is shown to contain the phosphine ligand bound in a κ1, η6 form in which the arene is π-bound to rhodium. Addition of deuterated amine to an internal olefin showed that the reaction occurs by trans addition of the N-H bond across the C=C bond, and this stereochemistry implies that the reaction occurs by nucleophilic attack of the amine on a coordinated alkene. Indeed, the cationic rhodium fragment binds the alkene over the secondary amine, and the olefin complex was shown to be the catalyst resting state. The reaction was zero-order in substrate, when the concentration of olefin was high, and a primary isotope effect was observed. The primary isotope effect, in combination with the observation of the alkene complex as the resting state, implies that nucleophilic attack of the amine on the alkene is reversible and is followed by turnover-limiting protonation. This mechanism constitutes an unusual pathway for rhodium-catalyzed additions to alkenes and is more closely related to the mechanism for palladium-catalyzed addition of amide N-H bonds to alkenes. PMID:21309512

  11. Bright electroluminescence from a chelate phosphine oxide Eu{sup III} complex with high thermal performance

    Energy Technology Data Exchange (ETDEWEB)

    Xu Hui [School of Chemistry and Materials, Heilongjiang University, 74 Xuefu Road, Nangang District, Harbin 150080, Heilongjiang Province (China); Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 21003, Jiangsu Province (China); Yin Kun; Wang Lianhui [Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 66 Xinmofan Road, Nanjing 21003, Jiangsu Province (China); Huang Wei [Institute of Advanced Materials (IAM), Fudan University, 220 Handan Road, Shanghai 200433 (China)], E-mail: wei-huang@njupt.edu.cn

    2008-10-01

    The chelate phosphine oxide ligand 1,8-bis(diphenylphosphino)naphthalene oxide (NaPO) was used to prepare complex 1 tris(2-thenoyltrifluoroacetonate)(1,8-bis(diphenylphosphino)naphthalene oxide)europium(III). The rigid structure of NaPO makes 1 have more compact structure resulting in a temperature of glass transition as high as 147 deg. C, which is the highest in luminescent Eu{sup III} complexes, and a higher decomposition temperature of 349 deg. C. The improvement of carrier transfer ability of NaPO was proved by Gaussian simulation. The multi-layered electroluminescent device based on 1 had a low turn-on voltage of 6.0 V, the maximum brightness of 601 cd m{sup -2} at 21.5 V and 481.4 mA cm{sup -2}, and the excellent voltage-independent spectral stability. These properties demonstrated NaPO cannot only be favorable to form the rigid and compact complex structure, and increase the thermal and morphological stability of the complex, but also reduce the formation of the exciplex.

  12. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Anjum, Dalaver Hussain; Abdel-Azeim, Safwat; Cavallo, Luigi; Garcia Esparza, Angel T.; Domen, Kazunari; Xu, Wei; Takanabe, Kazuhiro

    2014-01-01

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  15. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  16. Loop Replacement Enhances the Ancestral Antibacterial Function of a Bifunctional Scorpion Toxin

    Directory of Open Access Journals (Sweden)

    Shangfei Zhang

    2018-06-01

    Full Text Available On the basis of the evolutionary relationship between scorpion toxins targeting K+ channels (KTxs and antibacterial defensins (Zhu S., Peigneur S., Gao B., Umetsu Y., Ohki S., Tytgat J. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Mol. Biol. Evol. 2014, 31, 546–559, we performed protein engineering experiments to modify a bifunctional KTx (i.e., weak inhibitory activities on both K+ channels and bacteria via substituting its carboxyl loop with the structurally equivalent loop of contemporary defensins. As expected, the engineered peptide (named MeuTXKα3-KFGGI remarkably improved the antibacterial activity, particularly on some Gram-positive bacteria, including several antibiotic-resistant opportunistic pathogens. Compared with the unmodified toxin, its antibacterial spectrum also enlarged. Our work provides a new method to enhance the antibacterial activity of bifunctional scorpion venom peptides, which might be useful in engineering other proteins with an ancestral activity.

  17. Chiral 2-Aminobenzimidazole as Bifunctional Catalyst in the Asymmetric Electrophilic Amination of Unprotected 3-Substituted Oxindoles

    Directory of Open Access Journals (Sweden)

    Llorenç Benavent

    2018-06-01

    Full Text Available The use of readily available chiral trans-cyclohexanediamine-benzimidazole derivatives as bifunctional organocatalysts in the asymmetric electrophilic amination of unprotected 3-substituted oxindoles is presented. Different organocatalysts were evaluated; the most successful one contained a dimethylamino moiety (5. With this catalyst under optimized conditions, different oxindoles containing a wide variety of substituents at the 3-position were aminated in good yields and with good to excellent enantioselectivities using di-tert-butylazodicarboxylate as the aminating agent. The procedure proved to be also efficient for the amination of 3-substituted benzofuranones, although with moderate results. A bifunctional role of the catalyst, acting as Brønsted base and hydrogen bond donor, is proposed according to the experimental results observed.

  18. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Wang, Mingbo [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); She, Zhending [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China); Fan, Kunwu; Xu, Cheng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Chu, Bin; Chen, Changsheng [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shi, Shengjun, E-mail: shengjunshi@yahoo.com [The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China); Tan, Rongwei, E-mail: tanrw@landobiom.com [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China)

    2015-07-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation.

  19. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    International Nuclear Information System (INIS)

    Wang, Feng; Wang, Mingbo; She, Zhending; Fan, Kunwu; Xu, Cheng; Chu, Bin; Chen, Changsheng; Shi, Shengjun; Tan, Rongwei

    2015-01-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation

  20. Synthesis of High Purity Nonsymmetric Dialkylphosphinic Acid Extractants.

    Science.gov (United States)

    Wang, Junlian; Xie, Meiying; Liu, Xinyu; Xu, Shengming

    2017-10-19

    We present the synthesis of (2,3-dimethylbutyl)(2,4,4'-trimethylpentyl)phosphinic acid as an example to demonstrate a method for the synthesis of high purity nonsymmetric dialkylphosphinic acid extractants. Low toxic sodium hypophosphite was chosen as the phosphorus source to react with olefin A (2,3-dimethyl-1-butene) to generate a monoalkylphosphinic acid intermediate. Amantadine was adopted to remove the dialkylphosphinic acid byproduct, as only the monoalkylphosphinic acid can react with amantadine to form an amantadine∙mono-alkylphosphinic acid salt, while the dialkylphosphinic acid cannot react with amantadine due to its large steric hindrance. The purified monoalkylphosphinic acid was then reacted with olefin B (diisobutylene) to yield nonsymmetric dialkylphosphinic acid (NSDAPA). The unreacted monoalkylphosphinic acid can be easily removed by a simple base-acid post-treatment and other organic impurities can be separated out through the precipitation of the cobalt salt. The structure of the (2,3-dimethylbutyl)(2,4,4'-trimethylpentyl)phosphinic acid was confirmed by 31 P NMR, 1 H NMR, ESI-MS, and FT-IR. The purity was determined by a potentiometric titration method, and the results indicate that the purity can exceed 96%.

  1. Gas chromatography of alkylphosphonic and dialkylphosphinic acids

    International Nuclear Information System (INIS)

    Gasco, L.; Barrera, R.; Ramirez, A.; Martin Munoz, N.

    1978-01-01

    After carrying out an optimization study on the separation conditions for the TMS-derivatives, of the hexyl-, cyclohexyl-, heptyl-, and octyl-phosphonic acids; dihexyl-, dicyclohexyl-, heptyl-, and octyl-phosphinic acids, and dioctylphosphine oxide, their retention indices (I) at two temperatures and on the 0V-1 and 0V-17 stationary phase were determined. Correlations between I and molecular structure were established. Calibration factors of these compounds in the flame ionization detector were studied, and the results analized taking into account the variables afecting the quantitative results. These results were unbiased but they had a lower precission than usually achieveble in gas chromatography. (author)

  2. Hydro-isomerization of n-hexane on bi-functional catalyst: Effect of total and hydrogen partial pressures

    Science.gov (United States)

    Thoa, Dao Thi Kim; Loc, Luu Cam

    2017-09-01

    The effect of both total pressure and hydrogen partial pressure during n-hexane hydro-isomerization over platinum impregnated on HZSM-5 was studied. n-Hexane hydro-isomerization was conducted at atmospheric pressure and 0.7 MPa to observe the influence of total pressure. In order to see the effect of hydrogen partial pressure, the reaction was taken place at different partial pressure of hydrogen varied from 307 hPa to 718 hPa by dilution with nitrogen to keep the total pressure at 0.1 MPa. Physico-chemical characteristics of catalyst were determined by the methods of nitrogen physi-sorption BET, SEM, XRD, TEM, NH3-TPD, TPR, and Hydrogen Pulse Chemi-sorption. Activity of catalyst in the hydro-isomerization of n-hexane was studied in a micro-flow reactor in the temperature range of 225-325 °C; the molar ratio H2/ hydrocarbon: 5.92, concentration of n-hexane: 9.2 mol.%, GHSV 2698 h-1. The obtained catalyst expressed high acid density, good reducing property, high metal dispersion, and good balance between metallic and acidic sites. It is excellent contact for n-hexane hydro-isomerization. At 250 °C, n-hexane conversion and selectivity were as high as 59-76 % and 85-99 %, respectively. It was found that catalytic activity was promoted either by total pressure or hydrogen partial pressure. At total pressure of 0.7 MPa while hydrogen partial pressure of 718 hPa, catalyst produced 63 RON liquid product containing friendly environmental iso-paraffins which is superior blending stock for green gasoline. Hydrogen did not only preserve catalyst actives by depressing hydrocracking and removing coke precursors but also facilitated hydride transfer step in the bi-functional bi-molecular mechanism.

  3. Influence of environmental, structural, and behavioral factors on the presence of phosphine in worker areas during fumigations in grain elevators.

    Science.gov (United States)

    Reed, C

    2001-02-01

    Data-logging gas monitors with electrochemical cells sensitive to phosphine (PH3) were used to characterize concentrations of this common grain fumigant in and around grain elevators during fumigations. Twenty-four grain fumigations were observed, and each was monitored over a 5- to 8-day period. Phosphine gas, generated from aluminum phosphide fumigant applied to the grain, generally moved upward toward the grain surface and exited the bin at bin-top openings to the outside air or to enclosed worker areas. The upward air currents appeared to be the result of chimney effects, e.g., pressure differences resulting from buoyant air inside the warm grain and cooler, denser, ambient air. Significant wind effects on the PH3 concentration were also observed in the air between the grain surface and the bin roof. In enclosed areas located at the bin-top level, monitors located near the fill port or the fumigant dispenser recorded PH3 concentrations in excess of the exposure limit of 0.3 parts per million (ppm) about 35% of the time during grain fumigations. Phosphine concentrations between 0.31 and 1.0 ppm were observed 17.3% of the time, and concentrations in the ranges of 1.01-3.0, 3.01-10.0, and >10 ppm constituted 11.8%, 5.5%, and 0.3% of all readings, respectively, in bin-top worker areas. The likelihood of recording PH3 concentrations >0.3 ppm depended on ventilation practices. Fans in tunnels and open windows at aboveground locations appeared to greatly reduce the likelihood of high PH3 concentrations in enclosed areas.

  4. Phosphine Resistance in Adult and Immature Life Stages of Tribolium castaneum (Coleoptera: Tenebrionidae) and Plodia interpunctella (Lepidoptera: Pyralidae) Populations in California.

    Science.gov (United States)

    Gautam, S G; Opit, G P; Hosoda, E

    2016-12-01

    Phosphine resistance in stored-product insects occurs worldwide and is a major challenge to continued effective use of this fumigant. We determined resistance frequencies and levels of resistance in Tribolium castaneum and Plodia interpunctella collected from California almond storage and processing facilities. Discriminating doses of phosphine were established for eggs and larvae of P. interpunctella and eggs of T. castaneum using laboratory susceptible strains of the two species. For T. castaneum and P. interpunctella eggs, discriminating doses were 62.4 and 107.8 ppm, respectively, over a 3-d fumigation period, and for P. interpunctella larvae, discriminating dose was 98.7 ppm over a 20-h fumigation period. Discriminating dose tests on adults and eggs showed that 4 out of 11 T. castaneum populations tested had resistance frequencies that ranged from 42 to 100% for adults and 54 to 100% for eggs. LC99 values for the susceptible and the most resistant adults of T. castaneum were 7.4 and 356.9 ppm over 3 d, respectively. LC99 values for T. castaneum eggs were 51.5 and 653.9 ppm, respectively. Based on adult data, the most resistant T. castaneum beetle population was 49× more resistant than the susceptible strain. Phosphine resistance frequencies in P. interpunctella eggs ranged from 4 to 20%. Results show phosphine resistance is present in both species in California. Future research will investigate phosphine resistance over a wider geographic area. In addition, the history of pest management practices in facilities where insects tested in this study originated will be determined in order to develop phosphine resistance management strategies for California almond storage and processing facilities. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Insights into functional-group-tolerant polymerization catalysis with phosphine-sulfonamide palladium(II) complexes.

    Science.gov (United States)

    Jian, Zhongbao; Falivene, Laura; Wucher, Philipp; Roesle, Philipp; Caporaso, Lucia; Cavallo, Luigi; Göttker-Schnetmann, Inigo; Mecking, Stefan

    2015-01-26

    Two series of cationic palladium(II) methyl complexes {[(2-MeOC6 H4 )2 PC6 H4 SO2 NHC6 H3 (2,6-R(1) ,R(2) )]PdMe}2 [A]2 ((X) 1(+) -A: R(1) =R(2) =H: (H) 1(+) -A; R(1) =R(2) =CH(CH3 )2 : (DIPP) 1(+) -A; R(1) =H, R(2) =CF3 : (CF3) 1(+) -A; A=BF4 or SbF6 ) and neutral palladium(II) methyl complexes {[(2-MeOC6 H4 )2 PC6 H4 SO2 NC6 H3 (2,6-R(1) ,R(2) )]PdMe(L)} ((X) 1-acetone: L=acetone; (X) 1-dmso: L=dimethyl sulfoxide; (X) 1-pyr: L=pyridine) chelated by a phosphine-sulfonamide were synthesized and fully characterized. Stoichiometric insertion of methyl acrylate (MA) into all complexes revealed that a 2,1 regiochemistry dominates in the first insertion of MA. Subsequently, for the cationic complexes (X) 1(+) -A, β-H elimination from the 2,1-insertion product (X) 2(+) -AMA-2,1 is overwhelmingly favored over a second MA insertion to yield two major products (X) 4(+) -AMA-1,2 and (X) 5(+) -AMA . By contrast, for the weakly coordinated neutral complexes (X) 1-acetone and (X) 1-dmso, a second MA insertion of the 2,1-insertion product (X) 2MA-2,1 is faster than β-H elimination and gives (X) 3MA as major products. For the strongly coordinated neutral complexes (X) 1-pyr, no second MA insertion and no β-H elimination (except for (DIPP) 2-pyrMA-2,1 ) were observed for the 2,1-insertion product (X) 2-pyrMA-2,1 . The cationic complexes (X) 1(+) -A exhibited high catalytic activities for ethylene dimerization, affording butenes (C4 ) with a high selectivity of up to 97.7 % (1-butene: 99.3 %). Differences in activities and selectivities suggest that the phosphine-sulfonamide ligands remain coordinated to the metal center in a bidentate fashion in the catalytically active species. By comparison, the neutral complexes (X) 1-acetone, (X) 1-dmso, and (X) 1-pyr showed very low activity towards ethylene to give traces of oligomers. DFT analyses taking into account the two possible coordination modes (O or N) of the sulfonamide ligand for the cationic system (CF3) 1(+) suggested

  6. Cancer cell death induced by phosphine gold(I) compounds targeting thioredoxin reductase.

    Science.gov (United States)

    Gandin, Valentina; Fernandes, Aristi Potamitou; Rigobello, Maria Pia; Dani, Barbara; Sorrentino, Francesca; Tisato, Francesco; Björnstedt, Mikael; Bindoli, Alberto; Sturaro, Alberto; Rella, Rocco; Marzano, Cristina

    2010-01-15

    The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (nicotinamide adenine dinucleotide phosphate), plays a central role in regulating cellular redox homeostasis and signaling pathways. TrxR, overexpressed in many tumor cells and contributing to drug resistance, has emerged as a new target for anticancer drugs. Gold complexes have been validated as potent TrxR inhibitors in vitro in the nanomolar range. In order to obtain potent and selective TrxR inhibitors, we have synthesized a series of linear, 'auranofin-like' gold(I) complexes all containing the [Au(PEt(3))](+) synthon and the ligands: Cl(-), Br(-), cyanate, thiocyanate, ethylxanthate, diethyldithiocarbamate and thiourea. Phosphine gold(I) complexes efficiently inhibited cytosolic and mitochondrial TrxR at concentrations that did not affect the two related oxidoreductases glutathione reductase (GR) and glutathione peroxidase (GPx). The inhibitory effect of the redox proteins was also observed intracellularly in cancer cells pretreated with gold(I) complexes. Gold(I) compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis. Pharmacodynamic studies in human ovarian cancer cells allowed for the correlation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.

  7. Reaction of urea thiourea and their derivatives with tertiary phosphine transition metal halides

    International Nuclear Information System (INIS)

    Adam, Eltayeb Mahala

    2000-03-01

    This thesis describes preparation characterization and some properties of a number of new compounds such as (ph 3 p)2 ML where M= cobalt (11), nickel (11), and copper (11), and L= urea, thiourea, phenylthiourea, sym diphenylurea and sym diphenylthiourea.These compounds have been prepared according according to the reaction of dichloro bis (triphenylphosphine) transition metal with urea, thiourea or some of their derivative ligands in 1:1 molar ratio.The work in this thesis is divided into three section firstly:- In the introduction chapter part one includes general definitions of coordination chemistry and related compounds and abroad definition of transition elements.Part two includes the theoretical back ground about transition metal complexes having urea, thiourea or some of their substituted derivative ligands.Part two also discusses the type of bonding between these ligands and the transition metal atom.Secondly: Chapter two describes the general techniques followed in this work such as purification of solvents recrystallization, preparation of starting materials and also gives full detailed procedures of the preparation of a number of new compounds.Thirdly: Discussion with detailed in chapter three, the results of the research are presented the preparation and characterization of a number of new compounds isolated from reaction between urea, thiourea or some of their substituted derivatives and dichloro bis (triphenyl phosphine) transition metal complex giving a general formula (ph 3 )2ML where M=cobalt, nickel, and copper, and urea, thiourea or some of their substituted derivatives ligands. The products of these experiments have been identified using infrared spectra, melting points and molar conductance. The results obtained indicated that all the compounds forming the nitrogen to metal bonds leading to the formation of a four- membered chelate ring, they are relatively thermally stable compounds, and also these compounds are non-electrolytes.(Author)

  8. Bridging Binding Modes of Phosphine-Stabilized Nitrous Oxide to Zn(C6F5)2

    NARCIS (Netherlands)

    Neu, Rebecca C.; Otten, Edwin; Stephan, Douglas W.

    2009-01-01

    Reaction of [tBu3PN2O(B(C6H4F)3)] with 1, 1.5, or 2 equivalents of Zn(C6F5)2 affords the species [{tBu3PN2OZn(C6F5)2}2], [{tBu3PN2OZn(C6F5)2}2Zn(C6F5)2], and [tBu3PN2O{Zn(C6F5)2}2] displaying unique binding modes of Zn to the phosphine-stabilized N2O fragment.

  9. Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century. Ammonia and phosphine

    International Nuclear Information System (INIS)

    Hayashi, Makoto

    2004-08-01

    Bibliographies of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for ammonia (NH 3 ) and phosphine (PH 3 ). About 820 (NH 3 ) and 190 (PH 3 ) papers were compiled respectively. Comprehensive author indexes for each molecule are included. The bibliography covers the period 1922 through 2000 for NH 3 and 1928 through 2000 for PH 3 . Finally, author's comments for NH 3 electron collision cross sections are given. (author)

  10. P(O)R2-Directed Enantioselective C-H Olefination toward Chiral Atropoisomeric Phosphine-Olefin Compounds.

    Science.gov (United States)

    Li, Shi-Xia; Ma, Yan-Na; Yang, Shang-Dong

    2017-04-07

    An effective synthesis of chiral atropoisomeric biaryl phosphine-olefin compounds via palladium-catalyzed enantioselective C-H olefination has been developed for the first time. The reactions are operationally simple, tolerate wide functional groups, and have a good ee value. Notably, P(O)R 2 not only acts as the directing group to direct C-H activation in order to make a useful ligand but also serves to facilitate composition of the product in a useful manner in this transformation.

  11. One-step production of long-chain hydrocarbons from waste-biomass-derived chemicals using bi-functional heterogeneous catalysts.

    Science.gov (United States)

    Wen, Cun; Barrow, Elizabeth; Hattrick-Simpers, Jason; Lauterbach, Jochen

    2014-02-21

    In this study, we demonstrate the production of long-chain hydrocarbons (C8+) from 2-methylfuran (2MF) and butanal in a single step reactive process by utilizing a bi-functional catalyst with both acid and metallic sites. Our approach utilizes a solid acid for the hydroalkylation function and as a support as well as a transition metal as hydrodeoxygenation catalyst. A series of solid acids was screened, among which MCM-41 demonstrated the best combination of activity and stability. Platinum nanoparticles were then incorporated into the MCM-41. The Pt/MCM-41 catalyst showed 96% yield for C8+ hydrocarbons and the catalytic performance was stable over four reaction cycles of 20 hour each. The reaction pathways for the production of long-chain hydrocarbons is probed with a combination of infrared spectroscopy and steady-state reaction experiments. It is proposed that 2MF and butanal go through hydroalkylation first on the acid site followed by hydrodeoxygenation to produce the hydrocarbon fuels.

  12. Synthesis of a novel bicyclic bifunctional chelating agent

    International Nuclear Information System (INIS)

    Sweet, M.P.; Mease, R.C.; Joshi, V.; Srivastava, S.C.

    1994-01-01

    Semi-rigid ligands such as cyclohexyl EDTA (CDTA) and 4-isothiocyanato-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (4-ICE) form chelates that are more stable in vivo compared to those of EDTA or DTPA. The authors have synthesized a new class of ligands in which the metal-binding polyaminocarboxylate groups are incorporated onto the rigid bicyclo[2.2.2]octane ring system. These ligands are expected to contribute to even higher in vivo stability of radiometal complexes. The synthesis of the first in this series of ligands (2.3-diaminobicyclo[2.2.2]octane-N,N,N',N'-tetraacetic acid, BODTA) began with a Diels-Alder reaction of 1,3-diacetylimidazolin-2-one and 1,3-cyclohexadiene. Base hydrolysis afforded the diamine. Following alkylation of the diamine with ethyl iodoacetate and hydrogenation of the double bond, hydrolysis of the esters gave BODTA. For initial conjugation with proteins, an average of one carboxylic acid of BODTA was converted into an NHS ester. In vivo testing of radioimmunoconjugates, prepared using this method, is in progress

  13. Hydroconversion of methyl laurate on bifunctional Ni2P/AlMCM-41 catalyst prepared via in situ phosphorization using triphenylphosphine

    Science.gov (United States)

    Zhao, Sha; Zhang, Zhena; Zhu, Kongying; Chen, Jixiang

    2017-05-01

    A series of Ni2P/AlMCM-41-x bifunctional catalysts with different Si/Al ratios (x) were synthesized by in situ phosphorization of Ni/AlMCM-41-x with triphenylphosphine (nominal Ni/P ratio of 0.75) at 300 °C on a fixed-bed reactor. For comparison, NiP/AlMCM-41-5-TPR was also prepared by the TPR method from the supported nickel phosphate with the Ni/P ratio of 1.0, during which metallic Ni rather than Ni2P formed. TEM images show that Ni and Ni2P particles uniformly distributed in Ni2P/AlMCM-41-x and NiP/AlMCM-41-5-TPR. The Ni2P/AlMCM-41-x acidity increased with decreasing the Si/Al ratio. In the hydroconversion of methyl laurate, the conversions were close to 100% on all catalysts at 360 °C, 3.0 MPa, methyl laurate WHSV of 2 h-1 and H2/methyl laurate ratio of 25. As to Ni2P/AlMCM-41-x, with decreasing the Si/Al ratio, the total selectivity to C11 and C12 hydrocarbons decreased, while the total selectivity to isoundecane and isododecane (Si-C11+i-C12) firstly increased and then decreased. Ni2P/AlMCM-41-5 gave the largest Si-C11+i-C12 of 43.2%. While NiP/AlMCM-41-5-TPR gave higher Si-C11+i-C12 than Ni2P/AlMCM-41-5, it was more active for the undesired Csbnd C bond cleavage and methanation. We propose that the in-situ phosphorization adopted here is a promising approach to preparing Ni2P-based bifunctional catalysts.

  14. Ocular Toxicity Profile of ST-162 and ST-168 as Novel Bifunctional MEK/PI3K Inhibitors.

    Science.gov (United States)

    Smith, Andrew; Pawar, Mercy; Van Dort, Marcian E; Galbán, Stefanie; Welton, Amanda R; Thurber, Greg M; Ross, Brian D; Besirli, Cagri G

    2018-04-30

    ST-162 and ST-168 are small-molecule bifunctional inhibitors of MEK and PI3K signaling pathways that are being developed as novel antitumor agents. Previous small-molecule and biologic MEK inhibitors demonstrated ocular toxicity events that were dose limiting in clinical studies. We evaluated in vitro and in vivo ocular toxicity profiles of ST-162 and ST-168. Photoreceptor cell line 661W and adult retinal pigment epithelium cell line ARPE-19 were treated with increasing concentrations of bifunctional inhibitors. Western blots, cell viability, and caspase activity assays were performed to evaluate MEK and PI3K inhibition and dose-dependent in vitro toxicity, and compared with monotherapy. In vivo toxicity profile was assessed by intravitreal injection of ST-162 and ST-168 in Dutch-Belted rabbits, followed by ocular examination and histological analysis of enucleated eyes. Retinal cell lines treated with ST-162 or ST-168 exhibited dose-dependent inhibition of MEK and PI3K signaling. Compared with inhibition by monotherapies and their combinations, bifunctional inhibitors demonstrated reduced cell death and caspase activity. In vivo, both bifunctional inhibitors exhibited a more favorable toxicity profile when compared with MEK inhibitor PD0325901. Novel MEK and PI3K bifunctional inhibitors ST-162 and ST-168 demonstrate favorable in vitro and in vivo ocular toxicity profiles, supporting their further development as potential therapeutic agents targeting multiple aggressive tumors.

  15. A Mixed-Ligand Approach Enables the Asymmetric Hydrogenation of an α-Isopropylcinnamic Acid en Route to the Renin Inhibitor Aliskiren

    NARCIS (Netherlands)

    Boogers, Jeroen A.F.; Felfer, Ulfried; Kotthaus, Martina; Lefort, Laurent; Steinbauer, Gerhard; Vries, André H.M. de; Vries, Johannes G. de

    2007-01-01

    An asymmetric hydrogenation process for an α-isopropyl dihydrocinnamic acid derivative, an intermediate for the renin inhibitor aliskiren, has been developed using a rhodium catalyst ligated with a chiral monodentate phosphoramidite and a nonchiral phosphine. Whereas catalysts based on two

  16. Effect of Platinum in Bifunctional Isomerization of n-Butane over Acid Zeolites

    Czech Academy of Sciences Publication Activity Database

    Babůrek, Evžen; Nováková, Jana

    2000-01-01

    Roč. 190, č. 1 (2000), s. 241-251 ISSN 0926-860X R&D Projects: GA AV ČR IAA4040710 Institutional research plan: CEZ:AV0Z4040901; CEZ:A54/98:Z4-040-9-ii Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.576, year: 2000

  17. Phosphine-free synthesis and characterization of type-II ZnSe/CdS core-shell quantum dots

    Science.gov (United States)

    Ghasemzadeh, Roghayyeh; Armanmehr, Mohammad Hasan; Abedi, Mohammad; Fateh, Davood Sadeghi; Bahreini, Zaker

    2018-01-01

    A phosphine-free route for synthesis of type-II ZnSe/CdS core-shell quantum dots, using green, low cost and environmentally friendly reagents and phosphine-free solvents such as 1-octadecene (ODE) and liquid paraffin has been reported. Hot-injection technique has been used for the synthesis of ZnSe core quantum dots. The CdS shell quantum dots prepared by reaction of CdO precursor and S powder in 1-octadecene (ODE). The ZnSe/CdS core-shell quantum dots were synthesized via successive ion layer adsorption and reaction (SILAR) technique. The characterization of produced quantum dots were performed by absorption and fluorescence spectroscopy, X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results showed the formation of type-II ZnSe/CdS core-shell quantum dots with FWHM 32 nm and uniform size distribution.

  18. Discovery of Brigatinib (AP26113), a Phosphine Oxide-Containing, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase.

    Science.gov (United States)

    Huang, Wei-Sheng; Liu, Shuangying; Zou, Dong; Thomas, Mathew; Wang, Yihan; Zhou, Tianjun; Romero, Jan; Kohlmann, Anna; Li, Feng; Qi, Jiwei; Cai, Lisi; Dwight, Timothy A; Xu, Yongjin; Xu, Rongsong; Dodd, Rory; Toms, Angela; Parillon, Lois; Lu, Xiaohui; Anjum, Rana; Zhang, Sen; Wang, Frank; Keats, Jeffrey; Wardwell, Scott D; Ning, Yaoyu; Xu, Qihong; Moran, Lauren E; Mohemmad, Qurish K; Jang, Hyun Gyung; Clackson, Tim; Narasimhan, Narayana I; Rivera, Victor M; Zhu, Xiaotian; Dalgarno, David; Shakespeare, William C

    2016-05-26

    In the treatment of echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase positive (ALK+) non-small-cell lung cancer (NSCLC), secondary mutations within the ALK kinase domain have emerged as a major resistance mechanism to both first- and second-generation ALK inhibitors. This report describes the design and synthesis of a series of 2,4-diarylaminopyrimidine-based potent and selective ALK inhibitors culminating in identification of the investigational clinical candidate brigatinib. A unique structural feature of brigatinib is a phosphine oxide, an overlooked but novel hydrogen-bond acceptor that drives potency and selectivity in addition to favorable ADME properties. Brigatinib displayed low nanomolar IC50s against native ALK and all tested clinically relevant ALK mutants in both enzyme-based biochemical and cell-based viability assays and demonstrated efficacy in multiple ALK+ xenografts in mice, including Karpas-299 (anaplastic large-cell lymphomas [ALCL]) and H3122 (NSCLC). Brigatinib represents the most clinically advanced phosphine oxide-containing drug candidate to date and is currently being evaluated in a global phase 2 registration trial.

  19. Anomalous phosphine sensitivity coefficients as probes for a possible variation of the proton-to-electron mass ratio

    Science.gov (United States)

    Owens, A.; Yurchenko, S. N.; Špirko, V.

    2018-02-01

    A robust variational approach is used to investigate the sensitivity of the rotation-vibration spectrum of phosphine (PH3) to a possible cosmological variation of the proton-to-electron mass ratio, μ. Whilst the majority of computed sensitivity coefficients, T, involving the low-lying vibrational states acquire the expected values of T ≈ -1 and T ≈ -1/2 for rotational and ro-vibrational transitions, respectively, anomalous sensitivities are uncovered for the A1 - A2 splittings in the ν2/ν4, ν1/ν3 and 2ν _4^{ℓ=0}/2ν _4^{ℓ=2} manifolds of PH3. A pronounced Coriolis interaction between these states in conjunction with accidentally degenerate A1 and A2 energy levels produces a series of enhanced sensitivity coefficients. Phosphine is expected to occur in a number of different astrophysical environments and has potential for investigating a drifting constant. Furthermore, the displayed behaviour hints at a wider trend in molecules of C_{3v}(M) symmetry, thus demonstrating that the splittings induced by higher-order ro-vibrational interactions are well suited for probing μ in other symmetric top molecules in space, since these low-frequency transitions can be straightforwardly detected by radio telescopes.

  20. Reaction of acid esters of methylenebis(phosphonous acid) with carbonyl compounds

    International Nuclear Information System (INIS)

    Novikova, Z.S.; Odinets, I.L.; Lutsenko, I.F.

    1987-01-01

    The reaction of methylenebis(phosphonites) containing two hydrophosphoryl groupings with aliphatic and aromatic aldehydes and ketones in the presence of alkali metal fluorides leads to methylenebis(α-hydroxyalkylphosphinates). The reaction of methylenebis(phosphonites) containing one hydrophosphoryl groupings with carbonyl compounds in the presence of alkali metal fluorides proceeds with the formation of a new type of heterocyclic phosphorus compound, viz., 1,2λ 3 ,4λ 5 -oxadiphospholanes. The reaction of acid esters of methylenebis(phosphonous) acid with carbonyl compounds in the presence of alkali metal alkoxides or a tertiary amine is accompanied by phosphinate-phosphonate rearrangement of the intermediately formed α-hydroxylalkylphosphinates

  1. Uranium extraction in phosphoric acid

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de

    1984-01-01

    Uranium is recovered from the phosphoric liquor produced from the concentrate obtained from phosphorus-uraniferous mineral from Itataia mines (CE, Brazil). The proposed process consists of two extraction cycles. In the first one, uranium is reduced to its tetravalent state and then extracted by dioctylpyrophosphoric acid, diluted in Kerosene. Re-extraction is carried out with concentrated phosphoric acid containing an oxidising agent to convert uranium to its hexavalent state. This extract (from the first cycle) is submitted to the second cycle where uranium is extracted with DEPA-TOPO (di-2-hexylphosphoric acid/tri-n-octyl phosphine oxide) in Kerosene. The extract is then washed and uranium is backextracted and precipitated as commercial concentrate. The organic phase is recovered. Results from discontinuous tests were satisfactory, enabling to establish operational conditions for the performance of a continuous test in a micro-pilot plant. (Author) [pt

  2. Magnetic amine-functionalized graphene oxide as a novel and recyclable bifunctional nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives

    Directory of Open Access Journals (Sweden)

    Shahnaz Rostamizadeh

    2017-01-01

    Full Text Available The new magnetic amine-functionalized graphene oxide (Fe3O4-GO-NH2 nanocatalyst was prepared through the reaction of 3-aminopropyltriethoxysilane (APTES with magnetic graphene oxide (Fe3O4-GO. It was characterized by XRD, TEM, SEM, FT-IR and EDX techniques. The intrinsic carboxylic acids on the edges of Fe3O4-GO along with the amine groups post grafted to the surface of Fe3O4-GO led to preparation of an acid-base bifunctional magnetically recyclable nanocatalyst. It proved to be efficient nanocatalyst for solvent-free synthesis of pyrano[3,2-c]pyridine derivatives under mild reaction conditions with good to excellent yields. This heterogeneous catalyst also exhibited higher activities than acid or base functionalized mesoporous silica, magnetic GO or basic Al2O3 an even higher than some basic homogeneous catalysts such as triethylamine and piperazine. More importantly, due to the loaded iron oxide nanoparticles, this catalyst could be easily recovered from the reaction mixture using an external magnet and reused without significant decrease in activity even after 7 runs.

  3. A Proton-Switchable Bifunctional Ruthenium Complex That Catalyzes Nitrile Hydroboration.

    Science.gov (United States)

    Geri, Jacob B; Szymczak, Nathaniel K

    2015-10-14

    A new bifunctional pincer ligand framework bearing pendent proton-responsive hydroxyl groups was prepared and metalated with Ru(II) and subsequently isolated in four discrete protonation states. Stoichiometric reactions with H2 and HBPin showed facile E-H (E = H or BPin) activation across a Ru(II)-O bond, providing access to unusual Ru-H species with strong interactions with neighboring proton and boron atoms. These complexes were found to promote the catalytic hydroboration of ketones and nitriles under mild conditions, and the activity was highly dependent on the ligand's protonation state. Mechanistic experiments revealed a crucial role of the pendent hydroxyl groups for catalytic activity.

  4. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thiourea- and Squaramide-Based Organocatalysts

    Directory of Open Access Journals (Sweden)

    Pan Li

    2016-10-01

    Full Text Available The organocatalysis-based dynamic kinetic resolution (DKR process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thiourea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael–Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thiourea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  5. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  6. Bifunctional electrode performance for zinc-air flow cells with pulse charging

    International Nuclear Information System (INIS)

    Pichler, Birgit; Weinberger, Stephan; Reščec, Lucas; Grimmer, Ilena; Gebetsroither, Florian; Bitschnau, Brigitte; Hacker, Viktor

    2017-01-01

    Highlights: •Manufacture of bi-catalyzed bifunctional air electrodes via scalable process. •Direct synthesis of NiCo 2 O 4 on carbon nanofibers or nickel powder support. •450 charge and discharge cycles over 1000 h at 50 mA cm −2 demonstrated. •Pulse charging with 150 mA cm −2 is successfully applied on air electrodes. •Charge and discharge ΔV of <0.8 V at 50 mA cm −2 when supplied with O 2. -- Abstract: Bifunctional air electrodes with tuned composition consisting of two precious metal-free oxide catalysts are manufactured for application in rechargeable zinc-air flow batteries and electrochemically tested via long-term pulse charge and discharge cycling experiments at 50 mA cm −2 (mean). NiCo 2 O 4 spinel, synthesized via direct impregnation on carbon nanofibers or nickel powder and characterized by energy dispersive X-ray spectroscopy and X-ray diffraction experiments, shows high activity toward oxygen evolution reaction with low charge potentials of < 2.0 V vs. Zn/Zn 2+ . La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 perovskite exhibits bifunctional activity and outperforms the NiCo 2 O 4 spinel in long-term stability tenfold. By combining the catalysts in one bi-catalyzed bifunctional air electrode, stable performances of more than 1000 h and 450 cycles are achieved when supplied with oxygen and over 650 h and 300 cycles when supplied with synthetic air. In addition, the pulse charging method, which is beneficial for compact zinc deposition, is successfully tested on air electrodes during long-term operation. The oxygen evolution potentials during pulse, i.e. at tripled charge current density of 150 mA cm −2 , are only 0.06–0.08 V higher compared to constant charging current densities. Scanning electron microscopy confirms that mechanical degradation caused by bubble formation during oxygen evolution results in slowly decreasing discharge potentials.

  7. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Mentzel, Uffe Vie

    2008-01-01

    –titania catalysts can be employed to facilitate the oxidation of amines into amides with high selectivity. Furthermore, we report that pure titania is in fact itself a catalyst for the oxidation of amines with molecular oxygen under very mild conditions. We demonstrate that these new methodologies open up for two......Over the past decades it has become clear that supported gold nanoparticles are surprisingly active and selective catalysts for several green oxidation reactions of oxygen-containing hydrocarbons using molecular oxygen as the stoichiometric oxidant. We here report that bifunctional gold...

  8. Basic evaluation of 67Ga labeled digoxin derivative as a metal-labeled bifunctional radiopharmaceutical

    International Nuclear Information System (INIS)

    Fujibayashi, Yasuhisa; Konishi, Junji; Takemura, Yasutaka; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira.

    1993-01-01

    To develop metal-labeled digoxin radiopharmaceuticals with affinity with anti-digoxin antibody as well as Na + , K + -ATPase, a digoxin derivative conjugated with deferoxamine was synthesized. The derivative had a high binding affinity with 67 Ga at deferoxamine introduced to the terminal sugar ring of digoxin. The 67 Ga labeled digoxin derivative showed enough in vitro binding affinity and selectivity to anti-digoxin antibody as well as Na + , K + -ATPase. The 67 Ga labeled digoxin derivative is considered to be a potential metal-labeled bifunctional radiopharmaceutical for digoxin RIA as well as myocardial Na + , K + -ATPase imaging. (author)

  9. Synergistic extraction of Am(III) using HTTA and bi-functional (DHDECMP) and mono-functional (TBP) donors

    International Nuclear Information System (INIS)

    Pai, S.A.; Lohithakshan, K.V.; Mithapara, P.D.; Aggarwal, S.K.

    1999-01-01

    The equilibrium constant (log Ks) for the organic phase synergistic reaction for Am(III)-HTTA system with bi-functional neutral donor di-hexyl di-ethyl carbamoylmethyl phosphonate (DHDECMP) was found to be about two orders of magnitude higher than that of the mono-functional neutral donor (TBP) with comparable basicity values. This log Ks value along with a large positive entropy change with DHDECMP compared to that with TBP confirms that the neutral donors like DHDECMP behave as bi-functional, in sharp contrast to its mono-functional behaviour in Pu(VI). (author)

  10. Analysis of the critical step in catalytic carbodiimide transformation: proton transfer from amines, phosphines, and alkynes to guanidinates, phosphaguanidinates, and propiolamidinates with Li and Al catalysts.

    Science.gov (United States)

    Rowley, Christopher N; Ong, Tiow-Gan; Priem, Jessica; Richeson, Darrin S; Woo, Tom K

    2008-12-15

    While lithium amides supported by tetramethylethylenediamine (TMEDA) are efficient catalysts in the synthesis of substituted guanidines via the guanylation of an amine with carbodiimide, as well as the guanylation of phosphines and conversion of alkynes into propiolamidines, aluminum amides are only efficient catalysts for the guanylation of amides. Density functional theory (DFT) calculations were used to explain this difference in activity. The origin of this behavior is apparent in the critical step where a proton is transferred from the substrate to a metal guanidinate. The activation energies of these steps are modest for amines, phosphines, and alkynes when a lithium catalyst was used, but are prohibitively high for the analogous reactions with phosphines and alkynes for aluminum amide catalysts. Energy decomposition analysis (EDA) indicates that these high activations energies are due to the high energetic cost of the detachment of a chelating guanidinate nitrogen from the aluminum in the proton transfer transition state. Amines are able to adopt an ideal geometry for facile proton transfer to the aluminum guanidinate and concomitant Al-N bond formation, while phosphines and alkynes are not.

  11. Palladium-Catalyzed alpha-Arylation of Tetramic Acids

    DEFF Research Database (Denmark)

    Storgaard, Morten; Dorwald, F. Z.; Peschke, B.

    2009-01-01

    A mild, racemization-free, palladium-Catalyzed alpha-arylation of tetramic acids (2,4-pyrrolidinediones) has been developed. Various amino acid-derived tetramic acids were cleanly arylated by treatment with 2 mol % of Pd(OAc)(2), 4 mol % of a sterically demanding biaryl phosphine, 2.3 equiv of K2CO...... no effect on their reactivity: both electron-rich and electron-poor aryl chlorides and bromides or triflates led to good yields. Ortho-substituted aryl halides and heteroaryl halides, however, did not undergo the title reaction....

  12. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    Science.gov (United States)

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis and characterization of new bifunctional nanocomposites possessing upconversion and oxygen-sensing properties

    International Nuclear Information System (INIS)

    Liu Lina; Li Bin; Qin Ruifei; Zhao Haifeng; Ren Xinguang; Su Zhongmin

    2010-01-01

    A new type of bifunctional nanocomposites for biomedical applications, upconversion NaY F 4 :Y b 3+ , Tm 3+ nanoparticles coated with Ru(II) complex chemically doped SiO 2 , has been developed by combining the useful functions of upconversion and oxygen-sensing properties into one nanoparticle. NaY F 4 :Y b 3+ , Tm 3+ nanoparticles were successfully coated with an Ru(II) complex doped SiO 2 shell with a thickness of ∼ 30 nm, and the surface of the SiO 2 was functionalized with amines. The obtained nanocomposites exhibited bright blue upconversion emission, and the luminescent emission intensity of the Ru(II) complex in the nanocomposites was sensitive to oxygen. Compared with the simple mixture of Ru(II) complex and SiO 2 , the core-shell nanocomposites showed better linearity between emission intensity of Ru(II) complex and oxygen concentrations. These bifunctional nanocomposites may find applications in biochemical and biomedical fields, such as biolabels and optical oxygen sensors, which can measure the oxygen concentrations in biological fluids.

  14. Exfoliated Pd/HNb{sub 3}O{sub 8} nanosheet as highly efficient bifunctional catalyst for one-pot cascade reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nahaeng; Chung, Young-Min, E-mail: ymchung@kunsan.ac.kr

    2016-05-01

    Graphical abstract: - Highlights: • Ultrathin and highly acidic HNb{sub 3}O{sub 8} nanosheet was prepared by exfoliation of layered niobium oxide. • Pd/HNb{sub 3}O{sub 8} nanosheet showed excellent catalytic performance for one-pot cascade reaction. • The reaction performance of Pd/HNb{sub 3}O{sub 8} nanosheet is 7.1 and 1.2 times higher than that of layered Pd/KNb{sub 3}O{sub 8} or Pd/HNb{sub 3}O{sub 8}, respectively. • Significant promoting effect of support acidity on the reaction performance was observed. - Abstract: Ultrathin two-dimensional metal oxide nanosheets have drawn attention as potential solid acid catalysts owing to their strong acidity, attributed to the bridged OH groups formed on the nanosheets. In this study, a new class of bifunctional acid–metal catalyst was realized by the deposition of Pd on layered niobium oxide (KNb{sub 3}O{sub 8} and HNb{sub 3}O{sub 8}) or its exfoliated nanosheet (Pd/HNb{sub 3}O{sub 8}-NS) and applied to one-pot cascade deacetalization and hydrogenation. It was found that the acid strength of the support exerted a large influence not only on the promotion of the first deacetalization step, but also on the acceleration of the subsequent hydrogenation step. Comparative experiments using a series of Pd/HZSM-5 catalysts with different acidities reconfirmed the crucial role of acid strength on hydrogenation. However, the superior catalytic activity of Pd/HNb{sub 3}O{sub 8}-NS for hydrogenation compared to that of Pd/HZSM-5 of similar acidity suggests a more efficient ensemble effect of the strong acid sites with the nearby metal sites on the nanosheet surface. Among the catalysts used, Pd/HNb{sub 3}O{sub 8}-NS showed the best catalytic performance for one-pot cascade reaction affording the desired product (benzyl alcohol) in approximately 92% yield, which was 7.1 and 1.2 times higher than that of layered Pd/KNb{sub 3}O{sub 8} or Pd/HNb{sub 3}O{sub 8}, respectively. The excellent catalytic performance of Pd/HNb{sub 3

  15. Investigation of the thermal degradation of PET, zinc phosphinate, OMPOSS and their blends-Identification of the formed species

    Energy Technology Data Exchange (ETDEWEB)

    Vannier, Aurore [Centre de Recherche et d' Etude sur les Procedes d' Ignifugation des Materiaux (CREPIM), Parc de la porte Nord, F-62200 Bruay-la-Buissiere (France); Duquesne, Sophie, E-mail: Sophie.duquesne@ensc-lille.fr [Laboratoire des Procedes d' Elaboration de Revetements Fonctionnels (PERF), UMR-CNRS 8008/LSPES - Ecole Nationale Superieure de Chimie de Lille, BP 90108, F-59652 Villeneuve d' Ascq (France); Bourbigot, Serge [Laboratoire des Procedes d' Elaboration de Revetements Fonctionnels (PERF), UMR-CNRS 8008/LSPES - Ecole Nationale Superieure de Chimie de Lille, BP 90108, F-59652 Villeneuve d' Ascq (France); Alongi, Jenny; Camino, Giovanni [Centro di Cultura per l' Ingegneria delle Materie Plastiche - Politechnico di Torino, V.le T. Michel, 5, 15100 Alessandria (Italy); Delobel, Rene [Centre de Recherche et d' Etude sur les Procedes d' Ignifugation des Materiaux (CREPIM), Parc de la porte Nord, F-62200 Bruay-la-Buissiere (France)

    2009-11-10

    The incorporation of both OMPOSS and Exolit OP950 (zinc phosphinate) into PET leads to increased fire retarding properties and a synergistic effect has been established between the three components. Here the thermal degradation of OMPOSS, Exolit OP950, PET and blends of them is investigated via thermal degradation in pyrolytic and thermo-oxidative conditions. All species formed during the degradation of the additives or the blends are identified by solid state NMR and X-ray diffraction in the condensed phase and by GC-MS in the gas phase. The investigation shows that no chemical interaction occurs between the additives, which suggests that the synergy responsible for the improvement of fire properties of the material has a physical origin.

  16. Investigation of the thermal degradation of PET, zinc phosphinate, OMPOSS and their blends-Identification of the formed species

    International Nuclear Information System (INIS)

    Vannier, Aurore; Duquesne, Sophie; Bourbigot, Serge; Alongi, Jenny; Camino, Giovanni; Delobel, Rene

    2009-01-01

    The incorporation of both OMPOSS and Exolit OP950 (zinc phosphinate) into PET leads to increased fire retarding properties and a synergistic effect has been established between the three components. Here the thermal degradation of OMPOSS, Exolit OP950, PET and blends of them is investigated via thermal degradation in pyrolytic and thermo-oxidative conditions. All species formed during the degradation of the additives or the blends are identified by solid state NMR and X-ray diffraction in the condensed phase and by GC-MS in the gas phase. The investigation shows that no chemical interaction occurs between the additives, which suggests that the synergy responsible for the improvement of fire properties of the material has a physical origin.

  17. Emission Properties, Solubility, Thermodynamic Analysis and NMR Studies of Rare-Earth Complexes with Two Different Phosphine Oxides

    Directory of Open Access Journals (Sweden)

    Hiroki Iwanaga

    2010-07-01

    Full Text Available The paper proposes novel molecular designs for rare-earth complexes involving the introduction of two different phosphine oxide structures into one rare-earth ion. These designs are effective for improving solubility and emission intensity. Additionally, the complexes are indispensable for realizing high performances in LEDs and security media. The thermodynamic properties of Eu(III complexes are correlated with the solubility. Correlations between coordination structures and emission intensity were explained by NMR analysis. The luminous flux of red LED devices with Eu(III complexes is very high (20 mA, 870 m lumen. A new white LED has its largest spectra intensity in the red region and a human look much more vividly under this light.

  18. Facile Phosphine-Free Synthesis of CdSe/ZnS Core/Shell Nanocrystals Without Precursor Injection

    Directory of Open Access Journals (Sweden)

    Zhu Chang-Qing

    2008-01-01

    Full Text Available AbstractA new simple method for synthesis of core/shell CdSe/ZnS nanocrystals (NCs is present. By adapting the use of cadmium stearate, oleylamine, and paraffin liquid to a non-injection synthesis and by applying a subsequent ZnS shelling procedure to CdSe NCs cores using Zinc acetate dihydrate and sulfur powder, luminescent CdSe/ZnS NCs with quantum yields of up to 36% (FWHM 42–43 nm were obtained. A seeding-growth technique was first applied to the controlled synthesis of ZnS shell. This method has several attractive features, such as the usage of low-cost, green, and environmentally friendlier reagents and elimination of the need for air-sensitive, toxic, and expensive phosphines solvent. Furthermore, due to one-pot synthetic route for CdSe/ZnS NCs, the approach presented herein is accessible to a mass production of these NCs.

  19. Relevance of phosphorus incorporation and hydrogen removal for Si:P {delta}-doped layers fabricated using phosphine

    Energy Technology Data Exchange (ETDEWEB)

    Goh, K.E.J.; Oberbeck, L.; Simmons, M.Y. [Centre for Quantum Computer Technology, School of Physics, The University of New South Wales, Sydney, New South Wales 2052 (Australia)

    2005-05-01

    We present a study to determine the importance of phosphorus incorporation and hydrogen removal for the electrical activation of phosphorus dopants in Si:P {delta}-doped samples fabricated using phosphine dosing and molecular beam epitaxy (MBE). The carrier densities in these samples were determined from Hall effect measurements at 4 K sample temperature. An anneal to incorporate phosphorus atoms into substitutional lattice sites is critical to achieving full dopant activation after Si encapsulation by MBE. Whilst the presence of hydrogen can degrade the quality of the Si encapsulation layer, we show that it does not adversely impact the electrical activation of the phosphorus dopants. We discuss the relevance of our results to the fabrication of nano-scale Si:P devices. (copyright 2005 WILEY-VCH Verlag GmbH and C o. KGaA, Weinheim) (orig.)

  20. A method for hydrogenating and carbonylizing unsaturated compounds in the presence of catalysts based on phosphine and metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J C; Dyer, G

    1982-12-22

    The hydrogenation of unsaturated organic compounds or the attachment to them of CO is accomplished with contact with a synthesis gas in the presence of a stereospecific catalyst (Kt), a compound of a metal of the platinum group (preferably Rhodium, but also Platinum, Palladium, Ruthenium or Iridium) and an asymmetrical bis-phosphine of the formula A-(CH2)n-B, where A and B are phosphine groups. R2P and R'2P or RRhP, where R is an aryl radical, R' is aralkyl, alcarylic or alkyl radical, n = 1 to 10, or an asymmetrical monophosphine of the formula R2-R'P. The complex compound also includes Hydrogen, CO and (or) halogen (preferably Chlorine) as ligands. The physical properties of the obtained complex compounds of the carbonylchlorbisphosphines or Rh are presented: trans-(RhC1-(CO)(Ph2P(CH2)6PPh2))2; trans-(RhC1(CO)(C2H5PhP-(CH2)6PPh2))2; trans-(RhC1(CO)(cycloC6H11PhP(CH2)6-PPh2))2; trans-(RhC1(CO)(C2H5PhP(CH2)4PPh2)2; trans-(RhC1(CO)(C2H5PhP(Ch2))2 and PhC1(CO)4(p-C6H4CH2)2P(Ch2)6PPh2). The isolated complexes are light yellow crystalline substances.

  1. Cloning and analysis of a bifunctional methyltransferase/restriction endonuclease TspGWI, the prototype of a Thermus sp. enzyme family

    Directory of Open Access Journals (Sweden)

    Zylicz-Stachula Agnieszka

    2009-05-01

    Full Text Available Abstract Background Restriction-modification systems are a diverse class of enzymes. They are classified into four major types: I, II, III and IV. We have previously proposed the existence of a Thermus sp. enzyme family, which belongs to type II restriction endonucleases (REases, however, it features also some characteristics of types I and III. Members include related thermophilic endonucleases: TspGWI, TaqII, TspDTI, and Tth111II. Results Here we describe cloning, mutagenesis and analysis of the prototype TspGWI enzyme that recognises the 5'-ACGGA-3' site and cleaves 11/9 nt downstream. We cloned, expressed, and mutagenised the tspgwi gene and investigated the properties of its product, the bifunctional TspGWI restriction/modification enzyme. Since TspGWI does not cleave DNA completely, a cloning method was devised, based on amino acid sequencing of internal proteolytic fragments. The deduced amino acid sequence of the enzyme shares significant sequence similarity with another representative of the Thermus sp. family – TaqII. Interestingly, these enzymes recognise similar, yet different sequences in the DNA. Both enzymes cleave DNA at the same distance, but differ in their ability to cleave single sites and in the requirement of S-adenosylmethionine as an allosteric activator for cleavage. Both the restriction endonuclease (REase and methyltransferase (MTase activities of wild type (wt TspGWI (either recombinant or isolated from Thermus sp. are dependent on the presence of divalent cations. Conclusion TspGWI is a bifunctional protein comprising a tandem arrangement of Type I-like domains; particularly noticeable is the central HsdM-like module comprising a helical domain and a highly conserved S-adenosylmethionine-binding/catalytic MTase domain, containing DPAVGTG and NPPY motifs. TspGWI also possesses an N-terminal PD-(D/EXK nuclease domain related to the corresponding domains in HsdR subunits, but lacks the ATP-dependent translocase module

  2. Hydroconversion of methyl laurate on bifunctional Ni{sub 2}P/AlMCM-41 catalyst prepared via in situ phosphorization using triphenylphosphine

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Sha; Zhang, Zhena [Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhu, Kongying, E-mail: ausky@tju.edu.cn [Analysis and Measurement Center, Tianjin University, Tianjin 300072 (China); Chen, Jixiang, E-mail: jxchen@tju.edu.cn [Tianjin Key Laboratory of Applied Catalysis Science and Technology, Department of Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2017-05-15

    Highlights: • Bifunctional Ni{sub 2}P/AlMCM-41 was prepared by in situ phosphorization at 300 °C. • There were similar Ni{sub 2}P particle sizes in Ni{sub 2}P/AlMCM-41 with different Si/Al ratios. • The acid amount of Ni{sub 2}P/AlMCM-41 increased with decreasing the Si/Al ratio. • Ni{sub 2}P/AlMCM-41 with the Si/Al ratio of 5 had the highest activity for isomerization. • Ni{sub 2}P/AlMCM-41 had very low activity for methanation and C−C bond hydrogenolysis. - Abstract: A series of Ni{sub 2}P/AlMCM-41-x bifunctional catalysts with different Si/Al ratios (x) were synthesized by in situ phosphorization of Ni/AlMCM-41-x with triphenylphosphine (nominal Ni/P ratio of 0.75) at 300 °C on a fixed-bed reactor. For comparison, NiP/AlMCM-41-5-TPR was also prepared by the TPR method from the supported nickel phosphate with the Ni/P ratio of 1.0, during which metallic Ni rather than Ni{sub 2}P formed. TEM images show that Ni and Ni{sub 2}P particles uniformly distributed in Ni{sub 2}P/AlMCM-41-x and NiP/AlMCM-41-5-TPR. The Ni{sub 2}P/AlMCM-41-x acidity increased with decreasing the Si/Al ratio. In the hydroconversion of methyl laurate, the conversions were close to 100% on all catalysts at 360 °C, 3.0 MPa, methyl laurate WHSV of 2 h{sup −1} and H{sub 2}/methyl laurate ratio of 25. As to Ni{sub 2}P/AlMCM-41-x, with decreasing the Si/Al ratio, the total selectivity to C11 and C12 hydrocarbons decreased, while the total selectivity to isoundecane and isododecane (S{sub i-C11+i-C12}) firstly increased and then decreased. Ni{sub 2}P/AlMCM-41-5 gave the largest S{sub i-C11+i-C12} of 43.2%. While NiP/AlMCM-41-5-TPR gave higher S{sub i-C11+i-C12} than Ni{sub 2}P/AlMCM-41-5, it was more active for the undesired C−C bond cleavage and methanation. We propose that the in-situ phosphorization adopted here is a promising approach to preparing Ni{sub 2}P-based bifunctional catalysts.

  3. The structure of Haemophilus influenzae prephenate dehydrogenase suggests unique features of bifunctional TyrA enzymes

    International Nuclear Information System (INIS)

    Chiu, Hsiu-Ju; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of the prephenate dehydrogenase component of the bifunctional H. influenzae TyrA reveals unique structural differences between bifunctional and monofunctional TyrA enzymes. Chorismate mutase/prephenate dehydrogenase from Haemophilus influenzae Rd KW20 is a bifunctional enzyme that catalyzes the rearrangement of chorismate to prephenate and the NAD(P) + -dependent oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate in tyrosine biosynthesis. The crystal structure of the prephenate dehydrogenase component (HinfPDH) of the TyrA protein from H. influenzae Rd KW20 in complex with the inhibitor tyrosine and cofactor NAD + has been determined to 2.0 Å resolution. HinfPDH is a dimeric enzyme, with each monomer consisting of an N-terminal α/β dinucleotide-binding domain and a C-terminal α-helical dimerization domain. The structure reveals key active-site residues at the domain interface, including His200, Arg297 and Ser179 that are involved in catalysis and/or ligand binding and are highly conserved in TyrA proteins from all three kingdoms of life. Tyrosine is bound directly at the catalytic site, suggesting that it is a competitive inhibitor of HinfPDH. Comparisons with its structural homologues reveal important differences around the active site, including the absence of an α–β motif in HinfPDH that is present in other TyrA proteins, such as Synechocystis sp. arogenate dehydrogenase. Residues from this motif are involved in discrimination between NADP + and NAD + . The loop between β5 and β6 in the N-terminal domain is much shorter in HinfPDH and an extra helix is present at the C-terminus. Furthermore, HinfPDH adopts a more closed conformation compared with TyrA proteins that do not have tyrosine bound. This conformational change brings the substrate, cofactor and active-site residues into close proximity for catalysis. An ionic network consisting of Arg297 (a key residue for tyrosine binding), a water molecule, Asp206 (from

  4. Optimization Of Process Parameters For The Production Of Bio diesel From Waste Cooking Oil In The Presence Of Bifunctional γ-Al2O3-CeO2 Supported Catalysts

    International Nuclear Information System (INIS)

    Anita Ramli; Muhammad Farooq

    2015-01-01

    Huge quantities of waste cooking oils are produced all over the world every day, especially in the developed countries with 0.5 million ton per year waste cooking oil are being generated in Malaysia alone. Such large amount of waste cooking oil production can create disposal problems and contamination to water and land resources if not disposed properly. The use of waste cooking oil as feedstock for bio diesel production will not only avoid the competition of the same oil resources for food and fuel but will also overcome the waste cooking oil disposal problems. However, waste cooking oil has high acid value, thus would require the oil to undergo esterification with an acid catalyst prior to transesterification with a base catalyst. Therefore, in this study, bifunctional catalyst supports were developed for one-step esterification-transesterification of waste cooking oil by varying the CeO 2 loading on γ-Al 2 O 3 . The bifunctional supports were then impregnated with 5 wt % Mo and characterized using N 2 adsorption-desorption isotherm to determine the surface area of the catalysts while temperature programmed desorption with NH 3 and CO 2 as adsorbents were used to determine the acidity and basicity of the catalysts. Results show that the γ-Al 2 O 3 -CeO 2 supported Mo catalysts are active for the one-step esterification-transesterification of waste cooking oil to produce bio diesel with the Mo/ γ-Al 2 O 3 -20 wt% CeO 2 as the most active catalyst. Optimization of process parameters for the production of bio diesel from waste cooking oil in the presence of this catalyst show that 81.1 % bio diesel yield was produced at 110 degree Celsius with catalyst loading of 7 wt %, agitation speed of 600 rpm, methanol to oil ratio of 30:1 and reaction period of 270 minutes. (author)

  5. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    Directory of Open Access Journals (Sweden)

    Samantha Serra Costa

    Full Text Available The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4% and glycerol (1.0%, reinforced with cellulose nanocrystals (0-1% and activated with alcoholic extracts of red propolis (0.4 to 1.0%. The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  6. Improving battery safety by early detection of internal shorting with a bifunctional separator

    Science.gov (United States)

    Wu, Hui; Zhuo, Denys; Kong, Desheng; Cui, Yi

    2014-10-01

    Lithium-based rechargeable batteries have been widely used in portable electronics and show great promise for emerging applications in transportation and wind-solar-grid energy storage, although their safety remains a practical concern. Failures in the form of fire and explosion can be initiated by internal short circuits associated with lithium dendrite formation during cycling. Here we report a new strategy for improving safety by designing a smart battery that allows internal battery health to be monitored in situ. Specifically, we achieve early detection of lithium dendrites inside batteries through a bifunctional separator, which offers a third sensing terminal in addition to the cathode and anode. The sensing terminal provides unique signals in the form of a pronounced voltage change, indicating imminent penetration of dendrites through the separator. This detection mechanism is highly sensitive, accurate and activated well in advance of shorting and can be applied to many types of batteries for improved safety.

  7. Basic evaluation of [sup 67]Ga labeled digoxin derivative as a metal-labeled bifunctional radiopharmaceutical

    Energy Technology Data Exchange (ETDEWEB)

    Fujibayashi, Yasuhisa; Konishi, Junji (Kyoto Univ. (Japan). Faculty of Medicine); Takemura, Yasutaka; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira

    1993-11-01

    To develop metal-labeled digoxin radiopharmaceuticals with affinity with anti-digoxin antibody as well as Na[sup +], K[sup +]-ATPase, a digoxin derivative conjugated with deferoxamine was synthesized. The derivative had a high binding affinity with [sup 67]Ga at deferoxamine introduced to the terminal sugar ring of digoxin. The [sup 67]Ga labeled digoxin derivative showed enough in vitro binding affinity and selectivity to anti-digoxin antibody as well as Na[sup +], K[sup +]-ATPase. The [sup 67]Ga labeled digoxin derivative is considered to be a potential metal-labeled bifunctional radiopharmaceutical for digoxin RIA as well as myocardial Na[sup +], K[sup +]-ATPase imaging. (author).

  8. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    step towards accurate identification and prediction of a variety of oxide/electrode interfacial structure-properties relationships, but also provides the foundation for rational design and control of ‘targeted active phases’ at catalytic interfaces. The successful design of bifunctional......In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... under alkaline electrochemical conditions. We demonstrate that the structure and oxidation state of the films can be systematically tuned by changing the applied electrode potential and/or the nature of substrates. Structural features determined from the theoretical calculations provide a wealth...

  9. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    Science.gov (United States)

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-09

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

  10. Development of tartaric esters as bifunctional additives of methanol-gasoline.

    Science.gov (United States)

    Zhang, Jie; Yang, Changchun; Tang, Ying; Zhou, Rui; Wang, Xiaoli; Xu, Lianghong

    2014-01-01

    Methanol has become an alternative fuel for gasoline, which is facing a rapidly rising world demand with a limited oil supply. Methanol-gasoline has been used in China, but phase stability and vapor lock still need to be resolved in methanol-gasoline applications. In this paper, a series of tartaric esters were synthesized and used as phase stabilizers and saturation vapor pressure depressors for methanol-gasoline. The results showed that the phase stabilities of tartaric esters for methanol-gasoline depend on the length of the alkoxy group. Several tartaric esters were found to be effective in various gasoline-methanol blends, and the tartaric esters display high capacity to depress the saturation vapor pressure of methanol-gasoline. According to the results, it can be concluded that the tartaric esters have great potential to be bifunctional gasoline-methanol additives.

  11. Novel 3-nitrotriazole-based amides and carbinols as bifunctional anti-Chagasic agents

    Science.gov (United States)

    Papadopoulou, Maria V.; Bloomer, William D.; Lepesheva, Galina I.; Rosenzweig, Howard S.; Kaiser, Marcel; Aguilera-Venegas, Benjamín; Wilkinson, Shane R.; Chatelain, Eric; Ioset, Jean-Robert

    2015-01-01

    3-Nitro-1H-1,2,4-triazole-based amides with a linear, rigid core and 3-nitrotriazole-based fluconazole analogs were synthesized as dual functioning antitrypanosomal agents. Such compounds are excellent substrates for type I nitroreductase (NTR) located in the mitochondrion of trypanosomatids and, at the same time, act as inhibitors of the sterol 14α-demethylase (T. cruzi CYP51) enzyme. Because combination treatments against parasites are often superior to monotherapy, we believe that this emerging class of bifunctional compounds may introduce a new generation of antitrypanosomal drugs. In the present work, the synthesis and in vitro and in vivo evaluation of such compounds is discussed. PMID:25580906

  12. On the molecular basis of D-bifunctional protein deficiency type III.

    Directory of Open Access Journals (Sweden)

    Maija L Mehtälä

    Full Text Available Molecular basis of D-bifunctional protein (D-BP deficiency was studied with wild type and five disease-causing variants of 3R-hydroxyacyl-CoA dehydrogenase fragment of the human MFE-2 (multifunctional enzyme type 2 protein. Complementation analysis in vivo in yeast and in vitro enzyme kinetic and stability determinants as well as in silico stability and structural fluctuation calculations were correlated with clinical data of known patients. Despite variations not affecting the catalytic residues, enzyme kinetic performance (K(m, V(max and k(cat of the recombinant protein variants were compromised to a varying extent and this can be judged as the direct molecular cause for D-BP deficiency. Protein stability plays an additional role in producing non-functionality of MFE-2 in case structural variations affect cofactor or substrate binding sites. Structure-function considerations of the variant proteins matched well with the available data of the patients.

  13. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    International Nuclear Information System (INIS)

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-01-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes

  14. Gently reduced graphene oxide incorporated into cobalt oxalate rods as bifunctional oxygen electrocatalyst

    International Nuclear Information System (INIS)

    Phihusut, Doungkamon; Ocon, Joey D.; Jeong, Beomgyun; Kim, Jin Won; Lee, Jae Kwang; Lee, Jaeyoung

    2014-01-01

    Graphical abstract: - Abstract: Water-oxygen electrochemistry is at the heart of key renewable energy technologies (fuel cells, electrolyzers, and metal-air batteries) due to the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although much effort has been devoted to the development of improved bifunctional electrocatalysts, an inexpensive, highly active oxygen electrocatalyst, however, remains to be a challenge. In this paper, we present a facile and robust method to create gently reduced graphene oxide incorporated into cobalt oxalate microstructures (CoC 2 O 4 /gRGO) and demonstrate its excellent and stable electrocatalytic activity in both OER and ORR, arising from the inherent properties of the components and their physicochemical interaction. Our synthesis technique also explores a single pot method to partially reduce graphene oxide and form CoC 2 O 4 structures while maintaining the solution processability of reduced graphene oxide. While the OER activity of CoC 2 O 4 /gRGO is exclusively due to CoC 2 O 4 , which transformed into OER-active Co species, the combination with gRGO significantly improves OER stability. On the other hand, CoC 2 O 4 /gRGO exhibits synergistic effect towards ORR, via a quasi-four-electron pathway, leading to a slightly higher ORR limiting current than Pt/C. Remarkably, gRGO offers dual functionality, contributing to ORR activity via the N-functional groups and also enhancing OER stability through the gRGO coating around CoC 2 O 4 structures. Our results suggest a new class of metal-carbon composite that has the potential to be alternative bifunctional catalysts for regenerative fuel cells and metal-air batteries

  15. AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli.

    Science.gov (United States)

    González-Leiza, Silvia M; de Pedro, Miguel A; Ayala, Juan A

    2011-12-01

    In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.

  16. Preparation of Ga-67 labeled monoclonal antibodies using deferoxamine as a bifunctional chelating agent

    International Nuclear Information System (INIS)

    Endo, K.; Furukawa, T.; Ohmomo, Y.

    1984-01-01

    Ga-67 labeled monoclonal IgG or F(ab')/sub 2/ fragments against α-fetoprotein and β-subunit of human choriogonadotropin (HCG), were prepared using Deferoxamine (DFO) as a bifunctional chelating agent. DFO, a well-known iron chelating agent, was conjugated with monoclonal antibodies (Ab) by a glutaraldehyde two step method and the effect of conjugation on the Ab activities was examined by RIA and Scatchard plot analysis. In both monoclonal Ab preparations, the conjugation reaction was favored as the pH increased. However, Ab-binding activities decreased as the molecular ratios of DFO to Ab increased. Preserved Ab activities were observed when Ab contained DFO per Ab molecule less than 2.1. At a ratio of over 3.3 DFO molecules per Ab, the maximal binding capacity rather than the affinity constant decreased. The inter-molecular cross linkage seemed to be responsible for the deactivation of binding activities. The obtained DFO-Ab conjugates, were then easily labeled with high efficiency and reproducibility and Ga-67 DFO-Ab complexes were highly stable both in vitro and in vivo. Thus, biodistribution of Ga-67 labeled F(ab')/sub 2/ fragments of monoclonal Ab to HCG β-subunit was attempted in nude mice transplanted with HCG-producing human teratocarcinoma. Tumor could be visualized, in spite of relatively high background imaging of liver, kidney and spleen. The use of DFO as a bifunctional chelating agent provided good evidence for its applicability to labeling monoclonal Ab with almost full retention of Ab activities. Further, availability of Ga-68 will make Ga-68 DFO-monoclonal Ab a very useful tool for positron tomography imaging of various tumors

  17. Solid state luminescence of CuI and CuNCS complexes with phenanthrolines and a new tris (aminomethyl) phosphine derived from N-methyl-2-phenylethanamine

    International Nuclear Information System (INIS)

    Starosta, Radosław; Komarnicka, Urszula K.; Puchalska, Małgorzata

    2014-01-01

    A new tris (aminomethyl) phosphine derived from N-methyl-2-phenylethanamine P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 (1) has been synthesized and characterized by the NMR spectra. Also, three new copper(I) iodide or isothiocyanate complexes with 1 1,10-phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (dmp) [CuI(phen)P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 ] (1P) CuI(dmp)P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 ] (1I) and [CuNCS(dmp)P(CH 2 N(CH 3 )CH 2 CH 2 Ph) 3 ] (1T), have been synthesized and characterized by elemental analysis as well as studied by NMR, UV–vis, IR and luminescence spectroscopies. An X-ray structure of 1P complex revealed that the geometry around Cu(I) center in this complex is distorted pseudo-tetrahedral. Investigated complexes exhibit orange, rather weak photoluminescence in the solid state. This relatively low intensity may be related to the high flattening deformations of the molecular geometries in the excited triplet states On the basis of TDDFT calculations we confirmed that the absorbance and luminescence bands of (MX,MPR 3 )LCT as well as of (MX)LCT types result mainly from the transitions from the copper–iodine (or isothiocyanate) bonds and a small admixture of copper–phosphine bonds to antibonding orbitals of phen or dmp diimines. -- Highlights: • A novel tris(aminomethyl)phosphine is obtained from N-methyl-2-phenylethanamine. • Three new CuI and CuNCS complexes with phen or dmp and a novel phosphine are presented. • The obtained complexes are luminescent in the solid state. • Main absorbance and luminescence bands are of (MX,MPR 3 )LCT as well as (MX)LCT types

  18. Complexation of amidocarbamoyl phosphine oxides with Ln{sup +3} (Ln = La, Nd, Pm, Sm and Eu) cation series: structural and thermodynamical features

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinnejad, Tayebeh; Kazemi, Tayebeh [Alzahra Univ., Tehran (Iran, Islamic Republic of). Dept. of Chemistry

    2016-05-01

    In the present study, we have mainly investigated the nature of interactions in Ln{sup 3+} (Ln = La, Nd, Pm, Sm, Eu) complexes with amidocarbamoyl methyl phosphine oxide (CMPO) and amidocarbamoyl propyl phosphine oxide (CPPO) ligands based on density functional theory (DFT) approaches. In the first step, thermodynamical properties for complexation of CMPO and CPPO ligands with Ln{sup 3+} cation series have been determined in the gas phase and with the presence of three solvents: n-hexane, chloroform and toluene, via polarized continuum model (PCM) computations. The trend of metal-ligand interaction strength has been analyzed and compared with the trend of ionic hardness within the series of lanthanide cations and different size of alkyl chain of amidocarbamoyl phosphine oxide ligand. The calculated thermochemical results in the gas and solution phases reveals that there is a consistency between increasing trend in the hardness of Ln{sup 3+} cation series and also electron-donating property of alkyl chain with increasing in thermodynamical stability of [Ln-CMPO]{sup 3+} and [Ln-CPPO]{sup 3+} complex series. We have also demonstrated that in the complexation reaction of all complex series, using n-hexane as solvent is more favorable thermodynamically than chloroform and toluene. It should be stated that this issue has been observed in many experiments. Finally, analysis of calculated deformation energies and also the variation in bond order of some selected key bonds in CMPO and CPPO ligands and their corresponded Ln{sup 3+} complexes series show a similar trend with increasing in the hardness of Ln{sup 3+} cation series and electron-donating of alkyl chain of amidocarbamoyl phosphine oxide ligand.

  19. A phosphine mediated sequential annulation process of 2-tosylaminochalcones with MBH carbonates to construct functionalized aza-benzobicyclo[4.3.0] derivatives.

    Science.gov (United States)

    Zhang, Qinglong; Zhu, Yannan; Jin, Hongxing; Huang, You

    2017-04-04

    A novel phosphine mediated sequential annulation process to construct functionalized aza-benzobicyclo[4.3.0] derivatives has been developed involving a one-pot sequential catalytic and stoichiometric process, which generates a series of benzobicyclo[4.3.0] compounds containing one quaternary center with up to 94% yield and 20 : 1 dr value. In this reaction, MBH carbonates act as 1,2,3-C 3 synthons.

  20. Complexation of amidocarbamoyl phosphine oxides with Ln+3 (Ln = La, Nd, Pm, Sm and Eu) cation series: structural and thermodynamical features

    International Nuclear Information System (INIS)

    Hosseinnejad, Tayebeh; Kazemi, Tayebeh

    2016-01-01

    In the present study, we have mainly investigated the nature of interactions in Ln 3+ (Ln = La, Nd, Pm, Sm, Eu) complexes with amidocarbamoyl methyl phosphine oxide (CMPO) and amidocarbamoyl propyl phosphine oxide (CPPO) ligands based on density functional theory (DFT) approaches. In the first step, thermodynamical properties for complexation of CMPO and CPPO ligands with Ln 3+ cation series have been determined in the gas phase and with the presence of three solvents: n-hexane, chloroform and toluene, via polarized continuum model (PCM) computations. The trend of metal-ligand interaction strength has been analyzed and compared with the trend of ionic hardness within the series of lanthanide cations and different size of alkyl chain of amidocarbamoyl phosphine oxide ligand. The calculated thermochemical results in the gas and solution phases reveals that there is a consistency between increasing trend in the hardness of Ln 3+ cation series and also electron-donating property of alkyl chain with increasing in thermodynamical stability of [Ln-CMPO] 3+ and [Ln-CPPO] 3+ complex series. We have also demonstrated that in the complexation reaction of all complex series, using n-hexane as solvent is more favorable thermodynamically than chloroform and toluene. It should be stated that this issue has been observed in many experiments. Finally, analysis of calculated deformation energies and also the variation in bond order of some selected key bonds in CMPO and CPPO ligands and their corresponded Ln 3+ complexes series show a similar trend with increasing in the hardness of Ln 3+ cation series and electron-donating of alkyl chain of amidocarbamoyl phosphine oxide ligand.

  1. Upgrading pyrolysis bio-oil to biofuel over bifunctional Co-Zn/HZSM-5 catalyst in supercritical methanol

    International Nuclear Information System (INIS)

    Cheng, Shouyun; Wei, Lin; Julson, James; Muthukumarappan, Kasiviswanathan; Kharel, Parashu Ram

    2017-01-01

    Highlights: • Integration of Co-Zn/HZSM-5 and supercritical methanol was used for bio-oil hydrodeoxygenation. • Co-Zn/HZSM-5 exhibited higher effectiveness than Co/HZSM-5 or Zn/HZSM-5. • 15%Co5%Zn/HZSM-5 produced biofuel with the highest hydrocarbons content at 35.33%. • Loading of Co and/or Zn did not change crystalline structure of HZSM-5. • Hydrogenation and esterification are main reactions in bio-oil hydrodeoxygenation. - Abstract: The role of catalyst is essential in processes of upgrading biomass pyrolysis bio-oil into hydrocarbon biofuel. While the majority of heterogeneous catalytic processes are conducted in the presence of gas (nearly ideal) or liquid phase, a growing number of processes are utilizing supercritical fluids (SCFs) as reaction media. Although hydrodeoxygenation (HDO) is proven a promising process for pyrolysis bio-oil upgrading to hydrocarbon biofuel, catalyst efficiency remains a challenge. Integrating heterogeneous catalysts with SCFs in a bio-oil HDO process was investigated in this study. Bifunctional Co-Zn/HZSM-5 catalysts were firstly used to upgrade bio-oil to biofuel in supercritical methanol. The loading of Co and Zn did not change HZSM-5 crystalline structure. Physicochemical properties of biofuel produced by Co and/or Zn loaded HZSM-5 catalysts such as water content, total acid number, viscosity and higher heating value improved. Bimetallic Co-Zn/HZSM-5 catalysts showed enhanced reactions of decarboxylation and decarbonylation that resulted in higher yields of CO and CO 2 . Bimetallic Co-Zn/HZSM-5 catalysts were more effective for bio-oil HDO than monometallic Co/HZSM-5 or Zn/HZSM-5 catalyst , which was attributed to the synergistic effect of Co and Zn on HZSM-5 support. Bimetallic Co-Zn/HZSM-5 catalysts increased biofuel yields and hydrocarbons contents in biofuels in comparison with monometallic Co/HZSM-5 and Zn/HZSM-5 catalysts. 5%Co15%Zn/HZSM-5 catalyst generated the highest biofuel yield at 22.13 wt.%, and 15%Co5

  2. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating

    Directory of Open Access Journals (Sweden)

    G Subbiahdoss

    2010-05-01

    Full Text Available Biomaterials-associated-infections (BAI are serious complications in modern medicine. Although non-adhesive coatings, like polymer-brush coatings, have been shown to prevent bacterial adhesion, they do not support cell growth. Bi-functional coatings are supposed to prevent biofilm formation while supporting tissue integration. Here, bacterial and cellular responses to poly(ethylene glycol (PEG brush-coatings on titanium oxide presenting the integrin-active peptide RGD (arginine-glycine-aspartic acid (bioactive “PEG-RGD” were compared to mono-functional PEG brush-coatings (biopassive “PEG” and bare titanium oxide (TiO2 surfaces under flow. Staphylococcus epidermidis ATCC 35983 was deposited on the surfaces under a shear rate of 11 s-1 for 2 h followed by seeding of U2OS osteoblasts. Subsequently, both S. epidermidis and U2OS cells were grown simultaneously on the surfaces for 48 h under low shear (0.14 s-1. After 2 h, staphylococcal adhesion was reduced to 3.6±1.8 × 103 and 6.0±3.9 × 103 cm-2 on PEG and PEG-RGD coatings respectively, compared to 1.3±0.4 × 105 cm-2 for the TiO2 surface. When allowed to grow for 48 h, biofilms formed on all surfaces. However, biofilms detached from the PEG and PEG-RGD coatings when exposed to an elevated shear (5.6 s-1 U2OS cells neither adhered nor spread on PEG brush-coatings, regardless of the presence of biofilm. In contrast, in the presence of biofilm, U2OS cells adhered and spread on PEG-RGD coatings with a significantly higher surface coverage than on bare TiO2. The detachment of biofilm and the high cell surface coverage revealed the potential significance of PEG-RGD coatings in the context of the “race for the surface” between bacteria and mammalian cells.

  3. Enzymatic Production of Glutathione by Bifunctional γ-Glutamylcysteine Synthetase/Glutathione Synthetase Coupled with In Vitro Acetate Kinase-Based ATP Generation.

    Science.gov (United States)

    Jiang, Yu; Tao, Rongsheng; Shen, Zhengquan; Sun, Liangdong; Zhu, Fuyun; Yang, Sheng

    2016-12-01

    Glutathione (γ-glutamyl-L-cysteinylglycine, GSH) is a pharmaceutical compound often used in food additives and the cosmetics industry. GSH can be produced biologically from L-glutamic acid, L-cysteine, and glycine through an enzymatic process traditionally involving two sequential adenosine triphosphate (ATP)-dependent reactions catalyzed by γ-glutamylcysteine synthetase (γ-GCS or GSHI, EC 6.3.2.2) and GSH synthetase (GS or GSHII, EC 6.3.2.3). Here, we report the enzymatic production of GSH by recombinant cell-free bifunctional γ-glutamylcysteine synthetase/glutathione synthetase (γ-GCS-GS or GshF) coupled with in vitro acetate kinase-based ATP generation. GSH production by an acetate kinase-integrated Escherichia coli Rosetta(DE3) mutant expressing Streptococcus thermophilus GshF reached 18.3 ± 0.1 g l -1 (59.5 ± 0.3 mM) within 3 h, with a molar yield of 0.75 ± 0.00 mol mol -1 added cysteine and a productivity of 6.1 ± 0.0 g l -1  h -1 . This is the highest GSH titer reported to date. This newly developed biocatalytic process offers a promising approach for meeting the industrial requirements for GSH production.

  4. Effect of Ni and noble metals (Ru, Pd and Pt) on performance of bifunctional MoP/SiO2 for hydroconversion of methyl laurate

    Science.gov (United States)

    Nie, Ziyang; Zhang, Zhena; Chen, Jixiang

    2017-10-01

    SiO2 supported bifunctional MoP catalysts modified with different metal promoters (Ni, Ru, Pd, Pt), where Mo/Ni and Mo/M(M = Ru, Pd and Pt) atomic ratios was respectively 10 and 40, were prepared by TPR method from the phosphate precursors. It was found that the introduction of metal promoters facilitated the reduction of phosphate precursor and enhanced the dispersion of MoP. However, the MoP catalyst acidity was scarcely influenced by the small amount of metal promoters. In the hydroconversion of methyl laurate, the promoters enhanced the MoP catalyst activity for conversion of methyl laurate and hydrogenation of alkenes (intermediate), but reduced isomerization ability. Among the promoters, Ru was an optimum to decrease selectivity to alkenes while maintain high selectivity to iso-alkanes, and Mo40RuP showed better stability than MoP. At 380 °C and 3.0 MPa, the conversion of methyl laurate, the total selectivity to C11 and C12 hydrocarbons and the selectivity to iso-alkanes maintained at 100%, ∼94% and ∼30% on Mo40RuP during 102 h, respectively. The good stability of Mo40RuP is ascribed to that the presence of Ru prevented the sintering of MoP particles and suppressed carbon deposition.

  5. Ethanolysis conversion of spent frying oils over aluminium, calcium-phosphate based bi-functional formulated catalysts. Catalytic activity assessment study

    Energy Technology Data Exchange (ETDEWEB)

    Al-Zaini, Essam O.; Chesterfield, Dean; Adesina, Adesoji A. [The Univ. of New South Wales, Sydney (Australia). Reactor Engineering and Technology Group; Olsen, John [The Univ. of New South Wales, Sydney (Australia). School of Mechanical and Manufacturing Engineering

    2013-06-01

    The current study compares the catalytic performance of two bi-functional solid catalysts for the transesterification of waste cooking vegetable oil in presence of bio-ethanol acyl-acceptor. The two catalysts were aluminum oxide and seashell-derived calcium oxide supported K{sub 3}PO{sub 4}. The catalytic activity of the produced catalyst samples were assessed and evaluated in terms of their textural and surface chemical properties. Evaluative runs showed that increased amounts of K{sub 3}PO{sub 4} have differently controlled the textural and surface chemical property of the finally synthesised catalyst samples. The behaviour revealed a strong correlation between the percentage yield of ethyl esters EEY% and acid-base site density and strength between the two types of catalysts. Possible leaching test of the catalysts was also used as a measure of performance and as a result, the optimum catalyst, on the basis of both ester yield and resistance to leaching was identified as the sample containing between 10 and 15wt% of K{sub 3}PO{sub 4} on AlO{sub 3} and CaO respectively. (orig.)

  6. Preparation and characterization of bifunctional dendrimer modified Fe{sub 3}O{sub 4}/CdTe nanoparticles with both luminescent and superparamagnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiuling, E-mail: wxling_self@163.com [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Gu, Yinjun; Dong, Shuling [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Zhao, Qin [School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019 (China); Liu, Yongjian [Department of Chemical and Biological Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China)

    2015-10-15

    Highlights: • The fluorescent superparamagnetic dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles are synthesized in this paper. • The synthesized nanocomposites maintain excellent magnetic properties. • The synthesized nanocomposites maintain highly luminescent markers with narrow emission bands. - Abstract: Magnetic nanoparticles Fe{sub 3}O{sub 4} were prepared by hydrothermal coprecipitation of ferric and ferrous ions using NaOH. The surface modification of Fe{sub 3}O{sub 4} nanoparticle by dendrimers has rendered the nanoparticle surface with enriched amine groups which facilitated the adsorption and conjugation of thioglycolic acid (TGA) modified CdTe quantum dots to form a stable hybrid nanostructure. Three generations (first generation: G0F, second generation: G1F, third generation: G3F) of bifunctional dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticles were successfully prepared using this technique and characterized by microscopy. The optical and magnetic properties of the dendrimeric Fe{sub 3}O{sub 4}/CdTe nanoparticle were also investigated. The microscopic study reveals 3 different sizes for 3 generations, 16 nm (G0F), 31 nm (G1F) and 47 nm (G3F). Among three generations of nanoparticles, the G1F has the best optical property with a luminescent quantum yield of 25.6% and the G0F has the best magnetic property with a saturation magnetization of 19.3 emμ/g.

  7. Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi-functional probe.

    Directory of Open Access Journals (Sweden)

    Roni F Rayes

    Full Text Available The dynamics of four regions of tropomyosin was assessed using saturation transfer electron paramagnetic resonance in the muscle fiber. In order to fully immobilize the spin probe on the surface of tropomyosin, a bi-functional spin label was attached to i,i+4 positions via cysteine mutagenesis. The dynamics of bi-functionally labeled tropomyosin mutants decreased by three orders of magnitude when reconstituted into "ghost muscle fibers". The rates of motion varied along the length of tropomyosin with the C-terminus position 268/272 being one order of magnitude slower then N-terminal domain or the center of the molecule. Introduction of troponin decreases the dynamics of all four sites in the muscle fiber, but there was no significant effect upon addition of calcium or myosin subfragment-1.

  8. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    Science.gov (United States)

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Functionalization of nanoparticle titanium dioxide with different bifunctional organic molecules and trimers of transition compounds for obtaining new materials

    International Nuclear Information System (INIS)

    Rivera Martinez, Maria Cinthya

    2012-01-01

    Functionalization of titanium dioxide in nanoporous anatase phase is investigated for obtaining new nanomaterials. Functionalizations were performed using two heating methods: the conventional of refluxing heating method and microwave irradiation with bifunctional organic molecules is used to study how to anchor molecules and the change in the wettability of the material. Besides, reactions with organic molecules were performed as the derived from nanoproxene. The growth layer by layer is performed using the bifunctional molecules previous for the immobilization of cobalt trimers. Functionalized molecules were characterized by infrared spectroscopy, X-ray diffraction, contact angle, scanning electron microscopy, x-ray elemental analysis, plasma atomic emission spectroscopy coupled inductively, x-ray photoelectron spectroscopy and thermogravimetric analysis. This type of functionalizations on nanoporous titanium dioxide could potentially improve optical sensitivity and activity of this nanomaterial in the visible region. (author) [es

  10. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  11. Crystallization and preliminary X-ray analysis of a bifunctional catalase-phenol oxidase from Scytalidium thermophilum

    International Nuclear Information System (INIS)

    Sutay Kocabas, Didem; Pearson, Arwen R.; Phillips, Simon E. V.; Bakir, Ufuk; Ogel, Zumrut B.; McPherson, Michael J.; Trinh, Chi H.

    2009-01-01

    The bifunctional enzyme catalase-phenol oxidase from S. thermophilum was crystallized by the hanging-drop vapour-diffusion method in space group P2 1 and diffraction data were collected to 2.8 Å resolution. Catalase-phenol oxidase from Scytalidium thermophilum is a bifunctional enzyme: its major activity is the catalase-mediated decomposition of hydrogen peroxide, but it also catalyzes phenol oxidation. To understand the structural basis of this dual functionality, the enzyme, which has been shown to be a tetramer in solution, has been purified by anion-exchange and gel-filtration chromatography and has been crystallized using the hanging-drop vapour-diffusion technique. Streak-seeding was used to obtain larger crystals suitable for X-ray analysis. Diffraction data were collected to 2.8 Å resolution at the Daresbury Synchrotron Radiation Source. The crystals belonged to space group P2 1 and contained one tetramer per asymmetric unit

  12. Self-organization of Au–CdSe hybrid nanoflowers at different length scales via bi-functional diamine linkers

    Energy Technology Data Exchange (ETDEWEB)

    AbouZeid, Khaled Mohamed [Virginia Commonwealth University, Department of Chemistry (United States); Mohamed, Mona Bakr [Cairo University, National Institute of Laser Enhanced Science (NILES) (Egypt); El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Virginia Commonwealth University, Department of Chemistry (United States)

    2016-01-15

    This work introduces a series of molecular bridging bi-functional linkers to produce laterally self-assembled nanostructures of the Au–CdSe nanoflowers on different length scales ranging from 10 nm to 100 microns. Assembly of Au nanocrystals within amorphous CdSe rods is found in the early stages of the growth of the Au–CdSe nanoflowers. The Au–CdSe nanoflowers are formed through a one-pot low temperature (150 °C) process where CdSe clusters are adsorbed on the surface of the Au cores, and they then start to form multiple arms and branches resulting in flower-shaped hybrid nanostructures. More complex assembly at a micron length scale can be achieved by means of bi-functional capping agents with appropriate alkyl chain lengths, such as 1,12-diaminododecane.

  13. Purification, crystallization and preliminary X-ray crystallographic analysis of rice bifunctional α-amylase/subtilisin inhibitor from Oryza sativa

    International Nuclear Information System (INIS)

    Lin, Yi-Hung; Peng, Wen-Yan; Huang, Yen-Chieh; Guan, Hong-Hsiang; Hsieh, Ying-Cheng; Liu, Ming-Yih; Chang, Tschining; Chen, Chun-Jung

    2006-01-01

    The crystallization of rice α-amylase/subtilisin bifunctional inhibitor is reported. Rice bifunctional α-amylase/subtilisin inhibitor (RASI) can inhibit both α-amylase from larvae of the red flour beetle (Tribolium castaneum) and subtilisin from Bacillus subtilis. The synthesis of RASI is up-regulated during the late milky stage in developing seeds. The 8.9 kDa molecular-weight RASI from rice has been crystallized using the hanging-drop vapour-diffusion method. According to 1.81 Å resolution X-ray diffraction data from rice RASI crystals, the crystal belongs to space group P2 1 2 1 2, with unit-cell parameters a = 79.99, b = 62.95, c = 66.70 Å. Preliminary analysis indicates two RASI molecules in an asymmetric unit with a solvent content of 44%

  14. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua; He, Xiao-Bo; Lv, Peng-Liang; Ye, Cai-Yun; Liu, Di-Jia

    2017-05-01

    Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wa Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.

  15. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    Science.gov (United States)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  16. Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Hamid R., E-mail: hrzare@yazduni.ac.ir [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Nanotechnology Research Center, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Hashemi, S. Hossein; Benvidi, Ali [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2010-06-04

    For the first time, an electrodeposited nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles), as an excellent bifunctional electrocatalyst, was successfully used for hydrazine and hydroxylamine electrocatalytic oxidation. The results show that, at the present bifunctional modified electrode, two different redox couples of ruthenium oxides serve as electrocatalysts for simultaneous electrocatalytic oxidation of hydrazine and hydroxylamine. At the modified electrode surface, the peaks of differential pulse voltammetry (DPV) for hydrazine and hydroxylamine oxidation were clearly separated from each other when they co-exited in solution. Thus, it was possible to simultaneously determine hydrazine and hydroxylamine in the samples at a ruthenium oxide nanoparticles modified glassy carbon electrode (RuON-GCE). Linear calibration curves were obtained for 2.0-268.3 {mu}M and 268.3-417.3 {mu}M of hydrazine and for 4.0-33.8 {mu}M and 33.8-78.3 {mu}M of hydroxylamine at the modified electrode surface using an amperometric method. The amperometric method also exhibited the detection limits of 0.15 {mu}M and 0.45 {mu}M for hydrazine and hydroxylamine respectively. RuON-GCE was satisfactorily used for determination of spiked hydrazine in two water samples. Moreover, the studied bifunctional modified electrode exhibited high sensitivity, good repeatability, wide linear range and long-term stability.

  17. A fundamental trade-off in covalent switching and its circumvention by enzyme bifunctionality in glucose homeostasis.

    Science.gov (United States)

    Dasgupta, Tathagata; Croll, David H; Owen, Jeremy A; Vander Heiden, Matthew G; Locasale, Jason W; Alon, Uri; Cantley, Lewis C; Gunawardena, Jeremy

    2014-05-09

    Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between "on" and "off" and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed "linear framework" for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon.

  18. Triphenyl phosphine oxide as a substoichiometric radiochemical reagent: Determination of thallium

    International Nuclear Information System (INIS)

    Reddy, P.C.; Polaiah, B.; Rangamannar, B.

    1991-01-01

    A rapid radiochemical method has been developed for the determination of microgram amounts of thallium based on the substoichiometric extraction of its ocmplex with triphenylphosphine oxide into benzene from 6 M sulphuric acid. 10-90 μg of thallium was determined with an average error of 2.06%. The effect of diverse metal ions on the extraction was studied. (orig.)

  19. Biphasic and SAPC Hydroformylation Catalyzed by Rh-phosphines Bound to Water-Soluble Polymers

    DEFF Research Database (Denmark)

    Malmstrøm, Torsten; Andersson, Carlaxel; Hjortkjær, Jes

    1999-01-01

    Coupling of the triphenylphosphine moiety to poly-acrylic acid and poly-ethyleneimine respectively afford the macromolecular ligands PAA-PNH and PEI-PNH. Reaction of the ligands with Rh(CO)2(acac) give water-soluble complexes that are active as catalysts in the hydroformylation ofdifferent olefins...

  20. Water-soluble phosphine-protected Au9 clusters: Electronic structures and nuclearity conversion via phase transfer

    Science.gov (United States)

    Yao, Hiroshi; Tsubota, Shuhei

    2017-08-01

    In this article, isolation, exploration of electronic structures, and nuclearity conversion of water-soluble triphenylphosphine monosulfonate (TPPS)-protected nonagold (Au9) clusters are outlined. The Au9 clusters are obtained by the reduction of solutions containing TPPS and HAuCl4 and subsequent electrophoretic fractionation. Mass spectrometry and elemental analysis reveal the formation of [Au9(TPPS)8]5- nonagold cluster. UV-vis absorption and magnetic circular dichroism (MCD) spectra of aqueous [Au9(TPPS)8]5- are quite similar to those of [Au9(PPh3)8]3+ in organic solvent, so the solution-phase structures are likely similar for both systems. Simultaneous deconvolution analysis of absorption and MCD spectra demonstrates the presence of some weak electronic transitions that are essentially unresolved in the UV-vis absorption. Quantum chemical calculations for a model compound [Au9(pH3)8]3+ show that the possible (solution-phase) skeletal structure of the nonagold cluster has D2h core symmetry rather than C4-symmetrical centered crown conformation, which is known as the crystal form of the Au9 compound. Moreover, we find a new nuclearity conversion route from Au9 to Au8; that is, phase transfer of aqueous [Au9(TPPS)8]5- into chloroform using tetraoctylammonium bromide yields [Au8(TPPS)8]6- clusters in the absence of excess phosphine.

  1. Phosphine-Thiophenolate Half-Titanocene Chlorides: Synthesis, Structure, and Their Application in Ethylene (Co-Polymerization

    Directory of Open Access Journals (Sweden)

    Yue-Sheng Li

    2013-03-01

    Full Text Available A series of novel half-titanocene complexes CpTiCl2[S-2-R-6-(PPh2C6H3] (Cp = C5H5, 2a, R = H; 2b, R = Ph; 2c, R = SiMe3 have been synthesized by treating CpTiCl3 with the sodium of the ligands, 2-R-6-(PPh2C6H3SNa, which were prepared by the corresponding ligands and NaH. These complexes have been characterized by 1H, 13C and 31P NMR as well as elemental analyses. Structures for 2a–b were further confirmed by X-ray crystallography. Complexes 2a–b adopt five-coordinate, distorted square-pyramid geometry around the titanium center, in which the equatorial positions are occupied by sulfur and phosphorus atoms of the chelating phosphine-thiophenolate and two chlorine atoms, and the cyclopentadienyl ring is coordinated on the axial position. The complexes 2a–c were investigated as the catalysts for ethylene polymerization and copolymerization of ethylene with norbornene in the presence of MMAO or Ph3CB(C6F54/iBu3Al as the cocatalyst. All complexes exhibited low to moderate activities towards homopolymerization of ethylene. However, they displayed moderate to high activities towards copolymerization of ethylene with norbornene.

  2. Study of the phosphine plasma decomposition and its formation by ablation of red phosphorus in hydrogen plasma

    Science.gov (United States)

    Bruno, G.; Losurdo, M.; Capezzuto, P.

    1995-03-01

    Mass spectrometry and optical emission spectroscopy have been used to study the chemistry of PH(sub 3) plasma decomposition as well as its formation by ablation of red phosphorus in hydrogen plasma. It has been shown that PH(sub 3) decomposition easily equilibrates at low levels of PH(sub 3) depletion (15%-30%), this depending mainly on the rf power. The ablation of red phosphorus in H(sub 2) plasma produces phosphine in significant amount, depending mainly on the total pressure but also on the rf power. It has also been found that H(sup *) and PH(sup *) emitting species originate not only by the dissociative excitation of H(sub 2) and PH(sub 3), respectively, but also by the direct excitation of the same species in the ground state. Considerations are developed on how to derive the H-atom and PH radical densities by actinometry, under specific experimental conditions. Besides, the linear dependence of PH(sub 3) formation rate, r(sub PH(3)), on H-atom density, (left bracket) H (right bracket), leads to the definition of the kinetic equation r(sub PH(3)) = k (left bracket) H (right bracket), and to the hypothesis that the formation of PH radical on the surface or its desorption is the dominant mechanism for PH(sub 3) production.

  3. Study of the hydro-isomerization of paraffins with 7 and 8 carbon atoms on bifunctional catalysts; Etude de l'hydroisomerisation des paraffines a 7 et 8 atomes de carbone sur catalyseurs bifonctionnels

    Energy Technology Data Exchange (ETDEWEB)

    Patrigeon, A.

    2000-10-11

    Due to the suppression of lead additives and the trend to decrease the aromatic and olefinic content in gasoline, the interest for new octane enhancement processes has increased, particularly for isomerization of C{sub 7} and C{sub 8} linear paraffins into higher octane number multi-branched paraffins. Up to the present day, no industrial bifunctional catalyst exists due to the high tendency of the paraffins to be cracked limiting the amount of multi-branched products. The aim of this work is to study the possibility of isomerizing linear C{sub 7} and C{sub 8} paraffins in two steps in order to increase the amount of formed multi-branched paraffins. The first step converts linear paraffins into mono-branched paraffins (that step is supposed to be the slowest one) carried out using one bifunctional catalyst. The second step converts the formed mono-branched paraffins into multi-branched paraffins using a second bifunctional catalyst. The aim is to determine the characteristics of the two catalysts. To study the first step, Pt/zeolite or Pt/meso-porous solid catalysts, with different acidities and porosities, were tested in n-heptane and n-octane hydro-conversion. The role of solid porosity on selectivities was clearly established. Molecular modelling was utilised to explain the observed selectivities. To study the second step, the 2-methyl-hexane and 2-methyl-heptane hydro-conversion on Pt/H-beta and Pt/H-Y was carried out. This lead to maximum multi-branched yields similar to those obtained with the n-heptane and n-octane hydro-conversion. That result shows that the two steps isomerization process is not necessarily required because no more multi-branched products are formed. A kinetic study on the n-heptane hydro-conversion was performed. The decomposition of isomerization and cracking reactions into elementary steps has shown the major role of the paraffins physio-sorption step in the zeolite pores. (author)

  4. 3D-modelling of bifunctional core-shell catalysts for the production of fuels from biomass-based synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenjin; Lee, Seung Cheol; Li, Hui; Pfeifer, Peter; Dittmeyer, Roland [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Micro Process Engineering (IMVT)

    2013-09-01

    Until now, the main route for the production of DME from synthesis gas in industry is methanol synthesis on a metallic catalyst and subsequent dehydration of methanol on an acid catalyst (two-step process). A single-step process using bifunctional catalysts to perform the two steps simultaneously would be preferred e.g. due to thermodynamic considerations; but this is impeded by the higher volumetric heat release which may cause deactivation of the methanol synthesis catalyst function. Thus we propose to conduct the reaction in a microchannel reactor. However, in order to increase the productivity of the microchannel reactor and to lower the investment costs, we aim at a high selectivity and activity of the catalyst. The continuously removal of methanol by dehydration on an acidic ZSM-5 catalyst as shell improves the thermodynamic conditions of methanol synthesis in the CuO/ZnO/Al{sub 2}O{sub 3} core; thus, the synthesis gas conversion can be higher than that determined by the thermodynamics of pure methanol synthesis. The molecular sieving in the zeolite layer can further lead to higher selectivity of DME at milder reaction conditions. However, mass transport limitation of the synthesis gas to the catalyst core should not hinder the reaction, and therefore a more detailed investigation is required. In order to computer-aided optimize the catalyst structure and the operating conditions for core-shell catalysts, a simulation model should be developed to study the coupled reaction and transport processes in core-shell catalysts. In this simulation model the complicated interaction of diffusion and reaction in the zeolite layer (shell) must be detailed by a network model to describe its structure and the mechanisms effectively. In addition, suitable diffusion and kinetic models are required to describe the mass transport and reactions in the layer. Suitable networks, diffusion and kinetic models are discussed for 3D simulations in this contribution. (orig.)

  5. Estimation of solubility of organo-phosphorus extractants by P determination using molybdovanadophosphoric acid method

    International Nuclear Information System (INIS)

    Gill, J.S.; Kotekar, M.K.; Singh, H.

    2005-01-01

    Solvent extraction processes have been found to be suitable for uranium recovery from phosphoric acid. Various extractants like di-2-ethyl hexylphosphoric acid (D2EHPA), di-nonylphenyl phosphoric acid (DNPPA) and synergistic agents like tri-butyl phosphate (TBP), tri-octyl phosphine oxide (TOPO) have been used in liquid-liquid extraction of uranium from phosphoric acid. Contents of these organo-phosphorus compounds in aqueous raffinates need estimation for process requirements. Solubility of Tri-butyl phosphate (TBP) and Di-2-ethylhexyl phosphoric acid (D2EHPA) extractants have been determined in different media of water, oxalic acid (0.6M) and sulphuric acid (3.75M) solutions. These compounds were estimated by determining their phosphorus (P) contents employing molybdovanadophosphoric acid method, after digesting and solubalizing them in nitric and perchloric acid. (author)

  6. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst

    Science.gov (United States)

    Gao, Peng; Li, Shenggang; Bu, Xianni; Dang, Shanshan; Liu, Ziyu; Wang, Hui; Zhong, Liangshu; Qiu, Minghuang; Yang, Chengguang; Cai, Jun; Wei, Wei; Sun, Yuhan

    2017-10-01

    Although considerable progress has been made in carbon dioxide (CO2) hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO2 because of the extreme inertness of CO2 and a high C-C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In2O3) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In2O3 surfaces activate CO2 and hydrogen to form methanol, and C-C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.

  7. Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ.

    Directory of Open Access Journals (Sweden)

    David C Butler

    Full Text Available Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn are closely associated with synucleinopathies, including Parkinson's disease (PD. VH14 is a human single domain intrabody selected against the non-amyloid component (NAC hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.

  8. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions

    Science.gov (United States)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin

    2017-02-01

    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission ;turn-on; bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  9. Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo

    International Nuclear Information System (INIS)

    Sun, Xiaorong; Xing, Ligang; Deng, Xuelong; Hsiao, Hung Tsung; Manami, Akiko; Koutcher, Jason A.; Clifton Ling, C.; Li, Gloria C.

    2012-01-01

    Purpose: To investigate whether hypoxia targeted bifunctional suicide gene expression-cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) with 5-FC treatments can enhance radiotherapy. Materials and methods: Stable transfectants of R3327-AT cells were established which express a triple-fusion-gene: CD, UPRT and monomoric DsRed (mDsRed) controlled by a hypoxia inducible promoter. Hypoxia-induced expression/function of CDUPRTmDsRed was verified by western blot, flow cytometry, fluorescent microscopy, and cytotoxicity assay of 5-FU and 5-FC. Tumor-bearing mice were treated with 5-FC and local radiation. Tumor volume was monitored and compared with those treated with 5-FC or radiation alone. In addition, the CDUPRTmDsRed distribution in hypoxic regions of tumor sections was visualized with fluorescent microscopy. Results: Hypoxic induction of CDUPRTmDsRed protein correlated with increased sensitivity to 5-FC and 5-FU. Significant radiosensitization effects were detected after 5-FC treatments under hypoxic conditions. In the tumor xenografts, the distribution of CDUPRTmDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC to mice in combination with local irradiation resulted in significant tumor regression, as in comparison with 5-FC or radiation treatments alone. Conclusions: Our data suggest that the hypoxia-inducible CDUPRT/5-FC gene therapy strategy has the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.

  10. Bifunctional Rhodamine Probes of Myosin Regulatory Light Chain Orientation in Relaxed Skeletal Muscle Fibers

    Science.gov (United States)

    Brack, Andrew S.; Brandmeier, Birgit D.; Ferguson, Roisean E.; Criddle, Susan; Dale, Robert E.; Irving, Malcolm

    2004-01-01

    The orientation of the regulatory light chain (RLC) region of the myosin heads in relaxed skinned fibers from rabbit psoas muscle was investigated by polarized fluorescence from bifunctional rhodamine (BR) probes cross-linking pairs of cysteine residues introduced into the RLC. Pure 1:1 BR-RLC complexes were exchanged into single muscle fibers in EDTA rigor solution for 30 min at 30°C; ∼60% of the native RLC was removed and stoichiometrically replaced by BR-RLC, and >85% of the BR-RLC was located in the sarcomeric A-bands. The second- and fourth-rank order parameters of the orientation distributions of BR dipoles linking RLC cysteine pairs 100-108, 100-113, 108-113, and 104-115 were calculated from polarized fluorescence intensities, and used to determine the smoothest RLC orientation distribution—the maximum entropy distribution—consistent with the polarized fluorescence data. Maximum entropy distributions in relaxed muscle were relatively broad. At the peak of the distribution, the “lever” axis, linking Cys707 and Lys843 of the myosin heavy chain, was at 70–80° to the fiber axis, and the “hook” helix (Pro830–Lys843) was almost coplanar with the fiber and lever axes. The temperature and ionic strength of the relaxing solution had small but reproducible effects on the orientation of the RLC region. PMID:15041671

  11. Toward Protein Structure In Situ: Comparison of Two Bifunctional Rhodamine Adducts of Troponin C

    Science.gov (United States)

    Julien, Olivier; Sun, Yin-Biao; Knowles, Andrea C.; Brandmeier, Birgit D.; Dale, Robert E.; Trentham, David R.; Corrie, John E. T.; Sykes, Brian D.; Irving, Malcolm

    2007-01-01

    As part of a program to develop methods for determining protein structure in situ, sTnC was labeled with a bifunctional rhodamine (BR or BSR), cross-linking residues 56 and 63 of its C-helix. NMR spectroscopy of the N-terminal domain of BSR-labeled sTnC in complex with Ca2+ and the troponin I switch peptide (residues 115–131) showed that BSR labeling does not significantly affect the secondary structure of the protein or its dynamics in solution. BR-labeling was previously shown to have no effect on the solution structure of this complex. Isometric force generation in isolated demembranated fibers from rabbit psoas muscle into which BR- or BSR-labeled sTnC had been exchanged showed reduced Ca2+-sensitivity, and this effect was larger with the BSR label. The orientation of rhodamine dipoles with respect to the fiber axis was determined by polarized fluorescence. The mean orientations of the BR and BSR dipoles were almost identical in relaxed muscle, suggesting that both probes accurately report the orientation of the C-helix to which they are attached. The BSR dipole had smaller orientational dispersion, consistent with less flexible linkers between the rhodamine dipole and cysteine-reactive groups. PMID:17483167

  12. A self-cleaning Li-S battery enabled by a bifunctional redox mediator

    Science.gov (United States)

    Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R.

    2017-09-01

    The polysulfide shuttle effect and lithium dendrite growth in lithium-sulfur (Li-S) batteries can repeatedly breach the anodic solid electrolyte interphase (SEI) over cycling. As a result, irreversible short-chain sulfide side products (Li2Sx, x = 1, 2) keep depositing on the Li anode, leading to the active material loss, increasing the Li+ transport resistance, and thereby reducing the cycle life. In this work, indium iodide (InI3) is investigated as a bifunctional electrolyte additive for Li-S batteries to protect the Li anode and decompose the side products spontaneously. On the one hand, Indium (In) is electrodeposited onto the Li anode prior to Li plating during the initial charging process, forming a chemically and mechanically stable SEI to prevent the Li anode from reacting with soluble polysulfide species to form Li2Sx (x = 1, 2) side products. On the other hand, by adequately overcharging the battery, the triiodide/iodide redox mediator is capable of chemically transforming side products deposited on the Li anode and separator into soluble polysulfides, which can be recycled by the cathode. It is shown that the battery with the InI3 additive exhibits a prolonged cycle life, and is capable of retrieving its capacity by a facile overcharging process.

  13. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries

    KAUST Repository

    Abbas, Syed Ali

    2016-05-24

    The shuttling process involving lithium polysulfides is one of the major factors responsible for the degradation in capacity of lithium–sulfur batteries (LSBs). Herein, we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on pristine separator—to obtain long-cycle LSBs. The negatively charged SO3– groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25 C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.

  14. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    Science.gov (United States)

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Xie, Yong; Xiang, Hongfa; Shi, Pengcheng; Liang, Xin; Xu, Wu

    2018-04-01

    Reformulation of electrolyte systems and improvement of separator wettability are vital to electrochemical performances of rechargeable lithium (Li) metal batteries, especially for suppressing Li dendrites. In this work we report a bifunctional electrolyte additive that improves separator wettability and suppresses Li dendrite growth in LMBs. A triblock polyether (Pluronic P123) was introduced as an additive into a commonly used carbonate-based electrolyte. It was found that addition of 0.2~1% (by weight) P123 into the electrolyte could effectively enhance the wettability of polyethylene separator. More importantly, the adsorption of P123 on Li metal surface can act as an artificial solid electrolyte interphase layer and contribute to suppress the growth of Li dendrites. A smooth and dendritic-free morphology can be achieved in the electrolyte with 0.2% P123. The Li||Li symmetric cells with the 0.2% P123 containing electrolyte exhibit a relatively stable cycling stability at high current densities of 1.0 and 3.0 mA cm-2.

  16. Highly stable acyclic bifunctional chelator for {sup 64}Cu PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Abada, S.; Lecointre, A.; Christine, C.; Charbonniere, L. [CNRS/UDS, EPCM, Strasbourg (France). Lab. d' Ingenierie Appliquee a l' Analyse; Dechamps-Olivier, I. [Univ. de Reims Champagne Ardenne, Reims (France). Group Chimie de Coordination; Platas-Iglesias, C. [Univ. da Coruna (Spain). Dept. de Quimica Fundamental; Elhabiri, M. [CNRS/UDS, EPCM, Strasbourg (France). Lab. de Physico-Chimie Bioinorganique

    2011-07-01

    Ligand L{sup 1}, based on a pyridine scaffold, functionalized by two bis(methane phosphonate)aminomethyl groups, was shown to display a very high affinity towards Cu(II) (log K{sub CuL}=22.7) and selectivity over Ni(II), Co(II), Zn(II) and Ga(III) ({delta} log K{sub ML}>4) as shown by the values of the stability constants obtained from potentiometric measurements. Insights into the coordination mode of the ligand around Cu(II) cation were obtained by UV-Vis absorption and EPR spectroscopies as well as density functional theory (DFT) calculations (B3LYP model) performed in aqueous solution. The results point to a pentacoordination pattern of the metal ion in the fully deprotonated [CuL{sup 1}]{sup 6-} species. Considering the beneficial thermodynamic parameters of this ligand, kinetic experiments were run to follow the formation of the copper(II) complexes, indicating a very rapid formation of the complex, appropriate for {sup 64}Cu complexation. As L{sup 1} represents a particularly interesting target within the frame of {sup 64}Cu PET imaging, a synthetic protocol was developed to introduce a labeling function on the pyridyl moiety of L{sup 1}, thereby affording L{sup 2}, a potential bifunctional chelator (BFC) for PET imaging.

  17. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries

    KAUST Repository

    Abbas, Syed Ali; Ibrahem, Mohammed Aziz; Hu, Lung-hao; Lin, Chia-Nan; Fang, Jason; Boopathi, Karunakara Moorthy; Wang, Pen-Cheng; Li, Lain-Jong; Chu, Chih Wei

    2016-01-01

    The shuttling process involving lithium polysulfides is one of the major factors responsible for the degradation in capacity of lithium–sulfur batteries (LSBs). Herein, we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on pristine separator—to obtain long-cycle LSBs. The negatively charged SO3– groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25 C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.

  18. Solution Structure of a Novel C2-Symmetrical Bifunctional Bicyclic Inhibitor Based on SFTI-1

    International Nuclear Information System (INIS)

    Jaulent, Agnes M.; Brauer, Arnd B. E.; Matthews, Stephen J.; Leatherbarrow, Robin J.

    2005-01-01

    A novel bifunctional bicyclic inhibitor has been created that combines features both from the Bowman-Birk inhibitor (BBI) proteins, which have two distinct inhibitory sites, and from sunflower trypsin inhibitor-1 (SFTI-1), which has a compact bicyclic structure. The inhibitor was designed by fusing together a pair of reactive loops based on a sequence derived from SFTI-1 to create a backbone-cyclized disulfide-bridged 16-mer peptide. This peptide has two symmetrically spaced trypsin binding sites. Its synthesis and biological activity have been reported in a previous communication [Jaulent and Leatherbarrow, 2004, PEDS 17, 681]. In the present study we have examined the three-dimensional structure of the molecule. We find that the new inhibitor, which has a symmetrical 8-mer half-cystine CTKSIPP'I' motif repeated through a C 2 symmetry axis also shows a complete symmetry in its three-dimensional structure. Each of the two loops adopts the expected canonical conformation common to all BBIs as well as SFTI-1. We also find that the inhibitor displays a strong and unique structural identity, with a notable lack of minor conformational isomers that characterise most reactive site loop mimics examined to date as well as SFTI-1. This suggests that the presence of the additional cyclic loop acts to restrict conformational mobility and that the deliberate introduction of cyclic symmetry may offer a general route to locking the conformation of β-hairpin structures

  19. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold.

    Science.gov (United States)

    Chen, Qiushui; Chen, Dong; Wu, Jing; Lin, Jin-Ming

    2016-11-01

    Designing cell-compatible, bio-degradable, and stimuli-responsive hydrogels is very important for biomedical applications in cellular delivery and micro-scale tissue engineering. Here, we report achieving flexible control of cellular microencapsulation, permeability, and release by rationally designing a diblock copolymer, alginate-conjugated poly(N-isopropylacrylamide) (Alg-co-PNiPAM). We use the microfluidic technique to fabricate the bifunctional copolymers into thousands of mono-disperse droplet-templated hydrogel microparticles for controlled encapsulation and triggered release of mammalian cells. In particular, the grafting PNiPAM groups in the synthetic cell-laden microgels produce lots of nano-aggregates into hydrogel networks at elevated temperature, thereafter enhancing the permeability of microparticle scaffolds. Importantly, the hydrogel scaffolds are readily fabricated via on-chip quick gelation by triggered release of Ca 2+ from the Ca-EDTA complex; it is also quite exciting that very mild release of microencapsulated cells is achieved via controlled degradation of hydrogel scaffolds through a simple strategy of competitive affinity of Ca 2+ from the Ca-Alginate complex. This finding suggests that we are able to control cellular encapsulation and release through ion-induced gelation and degradation of the hydrogel scaffolds. Subsequently, we demonstrate a high viability of microencapsulated cells in the microgel scaffolds.

  20. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  1. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    International Nuclear Information System (INIS)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim

    2012-01-01

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  2. Overexpression of artificially fused bifunctional enzyme 4CL1-CCR: a method for production of secreted 4-hydroxycinnamaldehydes in Escherichia coli.

    Science.gov (United States)

    Liu, Shuxin; Qi, Qi; Chao, Nan; Hou, Jiayin; Rao, Guodong; Xie, Jin; Lu, Hai; Jiang, Xiangning; Gai, Ying

    2015-08-12

    4-Hydroxycinnamaldehydes are important intermediates in several secondary metabolism pathways, including those involved in the biosynthesis of phenolic acids, flavonoids, terpenoids and monolignols. They are also involved in the biosynthesis and degradation of lignins, which are important limiting factors during the processes of papermaking and biofuel production. Access to these aromatic polymers is necessary to explore the secondary biometabolic pathways they are involved in. Coniferaldehyde, sinapaldehyde, p-coumaraldehyde and caffealdehyde are members of the 4-hydroxycinnamaldehyde family. Although coniferaldehyde and sinapaldehyde can be purchased from commercial sources, p-coumaraldehyde and caffealdehyde are not commercially available. Therefore, there is increasing interest in producing 4-hydroxycinnamaldehydes. Here, we attempted to produce 4-hydroxycinnamaldehydes using engineered Escherichia coli. 4-Coumaric acid: coenzyme A ligase (4CL1) and cinnamoyl coenzyme A reductase (CCR) were fused by means of genetic engineering to generate an artificial bifunctional enzyme, 4CL1-CCR, which was overexpressed in cultured E. coli supplemented with phenylpropanoic acids. Three 4-hydroxycinnamaldehydes, p-coumaraldehyde, caffealdehyde and coniferaldehyde, were thereby biosynthesized and secreted into the culture medium. The products were extracted and purified from the culture medium, and identically characterized by the HPLC-PDA-ESI-MSn. The productivity of this new metabolic system were 49 mg/L for p-coumaraldehyde, 19 mg/L for caffealdehyde and 35 mg/L for coniferaldehyde. Extracellular hydroxycinnamoyl-coenzyme A thioesters were not detected, indicating that these thioesters could not pass freely through the cellular membrane. The fusion enzyme 4CL1-CCR can catalyze sequential multistep reactions, thereby avoiding the permeability problem of intermediates, which reveals its superiority over a mixture of individual native enzymes. Moreover, we have described a

  3. Ruthenium phosphine complexes as catalysts for alternating co-polymerization of ethylene and CO

    International Nuclear Information System (INIS)

    Gusev, O.V.; Kal'sin, A.M.; Peganov, T.A.; Petrovskij, P.V.; Belov, G.P.; Novikova, E.V.

    2000-01-01

    Ruthenium (2) complexes, [Ru(dppe) 2 (OTs) 2 ] and [Ru(PhP(CH 2 CH 2 CH 2 PPh 2 ) 2 )(OTs) 2 ], where dppe (diphenylphosphino)ethane; OTs = tosylate, were synthesized with the yield of 67 and 76%, respectively, and characterized by 31 P NMR. The properties of the above complexes as catalysts of alternating co-polymerization of ethylene and carbon monoxide were studied. A considerable increase in catalytic activity of the complexes was established in the presence of trifluoroacetic acid and 1,4-benzoquinone. These compounds are the first example of ruthenium complexes that catalyse co-polymerization of ethylene and CO [ru

  4. Unusual selectivity-determining factors in the phosphine-free Heck arylation of allyl ethers

    DEFF Research Database (Denmark)

    Ambrogio, I.; Fabrizi, G.; Cacchi, S.

    2008-01-01

    The Heck reaction of aryl iodides and bromides with allyl ethers has been investigated. Using phosphinefree Pd(OAc)(2) in DNIF at 90 degrees C in the presence of Bu4NOAc, the reaction gave cinnamyl derivatives, usually in good to high yields, with a wide range of aryl halides. The reaction...... tolerates a variety of functional groups, including ether, amide, alcohol, aldehyde, ketone, ester, cyano, carboxylic acid, and nitro groups. Ortho-substituted arylating agents afforded moderate yields in some cases, though good to high yields were obtained with o-iodotoluene, iodovanillin, and 1...

  5. Solvent extraction of uranium(VI), plutonium(VI) and americium(III) with HTTA/HPMBP using mono- and bi-functional neutral donors. Synergism and thermodynamics

    International Nuclear Information System (INIS)

    Pai, S.A.; Lohithakshan, K.V.; Mithapara, P.D.; Aggarwal, S.K.

    2000-01-01

    Synergistic extraction of hexavalent uranium and plutonium as well as trivalent americium was studied in HNO 3 with thenoyl, trifluoro-acetone (HTTA)/1-phenyl, 3-methyl, 4-benzoyl pyrazolone-5 (HPMBP) in combination with neutral donors viz. DPSO, TBP, TOPO (mono-functional) and DBDECMP, DHDECMP, CMPO (bi-functional) with wide basicity range using benzene as diluent. A linear correlation was observed when the equilibrium constant log Ks for the organic phase synergistic reaction of both U(VI) and Pu(VI) with either of the chelating agents HTTA or HPMBP was plotted vs. the basicity (log Kh) of the donor (both mono- and bi-functional) indicating bi-functional donors also behave as mono-functional. This was supported by the thermodynamic data (ΔG 0 , ΔH 0 , ΔS 0 ) obtained for these systems. The organic phase adduct formation reactions were identified for the above systems from the thermodynamic data. In the Am(III) HTTA system log K s values of bi-functional donors were found to be very high and deviate from the linear plot (log K s vs. log K h ) obtained for mono-functional donors, indicating that they function as bi-functional for the Am(III)/HTTA) system studied. This was supported by high +ve ΔS 0 values obtained for this system. (author)

  6. Isolation of transplutonium elements from high-level radioactive wastes using diphenyl(dibutylcarbamoylmethyl)phosphine oxide

    International Nuclear Information System (INIS)

    Chmutova, M.K.; Litvina, M.N.; Pribylova, G.A.; Ivanova, L.A.; Myasoedov, B.F.; Smirnov, I.V.; Shadrin, A.Yu.

    1999-01-01

    Consequent stages of development of principal technological scheme of extraction separation of transplutonium elements from high-level radioactive wastes of spent fuel reprocessing are presented. Approach to reagent selection from the series of carbamoylmethylphosphine oxides is based. Distribution of transplutonium elements and accompanying elements between model solution of high-level radioactive wastes and solution of reagent in organic solvent is investigated. Methods of separation of transplutonium elements, reextraction of transplutonium elements together with rare earth elements are developed. Principal technological scheme of transplutonium elements separation from nonevaporated raffinates of spent fuel of WWER type reactors and method of separation of transplutonium and rare earth elements in weakly acid reextract with the use of liquid chromatography with free immobile phase are proposed [ru

  7. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  8. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4 defines a new subtype of D-bifunctional protein deficiency

    Directory of Open Access Journals (Sweden)

    McMillan Hugh J

    2012-11-01

    Full Text Available Abstract Background D-bifunctional protein (DBP deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val and hydratase domain (c.1547T>C; p.Ile516Thr of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4. These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP

  9. Gadolinium and fluorescent bi-functionally labeling and in vitro MRI of rat bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Shen Jun; Zhou Cuiping; Cheng Li'na; Duan Xiaohui; Liang Biling; Fu Yue; Bi Xiaobin; Liu Yu; Deng Yubin

    2008-01-01

    Objective: To determine the feasibility of magnetically labeling and tracking mesenchymal stem cells (MSCs) in vitro by using a gadolinium and fluorescent bi-functionally transfection agent of polyethylenimine. Methods: A gadolinium bifunctional transfection reagent complex was obtained after the linear polyethylenimine derivative (JetPEI-FluoR) was incubated with Gd-DTPA. Mesenchymal stem cells isolated from the bone marrows of SD rats were cultured and expanded. The mesenchymal stem cells were incubated with the bi-functional labeling agents. After labeling, the MSCs were examined with fluoroscope and electron microscope and the biological characters were detected including trypan blue exclusion test, MTT, and apoptosis detection. On a 1.5 T MR system, the labeled MSCs were examined with spin echo T 1 WI and T 2 WI and T 1 measurement with mixed sequence. After labeling, the cells were cultured and undergone routine passage. Prior MR examinations were repeated for each passage of labeled cells. All data was statistically prolessed with SPSS for Windows. Results: Of 5 x 10 5 MSCs incubated with the bi-functional agents, 4.25 x 10 5 MSCs were successfully labeled, the percentage of labeled MSCs was 85% fluoroscopically. The high density electron particles of gadolinium observed electron microscopically existed around cellular apparatuses, especially around Golgi apparatus. In trypan blue exclusion test, the exclusion rate of labeled MSCs with incubation duration of 3,6,12,24 h was (96.55±2.90)%, (94.17± 2.56)%, (97.16±3.12)% and (94.23±2.67)%, respectively. The corresponding exclusion rate of unlabeled MSCs was (95.86±2.67)%, (92.04±2.21)%, (93.38±3.64)% and (92.12±2.53)%, respectively. There was no statistical difference of trypan blue exclusion rate between labeled cells and control unlabeled cells within 24 hours of incubation (F=4.523, P>0.05). In the proliferation test, the optical absorption value of labeled MSC with 2.5, 5.0, 10.0, 20.0, 30.0 and 40

  10. The influence of carboxilate, phosphinate and seleninate groups on luminescent properties of lanthanides complexes

    International Nuclear Information System (INIS)

    Monteiro, Jorge H.S.K.; Formiga, André L.B.; Sigoli, Fernando A.

    2014-01-01

    sufficient to significantly modify the population of the europium(III) 5 D 0,1 levels and therefore the emission quantum yield. - Highlights: • Influences of ligands on luminescence of europium(III) and terbium(III) complexes. • Ligands: benzoic acid, phenylseleninic acid, and phenylphosphinic acid. • Ground state geometries were obtained from semi-empirical methods. • Theoretical values of JO parameters are compared to experimental ones. • Nature of chemical bonds, energy transfer rates and emission quantum yields

  11. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution.

    Science.gov (United States)

    Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan

    2017-08-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bifunctional Au@TiO_2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation

    International Nuclear Information System (INIS)

    Huang, Jian; He, Yurong; Wang, Li; Huang, Yimin; Jiang, Baocheng

    2017-01-01

    Highlights: • Au@TiO_2 core-shell nanoparticles were prepared in this study. • Bifunctional films for photocatalysis and solar evaporation were designed. • The evaporation and photodegradation with core-shell structures were investigated. - Abstract: With water scarcity becoming an increasingly critical issue for modern society, solar seawater desalination represents a promising approach to mitigating water shortage. In addition, solar seawater desalination shows great potential for mitigating the energy crisis due to its high photo-thermal conversion efficiency. However, the increasing contamination of seawater makes it difficult to generate clean water through simple desalination processes. In this work, clean water is generated by a newly designed bifunctional Au@TiO_2 core-shell nanoparticle film with a high photo-thermal conversion efficiency that is capable of photocatalysis and solar evaporation for seawater desalination. Bifunctional films of Au@TiO_2 core-shell nanoparticles with good stability were prepared. It was found that the formation of the core-shell structures played a key role in promoting the photo-thermal conversion efficiency and the evaporation of seawater, while the photocatalytic function demonstrated herein could contribute to the purification of polluted seawater. Furthermore, the film structure can serve to concentrate the NPs for the photo-reaction, as well as heat for water evaporation, improving both the photo-reaction efficiency and photo-thermal conversion efficiency. This efficient approach to solar seawater desalination, which combines evaporation with the photodegradation of pollutants, could help to address the dual issues of water scarcity and water pollution.

  13. Palladium catalyst system comprising zwitterion and/or acid-​functionalized ionic liquid

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns a catalyst system in particular a catalyst system comprising Palladium (Pd), a zwitterion and/or an acid-functionalized ionic liquid, and one or more phosphine ligands, wherein the Pd catalyst can be provided by a complex precursor, such as Pd(CH3COO)2, PdCI2, Pd(CH3...... methyl methacrylate and/or methacrylic acid. Catalyst systems according to the invention are suitable for reactions forming separable product and catalyst phases and supported ionic liquid phase SILP applications....

  14. Palladium-catalysed arylation of acetoacetate esters to yield 2-arylacetic acid esters

    CSIR Research Space (South Africa)

    Zeevaart, JG

    2004-05-24

    Full Text Available , was developed simultaneously by Hart- wig and Buchwald.5 Typically the tert-butyl ester of propionic acid is treated with an aryl halide (bromide or chloride) in the presence of a strong base, palladium and a bulky phosphine ligand or a bulky imidazolinium CO2t... novel palladium- catalysed conditions for the arylation of acetoacetate esters resulting in the formation of 2-arylacetic acid esters. When we attempted the arylation of tert-butyl aceto- acetate 1a with bromobenzene 2a using mild reaction conditions (K3...

  15. Bifunctional Agents for MRI, PET and Fluorescence Imaging and Study of Nanoparticles Formed from Water Oxidation Catalysts /

    OpenAIRE

    Abadjian, Marie-Caline Z.

    2014-01-01

    The work is divided into four parts : (1) MRI contrast agents are designed to enhance T₁ relaxivity by coupling them to dendrimers, the precise structure of which can be controlled through synthesis. Cyclen is used as a starting scaffold for the synthesis of bifunctional Gd-DOTA and Gd- DOTMA analogues. One unique side chain on the macrocycle contains an azide moiety that can be clicked to an alkyne- containing core, making a first-generation dendrimer with the potential to improve MRI effici...

  16. The sunburn cell in hairless mouse epidermis: quantitative studies with UV-A radiation and mono- and bifunctional psoralens

    International Nuclear Information System (INIS)

    Young, A.R.; Magnus, I.A.

    1982-01-01

    The production of the sunburn cell by UV-A radiation and topical psoralens in hairless mouse epidermis has been studied. It has been shown that the appearance of this cell is dependent on the dose of both UV-A radiation and of the psoralen. The time-course with 8-methoxypsoralen has peak sunburn cell numbers at 28 hr postirradiation. A comparison of 2 bifunctional (8-methoxypsoralen and 5-methoxypsoralen) and 2 monofunctional (angelicin and 3-carbethoxypsoralen) psoralens showed the former are more potent. This suggests that DNA crosslink lesions may play a rle in sunburn cell production

  17. Enantioselective Alkylation of 2-Oxindoles Catalyzed by a Bifunctional Phase-Transfer Catalyst: Synthesis of (-)-Debromoflustramine B.

    Science.gov (United States)

    Craig, Ryan; Sorrentino, Emiliano; Connon, Stephen J

    2018-03-26

    A new bifunctional phase-transfer catalyst that employs hydrogen bonding as a control element was developed to promote efficient enantioselective S N 2 reactions for the construction all-carbon quaternary stereocenters in high yield and excellent enantioselectivity (up to 97 % ee) utilizing the alkylation of a malleable oxindole substrate. The utility of the methodology was demonstrated through a concise and highly enantioselective synthesis of (-)-debromoflustramine B. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. NAD-Dependent DNA-Binding Activity of the Bifunctional NadR Regulator of Salmonella typhimurium

    OpenAIRE

    Penfound, Thomas; Foster, John W.

    1999-01-01

    NadR is a 45-kDa bifunctional regulator protein. In vivo genetic studies indicate that NadR represses three genes involved in the biosynthesis of NAD. It also participates with an integral membrane protein (PnuC) in the import of nicotinamide mononucleotide, an NAD precursor. NadR was overexpressed and purified as a His-tagged fusion in order to study its DNA-binding properties. The protein bound to DNA fragments containing NAD box consensus sequences. NAD proved to be the relevant in vivo co...

  19. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts.

    Science.gov (United States)

    Li, Pan; Hu, Xinquan; Dong, Xiu-Qin; Zhang, Xumu

    2016-10-14

    The organocatalysis-based dynamic kinetic resolution (DKR) process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thio)urea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael-Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thio)urea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  20. Novel bifunctional anthracycline and nitrosourea chemotherapy for human bladder cancer: analysis in a preclinical survival model.

    Science.gov (United States)

    Glaves, D; Murray, M K; Raghavan, D

    1996-08-01

    A hybrid drug [N-2-chloroethylnitrosoureidodaunorubicin (AD312)] that combines structural and functional features of both anthracyclines and nitrosoureas was evaluated in a preclinical survival model of human bladder cancer. To measure the therapeutic activity of AD312, UCRU-BL13 transitional cell carcinoma cells were grown as xenografts in nude mice, and tumor growth rates were compared after i.v. administration of the drug at three dose levels. AD312 treatment at 45 and 60 mg/kg achieved 7-10-fold inhibition of tumor growth and increased host survival by 156 and 249%, respectively. Doses of 60 mg/kg showed optimal therapeutic efficacy, with sustained tumor growth inhibition, an over 2-fold increase in life span, and 40% of mice tumor free ("cured") at 120 days. Tumors were unresponsive to maximum tolerated doses of doxorubicin, a standard anthracycline used as a single agent and in combination therapies for bladder cancer. 1,3-Bis-[2-chloroethyl]-1-nitrosourea was used as a control for the apparently enhanced response of human tumors in murine hosts to nitrosoureas. 1, 3-Bis-[2-chloroethyl]-1-nitrosourea administered in three injections of 20 mg/kg did not cure mice but temporarily inhibited tumor growth by 70% and prolonged survival by 55%; its activity in this model suggests that it may be included in the repertoire of alkylating agents currently used for treatment of bladder cancers. AD312 showed increased antitumor activity with less toxicity than doxorubicin, and its bifunctional properties provide the opportunity for simultaneous treatment of individual cancer cells with two cytotoxic modalities as well as treatment of heterogeneous populations typical of bladder cancers. This novel cytotoxic drug cured doxorubicin-refractory disease and should be investigated for the clinical management of bladder cancer.

  1. Modification of bifunctional epoxy resin using CO{sub 2} fixation process and nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Khoshkish, Morteza; Bouhendi, Hosein, E-mail: H.boohendi@ippi.ac.ir; Vafayan, Mehdi

    2014-10-15

    A bifunctional epoxy resin was modified by using a CO{sub 2} fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO{sub 2} fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO{sub 2} fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T{sub max}), and the decomposition activation energy (E{sub d}) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T{sub g} of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO{sub 2} fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO{sub 2} fixation noticeably changed the curing mechanism. • CO{sub 2} fixation reaction consumes CO{sub 2} which is a harmful greenhouse gas.

  2. Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries

    International Nuclear Information System (INIS)

    Jin, Yachao; Chen, Fuyi

    2015-01-01

    Highlights: • Ag-Cu dendrites are observed for the first time to exhibit high catalytic activity for oxygen reduction reaction. • Ag-Cu dendrites are directly synthesized through galvanic displacement on the current collector layer made of Ni foams. • A bifunctional air cathode is fabricated using Ag-Cu dendrites as a carbon-free, binder-free catalyst layer. • Both the primary and rechargeable zinc–air batteries fabricated by Ag-Cu catalysts exhibit excellent performance. - ABSTRACT: An inexpensive, facile galvanic displacement reaction for the direct growth of silver–copper (Ag-Cu) catalysts on nickel foams is developed for the first time. The resulting Ag-Cu catalysts exhibit dendritic morphologies. Ag and Cu atoms are in their metallic state while the presence of CuO and Cu 2 O are limited on the surface of catalyst. The catalysts demonstrate high catalytic activity for oxygen reduction reaction (ORR) in alkaline solution, as evaluated by both linear scanning voltammetry and rotating disk electrode polarization measurements. The ORR catalysed by Ag-Cu catalyst in alkaline solution proceeds through a four-electron pathway. An air cathode is fabricated using Ag-Cu catalyst as a carbon-free, binder-free catalyst layer. Using this Ag-Cu catalyst based air cathode, both the primary and rechargeable zinc-air batteries show excellent battery performance. The specific capacity of the primary zinc-air battery is 572 mAh g −1 . Especially, the rechargeable zinc-air battery shows high round-trip efficiency, appealing stability at a long charge-discharge cycle period

  3. Modification of bifunctional epoxy resin using CO2 fixation process and nanoclay

    International Nuclear Information System (INIS)

    Khoshkish, Morteza; Bouhendi, Hosein; Vafayan, Mehdi

    2014-01-01

    A bifunctional epoxy resin was modified by using a CO 2 fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO 2 fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO 2 fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T max ), and the decomposition activation energy (E d ) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T g of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO 2 fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO 2 fixation noticeably changed the curing mechanism. • CO 2 fixation reaction consumes CO 2 which is a harmful greenhouse gas

  4. Extraction of copper zinc and iron from hydrochloric acid solutions by means of different extractants

    Energy Technology Data Exchange (ETDEWEB)

    Zhivkova, Svetlana [Institute of Chemical Engineering - Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2011-07-01

    The extraction of copper, zinc and iron from hydrochloric acid solutions has been studied. The experiments have been carried out using various solvents, involving different extraction mechanisms – solvating, anion-exchange, cation-exchange, bifunctional . Mixtures of these extractants have been also used. The extraction properties of these extractant mixtures toward copper, zinc and iron, the effect of used modifiers and diluents have been also investigated. Key words: Copper, Zinc, Iron, Extraction, Extractant, Modifier, Diluent.

  5. Organophosphorus acid anhydrolase from Alteromonas macleodii: structural study and functional relationship to prolidases

    Czech Academy of Sciences Publication Activity Database

    Štěpánková, Andrea; Dušková, Jarmila; Skálová, Tereza; Hašek, Jindřich; Koval, Tomáš; Ostergaard, L. H.; Dohnálek, Jan

    2013-01-01

    Roč. 69, č. 4 (2013), s. 346-354 ISSN 1744-3091 R&D Projects: GA ČR GA310/09/1407; GA ČR GA305/07/1073; GA MŠk EE2.3.30.0029 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : organophosphorus acid anhydrolase * prolidases * bifunctional Subject RIV: CE - Biochemistry Impact factor: 0.568, year: 2013

  6. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    OpenAIRE

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hyd...

  7. Stability and Unimolecular Reactivity of Palladate(II) Complexes [Ln PdR3 ]- (L=Phosphine, R=Organyl, n=0 and 1).

    Science.gov (United States)

    Kolter, Marlene; Koszinowski, Konrad

    2016-10-24

    The reduction of Pd II precatalysts to catalytically active Pd 0 species is a key step in many palladium-mediated cross-coupling reactions. Besides phosphines, the stoichiometrically used organometallic reagents can afford this reduction, but do so in a poorly understood way. To elucidate the mechanism of this reaction, we have treated solutions of Pd(OAc) 2 and a phosphine ligand L in tetrahydrofuran with RMgCl (R=Ph, Bn, Bu) as well as other organometallic reagents. Analysis of these model systems by electrospray- ionization mass spectrometry found palladate(II) complexes [L n PdR 3 ] - (n=0 and 1), thus pointing to the occurrence of transmetallation reactions. Upon gas-phase fragmentation, the [L n PdR 3 ] - anions preferentially underwent a reductive elimination to yield Pd 0 species. The sequence of the transmetallation and reductive elimination, thus, constitutes a feasible mechanism for the reduction of the Pd(OAc) 2 precatalyst. Other species of interest observed include the Pd IV complex [PdBn 5 ] - , which did not fragment via a reductive elimination but lost BnH instead. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Imaging of alpha(v)beta(3) expression by a bifunctional chimeric RGD peptide not cross-reacting with alpha(v)beta(5).

    Science.gov (United States)

    Zannetti, Antonella; Del Vecchio, Silvana; Iommelli, Francesca; Del Gatto, Annarita; De Luca, Stefania; Zaccaro, Laura; Papaccioli, Angela; Sommella, Jvana; Panico, Mariarosaria; Speranza, Antonio; Grieco, Paolo; Novellino, Ettore; Saviano, Michele; Pedone, Carlo; Salvatore, Marco

    2009-08-15

    To test whether a novel bifunctional chimeric peptide comprising a cyclic Arg-Gly-Asp pentapeptide covalently bound to an echistatin domain can discriminate alpha(v)beta(3) from alpha(v)beta(5) integrin, thus allowing the in vivo selective visualization of alpha(v)beta(3) expression by single-photon and positron emission tomography (PET) imaging. The chimeric peptide was preliminarily tested for inhibition of alpha(v)beta(3)-dependent cell adhesion and competition of 125I-echistatin binding to membrane of stably transfected K562 cells expressing alpha(v)beta(3) (Kalpha(v)beta(3)) or alpha(v)beta(5) (Kalpha(v)beta(5)) integrin. The chimeric peptide was then conjugated with diethylenetriaminepentaacetic acid and labeled with 111In for single-photon imaging, whereas a one-step procedure was used for labeling the full-length peptide and a truncated derivative, lacking the last five C-terminal amino acids, with 18F for PET imaging. Nude mice bearing tumors from Kalpha(v)beta(3), Kalpha(v)beta(5), U87MG human glioblastoma, and A431 human epidermoid cells were subjected to single-photon and PET imaging. Adhesion and competitive binding assays showed that the novel chimeric peptide selectively binds to alpha(v)beta(3) integrin and does not cross-react with alpha(v)beta(5). In agreement with in vitro findings, single-photon and PET imaging studies showed that the radiolabeled chimeric peptide selectively localizes in tumor xenografts expressing alphavbeta3 and fails to accumulate in those expressing alpha(v)beta(5) integrin. When 18F-labeled truncated derivative was used for PET imaging, alphavbeta3- and alpha(v)beta(5)-expressing tumors were visualized, indicating that the five C-terminal amino acids are required to differentially bind the two integrins. Our findings indicate that the novel chimeric Arg-Gly-Asp peptide, having no cross-reaction with alphavbeta5 integrin, allows highly selective alphavbeta3 expression imaging and monitoring.

  9. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Przybylak, Marcin, E-mail: marcin.przybylak@ppnt.poznan.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Maciejewski, Hieronim, E-mail: maciejm@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland); Dutkiewicz, Agnieszka, E-mail: agdut@interia.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland)

    2016-11-30

    Highlights: • Fabric hydrophobization process using bifunctional silsesquioxanes was studied. • Superhydrophobic fabric was produced using fluorofunctional silsesquioxanes. • Surface of modified fabrics was analyzed using different techniques. - Abstract: The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  10. Bifunctional cis-Abienol Synthase from Abies balsamea Discovered by Transcriptome Sequencing and Its Implications for Diterpenoid Fragrance Production*

    Science.gov (United States)

    Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A.; Britton, Robert; Bohlmann, Jörg

    2012-01-01

    The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production. PMID:22337889

  11. Hydrothermal synthesis of superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er core@shell monodisperse nanoparticles and their subsequent ligand exchange in water

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhenli; Du, Sinan; Luo, Yang; Liao, Zhijian; Zuo, Fang, E-mail: polymerzf@swun.cn; Luo, Jianbin; Liu, Dong

    2016-08-15

    Graphical abstract: An efficient hydrothermal method was used to fabricate the superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2(*)+}-doped NaYF{sub 4}:Yb/Er nanoparticles (NPs) with core@shell structures through a seed-growth procedure. Then using PEG phosphate ligand to displace oleate from the as-synthesized NPs, hydrophilic Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er NPs with good water solubility are obtained. - Highlights: • Homogeneous size distribution of magnetic-upconversion core@shell structured nanoparticles (NPs) were synthesized. • The core@shell nanostructures were obtained by seed-growth method. • The oleic acid coated Fe{sub 3}O{sub 4} NPs were used as seeds and cores. • The magnetic-upconversion NPs emitted red luminescence under a 980 nm laser. • Synthesized magnetic-upconversion NPs were phase transferred using ligand exchange process. - Abstract: We report the use of an efficient hydrothermal method to synthesize superparamagnetic and red luminescent bifunctional Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er nanoparticles (NPs) with core@shell structures via a seed-growth procedure. Oleic acid coated Fe{sub 3}O{sub 4} (OA-Fe{sub 3}O{sub 4}) NPs were initially synthesized using a coprecipitation method. The as-synthesized OA-Fe{sub 3}O{sub 4} NPs were then used as seeds, on which the red upconversion luminescent shell (Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er) was formed. Furthermore, hydrophobic to hydrophilic surface modification of the Fe{sub 3}O{sub 4}@Mn{sup 2+}-doped NaYF{sub 4}:Yb/Er NPs was achieved via a ligand exchange method where oleic acid was displaced by a PEG phosphate ligand [PEG = poly(ethylene glycol)]. These materials were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and vibrating sample magnetometry (VSM). The Fe{sub 3}O{sub 4} cores were uniformly coated with a Mn{sup 2+}-doped NaYF{sub 4}:Yb

  12. Robust Control of PEP Formation Rate in the Carbon Fixation Pathway of C4 Plants by a Bi-functional Enzyme

    Directory of Open Access Journals (Sweden)

    Hart Yuval

    2011-10-01

    Full Text Available Abstract Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK, which is regulated by a bifunctional enzyme, Regulatory Protein (RP. The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP, substrate levels (ATP and pyruvate and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels. Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels.

  13. Effects of thiourea and ammonium bicarbonate on the formation and stability of bifunctional cisplatin-DNA adducts : consequences for the accurate quantification of adducts in (cellular) DNA

    NARCIS (Netherlands)

    Fichtinger-Schepman, A.M.J.; Dijk-Knijnenburg, H.C.M. van; Dijt, F.J.; Velde-Visser, S.D. van der; Berends, F.; Baan, R.A.

    1995-01-01

    Cisplatin reacts with DNA by forming mainly bifunctional adducts via reactive monofunctional intermediates. When freshly platinated DNA was postincubated with thiourea (10 mM, at 23 or 37°C) for periods of up to 24 h, followed by determination of mono- and diadducts, a rapid initial decrease was

  14. A Bifunctional Intronic Element Regulates the Expression of the Arginine/Lysine Transporter Cat-1 via Mechanisms Involving the Purine-rich Element Binding Protein A (Purα)*

    Science.gov (United States)

    Huang, Charlie C.; Chiribau, Calin-Bogdan; Majumder, Mithu; Chiang, Cheng-Ming; Wek, Ronald C.; Kelm, Robert J.; Khalili, Kamel; Snider, Martin D.; Hatzoglou, Maria

    2009-01-01

    Expression of the arginine/lysine transporter Cat-1 is highly induced in proliferating and stressed cells via mechanisms that include transcriptional activation. A bifunctional INE (intronic element) within the first intron of the Cat-1 gene was identified and characterized in this study. The INE had high sequence homology to an amino acid response element and was shown to act as a transcriptional enhancer in unstressed cells by binding the transcription factor, purine-rich element binding protein A (Purα). During endoplasmic reticulum stress, binding of Purα to the INE decreased; the element acted as a positive regulator in early stress by binding of the transcription factor ATF4 and as a negative regulator in prolonged stress by binding the stress-induced C/EBP family member, CHOP. We conclude that transcriptional control of the Cat-1 gene is tightly controlled by multiple cis-DNA elements, contributing to regulation of cationic amino acid transport for cell growth and proliferation. In addition, we propose that genes may use stress-response elements such as the INE to support basal expression in the absence of stress. PMID:19720825

  15. Comparative Evaluation of Using NOTA and DOTA Derivatives as Bifunctional Chelating Agents in the Preparation of 68Ga-Labeled Porphyrin: Impact on Pharmacokinetics and Tumor Uptake in a Mouse Model.

    Science.gov (United States)

    Guleria, Mohini; Das, Tapas; Amirdhanayagam, Jeyachitra; Sarma, Haladhar D; Dash, Ashutosh

    2018-02-01

    Both NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) derivatives have been used as bifunctional chelating agents (BFCAs) for the preparation of 68 Ga-labeled target-specific agents having potential for positron emission tomography (PET) imaging of cancerous lesions. In the present work, the authors have attempted a comparative pharmacokinetic evaluation between 68 Ga-labeled porphyrins prepared using NOTA and DOTA derivatives as the BFCAs. A symmetrical porphyrin derivative, 5,10,15,20-tetrakis(p-carboxymethyleneoxyphenyl)porphyrin, was synthesized and coupled with two different BFCAs viz. p-NH 2 -benzyl-NOTA and p-NH 2 -benzyl-DOTA. Both the porphyrin-BFCA conjugates were radiolabeled with 68 Ga. A comparative bioevaluation involving pharmacokinetics and tumor affinity was performed in a tumor-bearing small animal model. Gallium-68-labeled porphyrin-amido-benzyl-NOTA and porphyrin-amido-benzyl-DOTA complexes were prepared with high radiochemical purity. Both radiolabeled complexes exhibited almost similar stability in human serum and near-identical tumor affinity and pharmacokinetic behavior in animal studies. The present study demonstrates that the pharmacokinetic behavior of 68 Ga-labeled porphyrin derivatives, prepared using either NOTA or DOTA derivatives as BFCAs, remains almost identical and hence both NOTA and DOTA derivatives could be considered equivalent for developing 68 Ga-based PET agents for imaging of tumorous lesions.

  16. Parameter design and experimental study of a bifunctional isolator for optical payload protection and stabilization

    Science.gov (United States)

    Wang, Guang-yuan; Guan, Xin; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie

    2017-11-01

    With the raise of resolution, optical payloads are becoming increasingly sensitive to satellite jitter. An approach where the entire spacecraft is pointed with great accuracy requires sophisticated and expensive bus design. In an effort to lower the overall cost of space missions that require highly stable line-of-sight pointing, a method of separating the bus and the payload with low frequency isolators is proposed. This isolation system can block the transmission of disturbance and allow relatively large bus motion. However, if the isolator is linear then there is a trade-off between isolation and static deflection as the launch and the on-orbit stage have difference requirements on the isolation frequency. Otherwise, an extra locking system should be appended to protect the payload before getting into orbit, as the STABLE isolation system[1] and the MIM isolation system[2] did. To overcome this limitation, an alternative approach is to design a nonlinear isolator with high-static stiffness during launch and low dynamic stiffness on orbit. Several specially designed nonlinear isolators have achieved low dynamic stiffness with large static load capacity. Virgin[3] considered a structure made from a highly deformed elastic element to achieve a softening spring. Platus[4] exploited the buckling of beams under axial load in a specific configuration to achieve a negative stiffness in combination with a positive stiffness, and hence low-dynamic stiffness. Others have achieved the same by connecting linear springs with positive stiffness in parallel with elements of negative stiffness[5] [7]. In the present study, a bifunctional isolator has been developed for optical payloads. The isolator have good performance both during launch and on orbit because of its specially designed nonlinear stiffness and damping. The isolator works in a linear part with low stiffness and small damping ratio under the micro-vibration and microgravity on orbit. The transmissibility

  17. Bifunctional cyclam-based ligands with phosphorus acid pendant moieties for radiocopper separation: thermodynamic and kinetic studies

    Czech Academy of Sciences Publication Activity Database

    Paúrová, M.; Havlíčková, J.; Pospíšilová, Aneta; Vetrík, Miroslav; Císařová, I.; Stephan, H.; Pietzsch, H.-J.; Hrubý, Martin; Hermann, P.; Kotek, J.

    2015-01-01

    Roč. 21, č. 12 (2015), s. 4671-4687 ISSN 0947-6539 R&D Projects: GA ČR GAP304/12/0950 Institutional support: RVO:61389013 Keywords : copper * ion-selective resins * kinetics Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 5.771, year: 2015

  18. Acid-Base Bifunctional Zirconium N-Alkyltriphosphate Nanohybrid for Hydrogen Transfer of Biomass-Derived Carboxides

    DEFF Research Database (Denmark)

    Li, Hu; He, Jian; Riisager, Anders

    2016-01-01

    sites, and their catalytic activity in converting biomass-derived carbonyl compounds to corresponding alcohols in 2-propanol. Particularly, a quantitative yield of furfuryl alcohol (FFA) was obtained from furfural (FUR) over organotriphosphate-zirconium hybrid (ZrPN) under mild conditions. The presence...

  19. Azide- and Alkyne-Functionalised α- and β3-Amino Acids

    DEFF Research Database (Denmark)

    Sminia, T.J.; Pedersen, Daniel Sejer

    2012-01-01

    The synthesis and full characterisation of bifunctional β -amino acids that have side chains functionalised with terminal azides (S)-4 and (R)-4 or acetylenes 5 and 6 is reported for the first time. The building blocks incorporate a turn-inducing β -segment and a side chain that can...... be functionalised further, for example, through copper-catalysed Huisgen cycloaddition. Moreover, the corresponding α-amino acids 1 and 3 have been synthesised and characterised. All amino acid building blocks were of high optical purity as demonstrated by derivatisation and subsequent NMR analysis....

  20. Study of the properties of dialkyl thiophosphoric acids. Application to the extraction of U, in phosphoric and nitric solutions

    International Nuclear Information System (INIS)

    Benjelloun, N.

    1983-09-01

    A study is made of complex formation and liquid-liquid extraction of uranium (VI) by dialkyl-thiophosphoric acids of formula (RO) 2 POSH and by the synergic mixtures: dialkylthiophosphoric acids-phosphine oxides. The aqueous phases studied consist of concentrated phosphoric acid solutions and nitric acid solutions. Several methods, including distribution coefficient measurements, U.V., visible and infrared absorption spectrophotometries and magnetic resonance, were used to study the extraction mechanisms and the structures of species formed in the organic phase. The influence of different parameters (partition of extraction agent, dimerisation, acid ligand-phosphine oxide association, extraction of inorganic acids...) on the uranium (VI) distribution coefficients enabled the constants of complex formation in the aqueous phase and extraction in the organic phase to be determined. These various properties were compared with those of dialkyl phosphoric and dithiophosphoric acids. The mechanisms established prove that sulfur donors ligands form stable complexes with UO 2 2+ ions although U(VI) is considered as a ''hard class a'' acceptor according to Ahrland's classification [fr

  1. Monochloro non-bridged half-metallocene-type zirconium complexes containing phosphine oxide-(thio)phenolate chelating ligands as efficient ethylene polymerization catalysts.

    Science.gov (United States)

    Tang, Xiao-Yan; Wang, Yong-Xia; Liu, San-Rong; Liu, Jing-Yu; Li, Yue-Sheng

    2013-01-14

    A series of novel monochloro half-zirconocene complexes containing phosphine oxide-(thio)phenolate chelating ligands of the type, ClCp'Zr[X-2-R(1)-4-R(2)-6-(Ph(2)P=O)C(6)H(2)](2) (Cp' = C(5)H(5), 2a: X = O, R(1) = Ph, R(2) = H; 2b: X = O, R(1) = F, R(2) = H; 2c: X = O, R(1) = (t)Bu, R(2) = H; 2d: X = O, R(1) = R(2) = (t)Bu; 2e: X = O, R(1) = SiMe(3), R(2) = H; 2f: X = S, R(1) = SiMe(3), R(2) = H; Cp' = C(5)Me(5), 2g: X = O, R(1) = SiMe(3), R(2) = H), have been synthesized in high yields. These complexes were identified by (1)H {(13)C} NMR and elemental analyses. Structures for 2b, 2c and 2f were further confirmed by X-ray crystallography. Structural characterization of these complexes reveals crowded environments around the zirconium. Complexes 2b and 2c adopt six-coordinate, distorted octahedral geometry around the zirconium center, in which the equatorial positions are occupied by three oxygen atoms of two chelating phosphine oxide-bridged phenolate ligands and a chlorine atom. The cyclopentadienyl ring and one oxygen atom of the ligand are coordinated on the axial position. Complex 2f also folds a six-coordinate, distorted octahedral geometry around the Zr center, consisting of a Cp-Zr-O (in P=O) axis [177.16°] and a distorted plane of two sulfur atoms and one oxygen atom of two chelating phosphine oxide-bridged thiophenolate ligands as well as a chlorine atom. When activated by modified methylaluminoxane (MMAO), all the complexes exhibited high activities towards ethylene polymerization at high temperature (75 °C), giving high molecular weight polymers with unimodal molecular weight distribution. The formation of 14-electron, cationic metal alkyl species might come from the Zr-O (in phenol ring) bond cleavage based on the DFT calculations study.

  2. Facile synthesis of flower like FePt@ZnO core–shell structure and its bifunctional properties

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Jerina [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, O.D., E-mail: ddjaya@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mandal, B.P. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Salunke, H.G. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Naik, R. [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-06-01

    Graphical abstract: Flower shaped FePt and ZnO coated FePt with core–shell nanostructures are synthesized by a facile solvothermal procedure. Shell thickness of ZnO over FePt core was tuned by varying FePt concentration with respect to ZnO. Hybrid structure with lower FePt concentration exhibited bifunctionality such as near room temperature ferromagnetism and photoluminescence. Pristine FePt crystallize in the fct (L1{sub 0}) phase whereas it converts into fcc phase in presence of ZnO. - Highlights: • FePt@ZnO hybrid core–shell particles, with unique flower shape morphology have been prepared by solvothermal method. • Phase transition of fct-FePt to fcc-FePt has been found in presence of ZnO nanoparticles. • Plausible mechanism for growth of flowershaped nanoparticle is in accordance with energy minimization principle. • The core shell structure (FePt@ZnO) exhibits bi-functional properties. - Abstract: Flower shaped FePt and ZnO coated FePt (FePt@ZnO) core–shell nanostructures are synthesized by a facile solvothermal procedure. Two different compositions (molar ratio) of FePt and ZnO (FePt:ZnO = 1:3 and FePt:ZnO = 1:6) core–shells with different thicknesses of ZnO shells were synthesized. Hybrid FePt@ZnO core–shell flower structure with lower FePt concentration (FePt:ZnO = 1:6) exhibited bifunctionality including near room temperature ferromagnetism and photoluminescence at ambient conditions. X-ray diffraction patterns of pristine FePt showed partially ordered face centred tetragonal (fct) L1{sub 0} phase whereas ZnO coated FePt (FePt@ZnO) nanostructures showed hexagonal ZnO and disordered phase of FePt with fcc structure. The phase transition of fct FePt to fcc phase occurring in presence of ZnO is further confirmed by transmission electron microscopy and magnetic measurement studies. The formation of the nanoflowers was possibly due to growth along the [0 1 1] or [0 0 1] direction, keeping the core nearly spherical in accordance with the

  3. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness

    International Nuclear Information System (INIS)

    Chai, Luxiao; Wang, Xiaodong; Wu, Dezhen

    2015-01-01

    Highlights: • We designed and synthesized a sort of bifunctional PCMs-based microcapsules. • These microcapsules have an n-eicosane core and a crystalline TiO 2 shell. • Such a crystalline TiO 2 shell exhibited a good photocatalytic activity. • The microcapsules showed good performance in energy storage and sterilization. - Abstract: A sort of novel bifunctional microencapsulated phase change material (PCM) was designed by encapsulating n-eicosane into a crystalline titanium dioxide (TiO 2 ) shell and, then, was successfully synthesized through in-situ polycondensation in the sol–gel process using tetrabutyl titanate as a titania precursor. The resultant microcapsule samples were characterized by Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to determine their chemical compositions and structures. Furthermore, the crystallinity of the TiO 2 shell was verified by powder X-ray diffraction patterns. It was confirmed that the fluorinions could induce the phase transition from the amorphous TiO 2 to the brookite-form crystals during the sol–gel process, thus resulting in a crystalline TiO 2 shell for the microencapsulated n-eicosane. The scanning and transmission electron microscopy investigations indicated that all of the resultant microcapsules presented a perfect spherical shape with a uniform particle size of 1.5–2 μm, and they also exhibited a well-defined core–shell structure as well as a smooth and compact shell. The crystalline TiO 2 shell made the resultant microcapsules a photocatalytic activity, and therefore, these microcapsules demonstrated a good photocatalytic effect for the chemical degradation and an antimicrobial function for some of the Gram-negative bacteria. Most of all, all of the microencapsulated n-eicosane samples indicated good phase-change performance and high thermal reliability for latent-heat storage and release, and moreover, they achieved a high

  4. Multifunctional organophosphorus extractants: a status report on development and applications

    International Nuclear Information System (INIS)

    Schulz, W.W.; Horwitz, E.P.

    1988-01-01

    Up-to-date state of the development of science and technology of multifunctional organophosphorus extractants is considered. The detailed classification of these extractants is presented. They attracted pasticular interest because of affinity of some bifunctional phosphonates, phosphine oxides, carbamoylalkylphosphonates to trivalent Am, tetravalent and hexavalent actinides, trivalent lanthanides in strong mineral acids, and because of ability of some alkylpyrophosphoric acids to extract effectively U(4) from concentrated solutions of phosphoric acid. Application of these extractants for analytic purposes and in the field of nuclear technology is considered

  5. Solvent extraction of calcium and strontium into nitrobenzene by using synergistic mixture of hydrogen dicarbollylcobaltate and diphenyl-N-butylcarbamoylmethyl phosphine oxide

    International Nuclear Information System (INIS)

    Makrlik, E.

    2010-01-01

    Extraction of microamounts of calcium and strontium by a nitrobenzene solution of hydrogen dicarbollylcobaltate (H + B - ) in the presence of diphenyl-N-butylcarbamoylmethyl phosphine oxide (DPBCMPO, L) has been investigated. The equilibrium data have been explained assuming that the species HL + , HL 2 + , ML 2 2+ , ML 3 2+ and ML 4 2+ (M 2+ = Ca 2+ , Sr 2+ ) are extracted into the organic phase. The values of extraction and stability constants of the cationic complexes in nitrobenzene saturated with water have been determined. In the considered nitrobenzene medium, it was found that the stability of the SrL 2,org 2+ complex is somewhat higher than that of species CaL 2,org 2+ , while the stability constants of the remaining strontium complexes SrL 3,org 2+ and SrL 4,org 2+ are smaller than those of the corresponding complex species CaL n 2+ (n = 3, 4). (author)

  6. Highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots prepared via a phosphine synthetic route.

    Science.gov (United States)

    Mordvinova, Natalia; Vinokurov, Alexander; Kuznetsova, Tatiana; Lebedev, Oleg I; Dorofeev, Sergey

    2017-01-24

    Here we report a simple method for the creation of highly luminescent core-shell InP/ZnX (X = S, Se) quantum dots (QDs) on the basis of a phosphine synthetic route. In this method a Zn precursor was added to the reaction mixture at the beginning of the synthesis to form an In(Zn)P alloy structure, which promoted the formation of a ZnX shell. Core-shell InP/ZnX QDs exhibit highly intensive emission with a quantum yield over 50%. The proposed method is primarily important for practical applications. Advantages of this method compared to the widely used SILAR technique are discussed. We further demonstrate that the SILAR approach consisting of consequent addition of Zn and chalcogen precursors to pre-prepared non-doped InP colloidal nanoparticles is not quite suitable for shell growth without the addition of special activator agents or the use of very reactive precursors.

  7. Electrochemistry of transition metal complex catalysts. Part 9. One- and two-electron oxidation of iridium complexes with cyclohexane-derived tripod phosphine ligands

    International Nuclear Information System (INIS)

    Buchmann, Silke; Mayer, Hermann A.; Speiser, Bernd; Seiler, Michael; Feth, Martin P.; Bertagnolli, Helmut; Steinbrecher, Stefan; Plies, Erich

    2003-01-01

    The redox chemistry of Ir tripod-type tri-phosphine complexes in dichloromethane is investigated by cyclic voltammetry, hold-ramp experiments, and preparative electrolysis at Pt electrodes. Products are identified by spectroscopic data, as well as EDX and EXAFS results. Complexes with the Ir central atom in the oxidation states +I, +II and +III are detected and several follow-up reactions are possible from those. Most of the intermediates and products are characterized. In particular, experiments in the presence of CO contribute to the assignment of peaks in the cyclic voltammograms. The experimental results for the individual steps are summarized in a comprehensive redox reaction mechanism (mesh scheme) for which most steps are characterized by redox potentials

  8. Imine derivatives of lathonones. Part I -- Reactions of neodymium (III) isopropoxide with monofunctional bidendtate and bifunctional tridentate aldimines and ketamines

    International Nuclear Information System (INIS)

    Mital, S.P.; Singh, R.V.; Tandon, J.P.

    1980-01-01

    Nd(OPrsup(i))sub(2) (SB) and Nd(Oprsup(i))(SB)sub(2) [where SBH represents the molecule of monofunctional bidentate aldimine] type of derivatives have been synthesised by 1:1 and 1:2 molar reactions of neodymium isopropoxide with the aldimines having the donor system NOH and formed by the condensation of salicylaldehyde with alkylamines. However, bifunctional tridentate Schiff bases (LH) 2 have been found to yield Nd(OPrsup(i)) (L) and Nd 2 (L) 3 type of complexes in 1:1 and 2:3 molar ratio respectively. The isopropoxy groups of the 1:1 complexes have been found to undergo replacement reactions with excess of t-butanol and the resulting complexes are hydrolytically stable. All the newly synthesized complexes have been characterized on the basis of elemental analyses, molecular weight determinations, conductance measurements and infrared and proton magnetic resonance spectral studies. (auth.)

  9. Acid–Base Bifunctional Hf Nanohybrids Enable High Selectivity in the Catalytic Conversion of Ethyl Levulinate to γ-Valerolactone

    Directory of Open Access Journals (Sweden)

    Weibo Wu

    2018-06-01

    Full Text Available The catalytic upgrading of bio-based platform molecules is a promising approach for biomass valorization. However, most solid catalysts are not thermally or chemically stable, and are difficult to prepare. In this study, a stable organic phosphonate–hafnium solid catalyst (PPOA–Hf was synthesized, and acid–base bifunctional sites were found to play a cooperative role in the cascade transfer hydrogenation and cyclization of ethyl levulinate (EL to γ-valerolactone (GVL. Under relatively mild reaction conditions of 160 °C for 6 h, EL was completely converted to GVL with a good yield of 85%. The apparent activation energy was calculated to be 53 kJ/mol, which was lower than other solid catalysts for the same reaction. In addition, the PPOA-Hf solid catalyst did not significantly decrease its activity after five recycles, and no evident leaching of Hf was observed, indicating its high stability and potential practical application.

  10. Potent antitumor bifunctional DNA alkylating agents, synthesis and biological activities of 3a-aza-cyclopenta[a]indenes.

    Science.gov (United States)

    Kakadiya, Rajesh; Dong, Huajin; Lee, Pei-Chih; Kapuriya, Naval; Zhang, Xiuguo; Chou, Ting-Chao; Lee, Te-Chang; Kapuriya, Kalpana; Shah, Anamik; Su, Tsann-Long

    2009-08-01

    A series of bifunctional DNA interstrand cross-linking agents, bis(hydroxymethyl)- and bis(carbamates)-8H-3a-azacyclopenta[a]indene-1-yl derivatives were synthesized for antitumor evaluation. The preliminary antitumor studies revealed that these agents exhibited potent cytotoxicity in vitro and antitumor therapeutic efficacy against human tumor xenografts in vivo. Furthermore, these derivatives have little or no cross-resistance to either Taxol or Vinblastine. Remarkably, complete tumor remission in nude mice bearing human breast carcinoma MX-1 xenograft by 13a,b and 14g,h and significant suppression against prostate adenocarcinoma PC3 xenograft by 13b were achieved at the maximum tolerable dose with relatively low toxicity. In addition, these agents induce DNA interstrand cross-linking and substantial G2/M phase arrest in human non-small lung carcinoma H1299 cells. The current studies suggested that these agents are promising candidates for preclinical studies.

  11. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution

    International Nuclear Information System (INIS)

    Zhang Yunsong; Liu Weiguo; Zhang Li; Wang Meng; Zhao Maojun

    2011-01-01

    A magnetic adsorbent, EDTAD-functionalized Saccharomyces cerevisiae, has been synthesized to behave as an adsorbent for heavy metal ions by adjusting the pH value of the aqueous solution to make carboxyl and amino groups protonic or non-protonic. The bifunctional Saccharomyces cerevisiae (EMS) were used to remove lead(II) and cadmium(II) in solution in a batch system. The results showed that the adsorption capacity of the EMS for the heavy metal ions increased with increasing solution pH, and the maximum adsorption capacity (88.16 mg/g for Pb 2+ , 40.72 mg/g for Cd 2+ ) at 10 deg. C was found to occur at pH 5.5 and 6.0, respectively. The adsorption process followed the Langmuir isotherm model. The regeneration experiments revealed that the EMS could be successfully reused.

  12. The synthesis of new oxazoline-containing bifunctional catalysts and their application in the addition of diethylzinc to aldehydes.

    Science.gov (United States)

    Coeffard, Vincent; Müller-Bunz, Helge; Guiry, Patrick J

    2009-04-21

    The straightforward preparation of new modular oxazoline-containing bifunctional catalysts is reported employing a microwave-assisted Buchwald-Hartwig aryl amination as the key step. Covalent attachment of 2-(o-aminophenyl)oxazolines and pyridine derivatives generated in good-to-high yields a series of ligands in two or three steps in which each part was altered independently to tune the activity and the selectivity of the corresponding catalysts. These catalysts prepared in situ were subsequently applied in the asymmetric addition of diethylzinc to various aldehydes, producing the corresponding alcohols with enantioselectivities of up to 68%. A transition state model, based on relevant X-ray crystal structures, has also been proposed to explain the observed stereoselectivities.

  13. Graphene-cobaltite-Pd hybrid materials for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells.

    Science.gov (United States)

    Sharma, Chandra Shekhar; Awasthi, Rahul; Singh, Ravindra Nath; Sinha, Akhoury Sudhir Kumar

    2013-12-14

    Hybrid materials comprising of Pd, MCo2O4 (where M = Mn, Co or Ni) and graphene have been prepared for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells. Structural and electrochemical characterizations were carried out using X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry and cyclic, CO stripping, and linear sweep voltammetries. The study revealed that all the three hybrid materials are active for both methanol oxidation (MOR) and oxygen reduction (ORR) reactions in 1 M KOH. However, the Pd-MnCo2O4/GNS hybrid electrode exhibited the greatest MOR and ORR activities. This active hybrid electrode has also outstanding stability under both MOR and ORR conditions, while Pt- and other Pd-based catalysts undergo degradation under similar experimental conditions. The Pd-MnCo2O4/GNS hybrid catalyst exhibited superior ORR activity and stability compared to even Pt in alkaline solutions.

  14. Cloning and characterization of Escherichia coli DUF299: a bifunctional ADP-dependent kinase - Pi-dependent pyrophosphorylase from bacteria

    Directory of Open Access Journals (Sweden)

    Burnell Jim N

    2010-01-01

    Full Text Available Abstract Background Phosphoenolpyruvate synthetase (PEPS; EC 2.7.9.2 catalyzes the synthesis of phosphoenolpyruvate from pyruvate in Escherichia coli when cells are grown on a three carbon source. It also catalyses the anabolic conversion of pyruvate to phosphoenolpyruvate in gluconeogenesis. A bioinformatics search conducted following the successful cloning and expression of maize leaf pyruvate, orthophosphate dikinase regulatory protein (PDRP revealed the presence of PDRP homologs in more than 300 bacterial species; the PDRP homolog was identified as DUF299. Results This paper describes the cloning and expression of both PEPS and DUF299 from E. coli and establishes that E. coli DUF299 catalyzes both the ADP-dependent inactivation and the Pi-dependent activation of PEPS. Conclusion This paper represents the first report of a bifunctional regulatory enzyme catalysing an ADP-dependent phosphorylation and a Pi-dependent pyrophosphorylation reaction in bacteria.

  15. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yunsong [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China); Liu Weiguo [Agronomy College, Sichuan Agricultural University, Wenjiang 611130 (China); Zhang Li; Wang Meng [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China); Zhao Maojun, E-mail: yaanyunsong@yahoo.com.cn [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China)

    2011-09-15

    A magnetic adsorbent, EDTAD-functionalized Saccharomyces cerevisiae, has been synthesized to behave as an adsorbent for heavy metal ions by adjusting the pH value of the aqueous solution to make carboxyl and amino groups protonic or non-protonic. The bifunctional Saccharomyces cerevisiae (EMS) were used to remove lead(II) and cadmium(II) in solution in a batch system. The results showed that the adsorption capacity of the EMS for the heavy metal ions increased with increasing solution pH, and the maximum adsorption capacity (88.16 mg/g for Pb{sup 2+}, 40.72 mg/g for Cd{sup 2+}) at 10 deg. C was found to occur at pH 5.5 and 6.0, respectively. The adsorption process followed the Langmuir isotherm model. The regeneration experiments revealed that the EMS could be successfully reused.

  16. Acid, silver, and solvent-free gold-catalyzed hydrophenoxylation of internal alkynes

    Directory of Open Access Journals (Sweden)

    Marcia E. Richard

    2013-10-01

    Full Text Available A range of arylgold compounds have been synthesized and investigated as single-component catalysts for the hydrophenoxylation of unactivated internal alkynes. Both carbene and phosphine-ligated compounds were screened as part of this work, and the most efficient catalysts contained either JohnPhos or IPr/SIPr. Phenols bearing either electron-withdrawing or electron-donating groups were efficiently added using these catalysts. No silver salts, acids, or solvents were needed for the catalysis, and either microwave or conventional heating afforded moderate to excellent yields of the vinyl ethers.

  17. Combination of Bifunctional Alkylating Agent and Arsenic Trioxide Synergistically Suppresses the Growth of Drug-Resistant Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chih Lee

    2010-05-01

    Full Text Available Drug resistance is a crucial factor in the failure of cancer chemotherapy. In this study, we explored the effect of combining alkylating agents and arsenic trioxide (ATO on the suppression of tumor cells with inherited or acquired resistance to therapeutic agents. Our results showed that combining ATO and a synthetic derivative of 3a-aza-cyclopenta[a]indenes (BO-1012, a bifunctional alkylating agent causing DNA interstrand cross-links, was more effective in killing human cancer cell lines (H460, H1299, and PC3 than combining ATO and melphalan or thiotepa. We further demonstrated that the combination treatment of H460 cells with BO-1012 and ATO resulted in severe G2/M arrest and apoptosis. In a xenograft mouse model, the combination treatment with BO-1012 and ATO synergistically reduced tumor volumes in nude mice inoculated with H460 cells. Similarly, the combination of BO-1012 and ATO effectively reduced the growth of cisplatin-resistant NTUB1/P human bladder carcinoma cells. Furthermore, the repair of BO-1012-induced DNA interstrand cross-links was significantly inhibited by ATO, and consequently, γH2AX was remarkably increased and formed nuclear foci in H460 cells treated with this drug combination. In addition, Rad51 was activated by translocating and forming foci in nuclei on treatment with BO-1012, whereas its activation was significantly suppressed by ATO. We further revealed that ATO might mediate through the suppression of AKT activity to inactivate Rad51. Taken together, the present study reveals that a combination of bifunctional alkylating agents and ATO may be a rational strategy for treating cancers with inherited or acquired drug resistance.

  18. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    Science.gov (United States)

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  19. Identification of the C-Terminal GH5 Domain from CbCel9B/Man5A as the First Glycoside Hydrolase with Thermal Activation Property from a Multimodular Bifunctional Enzyme.

    Directory of Open Access Journals (Sweden)

    Rong Wang

    Full Text Available Caldicellulosiruptor bescii encodes at least six unique multimodular glycoside hydrolases crucial for plant cell wall polysaccharides degradation, with each having two catalytic domains separated by two to three carbohydrate binding modules. Among the six enzymes, three have one N- or C-terminal GH5 domain with identical amino acid sequences. Despite a few reports on some of these multimodular enzymes, little is known about how the conserved GH5 domains behave, which are believed to be important due to the gene duplication. We thus cloned a representative GH5 domain from the C-terminus of a multimodular protein, i.e. the bifunctional cellulase/mannanase CbCel9B/Man5A which has been reported, and expressed it in Escherichia coli. Without any appending CBMs, the recombinant CbMan5A was still able to hydrolyze a variety of mannan substrates with different backbone linkages or side-chain decorations. While CbMan5A displayed the same pH optimum as CbCel9B/Man5A, it had an increased optimal temperature (90°C and moreover, was activated by heating at 70°C and 80°C, a property not ever reported for the full-length protein. The turnover numbers of CbMan5A on mannan substrates were, however, lower than those of CbCel9B/Man5A. These data suggested that evolution of CbMan5A and the other domains into a single polypeptide is not a simple assembly; rather, the behavior of one module may be affected by the other ones in the full-length enzyme. The differential scanning calorimetry analysis further indicated that heating CbMan5A was not a simple transition state process. To the best knowledge of the authors, CbMan5A is the first glycoside hydrolase with thermal activation property identified from a multimodular bifunctional enzyme.

  20. Enantioselective copper catalysed intramolecular C-H insertion reactions of α-diazo-β-keto sulfones, α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones; the influence of the carbene substituent.

    Science.gov (United States)

    Shiely, Amy E; Slattery, Catherine N; Ford, Alan; Eccles, Kevin S; Lawrence, Simon E; Maguire, Anita R

    2017-03-22

    Enantioselectivities in C-H insertion reactions, employing the copper-bis(oxazoline)-NaBARF catalyst system, leading to cyclopentanones are highest with sulfonyl substituents on the carbene carbon, and furthermore, the impact is enhanced by increased steric demand on the sulfonyl substituent (up to 91%ee). Enantioselective intramolecular C-H insertion reactions of α-diazo-β-keto phosphine oxides and 2-diazo-1,3-diketones are reported for the first time.

  1. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Young, Sherri C. [Department of Chemistry, Muhlenberg College, Allentown, PA (United States); Sinko, Patrick J. [Department of Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Casillas, Robert P. [MRIGlobal, Kansas City, MO (United States); Laskin, Jeffrey D. [Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  2. All-optical OR/NOR Bi-functional logic gate by using cross-gain modulation in semiconductor optical amplifiers

    International Nuclear Information System (INIS)

    Choi, Kyoung Sun; Byun, Young Tae; Lee, Seok; Jhon, Young Min

    2010-01-01

    An OR/NOR bi-functional all-optical logic gate has been experimentally demonstrated at 10 Gbit/s by using cross-gain modulation (XGM) in only 2 semiconductor optical amplifiers (SOAs). One SOA was used for NOR operation and the other SOA was used for inversion to obtain OR operation. Numerical simulation has also been performed, which coincided well with the experimental results.

  3. Infrared Spectroscopic Observations on the Fate of Organophosphorus Compounds Exposed to Atmospheric Moisture. Part 3

    Science.gov (United States)

    2007-05-01

    FATE OF ORGANOPHOSPHORUS COMPOUNDS EXPOSED TO ATMOSPHERIC MOISTURE PART III. PHOSPHINES, PHOSPHITES , PHOSPHONITES, PHOSPHINITES, PHOSPHORIC ACIDS ...The investigation continues with Phosphines, Phosphites , Phosphonites, Phosphinites, Phosphoric Acids , Phosphonic Acids , Phosphinic Acids , Phosphine...infrared spectrum of di-(2-ethylhexyl) phosphoric acid as a liquid film between KBr windows is given in Figure 104. The band assignments are as follows

  4. Phosphor investigation in the production of Syrian phosphoric acid using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.; Al-Hameish, M.

    2009-06-01

    Nuclear magnetic resonance spectroscopy (NMR) was applied in this work to the industrial process of extraction of uranium from phosphoric acid and to the process of the purification of the phosphoric acid for food proposes. The structural changes of used extraction materials and the organic content of the final product was studied. 13 C , 1 H and 32 P-spectra of all material during the process were recorded. The spectra of the three used extraction materials Bis(2-ethylhexyl Phosphoric Acid)) DEHPA, TriOctyl Phosphine Oxide (TOPO) (C 8 H 1 7) 3 P=O and TriButyl Phosphate (TBP) (C 4 H 9 O) 3 P=O show a partial degradation during the process. The final product ( Phosphoric acid for Food proposes) doesn't contain any organic solvents or extraction material. (author)

  5. Radioiodination of protein using 2,3,5,6-tetrafluorophenyl 3-(nido-carboranyl) propionate (TCP) as a potential bi-functional linker: Synthesis and biodistribution in mice

    International Nuclear Information System (INIS)

    Lin Rushan; Liu Ning; Yang Yuanyou; Li Bing; Liao Jiali; Jin Jiannan

    2009-01-01

    2,3,5,6-Tetrafluorophenyl 3-(nido-carboranyl) propionate (TCP), as a new potential bi-functional linker for radiohalogenation of proteins or peptides, was synthesized. With this bi-functional linker, the first attempt to conjugate bovine serum albumin (BSA) with 125 I was made and the biodistribution of the conjugated BSA ( 125 I-TCP-BSA) was investigated in NIH strain mice. By the use of TCP as the linker, BSA was conjugated with 125 I in a labeling yield of 58-75% and with radiochemical purity of 99.8% after purification by Sephadex TM G-50. Even after being kept at room temperature for 72 h, the radiochemical purity of 125 I-TCP-BSA was still more than 98%, much higher than that of the directly 125 I-labeled BSA ( 125 I-BSA). Meanwhile, biodistribution experiments in mice indicated that the uptake of 125 I with 125 I-TCP-BSA into thyroid was obviously less than that with 125 I-BSA post-injection. All the results implied that the 125 I-conjugated BSA ( 125 I-TCP-BSA) was considerably stable in vivo as well as in vitro, and TCP was regarded as a promising bi-functional linker for radiohalogenation of proteins

  6. Hierarchically Designed 3D Holey C2N Aerogels as Bifunctional Oxygen Electrodes for Flexible and Rechargeable Zn-Air Batteries.

    Science.gov (United States)

    Shinde, Sambhaji S; Lee, Chi Ho; Yu, Jin-Young; Kim, Dong-Hyung; Lee, Sang Uck; Lee, Jung-Ho

    2018-01-23

    The future of electrochemical energy storage spotlights on the designed formation of highly efficient and robust bifunctional oxygen electrocatalysts that facilitate advanced rechargeable metal-air batteries. We introduce a scalable facile strategy for the construction of a hierarchical three-dimensional sulfur-modulated holey C 2 N aerogels (S-C 2 NA) as bifunctional catalysts for Zn-air and Li-O 2 batteries. The S-C 2 NA exhibited ultrahigh surface area (∼1943 m 2 g -1 ) and superb electrocatalytic activities with lowest reversible oxygen electrode index ∼0.65 V, outperforms the highly active bifunctional and commercial (Pt/C and RuO 2 ) catalysts. Density functional theory and experimental results reveal that the favorable electronic structure and atomic coordination of holey C-N skeleton enable the reversible oxygen reactions. The resulting Zn-air batteries with liquid electrolytes and the solid-state batteries with S-C 2 NA air cathodes exhibit superb energy densities (958 and 862 Wh kg -1 ), low charge-discharge polarizations, excellent reversibility, and ultralong cycling lives (750 and 460 h) than the commercial Pt/C+RuO 2 catalysts, respectively. Notably, Li-O 2 batteries with S-C 2 NA demonstrated an outstanding specific capacity of ∼648.7 mA h g -1 and reversible charge-discharge potentials over 200 cycles, illustrating great potential for commercial next-generation rechargeable power sources of flexible electronics.

  7. Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity-Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer.

    Science.gov (United States)

    Wang, Zijiao; Ma, Qianli; Dong, Xiangting; Li, Dan; Xi, Xue; Yu, Wensheng; Wang, Jinxian; Liu, Guixia

    2016-10-05

    Dual-layered composite nanofibrous membrane equipped with electrical conduction, magnetism and photoluminescence trifunctionality is constructed via electrospinning. The composite membrane consists of a polyaniline (PANI)/Fe 3 O 4 nanoparticles (NPs)/polyacrylonitrile (PAN) tuned electrical-magnetic bifunctional nanofibrous layer at one side and a Eu(TTA) 3 (TPPO) 2 /polyvinylpyrrolidone (PVP) photoluminescent nanofibrous layer at the other side, and the two layers are tightly combined face-to-face together into the novel dual-layered composite membrane with trifunctionality. The electric conductivity and magnetism of electrical-magnetic bifunctionality can be respectively tunable via modulating the respective PANI and Fe 3 O 4 NPs contents, and the highest electric conductivity approaches the order of 1 × 10 -2 S cm -1 . Predominant red emission at 615 nm can be obviously observed in the photoluminescent layer under 366 nm excitation. Moreover, the luminescent intensity of photoluminescent layer is almost unaffected by the electrical-magnetic bifunctional layer because of the fact that the photoluminescent materials have been successfully isolated from dark-colored PANI and Fe 3 O 4 NPs. The novel dual-layered composite nanofibrous membrane with trifunctionality has potentials in many fields. Furthermore, the design philosophy and fabrication method for the dual-layered multifunctional membrane provide a new and facile strategy toward other membranes with multifunctionality.

  8. CaCu3Ti4O12: A Bifunctional Perovskite Electrocatalyst for Oxygen Evolution and Reduction Reaction in Alkaline Medium

    International Nuclear Information System (INIS)

    Kushwaha, H.S.; Halder, Aditi; Thomas, P.; Vaish, Rahul

    2017-01-01

    Highlights: •A cost effective double perovskite CaCu 3 Ti 4 O 12 have been synthesized using oxalate precursor method. •CCTO electrocatalyst exhibit enhanced bifunctional electrocatalytic activities. •CCTO electrocatalyst have lower overpotential and higher mass activity as compared to noble metal oxide and well-known perovskite catalysts. •Electrochemical impedance spectroscopy investigations of oxygen reactions on perovskite surfaces. -- Abstract: Perovskite oxides are prominent materials as the bifunctional electrocatalysts for both oxygen reduction/evolution reactions (ORR/OER) for the electrochemical energy conversion and storage using regenerative fuel cells and rechargeable metal-air batteries. In this work, a quadruple perovskite CaCu 3 Ti 4 O 12 has been synthesized oxalate precursor route. X-ray diffraction pattern shows phase purity of the synthesized electrocatalyst. The synthesized CCTO electrocatalyst have crystallite size of 26 nm. Electrochemical investigations reveal that CCTO exhibit efficient catalytic activity. More interestingly, an extremely high OER activity is observed for CCTO electrocatalysts which is found superior than similar class of perovskites. Additionally, CCTO shows efficient ORR activity with an onset potential of 0.83 V which is better than that of Pt/C catalyst (≈0.94 V). These results demonstrate the significant potential of CCTO perovskite as a bifunctional electrode material for alkaline fuel cells and metal-air batteries.

  9. Design and Synthesis of Bifunctional Oxime Reactivators of OP- inhibited Cholinesterase

    Science.gov (United States)

    2013-08-01

    N O O OH N O O O O N OH O O N N O O N N N O N N N N N O N+ N N N OH MeOH/APS THP NaBH4 MsCl HN N p-Toluenesulfonic Acid Swern Oxidation H2N O S O O O...pendant general acid groups. Compound 8 has been delivered to ICD for testing (synthesis and characterization below). This strategy is in place to...as a THP ether and the trifluoromethylketone installed by coupling the organolithium with trifluoroacetylpiperidine. We again used our direct

  10. The conversion of dimethyl ether over Pt/H-ZSM5. A bifunctional catalyzed reaction

    NARCIS (Netherlands)

    Engelen, C.W.R.; Wolthuizen, J.P.; Hooff, van J.H.C.; Imelik, B.; Naccache, C.; Coudurier, G.

    1985-01-01

    At low temperatures dimethylether mixed with hydrogen reacts over a platinum loaded H-ZSM5 catalyst selectivity to methane. Two successive steps can be distinguished; first the acid-catalyzed formation of a trimethyloxoniumion, followed by a metal-catalyzed hydrogenation to methane. Experiments with

  11. NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity

    Science.gov (United States)

    Liu, Danni; Lu, Qun; Luo, Yonglan; Sun, Xuping; Asiri, Abdullah M.

    2015-09-01

    The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability.The present communication reports the topotactic conversion of NiCo2O4 nanowires array on carbon cloth (NiCo2O4 NA/CC) into NiCo2S4 NA/CC, which is used as an efficient bifunctional electrocatalyst for water splitting with good durability and superior activity in 1.0 M KOH. This NiCo2S4 NA/CC electrode produces 100 mA cm-2 at an overpotential of 305 mV for hydrogen evolution and 100 mA cm-2 at an overpotential of 340 mV for oxygen evolution. To afford a 10 mA cm-2 water-splitting current, the alkaline water electrolyzer made from NiCo2S4 NA/CC needs a cell voltage of 1.68 V, which is 300 mV less than that for NiCo2O4 NA/CC, and has good stability. Electronic supplementary information (ESI) available: Experimental section and ESI Figures. See DOI: 10.1039/c5nr04064g

  12. Vapor-Phase Hydrodeoxygenation of Guaiacol to Aromatics over Pt/HBeta: Identification of the Role of Acid Sites and Metal Sites on the Reaction Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lei [Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 P.R. China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Peng, Bo [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Zhu, Xinli [Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 P.R. China

    2018-02-05

    Hydrodeoxygenation of guaiacol, a phenolic compound derived from lignin fraction of biomass, over a Pt/HBeta catalyst at 350 °C and atmospheric pressure produces benzene, toluene, xylenes, and C9+ aromatics with yield of 42%, 29%, 12%, and 5%, respectively. Reaction pathways for conversion of two functional groups (hydroxyl and methoxyl) over the bifunctional catalyst were studied. Both guaiacol and intermediate products (catechol and cyclopentanone) were fed onto zeolite HBeta and Pt/SiO2 to identify the individual role of acid site and metal site. Acid sites (mainly Brønsted acid site, BAS) catalyze transalkylation and dehydroxylation reactions in sequence, producing phenol, cresols and xylenols as the major products at high conversion. Pt sites catalyze demethylation reaction resulting in catechol as the primary product, which can either be deoxygenated to phenol followed by phenol to benzene, or decarbonylated to cyclopentanone and further to butane. The close proximity of Pt and BAS in bifunctional Pt/HBeta enables both transalkylation and deoxygenation reactions with inhibited demethylation and decarbonylation reactions, producing aromatics as major final products with a total yield > 85%. Both activity and stability of bifunctional Pt/HBeta during hydrodeoxygenation of guaiacol is improved compared to HBeta and Pt/SiO2. The addition of water to the feed further improves the activity and stability via hydrolysis of O-CH3 bond of guaiacol on BAS and removing coke around Pt.

  13. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Loree Joanne [Univ. of California, Berkeley, CA (United States); King, C. Judson [Univ. of California, Berkeley, CA (United States)

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO2 and H2S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The

  14. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia

    2016-01-28

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  15. Building new discrete supramolecular assemblies through the interaction of iso-tellurazole N-oxides with Lewis acids and bases.

    Science.gov (United States)

    Ho, Peter C; Jenkins, Hilary A; Britten, James F; Vargas-Baca, Ignacio

    2017-10-13

    The supramolecular macrocycles spontaneously assembled by iso-tellurazole N-oxides are stable towards Lewis bases as strong as N-heterocyclic carbenes (NHC) but readily react with Lewis acids such as BR 3 (R = Ph, F). The electron acceptor ability of the tellurium atom is greatly enhanced in the resulting O-bonded adducts, which consequently enables binding to a variety of Lewis bases that includes acetonitrile, 4-dimethylaminopyridine, 4,4'-bipyridine, triphenyl phosphine, a N-heterocyclic carbene and a second molecule of iso-tellurazole N-oxide.

  16. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian; Poater, Albert

    2016-01-01

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  17. Hydrocracking of ethyl laurate on bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Adam, M.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. for Industrial Chemistry

    2011-07-01

    Hydrocracking of ethyl laurate (dodecanoic acid ethyl ester) as a representative model compound of vegetable oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite support material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, NiW, PtNiW) was used as catalyst system. It could be demonstrated that the metal loading and reducibility influence product selectivity as well as deactivation behavior of catalyst samples. (orig.)

  18. Radiation-induced crosslinking of polyethylene in the presence of bifunctional vinyl monomers

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M.S.

    1976-10-06

    The apparent crosslinking produced by the radiation grafting of two monomers to polyethylene, acrylic acid and acrylonitrile, was investigated. Evidence is presented to show that covalent crosslinks are not produced during the radiation grafting step; covalent crosslinks are produced by the post-irradiation heat treatment associated with measurements of gel; the enhancement in gel fraction and physical properties arises from true crosslinks rather than chain entanglements; and there may be practical value associated with the sensitization of crosslinking produced by the methods employed in this work. The effect of monomer-solvent composition on the graft and gel yield was studied. Viscoelastic properties of grafted films were determined above the melting point of pure polyethylene. The kinetic data, infrared spectra, and viscoelastic properties are the bases for the following mechanism: (1) Acrylic acid-g-PE: Acrylic acid enters the film in the form of a hydrogen bonded dimer and undergoes a grafting reaction that produces hydrogen-bond crosslinks. The heat treatment during the conventional methods for determining of crosslinks convert them into intermolecular anhydride bonds. (2) Acrylonitrile-g-PE: In this, the post-grafting crosslinking is the result of a thermally induced chain reaction leading to an uninterrupted conjugated sequence. The length of the ring structure increases with time and temperature, and the intensity of color increases with the length of the ring structure.

  19. Radiation-induced crosslinking of polyethylene in the presence of bifunctional vinyl monomers

    International Nuclear Information System (INIS)

    Joshi, M.S.

    1976-01-01

    The apparent crosslinking produced by the radiation grafting of two monomers to polyethylene, acrylic acid and acrylonitrile, was investigated. Evidence is presented to show that covalent crosslinks are not produced during the radiation grafting step; covalent crosslinks are produced by the post-irradiation heat treatment associated with measurements of gel; the enhancement in gel fraction and physical properties arises from true crosslinks rather than chain entanglements; and there may be practical value associated with the sensitization of crosslinking produced by the methods employed in this work. The effect of monomer-solvent composition on the graft and gel yield was studied. Viscoelastic properties of grafted films were determined above the melting point of pure polyethylene. The kinetic data, infrared spectra, and viscoelastic properties are the bases for the following mechanism: (1) Acrylic acid-g-PE: Acrylic acid enters the film in the form of a hydrogen bonded dimer and undergoes a grafting reaction that produces hydrogen-bond crosslinks. The heat treatment during the conventional methods for determining of crosslinks convert them into intermolecular anhydride bonds. (2) Acrylonitrile-g-PE: In this, the post-grafting crosslinking is the result of a thermally induced chain reaction leading to an uninterrupted conjugated sequence. The length of the ring structure increases with time and temperature, and the intensity of color increases with the length of the ring structure

  20. Synthesis of 4-([{sup 18}F]fluoromethyl)-2-chlorophenylisothiocyanate: a novel bifunctional {sup 18}F-labelling agent

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, F.; Mueller, M.; Bergmann, R. [Inst. fuer Bioanorganische und Radiopharmazeutische Chemie, FZ-Rossendorf e.V., Dresden (Germany)

    2004-07-01

    The one-step radiosynthesis of 4-([{sup 18}F]fluoromethyl)-2-chlorophenylisothiocyanate {sup 18}F-7 as a novel bifunctional {sup 18}F-labelling agent is described. Optimised reaction conditions in a remotely controlled synthesis module gave isothiocyanate {sup 18}F-7 in radiochemical yields of 45% (decay-corrected) within 40 min and high radiochemical purity of > 95% after solid-phase-extraction. Coupling of compound {sup 18}F-7 with the primary amine benzylamine as a model reaction afforded the corresponding ((4-[{sup 18}F]fluoromethyl)-2-chloro-phenyl)-benzyl thiourea {sup 18}F-8 in a high radiochemical yield of > 90%. Stability studies of thiourea {sup 18}F-8 in terms of radiodefluorination showed appreciable buffer stability at pH 7.4, whereas significant radiodefluorination was observed when {sup 18}F-8 was incubated in buffers at pH 3.6 and pH 9.4. Preliminary dynamic PET studies with thiourea {sup 18}F-8 in male Wistar rats showed high bone accumulation, indicative of high in vivo radiodefluorination. (orig.)

  1. Phenyl and ionic liquid based bifunctional periodic mesoporous organosilica supported copper: An efficient nanocatalyst for clean production of polyhydroquinolines.

    Science.gov (United States)

    Elhamifar, Dawood; Ardeshirfard, Hakimeh

    2017-11-01

    A novel phenyl and ionic liquid based bifunctional periodic mesoporous organosilica supported copper (Cu@BPMO-Ph-IL) is prepared, characterized and its catalytic application is developed in the clean production of polyhydroquinolines. The Cu@BPMO-Ph-IL was prepared via chemical grafting of ionic liquid groups onto phenyl-based PMO followed by treatment with copper acetate. This nanocatalyst was characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs), thermal gravimetric analysis (TGA), powder X-ray diffraction (PXRD), nitrogen-sorption and energy dispersive X-ray (EDX) analyses. This was successfully applied in the one-pot Hantzsch condensation of aldehydes, ammonium acetate, alkylacetoacetates and dimedone to prepare a set of different derivatives of polyhydroquinolines in high yields and selectivity. The catalyst was effectively recovered and reused several times without important decrease in efficiency. The recovered catalyst was also characterized with TEM analysis to study its stability and durability under applied conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Voltammetric determination of In3+ based on the bifunctionality of a multi-walled carbon nanotubes-nafion modified electrode.

    Science.gov (United States)

    Li, Junhua; Zhang, Fuxing; Wang, Jianqiu; Xu, Zhifeng; Zeng, Rongying

    2009-05-01

    Due to the strong cation-exchange ability of Nafion and the excellent properties of multi-walled carbon nanotubes (MWCNTs), a highly sensitive and mercury-free method of determining trace levels of In(3+) has been established based on the bifunctionality of a MWCNTs/Nafion modified glassy carbon electrode (GCE). The MWCNTs/Nafion modified GCE detects In(3+) in a 0.01 M HAc-NaAc buffer solution at pH 5.0 using anodic stripping voltammetry (ASV). The experimental results suggest that a sensitive anodic stripping peak appears at -0.58 V on anodic stripping voltammograms, which can be used as an analytical signal for the determination of In(3+). A good linear relationship between the stripping peak currents and the In(3+) concentration is obtained, covering the concentration range from 5.0 x 10(-10) to 2.0 x 10(-7) M, with a correlation coefficient of 0.999; the detection limit is 1.0 x 10(-11) M. This proposed method has been applied to detect In(3+) as a new way.

  3. Voltammetric determination of Cd{sup 2+} based on the bifunctionality of single-walled carbon nanotubes-Nafion film

    Energy Technology Data Exchange (ETDEWEB)

    Sun Dong [Department of Pharmacy, Wenzhou Medical College, Wenzhou 325000 (China) and Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China)]. E-mail: sun_dong11@163.com; Xie Xiafeng [Department of Pharmacy, Wenzhou Medical College, Wenzhou 325000 (China); Cai Yuepiao [Department of Pharmacy, Wenzhou Medical College, Wenzhou 325000 (China); Zhang Huajie [Department of Pharmacy, Wenzhou Medical College, Wenzhou 325000 (China); Wu Kangbing [Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2007-01-02

    In the presence of Nafion, single-walled carbon nanotubes (SWNTs) were easily dispersed into ethanol, resulting in a homogeneous SWNTs/Nafion suspension. After evaporating ethanol, a SWNTs/Nafion film with bifunctionality was constructed onto glassy carbon electrode (GCE) surface. Attributing to the strong cation-exchange ability of Nafion and excellent properties of SWNTs, the SWNTs/Nafion film-coated GCE remarkably enhances the sensitivity of determination of Cd{sup 2+}. Based on this, an electrochemical method was developed for the determination of trace levels of Cd{sup 2+} by anodic stripping voltammetry (ASV). In pH 5.0 NaAc-HAc buffer, Cd{sup 2+} was firstly exchanged and adsorbed onto SWNTs/Nafion film surface, and then reduce at -1.10 V. During the positive potential sweep, reduced cadmium was oxidized, and a well-defined stripping peak appeared at -0.84 V, which can be used as analytical signal for Cd{sup 2+}. The linear range is found to be from 4.0 x 10{sup -8} to 4.0 x 10{sup -6} mol L{sup -1}, and the lowest detectable concentration is estimated to be 4.0 x 10{sup -9} mol L{sup -1}. Finally, this method was successfully employed to detect Cd{sup 2+} in water samples.

  4. Two-Step Hydrothermal Synthesis of Bifunctional Hematite-Silver Heterodimer Nanoparticles for Potential Antibacterial and Anticancer Applications

    Science.gov (United States)

    Trang, Vu Thi; Tam, Le Thi; Phan, Vu Ngoc; Van Quy, Nguyen; Huy, Tran Quang; Le, Anh-Tuan

    2017-06-01

    In recent years, the development of composite nanostructures containing noble metal and magnetic nanocrystals has attracted much interest because they offer a promising avenue for multifunctional applications in nanomedicine and pharmacotherapy. In this work, we present a facile two-step hydrothermal approach for the synthesis of bifunctional heterodimer nanoparticles (HDNPs) composed of hematite nanocubes (α-Fe2O3 NCs) and silver nanoparticles (Ag-NPs). The formation and magnetic property of α-Fe2O3-Ag HDNPs was analyzed by transmission electron microscopy, x-ray diffraction and vibrating sample magnetometer. Interestingly, the hydrothermal-synthesized α-Fe2O3-Ag HDNPs were found to display significant antibacterial activity against three types of infectious bacteria. The cytotoxicity of α-Fe2O3-Ag nanocomposite against lung cancer A549 cell line was investigated and compared with that of pure α-Fe2O3 NCs and Ag-NPs. The obtained results reveal that the α-Fe2O3-Ag nanocomposite exhibited higher anticancer performance than that of pure Ag-NPs, whereas pure α-Fe2O3 NCs were not cytotoxic to the tested cells. The inhibitory concentration (IC50) of the α-Fe2O3-Ag nanocomposite was found at 20.94 μg/mL. With the aforementioned properties, α-Fe2O3-Ag HDNPs showed a high potential as a multifunctional material for advanced biomedicine and nanotherapy applications.

  5. Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants.

    Science.gov (United States)

    Quaedvlieg, N E; Schlaman, H R; Admiraal, P C; Wijting, S E; Stougaard, J; Spaink, H P

    1998-11-01

    By fusing the genes encoding green fluorescent protein (GFP) and beta-glucuronidase (GUS) we have created a set of bifunctional reporter constructs which are optimized for use in transient and stable expression studies in plants. This approach makes it possible to combine the advantage of GUS, its high sensitivity in histochemical staining, with the advantages of GFP as a vital marker. The fusion proteins were functional in transient expression studies in tobacco using either DNA bombardment or potato virus X as a vector, and in stably transformed Arabidopsis thaliana and Lotus japonicus plants. The results show that high level of expression does not interfere with efficient stable transformation in A. thaliana and L. japonicus. Using confocal laser scanning microscopy we show that the fusion constructs are very suitable for promoter expression studies in all organs of living plants, including root nodules. The use of these reporter constructs in the model legume L. japonicus offers exciting new possibilities for the study of the root nodulation process.

  6. Dissolution of pre-existing platelet thrombus by synergistic administration of low concentrations of bifunctional antibodies against β3 integrin.

    Directory of Open Access Journals (Sweden)

    Suying Dang

    Full Text Available Most antithrombotic approaches target prevention rather than the more clinically relevant issue of resolution of an existing thrombus. In this study, we describe a novel and effective therapeutic strategy for ex vivo clearance of pre-existing platelet thrombus by the combination of two bifunctional platelet GPIIIa49-66 ligands that target different parts of the arterial thrombus. We produced an additional GPIIIa49-66 agent (named APAC, which homes to activated platelets. Like our previously described SLK (which targets newly deposited fibrin strands surrounding the platelet thrombus, APAC destroys platelet aggregates ex vivo in an identical fashion with 85% destruction of platelet aggregates at 2 hours. The combined application of APAC and SLK demonstrated a ~2 fold greater platelet thrombus dissolution than either agent alone at a low concentration (0.025 µM. Platelet-rich clot lysis experiments demonstrated the time required for 50% platelet-rich fibrin clot lysis (T(50% by APAC (95 ± 6.1 min or SLK (145 ± 7.1 min was much longer than that by combined APAC + SLK (65 ± 7.6 min at the final concentration of 0.025 µM (APAC + SLK vs APAC, p<0.05; APAC + SLK vs SLK, p<0.01. Thus these low concentrations of a combination of both agents are likely to be more effective and less toxic when used therapeutically in vivo.

  7. Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film

    International Nuclear Information System (INIS)

    Sun Dong; Xie Xiafeng; Cai Yuepiao; Zhang Huajie; Wu Kangbing

    2007-01-01

    In the presence of Nafion, single-walled carbon nanotubes (SWNTs) were easily dispersed into ethanol, resulting in a homogeneous SWNTs/Nafion suspension. After evaporating ethanol, a SWNTs/Nafion film with bifunctionality was constructed onto glassy carbon electrode (GCE) surface. Attributing to the strong cation-exchange ability of Nafion and excellent properties of SWNTs, the SWNTs/Nafion film-coated GCE remarkably enhances the sensitivity of determination of Cd 2+ . Based on this, an electrochemical method was developed for the determination of trace levels of Cd 2+ by anodic stripping voltammetry (ASV). In pH 5.0 NaAc-HAc buffer, Cd 2+ was firstly exchanged and adsorbed onto SWNTs/Nafion film surface, and then reduce at -1.10 V. During the positive potential sweep, reduced cadmium was oxidized, and a well-defined stripping peak appeared at -0.84 V, which can be used as analytical signal for Cd 2+ . The linear range is found to be from 4.0 x 10 -8 to 4.0 x 10 -6 mol L -1 , and the lowest detectable concentration is estimated to be 4.0 x 10 -9 mol L -1 . Finally, this method was successfully employed to detect Cd 2+ in water samples

  8. Rational geometrical engineering of palladium sulfide multi-arm nanostructures as a superior bi-functional electrocatalyst.

    Science.gov (United States)

    Nandan, R; Nanda, K K

    2017-08-31

    Geometrical tunability offers sharp edges and an open-armed structure accompanied with a high electrochemical active surface area to ensure the efficient and effective utilization of materials by exposing the electrochemical active sites for facile accessibility of reactant species. Herein, we report a one-step, single-pot, surfactant-free, electroless, and economic route to synthesize palladium sulfide nanostructures with different geometries at mild temperatures and their catalytic properties towards the oxygen reduction reaction (ORR) and methanol electro-oxidation (MOR). For ORR, the positive on-set, half wave potentials, smaller Tafel slope, high electrochemical active surface area, large roughness factor, and better cyclic stability of the proposed nanostructures as compared to those of the commercial state-of-the-art Pt-C/PdS catalysts suggest their superiority in an alkaline medium. In addition, high mass activity (J f ∼ 715 mA mg -1 ), in comparison with that of the commercial state-of-the-art Pt-C/PdS catalysts (J f ∼ 138/41 mA mg -1 , respectively), and high J f /J b (1.52) along with the superior operational stability of the multi-arm palladium sulfide nanostructures towards MOR advocates the bi-functional behavior of the catalyst and its potential as a promising Pt-free anode/cathode electrocatalyst in fuel cells.

  9. Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells

    Science.gov (United States)

    Kim, In Gyeom; Nah, In Wook; Oh, In-Hwan; Park, Sehkyu

    2017-10-01

    Three-dimensional (3D) crumpled reduced graphene oxide supported Pt-Ir alloys that served as bifunctional oxygen catalysts for use in untized regenerative fuel cells were synthesized by a facile spray pyrolysis method. Pt-Ir catalysts supported on rGO (Pt-Ir/rGOs) were physically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) to observe change in composition by heat treatment, alloying, and morphological transition of the catalysts. Their catalytic activities and stabilities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) conditions were electrochemically investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), potential cycling and hold tests on the rotating disk electrode (RDE). Pt-Ir/rGO with no post heat-treatment (Pt-Ir/rGO_NP) showed a lower activity for ORR and OER although metal nanoparticles decorated on the support are relatively small. However, Pt-Ir/rGO showed remarkably enhanced activity following heat treatment, depending on temperature. Pt-Ir/rGO heat-treated at 600 °C after spray pyrolysis (Pt-Ir/rGO_P600) exhibited a higher activity and stability than a commercially available Pt/C catalyst kept under the ORR condition, and it also revealed a comparable OER activity and durability versus the commercial unsupported Ir catalyst.

  10. Local suppression of contact hypersensitivity in mice by a new bifunctional psoralen, 4,4',5'-trimethylazapsoralen, and UVA radiation.

    Science.gov (United States)

    Aubin, F; Dall'Acqua, F; Kripke, M L

    1991-07-01

    Although psoralens plus UVA radiation (320-400 nm) have been widely used for the treatment of dermatologic diseases, the toxic effects of these agents have led investigators to develop new photochemotherapeutic compounds. One such compound is 4,4',5'-trimethylazapsoralen (TMAP), a new bifunctional molecule. The purpose of this study was to examine the immunologic side effects of repeated treatment of C3H mice with TMAP plus UVA radiation. During this treatment, the number of ATPase+, la+, and Thy-1+ dendritic epidermal cells greatly decreased in the treated site, despite the lack of phototoxicity. The reduction in the number of detectable cutaneous immune cells was accompanied by a decrease in the induction of contact hypersensitivity to dinitrofluorobenzene applied to the treated skin, an impairment in the antigen-presenting activity of draining lymph node cells, and the presence of suppressor lymphoid cells in the spleen of unresponsive mice. Treatment with UVA radiation alone also reduced the number of ATPase+, Ia+, and Thy-1+ cells in the skin, but did not cause any detectable alterations in immune function. This implies that morphologic alterations in these cells do not necessarily indicate loss of function. Thus, although TMAP in combination with UVA radiation is not overtly phototoxic, it is highly immunosuppressive in mice.

  11. Mineralization of hetero bi-functional reactive dye in aqueous solution by Fenton and photo-Fenton reactions.

    Science.gov (United States)

    Torrades, Francesc; García-Hortal, José Antonio; García-Montaño, Julia

    2015-01-01

    This study focused on the advanced oxidation of the hetero bi-functional reactive dye Sumifix Supra Yellow 3RF (CI Reactive Yellow 145) using dark Fenton and photo-Fenton conditions in a lab-scale experiment. A 2(3) factorial design was used to evaluate the effects of the three key factors: temperature, Fe(II) and H2O2 concentrations, for a dye concentration of 250 mg L(-1) with chemical oxygen demand (COD) of 172 mg L(-1) O2 at pH=3. The response function was the COD reduction. This methodology lets us find the effects and interactions of the studied variables and their roles in the efficiency of the treatment process. In the optimization, the correlation coefficients for the model (R2) were 0.948 and 0.965 for Fenton and photo-Fenton treatments, respectively. Under optimized reaction conditions: pH=3, temperature=298 K, [H2O2]=11.765 mM and [Fe(II)]=1.075 mM; 60 min of treatment resulted in a 79% and 92.2% decrease in COD, for the dye taken as the model organic compound, after Fenton and photo-Fenton treatments, respectively.

  12. Selective sensing of two novel coordination polymers based on tris(4-carboxylphenyl)phosphine oxide for organic molecules and Fe3+ and Hg2+ ions

    Science.gov (United States)

    Huo, Liangqin; Zhang, Jie; Gao, Lingling; Wang, Xiaoqing; Fan, Liming; Fang, Kegong; Hu, Tuoping

    2017-12-01

    Two novel coordination polymers, formulated as {[Zn(HTPO)(bib)]·4H2O}n (1), {[Cu3(TPO)2 (bib)3]·2DMF·0.5EtOH·0.5H2O}n (2) (H3TPO = tris(4-carboxylphenyl)phosphine oxide; bib = 1,4-bis(1H-imidazol-4-yl) benzene), have been synthesized under solvothermal method and characterized by single-crystal X-ray diffraction, elemental analysis (EA), IR spectra, thermogravimetric (TG) analysis, powder X-ray diffraction (PXRD). Structural analysis reveals that complex 1 is a 2D 4-connected sheet with an intriguing 2D + 2D→2D network. Complex 2 displays a 3D 3,4-connected net with the point symbol of {103}2{106}3. Furthermore, the photoluminescence properties of 1 and 2 were investigated in the solid state and various solvent emulsions, the results show that 1 and 2 have better fluorescent recognition for organic molecules, Fe3+ and Hg2+ ions.

  13. Whole cell immobilization of refractory glucose isomerase using tris(hydroxymethyl)phosphine as crosslinker for preparation of high fructose corn syrup at elevated temperature.

    Science.gov (United States)

    Jia, Dong-Xu; Wang, Teng; Liu, Zi-Jian; Jin, Li-Qun; Li, Jia-Jia; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2018-04-04

    Glucose isomerase (GI) responsible for catalyzing the isomerization from d-glucose to d-fructose, was an important enzyme for producing high fructose corn syrup (HFCS). In a quest to prepare HFCS at elevated temperature and facilitate enzymatic recovery, an effective procedure for whole cell immobilization of refractory Thermus oshimai glucose isomerase (ToGI) onto Celite 545 using tris(hydroxymethyl)phosphine (THP) as crosslinker was established. The immobilized biocatalyst showed an activity of approximate 127.3 U/(g·immobilized product) via optimization in terms of cells loading, crosslinker concentration and crosslinking time. The pH optimum of the immobilized biocatalyst was displaced from pH 8.0 of native enzyme to neutral pH 7.0. Compared with conventional glutaraldehyde (GLU)-immobilized cells, it possessed the enhanced thermostability with 70.1% residual activity retaining after incubation at 90°C for 72 h. Moreover, the THP-immobilized biocatalyst exhibited superior operational stability, in which it retained 85.8% of initial activity after 15 batches of bioconversion at 85°C. This study paved a way for reducing catalysis cost for upscale preparation of HFCS with higher d-fructose concentration. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Water-Soluble Phosphine-Protected Au₁₁ Clusters: Synthesis, Electronic Structure, and Chiral Phase Transfer in a Synergistic Fashion.

    Science.gov (United States)

    Yao, Hiroshi; Iwatsu, Mana

    2016-04-05

    Synthesis of atomically precise, water-soluble phosphine-protected gold clusters is still currently limited probably due to a stability issue. We here present the synthesis, magic-number isolation, and exploration of the electronic structures as well as the asymmetric conversion of triphenylphosphine monosulfonate (TPPS)-protected gold clusters. Electrospray ionization mass spectrometry and elemental analysis result in the primary formation of Au11(TPPS)9Cl undecagold cluster compound. Magnetic circular dichroism (MCD) spectroscopy clarifies that extremely weak transitions are present in the low-energy region unresolved in the UV-vis absorption, which can be due to the Faraday B-terms based on the magnetically allowed transitions in the cluster. Asymmetric conversion without changing the nuclearity is remarkable by the chiral phase transfer in a synergistic fashion, which yields a rather small anisotropy factor (g-factor) of at most (2.5-7.0) × 10(-5). Quantum chemical calculations for model undecagold cluster compounds are then used to evaluate the optical and chiroptical responses induced by the chiral phase transfer. On this basis, we find that the Au core distortion is ignorable, and the chiral ion-pairing causes a slight increase in the CD response of the Au11 cluster.

  15. Palladium catalyst system comprising zwitterion and/or acid-functionalized ionic liquid

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns a catalyst system in particular a catalyst system comprising Palladium (Pd), a zwitterion and/or an acid-functionalized ionic liquid, and one or more phosphine ligands, wherein the Pd catalyst can be provided by a complex precursor, such as Pd(CH3COO)2, PdCI2, Pd(CH3......COCHCOCH3), Pd (CF3COO)2, Pd(PPh3)4 or Pd2(dibenzylideneacetone)3. Such catalyst systems can be used for e.g. alkoxycarbonylation reactions, carboxylation reactions, and/or in a co-polymerization reaction, e.g. in the production of methyl propionate and/or propanoic acid, optionally in processes forming...... methyl methacrylate and/or methacrylic acid. Catalyst systems according to the invention are suitable for reactions forming separable product and catalyst phases and supported ionic liquid phase SILP applications....

  16. One-Pot Synthesis of Novel Chiral β-Amino Acid Derivatives by Enantioselective Mannich Reactions Catalyzed by Squaramide Cinchona Alkaloids

    Directory of Open Access Journals (Sweden)

    Kankan Zhang

    2013-05-01

    Full Text Available An efficient one-pot synthesis of novel β-amino acid derivatives containing a thiadiazole moiety was developed using a chiral squaramide cinchona alkaloid as organocatalyst. The reactions afforded chiral β-amino acid derivatives in moderate yields and with moderate to excellent enantioselectivities. The present study demonstrated for the first time the use of a Mannich reaction catalyzed by a chiral bifunctional organocatalyst for the one-pot synthesis of novel β-amino acid derivatives bearing a 1,3,4-thiadiazole moiety on nitrogen.

  17. Anion-Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Gang [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Yang, Ce [Chemical Science and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhao, Wanpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Qianru [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Wang, Ning [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Tao [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhou, Hua [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Chen, Hangrong [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; Shi, Jianlin [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China

    2017-11-06

    The introduction of active transition metal sites (TMSs) in carbon enables the synthesis of noble-metal-free electrocatalysts for clean energy conversion applications, however, there are often multiple existing forms of TMSs, which are of different natures and catalytic models. Regulating the evolution of distinctive TMSs is highly desirable but remains challenging to date. Anions, as essential elements involved in the synthesis, have been totally neglected previously in the construction of TMSs. Herein, the effects of anions on the creation of different types of TMSs is investigated for the first time. It is found that the active cobalt-nitrogen sites tend to be selectively constructed on the surface of N-doped carbon by using chloride, while metallic cobalt nanoparticles encased in protective graphite layers are the dominant forms of cobalt species with nitrate ions. The obtained catalysts demonstrate cobalt-sites-dependent activity for ORR and HER in acidic media. And the remarkably enhanced catalytic activities approaching that of benchmark Pt/C in acidic medium has been obtained on the catalyst dominated with cobalt-nitrogen sites, confirmed by the advanced spectroscopic . Our finding demonstrates a general paradigm of anion-regulated evolution of distinctive TMSs, providing a new pathway for enhancing performances of various targeted reactions related with TMSs.

  18. Molecular cloning of a novel glucuronokinase/putative pyrophosphorylase from zebrafish acting in an UDP-glucuronic acid salvage pathway.

    Directory of Open Access Journals (Sweden)

    Roman Gangl

    Full Text Available In animals, the main precursor for glycosaminoglycan and furthermore proteoglycan biosynthesis, like hyaluronic acid, is UDP-glucuronic acid, which is synthesized via the nucleotide sugar oxidation pathway. Mutations in this pathway cause severe developmental defects (deficiency in the initiation of heart valve formation. In plants, UDP-glucuronic acid is synthesized via two independent pathways. Beside the nucleotide sugar oxidation pathway, a second minor route to UDP-glucuronic acid exist termed the myo-inositol oxygenation pathway. Within this myo-inositol is ring cleaved into glucuronic acid, which is subsequently converted to UDP-glucuronic acid by glucuronokinase and UDP-sugar pyrophosphorylase. Here we report on a similar, but bifunctional enzyme from zebrafish (Danio rerio which has glucuronokinase/putative pyrophosphorylase activity. The enzyme can convert glucuronic acid into UDP-glucuronic acid, required for completion of the alternative pathway to UDP-glucuronic acid via myo-inositol and thus establishes a so far unknown second route to UDP-glucuronic acid in animals. Glucuronokinase from zebrafish is a member of the GHMP-kinase superfamily having unique substrate specificity for glucuronic acid with a Km of 31 ± 8 µM and accepting ATP as the only phosphate donor (Km: 59 ± 9 µM. UDP-glucuronic acid pyrophosphorylase from zebrafish has homology to bacterial nucleotidyltransferases and requires UTP as nucleosid diphosphate donor. Genes for bifunctional glucuronokinase and putative UDP-glucuronic acid pyrophosphorylase are conserved among some groups of lower animals, including fishes, frogs, tunicates, and polychaeta, but are absent from mammals. The existence of a second pathway for UDP-glucuronic acid biosynthesis in zebrafish likely explains some previous contradictory finding in jekyll/ugdh zebrafish developmental mutants, which showed residual glycosaminoglycans and proteoglycans in knockout mutants of UDP

  19. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for {sup 89}Zr-immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vugts, Danielle J.; Klaver, Chris; Sewing, Claudia; Poot, Alex J.; Adamzek, Kevin; Visser, Gerard W.M.; Dongen, Guus A.M.S. van [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Huegli, Seraina; Mari, Cristina; Gasser, Gilles [University of Zurich, Department of Chemistry, Zurich (Switzerland); Valverde, Ibai E. [University of Basel Hospital, Division of Radiopharmaceutical Chemistry, Basel (Switzerland); Mindt, Thomas L. [Institute of Pharmaceutical Sciences, ETH Zurich, Zurich (Switzerland); General Hospital of Vienna, Ludwig Boltzmann Institute for Applied Diagnostics, Vienna (Austria)

    2017-02-15

    All clinical {sup 89}Zr-immuno-PET studies are currently performed with the chelator desferrioxamine (DFO). This chelator provides hexadentate coordination to zirconium, leaving two coordination sites available for coordination with, e.g., water molecules, which are relatively labile ligands. The unsaturated coordination of DFO to zirconium has been suggested to result in impaired stability of the complex in vivo and consequently in unwanted bone uptake of {sup 89}Zr. Aiming at clinical improvements, we report here on a bifunctional isothiocyanate variant of the octadentate chelator DFO* and the in vitro and in vivo comparison of its {sup 89}Zr-DFO*-mAb complex with {sup 89}Zr-DFO-mAb. The bifunctional chelator DFO*-pPhe-NCS was prepared from previously reported DFO* and p-phenylenediisothiocyanate. Subsequently, trastuzumab was conjugated with either DFO*-pPhe-NCS or commercial DFO-pPhe-NCS and radiolabeled with Zr-89 according to published procedures. In vitro stability experiments were carried out in saline, a histidine/sucrose buffer, and blood serum. The in vivo performance of the chelators was compared in N87 tumor-bearing mice by biodistribution studies and PET imaging. In 0.9 % NaCl {sup 89}Zr-DFO*-trastuzumab was more stable than {sup 89}Zr-DFO-trastuzumab; after 72 h incubation at 2-8 C 95 % and 58 % intact tracer were left, respectively, while in a histidine-sucrose buffer no difference was observed, both products were ≥ 92 % intact. In vivo uptake at 144 h post injection (p.i.) in tumors, blood, and most normal organs was similar for both conjugates, except for skin, liver, spleen, ileum, and bone. Tumor uptake was 32.59 ± 11.95 and 29.06 ± 8.66 % ID/g for {sup 89}Zr-DFO*-trastuzumab and {sup 89}Zr-DFO-trastuzumab, respectively. The bone uptake was significantly lower for {sup 89}Zr-DFO*-trastuzumab compared to {sup 89}Zr-DFO-trastuzumab. At 144 h p.i. for {sup 89}Zr-DFO*-trastuzumab and {sup 89}Zr-DFO-trastuzumab, the uptake in sternum was 0.92

  20. Technology of uranium recovery from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi [Saga Univ. (Japan). Faculty of Science and Engineering; Nakashio, Fumiyuki

    1982-12-01

    Rock phosphate contains from 0.005 to 0.02 wt.% of uranium. Though the content is a mere 5 to 10 % of that in uranium ore, the total recovery of uranium is significant since it is used for fertilizer manufacture in a large quantity. Wet-process phosphoric acid is produced by the reaction of rock phosphate with sulfuric acid. The recovery of uranium from this phosphoric acid is mostly by solvent extraction at present. According to U/sup 4 +/ or UO/sub 2//sup 2 +/ as the form of its existence, the technique of solvent extraction differs. The following matters are described: processing of rock phosphate; recovery techniques including the extraction by OPPA-octyl pyrophosphoric acid for U/sup 4 +/, and by mixed DEHPA-Di-(2)-ethylhexyl phosphoric acid and TOPO-tryoctyl phosphine oxide for UO/sub 2//sup 2 +/, and by OPAP-octylphenyl acid phosphate for U/sup 4 +/; the recent progress of the technology as seen in patents.

  1. Inversion of Configuration at the Phosphorus Nucleophile in the Diastereoselective and Enantioselective Synthesis of P-Stereogenic syn-Phosphiranes from Chiral Epoxides.

    Science.gov (United States)

    Muldoon, Jake A; Varga, Balázs R; Deegan, Meaghan M; Chapp, Timothy W; Eördögh, Ádám M; Hughes, Russell P; Glueck, David S; Moore, Curtis E; Rheingold, Arnold L

    2018-04-23

    Nucleophilic substitution results in inversion of configuration at the electrophilic carbon center (S N 2) or racemization (S N 1). The stereochemistry of the nucleophile is rarely considered, but phosphines, which have a high barrier to pyramidal inversion, attack electrophiles with retention of configuration at P. Surprisingly, cyclization of bifunctional secondary phosphine alkyl tosylates proceeded under mild conditions with inversion of configuration at the nucleophile to yield P-stereogenic syn-phosphiranes. DFT studies suggested that the novel stereochemistry results from acid-promoted tosylate dissociation to yield an intermediate phosphenium-bridged cation, which undergoes syn-selective cyclization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET.

    Science.gov (United States)

    Vosjan, Maria J W D; Perk, Lars R; Roovers, Rob C; Visser, Gerard W M; Stigter-van Walsum, Marijke; van Bergen En Henegouwen, Paul M P; van Dongen, Guus A M S

    2011-04-01

    The ∼15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies®) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with (68)Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for (89)Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified (68)Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml(-1) gentisic acid, pH 5.5) at 4°C or in human serum at 37°C, a mixture of (67)Ga and (68)Ga was used. Biodistribution and immuno-PET studies of (68)Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using (89)Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall (68)Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. (68/67)Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period (Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 ± 1.3 to 7.2 ± 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was similar to that of the reference conjugate (89)Zr-Df-Bz-NCS-7D12. Tumours were clearly visualized in a PET imaging study. Via a rapid

  3. Facile labelling of an anti-epidermal growth factor receptor nanobody with {sup 68}Ga via a novel bifunctional desferal chelate for immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vosjan, Maria J.W.D.; Perk, Lars R.; Stigter van Walsum, Marijke [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); Roovers, Rob C.; Bergen en Henegouwen, Paul M.P. van [Utrecht University, Cellular Dynamics, Science Faculty, Utrecht (Netherlands); Visser, Gerard W.M. [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Dongen, Guus A.M.S. van [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands)

    2011-04-15

    The {proportional_to}15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies {sup registered}) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with {sup 68}Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for {sup 89}Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified {sup 68}Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml{sup -1} gentisic acid, pH 5.5) at 4 C or in human serum at 37 C, a mixture of {sup 67}Ga and {sup 68}Ga was used. Biodistribution and immuno-PET studies of {sup 68}Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using {sup 89}Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall {sup 68}Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. {sup 68/67}Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period (<2% radioactivity loss). In biodistribution studies the {sup 68}Ga-labelled Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 {+-} 1.3 to 7.2 {+-} 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was

  4. Facile labelling of an anti-epidermal growth factor receptor nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET

    International Nuclear Information System (INIS)

    Vosjan, Maria J.W.D.; Perk, Lars R.; Stigter van Walsum, Marijke; Roovers, Rob C.; Bergen en Henegouwen, Paul M.P. van; Visser, Gerard W.M.; Dongen, Guus A.M.S. van

    2011-01-01

    The ∝15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies registered ) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with 68 Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for 89 Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified 68 Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml -1 gentisic acid, pH 5.5) at 4 C or in human serum at 37 C, a mixture of 67 Ga and 68 Ga was used. Biodistribution and immuno-PET studies of 68 Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using 89 Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall 68 Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. 68/67 Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period ( 68 Ga-labelled Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 ± 1.3 to 7.2 ± 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was similar to that of the reference conjugate 89 Zr-Df-Bz-NCS-7D12. Tumours were clearly visualized in a PET imaging study. Via a rapid

  5. Catalytic Activity of a Bifunctional Catalyst for Hydrotreatment of Jatropha curcas L. Seed Oil

    Directory of Open Access Journals (Sweden)

    J. García-Dávila

    2018-01-01

    Full Text Available The hydrotreating process of vegetable oils (HPVO involves the transformation of vegetable oil triglycerides into straight chain alkanes, which are carried out by deoxygenation reactions, generating multiple hydrocarbon compounds, cuts similar to heavy vacuum oil. The HPVO is applied to Jatropha curcas oil on USY zeolite supported with gamma alumina and platinum deposition on the catalytic as hydrogenation component. The acid of additional activity of the supports allows the development of catalytic routes that the intervention of catalytic centers of different nature reaches the desired product. The products of the hydrotreating reaction with Jatropha curcas seed oil triglycerides were identified by Fourier transform infrared spectroscopy and by mass spectroscopy to identify and analyze the generated intermediate and final hydrocarbon compounds.

  6. Superparamagnetic Bifunctional Bisphosphonates Nanoparticles: A Potential MRI Contrast Agent for Osteoporosis Therapy and Diagnostic

    Directory of Open Access Journals (Sweden)

    Y. Lalatonne

    2010-01-01

    Full Text Available A bone targeting nanosystem is reported here which combined magnetic contrast agent for Magnetic Resonance Imaging (MRI and a therapeutic agent (bisphosphonates into one drug delivery system. This new targeting nanoplatform consists of superparamagnetic γFe2O3 nanoparticles conjugated to 1,5-dihydroxy-1,5,5-tris-phosphono-pentyl-phosphonic acid (di-HMBPs molecules with a bisphosphonate function at the outer of the nanoparticle surface for bone targeting. The as-synthesized nanoparticles were evaluated as a specific MRI contrast agent by adsorption study onto hydroxyapatite and MRI measurment. The strong adsorption of the bisphosphonates nanoparticles to hydroxyapatite and their use as MRI T2∗ contrast agent were demonstrated. Cellular tests performed on human osteosarcoma cells (MG63 show that γFe2O3@di-HMBP hybrid nanomaterial has no citoxity effect in cell viability and may act as a diagnostic and therapeutic system.

  7. Hierarchically scaffolded CoP/CoP2 nanoparticles: controllable synthesis and their application as a well-matched bifunctional electrocatalyst for overall water splitting.

    Science.gov (United States)

    Li, Wan; Zhang, Shilin; Fan, Qining; Zhang, Fazhi; Xu, Sailong

    2017-05-04

    Transition metal phosphide (TMP) nanostructures have stimulated increasing interest for use in water splitting owing to their abundant natural sources and high activity for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Typically, the preparation of hierarchical TMPs involves the utilization of expensive or dangerous phosphorus sources, and, in particular, the understanding of topotactic transformations of the precursors to crystalline phases-which could be utilized to enhance electrocatalytic performance-remains very limited. We, herein, report a controllable preparation of CoP/CoP 2 nanoparticles well dispersed in flower-like Al 2 O 3 scaffolds (f-CoP/CoP 2 /Al 2 O 3 ) as a bifunctional electrocatalyst for the HER and OER via the phosphorization of a flower-like CoAl layered double hydroxide precursor. Characterization by in situ X-ray diffraction (XRD) monitored the topotactic transformation underlying the controllable formation of CoP/CoP 2 via tuning the phosphorization time. Electrocatalytic tests showed that an f-CoP/CoP 2 /Al 2 O 3 electrode exhibited a lower onset potential and higher electrocatalytic activity for the HER and OER in the same alkaline electrolyte than electrodes of flower-like and powdered CoP/Al 2 O 3 . The enhanced electrochemical performance was experimentally supported by measuring the electrochemically active surface area. The f-CoP/CoP 2 /Al 2 O 3 composite further generated a current density of 10 mA cm -2 at 1.65 V when used as a bifunctional catalyst for overall water splitting. Our results demonstrate that the preparation route based on the LDH precursor may provide an alternative for investigating diverse TMPs as bifunctional electrocatalysts for water splitting.

  8. Fe2.25W0.75O4/reduced graphene oxide nanocomposites for novel bifunctional photocatalyst: One-pot synthesis, magnetically recyclable and enhanced photocatalytic property

    International Nuclear Information System (INIS)

    Guo, Jinxue; Jiang, Bin; Zhang, Xiao; Zhou, Xiaoyu; Hou, Wanguo

    2013-01-01

    Fe 2.25 W 0.75 O 4 /reduced graphene oxide (RGO) composites were prepared for application of novel bifunctional photocatalyst via simple one-pot hydrothermal method, employing graphene oxide (GO), Na 2 WO 4 , FeSO 4 and sodium dodecyl benzene sulfonate (SDBS) as the precursors. Transmission electron microscope (TEM) results indicate that the well-dispersed Fe 2.25 W 0.75 O 4 nanoparticles were deposited on the surface of RGO sheets homogeneously. Magnetic characterization reveals that Fe 2.25 W 0.75 O 4 and Fe 2.25 W 0.75 O 4 /RGO show ferromagnetic behaviors. So this novel bifunctional photocatalyst could achieve magnetic separation and collection with the aid of external magnet. The composites exhibit enhanced photocatalytic performance on degradation of methyl orange (MO) compared with pure Fe 2.25 W 0.75 O 4 under low-power ultraviolet light irradiation due to the introduction of RGO. Moreover, this hybrid catalyst possesses long-term excellent photocatalytic performance due to its good thermal stability. This bifunctional photocatalyst, which combines magnetic property and excellent photocatalytic activity, would be a perfect candidate in applications of catalytic elimination of environmental pollutants and other areas. - Graphical abstract: Magnetically recyclable Fe 2.25 W 0.75 O 4 /reduced graphene oxide nanocomposites with enhanced photocatalytic property Display Omitted - Highlights: ●Fe 2.25 W 0.75 O 4 growth, deposition and GO reduction occurred simultaneously. ●Composite possessed ferromagnetic and enhanced photocatalytic properties. ●Composite is utilized as a magnetically separable and high-efficient photocatalyst. ●Photocatalyst showed good photocatalytic and thermal stability during cyclic use

  9. Toxicidade da combinação de dióxido de carbono e fosfina sob diferentes temperaturas para Tribolium castaneum Toxicity of the carbon dioxide and phosphine combination to Tribolium castaneum under different temperatures

    Directory of Open Access Journals (Sweden)

    Raimundo W. S. Aguiar

    2010-01-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da temperatura sobre a toxicidade da combinação de dióxido de carbono e fosfina, para os estágios de desenvolvimento de Tribolium castaneum (Herbst (Coleoptera: Tenebrionidae. A toxicidade da combinação de 5% de dióxido de carbono e 1 g m-3 de fosfina para os estágios de ovo, larvas de 5, 10 e 15 dias, pupa e adulto de T. castaneum, foi estudada nas temperaturas de 25, 30, 35, 40 e 45 °C, por meio de estimativas dos tempos de exposição letais para 50 e 95% dos insetos (TL50 e TL95. Curvas tempo-resposta foram estabelecidas mediante bioensaios com períodos crescentes de exposição à combinação do dióxido de carbono com a fosfina. Observou-se que os TL50 e TL95 reduziram com a elevação da temperatura em todos os estágios de T. castaneum avaliados. O estágio de larva de cinco dias foi a mais susceptível à combinação de dióxido de carbono e fosfina. De acordo com os resultados, a combinação do dióxido de carbono com a fosfina é alternativa potencial para diminuir a quantidade de fosfina aplicada em produtos armazenados, por apresentar alta toxicidade para todos os estágios de T. castaneum sob diferentes temperaturas.The objective of this work was to assess the effect of temperature on the toxicity of the carbon dioxide-phosphine combination for the developmental stages of Tribolium castaneum (Herbst (Coleoptera: Tenebrionidae. The toxicity of combination of 5% carbon dioxide and 1 g m-3 phosphine in the developmental stages of egg, larvae of 5, 10 and 15 days, pupae and adult of T. castaneum was studied under the temperatures of 25, 30, 35, 40 and 45 °C, through the estimation of lethal insect exposure times of 50 and 95% (LT50 and LT95. For that, time-response curves were established through bioassays with increasing periods of exposure to the combination of carbon dioxide and phosphine. A reduction of LT50 and LT95 was observed with temperature increase in all

  10. Acid extraction by supported liquid membranes containing basic carriers

    International Nuclear Information System (INIS)

    Danesi, P.R.; Cianetti, C.; Horwitz, E.P.

    1983-01-01

    The extraction of HNO 3 (nitric acid) from aqueous solutions by permeation through a number of supported liquid membranes containing basic carriers dissolved in diethylbenzene has been studied. The results have shown that the best permeations are obtained with long chain aliphatic amines (TLA, Primene JM-T) followed by TOPO (trioctylphosphine oxide) and then by other monofunctional and bifunctional organophosphorous basic carriers. The influence of an aliphatic diluent on the permeability of HNO 3 through a supported liquid membrane containing TLA as carrier was also investigated. In this case the permeability to HNO 3 decreases as a result of the lower diffusion coefficient of the acid-carrier complex in the more vicous aliphatic solvent. 4 figures

  11. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis

    DEFF Research Database (Denmark)

    Su, Hai-Yan; Gorlin, Yelena; Man, Isabela Costinela

    2012-01-01

    Progress in the field of electrocatalysis is often hampered by the difficulty in identifying the active site on an electrode surface. Herein we combine theoretical analysis and electrochemical methods to identify the active surfaces in a manganese oxide bi-functional catalyst for the oxygen...... reduction reaction (ORR) and the oxygen evolution reaction (OER). First, we electrochemically characterize the nanostructured α-Mn2O3 and find that it undergoes oxidation in two potential regions: initially, between 0.5 V and 0.8 V, a potential region relevant to the ORR and, subsequently, between 0.8 V...

  12. Production of propylene from 1-butene on highly active "bi-functional single active site" catalyst: Tungsten carbene-hydride supported on alumina

    KAUST Repository

    Mazoyer, Etienne

    2011-12-02

    1-Butene is transformed in a continuous flow reactor over tungsten hydrides precursor W-H/Al2O3, 1, giving a promising yield into propylene at 150 °C and different pressures. Tungsten carbene-hydride single active site operates as a "bi-functional catalyst" through 1-butene isomerization on W-hydride and 1-butene/2-butenes cross-metathesis on W-carbene. This active moiety is generated in situ at the initiation steps by insertion of 1-butene on tungsten hydrides precursor W-H/Al2O3, 1 followed by α-H and β-H abstraction. © 2011 American Chemical Society.

  13. Single-Site Active Iron-Based Bifunctional Oxygen Catalyst for a Compressible and Rechargeable Zinc-Air Battery.

    Science.gov (United States)

    Ma, Longtao; Chen, Shengmei; Pei, Zengxia; Huang, Yan; Liang, Guojin; Mo, Funian; Yang, Qi; Su, Jun; Gao, Yihua; Zapien, Juan Antonio; Zhi, Chunyi

    2018-02-27

    The exploitation of a high-efficient, low-cost, and stable non-noble-metal-based catalyst with oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) simultaneously, as air electrode material for a rechargeable zinc-air battery is significantly crucial. Meanwhile, the compressible flexibility of a battery is the prerequisite of wearable or/and portable electronics. Herein, we present a strategy via single-site dispersion of an Fe-N x species on a two-dimensional (2D) highly graphitic porous nitrogen-doped carbon layer to implement superior catalytic activity toward ORR/OER (with a half-wave potential of 0.86 V for ORR and an overpotential of 390 mV at 10 mA·cm -2 for OER) in an alkaline medium. Furthermore, an elastic polyacrylamide hydrogel based electrolyte with the capability to retain great elasticity even under a highly corrosive alkaline environment is utilized to develop a solid-state compressible and rechargeable zinc-air battery. The creatively developed battery has a low charge-discharge voltage gap (0.78 V at 5 mA·cm -2 ) and large power density (118 mW·cm -2 ). It could be compressed up to 54% strain and bent up to 90° without charge/discharge performance and output power degradation. Our results reveal that single-site dispersion of catalytic active sites on a porous support for a bifunctional oxygen catalyst as cathode integrating a specially designed elastic electrolyte is a feasible strategy for fabricating efficient compressible and rechargeable zinc-air batteries, which could enlighten the design and development of other functional electronic devices.

  14. Bifunctional bamboo-like CoSe2 arrays for high-performance asymmetric supercapacitor and electrocatalytic oxygen evolution

    Science.gov (United States)

    Chen, Tian; Li, Songzhan; Gui, Pengbin; Wen, Jian; Fu, Xuemei; Fang, Guojia

    2018-05-01

    Bifunctional bamboo-like CoSe2 arrays are synthesized by thermal annealing of Co(CO3)0.5OH grown on carbon cloth in Se atmosphere. The CoSe2 arrays obtained have excellent electrical conductivity, larger electrochemical active surface areas, and can directly serve as a binder-free electrode for supercapacitors and the oxygen evolution reaction (OER). When tested as a supercapacitor electrode, the CoSe2 delivers a higher specific capacitance (544.6 F g‑1 at current density of 1 mA cm‑2) compared with CoO (308.2 F g‑1) or Co3O4 (201.4 F g‑1). In addition, the CoSe2 electrode possesses excellent cycling stability. An asymmetric supercapacitor (ASC) is also assembled based on bamboo-like CoSe2 as a positive electrode and active carbon as a negative electrode in a 3.0 M KOH aqueous electrolyte. Owing to the unique stucture and good electrochemical performance of bamboo-like CoSe2, the as-assembled ACS can achieve a maximum operating voltage window of 1.7 V, a high energy density of 20.2 Wh kg‑1 at a power density of 144.1 W kg‑1, and an outstanding cyclic stability. As the catalyst for the OER, the CoSe2 exhibits a lower potential of 1.55 V (versus RHE) at current density of 10 mA cm‑2, a smaller Tafel slope of 62.5 mV dec‑1 and an also outstanding stability.

  15. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst

    International Nuclear Information System (INIS)

    Zhao, Xiaorong; Zhu, Lihua; Zhang, Yingying; Yan, Jingchun; Lu, Xiaohua; Huang, Yingping; Tang, Heqing

    2012-01-01

    Highlights: ► Rectorite was modified by ultrasonic-assisted ion-exchange and hydrolysis. ► The pillaring increased the layer-to-layer spacing of rectorite. ► The iron-modified rectorite was found to be an excellent adsorbent. ► The iron-modified rectorite showed good visible light photocatalytic ability. ► FeR was highly chemically stable with a wide operating range of pH. - Abstract: Iron-modified rectorite (FeR) was prepared as both adsorbent and catalyst. The iron modification increased layer-to-layer spacing and surface area of rectorite, leading to much increased adsorption of Rhodamine B (RhB) on rectorite. The maximum adsorption capacity of RhB on FeR reached 101 mg g −1 at pH 4.5, being 11 folds of that on the unmodified one. The iron modification also enabled rectorite to have efficient visible light photocatalytic ability. The apparent rate constant for the degradation of RhB (80 μM) at 298 K and pH 4.5 in the presence of H 2 O 2 (6.0 mM) and FeR (0.4 g L −1 ) was evaluated to be 0.0413 min −1 under visible light and 0.122 min −1 under sunlight, respectively. The analysis with electron spin resonance spin-trapping technique supported that the iron modified rectorite effectively catalyzed the decomposition of H 2 O 2 into hydroxyl radicals. On the basis of the characterization and analysis, the new bifunctional material was well clarified as both adsorbent and photocatalyst in the removing of organic pollutants.

  16. Cell tracking with gadophrin-2: a bifunctional contrast agent for MR imaging, optical imaging, and fluorescence microscopy

    International Nuclear Information System (INIS)

    Daldrup-Link, Heike E.; Rudelius, Martina; Piontek, Guido; Schlegel, Juergen; Metz, Stephan; Settles, Marcus; Rummeny, Ernst J.; Pichler, Bernd; Heinzmann, Ulrich; Oostendorp, Robert A.J.

    2004-01-01

    The purpose of this study was to assess the feasibility of use of gadophrin-2 to trace intravenously injected human hematopoietic cells in athymic mice, employing magnetic resonance (MR) imaging, optical imaging (OI), and fluorescence microscopy. Mononuclear peripheral blood cells from GCSF-primed patients were labeled with gadophrin-2 (Schering AG, Berlin, Germany), a paramagnetic and fluorescent metalloporphyrin, using established transfection techniques with cationic liposomes. The labeled cells were evaluated in vitro with electron microscopy and inductively coupled plasma atomic emission spectrometry. Then, 1 x 10 6 -3 x 10 8 labeled cells were injected into 14 nude Balb/c mice and the in vivo cell distribution was evaluated with MR imaging and OI before and 4, 24, and 48 h after intravenous injection (p.i.). Five additional mice served as controls: three mice were untreated controls and two mice were investigated after injection of unlabeled cells. The contrast agent effect was determined quantitatively for MR imaging by calculating signal-to-noise-ratio (SNR) data. After completion of in vivo imaging studies, fluorescence microscopy of excised organs was performed. Intracellular cytoplasmatic uptake of gadophrin-2 was confirmed by electron microscopy. Spectrometry determined an uptake of 31.56 nmol Gd per 10 6 cells. After intravenous injection, the distribution of gadophrin-2 labeled cells in nude mice could be visualized by MR, OI, and fluorescence microscopy. At 4 h p.i., the transplanted cells mainly distributed to lung, liver, and spleen, and 24 h p.i. they also distributed to the bone marrow. Fluorescence microscopy confirmed the distribution of gadophrin-2 labeled cells to these target organs. Gadophrin-2 is suited as a bifunctional contrast agent for MR imaging, OI, and fluorescence microscopy and may be used to combine the advantages of each individual imaging modality for in vivo tracking of intravenously injected hematopoietic cells. (orig.)

  17. Tri-domain Bifunctional Inhibitor of Metallocarboxypeptidases A and Serine Proteases Isolated from Marine Annelid Sabellastarte magnifica*

    Science.gov (United States)

    Alonso-del-Rivero, Maday; Trejo, Sebastian A.; Reytor, Mey L.; Rodriguez-de-la-Vega, Monica; Delfin, Julieta; Diaz, Joaquin; González-González, Yamile; Canals, Francesc; Chavez, Maria Angeles; Aviles, Francesc X.

    2012-01-01

    This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar Ki values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature. PMID:22411994

  18. Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase /reductase involved in acetone metabolism by Desulfococcus biacutus.

    Science.gov (United States)

    Frey, Jasmin; Rusche, Hendrik; Schink, Bernhard; Schleheck, David

    2016-11-25

    The strictly anaerobic, sulfate-reducing bacterium Desulfococcus biacutus can utilize acetone as sole carbon and energy source for growth. Whereas in aerobic and nitrate-reducing bacteria acetone is activated by carboxylation with CO 2 to acetoacetate, D. biacutus involves CO as a cosubstrate for acetone activation through a different, so far unknown pathway. Proteomic studies indicated that, among others, a predicted medium-chain dehydrogenase/reductase (MDR) superfamily, zinc-dependent alcohol dehydrogenase (locus tag DebiaDRAFT_04514) is specifically and highly produced during growth with acetone. The MDR gene DebiaDRAFT_04514 was cloned and overexpressed in E. coli. The purified recombinant protein required zinc as cofactor, and accepted NADH/NAD + but not NADPH/NADP + as electron donor/acceptor. The pH optimum was at pH 8, and the temperature optimum at 45 °C. Highest specific activities were observed for reduction of C 3 - C 5 -aldehydes with NADH, such as propanal to propanol (380 ± 15 mU mg -1 protein), butanal to butanol (300 ± 24 mU mg -1 ), and 3-hydroxybutanal to 1,3-butanediol (248 ± 60 mU mg -1 ), however, the enzyme also oxidized 3-hydroxybutanal with NAD + to acetoacetaldehyde (83 ± 18 mU mg -1 ). The enzyme might play a key role in acetone degradation by D. biacutus, for example as a bifunctional 3-hydroxybutanal dehydrogenase/reductase. Its recombinant production may represent an important step in the elucidation of the complete degradation pathway.

  19. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice.

    Science.gov (United States)

    Miyata, Kana; Kozaki, Toshinori; Kouzai, Yusuke; Ozawa, Kenjirou; Ishii, Kazuo; Asamizu, Erika; Okabe, Yoshihiro; Umehara, Yosuke; Miyamoto, Ayano; Kobae, Yoshihiro; Akiyama, Kohki; Kaku, Hanae; Nishizawa, Yoko; Shibuya, Naoto; Nakagawa, Tomomi

    2014-11-01

    Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions

    Directory of Open Access Journals (Sweden)

    Giovanna Bosica

    2016-06-01

    Full Text Available Aza-Michael reactions between primary aliphatic and aromatic amines and various Michael acceptors have been performed under environmentally-friendly solventless conditions using acidic alumina as a heterogeneous catalyst to selectively obtain the corresponding mono-adducts in high yields. Ethyl acrylate was the main acceptor used, although others such as acrylonitrile, methyl acrylate and acrylamide were also utilized successfully. Bi-functional amines also gave the mono-adducts in good to excellent yields. Such compounds can serve as intermediates for the synthesis of anti-cancer and antibiotic drugs.