WorldWideScience

Sample records for bifeo3 thin films

  1. Nanoscale Control of Exchange Bias with BiFeO3 Thin Films

    NARCIS (Netherlands)

    Martin, Lane W.; Chu, Ying-Hao; Holcomb, Mikel B.; Huijben, Mark; Yu, Pu; Han, Shu-Jen; Lee, Donkoun; Wang, Shan X.; Ramesh, R.

    2008-01-01

    We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions − an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field combin

  2. Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting

    Science.gov (United States)

    Ji, Wei; Yao, Kui; Lim, Yee-Fun; Liang, Yung C.; Suwardi, Ady

    2013-08-01

    Considering energy band alignment and polarization effect, ferroelectric BiFeO3 thin films are proposed as the photoanode in a monolithic cell to achieve unassisted photocatalytic water splitting. Significant anodic photocurrent was observed in our epitaxial ferroelectric BiFeO3 films prepared from sputter deposition. Both negative polarization charges and thinner films were found to promote the anodic photocatalytic reaction. Ultraviolet photoelectron spectroscopy proved that the conduction and valence band edges of BiFeO3 straddle the water redox levels. Theoretical analyses show that the large switchable polarization can modify the surface properties to promote the hydrogen and oxygen evolutions on the surfaces with positive and negative polarization charges, respectively.

  3. Epitaxial ferroelectric BiFeO3 thin films for unassisted photocatalytic water splitting

    International Nuclear Information System (INIS)

    Considering energy band alignment and polarization effect, ferroelectric BiFeO3 thin films are proposed as the photoanode in a monolithic cell to achieve unassisted photocatalytic water splitting. Significant anodic photocurrent was observed in our epitaxial ferroelectric BiFeO3 films prepared from sputter deposition. Both negative polarization charges and thinner films were found to promote the anodic photocatalytic reaction. Ultraviolet photoelectron spectroscopy proved that the conduction and valence band edges of BiFeO3 straddle the water redox levels. Theoretical analyses show that the large switchable polarization can modify the surface properties to promote the hydrogen and oxygen evolutions on the surfaces with positive and negative polarization charges, respectively

  4. Nanoscale control of exchange bias with BiFeO3 thin films

    OpenAIRE

    Martin, Lane W.; Chu, Ying-Hao; Mikel B. Holcomb; Huijben, Mark; Han, Shu-Jen; Lee, Donkoun; Wang, Shan X.; Ramesh, R.

    2008-01-01

    We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions, an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field combined with large shifts of the hysteresis loop (exchange bias), have been observed in these heterostructures, which depend directly on the type and crystallography of the nanoscale (2 nm) domain walls ...

  5. 180° Ferroelectric Stripe Nanodomains in BiFeO3 Thin Films.

    Science.gov (United States)

    Chen, Zuhuang; Liu, Jian; Qi, Yajun; Chen, Deyang; Hsu, Shang-Lin; Damodaran, Anoop R; He, Xiaoqing; N'Diaye, Alpha T; Rockett, Angus; Martin, Lane W

    2015-10-14

    There is growing evidence that domain walls in ferroics can possess emergent properties that are absent in the bulk. For example, 180° ferroelectric domain walls in the ferroelectric-antiferromagnetic BiFeO3 are particularly interesting because they have been predicted to possess a range of intriguing behaviors, including electronic conduction and enhanced magnetization. To date, however, ordered arrays of such domain structures have not been reported. Here, we report the observation of 180° stripe nanodomains in (110)-oriented BiFeO3 thin films grown on orthorhombic GdScO3 (010)O substrates and their impact on exchange coupling to metallic ferromagnets. Nanoscale ferroelectric 180° stripe domains with {112̅} domain walls were observed in films <32 nm thick. With increasing film thickness, we observed a domain structure crossover from the depolarization field-driven 180° stripe nanodomains to 71° ferroelastic domains determined by the elastic energy. These 180° domain walls (which are typically cylindrical or meandering in nature due to a lack of strong anisotropy associated with the energy of such walls) are found to be highly ordered. Additional studies of Co0.9Fe0.1/BiFeO3 heterostructures reveal exchange bias and exchange enhancement in heterostructures based on BiFeO3 with 180° domain walls and an absence of exchange bias in heterostructures based on BiFeO3 with 71° domain walls; suggesting that the 180° domain walls could be the possible source for pinned uncompensated spins that give rise to exchange bias. This is further confirmed by X-ray circular magnetic dichroism studies, which demonstrate that films with predominantly 180° domain walls have larger magnetization than those with primarily 71° domain walls. Our results could be useful to extract the structure of domain walls and to explore domain wall functionalities in BiFeO3. PMID:26317408

  6. Dielectric dynamics of epitaxial BiFeO3 thin films

    OpenAIRE

    Peng Ren; Peng Liu; Bin Xia; Xi Zou; Lu You; Junling Wang; Lan Wang

    2012-01-01

    We report the detailed study on the low temperature dielectric dynamics of the epitaxial BiFeO3 thin films grown on Nb-doped SrTiO3 substrate. The results indicate that the contributions from the thin film dominate the dielectric response, although it comes from both the thin film and the electrode interface. Furthermore, the origins of the low temperature dielectric anomalies are investigated with electric circuit fittings. A possible phase transition at 210 K is revealed from analysis with ...

  7. Preparation of BiFeO3 thin films by pulsed laser deposition method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guan-jun; CHENG Jin-rong; CHEN Rui; YU Sheng-wen; MENG Zhong-yan

    2006-01-01

    BiFeO3 (BFO) thin films were prepared on Pt(111)/TiO2/SiO2/Si(100) substrates by the pulsed-laser deposition (PLD) technique at a low temperature of 450℃. The XRD results indicate that the BFO thin films are of perovskite structure with the presence of small amount of second phases. The oxygen pressures have great effect on the crystalline structures and dielectric properties of BFO thin films. The dielectric constant of the BFO thin films decreases with increasing oxygen pressures,achieving 186,171 and 160 at the frequency of 104 Hz for the oxygen pressures of 0.666,1.333 and 13.332 Pa,respectively. The BFO thin films prepared at the oxygen pressure of 0.666 Pa reveal a saturated hysteresis loop with the remanent polarization of 7.5 μC/cm2 and the coercive field of 176 kV/cm.

  8. Dielectric dynamics of epitaxial BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Peng Ren

    2012-06-01

    Full Text Available We report the detailed study on the low temperature dielectric dynamics of the epitaxial BiFeO3 thin films grown on Nb-doped SrTiO3 substrate. The results indicate that the contributions from the thin film dominate the dielectric response, although it comes from both the thin film and the electrode interface. Furthermore, the origins of the low temperature dielectric anomalies are investigated with electric circuit fittings. A possible phase transition at 210 K is revealed from analysis with dielectric loss tangent. The dielectric constants obtained from the constant phase elements (CPEs are more than 400 even at low temperatures. Finally, the physical significances of the CPE model are discussed.

  9. Enhanced photovoltaic properties in bilayer BiFeO3/Bi-Mn-O thin films.

    Science.gov (United States)

    Chakrabartty, Joyprokash; Nechache, Riad; Harnagea, Catalin; Li, Shun; Rosei, Federico

    2016-05-27

    We report an external solar power conversion efficiency of ∼1.43% in BiFeO3(BFO)/BiMnO3(BMO) bilayer thin films. Both films are epitaxially grown on (111) oriented niobium doped SrTiO3 (NSTO) single crystal substrates by pulsed laser deposition. By illuminating the BFO/BMO films under 1 Sun (AM 1.5 G), we found a remarkably high fill factor of ∼0.72, much higher than values reported for devices based on BFO or BMO alone. In addition, we demonstrate that the photocurrent density and photovoltage are tunable by changing the polarization direction in the BFO/BMO bilayer, as confirmed by the macroscopic polarization-voltage (P-V) hysteresis loop. This effect is described in terms of a more favorable energy band alignment of the electrode/bilayer/NSTO heterostructure junction, which controls photocarrier separation. PMID:27094952

  10. Multiferroic BiFeO3 thin films for multifunctional devices.

    Science.gov (United States)

    Singh, Manish K; Yang, Yi; Takoudis, Christos G; Tatarenko, A; Srinivasan, G; Kharel, P; Lawes, G

    2010-09-01

    We report the metalorganic chemical vapor deposition of crystalline BiFeO3 films on platinized silicon substrates using n-butylferrocene, triphenylbismuth and oxygen. Based on thermogravimetric analysis data, the suitability of these two precursors for depositing BiFeO3 is discussed. The deposited films were characterized for structure and morphology using X-ray diffraction and scanning electron microscopy. Composition analysis using X-ray photoelectron spectroscopy revealed that the films were stoichiometric BiFeO3. Electrostatic force microscopy indicated that the film had polarizable domains that showed no deterioration in polarization over time long after electric poling. The film showed a saturation magnetization of 10 +/- 1 emu/cm3 at room temperature.

  11. Polarization-tuned diode behaviour in multiferroic BiFeO3 thin films

    KAUST Repository

    Yao, Yingbang

    2012-12-28

    Asymmetric rectifying I-V behaviour of multiferroic BiFeO3 (BFO) thin films grown on transparent ITO-coated glass was quantitatively studied as a function of ferroelectric polarization. Different polarized states were established by unipolar or bipolar poling with various applied electric fields. The effects of polarization relaxation and fatigue on the currents were also investigated. We found that the conduction currents and the associated rectifications were controlled by the amplitude and direction of the polarization. We clearly observed the linear dependence of the current on the polarization. It is suggested that the space-charge-limited conduction and the charge injection at the Schottky interface between the film and the electrodes dominate the current. The electrically controlled rectifying behaviour observed in this study may be useful in nonvolatile resistance memory devices or tunable diodes. © 2013 IOP Publishing Ltd.

  12. Preparation and characterization of BiFeO3 thin films by the LPD on OH-functionalized organic SAMs

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    BiFeO3 (BFO) thin films were grown on OH-functionalized organic self-assembled monolayers (SAMs) via liquid-phase deposition (LPD) method at a temperature below 100°C. The BiFeO3 thin films were induced to synthesize on the OH-functionalized organic OTS monolayers prepared on hydroxylated glass substrate by self-assembling technique. The hydrophilic characteristic of the as-prepared OTS-SAMs was measured by contact angle tester. The crystal phase composition, microstructure and topography of the as-synthesized BFO thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and atomic force microscope (AFM), respectively. Results show that compact and homogeneous BFO thin films can be formed on the OH-functionalized SAMs at low temperature.

  13. Ultrafast Terahertz Gating of the Polarization and Giant Nonlinear Optical Response in BiFeO3 Thin Films.

    Science.gov (United States)

    Chen, Frank; Goodfellow, John; Liu, Shi; Grinberg, Ilya; Hoffmann, Matthias C; Damodaran, Anoop R; Zhu, Yi; Zalden, Peter; Zhang, Xiaohang; Takeuchi, Ichiro; Rappe, Andrew M; Martin, Lane W; Wen, Haidan; Lindenberg, Aaron M

    2015-11-01

    Terahertz pulses are applied as an all-optical bias to ferroelectric thin-film BiFeO3 while monitoring the time-dependent ferroelectric polarization through its nonlinear optical response. Modulations in the intensity of the second harmonic light generated by the film correspond to on-off ratios of 220× gateable on femtosecond timescales. Polarization modulations comparable to the built-in static polarization are observed. PMID:26389651

  14. Polycrystalline BiFeO3 thin film synthesized via sol-gel assisted spin coating technique for photosensitive application

    Science.gov (United States)

    Bogle, K. A.; Narwade, R. D.; Phatangare, A. B.; Dahiwale, S. S.; Mahabole, M. P.; Khairnar, R. S.

    2016-05-01

    We are reporting photosensitivity property of BiFeO3 thin film under optical illumination. The thin film used for photosensitivity work was fabricated via sol-gel assisted spin coating technique. I-V measurements on the Cu/BiFeO3/Al structure under dark condition show a good rectifying property and show dramatic blue shit in threshold voltage under optical illumination. The microstructure, morphology and elemental analysis of the films were characterized by using XRD, UV-Vis, FTIR, SEM and EDS.

  15. Giant optical enhancement of strain gradient in ferroelectric BiFeO3 thin films and its physical origin

    Science.gov (United States)

    Li, Yuelin; Adamo, Carolina; Chen, Pice; Evans, Paul G.; Nakhmanson, Serge M.; Parker, William; Rowland, Clare E.; Schaller, Richard D.; Schlom, Darrell G.; Walko, Donald A.; Wen, Haidan; Zhang, Qingteng

    2015-01-01

    Through mapping of the spatiotemporal strain profile in ferroelectric BiFeO3 epitaxial thin films, we report an optically initiated dynamic enhancement of the strain gradient of 105–106 m−1 that lasts up to a few ns depending on the film thickness. Correlating with transient optical absorption measurements, the enhancement of the strain gradient is attributed to a piezoelectric effect driven by a transient screening field mediated by excitons. These findings not only demonstrate a new possible way of controlling the flexoelectric effect, but also reveal the important role of exciton dynamics in photostriction and photovoltaic effects in ferroelectrics. PMID:26586421

  16. Thickness-dependent piezoelectric behaviour and dielectric properties of lanthanum modified BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Glenda Biasotto

    2011-03-01

    Full Text Available Bi0.85La0.15FeO3 (BLFO thin films were deposited on Pt(111/Ti/SiO2 /Si substrates by the soft chemical method. Films with thicknesses ranging from 140 to 280 nm were grown on platinum coated silicon substrates at 500°C for 2 hours. The X-ray diffraction analysis of BLFO films evidenced a hexagonal structure over the entire thickness range investigated. The grain size of the film changes as the number of the layers increases, indicating thickness dependence. It is found that the piezoelectric response is strongly influenced by the film thickness. It is shown that the properties of BiFeO3 thin films, such as lattice parameter, dielectric permittivity, piezoeletric coefficient etc., are functions of misfit strains.

  17. Studies on forming gas annealing treated BiFeO3 thin films and capacitors

    Science.gov (United States)

    Lee, Chia-Ching; Wu, Lin-Jung; Wu, Jenn-Ming

    2007-11-01

    The structure and electric properties of BiFeO3(BFO )/BaPbO3(BPO) and Pt/BFO/BPO capacitors with forming gas annealing (FGA) treatment were investigated. X-ray diffraction patterns indicated that the annealing did not affect the structure and phase of BFO films. A degraded electric property was obtained in FGA-treated Pt/BFO/BPO films. It can be attributed to the formation of reduction and incomplete reduction of Bi+3 of BFO. Retention and fatigue properties were obtained in FGA-treated BPO/BFO/BPO capacitors. The normalized Pr loss was 22.8% after applying a voltage above 2Vc (coercive voltage) with 1011cycles. The retention behavior within 30000s is governed by the logarithmic time dependence.

  18. Enhanced electrical insulation and ferroelectricity in La and Ni co-doped BiFeO3 thin films

    International Nuclear Information System (INIS)

    Highlights: • La,Ni co-doped BiFeO3 thin films deposited by chemical solution method. • Polycrystalline films without any preferred orientation. • Bi0.95La0.05Fe0.975Ni0.025O3 sample shows a Pr of ∼66 μC/cm2 and a Ec of 0.3 MV/cm. • The lowest leakage for samples with co-doping of 5% La and 2.5% Ni. - Abstract: In this manuscript, we report the effect of co-doping of La and Ni in controlling the electrical leakage and enhancing the ferroelectric polarization in chemical solution processed BiFeO3 (BFO) thin films grown on Pt/Si substrates. Structural analysis of the films using X-ray diffraction shows that all the films are phase pure with perovskite structure and a R3c space group. The films are polycrystalline without evidence of any preferred orientation. Compared to the undoped BFO thin films, the leakage current in co-doped thin films is minimum at a La doping of 5 at% and Ni doping of 2.5 at% beyond which the leakage increases. While ferroelectric polarization does decrease marginally on co-doping, the shape of ferroelectric hysteresis loop improves in comparison to the undoped or singly doped films. The samples with La doping of 5 at% and Ni doping of 2.5 at% (Bi0.95La0.05Fe0.975Ni0.025O3) show a remnant polarization (Pr) of ∼66 μC/cm2 and a coercive field of 0.3 MV/cm at room temperature

  19. Dielectric properties of BiFeO3-PbTiO3 thin films prepared by PLD

    Institute of Scientific and Technical Information of China (English)

    CHEN Rui; YU Sheng-wen; ZHANG Guan-jun; CHENG Jin-rong; MENG Zhong-yan

    2006-01-01

    BiFeO3-PbTiO3 (BFO-PT) thin films were prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD) technique under different oxygen pressures. The structures of the films were characterized by means of XRD. The current densities were performed to check the conductivity of the films. The dielectric constant and loss factor (tanδ) of the films were measured. The results show that the BFO-PT layers are mainly perovskite structured:the film deposited under 6.665 Pa exhibits low leakage current,low dielectric loss (0.017-0.041) and saturated hysteresis loop with polarization (Pr) value and coercive field (Ec) of 3 μC/cm2 and 109 kV/cm.

  20. Rare Earth-Doped BiFeO3 Thin Films: Relationship between Structural and Magnetic Properties

    Directory of Open Access Journals (Sweden)

    Ngo Thu Huong

    2015-01-01

    Full Text Available Rare Earth- (RE- doped BiFeO3 (BFO thin films were grown on LaAlO3 substrates by using pulsed laser deposition technique. All of BFO films doped with 10% of RE show a single phase of rhombohedral structure. The saturated magnetization in the Ho- and Sm-doped films is much larger than those reported in literature and was observed at a quite low field as of 0.2 T. As for Pr- and Nd-doped BFO films, Fe2+ amount is not dominant; thus, ferromagnetism is not favored. As the RE concentration goes up to 20%, all compounds have drastically gone through a structural transition. The RE-doped BFO films have changed from rhombohedral to either pure orthorhombic phase (for Ho, Sm, or a mixed phase of orthorhombic and tetragonal (for Pr, Nd, or pure tetragonal (for Eu. We observed magnetic properties of RE-doped BFO films have significantly changed. While 20% Ho/Sm-doped BFO films have ferromagnetism degraded in comparison with the 10% doping case, the 20% Pr/Nd-doped BFO thin films, whose structure is a mixed phase, have magnetic ordering improved due to the fact that the Fe2+ amount has become greater. It seems that one can control the magnetic properties of BFO films by using appropriate RE dopants and concentrations.

  1. Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial BiFeO3 thin films

    Institute of Scientific and Technical Information of China (English)

    芦增星; 高兴森; 严志波; 刘俊明; 宋骁; 赵丽娜; 李忠文; 林远彬; 曾敏; 张璋; 陆旭兵; 吴素娟

    2015-01-01

    We investigate the resistive switching and ferroelectric polarization properties of high-quality epitaxial BiFeO3 thin films in various temperature ranges. The room temperature current–voltage (I–V ) curve exhibits a well-established polarization-modulated memristor behavior. At low temperatures (253 K), the I–V behaviors are governed by both space-charge-limited conduction (SCLC) and Ohmic behavior. The polarization reversal is able to trigger the conduc-tion switching from Ohmic to SCLC behavior, leading to the observed ferroelectric resistive switching. At a temperature of>298 K, there occurs a new resistive switching hysteresis at high bias voltages, which may be related to defect-mediated effects.

  2. Perovskite BiFeO3 thin film photocathode performance with visible light activity

    Science.gov (United States)

    Yilmaz, P.; Yeo, D.; Chang, H.; Loh, L.; Dunn, S.

    2016-08-01

    Perovskite materials are now an important class of materials in the application areas of photovoltaics and photocatalysis. Inorganic perovskites such as BiFeO3 (BFO) are promising photocatalyst materials with visible light activity and inherent stability. Here we report the large area sol-gel synthesis of BFO films for solar stimulated water photo oxidation. By modifying the sol-gel synthesis process we have produced a perovskite material that has p-type behaviour and a flat band potential of ˜1.15 V (versus NHE). The photocathode produces a density of -0.004 mA cm-2 at 0 V versus NHE under AM1.5 G illumination. We further show that 0.6 μmol h-1 of O2 was produced at an external bias of -0.5 V versus Ag/AgCl. The addition of a non-percolating conducting network of Ag increases the photocurrent to -0.07 mA cm-2 at 0 V versus NHE (at 2% Ag loading) with an increase to 2.7 μmol h-1 for O2 production. We attribute the enhancement in photoelectrochemical performance to increased light absorption due light scattering by the incorporated Ag particles, improved charge transfer kinetics at the Ag/BFO interface and reduced over potential losses. We support these claims by an observed shift in flat band and onset potentials after Ag modification through UV-vis spectroscopy, Mott-Schottky plots and j-v curve analysis.

  3. Perovskite BiFeO3 thin film photocathode performance with visible light activity.

    Science.gov (United States)

    Yilmaz, P; Yeo, D; Chang, H; Loh, L; Dunn, S

    2016-08-26

    Perovskite materials are now an important class of materials in the application areas of photovoltaics and photocatalysis. Inorganic perovskites such as BiFeO3 (BFO) are promising photocatalyst materials with visible light activity and inherent stability. Here we report the large area sol-gel synthesis of BFO films for solar stimulated water photo oxidation. By modifying the sol-gel synthesis process we have produced a perovskite material that has p-type behaviour and a flat band potential of ∼1.15 V (versus NHE). The photocathode produces a density of -0.004 mA cm(-2) at 0 V versus NHE under AM1.5 G illumination. We further show that 0.6 μmol h(-1) of O2 was produced at an external bias of -0.5 V versus Ag/AgCl. The addition of a non-percolating conducting network of Ag increases the photocurrent to -0.07 mA cm(-2) at 0 V versus NHE (at 2% Ag loading) with an increase to 2.7 μmol h(-1) for O2 production. We attribute the enhancement in photoelectrochemical performance to increased light absorption due light scattering by the incorporated Ag particles, improved charge transfer kinetics at the Ag/BFO interface and reduced over potential losses. We support these claims by an observed shift in flat band and onset potentials after Ag modification through UV-vis spectroscopy, Mott-Schottky plots and j-v curve analysis. PMID:27420393

  4. Optical and grain boundary potential characteristics of sulfurized BiFeO3 thin films for photovoltaic applications.

    Science.gov (United States)

    Lee, Seung Min; Cho, Yong Soo

    2016-04-01

    Sulfurized BiFeO3 (BFO) thin films have been investigated with the purpose of reducing their band gap for photovoltaic applications. A strong dependence of the degree of sulfurization on the structure and optical properties of the BFO thin films was observed. The sulfurization process substantially reduced the optical band gap from 2.83 eV for the reference sample to ∼1.90 eV in a sample sulfurized at 200 °C, a temperature at which the BFO phase was still dominant. The existence of the secondary Bi2S3 phase was found to be initiated from the film surface and became dominant at higher temperatures. XPS analysis suggests potential Bi-Fe(iii)-Fe(ii)-S-O compounds as a result of the change of the oxidation state of Fe with the progress of sulfurization. The sulfurized BFO film exhibited relatively higher positively charged grain boundaries than the reference film, suggesting its improved applicability in photovoltaic devices.

  5. Swift heavy ion irradiation induced modification of structure and surface morphology of BiFeO3 thin film

    Indian Academy of Sciences (India)

    B N Dash; P Mallick; P Dash; R Biswal; Jai Prakash; A Tripathi; D Kanjilal; N C Mishra

    2013-10-01

    BiFeO3 (BFO) thin films of thickness about 800 nm deposited on Si (100) substrates by sol–gel spin coating method were irradiated by 200 MeV Ag ions. Modification of structure and surface morphology of the films under irradiation was studied using glancing incidence X-ray diffraction (GIXRD) and atomic force microscope (AFM). Fluence dependence of GIXRD peak intensity indicated formation of 10 nm diameter cylindrical amorphous columns in crystalline BFO due to 200 MeV Ag ion irradiation. AFM analysis indicated that the pristine film consists of agglomerated grains with diffuse grain boundary. Irradiation led to reduced agglomeration of the grains with the formation of sharper grain boundaries. The rms roughness (rms) estimated from AFM analysis increased from 6.2 in pristine film to 12.7 nm when the film irradiated at a fluence of 1 × 1011 ions cm-2. Further irradiation led to decrease of rms which finally saturated at a value of 7–8 nm at high ion fluences. The power spectral density analysis indicated that the evolution of surface morphology of the pristine film is governed by the combined effect of evaporation condensation and volume diffusion processes. Swift heavy ion irradiation seems to increase the dominance of volume diffusion in controlling surface morphology of the film at high ion fluences.

  6. Induced ferromagnetism and magnetoelectric coupling in ion-beam synthesized BiFeO3–CoFe2O4 nanocomposite thin films

    Science.gov (United States)

    Modarresi, H.; Lazenka, V.; Menéndez, E.; Lorenz, M.; Bisht, M.; Volodin, A.; Van Haesendonck, C.; Grundmann, M.; Van Bael, M. J.; Temst, K.; Vantomme, A.

    2016-08-01

    Ferrimagnetic CoFe2O4 (cobalt ferrite) is formed within an epitaxial BiFeO3 (bismuth ferrite) thin film matrix by Co channeled ion implantation and subsequent annealing. The presence of nanoscale CoFe2O4 crystals in the matrix is confirmed by x-ray diffraction using synchrotron radiation. The significantly increased magnetic moment and the low-temperature coercive field of the composite system evidence the formation of ferrimagnetic cobalt ferrite and its nanoscale character, respectively. The results demonstrate that ion beam synthesis is an appropriate method to controllably transform a planar system into a granular one, increasing the interface area between cobalt ferrite and bismuth ferrite. The ferroelectric nature of the BiFeO3–CoFe2O4 composite is confirmed by several scanning probe microscopy techniques. At room temperature, the composite exhibits a magnetoelectric voltage coefficient of α ME  =  17.5 V (cm · Oe)‑1, while a single-phase BiFeO3 thin film shows a α ME value of 4.2 V (cm · Oe)‑1. The high magnetoelectric voltage coefficient is interpreted to be the result of the interfacial interaction between the ferrimagnetic CoFe2O4 nanocrystallites and the multiferroic BiFeO3 matrix.

  7. Thickness-dependent retention behaviors and ferroelectric properties of BiFeO3 thin films on BaPbO3 electrodes

    Science.gov (United States)

    Lee, Chia-Ching; Wu, Jenn-Ming

    2007-09-01

    BiFeO3 (BFO) thin films produced with varied film thicknesses ranging from 100to230nm were fabricated on BaPbO3(BPO )/Pt/Ti/SiOx/Si substrates by rf-magnetron sputtering. Saturated polarization-electrical field hysteresis loops, polarization response by pulse measurement, and retention properties were obtained for BFO films with various thicknesses on BPO. The retention behaviors of BFO demonstrate logarithmic time dependence and stretched exponential law. When the thicknesses of BFO films increase, the contribution of logarithmic time dependence to retention, the stretched exponential law becomes dominant. BFO films with thinner thickness exhibit better retention properties but possess smaller remnant polarization.

  8. Temperature dependences of ferroelectricity and resistive switching behavior of epitaxial BiFeO3 thin films

    Science.gov (United States)

    Lu, Zeng-Xing; Song, Xiao; Zhao, Li-Na; Li, Zhong-Wen; Lin, Yuan-Bin; Zeng, Min; Zhang, Zhang; Lu, Xu-Bing; Wu, Su-Juan; Gao, Xing-Sen; Yan, Zhi-Bo; Liu, Jun-Ming

    2015-10-01

    We investigate the resistive switching and ferroelectric polarization properties of high-quality epitaxial BiFeO3 thin films in various temperature ranges. The room temperature current-voltage (I-V) curve exhibits a well-established polarization-modulated memristor behavior. At low temperatures ( 253 K), the I-V behaviors are governed by both space-charge-limited conduction (SCLC) and Ohmic behavior. The polarization reversal is able to trigger the conduction switching from Ohmic to SCLC behavior, leading to the observed ferroelectric resistive switching. At a temperature of > 298 K, there occurs a new resistive switching hysteresis at high bias voltages, which may be related to defect-mediated effects. Project supported by the National Natural Science Foundation of China (Grant Nos. 51272078 and 51332007), the State Key Program for Basic Research of China (Grant No 2015CB921202), the Guangdong Provincial Universities and Colleges Pearl River Scholar Funded Scheme, China (2014), the International Science & Technology Cooperation Platform Program of Guangzhou, China (Grant No. 2014J4500016), and the Program for Changjiang Scholars and Innovative Research Team in University of China (Grant No. IRT1243).

  9. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111 substrates by intermittent microwave assisted hydrothermal method

    Directory of Open Access Journals (Sweden)

    Ivan Velasco-Davalos

    2016-06-01

    Full Text Available We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111 substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO34− or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111 and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111 substrates. Bi(NO33 and Fe(NO33 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100 substrates was verified by piezoresponse force microscopy.

  10. Synthesis of BiFeO3 thin films on single-terminated Nb : SrTiO3 (111) substrates by intermittent microwave assisted hydrothermal method

    Science.gov (United States)

    Velasco-Davalos, Ivan; Ambriz-Vargas, Fabian; Kolhatkar, Gitanjali; Thomas, Reji; Ruediger, Andreas

    2016-06-01

    We report on a simple and fast procedure to create arrays of atomically flat terraces on single crystal SrTiO3 (111) substrates and the deposition of ferroelectric BiFeO3 thin films on such single-terminated surfaces. A microwave-assisted hydrothermal method in deionized water and ammonia solution selectively removes either (SrO3)4- or Ti4+ layers to ensure the same chemical termination on all terraces. Measured step heights of 0.225 nm (d111) and uniform contrast in the phase image of the terraces confirm the single termination in pure and Nb doped SrTiO3 single crystal substrates. Multiferroic BiFeO3 thin films were then deposited by the same microwave assisted hydrothermal process on Nb : SrTiO3 (111) substrates. Bi(NO3)3 and Fe(NO3)3 along with KOH served as the precursors solution. Ferroelectric behavior of the BiFeO3 films on Nb : SrTiO3 (100) substrates was verified by piezoresponse force microscopy.

  11. BiFeO3薄膜的图案化制备及性能研究%Preparation and properties of patterning BiFeO3 thin films

    Institute of Scientific and Technical Information of China (English)

    谈国强; 赵高扬; 王艳; 程蒙; 任慧君

    2012-01-01

    采用短波紫外光照射仪(λ=184.9 nm)作为光刻设备,在光掩膜的覆盖下,将沉积在(111)Si基板上的十八烷基三氯硅烷(OTS)自组装单分子层(SAMs)进行刻蚀形成图案,并结合溶胶-凝胶法在功能化的OTS-SAMs表面制备图案化BiFeO3薄膜,并对BiFeO3薄膜性能进行研究.结果表明,所得图案化BiFeO3薄膜为六方扭曲的钙钛矿结构,图案边缘轮廓清晰,宽度在200μm左右;在最大测试电场为385 kV/cm下,所得电滞回线有较好的对称性和饱和性,剩余极化强度为0.17μC/cm2,饱和极化强度为3.8 μC/cm2,矫顽场强为19 kV/cm.在1kHz~1 MHz的频率范围内,介电常数随频率增加逐渐减小,介电损耗较小.%Using UV lithography (A = 184. 9 nm), the deposited octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on (111) silicon substrates was optically etched to form the pattern through a photomask. The patterning BiFeO3 thin films were prepared on the functional OTS-SAMs by sol-gel method. At the same time, the properties of BiFeO3 thin films were also studied. The results indicate that the as-prepared patterning BiFeO3 thin films were rhombohedrally distorted perovskite structure. The pattern shows the clear boundaries and the width is 200 μm. At 385 kV/cm, the maximum testing electric field, the obtained hysteresis loop has the better symmetry and saturation. The remanent polarization is 0. 17 μC/cm2 , the saturation polarization is 3. 8 μC/cm2 and the coercive strength is 19 kV/cm. In the frequency range of 1 kHz~l MHz, the dielectric constant decreases gradually as the frequency increases and the dielectric loss is lower.

  12. Local Magnetoelectric Effect in La-Doped BiFeO3 Multiferroic Thin Films Revealed by Magnetic-Field-Assisted Scanning Probe Microscopy.

    Science.gov (United States)

    Pan, Dan-Feng; Zhou, Ming-Xiu; Lu, Zeng-Xing; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-12-01

    Multiferroic La-doped BiFeO3 thin films have been prepared by a sol-gel plus spin-coating process, and the local magnetoelectric coupling effect has been investigated by the magnetic-field-assisted scanning probe microscopy connected with a ferroelectric analyzer. The local ferroelectric polarization response to external magnetic fields is observed and a so-called optimized magnetic field of ~40 Oe is obtained, at which the ferroelectric polarization reaches the maximum. Moreover, we carry out the magnetic-field-dependent surface conductivity measurements and illustrate the origin of local magnetoresistance in the La-doped BiFeO3 thin films, which is closely related to the local ferroelectric polarization response to external magnetic fields. This work not only provides a useful technique to characterize the local magnetoelectric coupling for a wide range of multiferroic materials but also is significant for deeply understanding the local multiferroic behaviors in the BiFeO3-based systems. PMID:27356565

  13. Controllability study on the preparation of pure phase BiFeO3 thin films by liquid phase self-assembled method

    International Nuclear Information System (INIS)

    Pure phase BiFeO3 (BFO) thin films were prepared on the ITO/glass substrates covered with functionalized OTS self-assembled monolayers (SAMs) by controllable liquid phase self-assembled method. The hydrophobic surface of OTS-SAMs was changed into hydrophilic surface after UV irradiation, which is helpful to make BFO precursor solutions fully wet the substrate surface. A dense film was formed only on the hydrophilic silnaol group regions, which shows the selectively deposition of BFO precursors. Changing the pH value of BFO precursor solutions will affect the phase purity. The pure phase BFO thin films can be obtained under various pH values, which indicates that the liquid phase self-assembled method is controllable. All pure phase BFO films are dense, smooth, well-grown polycrystalline films, but the size of grains increased gradually along with the increase of pH values. The micropattern of BiFeO3 film has clear edges. The possible growth mechanism of BFO thin films was discussed.

  14. Origin of the Enhanced Polarization in La and Mg Co-substituted BiFeO3 Thin Film during the Fatigue Process

    OpenAIRE

    Ke, Qingqing; Kumar, Amit; Lou, Xiaojie; Zeng, Kaiyang; Wang, John

    2012-01-01

    We have studied the polarization fatigue of La and Mg co-substituted BiFeO3 thin film, where a polarization peak is observed during the fatigue process. The origin of such anomalous behavior is analyzed on the basis of the defect evolution using temperature-dependent impedance spectroscopy. It shows that the motion of oxygen vacancies (VO..) is associated with a lower energy barrier, accompanied by the injection of electrons into the film during the fatigue process. A qualitative model is pro...

  15. Single-domain multiferroic BiFeO3 films

    Science.gov (United States)

    Kuo, C.-Y.; Hu, Z.; Yang, J. C.; Liao, S.-C.; Huang, Y. L.; Vasudevan, R. K.; Okatan, M. B.; Jesse, S.; Kalinin, S. V.; Li, L.; Liu, H. J.; Lai, C.-H.; Pi, T. W.; Agrestini, S.; Chen, K.; Ohresser, P.; Tanaka, A.; Tjeng, L. H.; Chu, Y. H.

    2016-09-01

    The strong coupling between antiferromagnetism and ferroelectricity at room temperature found in BiFeO3 generates high expectations for the design and development of technological devices with novel functionalities. However, the multi-domain nature of the material tends to nullify the properties of interest and complicates the thorough understanding of the mechanisms that are responsible for those properties. Here we report the realization of a BiFeO3 material in thin film form with single-domain behaviour in both its magnetism and ferroelectricity: the entire film shows its antiferromagnetic axis aligned along the crystallographic b axis and its ferroelectric polarization along the c axis. With this we are able to reveal that the canted ferromagnetic moment due to the Dzyaloshinskii-Moriya interaction is parallel to the a axis. Furthermore, by fabricating a Co/BiFeO3 heterostructure, we demonstrate that the ferromagnetic moment of the Co film does couple directly to the canted moment of BiFeO3.

  16. Resistive switching properties of Ce and Mn co-doped BiFeO3 thin films for nonvolatile memory application

    Directory of Open Access Journals (Sweden)

    Zhenhua Tang

    2013-12-01

    Full Text Available The Ce and Mn co-doped BiFeO3 (BCFMO thin films were synthesized on Pt/Ti/SiO2/Si substrates using a sol-gel method. The unipolar resistive switching (URS and bipolar resistive switching (BRS behaviors were observed in the Pt/BCFMO/Pt device structure, which was attributed to the formation/rupture of metal filaments. The fabricated device exhibits a large ROFF/RON ratio (>80, long retention time (>105 s and low programming voltages (<1.5 V. Analysis of linear fitting current-voltage curves suggests that the space charge limited leakage current (SCLC and Schottky emission were observed as the conduction mechanisms of the devices.

  17. Effects of annealing atmosphere on crystallization and electrical properties in BiFeO3 thin films by chemical solution deposition(CSD)

    International Nuclear Information System (INIS)

    BiFeO3 (BFO) thin films have been prepared on platinized silicon substrates by chemical solution deposition (CSD) and annealed at 600 .deg. C for 1 hour under various atmospheres, i.e., O2, Air and N2. Effects of annealing atmospheres on the crystallization and electrical properties of BFO films were investigated. Crystallization behavior and electrical properties of BFO films depend on the oxygen partial pressure of the annealing atmosphere. The BFO thin film annealed in N2 atmosphere showed a good crystallinity. The surface roughness of the BFO film decreased with lowering oxygen partial pressure of the annealing atmosphere. Low leakage current density and P-E hysteresis were found only in the BFO film annealed at 600 .deg. C under N2 atmosphere. Leakage current density, polarization (at zero electric field) and electric field (at zero polarization) of the BFO film annealed at 600 .deg. C under N2 are 5 x 10-7 A/cm2 at 1 V, 0.2 μC/cm2 and 15kV/cm, respectively

  18. Growth of epitaxial Mn and Zn codoped BiFeO3 thin films and an enhancement of photovoltage generated by a bulk photovoltaic effect

    Science.gov (United States)

    Nakashima, Seiji; Takayama, Kota; Shigematsu, Koji; Fujisawa, Hironori; Shimizu, Masaru

    2016-10-01

    Recently, the bulk photovoltaic effect of BiFeO3 (BFO) thin films has attracted much attention because of its above bandgap photovoltage for realizing novel photovoltaic devices. In this study, the epitaxial growth of 1-µm-thick Mn and Zn codoped BFO thin films has been demonstrated, and the effects of Mn and Zn codoping on the ferroelectric and bulk photovoltaic properties of the BFO thin films have been investigated. A 0.5% Mn and 0.5% Zn codoped BFO (BFMZO050) thin film on a SrRuO3-buffered vicinal-SrTiO3(001) substrate showed an atomically flat surface with a step-and-terrace structure, a low leakage current of 1.5 × 10-6 A/cm2 at 100 kV/cm, and well-saturated ferroelectric electric displacement-electric field (D-E) hysteresis loops. In addition, a Pt/BFMZO/Pt coplanar capacitor with an interelectrode distance of 260 µm illuminated by a violet laser (λ = 405 nm) showed an enhanced photovoltage of 145 V owing to the reduction in photoconductance by Mn and Zn codoping.

  19. Absence of morphotropic phase boundary effects in BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method

    Science.gov (United States)

    Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish

    2011-07-01

    We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.

  20. Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3

    NARCIS (Netherlands)

    Daumont, C. J. M.; Farokhipoor, S.; Ferri, A.; Wojdel, J. C.; Iniguez, Jorge; Kooi, B. J.; Noheda, Beatriz; Wojdeł, J.C.

    2010-01-01

    Recent works have shown that the domain walls of room-temperature multiferroic BiFeO3 (BFO) thin films can display distinct and promising functionalities. It is thus important to understand the mechanisms underlying domain formation in these films. High-resolution x-ray diffraction and piezoforce mi

  1. Local leakage current behaviours of BiFeO3 films

    Institute of Scientific and Technical Information of China (English)

    Zou Cheng; Chen Bin; Zhu Xiao-Jian; Zuo Zheng-Hu; Liu Yi-Wei; Chen Yuan-Fu; Zhan Qing-Feng; Li Run-Wei

    2011-01-01

    The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements.The local charge transport pathways are found to be located mainly at the grain boundaries of the films.The leakage current density can be tuned by changing the post-annealing temperature,the annealing time,the bias voltage and the light illumination,which can be used to improve the performances of the ferroelectric devices based on the BiFeO3 films.A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.

  2. Intriguing photo-control of exchange bias in BiFeO3/La2/3Sr1/3MnO3 thin films on SrTiO3 substrates.

    Science.gov (United States)

    Sung, Kil Dong; Lee, Tae Kwon; Jung, Jong Hoon

    2015-01-01

    To date, electric fields have been widely used to control the magnetic properties of BiFeO3-based antiferromagnet/ferromagnet heterostructures through application of an exchange bias. To extend the applicability of exchange bias, however, an alternative mechanism to electric fields is required. Here, we report the photo-control of exchange bias in BiFeO3/La2/3Sr1/3MnO3 thin films on an SrTiO3 substrate. Through an ex situ pulsed laser deposition technique, we successfully synthesized epitaxial BiFeO3/La2/3Sr1/3MnO3 thin films on SrTiO3 substrates. By measuring magnetoresistance under light illumination, we investigated the effect of light illumination on resistance, exchange bias, and coercive field in BiFeO3/La2/3Sr1/3MnO3 thin films. After illumination of red and blue lights, the exchange bias was sharply reduced compared to that measured in the dark. With increasing light intensity, the exchange bias under red and blue lights initially decreased to zero and then appeared again. It is possible to reasonably explain these behaviors by considering photo-injection from SrTiO3 and the photo-conductivity of La2/3Sr1/3MnO3. This study may provide a fundamental understanding of the mechanism underlying photo-controlled exchange bias, which is significant for the development of new functional spintronic devices. PMID:25852417

  3. Electrical conduction mechanism in BiFeO3-based ferroelectric thin-film capacitors: Impact of Mn doping

    Directory of Open Access Journals (Sweden)

    Hiroki Matsuo

    2015-12-01

    Full Text Available Electrical conduction properties of SrRuO3(SRO/BiFeO3(BFO/SRO and SRO/10% Mn-doped BFO(BFMO/SRO ferroelectric thin-film capacitors are investigated. The BFO capacitors exhibit a switchable diode effect accompanied by a conduction change from ohmic to space-charge-limited current with increasing external field. In contrast, the BFMO capacitors show only an ohmic conduction, arising from a considerable reduction in depletion layer width at the SRO/BFMO interfaces. These results suggest that the diode property can be tuned by Mn content in the BFO film. Our study opens the possibility of controlling the diode effect in BFO-based devices by a dilute Mn doping.

  4. Imaging of coherent magneto-elastic domains in multiferroic BiFeO3 films

    OpenAIRE

    Price, N. Waterfield; Johnson, R. D.; Saenrang, W.; Maccherozzi, F; Dhesi, S.S.; Bombardi, A.; Chmiel, F. P.; Eom, C. -B.; Radaelli, P. G.

    2015-01-01

    A current challenge presented in thin film physics is imaging and controlling antiferromagnetic domains at the nanoscale. By employing a combination of non-resonant x-ray magnetic scattering, neutron diffraction and vector-mapped x-ray magnetic linear dichroism photoemission electron microscopy, we have directly visualised the sub-micron scale antiferromagnetic domain structure of epitaxial (111) BiFeO3 films. We find that these domains are coherently coupled to crystallographic domain struct...

  5. Electrical and piezoelectric properties of BiFeO3 thin films grown on SrxCa1−xRuO3-buffered SrTiO3 substrates

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    (001)-oriented BiFeO 3 (BFO) thin films were grown on Sr xCa 1-xRuO 3- (SCRO; x = 1, 0.67, 0.33, 0) buffered SrTiO 3 (001) substrates using pulsed laser deposition. The microstructural, electrical, ferroelectric, and piezoelectric properties of the thin films were considerably affected by the buffer layers. The interface between the BFO films and the SCRO-buffer layer was found to play a dominant role in determining the electrical and piezoelectric behaviors of the films. We found that films grown on SrRuO 3-buffer layers exhibited minimal electrical leakage while films grown on Sr 0.33Ca 0.67RuO 3-buffer layers had the largest piezoelectric response. The origin of this difference is discussed. © 2012 American Institute of Physics.

  6. Evidence of non-Dzyaloshinskii–Moriya ferromagnetism in epitaxial BiFeO3 films

    NARCIS (Netherlands)

    Prokhorov, V.G.; Kaminsky, G.G.; Kim, J.M.; Eom, T.W.; Park, J.S.; Lee, Y.P.; Svetchnikov, V.L.; Levtchenko, G.G.; Nikolaenko, Y.M.; Khokhlov, V.A.

    2011-01-01

    X-ray diffraction analysis and high-resolution electron microscopy of BiFeO3 films prepared by dc magnetron sputtering on single-crystal LaAlO3 (001) substrates reveal that the films have a highly c-oriented orthorhombic crystalline structure. The magnetic properties of the BiFeO3 films are typical

  7. Optical, ferroelectric and magnetic properties of multiferroelectric BiFeO3-(K0.5Na0.5)0.4(Sr 0.6Ba0.4)0.8Nb2O6 thin films

    KAUST Repository

    Yao, Yingbang

    2014-02-01

    Multiferroic BiFeO3-(K0.5Na0.5) 0.4(Sr0.6Ba0.4)0.8Nb 2O6 (BFO-KNSBN) trilayer thin films, were epitaxially grown on MgO(0 0 1) and SrTiO3(0 0 1) by using pulsed laser deposition (PLD). Their ferroelectric, magnetic, dielectric and optical properties were investigated. It was found that both ferroelectric polarization and dielectric constant of the films were enhanced by introducing KNSBN as a barrier layer. Meanwhile, ferromagnetism of BFO was maintained. More interestingly, a double hysteresis magnetic loop was observed in the KNSBN-BFO-KNSBN trilayer films, where exchange bias and secondary phase in the BFO layer played crucial roles. Interactions between adjacent layers were revealed by temperature-dependent Raman spectroscopic measurements. © 2013 Elsevier B.V. All rights reserved.

  8. Strain evolution of epitaxial tetragonal-like BiFeO3 thin films on LaAlO3(001) substrates prepared by sputtering and their bulk photovoltaic effect

    Science.gov (United States)

    Nakashima, Seiji; Uchida, Tomohisa; Doi, Kentaro; Saitoh, Koh; Fujisawa, Hironori; Sakata, Osami; Katsuya, Yoshio; Tanaka, Nobuo; Shimizu, Masaru

    2016-10-01

    The structural evolution of high-quality 3.3-73.2-nm-thick tetragonal-like BiFeO3 (T-BFO) thin films grown on LaAlO3(001) substrates and the bulk photovoltaic effect of the films were investigated. The T-BFO films were grown by rf magnetron sputtering, showing the Peudellösung fringes around the T-BFO (001) diffraction peak in X-ray diffraction θ-2θ patterns. These indicate the structural coherence between the surface and the interface in the surface normal direction of the films. High-resolution synchrotron X-ray diffraction analysis and transmission electron microscopy reveal that the lattice relaxation behavior from the MA monoclinic to MC monoclinic structure occurs as the film thickness increases. The domain structure was partly controlled by using a vicinal LAO (001) substrate along [100]. Regarding the current-voltage characteristics of the Pt/T-BFO/Pt coplanar capacitor under violet laser illumination, T-BFO films show an anomalous photovoltaic effect with an open-circuit voltage of 6.1 V and a short-circuit current of -290 pA along the [100]T-BFO direction.

  9. Untilting BiFeO3: The influence of substrate boundary conditions in ultra-thin BiFeO3 on SrTiO3

    Directory of Open Access Journals (Sweden)

    Yongsoo Yang

    2013-11-01

    Full Text Available We report on the role of oxygen octahedral tilting in the monoclinic-to-tetragonal phase transition in ultra-thin BiFeO3 films grown on (001 SrTiO3 substrates. Reciprocal space maps clearly show the disappearance of the integer-order Bragg peak splitting associated with the monoclinic phase when the film thickness decreases below 20 unit cells. This monoclinic-to-tetragonal transition is accompanied by the evolution of the half-order diffraction peaks, which reflects untilting of the oxygen octahedra around the [110] axis, proving that the octahedral tilting is closely correlated with the transition. This structural change is thickness-dependent, and different from a strain-induced transition in the conventional sense.

  10. Oxygen-vacancy-mediated Negative Differential Resistance in La and Mg co-substituted BiFeO3 Thin Film

    OpenAIRE

    Ke, Qingqing; Kumar, Amit; Lou, Xiaojie; Zeng, Kaiyang; Wang, John

    2012-01-01

    The conductive characteristics of Bi0.9La0.1Fe0.96Mg0.04O3(BLFM) thin film are investigated at various temperatures and a negative differential resistance (NDR) is observed in the thin film, where a leakage current peak occurs upon application of a downward electric field above 80 oC. The origin of the NDR behavior is shown to be related to the ionic defect of oxygen vacancies (VO..) present in the film. On the basis of analyzing the leakage mechanism and surface potential behavior, the NDR b...

  11. BiFeO3 thin films: Novel effects

    Indian Academy of Sciences (India)

    V R Palkar; R Pinto

    2002-05-01

    In this paper we report synthesis of phase-pure highly resistive magnetoelectric BiFeO3 thin films on Pt/TiO2/SiO2/Si substrate by using pulsed laser deposition technique. For the first time saturated ferroelectric hysteresis loop has been observed. It has confirmed the presence of ferroelectricity in BiFeO3 compound. The films exhibit dielectric anomaly near Neel temperature. This anomaly is related to the influence of vanishing magnetic order on the electric order. In situ domain alignment occurs during observation of the films under transmission electron microscope.

  12. Self-Poling of BiFeO3 Thick Films.

    Science.gov (United States)

    Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej

    2016-08-01

    Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.

  13. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang

    2014-11-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences. The symmetries of the fundamental Raman modes in 50-700 cm-1 were identified based on group theory. The symmetries of the high order Raman modes in 900-1500 cm-1 of BiFeO3 are determined for the first time, which can provide strong clarifications to the symmetry of the fundamental peaks in 400-700 cm-1 in return. Moreover, the lattice structures of BiFeO3 films are identified consequently on the basis of Raman spectroscopy. BiFeO3 films on SrRuO3 coated SrTiO3 (0 0 1) substrate, CaRuO3 coated SrTiO3 (0 0 1) substrate and tin-doped indium oxide substrate are found to be in the rhombohedral structure, while BiFeO3 film on SrRuO3 coated Nb: SrTiO3 (0 0 1) substrate is in the monoclinic structure. Our results suggest that polarized Raman spectroscopy would be a feasible tool to study the lattice structure of BiFeO3 films.

  14. Influence of rare-earth elements doping on structure and optical properties of BiFeO3 thin films fabricated by pulsed laser deposition

    International Nuclear Information System (INIS)

    The Bi1−xEuxFeO3 (BEFOx, x = 0, 0.03, 0.05, 0.07, 0.1) films were grown on LaNiO3 coating Si substrates by pulsed laser deposition. X-ray diffraction patterns indicate that the films exhibit a (1 0 0)-highly oriented pseudocubic perovskite crystal structure. Scanning electron microscopy exhibits that the number of island-like structures decreases with increasing Eu dopant. The position of the A1-1 mode of the films in the Raman spectra shifts to higher wavenumber with increasing x. With increasing the amount of Eu, the refractive index increases and the extinction coefficient decreases. In addition, the band gap of BEFOx films decreases with increasing Eu dopant.

  15. Magnetoelectric coupling of spray pyrolysis deposited multiferroic BiFeO3 films

    International Nuclear Information System (INIS)

    Magnetoelectric effect has been studied in films of BiFeO3 with particle sizes in the range, 12 to 92 nm deposited by spray pyrolysis method. The field emission scanning electron microscopy images show that the films were uniform, dense and of near spherically shaped nano-particles. The ferroelectric loops were studied in the presence of magnetic field and about 30% increase in the remanent polarization was obtained. The enhanced polarization was observed above some critical value of the applied field which is attributed to the suppression of cycloidal spin structure. A large coupling between ferromagnetic and ferroelectric order parameters has been found at room temperature. It has been attributed to the large ferroelastic domains and suppression of the cycloid spin structure. - Highlights: ► BiFeO3 films deposited by spray pyrolysis method at low temperature ► Improved ferroelectric and ferromagnetic properties were obtained ► A strong magnetoelectric coupling was observed

  16. Controllable growth of ultrathin BiFeO3 from finger-like nanostripes to atomically flat films

    Science.gov (United States)

    Feng, Yu; Wang, Can; Tian, Shilu; Zhou, Yong; Ge, Chen; Guo, Haizhong; He, Meng; Jin, Kuijuan; Yang, Guozhen

    2016-09-01

    BiFeO3 (BFO) ultrathin films with nominal thicknesses from 2 to 12 nm were grown with a SrRuO3 (SRO) buffer layer on TiO2-terminated (001) SrTiO3 (STO) substrates using pulsed laser deposition. The surface morphologies and domain configurations of the thin films were investigated using atomic force microscopy and piezoelectric force microscopy. Periodical one-dimensional finger-like nanostripes of BFO on the SRO covered STO substrates were observed. With increasing thickness, the BFO ultrathin films develop from the finger-like nanostripes to an atomically flat surface. The formation of the finger-like nanostructures of BFO is related to the atomic step or terrace structure of the substrate. The BFO nanostripes and the atomically flat thin films both show good ferroelectricity. The as-grown domain orientations of the BFO ultrathin films are ascribed to the chemical terminations at the surface of the SRO layer. These results indicate that the surface morphologies and the domain configurations of BFO ultrathin films can be artificially designed by using substrates with optimized terrace structures and chemical termination, and these films are potentially useful in multifunctional nanoelectronic devices.

  17. Domain switching in spray pyrolysis-deposited nano-crystalline BiFeO3 films

    International Nuclear Information System (INIS)

    Single-phase nano-scale BiFeO3 (BFO) films have been prepared under a controlled substrate temperature by a simple spray pyrolysis method. Fourier-transform infrared spectroscopy results indicate that single-phase BFO is deposited at low temperature. A magnetoelectric coupling to the anti-ferromagnetic and α-β phase transitions was observed at 350.2 and 832.8 °C, respectively. The capacitance-voltage (C-V) curves exhibit two coercive fields corresponding to ferroelastic (71° and 109°) and ferroelectric (180°) domains. Ferroelectric domain switching is dominant at lower electric fields. A non-volatile domain switching in the BFO films can prevent domain wall pinning and can enhance fatigue behavior in the films.

  18. Thickness dependence of piezoelectric properties of BiFeO3 films fabricated using rf magnetron sputtering system

    Science.gov (United States)

    Aramaki, Masaaki; Kariya, Kento; Yoshimura, Takeshi; Murakami, Shuichi; Fujimura, Norifumi

    2016-10-01

    The piezoelectric property of BiFeO3 films prepared on a (100) LaNiO3/Si(100) substrate using an rf magnetron sputtering system was investigated for their applications in MEMS vibration energy harvesters. The X-ray diffraction profiles indicate that (100)-oriented BiFeO3 films with thicknesses from 450 to 1750 nm were obtained at a deposition temperature of 510 °C. All the films showed well-defined ferroelectric hysteresis loops at room temperature. The thickness dependence of crystallinity and electrical properties indicated that the films have a bottom layer with a high defect density. The e 31,f piezoelectric coefficient and electromechanical coupling factor (k\\text{31,f}2) increase with increasing film thickness and reach -3.2 C/m2 and 3.3%, respectively, at a thickness of 1750 nm, which is considered to be caused by the decrease in defect density.

  19. Modulating the ratio of tetragonal/rhombohedral phases in strained BiFeO3 films by varying the oxygen pressure during deposition

    Science.gov (United States)

    Staruch, Margo; Kim, Heungsoo

    2014-03-01

    Room-temperature multiferroic BiFeO3 (BFO) has been the subject of recent research interest due to its potential applications in random access memory and other spintronic devices. Compressive strain in the BFO lattice results in a symmetry change from a rhombohedral to a monoclinically-distorted tetragonal structure, with intermediate strains lying near a morphotropic phase boundary. This has been demonstrated to lead to enhanced piezoelectric and dielectric properties. However, the effect of growth conditions, such as substrate temperature and oxygen partial pressure during deposition, on the multiferroic properties of strained BFO films has yet to be systematically studied. In this work, BiFeO3 thin films were grown on (001) LaAlO3 single crystal substrates by pulsed laser deposition at different oxygen partial pressures. By examining the structure and microstructure of the resulting films, the ratio of the tetragonal-like and rhombohedral phases was found to vary with oxygen deposition pressure. The effects of this modulation on the magnetic and ferroelectric properties will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  20. Cycloid manipulation by electric field in BiFeO3 films: Coupling between polarization, octahedral rotation, and antiferromagnetic order

    Science.gov (United States)

    Popkov, A. F.; Kulagin, N. E.; Soloviov, S. V.; Sukmanova, K. S.; Gareeva, Z. V.; Zvezdin, A. K.

    2015-10-01

    The room temperature multiferroic BiFeO3, by far the most studied experimentally, exhibits outstanding ferroelectric properties with a cycloidal magnetic order in the bulk and many unexpected advantages for possible applications in spintronics, sensor techniques, and photovoltaics. To consider ferroelectric and magnetic phase transitions in multiferroic BiFeO3 under electric field, we suggest the Ginsburg-Landau-like approach based on the symmetry and P -ω -L coupling, where the order parameters are: P is the electric polarization, ω is the axial vector of antidistorsion (describing a rotation of the oxygen octahedrons), and L is the antiferromagnetic vector. The theoretical model is consistent with experiment and ab initio calculations data. We give the complete set of numerical coefficients of the model and explore the behavior of P and ω vectors in strong electric field. The proposed approach is particularly promising for the analysis of magnetoelectric phenomena whose length scale is significantly larger than the length of the cell used in ab initio calculations. The considered cycloid problem is the clear example of such a system. Electric field-induced transformations of cycloid are exemplified on an epitaxial BiFeO3 film grown on the (001)-oriented substrate. We show that the jump of vectors P and ω in the field E =6 MV/m is accompanied by a jump of a cycloid spin rotation plane. This effect is of particular interest for spintronics and nanoelectronics.

  1. Influence of piezoelectric strain on the Raman spectra of BiFeO3 films deposited on PMN-PT substrates

    Science.gov (United States)

    Himcinschi, Cameliu; Guo, Er-Jia; Talkenberger, Andreas; Dörr, Kathrin; Kortus, Jens

    2016-01-01

    BiFeO3 epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 (PMN-PT) substrates with a conductive buffer layer (La0.7Sr0.3MnO3 or SrRuO3) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using the Poisson's number for BiFeO3, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.

  2. Microstructure development of BiFeO3-PbTiO3 films deposited by pulsed laser deposition on platinum substrates

    OpenAIRE

    Esat, F; Comyn, TP; Bell., AJ

    2014-01-01

    BiFeO3-PbTiO3 films around the morphotropic phase boundary were deposited by pulsed laser deposition on polycrystalline Pt/TiOx/SiO2/Si substrates. X-ray analysis confirms that 0.6BiFeO3-0.4PbTiO3 films are (0 0 1) tetragonal preferentially orientated due to lattice matching with the underlying substrate. The misfit strain at the substrate-film interface is relieved by a ∼19% orientation transformation from (0 0 1) to (1 0 0) due to the lattice mismatch at the substrate-film interface and the...

  3. Optical and electrical properties of spray pyrolysis deposited nano-crystalline BiFeO3 films

    Directory of Open Access Journals (Sweden)

    Annapu Reddy Venkateswarlu

    2011-12-01

    Full Text Available The nano-crystalline BiFeO3 were prepared under controlled substrate temperature by spray pyrolysis method. Their structural, optical and electrical properties were studied and correlated. A blueshift (Δλ ∼ 8.17 nm in the absorbance peaks was observed in the films with decrease in grain size. The absorption coefficient spectra show defect transitions at 1.9 and 2.3 eV in large grain size films due to oxygen vacancies. The lowest leakage was observed in smaller grain size (< 20 nm films due to negligible oxygen vacancies, smooth surface roughness and large energy bang gap. The Poole-Frankel conduction mechanism has been found to be the predominant mechanism for the leakage current.

  4. Heterointerface design and strain tuning in epitaxial BiFeO3:CoFe2O4 nanocomposite films

    Science.gov (United States)

    Zhang, Wenrui; Fan, Meng; Li, Leigang; Chen, Aiping; Su, Qing; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2015-11-01

    The ability to control the morphology of heterointerfaces with coupled functionalities is fascinating from both fundamental and technological perspectives. Here, using BiFeO3:CoFe2O4 vertically aligned nanocomposite (VAN) films as a model system, we demonstrate a simple and effective method to modulate the heterointerface and its morphology in nanocomposite films with pulsed laser deposition. By tuning the deposition frequency through thickness during film growth, both vertically straight and gradient heterointerfaces have been achieved. The modulated heterointerface is strongly correlated with strain tuning and interface coupling, and thus modifies the magnetic anisotropy, coercive fields, and ferroelectric switching behavior. This study provides a viable approach for tailoring the interface strain and coupling in VAN and achieving tunable physical properties.

  5. Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors.

    Science.gov (United States)

    Ihlefeld, Jon F; Tian, Wei; Liu, Zi-Kui; Doolittle, W Alan; Bernhagen, Margitta; Reiche, Peter; Uecker, Reinhard; Ramesh, Ramamoorthy; Schlom, Darrell G

    2009-08-01

    BiFeO3 thin films have been deposited on (001) SrTiO3, (101) DyScO3, (011) DyScO3, (0001) AlGaN/GaN, and (0001) 6H-SiC single crystal substrates by reactive molecular beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry in accordance with thermodynamic calculations. Four-circle x-ray diffraction and transmission electron microscopy reveal phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.2 arc seconds (0.002 degrees). Epitaxial growth of (0001)-oriented BiFeO3 thin films on (0001) GaN, including AlGaN HEMT structures, and (0001) SiC has been realized using intervening epitaxial (111) SrTiO3 / (100) TiO2 buffer layers. The epitaxial BiFeO3 thin films have 2 in-plane orientations: [1120] BiFeO3 || [1120] GaN (SiC) plus a twin variant related by a 180 degrees in-plane rotation. This epitaxial integration of the ferroelectric with the highest known polarization, BiFeO3, with high bandgap semiconductors is an important step toward novel field-effect devices.

  6. Electrical and mechanical switching of ferroelectric polarization in the 70 nm BiFeO3 film

    Science.gov (United States)

    Chen, Liufang; Cheng, Zhihao; Xu, Wenting; Meng, Xiangjian; Yuan, Guoliang; Liu, Junming; Liu, Zhiguo

    2016-01-01

    Ferroelectric polarization switching and its domain evolution play a key role on the macroscopic electric properties of ferroelectric or piezoelectric devices. Mechanical switching has been reported recently in ~5 nm BaTiO3 and PbZr0.2Ti0.8O3 epitaxial films; however it is still a challenge for a mechanical force to switch polarization of a slightly thicker film in the same way as an electric field. Here, we report that the polarization of a 70 nm BiFeO3 epitaxial film can be completely switched by a mechanical force, and its domain evolution is similar to that observed with electrical switching. With the gradual increase of the field/force, new domains nucleate preferentially at domain boundaries, the μm-size domains commonly decompose to a mass of nm-size domains, and finally they may reorganize to μm-size domains which undergo 180o polarization switching through multi steps. Importantly, the complete mechanical switching of polarization was also established in the (0 0 1) film with a smooth surface. Furthermore, either upward or downward polarization can be read out nondestructively by a constant current. Our study sheds light on prospective applications of ferroelectrics in the absence of an electric field, such as memory devices and other micro-electromechanical systems.

  7. Highly (110)- and (111)-oriented BiFeO3 films on BaPbO3 electrode with Ru or Pt /Ru barrier layers

    Science.gov (United States)

    Lee, Chia-Ching; Wu, Jenn-Ming; Hsiung, Chang-Po

    2007-04-01

    Highly (110)- and (111)-oriented BiFeO3 (BFO) films were fabricated with BaPbO3 (BPO )/Ru and BPO /Pt/Ru as electrode/barrier on Si substrates by rf-magnetron sputtering. The BPO /Ru and BPO /Pt/Ru stacks both induce oriented BFO films and act as diffusion barriers. The (110)- and (111)-oriented BFO films possess excellent ferroelectric properties with only minor leakage. The values of remnant polarization are almost the same, about 42μC/cm2, for (110)- and (111)-oriented BFO films. However, polarization measured under varying pulse widths demonstrates that the switching polarization in (111)-oriented BFO films is higher than in (110)-oriented films. Additionally, (111)-oriented BFO films exhibit better retention properties than (110)-oriented films.

  8. Bipolar resistive switching and its temperature dependence in the composite structure of BiFeO3 bilayer

    Science.gov (United States)

    Ma, W. J.; Xiong, W. M.; Zhang, X. Y.; Wang, Ying; Zhang, H. Y.; Wang, C. Q.; Wang, Biao; Zheng, Yue

    2016-04-01

    In order to demonstrate the control of BiFeO3 thin film on the resistive switching effect and achieve the high-performance resistive switching device, the single layers and bilayer have been fabricated by chemical solution deposition method, respectively. In comparison with the single films, the composite film exhibits great performance of the resistive switching in endurance and repeatability, high stability and resistance ratio of high resistance state to low resistance state. Resistive switching effect in the BiFeO3 composite structure demonstrates an effective way to improve the endurance and repeatability of the resistive switching characteristics by designing the relative devices.

  9. FAST TRACK COMMUNICATION: Ferroelectric properties and dielectric responses of multiferroic BiFeO3 films grown by RF magnetron sputtering

    Science.gov (United States)

    Qi, Xiaoding; Tsai, Po-Chou; Chen, Yi-Chun; Ko, Cheng-Hung; Huang, Jung-Chun-Andrew; Chen, In-Gann

    2008-12-01

    Multiferroic BiFeO3 films have been grown on LaNiO3-x/SrTiO3 and Pt/Si substrates by RF magnetron sputtering. The films showed fully saturated ferroelectric hysteresis loops with large remanent polarization of 64 µC cm-2, suitable for most device applications. Piezoresponse force microscopy confirmed that the films were electrically writable. In addition to the high-frequency intrinsic dielectric loss of epitaxial films, the Argand diagram also revealed low-frequency contributions from both dc conductivity and interfacial polarization at electrodes. For polycrystalline films on Pt/Si, the dominant contribution to dielectric loss was space charge polarization at grain boundaries.

  10. Control of oxygen octahedral rotation in BiFeO3 films using modulation of SrRuO3 bottom electrode layer

    Science.gov (United States)

    Lee, Sungsu; Jo, Ji Young

    2015-03-01

    Oxygen octahedral rotation of multiferroic BiFeO3 (BFO) has attracted great attention due to changes of electrical and magnetic properties. Coupling of octahedral rotation in BFO-bottom electrode layer interface remains unexplored. Recently, there have been reported the control of octahedral rotation in SrRuO3 (SRO) film on SrTiO3 (001) substrate by coherently controlling the oxygen pressure during growth and interfacial coupling. Here we demonstrate that the octahedral rotation of BFO film is changed using tetragonal a0a0c- tilted-SRO bottom electrodes. In this work, BFO/SRO heterostructure is fabricated to SrTiO3 (001) single crystal substrates by pulsed laser deposition at different oxygen partial pressures. The rotation pattern of FeO6 and the structural symmetry are identified from half-integer reflections using high-resolution X-ray diffraction. The effects depending on octahedral tilting of BFO films on the magnetic and ferroelectric properties will be presented.

  11. Oxygen diffusion and nonstoichiometry in BiFeO3.

    Science.gov (United States)

    Ito, Toshimitsu; Ushiyama, Tomoharu; Aoki, Mitsuko; Tomioka, Yasuhide; Hakuta, Yukiya; Takashima, Hiroshi; Wang, Ruiping

    2013-11-01

    Leakage current is a serious problem for the use of ferroelectricity in room-temperature multiferroics BiFeO3, and oxygen nonstoichiometry is considered as one of its principal origins. In order to establish a method to control oxygen content in the compound, we investigated the annealing process of stoichiometric BiFeO3 grains in air and revealed that oxygen diffusion occurs in two steps: (1) the weight of the sample decreases in a short time, which originates from the generation of oxygen deficiency near the surface of the grains; and then (2) it increases gradually and slowly, which originates from oxygen diffusion toward equilibrium in the inner part of the grains, introducing excess oxygen there. Step 1 causes the leakage current, and step 2 tends to cause inhomogeneity of oxygen content as well as the leakage current. Steps 1 and 2 are related to oxygen deficiency and excess oxygen often observed in thin films and bulk crystals, respectively. For the synthesis of homogeneous and highly insulating bulk sample, it is important to avoid these annealing processes, and it is a good way to grow a crystal with stoichiometric oxygen content by the control of atmospheric oxygen partial pressure and taking out its inner part. PMID:24143962

  12. Strain Effects of the Structural Characteristics of Ferroelectric Transition in Single-Domain Epitaxial BiFeO3 Films

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; PENG Xing-Ping

    2011-01-01

    Structural characteristics of phase transition in single-domain epitaxial BiFeOz films are studied by the Landau-Devonshire theory. It is predicted that remanent polarization shows strong strain dependence for different temperatures while spontaneous polarization is almost independent of strain over a wide temperature (0-500 °C). We also obtain the thickness dependence of the c-axis lattice parameter and Curie temperature, and make a comparison between the polarization rotation angle and the angle attributed to the structural evolution in epitaxial (001)p BiFeOa h'lms grown on SrTiO3 substrates. The theoretical results are in agreement with recent experimental and theoretical data. Our calculations show that the clamping effect should also be taken into account in order to depict the mechanism of the polarization rotation completely.%@@ Structural characteristics of phase transition in single-domain epitaxial BiFeO films are studied by the Landau- Devonshire theory.It is predicted that remanent polarization shows strong strain dependence for different tem- peratures while spontaneous polarization is almost independent of strain over a wide temperature (0-500 ℃).We also obtain the thickness dependence of the c-axis lattice parameter and Curie temperature, and make a compari- son between the polarization rotation angle and the angle attributed to the structural evolution in epitaxial (001) BiFeO films grown on SrTiO substrates.The theoretical results are in agreement with recent experimental and theoretical data.Our calculations show that the damping effect should also be taken into account in order to depict the mechanism of the poIarization rotation completely.

  13. Dependence of BiFeO3 thickness on exchange bias in BiFeO3/ Co2FeAl multiferroic structures

    Science.gov (United States)

    Zhang, X.; Zhang, D. L.; Wang, Y. H.; Miao, J.; Xu, X. G.; Jiang, Y.

    2011-01-01

    We have grown BiFeO3 (BFO) thin films with different thickness on Si/SiO2/Ti/Pt(111) substrates by pulsed laser deposition. Half-metallic Co2FeAl (CFA) films with a thickness of 5 nm were then grown on the BFO films by magnetron sputtering. Through the magnetic hysteresis loops of the BFO/CFA heterostructure, we observe a direct correlation between the thickness of the BFO film and exchange bias (EB) field. The EB field exhibits fluctuation behavior with a cyclical BFO thickness of 60 nm, which is close to the spiral modulation wavelength (62 nm) of BFO. It indicates the influence of spiral modulation on the EB in the BFO/CFA multiferroic structure.

  14. Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films

    Science.gov (United States)

    Bertinshaw, Joel; Maran, Ronald; Callori, Sara J.; Ramesh, Vidya; Cheung, Jeffery; Danilkin, Sergey A.; Lee, Wai Tung; Hu, Songbai; Seidel, Jan; Valanoor, Nagarajan; Ulrich, Clemens

    2016-09-01

    Magnonic devices that utilize electric control of spin waves mediated by complex spin textures are an emerging direction in spintronics research. Room-temperature multiferroic materials, such as bismuth ferrite (BiFeO3), would be ideal candidates for this purpose. To realize magnonic devices, a robust long-range spin cycloid with well-known direction is desired, since it is a prerequisite for the magnetoelectric coupling. Despite extensive investigation, the stabilization of a large-scale uniform spin cycloid in nanoscale (100 nm) thin BiFeO3 films has not been accomplished. Here, we demonstrate cycloidal spin order in 100 nm BiFeO3 thin films through the careful choice of crystallographic orientation, and control of the electrostatic and strain boundary conditions. Neutron diffraction, in conjunction with X-ray diffraction, reveals an incommensurate spin cycloid with a unique [11] propagation direction. While this direction is different from bulk BiFeO3, the cycloid length and Néel temperature remain equivalent to bulk at room temperature.

  15. A complete strain–temperature phase diagram for BiFeO3 films on SrTiO3 and LaAlO3 (0 0 1) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Siemons, W. [Oak Ridge National Laboratory; Beekman, C. [Oak Ridge National Laboratory; MacDougall, G. J. [Oak Ridge National Laboratory; Zarestky, Jerel L. [Ames Laboratory; Nagler, S. E. [Oak Ridge National Laboratory; Christen, H. M. [Oak Ridge National Laboratory

    2013-12-23

    BiFeO3 has a complex phase diagram as function of both strain and temperature, undergoing a morphotropic phase transformation under large compressive strain. Epitaxial films, grown by pulsed laser deposition, are ideal for the study of the intricate phase coexistence between multiple polymporphs. Three polymorphs have been identified in the literature. They are carefully described in this paper (labelled R', T', and S'). As both ferroelectric and magnetic properties are typically strongly linked to structural distortions, the structural, ferroelectric and magnetic transition temperatures are expected to differ between the R', T' and S' polymorphs. In this paper we present a complete strain–temperature phase diagram for each of the polymorphs.

  16. Density relative change and interface zone mutual diffusion of BiFeO3 films prepared on Si (1 0 0), SiO2 and SiO2/Si (1 0 0)

    Science.gov (United States)

    Xiao, RenZheng; Wang, ZeSong; Yuan, XianBao; Zhou, JianJun; Mao, ZhangLiang; Su, HuaShan; Li, Bo; Fu, DeJun

    2016-10-01

    The mutual diffusion taken place in the interface zone between BiFeO3 (BFO) films and substrates (Si (1 0 0), SiO2 and SiO2/Si (1 0 0)) has been revealed by energy dispersive X-ray spectroscopy (EDS) and Rutherford Backscattering Spectrometry (RBS). RBS spectra provide the relative atomic concentrations of Bi, Fe, Si, and O elements changed with the samples' depth as analyzed by RBS spectra fitting SIMNRA software. A certain width of the intermixing layer is probably formed between BFO films and individual substrate which is attributed to mutual diffusion in the interface zone during annealing process. The mechanism of concerted exchange component can explain the interface zone mutual diffusion phenomenon between BFO films and substrates. The width of the interface zone between BFO film and Si (1 0 0), SiO2, and SiO2/Si (1 0 0) substrate is about 1.94 × 1017, 2.01 × 1017 and 3.05 × 1017 atoms/cm2, respectively, which are equivalent to 30.9, 36.7, and 52.9 nm, respectively. It has been declared that the effect on density relative to BFO film is loosen or attenuation is presented in the interface zone, which can be interpreted as a migration or diffusion of various atoms during the annealing. This can also provide an evidence of atomic dynamics and defect engineering on interface diffusion.

  17. Interfacial effects revealed by ultrafast relaxation dynamics in BiFeO 3 / YBa 2 Cu 3 O 7 bilayers

    KAUST Repository

    Springer, D.

    2016-02-12

    The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO3 (BFO) and superconducting YBa2Cu3O7 (YBCO) grown on a (001) SrTiO3 substrate is studied by a time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCO interface as observed in magnetization data. An extension of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.

  18. The origin of photovoltaic responses in BiFeO3 multiferroic ceramics.

    Science.gov (United States)

    Tu, C-S; Hung, C-M; Schmidt, V H; Chien, R R; Jiang, M-D; Anthoninappen, J

    2012-12-12

    Multiferroic BiFeO(3) (BFO) ceramics with electrodes of indium tin oxide (ITO) and Au thin films exhibit significant photovoltaic effects under near-ultraviolet illumination (λ = 405 nm) and show strong dependences on light wavelength, illumination intensity, and sample thickness. The correlation between photovoltaic responses and illumination intensity can be attributed to photo-excited and thermally generated charge carriers in the interface depletion region between BFO ceramic and ITO thin film. A theoretical model is developed to describe the open-circuit photovoltage and short-circuit photocurrent density as a function of illumination intensity. This model can be applied to the photovoltaic effects in p-n junction type BFO thin films and other systems. The BFO ceramic exhibits stronger photovoltaic responses than the ferroelectric Pb(1-x)La(x)(Zr(y)Ti(1-y))(1-x/4)O(3) (PLZT) ceramics under near-ultraviolet illumination. Comparisons are made with other systems and models for the photovoltaic effect.

  19. Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3

    Science.gov (United States)

    Sando, D.; Yang, Yurong; Bousquet, E.; Carrétéro, C.; Garcia, V.; Fusil, S.; Dolfi, D.; Barthélémy, A.; Ghosez, Ph.; Bellaiche, L.; Bibes, M.

    2016-02-01

    The control of optical fields is usually achieved through the electro-optic or acousto-optic effect in single-crystal ferroelectric or polar compounds such as LiNbO3 or quartz. In recent years, tremendous progress has been made in ferroelectric oxide thin film technology--a field which is now a strong driving force in areas such as electronics, spintronics and photovoltaics. Here, we apply epitaxial strain engineering to tune the optical response of BiFeO3 thin films, and find a very large variation of the optical index with strain, corresponding to an effective elasto-optic coefficient larger than that of quartz. We observe a concomitant strain-driven variation in light absorption--reminiscent of piezochromism--which we show can be manipulated by an electric field. This constitutes an electrochromic effect that is reversible, remanent and not driven by defects. These findings broaden the potential of multiferroics towards photonics and thin film acousto-optic devices, and suggest exciting device opportunities arising from the coupling of ferroic, piezoelectric and optical responses.

  20. Ultrafast magneto-optical spectroscopy of BiFeO3-BaTiO3 based structures

    Science.gov (United States)

    Magill, Brenden A.; Bishop, Michael; McGill, Stephen A.; Zhou, Yuon; Chopra, Anuj; Maurya, Deepam; Song, Hyun-Cheol; Priya, Shashank; Khodaparast, Giti A.

    2015-09-01

    Ultrafast optical spectroscopy can provide insight into fundamental microscopic interactions, dynamics and the coupling of several degrees of freedom. Pump/ probe studies can reveal the answer to questions like "What are the achievable switching speeds in multiferroics?", "What is the influence of the crystallographic orientation and domain states on the available switching states?", and "What is the effect of the hetrostructure on promoting the coupling between the varying field excitations?". In this presentation, we report on two color (400/800nm) ultrafast pump-probe differential reflectance spectroscopy of BiFeO3-BaTiO3 structures to probe the coupling between optical and acoustic phonons to spin waves. The data presented here is a combination of different transient reflectivity measurements to probe both the carrier and spin dynamics. The (001)-BiFeO3-BaTiO3 thin films were prepared using pulsed laser deposition on vicinal SrTiO3 substrates using La0.70 Sr0.30MnO3 bottom electrodes. Crystal orientation and topography were analyzed by x-ray diffraction and atomic force microscopy. . Our results are important to developing devices on the basis of this material system. This work was supported by the AFOSR through grant FA9550-14-1-0376,NSF-Career Award DMR-0846834, and the Virginia Tech Institute for Critical Technology and Applied Science.

  1. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  2. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  3. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  4. Optical and electrical properties of thin films of bismuth ferric oxide

    International Nuclear Information System (INIS)

    The bismuth ferric oxide (BFO) has caused great attention in recent years because of their multi ferric properties, making it very attractive for different technological applications. In this paper simultaneous ablation of two white (Bi and Fe2O3) was used in a reactive atmosphere (containing oxygen) to deposit thin films of BFO. The composition of the films is changed by controlling the plasma parameters such as the average kinetic energy of the ions (E p) and the plasma density (Np). The effects caused by excess of Bi and Fe in atomic structure and the optical and electrical properties of the films BiFeO3 in terms of plasma parameters were studied. The X-ray diffraction patterns of BFO samples with excess of bismuth above 2% at. They exhibited small changes in structure leading to improved levels of leakage currents compared to levels of the film with a stoichiometry close to BiFeO3 composition. These samples showed a secondary phase (Bi25FeO40 selenite type) that led to the increase in the values of band gap and resistivity as well as the improvement of the piezoelectric properties. On the other hand, the films with iron excess showed as secondary phase compounds of iron oxide (α - γ-Fe2O3) that caused increments in the conductivity and decrease in the values of band gap. The results are discussed in terms of the excesses of Bi and Fe which were correlated with the plasma parameters. (Author)

  5. Synthesis of BiFeO3 by carbonate precipitation

    Indian Academy of Sciences (India)

    V Kothai; Rajeev Ranjan

    2012-04-01

    Magnetoelectric multiferroic BiFeO3 (BFO) was synthesized by a simple carbonate precipitation technique of metal nitrate solutions. X-ray powder diffraction and thermo-gravimetric analysis (TGA) revealed that the precipitate consists of an intimate mixture of crystalline bismuth carbonate and an amorphous hydroxide of iron. The precipitate yielded BiFeO3 at an optimal calcination temperature of ∼560°C. Energy dispersive X-ray (EDX) analysis showed 1:1 ratio between Bi and Fe in the oxide. X-ray photoelectron spectroscopy (XPS) studies confirmed that Fe to be in +3 oxidation states both in the precipitated powder and BiFeO3. The synthesized BFO exhibits a very weak ferromagnetic correlation at room temperature and the degree of which increases slightly on cooling down to 10 K suggesting alteration in the long range spatial modulation of the spins arrangement as compared to the bulk BiFeO3.

  6. Pr and Gd co-doped bismuth ferrite thin films with enhanced multiferroic properties

    Indian Academy of Sciences (India)

    Chang Chun Chen; Zi Xuan Liu; Gui Wang; Yi Lin Yan

    2014-12-01

    Pr and Gd co-modified Bi0.95−PrGd0.05FeO3 ( = 0.00, 0.05, 0.10) (BPGFO) thin films on Pt(111)/Ti/SiO2/Si(100) substrates were prepared by a sol-gel together with spin coating technique. A detailed study of electrical and magnetic properties of these thin films is reported. X-ray diffraction analysis shows that, with an increase in Pr content, the crystal structures of BPGFO thin films retain rhombohedral (R3c) symmetry accompanied by structure distortion. Polarization-electric field hysteresis loops of these thin films demonstrate that the incorporation of Pr and Gd into the Bi site of BiFeO3 thin film could enhance the ferroelectric performance. Compared to other thin films, the optimal ferroelectric behaviours in Bi0.85Pr0.1Gd0.05FeO3 thin film are ascribed to its large dielectric constant, low dissipation factor and low leakage current density. Room temperature magnetization-magnetic field curves of these thin films indicate that all the samples are of paramagnetic behaviours and the enhanced saturation magnetic properties can be found.

  7. Multifunctional dual-tunable multiferroic Ba0.25Sr0.75TiO3-BiFeO3-Ba0.25Sr0.75TiO3 trilayered structure for tunable microwave applications

    International Nuclear Information System (INIS)

    A multiferroic trilayered structure composed of a BiFeO3 (BFO) layer and two Ba0.25Sr0.75TiO3 (BST) layers is grown on a Pt/TiO2/SiO2/Si substrate by pulsed laser deposition. The trilayered BST/BFO/BST thin film structure exhibits a significant tuning response for the dielectric constant with an electric field and a magnetic field, respectively. Microwave devices based on such multifunctional materials can offer dual, i.e. electric and magnetic, tuning possibility and extra flexibility in designing and shaping the device performances.

  8. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  9. Thin films on cantilevers

    NARCIS (Netherlands)

    Nazeer, Hammad

    2012-01-01

    The main goal of the work compiled in this thesis is to investigate thin films for integration in micro electromechanical systems (MEMS). The miniaturization of MEMS actuators and sensors without compromising their performance requires thin films of different active materials with specific propertie

  10. Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution

    Directory of Open Access Journals (Sweden)

    M. Kozina

    2014-05-01

    Full Text Available We report measurements of the transient structural response of weakly photo-excited thin films of BiFeO3, Pb(Zr,TiO3, and Bi and time-scales for interfacial thermal transport. Utilizing picosecond x-ray diffraction at a 1.28 MHz repetition rate with time resolution extending down to 15 ps, transient changes in the diffraction angle are recorded. These changes are associated with photo-induced lattice strains within nanolayer thin films, resolved at the part-per-million level, corresponding to a shift in the scattering angle three orders of magnitude smaller than the rocking curve width and changes in the interlayer lattice spacing of fractions of a femtometer. The combination of high brightness, repetition rate, and stability of the synchrotron, in conjunction with high time resolution, represents a novel means to probe atomic-scale, near-equilibrium dynamics.

  11. Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution.

    Science.gov (United States)

    Kozina, M; Hu, T; Wittenberg, J S; Szilagyi, E; Trigo, M; Miller, T A; Uher, C; Damodaran, A; Martin, L; Mehta, A; Corbett, J; Safranek, J; Reis, D A; Lindenberg, A M

    2014-05-01

    We report measurements of the transient structural response of weakly photo-excited thin films of BiFeO3, Pb(Zr,Ti)O3, and Bi and time-scales for interfacial thermal transport. Utilizing picosecond x-ray diffraction at a 1.28 MHz repetition rate with time resolution extending down to 15 ps, transient changes in the diffraction angle are recorded. These changes are associated with photo-induced lattice strains within nanolayer thin films, resolved at the part-per-million level, corresponding to a shift in the scattering angle three orders of magnitude smaller than the rocking curve width and changes in the interlayer lattice spacing of fractions of a femtometer. The combination of high brightness, repetition rate, and stability of the synchrotron, in conjunction with high time resolution, represents a novel means to probe atomic-scale, near-equilibrium dynamics. PMID:26798776

  12. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  13. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  14. Evaporated VOx Thin Films

    Science.gov (United States)

    Stapinski, Tomasz; Leja, E.

    1989-03-01

    VOx thin films on glass were obtained by thermal evaporation of V205, powder. The structural investigations were carried out with the use of X-ray diffractometer. The electrical properties of the film were examined by means of temperature measurements of resistivity for the samples heat-treated in various conditions. Optical transmission and reflection spectra of VOX films of various composition showed the influence of the heat treatment.

  15. Synthesis of Multiferroic BiFeO3

    Institute of Scientific and Technical Information of China (English)

    WU; Mei-mei; WANG; Wei; LIU; Rong-deng; LIU; Yun-tao; CHEN; Dong-feng

    2012-01-01

    <正>Multiferroic materials exhibit simultaneous presence of ferroelectricity, ferromagnetism and ferroelasticity in the same phase, and have potential applications in information storage, spintronics, sensors etc. BiFeO3 is one such material with ferroelectric and antiferromagnetic behavior above room

  16. Magnetic properties of proton irradiated BiFeO3

    International Nuclear Information System (INIS)

    The crystal structure and magnetic properties of BiFeO3 samples, proton-irradiated with 0, 10, and 20 pC/μm2, were investigated with x-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy measurements. From the Rietveld refinement analysis of the XRD patterns, the crystal structure of BiFeO3 is determined to be rhombohedral with the space group of R3c. We have observed the decrease in the lattice constant and oxygen occupancy with proton irradiation. The magnetization hysteresis (M-H) curves show the appearance of the weak ferromagnetic behavior in the proton irradiated BiFeO3 samples. The Mössbauer spectra of proton irradiated BiFeO3 samples at 295 K were analyzed with two-sextets (B1 and B2) and doublet. From the isomer shift (δ) values, ionic states were determined to be Fe3+. Compared to non-irradiated sample, having the antiferromagnetic area ratio (two-sextets) of 45.47, 54.53% the antiferromagnetic and paramagnetic area ratios (doublet) of 10 and 20 pC/μm2 proton irradiated BiFeO3 samples are 41.36, 51.26, and 7.38% and 41.03, 50.90, and 8.07%, respectively. Our experimental observation suggests that the increase in the paramagnetic area ratio is due to the disappearance of superexchange interaction, resulted from the removal of the oxygen with proton irradiation. Also, the appearance of the weak ferromagnetic behavior is caused by the breaking of the antiferromagnetic coupling.

  17. Heterogeneity in Polymer Thin Films

    OpenAIRE

    Kanaya, Toshiji; Inoue, Rintaro; Nishida, Koji

    2011-01-01

    In the last two decades very extensive studies have been performed on polymer thin films to reveal very interesting but unusual properties. One of the most interesting findings is the decrease in glass transition temperature Tg with film thickness in polystyrene (PS) thin film supported on Si substrate. Another interesting finding is apparent negative thermal expansivity in glassy state for thin films below ∼25 nm. In order to understand the unusual properties of polymer thin films we have st...

  18. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  19. Thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  20. Thin film temperature sensor

    Science.gov (United States)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  1. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm2. For very small battery areas, 2, microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li+ ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  2. Thin film superfluid optomechanics

    CERN Document Server

    Baker, Christopher G; McAuslan, David L; Sachkou, Yauhen; He, Xin; Bowen, Warwick P

    2016-01-01

    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid $^4$He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates $g_0>2\\pi \\times 100$ kHz and single photon cooperativities $C_0>10$ are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as $g_0>\\Omega_M$ and opens the prospect of laser cooling a liquid into its quantum ground state.

  3. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  4. Resistance switching and memory effects in solution-processed BiFeO3/LaNiO3 junctions

    Science.gov (United States)

    Pandya, N. C.; Debnath, A. K.; Joshi, U. S.

    2016-02-01

    Resistance switching and memory effects have been observed in a heterostructure consisting of BiFeO3 (BFO) on a LaNiO3 (LNO) conducting oxide bottom electrode fabricated by chemical solution deposition on quartz substrates. The phase purity and lattice strain of monodispersed thin film nanostructures were confirmed by XRD. Bipolar switching with a resistance switching ratio of one order of magnitude at small bias voltages of  +1.3 V and  -0.7 V for positive and negative bias respectively has been estimated from the I-V traces measured over a span of more than 6 h. Excellent retention behavior of the BFO-LNO device is confirmed for its possible use as a non-volatile resistance random access memory device. The modeling of the I-V data suggests that in the low resistance state (on) Ohmic conduction is well fitted, whereas in the high resistance state (off) the trap-controlled space-charge-limited current mechanism dominates. The observed resistive switching (RS) is attributed to formation of a metallic filament and its rupture under electric stress conditions. The valence states of Fe ions in the fabricated device structures indicate that oxygen vacancies could also lead to RS in the device.

  5. Tunable electronic and magnetism of SrTiO3/BiFeO3 (001) superlattice: For electrochemical applications

    Science.gov (United States)

    Xu, Qiang; Sopiha, Kostiantyn; Sobhan, Mushtaq; Anariba, Franklin; Ong, Khuong Phuong; Zheng, Jian Wei; Wu, Ping

    2016-01-01

    Practical strategy in tuning the conductivity and magnetism of SrTiO3/BiFeO3 (STO/BFO) (001) superlattice is investigated using the first-principles method based on density functional theory. Our calculated results show that both the conductivity and magnetism of this superlattice can be tuned via a control of its interface terminations. The STO layers maintain semiconducting, while the BFO layers demonstrate metallic character. Therefore, the conductivity of STO/BFO is controlled by the BFO layers. Furthermore, a magnetic STO/BFO (001) superlattice can be found in n-type TiO2/BiO interface but with heavy electron carriers. The thickness of BFO does not change the electronic structure and character of STO/BFO (001) superlattice. This study provides a fundamental understanding of the chemically turned conductivity and magnetism of BFO thin films, which may further advance electrochemical applications like magnetic-field aided chemical gas sensing, solar cells, and photo-catalytic chemical reactions.

  6. Magnetic hysteresis of cerium doped bismuth ferrite thin films

    International Nuclear Information System (INIS)

    The influence of Cerium doping on the structural and magnetic properties of BiFeO3 thin films have been investigated. Rietveld refinement of X-ray diffraction data and successive de-convolution of Raman scattering spectra of Bi1−xCexFeO3 (BCFO) thin films with x=0–0.20 reflect the single phase rhombohedral (R3c) formation for x<0.08, whereas concentration-driven gradual structural phase transition from rhombohedral (R3c) to partial tetragonal (P4mm) phase follows for x≥0.08. All low wavenumber Raman modes (<300 cm−1) showed a noticeable shift towards higher wavenumber with increase in doping concentration, except Raman E-1 mode (71 cm−1), shows a minor shift. Sudden evolution of Raman mode at 668 cm−1, manifested as A1-tetragonal mode, accompanied by the shift to higher wavenumber with increase in doping concentration (x) affirm partial structural phase transition. Anomalous wasp waist shaped (M–H) hysteresis curves with improved saturation magnetization (Ms) for BCFO thin films is attributed to antiferromagnetic interaction/hybridization between Ce 4f and Fe 3d electronic states. The contribution of both hard and soft phase to the total coercivity is calculated. Polycrystalline Bi0.88Ce0.12FeO3 thin film found to exhibit better magnetic properties with Ms=15.9 emu/g without any impure phase. - Highlights: • Synthesis of single phase Bi1−xCexFeO3 thin films with (x=0–0.2) on cost effective corning glass and silicon substrates using CSD technique. • Structural modification studies using Rietveld refinement of XRD and de-convolution of Raman spectra revealed partial phase transition from rhombohedral (R3c) to tetragonal (P4mm) phase. • Possible reasons for origin of pinched magnetic behavior of BCFO thin films are identified. • Contribution of both hard and soft magnetic phase in coercivity of BCFO thin films is calculated and practical applications of such materials exhibiting pinching behavior are conferred

  7. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  8. Thin films for material engineering

    Science.gov (United States)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  9. Photoinduced magnetoresistance and magnetic-field-modulated photoelectric response in BiFeO3/Si heterojunctions

    Science.gov (United States)

    Xi, Jianfeng; Ni, Hao; Zhao, Kun; Lu, Huibin; Guo, Erjia; He, Meng; Jin, Kuijuan; Zhou, Yueliang; Yang, Guozhen; Xiao, Lizhi; Zhang, Zhenwei

    2016-05-01

    The BiFeO3 film grown on Si substrate without template exhibits a diode-like effect, and the forward direction of the diode can be switched by external electric fields. The laser irradiation and the magnetic field can induce polarization, thus modulating the photovoltaic effect. The magnetoresistance values change from -1.19 to -5.79 and to -35.48 % dramatically under 50 μA current in 770 Oe when the junction is irradiated by 532 and 1064 nm lasers, respectively. These results reveal unusual and interesting charge conduction behavior in leaky ferroelectrics and should promote the study of BiFeO3 based on multifunctional materials.

  10. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  11. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  12. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  13. Protein Thin Film Machines

    OpenAIRE

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-01-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fuelled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  14. Perovskite type nanopowders and thin films obtained by chemical methods

    Directory of Open Access Journals (Sweden)

    Viktor Fruth

    2010-09-01

    Full Text Available The review presents the contribution of the authors, to the preparation of two types of perovskites, namely BiFeO3 and LaCoO3, by innovative methods. The studied perovskites were obtained as powders, films and sintered bodies. Their complex structural and morphological characterization is also presented. The obtained results have underlined the important influence of the method of preparation on the properties of the synthesized perovskites.

  15. [Spectral emissivity of thin films].

    Science.gov (United States)

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  16. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  17. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  18. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  19. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  20. Thin film interconnect processes

    Science.gov (United States)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  1. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  2. Thin film mechanics

    Science.gov (United States)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  3. Polycrystalline thin film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  4. A strain-driven morphotropic phase boundary in BiFeO3.

    Science.gov (United States)

    Zeches, R J; Rossell, M D; Zhang, J X; Hatt, A J; He, Q; Yang, C-H; Kumar, A; Wang, C H; Melville, A; Adamo, C; Sheng, G; Chu, Y-H; Ihlefeld, J F; Erni, R; Ederer, C; Gopalan, V; Chen, L Q; Schlom, D G; Spaldin, N A; Martin, L W; Ramesh, R

    2009-11-13

    Piezoelectric materials, which convert mechanical to electrical energy and vice versa, are typically characterized by the intimate coexistence of two phases across a morphotropic phase boundary. Electrically switching one to the other yields large electromechanical coupling coefficients. Driven by global environmental concerns, there is currently a strong push to discover practical lead-free piezoelectrics for device engineering. Using a combination of epitaxial growth techniques in conjunction with theoretical approaches, we show the formation of a morphotropic phase boundary through epitaxial constraint in lead-free piezoelectric bismuth ferrite (BiFeO3) films. Electric field-dependent studies show that a tetragonal-like phase can be reversibly converted into a rhombohedral-like phase, accompanied by measurable displacements of the surface, making this new lead-free system of interest for probe-based data storage and actuator applications. PMID:19965507

  5. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  6. Mecanosíntese do composto BiFeO3 Mechanosynthesis of the BiFeO3 compound

    Directory of Open Access Journals (Sweden)

    V. F. Freitas

    2008-09-01

    Full Text Available Os compostos cerâmicos BiFeO3 puro e modificado (Bi0,95R0,05FeO3, com terras raras R = Gd ou Eu, foram sintetizados por moagem em altas energias. As amostras foram analisadas por difração de raios X, microscopia eletrônica de varredura e espectroscopia por energia dispersiva de raios X. A difração de raios X indicou que as amostras modificadas com Eu são monofásicas, enquanto que as amostras puras e modificadas com Gd apresentaram majoritariamente a fase BiFeO3, com uma pequena quantidade de outras fases. A espectroscopia por energia dispersiva de raios X revelou a presença dos átomos modificantes na amostra e o mapeamento destes átomos indicou uma distribuição homogênea deles em toda a amostra. A microscopia eletrônica de varredura mostrou uma significante diminuição no tamanho das partículas, estando estas com dimensões sub-micrométricas e com diâmetro médio em torno de 500 nm. Estudos de densificação dos corpos cerâmicos indicaram compostos altamente densos, com densidades relativas acima de 0,9 sendo que o composto modificado com Eu alcançou a densidade relativa ρ/ρ0 = 0,98.The, pure and rare earth modified (Bi0.95R0.05FeO3 / R = Gd or Eu BiFeO3 compounds were synthesized by high-energy ball milling. The samples were analyzed by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The X-ray diffraction results indicated single phase Eu modified samples, while the pure and Gd modified ones presented the BiFeO3 as majority phase, and small amount of the spurious phase. The energy dispersive spectroscopy revealed the presence of the modifiers atoms in the sample and the mapping of these atoms indicated the homogeneous distribution of them in the whole samples. The scanning electron microscopy showed a decrease significant on the particle size, with medium diameter around 500 nm. Densification studies indicated high-dense ceramics body, with relative density above of 0.9, were Eu modified compound reached relative density ρ/ρ0 = 0.98.

  7. Co-precipitation/Hydrothermal Synthesis of BiFeO3 Powder

    Institute of Scientific and Technical Information of China (English)

    MIAO Hongyan; ZHANG Qiong; TAN Guoqiang; ZHU Gangqiang

    2008-01-01

    A coprecipitation/hydrothermal route was utilized to fabricate pure phase BiFeO3 powders The synthesized powders were characterized by XRD,SEM and DSC-TG analysis.In the process,single-phase BiFeO3 powders could be obtained at a hydrothermal reaction temperature of 180℃,with NaOH of O.15 mol/L,in contrast to 200℃and 4 mol/L for conventional hydrothermal route.Meanwhile,the micro-morphology of synthesized BiFeO3 Powders changed with different reaction temperatures and concentrations of NaOH.The Neel temperature,Curie temperature and decomposition temperature of the synthesized BiFeO3 powders were detected to be 301℃.828℃and 964℃,respectively.The hydrothermal reactions mechanism to fabricate BiFeO3 powders were discussed based on the in-situ transformation process.

  8. Polycrystalline thin films

    Science.gov (United States)

    Zweibel, K.; Mitchell, R.; Ullal, H.

    1987-02-01

    This annual report for fiscal year 1986 summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Subcontracted work in this area has concentrated on the development of CuInSe2 and CdTe technologies. During FY 1986, major progress was achieved by subcontractors in (1) achieving 10.5% (SERI-verified) efficiency with CdTe, (2) improving the efficiency of selenized CuInSe2 solar cells to nearly 8%, and (3) developing a transparent contact to CdTe cells for potential use in the top cells of tandem structures.

  9. Polyimide Aerogel Thin Films

    Science.gov (United States)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  10. Nanoscale mechanical softening of morphotropic BiFeO3.

    Science.gov (United States)

    Heo, Yooun; Jang, Byong-Kweon; Kim, Seung Jin; Yang, Chan-Ho; Seidel, Jan

    2014-12-01

    Mechanical switching can be used to form phase-transformed areas in mixed-phase bismuth ferrite thin films, which might be exploited to yield various soft elastic areas with greatly reduced Young's modulus on the nanoscale. Due to the mechanically susceptible nature of morphotropic phase boundaries in multiferroics, combined elastic control of electronic, magnetic, and ferroelectric properties becomes possible. PMID:25327302

  11. One-dimensional BiFeO3 nanotubes: Preparation, characterization, improved magnetic behaviors, and prospects

    Science.gov (United States)

    Wu, Lei; Sui, Wenbo; Dong, Chunhui; Zhang, Chao; Jiang, Changjun

    2016-10-01

    With the progress of science and technology, the growing demands for practical applications make low-dimensional multiferroics more appealing in areas such as chemical and bio-sensors, nanoelectronic, high-density data storage devices. One-dimensional BiFeO3 nanotubes were successfully synthesized by sol-gel-based electrospinning process. The images of scanning electron microscopy and transmission electron microscopy collectively demonstrate that BiFeO3 nanotubes with long slender structure and virtually uniform diameter of approximately 100 nm were observed at 500 °C annealing temperature. By compared with BiFeO3 bulks observed at 800 °C annealing temperature, enhanced room temperature ferromagnetism was successfully realized in BiFeO3 nanotubes at room temperature. The results of electron spin resonance measurement further confirm that ferromagnetic resonances were detected in BiFeO3 nanotubes at different temperature. X-ray photoelectron spectroscopy study proves the existence of plentiful oxygen vacancies in BiFeO3 nanotubes, which will play a key role in terms of enhanced ferromagnetism. The results will contribute to expand the applications of BiFeO3 into the new field of spintronic devices and high-density data storage media.

  12. Piezoelectric response of BiFeO3 ceramics at elevated temperatures

    Science.gov (United States)

    Rojac, Tadej; Makarovic, Maja; Walker, Julian; Ursic, Hana; Damjanovic, Dragan; Kos, Tomaz

    2016-07-01

    The high Curie temperature (TC ˜ 825 °C) of BiFeO3 has made this material potentially attractive for the development of high-TC piezoelectric ceramics. Despite significant advances in the search of new BiFeO3-based compositions, the piezoelectric behavior of the parent BiFeO3 at elevated temperatures remains unexplored. We present here a systematic analysis of the converse, longitudinal piezoelectric response of BiFeO3 measured in situ as a function of temperature (25-260 °C), driving-field frequency, and amplitude. Earlier studies performed at room temperature revealed that the frequency and field dependence of the longitudinal response of BiFeO3 is dominated by linear and nonlinear piezoelectric Maxwell-Wagner mechanisms, originating from the presence of local conductive paths along domain walls and grain boundaries within the polycrystalline matrix. This study shows that the same mechanisms are responsible for the distinct temperature dependence of the piezoelectric coefficient and phase angle and thus identifies the local electrical conductivity as the key for controlling the temperature dependent piezoelectric response of BiFeO3 and possibly other, more complex BiFeO3-based compositions.

  13. Thin functional conducting polymer films

    OpenAIRE

    Tian, S.

    2005-01-01

    In the present study, thin functional conducting polyaniline (PANI) films, either doped or undoped, patterned or unpatterned, were prepared by different approaches. The properties of the obtained PANI films were investigated in detail by a combination of electrochemistry with several other techniques, such as SPR, QCM, SPFS, diffraction, etc. The sensing applications (especially biosensing applications) of the prepared PANI films were explored. Firstly, the pure PANI films were prepar...

  14. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described

  15. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  16. Size effects in thin films

    CERN Document Server

    Tellier, CR; Siddall, G

    1982-01-01

    A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.

  17. Double-perovskite multiferroic Bi2FeCrO6 polycrystalline thin film: The structural, multiferroic, and ferroelectric domain properties

    International Nuclear Information System (INIS)

    Highlights: ► Double perovskite multiferroic BFCO film was grown by PLD method. ► Domain evolution under external electric field was simulated by Monte-Carlo method. ► Better electrical, ferroelectric and magnetic properties were found in BFCO film. ► BFCO film may be a promising material for functional device application. -- Abstract: Double-perovskite Bi2FeCrO6 (BFCO) thin film has been deposited on Pt/Ti/SiO2/Si (1 0 0) substrate by pulsed laser deposition method. X-ray diffraction reveals that the BFCO film was polycrystalline and high purity. The surface morphology in BFCO film exhibits the dense and uniform grain. Interestingly, compared with BiFeO3 film, the BFCO film shows a better ferroelectric properties. Moreover, a well-defined magnetic hysteresis of the BFCO film indicates a ferromagnetic property at room temperature. The ferroelectric domain structure of polycrystalline BFCO film was investigated by piezoresponse force microscopy. Furthermore, the domain structure of polycrystalline BFCO film under an applied electric field was simulated by a Monte Carlo method. Those results suggest that the multiferroic BFCO double-perovskite thin film may be a promising functional material for the future device application

  18. Nanotemplated lead telluride thin films

    OpenAIRE

    Li, Xiaohong; Nandhakumar, Iris S.; Attard, George S.; Markham, Matthew L.; Smith, David C.; Baumberg, Jeremy J.

    2009-01-01

    Direct lyotropic liquid crystalline templating has been successfully applied to produce nanostructured IV–VI semiconductor PbTe thin films by electrodeposition both on gold and n-type (100) silicon substrates. The PbTe films were characterized by transmission electron microscopy, X-ray diffraction and polarized optical microscopy and the results show that the films have a regular hexagonal nanoarchitecture with a high crystalline rock salt structure and exhibit strong birefringenc...

  19. Thin films and froth flotation

    International Nuclear Information System (INIS)

    The properties of thin, aqueous films on solid surfaces and their central role in the froth flotation process are discussed. The stability of these films can generally be described in terms of electrostatic and van der Waals forces. Significant experimental and theoretical advances are required in many areas (e.g. short range forces, film drainage) before a clear picture of the collision of, adhesion between and detachment of bubbles and particles will emerge. (orig.)

  20. Thin-film ternary superconductors

    International Nuclear Information System (INIS)

    Physical properties and preparation methods of thin film ternary superconductors, (mainly molybdenum chalcogenides) are reviewed. Properties discussed include the superconducting critical fields and critical currents, resistivity and the Hall effect. Experimental results at low temperatures, together with electron microscopy data are used to determine magnetic flux pinning mechanisms in films. Flux pinning results, together with an empirical model for pinning, are used to get estimates for possible applications of thin film ternary superconductors where high current densities are needed in the presence of high magnetic fields. The normal state experimental data is used to derive several Fermi surface parameters, e.g. the Fermi velocity and the effective Fermi surface area. (orig.)

  1. Exchange bias effect in BiFeO3-NiO nanocomposite

    Science.gov (United States)

    Chakrabarti, Kaushik; Sarkar, Babusona; Dev Ashok, Vishal; Das, Kajari; Sinha Chaudhuri, Sheli; Mitra, Amitava; De, S. K.

    2014-01-01

    Ferromagnetic BiFeO3 nanocrystals of average size 11 nm were used to form nanocomposites (x)BiFeO3/(100 - x)NiO, x = 0, 20, 40, 50, 60, 80, and 100 by simple solvothermal process. The ferromagnetic BiFeO3 nanocrystals embedded in antiferromagnetic NiO nanostructures were confirmed from X-ray diffraction and transmission electron microscope studies. The modification of cycloidal spin structure of bulk BiFeO3 owing to reduction in particle size compared to its spin spiral wavelength (62 nm) results in ferromagnetic ordering in pure BiFeO3 nanocrystals. High Neel temperature (TN) of NiO leads to significant exchange bias effect across the BiFeO3/NiO interface at room temperature. A maximum exchange bias field of 123.5 Oe at 300 K for x = 50 after field cooling at 7 kOe has been observed. The exchange bias coupling causes an enhancement of coercivity up to 235 Oe at 300 K. The observed exchange bias effect originates from the exchange coupling between the surface uncompensated spins of BiFeO3 nanocrystals and NiO nanostructures.

  2. Induced modifications in the properties of Sr doped BiFeO3 multiferroics

    Institute of Scientific and Technical Information of China (English)

    Tanvir Hussain; Saadat A. Siddiqi; Shahid Atiq; M.S. Awan

    2013-01-01

    Multiferroics exhibit unique combination of ferroic properties, simultaneously. For instance, in BiFeO3, magnetic and electric properties co-exist. In this work, BiFeO3 and Sr-doped BiFeO3 samples with general formula, Bi1 ? xSrxFeO3 (x ¼ 0.00, 0.05, 0.10, 0.20, and 0.30) were synthesized by sol-gel auto-combustion technique, in order to investigate these ferroic properties. The samples were confirmed to have perovskite type rhombohedral structure, characteristic of BiFeO3. A dilute phase of Bi2Fe4O9 was also found in all the Sr-doped samples. The micrographs of the palletized samples revealed that minutely doped Sr might not have any effect on the morphology of the samples. Frequency dependent dielectric measurements were carried out at room temperature for all the samples from 100 Hz to 1 MHz. The dielectric constant of un-doped sample at low frequency was 52 which decreased with increasing Sr doping. An enhancement of magnetic properties was observed with increasing the Sr contents. Pure BiFeO3 material was observed to have the least value of remanent magnetization. As the Sr2þ ions were doped in BiFeO3, its magnetization and remanence were increased to 0.867 emu/g and 0.175 emu/g, respectively, at x ¼ 0.30.

  3. Ferroelectric properties of BiFeO3 ceramics sintered under low oxygen partial pressure

    International Nuclear Information System (INIS)

    BiFeO3 ceramics were prepared in various atmospheres with hydrothermally-synthesized BiFeO3 crystalline powders, and their dielectric and ferroelectric properties were investigated. The single BiFeO3 phase was formed when the sample was sintered at 800 .deg. C under air, and a minor Bi2Fe4O9 phase was observed when it was sintered under a N2 or an Ar atmosphere. The BiFeO3 ceramic sintered under N2 showed a dense microstructure and superior electric properties: a dielectric constant of 75, a low loss tangent of 0.01 at 100 kHz and a high resistivity of 1.37 x 1011 Ω · cm. A pinched and asymmetric P-E hysteresis and a typical butterfly-shaped S-E loop were observed in the BiFeO3 ceramic sintered under N2. The electric properties of BiFeO3 ceramics sintered in various atmospheres are discussed on the basis of defect chemistry.

  4. Fabrication, Characterization, Properties, and Applications of Low-Dimensional BiFeO3 Nanostructures

    Directory of Open Access Journals (Sweden)

    Heng Wu

    2014-01-01

    Full Text Available Low-dimensional BiFeO3 nanostructures (e.g., nanocrystals, nanowires, nanotubes, and nanoislands have received considerable attention due to their novel size-dependent properties and outstanding multiferroic properties at room temperature. In recent years, much progress has been made both in fabrications and (microstructural, electrical, and magnetic in characterizations of BiFeO3 low-dimensional nanostructures. An overview of the state of art in BiFeO3 low-dimensional nanostructures is presented. First, we review the fabrications of high-quality BiFeO3 low-dimensional nanostructures via a variety of techniques, and then the structural characterizations and physical properties of the BiFeO3 low-dimensional nanostructures are summarized. Their potential applications in the next-generation magnetoelectric random access memories and photovoltaic devices are also discussed. Finally, we conclude this review by providing our perspectives to the future researches of BiFeO3 low-dimensional nanostructures and some key problems are also outlined.

  5. The Photovoltaic Properties of BiFeO3Lao.7Sro.3MnO3 Heterostructures

    Institute of Scientific and Technical Information of China (English)

    LUO Bing-Cheng; CHEN Chang-Le; FAN Fei; JIN Ke-Xin

    2012-01-01

    An epitaxial BiFeO3/La0.7Sr0.3MnO3 (BFO/LSMO) multiferroic heterostructure is grown on an LaAlO3 (001) substrate by laser molecular beam epitaxy,and its photovoltaic properties are investigated.It is found that the photocurrent is significantly increased under illumination,and the short-circuit photocurrent has a linear relationship with the laser intensity.Furthermore,when the ferroelectric polarization of the BFO layer is switched,the short-circuit photocurrent and open-circuit voltage can be switched.These results are discussed by considering the contributions from the ferroelectric polarization and the electrode/film interface.%An epitaxial BifeO3/La0.7Sr0.3Mno3 (BFO/LSMO) multiferroic heterostructure is grown on an LaAIO3. Substrate by laser molecular beam epitaxy, and its photovoltaic properties are investigated. It is found that the photocurrent is significantly increased under illumination, and the short-circuit photocurrent has a linear relationship with the laser intensity. Furthermore, when the ferroelectric polarization of the BFO layer is switched, the short-circuit photocurrent and open-circuit voltage can be switched. These results are discussed by considering the contributions from the ferroelectric polarization and the electrode/rim interface.

  6. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    Science.gov (United States)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  7. Birefringent non-polarizing thin film design

    Institute of Scientific and Technical Information of China (English)

    QI; Hongji; HONG; Ruijin; HE; Hongbo; SHAO; Jianda; FAN; Zh

    2005-01-01

    In this paper, 2×2 characteristic matrices of uniaxially anisotropic thin film for extraordinary and ordinary wave are deduced at oblique incidence. Furthermore, the reflectance and transmittance of thin films are calculated separately for two polarizations, which provide a new concept for designing non-polarizing thin films at oblique incidence. Besides, using the multilayer birefringent thin films, non-polarizing designs, such as beam splitter thin film at single wavelength, edge filter and antireflection thin film over visible spectral region are obtained at oblique incidence.

  8. Thin-film forces in pseudoemulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, V.; Radke, C.J. [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  9. Thin films under chemical stress

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  10. Enhancement of switching speed of BiFeO3 capacitors by magnetic fields

    Directory of Open Access Journals (Sweden)

    E. J. Guo

    2014-09-01

    Full Text Available The effect of a magnetic field on the ferroelectric switching kinetics of BiFeO3 (BFO capacitors with La0.8Ca0.2MnO3 (LCMO bottom electrode and Pt top contact has been investigated. We find a strong dependence of the remnant polarization and coercive field on the magnetic field. The switching time can be systematically tuned by magnetic field and reaches a tenfold reduction around the Curie temperature of LCMO at 4 T. We attribute this behavior to the splitting of the voltage drops across the BFO film and the LCMO bottom electrode, which can be strongly influenced by an external magnetic field due to the magnetoresistance. Further experiments on the BFO capacitors with SrRuO3 bottom electrodes show little magnetic field dependence of ferroelectric switching confirming our interpretation. Our results provide an efficient route to control the ferroelectric switching speed through the magnetic field, implying potential application in multifunctional devices.

  11. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  12. Preparation of thin vyns films

    International Nuclear Information System (INIS)

    The fabrication of thin films of VYNS resin (copolymer of chloride and vinyl acetate) of superficial density from 3 to 50 μg/cm2 with solutions in cyclohexanone is presented. Study and discussion of some properties compared with formvar film (polyvinyl formals). It appears that both can be used as source supports but formvar films are prepared more easily and more quickly, in addition they withstand higher temperatures. The main quality of VYNS is that they can be easily separated even several days after their preparation

  13. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  14. Thin Film Solid Lubricant Development

    Science.gov (United States)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  15. Thin film polymeric gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  16. Phase Coarsening in Thin Films

    Science.gov (United States)

    Wang, K. G.; Glicksman, M. E.

    2015-08-01

    Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a `screened' phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches.

  17. Superfast Thinning of a Nanoscale Thin Liquid Film

    OpenAIRE

    Winkler, Michael; Kofod, Guggi; Krastev, Rumen; Abel, Markus

    2011-01-01

    This fluid dynamics video demonstrates an experiment on superfast thinning of a freestanding thin aqueous film. The production of such films is of fundamental interest for interfacial sciences and the applications in nanoscience. The stable phase of the film is of the order $5-50\\,nm$; nevertheless thermal convection can be established which changes qualitatively the thinning behavior from linear to exponentially fast. The film is thermally driven on one spot by a very cold needle, establishi...

  18. Thin films stress modeling : a novel approach

    OpenAIRE

    Bhattacharyya, A. S.; Ramgiri, Praveen Kumar

    2015-01-01

    A novel approach to estimate the thin film stress was discussed based on surface tension. The effect of temperature and film thickness was studies. The effect of stress on the film mechanical properties was observed.

  19. Structure, synthesis and multiferroic nature of BiFeO3 and 0.9BiFeO3–0.1BaTiO3: An overview

    Indian Academy of Sciences (India)

    Dhananjai Pandey; Anar Singh

    2009-06-01

    A brief review of the crystal structure and multiferroic nature of pure BiFeO3 and 0.9BiFeO3–0.1BaTiO3 (BF–0.1BT) is presented. An atomic level evidence for magnetoelectric coupling of intrinsic multiferroic origin in BF–0.1BT is presented.

  20. Plasma polymerized hydrogel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamirisa, Prabhakar A. [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Koskinen, Jere [Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Hess, Dennis W. [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)]. E-mail: dennis.hess@chbe.gatech.edu

    2006-12-05

    Plasma polymerization was used to produce thermoresponsive hydrogel films of N-isopropylacrylamide (NIPAAm) in a single deposition step. Solvent free processing to produce laterally confined intelligent hydrogel films offers the potential for high volume production of micro-sensors/actuators. Through variation of reactor conditions such as deposition pressure and substrate temperature, it is possible to tailor and control chemical properties of the films such as crosslink density and thus swelling. Fabrication of hydrogel thin films with adequate crosslinks is critical to ensuring adhesion to substrates and stability in aqueous environments. Chemical bonding structures in plasma polymerized NIPAAm were studied using Fourier transform infrared spectroscopy and the thermoresponsive nature of plasma polymerized NIPAAm was confirmed through contact angle goniometry. A reversible temperature dependent contact angle change was observed.

  1. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  2. Resistive memory effects in BiFeO3 single crystals controlled by transverse electric fields

    Science.gov (United States)

    Kawachi, S.; Kuroe, H.; Ito, T.; Miyake, A.; Tokunaga, M.

    2016-04-01

    The effects of electric fields perpendicular to the c-axis of the trigonal cell in single crystals of BiFeO3 are investigated through magnetization and resistance measurements. Magnetization and resistance exhibit hysteretic changes under applied electric fields, which can be ascribed to the reorientation of the magnetoelectric domains. Samples are repetitively switched between high- and low-resistance states by changing the polarity of the applied electric fields over 20 000 cycles at room temperature. These results demonstrate the potential of BiFeO3 for use in non-volatile memory devices.

  3. Size effect study in magnetoelectric BiFeO3 system

    Indian Academy of Sciences (India)

    Shwetha Shetty; V R Palkar; R Pinto

    2002-05-01

    In this paper, we report for the first time finite size effects on Néel temperature (N) of magnetoelectric BiFeO3 system. Novel wet chemical route has been developed to produce fine particles of BiFeO3 with controlled size and size distribution. Unlike other oxide systems, lattice volume contraction has been observed with decrease in particle size. The decrease in N is co-related to unit cell volume contraction occurring with reduction in particle size.

  4. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  5. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  6. Organic thin-film photovoltaics

    OpenAIRE

    Liu, Miaoyin

    2010-01-01

    Zusammenfassung Zur Verbesserung der Leistungsumwandlung in organischen Solarzellen sind neue Materialien von zentraler Bedeutung, die sämtliche Erfordernisse für organische Photovoltaik-Elemente erfüllen. In der vorliegenden Arbeit „Organic thin-film photovoltaics“ wurden im Hinblick auf ein besseres Verständnis der Zusammenhänge zwischen molekularer Struktur und der Leistungsfähigkeit neue Materialien in „bulk-heterojunction“ Solarzellen und in Festphasen-Farbstoffsensibilisierten ...

  7. Synthesis and characterization of BiFeO3 nanotube arrays and Y-junction BiFeO3 nanotubes

    Institute of Scientific and Technical Information of China (English)

    LI ChunYang; LIU Bing; ZHAO JianPo; WANG JiangFeng; HU BinBin; DU ZuLiang

    2009-01-01

    Multiferroic BiFeO3(BFO) nanotube arrays (-100 nm in diameter and-50 μm in length) were synthesized by the sol-gel method utilizing the anodic aluminum oxide (AAO) membrane technique. The micro-structure and chemical components of the BFO nanotubes were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectrometer (XPS). The BFO nanotubes exhibited polycrystalline microstructures. The novel Y-junction BFO nano-tubes were simultaneously fabricated.

  8. Photoconductivity of thin organic films

    International Nuclear Information System (INIS)

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 μm), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene (PHT), fullerene (C60), pyrelene tetracarboxylic diimide (PTCDI) and copper phthalocyanine (CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C60 and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 x 103 Ω m and 3 x 104 Ω m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 x 108 Ω m in dark to 3.1 x 106 Ω m under the light.

  9. Local Weak Ferromagnetism in Single-Crystalline Ferroelectric BiFeO3

    DEFF Research Database (Denmark)

    Ramazanoglu, M.; Laver, Mark; Ratcliff, W.;

    2011-01-01

    Polarized small-angle neutron scattering studies of single-crystalline multiferroic BiFeO3 reveal a long-wavelength spin density wave generated by ∼1° spin canting of the spins out of the rotation plane of the antiferromagnetic cycloidal order. This signifies weak ferromagnetism within mesoscopic...

  10. Flexible Tactile Sensor Using Polyurethane Thin Film

    OpenAIRE

    Seiji Aoyagi; Tomokazu Takahashi; Masato Suzuki

    2012-01-01

    A novel capacitive tactile sensor using a polyurethane thin film is proposed in this paper. In previous studies, capacitive tactile sensors generally had an air gap between two electrodes in order to enhance the sensitivity. In this study, there is only polyurethane thin film and no air gap between the electrodes. The sensitivity of this sensor is higher than the previous capacitive tactile sensors because the polyurethane is a fairly flexible elastomer and the film is very thin (about 1 µm)....

  11. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  12. Minerals deposited as thin films

    International Nuclear Information System (INIS)

    Free matrix effects are due to thin film deposits. Thus, it was decided to investigate this technique as a possibility to use pure oxide of the desired element, extrapolating its concentration from analytical curves made with avoiding, at the same time, mathematical corrections. The proposed method was employed to determine iron and titanium concentrations in geological samples. The range studied was 0.1-5%m/m for titanium and 5-20%m/m for iron. For both elements the reproducibility was about 7% and differences between this method and other chemical determinations were 15% for titanium and 7% for iron. (Author)

  13. Interactions in thin aqueous films

    OpenAIRE

    Hänni-Ciunel, Katarzyna

    2006-01-01

    In der Arbeit werden die Wechselwirkungen in dünnen flüssigen Filmen untersucht und modifiziert. Schaum- (gas/flüssig/gas) und Benetzungsfilme (gas/flüssig/fest) werden mittels Thin Film Pressure Balance (TFPB) untersucht. Die Apparatur wurde im Rahmen der Arbeit für die Studien an asymmetrischen Filmen aufgebaut und modifiziert. Die Ladungen an den Filmgrenzflächen werden gezielt modifiziert. Die Adsoprtion von Tensiden bestimmt die Oberflächenladung an der gas/flüssig Grenzfläche. Die Oberf...

  14. The role of thin films in wetting

    OpenAIRE

    Marmur, Abraham

    1988-01-01

    The role of thin films in wetting is reviewed. Three modes of spontaneous spreading are discussed : incomplete spreading, complete spreading and mixed-mode spreading. A thin film can be either molecular or colloidal in thickness. Molecularly adsorbed films are mainly associated with incomplete spreading. Colloidal films usually extend from the bulk of the liquid in dynamic situations of complete spreading. Their existence at equilibriuim with the bulk depends on the orientation in the gravita...

  15. Microstructural evolution of tungsten oxide thin films

    International Nuclear Information System (INIS)

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 deg. were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a 'instability wheel' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  16. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  17. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  18. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  19. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  20. Gd-doped BiFeO3 nanoparticles - A novel material for highly efficient dye-sensitized solar cells

    Science.gov (United States)

    Lotey, Gurmeet Singh; Verma, N. K.

    2013-06-01

    This communication reports a novel idea on dye-sensitized solar cells (DSSCs) fabricated using Gd-doped BiFeO3 nanoparticles with particle size between 26 and 30 nm. The effect of Gd-doping and smaller size of synthesized nanoparticles on the structural, morphological, optical and photo-electrochemical properties have been investigated. The high energy-conversion efficiency, 3.85%, has been achieved for 12% Gd-doped BiFeO3 DSSCs, which is more than 100% higher than the undoped BiFeO3. The possible origin of the observed performance of DSSCs has been explained on the basis of smaller size of the synthesized nanoparticles, doping of Gd and structural transformation with doping in BiFeO3.

  1. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  2. Thermal Expansion Coefficients of Thin Crystal Films

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.

  3. Slip-controlled thin film dynamics

    OpenAIRE

    Fetzer, R.; Rauscher, M; Münch, A.; Wagner, B. A.; Jacobs, K.

    2006-01-01

    In this study, we present a novel method to assess the slip length and the viscosity of thin films of highly viscous Newtonian liquids. We quantitatively analyse dewetting fronts of low molecular weight polystyrene melts on Octadecyl- (OTS) and Dodecyltrichlorosilane (DTS) polymer brushes. Using a thin film (lubrication) model derived in the limit of large slip lengths, we can extract slip length and viscosity. We study polymer films with thicknesses between 50 nm and 230 nm and various tempe...

  4. Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications

    Science.gov (United States)

    Papadas, I. T.; Subrahmanyam, K. S.; Kanatzidis, M. G.; Armatas, G. S.

    2015-03-01

    The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4.The self-assembly of uniform nanocrystals into large porous architectures is currently of immense interest for nanochemistry and nanotechnology. These materials combine the respective advantages of discrete nanoparticles and mesoporous structures. In this article, we demonstrate a facile nanoparticle templating process to synthesize a three-dimensional mesoporous BiFeO3 material. This approach involves the polymer-assisted aggregating assembly of 3-aminopropanoic acid-stabilized bismuth ferrite (BiFeO3) nanocrystals followed by thermal decomposition of the surfactant. The resulting material consists of a network of tightly connected BiFeO3 nanoparticles (~6-7 nm in diameter) and has a moderately high surface area (62 m2 g-1) and uniform pores (ca. 6.3 nm). As a result of the unique mesostructure, the porous assemblies of BiFeO3 nanoparticles show an excellent catalytic activity and chemical stability for the reduction of p-nitrophenol to p-aminophenol with NaBH4. Electronic supplementary information (ESI) available: IR spectra and TG profiles of as-made BiFeO3 NPs and MBFA samples, TEM images of 3-APA-capped BiFeO3 NPs, EDS spectrum of MBFAs, N2 adsorption-desorption isotherms of randomly aggregated BiFeO3 NPs and catalytic data for 4-NP reduction by MBFAs and other nanostructured catalysts. See DOI: 10.1039/c5nr00185d

  5. BDS thin film damage competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  6. Thin-film optical shutter

    Science.gov (United States)

    Matlow, S. L.

    1981-02-01

    The ideal solution to the excessive solar gain problem is an optical shutter, a device which switches from being highly transmissive to solar radiation to being highly reflective to solar radiation when a critical temperature is reached in the enclosure. The switching occurs because one or more materials in the device undergo a phase transition at the critical temperature. A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, was chosen as the one most likely to meet all of the requirements of the thin film optical shutter project (TFOS). The reason for this choice is explored. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a quantum mechanical method, the equilibrium bond length (EBL) theory, was developed. Some results of EBL theory are included.

  7. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  8. BiFeO3 nanocrystals for bio-imaging based on nonlinear optical harmonic generation

    CERN Document Server

    Schwung, Sebastian; Clarke, Gareth; Joulaud, Cécile; Magouroux, Thibaud; Staedler, Davide; Passemard, Solène; Jüstel, Thomas; Badie, Laurent; Galez, Christine; Wolf, Jean Pierre; Volkov, Yuri; Prina-Mello, Adriele; Gerber-Lemaire, Sandrine; Rytz, Daniel; Mugnier, Yannick; Bonacina, Luigi; Dantec, Ronan Le

    2014-01-01

    Second Harmonic Generation (SHG) from BiFeO3 nanocrystals is investigated for the first time to determine their potential as biomarkers for multiphoton imaging. Nanocrystals are produced by an auto-combustion method with TRIS as a fuel. Stable colloidal suspensions with mean particle diameters in the range 100-120 nm are then obtained after wet-milling and sonication steps. SHG properties are determined using two complementary experimental techniques, Hyper Rayleigh Scattering and nonlinear polarization microscopy. BiFeO3 shows a very high second harmonic efficiency with an averaged coefficient of 79+-12 pm/V. From the nonlinear polarization response of individual nanocrystals, relative values of the independent dij coefficients are also determined and compared with recent theoretical and experimental studies. Additionally, the particles show a moderate magnetic response, which is attributed to gamma-Fe2O3 impurities. A combination of high nonlinear optical efficiency and magnetic response within the same pa...

  9. Enhanced magnetoelectric properties of BiFeO3 on formation of BiFeO3/SrFe12O19 nanocomposites

    Science.gov (United States)

    Das, Anusree; Chatterjee, Souvik; Bandyopadhyay, Sudipta; Das, Dipankar

    2016-06-01

    Nanocomposites (NCs) comprising (1-x) BiFeO3 (BFO) and x SrFe12O19 (SRF) (x = 0.1, 0.2, 0.3, and 0.4) have been prepared by a sol-gel route. Presence of pure phases of both BiFeO3 (BFO) and SrFe12O19 (SRF) in the NCs for x = 0.3 and 0.4 has been confirmed by Rietveld analysis of XRD data though a minor impurity phase is observed in the case of x = 0.1 and 0.2 NCs. Transmission electron micrographs of the NCs show that particles are mostly spherical with average size of 30 nm. M-H measurements at 300 and 10 K indicate predominantly ferrimagnetic behavior of all the NCs with an increasing trend of saturation magnetization values with increasing content of SRF. Dielectric constant (ɛr) of the NCs at room temperature shows a dispersive behavior with frequency and attains a constant value at higher frequency. ɛr - T measurements reveal an increasing trend of dielectric constant of the NCs with increasing temperature and show an anomaly around the antiferromagnetic transition temperature of BFO, which indicates magnetoelectric coupling in the NCs. The variation of capacitance in the presence of magnetic field confirms the enhancement of magnetoelectric effect in the NCs. 57Fe Mössbauer spectroscopy results indicate the presence of only Fe3+ ions in usual crystallographic sites of BFO and SRF.

  10. Photocatalytic activity of BiFeO3 nanoparticles synthesized through hydrothermal method

    International Nuclear Information System (INIS)

    Multiferroic BiFeO3 (BFO) nanoparticles (Nps) were synthesized using hydrothermal method. From the X-Ray diffraction analysis (XRD), the synthesized Nps were found to having rhombohedral structure with R3c space group confirmed by Rietveld analysis. Fourier transform infrared spectroscopy (FTIR) analysis was carried out to identify the chemical bonds present in the BFO Nps. Photocatalytic properties of synthesized Nps were studied for the degradation of Methylene Blue (MB) dye under visible light of 150W

  11. Epitaxial integration of a nanoscale BiFeO3 phase boundary with silicon.

    Science.gov (United States)

    Liang, Wen-I; Peng, Chun-Yen; Huang, Rong; Kuo, Wei-Cheng; Huang, Yen-Chin; Adamo, Carolina; Chen, Yi-Chun; Chang, Li; Juang, Jenh-Yih; Schlom, Darrel G; Chu, Ying-Hao

    2016-01-21

    The successful integration of the strain-driven nanoscale phase boundary of BiFeO3 onto a silicon substrate is demonstrated with extraordinary ferroelectricity and ferromagnetism. The detailed strain history is delineated through a reciprocal space mapping technique. We have found that a distorted monoclinic phase forms prior to a tetragonal-like phase, a phenomenon which may correlates with the thermal strain induced during the growth process.

  12. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    Rachana Gupta; Mukul Gupta; Thomas Gutberlet

    2008-11-01

    Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture with magnetron sputtering technique at ambient temperature. The film prepared with only Ar gas shows reflections corresponding to the permalloy phase in X-ray diffraction (XRD) pattern. The addition of nitrogen during sputtering results in broadening of the peaks in XRD pattern, which finally leads to an amorphous phase. The - loop for the sample prepared with only Ar gas is matching well with the values obtained for the permalloy. For the samples prepared with increased nitrogen partial pressure the magnetic moment decreased rapidly and the values of coercivity increased. The polarized neutron reflectivity measurements (PNR) were performed in the sample prepared with only Ar gas and with nitrogen partial pressure of 5 and 10%. It was found that the spin-up and spin-down reflectivities show exactly similar reflectivity for the sample prepared with Ar gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity.

  13. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3

    Directory of Open Access Journals (Sweden)

    Mehedi Hasan

    2016-03-01

    Full Text Available Improvement in magnetic and electrical properties of multiferroic BiFeO3 in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi0.9Ba0.1FeO3 nanoparticles of different sizes ranging from ∼ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO3 nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi0.9Ba0.1FeO3 nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ∼ 49 nm Bi0.9Ba0.1FeO3 nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO3.

  14. Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3

    Science.gov (United States)

    Hasan, Mehedi; Hakim, M. A.; Basith, M. A.; Hossain, Md. Sarowar; Ahmmad, Bashir; Zubair, M. A.; Hussain, A.; Islam, Md. Fakhrul

    2016-03-01

    Improvement in magnetic and electrical properties of multiferroic BiFeO3 in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi0.9Ba0.1FeO3 nanoparticles of different sizes ranging from ˜ 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+ state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO3 nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi0.9Ba0.1FeO3 nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for ˜ 49 nm Bi0.9Ba0.1FeO3 nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO3.

  15. TiO2 thin film photocatalyst

    Institute of Scientific and Technical Information of China (English)

    YU Jiaguo

    2004-01-01

    It is well known that the photocatalytic activity of TiO2 thin films strongly depends on the preparing methods and post-treatment conditions, since they have a decisive influence on the chemical and physical properties of TiO2 thin films.Therefore, it is necessary to elucidate the influence of the preparation process and post-treatment conditions on the photocatalytic activity and surface microstructures of the films. This review deals with the preparation of TiO2 thin film photocatalysts by wet-chemical methods (such as sol-gel, reverse micellar and liquid phase deposition) and the comparison of various preparation methods as well as their advantage and disadvantage. Furthermore, it is discussed that the advancement of photocatalytic activity, super-hydrophilicity and bactericidal activity of TiO2 thin film photocatalyst in recent years.

  16. Alumina Thin Film Growth: Experiments and Modeling

    OpenAIRE

    Wallin, Erik

    2007-01-01

    The work presented in this thesis deals with experimental and theoretical studies related to the growth of crystalline alumina thin films. Alumina, Al2O3, is a polymorphic material utilized in a variety of applications, e.g., in the form of thin films. Many of the possibilities of alumina, and the problems associated with thin film synthesis of the material, are due to the existence of a range of different crystalline phases. Controlling the formation of the desired phase and the transformati...

  17. Electrochromism of amorphous ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se-Hee; Liu, Ping; Tracy, C. Edwin; Deb, Satyen K. [National Renewable Energy Laboratory, Center for Basic Sciences, 1617 Cole Boulevard, Golden, CO 80401 (United States); Cheong, Hyeonsik M. [Sogang University, Shinsoo-Dong, Seoul 121-742 (Korea, Republic of)

    2003-12-01

    We report on the electrochromic behavior of amorphous ruthenium oxide thin films and their electrochemical characteristics for use as counterelectrodes for electrochromic devices. Hydrous ruthenium oxide thin films were prepared by cyclic voltammetry on ITO coated glass substrates from an aqueous ruthenium chloride solution. The cyclic voltammograms of this material show the capacitive behavior including two redox reaction peaks in each cathodic and anodic scan. The ruthenium oxide thin film electrode exhibits a 50% modulation of optical transmittance at 670 nm wavelength with capacitor charge/discharge.

  18. Insect thin films as solar collectors.

    Science.gov (United States)

    Heilman, B D; Miaoulis, L N

    1994-10-01

    A numerical method for simulation of microscale radiation effects in insect thin-film structures is described. Accounting for solar beam and diffuse radiation, the model calculates the reflectivity and emissivity of such structures. A case study examines microscale radiation effects in butterfuly wings, and results reveal a new function of these multilayer thin films: thermal regulation. For film thicknesses of the order of 0.10 µm, solar absorption levels vary by as much as 25% with small changes in film thickness; for certain existing structures, absorption levels reach 96%., This is attributed to the spectral distribution of the reflected radiation, which consists of a singular reflectance peak within the solar spectrum.

  19. Highly stretchable wrinkled gold thin film wires

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Chu, Michael [Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States); Pegan, Jonathan D. [Department of Materials and Manufacturing Technology, University of California, Irvine, California 92697 (United States); Khine, Michelle, E-mail: mkhine@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States)

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  20. Thin films for geothermal sensing: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  1. Electroless plating of thin gold films directly onto silicon nitride thin films and into micropores.

    Science.gov (United States)

    Whelan, Julie C; Karawdeniya, Buddini Iroshika; Bandara, Y M Nuwan D Y; Velleco, Brian D; Masterson, Caitlin M; Dwyer, Jason R

    2014-07-23

    A method to directly electrolessly plate silicon-rich silicon nitride with thin gold films was developed and characterized. Films with thicknesses coating planar, curved, and line-of-sight-obscured silicon nitride surfaces. PMID:24999923

  2. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  3. Superconducting thin-film gradiometer

    International Nuclear Information System (INIS)

    We describe the design, fabrication, and performance of planar thin-film dc SQUID's and planar gradiometers in which a dc SQUID is incorporated as a null detector. Each gradiometer was fabricated on a planar substrate and measured an off-diagonal component of changes in the magnetic field gradient. The gradiometer with the highest sensitivity had 127 x 33-mm loops that could be connected in parallel or in series: The sensitivities were 2.1 x 10-13 and 3.7 x 10-13 T m-1 Hz/sup -1/2/, respectively. The intrinsic balance of the gradiometers was about 100 ppm for fields parallel to their plane, and a balance of about 1 ppm could be achieved for fields perpendicular to their plane. When the series-loop gradiometer was rotated through 3600 in the earth's field, the output returned to its initial value to within an amount corresponding to a balance of 1 ppm. Possible improvements in sensitivity are discussed

  4. Thin solid-lubricant films in space

    Science.gov (United States)

    Roberts, E. W.

    Low-friction films of thickness as low as 1 micron, created through sputter-deposition of low shear strength materials, are required in spacecraft applications requiring low power dissipation, such as cryogenic devices, and low torque noise, such as precision-pointing mechanisms. Due to their thinness, these coatings can be applied to high precision-machined tribological components without compromising their functional accuracy. Attention is here given to the cases of thin solid films for ball bearings, gears, and journal bearings.

  5. Laser-annealing of thin semiconductor films

    OpenAIRE

    Boneberg, Johannes; Nedelcu, Johann; Bucher, Ernst; Leiderer, Paul

    1994-01-01

    Optical reflectivity and transmissivity measurements have been used to investigate the dynamics of melting and recrystallisation of thin films of Si and Ge after laser-annealing with a ns Nd:YAG-laser pulse. We report on temperature dependent changes of the reflectivity of the liquid phase above and below the melting point and on various nucleation and solidification scenarios in thin film, depending on the energy density of the amding laser.

  6. Advances in CZTS thin films and nanostructured

    Science.gov (United States)

    Ali, N.; Ahmed, R.; Bakhtiar-Ul-Haq; Shaari, A.

    2015-06-01

    Already published data for the optical band gap (Eg) of thin films and nanostructured copper zinc tin sulphide (CZTS) have been reviewed and combined. The vacuum (physical) and non-vacuum (chemical) processes are focused in the study for band gap comparison. The results are accumulated for thin films and nanostructured in different tables. It is inferred from the re- view that the nanostructured material has plenty of worth by engineering the band gap for capturing the maximum photons from solar spectrum.

  7. Characteristics and durability of fluoropolymer thin films

    OpenAIRE

    Cheneler, David; Bowen, James; Evans, Stephen D.; Górzny, Marcin; Adams, Michael J; Ward, Michael C.L.

    2011-01-01

    The use of plasma-polymerised fluoropolymer (CFxOy) thin films in the manufacture of microelectromechanical systems (MEMS) devices is well-established, being employed in the passivation step of the deep reactive ion etching (DRIE) process, for example. This paper presents an investigation of the effect of exposure to organic and aqueous liquid media on plasma polymerised CFxOy thin films. Atomic force microscopy (AFM), scanning electron microscopy (SEM), ellipsometry, X-ray photoelectron spec...

  8. Microstructural evolution of tungsten oxide thin films

    Science.gov (United States)

    Hembram, K. P. S. S.; Thomas, Rajesh; Rao, G. Mohan

    2009-10-01

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 °C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a "instability wheel" model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  9. Microstructural evolution of tungsten oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, K.P.S.S., E-mail: hembram@isu.iisc.ernet.in [Department of Instrumentation, Indian Institute of Science, Bangalore - 560 012 (India); Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore - 560064 (India); Thomas, Rajesh; Rao, G. Mohan [Department of Instrumentation, Indian Institute of Science, Bangalore - 560 012 (India)

    2009-10-30

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 deg. were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a 'instability wheel' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  10. Carbon Nanotube Thin-Film Antennas.

    Science.gov (United States)

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  11. Thin-film crystalline silicon solar cells

    CERN Document Server

    Brendel, Rolf

    2011-01-01

    This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

  12. Bimodal swelling responses in microgel thin films.

    Science.gov (United States)

    Sorrell, Courtney D; Lyon, L Andrew

    2007-04-26

    A series of studies on microgel thin films is described, wherein quartz crystal microgravimetry (QCM), surface plasmon resonance (SPR), and atomic force microscopy (AFM) have been used to probe the properties of microstructured polymer thin films as a function of film architecture and solution pH. Thin films composed of pNIPAm-co-AAc microgels were constructed by using spin-coating layer-by-layer (scLbL) assembly with poly(allylamine hydrochloride) (PAH) as a polycationic "glue". Our findings suggest that the interaction between the negatively charged microgels and the positively charged PAH has a significant impact on the pH responsivity of the film. These effects are observable in both the optical and mechanical behaviors of the films. The most significant changes in behavior are observed when the motional resistance of a quartz oscillator is monitored via QCM experiments. Slight changes to the film architecture and alternating the pH of the environment significantly changes the QCM and SPR responses, suggesting a pH-dependent swelling that is dependent on both particle swelling and polyelectrolyte de-complexation. Together, these studies allow for a deeper understanding of the morphological changes that take place in environmentally responsive microgel-based thin films. PMID:17407344

  13. Factors controlling pure-phase magnetic BiFeO3 powders synthesized by solution combustion synthesis

    International Nuclear Information System (INIS)

    Highlights: → Both the type and amount of fuel strongly affect the phase composition and crystallinity of the as-synthesized product. → The system needs a careful optimisation of these parameters to obtain pure-phase and well-crystallized BiFeO3 nanopowders. An optimization of these parameters could improve the quality of the final products. → Among all tested fuels, L-α-alanine and glycine are the suitable fuel for BiFeO3 synthesis. The optimal fuel-to-oxidant ratio (F/NO3-) of α-alanine and glycine for pure-phase BiFeO3 synthesis is 0.22 (fuel-lean reaction, -33%) and 0.37 (fuel-lean reaction, -34%), respectively, which results in a suitable flame temperature that favors the formation of BiFeO3 phase. → Still, too little fuel would result in only amorphous phase powders due to the low flame temperature and too much fuel would lead to transformation of the BiFeO3 phase to impurities (Bi2Fe4O9 and Bi25FeO39 phases) because of the high flame temperature involved. → The resulting BiFeO3 nanopowders exhibited strong H2O2-activiting ability and weak magnetism. When BiFeO3 nanopowders were used as a heterogeneous Fenton-like catalyst to degrade rhodamine B (RhB), the apparent rate constant for RhB degradation in the presence of H2O2 at pH 5.0 was evaluated to be 0.048 min-1. - Abstract: Bismuth ferric oxide nanopowders were prepared through combustion method. Pure phase and well-crystallized BiFeO3 can be obtained by controlling the combustion process, fuel type and fuel-to-oxidant ratio. The evolutions of phase constitution and structural characteristics of the as-resulted nanopowders were investigated by X-ray diffraction, scanning electron microscope, and simultaneous thermogravimetric analysis. The results revealed that both the type and amount of fuel have to be carefully considered because they play an important role in total reaction characteristics. Among all tested fuels, L-α-alanine and glycine are the suitable fuels for BiFeO3 synthesis. For α-alanine, the optimal fuel-to-oxidant ratio is 0.22, which results in a suitable flame temperature for BiFeO3 formation. Still, too little fuel would result in only amorphous phase powders due to the low flame temperature and too much fuel would lead to transformation of the BiFeO3 phase to impurities because of the high flame temperature involved. The resulting BiFeO3 nanopowders exhibited strong H2O2-activiting ability and weak magnetism. When BiFeO3 nanopowders were used as a heterogeneous Fenton-like catalyst to degrade rhodamine B (RhB), the apparent rate constant for RhB degradation in the presence of H2O2 at pH 5.0 was evaluated to be 0.048 min-1

  14. Post deposition purification of PTCDA thin films

    International Nuclear Information System (INIS)

    The decomposition of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules during evaporation of unpurified raw material in ultra high vacuum was studied. The fragments were identified by mass spectrometry and the influence of these fragments and further contaminations of the raw material on the electronic structure of PTCDA thin films was measured by photoemission spectroscopy. Annealing of contaminated PTCDA films was tested as cheap and easy to perform method for (partial) post deposition purification of the contaminated films

  15. Microcrystalline organic thin-film solar cells.

    Science.gov (United States)

    Verreet, Bregt; Heremans, Paul; Stesmans, Andre; Rand, Barry P

    2013-10-11

    Microcrystalline organic films with tunable thickness are produced directly on an indium-tin-oxide substrate, by crystallizing a thin amorphous rubrene film followed by its use as a template for subsequent homoepitaxial growth. These films, with exciton diffusion lengths exceeding 200 nm, produce solar cells with increasing photocurrents at thicknesses up to 400 nm with a fill factor >65%, demonstrating significant potential for microcrystalline organic electronic devices. PMID:23939936

  16. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  17. Thin-film Rechargeable Lithium Batteries

    Science.gov (United States)

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  18. Rupture Limit of Thin Moving Films

    Science.gov (United States)

    Padrino, Juan C.; Joseph, Daniel D.; Kim, Hyungjun

    2010-11-01

    The rupture of a thin film in another fluid is studied including the effects of disjoining pressure. The study considers the linear stability of a moving viscous film in a motionless inviscid fluid and of a stagnant viscous film in a motionless viscous fluid. These are analyzed by means of the Navier--Stokes equations and the dissipation approximation based on potential flow. Results reveal that the dissipation method provides a good approximation for the case of a moving film, whereas its predictions are off the mark for the stagnant film case. The thickness of the gap at the trough of Kelvin-Helmholtz waves locates the formation of holes. The wavelength at final collapse is determined by the length of waves at the trough of the corrugated film. The disjoining pressure effects cause very fast break-up for very thin films. These effects influence the cutoff wavenumber. In the limit of small gaps on this corrugated film, the Reynolds and Weber numbers tend to zero with the gap size, the Ohnesorge number increases like the reciprocal of the square root and the Hamaker number like the reciprocal of the square of the gap. The motion of the film does not enter at the point of formation of holes. Moreover, for the most unstable wave, the ratio of the wavelength to film thickness is found to decrease with decreasing film thickness.

  19. Thin Ice Films at Mineral Surfaces.

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood. PMID:27377606

  20. Carrier lifetimes in thin-film photovoltaics

    Science.gov (United States)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  1. Magnetoelectric thin film composites with interdigital electrodes

    Science.gov (United States)

    Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J. L.; Gerken, M.; Knöchel, R.; Quandt, E.

    2013-07-01

    Magnetoelectric (ME) thin film composites on silicon cantilevers are fabricated using Pb(Zr0.52Ti0.45)O3 (PZT) films with interdigital transducer electrodes on the top side and FeCoSiB amorphous magnetostrictive thin films on the backside. These composites without any direct interface between the piezoelectric and magnetostrictive phase are superior to conventional plate capacitor-type thin film ME composites. A limit of detection of 2.6 pT/Hz1/2 at the mechanical resonance is determined which corresponds to an improvement of a factor of approximately 2.8 compared to the best plate type sensor using AlN as the piezoelectric phase and even a factor of approximately 4 for a PZT plate capacitor.

  2. Nanostructured thin films as functional coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Manoj A; Tadvani, Jalil K; Tung, Wing Sze; Lopez, Lorena; Daoud, Walid A, E-mail: Walid.Daoud@sci.monash.edu.au [School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842 (Australia)

    2010-06-15

    Nanostructured thin films is one of the highly exploiting research areas particularly in applications such as photovoltaics, photocatalysis and sensor technologies. Highly tuned thin films, in terms of thickness, crystallinity, porosity and optical properties, can be fabricated on different substrates using the sol-gel method, chemical solution deposition (CSD), electrochemical etching, along with other conventional methods such as chemical vapour deposition (CVD) and physical vapour deposition (PVD). The above mentioned properties of these films are usually characterised using surface analysis techniques such as XRD, SEM, TEM, AFM, ellipsometry, electrochemistry, SAXS, reflectance spectroscopy, STM, XPS, SIMS, ESCA, X-ray topography and DOSY-NMR. This article presents a short review of the preparation and characterisation of thin films of nanocrystalline titanium dioxide and modified silicon as well as their application in solar cells, water treatment, water splitting, self cleaning fabrics, sensors, optoelectronic devices and lab on chip systems.

  3. Nanostructured thin films as functional coatings

    International Nuclear Information System (INIS)

    Nanostructured thin films is one of the highly exploiting research areas particularly in applications such as photovoltaics, photocatalysis and sensor technologies. Highly tuned thin films, in terms of thickness, crystallinity, porosity and optical properties, can be fabricated on different substrates using the sol-gel method, chemical solution deposition (CSD), electrochemical etching, along with other conventional methods such as chemical vapour deposition (CVD) and physical vapour deposition (PVD). The above mentioned properties of these films are usually characterised using surface analysis techniques such as XRD, SEM, TEM, AFM, ellipsometry, electrochemistry, SAXS, reflectance spectroscopy, STM, XPS, SIMS, ESCA, X-ray topography and DOSY-NMR. This article presents a short review of the preparation and characterisation of thin films of nanocrystalline titanium dioxide and modified silicon as well as their application in solar cells, water treatment, water splitting, self cleaning fabrics, sensors, optoelectronic devices and lab on chip systems.

  4. Study of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.

  5. Niobium Thin Film Characterization for Thin Film Technology Used in Superconducting Radiofrequency Cavities

    Science.gov (United States)

    Dai, Yishu; Valente-Feliciano, Anne-Marie

    2015-10-01

    Superconducting RadioFrequency (SRF) penetrates about 40-100 nm of the top surface, making thin film technology possible in producing superconducting cavities. Thin film is based on the deposition of a thin Nb layer on top of a good thermal conducting material such as Al or Cu. Thin film allows for better control of the surface and has negligible response to the Earth's magnetic field, eliminating the need for magnetic shielding of the cavities. Thin film superconductivity depends heavily on coating process conditions, involving controllable parameters such as crystal plane orientation, coating temperature, and ion energy. MgO and Al2O3 substrates are used because they offer very smooth surfaces, ideal for studying film growth. Atomic Force Microscopy is used to characterize surface's morphology. It is evident that a lower nucleation energy and a long coating time increases the film quality in the r-plane sapphire crystal orientation. The quality of the film increases with thickness. Nb films coated on r-plane, grow along the (001) plane and yield a much higher RRR compared to the films grown on a- and c-planes. This information allows for further improvement on the research process for thin film technology used in superconducting cavities for the particle accelerators. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  6. Electrochemical Analysis of Conducting Polymer Thin Films

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2010-04-01

    Full Text Available Polyelectrolyte multilayers built via the layer-by-layer (LbL method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting polymer, poly(p-phenylene vinylene (PPV, in the preparation of a stable thin film via the LbL method. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to characterize the ionic conductivity of the PPV multilayer films. The ionic conductivity of the films has been found to be dependent on the polymerization temperature. The film conductivity can be fitted to a modified Randle’s circuit. The circuit equivalent calculations are performed to provide the diffusion coefficient values.

  7. Thermal conductivity of nanoscale thin nickel films

    Institute of Scientific and Technical Information of China (English)

    YUAN Shiping; JIANG Peixue

    2005-01-01

    The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

  8. Surface morphology of thin films polyoxadiazoles

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2011-12-01

    Full Text Available urpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used. Photos have been taken in noncontact mode while observing an area of 10 x 10 microns.Findings: The analysis of images has confirmed that the quality of thin films depends upon the used polymers. It was also observed that the parameters of the spin coating method have significant effect on the morphology and the surface roughness. The speed of the spin has got a strong impact on the topography of the thin films obtained.Research limitations/implications: The morphology of polyoxadiazoles thin films has been described. This paper include description how the spin speed influences the morphology of polymer thin films. In order to use a polymer thin film in photovoltaics or optoelectronics it must have a uniform thickness and a low surface roughness. Further research, in which the optical properties of thin films are investigated, is strongly recommended.Practical implications: Conductive polymers may find applications in photovoltaics or optoelectronics. It is important to study this group of material engineering and to find a new use for them. Materials from which thin films are made of will have an impact on the properties and characteristics of electronics devices in which they are be applied.Originality/value: The value of this paper is defining the optimal parameters of spin-coating technology for six polyoxadiazoles. The results allow the choosing optimal parameters of the deposition process. Spin coating is a very good method to obtain thin films which

  9. Coherent x-ray diffraction imaging of photo-induced structural changes in BiFeO3 nanocrystals

    Science.gov (United States)

    Newton, Marcus C.; Parsons, Aaron; Wagner, Ulrich; Rau, Christoph

    2016-09-01

    Multiferroic materials that exhibit coupling between ferroelectric and magnetic properties are of considerable utility for technological applications and are also interesting from a fundamental standpoint. When reduced to the nanoscale, multiferroic materials often display additional functionality that is dominated by interfacial and confinement effects. Bismuth ferrite (BiFeO3) is one such material with room temperature anti-ferromagnetic and ferroelectric ordering. Optical excitation of BiFeO3 crystals results in an elastic structural deformation of the lattice with a fast response on the pico-second time scale. Here we report on dynamic measurements to investigate the structural properties of BiFeO3 nanoscale crystals using laser excitation and three-dimensional Bragg coherent x-ray diffraction imaging. Tensile strain beyond 8 × {10}-2 was observed predominantly at the surface of the nanoscale crystal as evidenced in the reconstructed phase information and was correlated to photo-induced lattice deformation.

  10. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  11. Thin film calorimetry of polymer films

    Science.gov (United States)

    Zhang, Wenhua; Rafailovich, Miriam; Sokolov, Jonathan; Salamon, William

    2000-03-01

    Polystryene and polymethylmethacrylate films for thicknesses ranging from 50nm to 500nm using a direct calorimetric technique (Lai et al, App. Phys. Lett. 67, p9(1995)). Samples were deposited on Ni foils(2-2.5um) and placed in a high vacuum oven. Calibrated heat pulses were input to the polymer films by current pulses to the Ni substrate and temperature changes were determined from the change in Ni resistance. Pulses producing temperature jumps of 3-8K were used and signal averaging over pulses reduced noise levels enough to identify glass transitions down to 50nm. Molecular weight dependence of thick films Tg was used as a temperature calibration.

  12. Magnetic and ferroelectric characteristics of Gd$^{3+}$ and Ti$^{4+}$ co-doped BiFeO$_3$ ceramics

    Indian Academy of Sciences (India)

    SHIVANAND MADOLAPPA; A V ANUPAMA; P W JASCHIN; K B R VARMA; B SAHOO

    2016-04-01

    Polycrystalline BiFeO3 and Bi$_{0.9}$Gd$_{0.1}$Fe$_{1−x}$Ti$_x$O$_3$ ($x = 0$, 0.01, 0.05 and 0.1) samples were synthesized by solid-state reaction route. Structural, magnetic and ferroelectric properties of these samples were investigated. X-ray powder diffraction (XRD) results confirmed the presence of a significant amount of Bi$_2$Fe$_4$O$_9$ impurity phase in the undoped BiFeO$_3$ sample. Mössbauer spectroscopy studies corroborated the XRD studies to confirm the presence of impurity phase.We have observed that gadolinium (Gd$^{3+}$) and titanium (Ti$^{4+}$) doping, respectively, on Bi$^{3+}$ and Fe$^{3+}$ sites facilitated a significant reduction in the impurity phase formation in BiFeO$_3$. Interestingly, Gd$^{3+}$-doping significantly reduced the impurity phase formation as compared to the undoped BiFeO$_3$ sample. This impurity phase formation was further overcome by doping higher ($x \\ge 0.05$) amounts of Ti in BiFeO$_3$. The crystallographicsite occupancies of Gd and Ti were confirmed by Rietveld refinement of XRD data,Mössbauer spectroscopy and magnetization measurements. An enhancement in ferromagnetic properties along with moderate ferroelectricproperties have been observed after co-doping. There was an increasing trend in remnant polarization (Pr) with the increase in Ti concentration besides an improvement in the characteristic saturation magnetization. Our resultsdemonstrate that Gd$^{3+}$ and Ti$^{4+}$ doping could be used to enhance multifunctional properties of BiFeO3 ceramics to enable them as potential material for various devices.

  13. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  14. Crystallization of zirconia based thin films.

    Science.gov (United States)

    Stender, D; Frison, R; Conder, K; Rupp, J L M; Scherrer, B; Martynczuk, J M; Gauckler, L J; Schneider, C W; Lippert, T; Wokaun, A

    2015-07-28

    The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C ex situ and in situ in an X-ray diffractometer. A minimum temperature of 275 °C was determined at which as-deposited amorphous PLD grown 3YSZ films fully crystallize within five hours. Above 325 °C these films transform nearly instantaneously with a high degree of micro-strain when crystallized below 500 °C. In these films the t'' phase crystallizes which transforms at T > 600 °C to the t' phase upon relaxation of the micro-strain. Furthermore, the crystallization of 8YSZ thin films grown by PLD, spray pyrolysis and dc-sputtering are characterized by in situ XRD measurements. At a constant heating rate of 2.4 K min(-1) crystallization is accomplished after reaching 800 °C, while PLD grown thin films were completely crystallized already at ca. 300 °C. PMID:26119755

  15. Pr and Cr co-doped BiFeO3 nanotubes: an advance multiferroic oxide material

    OpenAIRE

    Mandal Kalyan; Gopal Khan Gobinda; Das Rajasree

    2013-01-01

    Arrays of single phase pure and Pr-Cr co-doped BiFeO3 (BFO) nanotubes (NTs) with compositions BiFeO3 and Bi0.9Pr0.1Fe0.9Cr0.1O3 have been synthesized using Anodic Aluminium Oxide (AAO) template (pore diameter ~250 nm) by wet chemical liquid phase deposition technique. All the NTs show ferromagnetic nature at room temperature (RT). Better magnetic properties are observed in the co-doped BFO NTs with the value of saturation magnetization (MS) ~49 memu/g, magnetization at the remanence (MR) ~12 ...

  16. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  17. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  18. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  19. Thin-film solar cells. Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Bloss, W.H.; Pfisterer, F.; Schock, H.W. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Physikalische Elektronik)

    1990-01-01

    The authors present the state of the art in research and development, technology, production and marketing, and of the prospects of thin-film solar cells. Thin-film solar cells most used at present are based on amorphous silicon and on the compound semiconductors CuInSe{sub 2} and CdTe. Efficiencies in excess 12% have been achieved (14.1% with CuInSe{sub 2}). Stability is the main problem with amorphous silicon. Thin-film solar cells made from compound semiconductors do not have this problem, though their cost-effective series production needs to be shown still. The development potential of the three types mentioned will be ca. 30% in terms of efficiency: in terms of production cost, it is estimated with some certainty to be able to reach the baseline of 1 DM/Watt peak output (W{sub p}). (orig.).

  20. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  1. Method for synthesizing thin film electrodes

    Science.gov (United States)

    Boyle, Timothy J.

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  2. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  3. High temperature emissivity, reflectivity, and x-ray absorption of BiFeO3

    Science.gov (United States)

    Massa, Néstor E.; del Campo, Leire; de Souza Meneses, Domingos; Echegut, Patrick; Fabbris, Gilberto F. L.; Azevedo, G. de M.; Martínez-Lope, María Jesús; Alonso, José Antonio

    2010-10-01

    We report on the lattice evolution of BiFeO3 as function of temperature using far infrared emissivity, reflectivity, and x-ray absorption local structure. A power law fit to the lowest frequency soft phonon in the magnetic ordered phase yields an exponent β =0.25 as for a tricritical point. At about 200 K below TN˜640 K it ceases softening as consequence of BiFeO3 metastability. We identified this temperature as corresponding to a crossover transition to an order-disorder regime. Above ˜700 K strong band overlapping, merging, and smearing of modes are consequence of thermal fluctuations and chemical disorder. Vibrational modes show band splits in the ferroelectric phase as emerging from triple degenerated species as from a paraelectric cubic phase above TC˜1090 K. Temperature dependent x-ray absorption near edge structure (XANES) at the Fe K edge shows that lower temperature Fe3+ turns into Fe2+. While this matches the FeO wüstite XANES profile, the Bi LIII-edge downshift suggests a high temperature very complex bond configuration at the distorted A perovskite site. Overall, our local structural measurements reveal high temperature defect-induced irreversible lattice changes, below, and above the ferroelectric transition, in an environment lacking of long-range coherence. We did not find an insulator to metal transition prior to melting.

  4. Pronounced multiferroicity in oleic acid stabilized BiFeO3 nanocrystals at room temperature.

    Science.gov (United States)

    Mahesh, Dabbugalla; Mandal, Swapan K; Mahato, Bipul K; Rana, Bivas; Barman, Anjan

    2013-06-01

    We report on the experimental observation of pronounced multiferroicity in BiFeO3 nanocrystals (size approximately 40 nm) at room temperature. Large scale BiFeO3 nanocrystals are synthesized using a low temperature chemical route and further stabilized with oleic acid. The nanocrystals exhibit a significant distortion in lattice parameter c compared to the bulk. Oleic acid plays an important role in reducing oxygen vacancies and Fe2+ ions at the nanocrystal surface giving rise to a high resistivity (approximately 10(10) omega-cm at 300 K) of the sample. The direct band gap of nanocrystals is measured to be approximately 4.2 eV (about 1.5 times the bulk value) suggesting a strong quantum confinement effect. The nanocrystals show a remarkably high spontaneous saturation magnetization approximately 4.39 emu/g along with a prominent ferroelectric hysteresis loop at room temperature. Particle size effect leading to the appearance of large number of uncompensated spins and suppression of modulated spin structure have resulted a strong spontaneous magnetization in such nanoscale multiferroic materials. PMID:23862453

  5. Structural and Ferroic Properties of La, Nd, and Dy Doped BiFeO3 Ceramics

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2015-01-01

    Full Text Available Polycrystalline samples of Bi0.8RE0.2FeO3 (RE = La, Nd, and Dy have been synthesized by solid-state reaction route. X-ray diffraction (XRD patterns of Bi0.8La0.2FeO3 and Bi0.8Nd0.2FeO3 were indexed in rhombohedral (R3c and triclinic (P1 structure, respectively. Rietveld refined XRD pattern of Bi0.8Dy0.2FeO3 confirms the biphasic (Pnma + R3c space groups nature. Raman spectroscopy reveals the change in BiFeO3 mode positions and supplements structural change with RE ion substitution. Ferroelectric and ferromagnetic loops have been observed in the Bi0.8RE0.2FeO3 ceramics at room temperature, indicating that ferroelectric and ferromagnetic ordering coexist in the ceramics at room temperature. The magnetic measurements at room temperature indicate that rare-earth substitution induces ferromagnetism and discerns large and nonzero remnant magnetization as compared to pristine BiFeO3.

  6. Capillary instabilities in thin films. I. Energetics

    Energy Technology Data Exchange (ETDEWEB)

    Srolovitz, D.J.; Safran, S.A.

    1986-07-01

    A stability theory is presented which describes the conditions under which thin films rupture. It is found that holes in the film will either grow or shrink, depending on whether their initial radius is larger or smaller than a critical value. If the holes grow large enough, they impinge to form islands; the size of which are determined by the surface energies. The formation of grooves where the grain boundary meets the free surface is a potential source of holes which can lead to film rupture. Equilibrium grain boundary groove depths are calculated for finite grain sizes. Comparison of groove depth and film thickness yields microstructural conditions for film rupture. In addition, pits which form at grain boundary vertices, where three grains meet, are another source of film instability.

  7. Thin film oxygen partial pressure sensor

    Science.gov (United States)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  8. Tailoring electronic structure of polyazomethines thin films

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2010-09-01

    Full Text Available Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic devices.Findings: The method used allow for pure pristine polymer thin films to be prtepared without any unintentional doping taking place during prepoaration methods. This is a method based on polycondensation process, where polymer chain developing is running directly due to chemical reaction between molecules of bifunctional monomers. The method applied to prepare thin films of polyazomethines takes advantage of monomer transporting by mreans of neutral transport agent as pure argon is.Research limitations/implications: The main disadvantage of alternately conjugated polymers seems to be quite low mobility of charge carrier that is expected to be a consequence of their backbone being built up of sp2 hybridized carbon and nitrogen atoms. Varying technological conditions towards increasing reagents mass transport to the substrate is expected to give such polyazomethine thin films organization that phenylene rin stacking can result in special π electron systems rather than linear ones as it is the case.Originality/value: Our results supply with original possibilities which can be useful in ooking for good polymer materials for optoelectronic and photovoltaic applications. These results have been gained on polyazomethine thin films but their being isoelectronic counterpart to widely used poly p-phenylene vinylene may be very convenient to develop high efficiency polymer solar cells

  9. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  10. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.;

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...... and strain sensitivity using two- and four-point measurement method. We have found that polyaniline has a negative gauge factor of K = -4.9, which makes it a candidate for piezoresistive read-out in polymer based MEMS-devices. (C) 2007 Elsevier B.V. All rights reserved....

  11. Thin Films Made Fast and Modified Fast

    International Nuclear Information System (INIS)

    Thin films are playing a more and more important role for technological applications and there are many aspects of materials surface processing and thin film production, ranging from simple heat treatments to ion implantation or laser surface treatments. These methods are often very complicated, involving many basic processes and they have to be optimized for the desired application. Nuclear methods, especially Moessbauer spectroscopy, can be successfully applied for this task and some examples will be presented for laser-beam and ion-beam based processes.

  12. Feasibility Study of Thin Film Thermocouple Piles

    Science.gov (United States)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  13. Electrical analysis of niobium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Graça, M.P.F., E-mail: mpfg@ua.pt [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Saraiva, M. [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Freire, F.N.A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Valente, M.A.; Costa, L.C. [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-06-30

    In this work, a series of niobium oxide thin films was deposited by reactive magnetron sputtering. The total pressure of Ar/O{sub 2} was kept constant at 1 Pa, while the O{sub 2} partial pressure was varied up to 0.2 Pa. The depositions were performed in a grounded and non-intentionally heated substrate, resulting in as-deposited amorphous thin films. Raman spectroscopy confirmed the absence of crystallinity. Dielectric measurements as a function of frequency (40 Hz–110 MHz) and temperature (100 K–360 K) were performed. The dielectric constant for the film samples with thickness (d) lower than 650 nm decreases with the decrease of d. The same behaviour was observed for the conductivity. These results show a dependence of the dielectric permittivity with the thin film thickness. The electrical behaviour was also related with the oxygen partial pressure, whose increment promotes an increase of the Nb{sub 2}O{sub 5} stoichiometry units. - Highlights: • Niobium oxide thin films were deposited by reactive magnetron sputtering. • XRD showed a phase change with the increase of the P(O{sub 2}). • Raman showed that increasing P(O{sub 2}), Nb{sub 2}O{sub 5} amorphous increases. • Conductivity tends to decrease with the increase of P(O{sub 2}). • Dielectric analysis indicates the inexistence of preferential grow direction.

  14. Electrical analysis of niobium oxide thin films

    International Nuclear Information System (INIS)

    In this work, a series of niobium oxide thin films was deposited by reactive magnetron sputtering. The total pressure of Ar/O2 was kept constant at 1 Pa, while the O2 partial pressure was varied up to 0.2 Pa. The depositions were performed in a grounded and non-intentionally heated substrate, resulting in as-deposited amorphous thin films. Raman spectroscopy confirmed the absence of crystallinity. Dielectric measurements as a function of frequency (40 Hz–110 MHz) and temperature (100 K–360 K) were performed. The dielectric constant for the film samples with thickness (d) lower than 650 nm decreases with the decrease of d. The same behaviour was observed for the conductivity. These results show a dependence of the dielectric permittivity with the thin film thickness. The electrical behaviour was also related with the oxygen partial pressure, whose increment promotes an increase of the Nb2O5 stoichiometry units. - Highlights: • Niobium oxide thin films were deposited by reactive magnetron sputtering. • XRD showed a phase change with the increase of the P(O2). • Raman showed that increasing P(O2), Nb2O5 amorphous increases. • Conductivity tends to decrease with the increase of P(O2). • Dielectric analysis indicates the inexistence of preferential grow direction

  15. Dynamics of liquid films and thin jets

    Science.gov (United States)

    Zak, M.

    1979-01-01

    The theory of liquid films and thin jets as one- and two-dimensional continuums is examined. The equations of motion have led to solutions for the characteristic speeds of wave propagation for the parameters characterizing the shape. The formal analogy with a compressible fluid indicates the possibility of shock wave generation in films and jets and the formal analogy to the theory of threads and membranes leads to the discovery of some new dynamic effects. The theory is illustrated by examples.

  16. Viscous fingering in volatile thin films

    OpenAIRE

    Agam, Oded

    2008-01-01

    A thin water film on a cleaved mica substrate undergoes a first order phase transition between two values of film thickness. By inducing a finite evaporation rate of the water, the interface between the two phases develops a fingering instability similar to that observed in the Saffman-Taylor problem. We draw the connection between the two problems, and construct solutions describing the dynamics of evaporation in this system.

  17. Thin film dynamics with surfactant phase transition

    OpenAIRE

    Köpf, M. H.; Gurevich, S. V.; Friedrich, R.

    2009-01-01

    A thin liquid film covered with an insoluble surfactant in the vicinity of a first-order phase transition is discussed. Within the lubrication approximation we derive two coupled equations to describe the height profile of the film and the surfactant density. Thermodynamics of the surfactant is incorporated via a Cahn-Hilliard type free-energy functional which can be chosen to describe a transition between two stable phases of different surfactant density. Within this model, a linear stabilit...

  18. Perovskite thin films via atomic layer deposition.

    Science.gov (United States)

    Sutherland, Brandon R; Hoogland, Sjoerd; Adachi, Michael M; Kanjanaboos, Pongsakorn; Wong, Chris T O; McDowell, Jeffrey J; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J; Sargent, Edward H

    2015-01-01

    A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3 NH3 PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm(-1) .

  19. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  20. YBCO thin films in ac and dc films

    CERN Document Server

    Shahzada, S

    2001-01-01

    We report studies on the dc magnetization of YBCO thin films in simultaneously applied dc and ac fields. The effect of the ac fields is to decrease the irreversible magnetization drastically leading to complete collapse of the hysteresis loops for relatively small ac fields (250e). The magnitude of the decrease depends on the component of the ac field parallel to the c-axis. The decrease is non-linear with ac amplitude and is explained in the framework of the critical state response of ultra thin films in perpendicular geometry. The ac fields increase the relaxation rapidly at short times while the long time response appears unaffected. (author)

  1. Energetic Deposition of Niobium Thin Film in Vacuum

    OpenAIRE

    Wu, Genfa

    2002-01-01

    Niobium thin films are expected to be free of solid inclusions commonly seen in solid niobium. For particle accelerators, niobium thin film has the potential to replace the solid niobium in the making of the accelerating structures. In order to understand and improve the superconducting performance of niobium thin films at cryogenic temperature, an energetic vacuum deposition system has been developed to study deposition energy effects on the properties of niobium thin films on various substr...

  2. Correlated dewetting patterns in thin polystyrene films

    International Nuclear Information System (INIS)

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes

  3. Correlated dewetting patterns in thin polystyrene films

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  4. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    G V Kunte; S A Shivashankar; A M Umarji

    2008-11-01

    Thin films of the hydrated phase of tungsten oxide, hydrotungstite (H2WO4.H2O), have been grown on glass substrates using a dip-coating technique. The -axis oriented films have been characterized by X-ray diffraction and scanning electron microscopy. The electrical conductivity of the films is observed to vary with humidity and selectively show high sensitivity to moisture at room temperature. In order to understand the mechanism of sensing, the films were examined by X-ray diffraction at elevated temperatures and in controlled atmospheres. Based on these observations and on conductivity measurements, a novel sensing mechanism based on protonic conduction within the surface layers adsorbed onto the hydrotungstite film is proposed.

  5. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and prem

  6. New techniques for producing thin boron films

    International Nuclear Information System (INIS)

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs

  7. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  8. US Polycrystalline Thin Film Solar Cells Program

    Science.gov (United States)

    Ullal, Harin S.; Zweibel, Kenneth; Mitchell, Richard L.

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R and D on copper indium diselenide and cadmium telluride thin films. The objective of the program is to support research to develop cells and modules that meet the U.S. Department of Energy's long-term goals by achieving high efficiencies (15 to 20 percent), low-cost ($50/m(sup 2)), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe2 and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The U.S. Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe2 and CdTe with subcontracts to start in spring 1990.

  9. US polycrystalline thin film solar cells program

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H S; Zweibel, K; Mitchell, R L [Solar Energy Research Inst., Golden, CO (USA)

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  10. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic inst

  11. Rechargeable Thin-film Lithium Batteries

    Science.gov (United States)

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  12. A ferroelectric transparent thin-film transistor

    NARCIS (Netherlands)

    Prins, MWJ; GrosseHolz, KO; Muller, G; Cillessen, JFM; Giesbers, JB; Weening, RP; Wolf, RM

    1996-01-01

    Operation is demonstrated of a field-effect transistor made of transparant oxidic thin films, showing an intrinsic memory function due to the usage of a ferroelectric insulator. The device consists of a high mobility Sb-doped n-type SnO2 semiconductor layer, PbZr0.2Ti0.8Os3 as a ferroelectric insula

  13. Electrical characterization of thin film ferroelectric capacitors

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D.; Keur, W.; Schmitz, J.; Hueting, R.J.E.

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon offe

  14. Resistance contact thin-film resistor

    Directory of Open Access Journals (Sweden)

    Spirin V. G.

    2008-10-01

    Full Text Available The analytical model of the calculation of the contact resistance of the thin-film resistor is Offered. The Explored dependency of the contact resistance from wedge of the pickling. The Considered influence adhesive layer on warm-up stability of the resistor. They Are Received formulas of the calculation systematic and casual inaccuracy contributed by contact resistance.

  15. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c. depos...

  16. Electrostatic Discharge Effects in Thin Film Transistors

    NARCIS (Netherlands)

    Golo, Natasa

    2002-01-01

    Although amorphous silicon thin film transistors (α-Si:H TFT’s) have a very low electron mobility and pronounced instabilities of their electrical characteristics, they are still very useful and they have found their place in the semiconductors industry, as they possess some very good properties: th

  17. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  18. Polarization Fatigue in Ferroelectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    王忆; K.H.WONG; 吴文彬

    2002-01-01

    The fatigue problem in ferroelectric thin films is investigated based on the switched charge per unit area versus switching cycles. The temperature, dielectric permittivity, voltage bias, frequency and defect valence dependent switching polarization properties are calculated quantitatively with an extended Dawber-Scott model. The results are in agreement with the recent experiments.

  19. Surface roughness evolution of nanocomposite thin films

    NARCIS (Netherlands)

    Turkin, A; Pei, Y.T.; Shaha, K.P.; Chen, C.Q.; Vainchtein, David; Hosson, J.Th.M. De

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growin

  20. Monte Carlo simulation of magnetic nanostructured thin films

    Institute of Scientific and Technical Information of China (English)

    Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu

    2004-01-01

    @@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.

  1. Practical design and production of optical thin films

    CERN Document Server

    Willey, Ronald R

    2002-01-01

    Fundamentals of Thin Film Optics and the Use of Graphical Methods in Thin Film Design Estimating What Can Be Done Before Designing Fourier Viewpoint of Optical Coatings Typical Equipment for Optical Coating Production Materials and Process Know-How Process Development Monitoring and Control of Thin Film Growth Appendix: Metallic and Semiconductor Material Graphs Author IndexSubject Index

  2. Thin Films Characterization by Ultra Trace Metrology

    International Nuclear Information System (INIS)

    Sensitive and accurate characterization of thin films used in nanoelectronics, thinner than a few nm, represents a challenge for many conventional methods, especially when considering in-line control. With capabilities in the E10 at/cm2 (2O3 tunnel oxide deposited on a magnetic stack. On the other hand, composition analysis by TXRF, and especially the detection of minor elements into thin films, requires the use of a specific incident angle to optimize sensitivity. Under the best conditions, determination of the composition of Co -based self aligned barriers (CoWP and CoWMoPB films with Co concentration >80%) is done with a precision of 6% on P, 8% on Mo and 13% on W (standard deviation)

  3. Hematite thin films: growth and characterization

    Science.gov (United States)

    Uribe, J. D.; Osorio, J.; Barrero, C. A.; Giratá, D.; Morales, A. L.; Devia, A.; Gómez, M. E.; Ramirez, J. G.; Gancedo, J. R.

    We have grown hematite (α - Fe 2 O 3) thin films on stainless steel and (001)-silicon single-crystal substrates by RF magnetron sputtering process in argon atmosphere at substrate temperatures from 400 to 800°C. Conversion Electron Mössbauer (CEM) spectra of the sample grown on stainless steel at 400°C exhibit values for hyperfine parameter characteristic of bulk hematite phase in the weak ferromagnetic state. Also, the relative line intensity ratio suggests that the magnetization vector of the polycrystalline film is aligned preferentially parallel to the surface. The X-ray diffraction (XRD) pattern of the polycrystalline thin film grown on steel substrates also corresponds to α - Fe 2O3. The samples were also analyzed by Atomic Force Microscopy (AFM), those grown on stainless steel reveal a morphology consisting of columnar grains with random orientation, given the inhomogeneity of the substrate surface.

  4. Thin blend films of cellulose and polyacrylonitrile

    Science.gov (United States)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  5. Nanoscale Control of Phase Variants in Strain-Engineered BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Rama K [ORNL; Li, J. Y. [University of Washington, Seattle; Liu, Y. Y. [University of Washington, Seattle; Liang, W. -I. [National Chiao Tung University, Hsinchu, Taiwan; Kumar, Amit [ORNL; Jesse, Stephen [ORNL; Chen, Y. -C. [National Cheng Kung University, Tainan, Taiwan; Chu, Y.-H. [National Chiao Tung University, Hsinchu, Taiwan; Nagarajan, Valanoor [University of New South Wales; Kalinin, Sergei V [ORNL

    2011-01-01

    Development of magnetoelectric, electromechanical, and photovoltaic devices based on mixed-phase rhombohedral tetragonal (R-T) BiFeO3 (BFO) systems is possible only if the control of the engineered R phase variants is realized. Accordingly, we explore the mechanism of a bias induced phase transformation in this system. Single point spectroscopy demonstrates that the T->R transition is activated at lower voltages compared to T->T polarization switching. With phase field modeling, the transition is shown to be electrically driven. We further demonstrate that symmetry of formed R-phase rosettes can be broken by a proximal probe motion, allowing controlled creation of R variants with defined orientation. This approach opens a pathway to designing next-generation magnetoelectronic and data storage devices in the nanoscale.

  6. A training effect on electrical properties in nanoscale BiFeO3.

    Science.gov (United States)

    Goswami, Sudipta; Bhattacharya, Dipten; Li, Wuxia; Cui, Ajuan; Jiang, QianQing; Gu, Chang-zhi

    2013-04-01

    We report our observation of the training effect on dc electrical properties in a nanochain of BiFeO3 as a result of large scale migration of defects under the combined influence of electric field and Joule heating. We show that an optimum number of cycles of electric field within the range zero to ~1.0 MV cm(-1) across a temperature range 80-300 K helps in reaching the stable state via a glass-transition-like process in the defect structure. Further treatment does not give rise to any substantial modification. We conclude that such a training effect is ubiquitous in pristine nanowires or chains of oxides and needs to be addressed for applications in nanoelectronic devices. PMID:23478468

  7. Investigations of electrical properties of Nd substituted BiFeO3 multiferroic ceramics

    Science.gov (United States)

    Rao, T. Durga; Asthana, Saket

    2013-06-01

    Polycrystalline BiFeO3 (BFO) and Bi0.9Nd0.1FeO3 (BNFO) compounds were synthesized by conventional solid-state route. All the compounds were crystallized in rhombohedral structure with R3c (IUCr No. 161) space group. Negative temperature coefficient of Resistance character has been observed from Complex impedance studies. ac conductivity in these compounds follows universal power law. Correlated Barrier Hopping (CBH) model has been employed to explain the charge carries transport mechanism. Density of states near Fermi level observed to be decreasing with the Nd substitution. Improved insulating character and decrease in density of states in BNFO compound suggested that possible reduction in oxygen vacancies. Activation energies calculated from Arrhenius plots revealed that electronic hopping, oxygen vacancies movements are the contributors to the ac conduction in the measured temperature range.

  8. Study of structural, magnetic and electrical properties on Ho-substituted BiFeO3

    Science.gov (United States)

    Durga Rao, T.; Karthik, T.; Srinivas, Adiraj; Asthana, Saket

    2012-12-01

    The polycrystalline Bi1-xHoxFeO3 (x=0, 0.05, 0.1) compounds were synthesized by conventional solid-state route. Rietveld refinement revealed that all the compounds were stabilized in rhombohedral structure with R3c (IUCr No. 161) space group. Room temperature magnetic measurements revealed that Ho substitution induces ferromagnetism and improves the magnetic properties of BiFeO3. A competing ferro and anti-ferro magnetic interaction was observed in these compounds. Temperature variation of complex impedance studies revealed that electrical properties are improved with the Ho substitution. The ac conductivity found to obey universal power law and showed the negative temperature coefficient of resistance character. Correlated barrier hopping model (CBH) was employed to explain the frequency and temperature dependence of ac conductivity and the mechanism of transport in the material BFO and Ho substituted BFO. Density of states near Fermi level was calculated by using the ac conductivity data.

  9. Structural and electronic transformation pathways in morphotropic BiFeO3

    Science.gov (United States)

    Sharma, P.; Heo, Y.; Jang, B.-K.; Liu, Y. Y.; Li, J. Y.; Yang, C.-H.; Seidel, J.

    2016-09-01

    Phase boundaries in multiferroics, in which (anti-)ferromagnetic, ferroelectric and ferroelastic order parameters coexist, enable manipulation of magnetism and electronic properties by external electric fields through switching of the polarization in the material. It has been shown that the strain-driven morphotropic phase boundaries in a single-phase multiferroic such as BiFeO3 (BFO) can exhibit distinct electronic conductivity. However, the control of ferroelectric and phase switching and its correlation with phase boundary conductivity in this material has been a significant challenge. Supported by a thermodynamic approach, here we report a concept to precisely control different switching pathways and the associated control of electronic conductivity in mixed phase BFO. This work demonstrates a critical step to control and use non-volatile strain-conductivity coupling at the nanoscale. Beyond this observation, it provides a framework for exploring a route to control multiple order parameters coupled to ferroelastic and ferroelectric order in multiferroic materials.

  10. Tetragonal BiFeO3 on yttria-stabilized zirconia

    Directory of Open Access Journals (Sweden)

    Heng-Jui Liu

    2015-11-01

    Full Text Available High structural susceptibility of multiferroic BiFeO3 (BFO makes it a potential replacement of current Pb-based piezoelectrics. In this study, a tetragonal phase is identified based on a combination of x-ray diffraction, scanning transmission electronic microscopy, x-ray absorption spectroscopy, and Raman spectroscopy when BFO is grown on yttria-stabilized zirconia (YSZ substrates. To distinguish the discrepancy between this tetragonal phase and common cases of monoclinic BFO, piezoelectric force microscopy images and optical property are also performed. It shows a lower electrostatic energy of ferroelectric domains and a large reduction of band gap for BFO grown on YSZ substrate comparing to the well-known one grown on LaAlO3 substrate. Our findings in this work can provide more insights to understand the structural diversity of multiferroic BFO system for further applications.

  11. Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.

    Science.gov (United States)

    Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong

    2016-08-31

    Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances. PMID:27502999

  12. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia

    2012-04-06

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  13. Ab initio study on phase transition and magnetism of BiFeO3 under pressure

    Institute of Scientific and Technical Information of China (English)

    Feng Hong-Jian; Liu Fa-Min

    2009-01-01

    In this paper the first-principles calculations within local spin density approximation(LSDA)+U show that BiFeO3 experiences a mixed phase state with P4mm structure being the intermediate phase before the pressure of phase transition is reached.The critical pressure for the insulator-metal transition(IMT)is found to be about 50 GPa.A pressure induced crossover of high-spin states and low-spin states is observed close to the IMT pressure in R3c structure.The LSDA+U calculations account well for the mechanism of the IMT and crossover of spin states predicted in recent experiment(Re[1]).

  14. Strain-induced electrostatic enhancements of BiFeO3 nanowire loops.

    Science.gov (United States)

    Liu, Jun; Prashanthi, Kovur; Li, Zhi; McGee, Ryan T; Ahadi, Kaveh; Thundat, Thomas

    2016-08-17

    Semiconductor nanowires (NWs), due to their intriguing structural and physical properties, offer tremendous potential for future technological applications. The existence of strain in NWs can greatly affect, for instance, their mechanical, electrical and optical properties. Here, we report an extraordinary electrostatic response of semiconductor BiFeO3 NW loops, based on Kelvin probe force microscopy (KPFM) and electrostatic force microscopy (EFM). A substantial ∼300 mV surface potential difference, accompanied by an ∼29% higher surface charge density, was found on the NW loop. We also found that the electrostatic enhancement is strongly related to the strain present at the curvature of the NW loops. We propose that the electric polarization coupled with mechanical strain (piezoelectric effect) or strain gradient (flexoelectricity) as possible reasons to account for our observation. These findings provide new insights into multiferroic based semiconductor NWs under external stimuli as well as significant inspiration towards strain sensors and electromechanical devices with multifunctional sensing abilities. PMID:27477993

  15. Association of microstructure and electric heterogeneity in BiFeO3

    International Nuclear Information System (INIS)

    BiFeO3 ceramics was synthesized by solid state reaction technique. Synchrotron X-ray diffraction analysis was employed to investigate the phase formation and structure determination. Rietveld refinement of the diffracted data confirmed the rhombohedrally distorted perovskite structure with space group R3c. Localized atomic structure determined from fitted X-ray data showed off centered displacement of Fe3+ cations with a magnitude of 0.397 Å along c-axis. The FeO6 octahedron comprised of two types of Fe–O bonds with bond lengths of ∼1.935 Å and ∼2.131 Å. Impedance spectroscopic data collected in wide temperature (300–400 K) and frequency (200 Hz–2 MHz) ranges, demonstrated two relaxation phenomena corresponding to two heterogeneous phases. The best fits to the collected impedance data were achieved by employing an equivalent circuit model Rg(RgbCgb)(ReQe). Grain boundaries showed only p-type small polaronic hopping conduction process assisted with the oxidation of Fe3+ to Fe4+ in measured temperature range of 300–400 K. Grains exhibited p-type small polaronic hopping conduction mechanism up to 375 K; however, above 375 K electronic conduction becomes prominent. Conduction is dominated by short range hopping of the polarons among Fe3+ and Fe4+ or through the first ionized oxygen vacancy bridge between Fe3+ and Fe2+ cations. - Highlights: • Single phase BiFeO3 ceramics have been synthesized by solid state reaction method. • Synchrotron XRD revealed a rhombohedrally distorted structure with space group R3c. • Two relaxation phenomena in impedance data demonstrated two heterogeneous phases. • Conduction is dominated by short range hopping of the polarons among Fe3+ and Fe4+

  16. Effect of surface modification of BiFeO3 on the dielectric, ferroelectric, magneto-dielectric properties of polyvinylacetate/BiFeO3 nanocomposites

    Directory of Open Access Journals (Sweden)

    O. P. Bajpai

    2014-09-01

    Full Text Available Bismuth ferrite (BiFeO3 is considered as one of the most promising materials in the field of multiferroics. In this work, a simple green route as well as synthetic routes has been used for the preparation of pure phase BiFeO3. An extract of Calotropis Gigantea flower was used as a reaction medium in green route. In each case so formed BiFeO3 particles are of comparable quality. These particles are in the range of 50–60 nm and exhibit mixed morphology (viz., spherical and cubic as confirmed by TEM analysis. These pure phase BiFeO3 nanoparticles were first time surface modified effectively by mean of two silylating agent’s viz., tetraethyl orthosilicate (TEOS and (3-Aminopropyltriethoxysilane (APTES. Modified and unmodified BiFeO3 nanoparticles were efficiently introduced into polyvinylacetate (PVAc matrix. It has been shown that nanocomposite prepared by modified BiFeO3 comprise superior dispersion characteristics, improved ferroelectric properties and favorable magneto-dielectric properties along with excellent wettability in compare to nanocomposite prepared by unmodified BiFeO3. These preliminary results demonstrate possible applications of this type of nanocomposites particularly in the field of multiferroic coating and adhesives.

  17. Thin film bismuth iron oxides useful for piezoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  18. Reactively sputtered Fe3O4-based films for spintronics

    Institute of Scientific and Technical Information of China (English)

    Li Peng; Jin Chao; Mi Wen-Bo; Bai Hai-Li

    2013-01-01

    Half metallic polycrystalline,epitaxial Fe3O4 films and Fe3O4-based heterostructures for spintronics were fabricated by DC reactive magnetron sputtering.Large tunneling magnetoresistance was found in the polycrystalline Fe3O4 films and attributed to the insulating grain boundaries.The pinning effect of the moments at the grain boundaries leads to a significant exchange bias.Frozen interfacial/surface moments induce weak saturation of the high-field magnetoresistance.The films show a moment rotation related butterfly-shaped magnetoresistance.It was found that in the films,natural growth defects,antiphase boundaries,and magnetocrystaltine anisotropy play important roles in high-order anisotropic magnetoresistance.Spin injection from Fe3O4 films to semiconductive Si and ZnO was measured to be 45% and 28.5%,respectively.The positive magnetoresistance in the Fe3O4-based heterostructures is considered to be caused by a shift of the Fe3O4 eg ↑ band near the interface.Enhanced magnetization was observed in Fe3O4/BiFeO3 heterostructures experimentally and further proved by first principle calculations.The enhanced magnetization can be explained by spin moments of the thin BiFeO3 layer substantially reversing into a ferromagnetic arrangement under a strong coupling that is principally induced by electronic orbital reconstruction at the interface.

  19. Polycrystalline thin film materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  20. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  1. When are thin films of metals metallic?

    Science.gov (United States)

    Plummer, E. W.; Dowben, P. A.

    1993-04-01

    There is an increasing body of experimental information suggesting that very thin films of materials, normally considered to be metals, exhibit behavior characteristic of a nonmetal. In almost all cases, there is a nonmetal-to-metal transition as a function of film density or thickness, frequently accompanied by a structural transition. Amazingly, this behavior seems to occur for metal films on metal substrates, as well as for metals on semiconductors. The identification of this phenomena and the subsequent explanation has been slow in developing, due to the inability to directly measure the conductivity of a submonolayer film. This paper will discuss the evidence accumulated from variety of spectroscopic experimental techniques for three systems: a Mott-Hubbard transition, a Peierls-like distortion, and a Wilson transition.

  2. Energetic deposition of thin metal films

    CERN Document Server

    Al-Busaidy, M S K

    2001-01-01

    deposited films. The primary aim of this thesis was to study the physical effect of energetic deposition metal thin films. The secondary aim is to enhance the quality of the films produced to a desired quality. Grazing incidence X-ray reflectivity (GIXR) measurements from a high-energy synchrotron radiation source were carried out to study and characterise the samples. Optical Profilers Interferometery, Atomic Force Microscope (AFM), Auger electron spectroscopy (AES), Medium energy ion spectroscopy (MEIS), and the Electron microscope studies were the other main structural characterisation tools used. AI/Fe trilayers, as well as multilayers were deposited using a Nordico planar D.C. magnetron deposition system at different voltage biases and pressures. The films were calibrated and investigated. The relation between energetic deposition variation and structural properties was intensely researched. Energetic deposition refers to the method in which the deposited species possess higher kinetic energy and impact ...

  3. Thin Films for Coating Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    S.M.Mukhopadhyay; P.Joshi; R.V.Pulikollu

    2005-01-01

    For nano-structured solids (those with one or more dimensions in the 1-100 nm range), attempts of surface modification can pose significant and new challenges. In traditional materials, the surface coating could be several hundreds nanometers in thickness, or even microns and millimeters. In a nano-structured material, such as particle or nanofibers, the coating thickness has to be substantially smaller than the bulk dimensions (100 nm or less), yet be durable and effective. In this paper, some aspects of effective nanometer scale coatings have been discussed. These films have been deposited by a non-line of sight (plasma)techniques; and therefore, they are capable of modifying nanofibers, near net shape cellular foams, and other high porosity materials. Two types of coatings will be focused upon: (a) those that make the surface inert and (b) those designed to enhance surface reactivity and bonding. The former has been achieved by forming 1-2 nm layer of -CF2- (and/or CF3) groups on the surface, and the latter by creating a nanolayer of SiO2-type compound. Nucleation and growth studies of the plasma-generated film indicate that they start forming as 2-3 nm high islands that grow laterally, and eventually completely cover the surface with 2-3nm film. Contact angle measurements indicate that these nano-coatings are fully functional even before they have achieved complete coverage of 2-3 nm. They should therefore be applicable to nano-structural solids.This is corroborated by application of these films on vapor grown nanofibers of carbon, and on graphitic foams. Coated and uncoated materials are infiltrated with epoxy matrix to form composites and their microstructure, as well as mechanical behaviors are compared. The results show that the nano-oxide coating can significantly enhance bond formation between carbon and organic phases, thereby enhancing wettability,dispersion, and composite behavior. The fluorocarbon coating, as expected, reduces bond formation, and

  4. Basic thin film processing for high-Tc superconductors

    International Nuclear Information System (INIS)

    Much attention has been paid for the thin films of perovskite-type oxides especially for the thin films of the high-Tc superconducting ceramics. Historically the thin films of the perovskite-type oxides have been studied as a basic research for ferroelectric materials. Thin films of BaTiO3 and PbTiO3 were tried to deposited and there ferroelectricity was evaluated. Recently this kind of perovskite thin films, including PZT (PbTiO3-PbZrO3) and PLZT [(Pb, La) (Zr, T)O3] have been studied in relation to the synthesis of thin film dielectrics, pyroelectrics, piezoelectrics, electro-optic materials, and acousto-optic materials. Thin films of BPB (BaPbO3- BaBiO3) were studied as oxide superconductors. At present the thin films of the rare-earth high-Tc superconductors of LSC (La1-xSrxCuO4) and YBC (YBa2Cu3O7-δ) have been successfully synthesized owing to the previous studies on the ferroelectric thin films of the perovskite- type oxides. Similar to the rare-earth high-Tc superconductors thin films of the rare-earth-free high-Tc superconductors of BSCC (Bi-Sr-Ca-Cu-O)9 and TBCC (Tl- Ba-Ca-Cu-O)10 system have been synthesized. In this section the basic processes for the fabrication of the high- Tc perovskite superconducting thin films are described

  5. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  6. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  7. INVESTIGATION OF PHOTOELECTROCHROMIC THIN FILM AND DEVICE

    Institute of Scientific and Technical Information of China (English)

    M.J. Chen; H. Shen

    2005-01-01

    Photoelectrochromic device is a combination of dye-sensitized solar cells and electrochromic WO3 layers. Ectrochroelmic WO3 layer and TiO2 layer had been prepared by the sol-gel process, then be assembled to pohotoelectrochromic device. The effects of heating temperature on photoelectrochromic were investigated. The results showed that thin films prepared by dip-coating and spin-coating had good film quality and the device made by the method mentioned in the paper had good photoelectrochromie properties.

  8. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...... is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally...

  9. Thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.; Mantravadi, M. K.

    1987-08-01

    Thin-film p-CdTe/CdS/SnO2:F/glass solar cells of the inverted configuration were prepared by the deposition of p-type CdTe films onto CdS/SnO2:F/glass substrates using CVD or close-spaced sublimation (CSS) techniques based on the procedures of Chu et al. (1983) and Nicholl (1963), respectively. The deposition rates of p-CdTe films deposited by CSS were higher than those deposited by the CVD technique (4-5 min were sufficient), and the efficiencies higher than 10 percent were obtained. However, the resistivity of films prepared by CSS was not as readily controlled as that of the CVD films. The simplest technique to reduce the resistivity of the CSS p-CdTe films was to incorporate a dopant, such as As or Sb, into the reaction mixture during the preparation of the source material. The films with resistivities in the range of 500-1000 ohm cm were deposited in this manner.

  10. Nitrogen doped zinc oxide thin film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  11. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. [ed.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  12. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. (ed.)

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  13. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  14. Multiferroic oxide thin films and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chengliang, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Hu, Weijin; Wu, Tom, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Tian, Yufeng [School of Physics, Shandong University, Jinan 250100 (China)

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  15. EBSD analysis of electroplated magnetite thin films

    Science.gov (United States)

    Koblischka-Veneva, A.; Koblischka, M. R.; Teng, C. L.; Ryan, M. P.; Hartmann, U.; Mücklich, F.

    2010-05-01

    By means of electron backscatter diffraction (EBSD), we analyse the crystallographic orientation of electroplated magnetite thin films on Si/copper substrates. Varying the voltage during the electroplating procedure, the resulting surface properties are differing considerably. While a high voltage produces larger but individual grains on the surface, the surfaces become smoother on decreasing voltage. Good quality Kikuchi patterns could be obtained from all samples; even on individual grains, where the surface and the edges could be measured. The spatial resolution of the EBSD measurement could be increased to about 10 nm; thus enabling a detailed analysis of single magnetite grains. The thin film samples are polycrystalline and do not exhibit a preferred orientation. EBSD reveals that the grain size changes depending on the processing conditions, while the detected misorientation angles stay similar.

  16. Generalized Ellipsometry on Ferromagnetic Sculptured Thin Films.

    Science.gov (United States)

    Schmidt, Daniel; Hofmann, Tino; Mok, Kah; Schmidt, Heidemarie; Skomski, Ralf; Schubert, Eva; Schubert, Mathias

    2011-03-01

    We present and discuss generalized ellipsometry and generalized vector-magneto-optic ellipsometry investigations on cobalt nanostructured thin films with slanted, highly-spatially coherent, columnar arrangement. The samples were prepared by glancing angle deposition. The thin films are highly transparent and reveal strong form-induced birefringence. We observe giant Kerr rotation in the visible spectral region, tunable by choice of the nanostructure geometry. Spatial magnetization orientation hysteresis and magnetization magnitude hysteresis properties are studied using a 3-dimensional Helmholtz coil arrangement allowing for arbitrary magnetic field direction at the sample position for field strengths up to 0.4 Tesla. Analysis of data obtained within this novel vector-magneto-optic setup reveals magnetization anisotropy of the Co slanted nanocolumns supported by mean-field theory modeling.

  17. Thin film sensors for measuring small forces

    OpenAIRE

    F. Schmaljohann; Hagedorn, D.; LÖffler, F.

    2015-01-01

    Especially in the case of measuring small forces, the use of conventional foil strain gauges is limited. The measurement uncertainty rises by force shunts and is due to the polymer foils used, as they are susceptible to moisture. Strain gauges in thin film technology present a potential solution to overcome these effects because of their direct and atomic contact with the measuring body, omitting an adhesive layer and the polymer foil. For force measurements up to 1 N, a...

  18. Surface morphology of thin films polyoxadiazoles

    OpenAIRE

    J. Weszka; M.M. Szindler; M. Chwastek-Ogierman; M. Bruma; P. Jarka; Tomiczek, B.

    2011-01-01

    urpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used....

  19. Recent developments in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, N.G. (Inst. Militar de Engenharia, Rio de Janeiro, RJ (Brazil))

    1990-12-15

    In recent years, remarkable progress has been made in improving the photovoltaic (PV) conversion efficiencies of thin film solar cells. The best active-area efficiencies (air mass 1.5) of thin film solar cells reported are as follows: polycrystalline CuInSe{sub 2}, 14.1%; CuIn(Ga)Se{sub 2}, 12.9%; CdTe, 12.3%, total area; single-junction hydrogenated amorphous silicon (a-Si:H), 12.0%; multiple-junction a-Si:H, 13.3%; cleaved epitaxial GaAs-Ga{sub 1-x}Al{sub x}As, 21.5%, total area. Laboratory methods for preparing small thin film solar cells are evaporation, closed-space sublimation, closed-space vapor transport, vapor phase epitaxy and metallo-organic chemical vapor deposition, while economic large-area deposition techniques such as sputtering, glow discharge reduction, electrodeposition, spraying and screen printing are being used for module fabrication. The following aperture-area efficiencies have been measured, at the Solar Energy Research Inst., for thin film modules: a-Si:H, 9.8%, 933 cm{sup 2}; CuIn(Ga)Se{sub 2}, 11.1%, 938 cm{sup 2}; CdTe, 7.3%, 838 cm{sup 2}. The instability issue of a-Si:H continues to be a high priority area. It is necessary to improve the open-circuit voltage of CuIn(Ga)Se{sub 2} cells, which do not seem to exhibit any intrinsic degradation mechanisms. With continued progress and increased production, PV modules are likely to become competitive for medium-scale power requirements in the mid-1990s. (orig.).

  20. Amorphous silicon for thin-film transistors

    OpenAIRE

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and addressable image sensor arrays, due to a new technology of low-cost, Iow-temperature processing overlarge areas. ... Zie: Abstract

  1. Quantized Nanocrystalline CdTe Thin Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline CdTe thin films were prepared by asymmetric rectangular pulse electrodeposition in organic solution at 110°C. STM image shows a porous network morphology constructed by interconnected spherical CdTe crystallites with a mean diameter of 4.2 nm. A pronounced size quantization was indicated in the action and absorption spectra. Potentials dependence dual conductive behavior was revealed in the photocurrent-potential (I-V) curves.

  2. Ferromagnetic Liquid Thin Films Under Applied Field

    OpenAIRE

    Banerjee, S.; Widom, M.

    1999-01-01

    Theoretical calculations, computer simulations and experiments indicate the possible existence of a ferromagnetic liquid state, although definitive experimental evidence is lacking. Should such a state exist, demagnetization effects would force a nontrivial magnetization texture. Since liquid droplets are deformable, the droplet shape is coupled with the magnetization texture. In a thin-film geometry in zero applied field, the droplet has a circular shape and a rotating magnetization texture ...

  3. Electrochemical Analysis of Conducting Polymer Thin Films

    OpenAIRE

    Bin Wang; Vyas, Ritesh N.

    2010-01-01

    Polyelectrolyte multilayers built via the layer-by-layer (LbL) method has been one of the most promising systems in the field of materials science. Layered structures can be constructed by the adsorption of various polyelectrolyte species onto the surface of a solid or liquid material by means of electrostatic interaction. The thickness of the adsorbed layers can be tuned precisely in the nanometer range. Stable, semiconducting thin films are interesting research subjects. We use a conducting...

  4. Structures for dense, crack free thin films

    Science.gov (United States)

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  5. Electrical characterization of thin film ferroelectric capacitors

    OpenAIRE

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D; Keur, W.; J. Schmitz; Hueting, R.J.E.

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon offer a re-use of electronic circuitry, low tuning voltages, a high capacitance density, a low cost, a presence of bulk acoustic wave resonance(s) and decoupling functionality. The basic operation and ...

  6. Thin-film silicon solar cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.V.; Meier, J.; Kroll, U.; Droz, C.; Bailat, J. [University of Neuchatel (Switzerland). Inst. of Microtechnology; Schade, H. [RWE Schott Solar GmbH, Putzbrunn (Germany); Vanecek, M. [Academy of Sciences, Prague (Czech Republic). Inst. of Physics; Vallat Sauvain, E.; Wyrsch, N. [University of Neuchatel (Switzerland). Inst. of Microtechnology; Unaxis SPTec S A, Neuchatel (Switzerland)

    2004-07-01

    This paper describes the use, within p-i-n- and n-i-p-type solar cells, of hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon ({mu}c-Si:H) thin films (layers), both deposited at low temperatures (200{sup o}C) by plasma-assisted chemical vapour deposition (PECVD), from a mixture of silane and hydrogen. Optical and electrical properties of the i-layers are described. These properties are linked to the microstructure and hence to the i-layer deposition rate, that in turn, affects throughput in production. The importance of contact and reflection layers in achieving low electrical and optical losses is explained, particularly for the superstrate case. Especially the required properties for the transparent conductive oxide (TCO) need to be well balanced in order to provide, at the same time, for high electrical conductivity (preferably by high electron mobility), low optical absorption and surface texture (for low optical losses and pronounced light trapping). Single-junction amorphous and microcrystalline p-i-n-type solar cells, as fabricated so far, are compared in their key parameters (J{sub sc},FF,V{sub oc}) with the [theoretical] limiting values. Tandem and multijunction cells are introduced; the {mu}c-Si: H/a-Si: H or [micromorph] tandem solar cell concept is explained in detail, and recent results obtained here are listed and commented. Factors governing the mass-production of thin-film silicon modules are determined both by inherent technical reasons, described in detail, and by economic considerations. The cumulative effect of these factors results in distinct efficiency reductions from values of record laboratory cells to statistical averages of production modules. Finally, applications of thin-film silicon PV modules, especially in building-integrated PV (BIPV) are shown. In this context, the energy yields of thin-film silicon modules emerge as a valuable gauge for module performance, and compare very favourably with those of

  7. Fluxoid dynamics in superconducting thin film rings

    OpenAIRE

    Kirtley, J. R.; Tsuei, C. C.; Kogan, V. G.; Clem, J. R.; Raffy, H.; Li, Z. Z.

    2003-01-01

    We have measured the dynamics of individual magnetic fluxoids entering and leaving photolithographically patterned thin film rings of the underdoped high-temperature superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+\\delta}$, using a variable sample temperature scanning SQUID microscope. These results can be qualitatively described using a model in which the fluxoid number changes by thermally activated nucleation of a Pearl vortex in, and transport of the Pearl vortex across, the ring wall.

  8. Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO2-based thin films

    Science.gov (United States)

    Katayama, Kiliha; Shimizu, Takao; Sakata, Osami; Shiraishi, Takahisa; Nakamura, Shogo; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J.; Uchida, Hiroshi; Funakubo, Hiroshi

    2016-04-01

    Orientation control of {100}-oriented epitaxial orthorhombic 0.07YO1.5-0.93HfO2 films grown by pulsed laser deposition was investigated. To achieve in-plane lattice matching, indium tin oxide (ITO) and yttria-stabilized zirconia (YSZ) were selected as underlying layers. We obtained (100)- and (001)/(010)-oriented films on ITO and YSZ, respectively. Ferroelastic domain formation was confirmed for both films by X-ray diffraction using the superlattice diffraction that appeared only for the orthorhombic symmetry. The formation of ferroelastic domains is believed to be induced by the tetragonal-orthorhombic phase transition upon cooling the films after deposition. The present results demonstrate that the orientation of HfO2-based ferroelectric films can be controlled in the same manner as that of ferroelectric films composed of conventional perovskite-type material such as Pb(Zr, Ti)O3 and BiFeO3.

  9. Superconducting properties of iron chalcogenide thin films

    Directory of Open Access Journals (Sweden)

    Paolo Mele

    2012-01-01

    Full Text Available Iron chalcogenides, binary FeSe, FeTe and ternary FeTexSe1−x, FeTexS1−x and FeTe:Ox, are the simplest compounds amongst the recently discovered iron-based superconductors. Thin films of iron chalcogenides present many attractive features that are covered in this review, such as: (i easy fabrication and epitaxial growth on common single-crystal substrates; (ii strong enhancement of superconducting transition temperature with respect to the bulk parent compounds (in FeTe0.5Se0.5, zero-resistance transition temperature Tc0bulk = 13.5 K, but Tc0film = 19 K on LaAlO3 substrate; (iii high critical current density (Jc ~ 0.5 ×106 A cm2 at 4.2 K and 0 T for FeTe0.5Se0.5 film deposited on CaF2, and similar values on flexible metallic substrates (Hastelloy tapes buffered by ion-beam assisted deposition with a weak dependence on magnetic field; (iv high upper critical field (~50 T for FeTe0.5Se0.5, Bc2(0, with a low anisotropy, γ ~ 2. These highlights explain why thin films of iron chalcogenides have been widely studied in recent years and are considered as promising materials for applications requiring high magnetic fields (20–50 T and low temperatures (2–10 K.

  10. Thin film cadmium telluride photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bohn, R. (Toledo Univ., OH (United States))

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  11. Supramolecular structure of electroactive polymer thin films

    Science.gov (United States)

    Kornilov, V. M.; Lachinov, A. N.; Karamov, D. D.; Nabiullin, I. R.; Kul'velis, Yu. V.

    2016-05-01

    This paper presents the results of an experimental investigation of the supramolecular structure of polydiphenylenephthalide thin films that exhibit effects of resistive switching. The supramolecular structure of the polymer has been investigated using small-angle neutron scattering in conjunction with atomic force microscopy. It has been found that the internal structure of polymer films consists of structural elements in the form of spheroids. The sizes of the structural elements, which were obtained from the neutron scattering data and analysis of the atomic force microscopy images, correlate well with each other. A model of the formation of polymer layers has been proposed. The observed structural elements in polymer films are formed due to the association of macromolecules in the initial polymer solution.

  12. Electrical resistivity of thin metal films

    CERN Document Server

    Wissmann, Peter

    2007-01-01

    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  13. Irradiation effects in YBCO thin films

    International Nuclear Information System (INIS)

    Oxide superconductors are very sensitive to electron or ion beam irradiation/implantation. In the past 19 years after high-Tc (HTc) superconductivity was discovered in these materials, many aspects of interactions of accelerated particles with HTc thin films were investigated. In this paper short review of most significant phenomena is given, especially of those important for electronic applications (controllable reduction of critical temperature and critical current density) and their applications for HTc film patterning, fabrication of HTc Josephson junctions and SQUIDs. Some new results in creating 3-d inhomogeneous regions in YBCO superconductors by ion irradiation/implantation and investigation of high harmonic generation in YBCO film modified by 100 keV oxygen ions are presented. (author)

  14. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  15. Magnetization relaxation in sputtered thin permalloy films

    Science.gov (United States)

    Oliveira, R. C.; Rodríguez-Suárez, R. L.; Aguiar, F. M. De; Rezende, S. M.; Fermin, J. R.; Azevedo, A.

    2004-05-01

    In order to understand the underlying phenomena of magnetization damping in metallic thin films, samples of permalloy films were grown by magnetron sputtering, and their 8.6-GHz ferromagnetic resonance linewidth ΔH has been measured as a function of the Permalloy (Py) film thickness t, at room temperature. We made samples of Py(t)/Si(001) and X/Py(t)/X/Si(001), with X=Pd (40Å), and Cr (25Å), with 20Å < t < 200Å. While ΔH scales with t-2 in the bare Py/Si series, it is shown that the damping behavior strongly depends on X in the sandwich samples.

  16. Nanocrystalline silicon based thin film solar cells

    Science.gov (United States)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  17. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  18. Preface: Thin films of molecular organic materials

    Science.gov (United States)

    Fraxedas, J.

    2008-03-01

    This special issue is devoted to thin films of molecular organic materials and its aim is to assemble numerous different aspects of this topic in order to reach a wide scientific audience. Under the term 'thin films', structures with thicknesses spanning from one monolayer or less up to several micrometers are included. In order to narrow down this relaxed definition (how thin is thin?) I suggest joining the stream that makes a distinction according to the length scale involved, separating nanometer-thick films from micrometer-thick films. While the physical properties of micrometer-thick films tend to mimic those of bulk materials, in the low nanometer regime new structures (e.g., crystallographic and substrate-induced phases) and properties are found. However, one has to bear in mind that some properties of micrometer-thick films are really confined to the film/substrate interface (e.g. charge injection), and are thus of nanometer nature. Supported in this dimensionality framework, this issue covers the most ideal and model 0D case, a single molecule on a surface, through to the more application-oriented 3D case, placing special emphasis on the fascinating 2D domain that is monolayer assembly. Thus, many aspects will be reviewed, such as single molecules, self-organization, monolayer regime, chirality, growth, physical properties and applications. This issue has been intentionally restricted to small molecules, thus leaving out polymers and biomolecules, because for small molecules it is easier to establish structure--property relationships. Traditionally, the preparation of thin films of molecular organic materials has been considered as a secondary, lower-ranked part of the more general field of this class of materials. The coating of diverse surfaces such as silicon, inorganic and organic single crystals, chemically modified substrates, polymers, etc., with interesting molecules was driven by the potential applications of such molecular materials

  19. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  20. Investigation of exchange bias in 0.1MFe2O4/0.9BiFeO3 (M=Co, Cu, Ni) nanocomposite

    International Nuclear Information System (INIS)

    The 0.1MFe2O4/0.9BiFeO3 (M=Co, Cu, Ni) nanocomposite samples were synthesized by the sol–gel method. Phase composition analysis was carried out, which showed that these bulk samples were composed of a ferrimagnetic MFe2O4 (M=Co, Cu, Ni) and a ferroelectric antiferromagnet (FEAF) BiFeO3 phases, respectively. The magnetic properties of all the samples were investigated by measuring their magnetization as a function of temperature and magnetic field. These results indicated that the magnetic hysteresis loops of 0.1CuFe2O4/0.9BiFeO3 sample sintered in air atmosphere at 550 °C for 3 h exhibited a negative shift and an enhanced coercivity at low temperature ascribed to strong exchange coupling between the BiFeO3 and CuFe2O4 grains. However, there were no magnetic hysteresis loops in both the 0.1CoFe2O4/0.9BiFeO3 sample and the 0.1NiFe2O4/0.9BiFeO3 sample. In view of these results, we tend to think the CuFe2O4/BiFeO3 nanocomposite system may be a useful multifunctional material. - Highlights: ► Exchange bias effect in ferroelectric antiferromagnet (FEAF)/ferromagnet (FM) nanocomposites. ► Exchange bias effect is only observed in the 0.1CuFe2O4/0.9BiFeO3 nanocomposite. ► Lower saturation magnetization is important for producing exchange bias in FEAF/FM system.

  1. Cerium Dioxide Thin Films Using Spin Coating

    Directory of Open Access Journals (Sweden)

    D. Channei

    2013-01-01

    Full Text Available Cerium dioxide (CeO2 thin films with varying Ce concentrations (0.1 to 0.9 M, metal basis were deposited on soda-lime-silica glass substrates using spin coating. It was found that all films exhibited the cubic fluorite structure after annealing at 500°C for 5 h. The laser Raman microspectroscopy and GAXRD analyses revealed that increasing concentrations of Ce resulted in an increase in the degree of crystallinity. FIB and FESEM images confirmed the laser Raman and GAXRD analyses results owing to the predicted increase in film thickness with increasing Ce concentration. However, porosity and shrinkage (drying cracking of the films also increased significantly with increasing Ce concentrations. UV-VIS spectrophotometry data showed that the transmission of the films decreased with increasing Ce concentrations due to the increasing crack formation. Furthermore, a red shift was observed with increasing Ce concentrations, which resulted in a decrease in the optical indirect band gap.

  2. Investigating the interfacial dynamics of thin films

    Science.gov (United States)

    Rosenbaum, Aaron W.

    This thesis probes the interfacial dynamics and associated phenomena of thin films. Surface specific tools were used to study the self-assembly of alkanethiols, the mono- and bilayer dynamics of SF6, and the surface motion of poly(methyl methacrylate). Non-pertubative helium atom scattering was the principal technique used to investigate these systems. A variety of other complementary tools, including scanning tunneling microscopy, electron diffraction, Auger spectroscopy, atomic force microscopy, and ellipsometry were used in tandem with the neutral atom scattering studies. Controlling the spontaneous assembly of alkanethiols on Au(111) requires a better fundamental understanding of the adsorbate-adsorbate and substrate-adsorbate interactions. Our characterization focused on two key components, the surface structure and adsorbate vibrations. The study indicates that the Au(111) reconstruction plays a larger role than anticipated in the low-density phase of alkanethiol monolayers. A new structure is proposed for the 1-decanethiol monolayer that impacts the low-energy vibrational mode. Varying the alkane chain lengths imparts insight into the assembly process via characterization of a dispersionless phonon mode. Studies of SF6 physisorbed on Au(111) bridge surface research on rare gas adsorbates with complicated dynamical organic thin films. Mono- and bilayer coverages of SF6/Au(111) were studied at cryogenic temperatures. Our experiments probed the surface properties of SF6 yielding insights into substrate and coverage effects. The study discovered a dispersionless Einstein oscillation with multiple harmonic overtones. A second layer of SF6 softened the mode, but did not show any indications of bulk or cooperative interactions. The vibrational properties of SF 6 showed both striking similarities and differences when compared with physisorbed rare gases. Lastly, this thesis will discuss studies of thin film poly(methyl methacrylate) on Si. The non-pertubative and

  3. Theoretical investigation of the thermodynamic properties of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Vu Van [Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi (Viet Nam); Phuong, Duong Dai [Hanoi National University of Education, 136 Xuan Thuy, Hanoi (Viet Nam); Hoa, Nguyen Thi [University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2015-05-29

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks.

  4. Theoretical investigation of the thermodynamic properties of metallic thin films

    International Nuclear Information System (INIS)

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks

  5. Thin-liquid-film evaporation at contact line

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Zhenai PAN; Zhao CHEN

    2009-01-01

    When a liquid wets a solid wall, the extended meniscus near the contact line may be divided into three regions: a nonevaporating region, where the liquid is adsorbed on the wall; a transition region or thin-film region, where effects of long-range molecular forces (disjoining pressure) are felt; and an intrinsic meniscus region, where capillary forces dominate. The thin liquid film, with thickness from nanometers up to micrometers, covering the transition region and part of intrinsic meniscus, is gaining interest due to its high heat transfer rates. In this paper, a review was made of the researches on thin-liquid-film evaporation. The major characteristics of thin film, thin-film modeling based on continuum theory, simulations based on molecular dynamics, and thin-film profile and temperature measurements were summarized.

  6. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  7. Multifunctional BiFeO3/TiO2 nano-heterostructure: Photo-ferroelectricity, rectifying transport, and nonvolatile resistive switching property

    Science.gov (United States)

    Sarkar, Ayan; Khan, Gobinda Gopal; Chaudhuri, Arka; Das, Avishek; Mandal, Kalyan

    2016-01-01

    Multifunctional BiFeO3 nanostructure anchored TiO2 nanotubes are fabricated by coupling wet chemical and electrochemical routes. BiFeO3/TiO2 nano-heterostructure exhibits white-light-induced ferroelectricity at room temperature. Studies reveal that the photogenerated electrons trapped at the domain/grain boundaries tune the ferroelectric polarization in BiFeO3 nanostructures. The photon controlled saturation and remnant polarization opens up the possibility to design ferroelectric devices based on BiFeO3. The nano-heterostructure also exhibits substantial photovoltaic effect and rectifying characteristics. Photovoltaic property is found to be correlated with the ferroelectric polarization. Furthermore, the nonvolatile resistive switching in BiFeO3/TiO2 nano-heterostructure has been studied, which demonstrates that the observed resistive switching is most likely caused by the electric-field-induced carrier injection/migration and trapping/detrapping process at the hetero-interfaces. Therefore, BiFeO3/TiO2 nano-heterostructure coupled with logic, photovoltaics and memory characteristics holds promises for long-term technological applications in nanoelectronics devices.

  8. Multifunctional BiFeO3/TiO2 nano-heterostructure: Photo-ferroelectricity, rectifying transport, and nonvolatile resistive switching property

    International Nuclear Information System (INIS)

    Multifunctional BiFeO3 nanostructure anchored TiO2 nanotubes are fabricated by coupling wet chemical and electrochemical routes. BiFeO3/TiO2 nano-heterostructure exhibits white-light-induced ferroelectricity at room temperature. Studies reveal that the photogenerated electrons trapped at the domain/grain boundaries tune the ferroelectric polarization in BiFeO3 nanostructures. The photon controlled saturation and remnant polarization opens up the possibility to design ferroelectric devices based on BiFeO3. The nano-heterostructure also exhibits substantial photovoltaic effect and rectifying characteristics. Photovoltaic property is found to be correlated with the ferroelectric polarization. Furthermore, the nonvolatile resistive switching in BiFeO3/TiO2 nano-heterostructure has been studied, which demonstrates that the observed resistive switching is most likely caused by the electric-field-induced carrier injection/migration and trapping/detrapping process at the hetero-interfaces. Therefore, BiFeO3/TiO2 nano-heterostructure coupled with logic, photovoltaics and memory characteristics holds promises for long-term technological applications in nanoelectronics devices

  9. Pulsed laser deposition of pepsin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Nogradi, A. [Department of Ophthalmology, University of Szeged, H-6720, Szeged, Koranyi fasor 10-11 (Hungary)

    2005-07-15

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ({lambda} = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm{sup 2}. The pressure in the PLD chamber was 2.7 x 10{sup -3} Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm{sup 2}. The protein digesting capacity of the transferred pepsin was tested by adapting a modified 'protein cube' method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  10. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.

    Science.gov (United States)

    Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

  11. Nanomechanics of Ferroelectric Thin Films and Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.

    2016-08-31

    The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined. These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.

  12. Stripe glasses in ferromagnetic thin films

    Science.gov (United States)

    Principi, Alessandro; Katsnelson, Mikhail I.

    2016-02-01

    Domain walls in magnetic multilayered systems can exhibit a very complex and fascinating behavior. For example, the magnetization of thin films of hard magnetic materials is in general perpendicular to the thin-film plane, thanks to the strong out-of-plane anisotropy, but its direction changes periodically, forming an alternating spin-up and spin-down stripe pattern. The latter is stabilized by the competition between the ferromagnetic coupling and dipole-dipole interactions, and disappears when a moderate in-plane magnetic field is applied. It has been suggested that such a behavior may be understood in terms of a self-induced stripe glassiness. In this paper we show that such a scenario is compatible with the experimental findings. The strong out-of-plane magnetic anisotropy of the film is found to be beneficial for the formation of both stripe-ordered and glassy phases. At zero magnetic field the system can form a glass only in a narrow interval of fairly large temperatures. An in-plane magnetic field, however, shifts the glass transition towards lower temperatures, therefore enabling it at or below room temperature. In good qualitative agreement with the experimental findings, we show that a moderate in-plane magnetic field of the order of 50 mT can lead to the formation of defects in the stripe pattern, which sets the onset of the glass transition.

  13. Memristive switching in vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Buerger, Danilo; John, Varun; Kovacs, Gyoergy; Skorupa, Ilona; Helm, Manfred; Schmidt, Heidemarie [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)

    2011-07-01

    Memristive devices exhibit an improved performance at ultra-small scales. The microscopic model for memristive behavior in oxide nanostructures often depends on the distribution of oxygen vacancies and is determined by the cation species. In 2008 HP presented the first bipolar TiO2-based memristor for resistive applications, where the drift of oxygen vacancies causes a change in the resistance of ultrathin TiO2 films which can be locally modified by ion implantation. We prepared vanadium dioxide (VO2) thin films with the reversible metal-insulator phase transition at the thermochromic switching temperature of around 340 K by pulsed laser deposition on (0001)-sapphire substrates and analyzed the electric-pulse-induced thermochromic switching in the VO2 gap region at room temperature due to local heating. As a result, we find the typical pinched hysteresis loop of a memristor, a repeatable switching behavior for billions of voltage pulses and switching times shorter than 50 ns in VO2 thin films.

  14. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1986-08-01

    The major objective of this work was to demonstrate CdTe devices grown by chemical vapor deposition (CVD) with a total area greater than 1 cm2 and photovoltic efficiencies of at least 13%. During the period covered, various processing steps were investigated for the preparation of thin-film CdTe heterojunction solar cells of the inverted configuration. Glass coated with fluorine-doped tin oxide was used as the substrate. Thin-film heterojunction solar cells were prepared by depositing p-CdTe films on substrates using CVD and close-spaced sublimation (CSS). Cells prepared from CSS CdTe usually have a higher conversion efficiency than those prepared from CVD CdTe, presumably due to the chemical interaction between CdS and CdTe at the interface during the CVD process. The best cell, about 1.2 sq cm in area, had an AM 1.5 (global) efficiency of 10.5%, and further improvements are expected by optimizing the process parameters.

  15. Effects of magnetic annealing on structure and multiferroic properties of pure and dysprosium substituted BiFeO 3

    KAUST Repository

    Zhang, Shuxia

    2012-07-01

    In this work, the effects of magnetic annealing on crystal structure and multiferroic properties of BiFeO 3 and Bi 0.85Dy 0.15FeO 3 have been investigated. It is found that the X-ray diffraction patterns of pure BiFeO 3 samples are obviously broadened after magnetic annealing, whereas those of Bi 0.85Dy 0.15FeO 3 samples are almost unchanged. Magnetic field annealing did not affect the magnetic properties of these two kinds of samples much. However, ferroelectric properties of the two materials exhibited different behaviors after magnetic field annealing. For pure BiFeO 3 samples, the remnant polarizations (P r) are suppressed; in contrast, for Bi 0.85Dy 0.15FeO 3 samples, P r is greatly enhanced. Possible mechanisms for the effects of magnetic field annealing have been discussed. © 2012 Elsevier B.V. All rights reserved.

  16. Self-interaction corrected LDA + U investigations of BiFeO3 properties: plane-wave pseudopotential method

    Science.gov (United States)

    Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.

    2015-11-01

    The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.

  17. Overview and Challenges of Thin Film Solar Electric Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  18. Networking Behavior in Thin Film and Nanostructure Growth Dynamics

    OpenAIRE

    Yuksel, Murat; Karabacak, Tansel; Guclu, Hasan

    2007-01-01

    Thin film coatings have been essential in development of several micro and nano-scale devices. To realize thin film coatings various deposition techniques are employed, each yielding surface morphologies with different characteristics of interest. Therefore, understanding and control of the surface growth is of great interest. In this paper, we devise a novel network-based modeling of the growth dynamics of such thin films and nano-structures. We specifically map dynamic steps taking place du...

  19. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  20. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  1. Applications of thin-film photovoltaics for space

    Science.gov (United States)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The authors discuss the potential applications of thin-film polycrystalline and amorphous cells for space. There have been great advances in thin-film solar cells for terrestrial applications. Transfer of this technology to space applications could result in ultra low-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper indium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon arrays. The possibility of using thin-film multi-bandgap cascade solar cells is discussed.

  2. Thin-Film Photovoltaics: Status and Applications to Space Power

    Science.gov (United States)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The potential applications of thin film polycrystalline and amorphous cells for space are discussed. There have been great advances in thin film solar cells for terrestrial applications; transfer of this technology to space applications could result in ultra low weight solar arrays with potentially large gains in specific power. Recent advances in thin film solar cells are reviewed, including polycrystalline copper iridium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon alloys. The possibility of thin film multi bandgap cascade solar cells is discussed.

  3. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  4. Growth and Characterization of Epitaxial Oxide Thin Films

    OpenAIRE

    Garg, Ashish

    2001-01-01

    Epitaxial oxide thin films are used in many technologically important device applications. This work deals with the deposition and characterization of epitaxial WO3 and SrBi2Ta2O9 (SBT) thin films on single crystal oxide substrates. WO3 thin films were chosen as a subject of study because of recent findings of superconductivity at surfaces and twin boundaries in the bulk form of this oxide. Highly epitaxial thin films would be desirable in order to be able to create a device withi...

  5. Design and Simulation of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and ADSL systems has been designed based on a domain wall pinning model, the parameters of nano-magnetic thin film such as permeability and coercivity can be calculated. The main properties of the thin film transformer including the size,parallel inductance, Q value and turn ratio have been simulated and optimized. Simulation results show that the thin film transformer can be fairly operated in a frequency range of 0. 001~20 MHz.

  6. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  7. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  8. Role of asphaltenes in stabilizing thin liquid emulsion films.

    Science.gov (United States)

    Tchoukov, Plamen; Yang, Fan; Xu, Zhenghe; Dabros, Tadeusz; Czarnecki, Jan; Sjöblom, Johan

    2014-03-25

    Drainage kinetics, thickness, and stability of water-in-oil thin liquid emulsion films obtained from asphaltenes, heavy oil (bitumen), and deasphalted heavy oil (maltenes) diluted in toluene are studied. The results show that asphaltenes stabilize thin organic liquid films at much lower concentrations than maltenes and bitumen. The drainage of thin organic liquid films containing asphaltenes is significantly slower than the drainage of the films containing maltenes and bitumen. The films stabilized by asphaltenes are much thicker (40-90 nm) than those stabilized by maltenes (∼10 nm). Such significant variation in the film properties points to different stabilization mechanisms of thin organic liquid films. Apparent aging effects, including gradual increase of film thickness, rigidity of oil/water interface, and formation of submicrometer size aggregates, were observed for thin organic liquid films containing asphaltenes. No aging effects were observed for films containing maltenes and bitumen in toluene. The increasing stability and lower drainage dynamics of asphaltene-containing thin liquid films are attributed to specific ability of asphaltenes to self-assemble and form 3D network in the film. The characteristic length of stable films is well beyond the size of single asphaltene molecules, nanoaggregates, or even clusters of nanoaggregates reported in the literature. Buildup of such 3D structure modifies the rheological properties of the liquid film to be non-Newtonian with yield stress (gel like). Formation of such network structure appears to be responsible for the slower drainage of thin asphaltenes in toluene liquid films. The yield stress of liquid film as small as ∼10(-2) Pa is sufficient to stop the drainage before the film reaches the critical thickness at which film rupture occurs. PMID:24564447

  9. Reinforced magnetic properties of Ni-doped BiFeO3 ceramic

    CERN Document Server

    Hwang, J S; Kang, J -H; Lee, K H; Lee, B W; Park, S Y; Lee, Y P

    2016-01-01

    Multiferroic materials attract considerable interest because of the wide range of potential applications such as spintronic devices, data storage and sensors. As a strong candidate for the applications among the limited list of single-phase multiferroic materials, BiFeO3 (BFO) is a quite attractive material due to its multiferroic properties at room temperature (RT). However, BFO is widely known to have large leakage current and small spontaneous polarization due to the existence of crystalline defects such as oxygen vacancies. Furthermore, the magnetic moment of pure BFO is very weak owing to its antiferromagnetic nature. In this paper, the effects of Ni2+ substitution on the magnetic properties of bulk BFO have been investigated. BFO, and BiFe0.99Ni0.01O3, BiFe0.98Ni0.02O3 and BiFe0.97Ni0.03O3 (BFNO: Ni-doped BFO) ceramics were prepared by solid-state reaction and rapid sintering, and analyzed by structural and magnetic-property measurements. The leakage current density was measured at RT by using a standar...

  10. Pyroelectric properties and electrical conductivity in samarium doped BiFeO 3 ceramics

    KAUST Repository

    Yao, Yingbang

    2012-06-01

    Samarium (Sm 3+) doped BiFeO 3 (BFO) ceramics were prepared by a modified solid-state-reaction method which adopted a rapid heating as well as cooling during the sintering process. The pyroelectric coefficient increased from 93 to 137 μC/m 2 K as the Sm 3+ doping level increased from 1 mol% to 8 mol%. Temperature dependence of the pyroelectric coefficient showed an abrupt decrease above 80 °C in all samples, which was associated with the increase of electrical conductivity with temperature. This electrical conduction was attributed to oxygen vacancy existing in the samples. An activation energy of ∼0.7 eV for the conduction process was found to be irrespective of the Sm 3+ doping level. On the other hand, the magnetic Néel temperature (T N) decreased with increasing Sm 3+ doping level. On the basis of our results, the effects of Sm doping level on the pyroelectric and electrical properties of the BFO were revealed. © 2011 Elsevier Ltd. All rights reserved.

  11. Magnetic ordering induced giant optical property change in tetragonal BiFeO3

    Science.gov (United States)

    Tong, Wen-Yi; Ding, Hang-Chen; Gong, Shi Jing; Wan, Xiangang; Duan, Chun-Gang

    2015-12-01

    Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.

  12. Robust polarization and strain behavior of Sm-modified BiFeO3 piezoelectric ceramics.

    Science.gov (United States)

    Walker, Julian; Budic, Bojan; Bryant, Peter; Kurusingal, Valsala; Sorrell, Charles C; Bencan, Andreja; Rojac, Tadej; Valanoor, Nagarajan

    2015-01-01

    The route to phase-pure BiFeO3 (BFO) ceramics with excellent ferroelectric and electromechanical properties is severely impeded by difficulties associated with the perovskite phase stability during synthesis. This has meant that dopants and solid solutions with BFO have been investigated as a means of not only improving the functional properties, but also of improving the perovskite phase formation of BFO-based ceramics. The present work focuses on Sm-modified BFO ceramics of composition Bi0.88Sm0.12FeO3. The polarization and strain behaviors were investigated as a function of the phase composition, microstructure, and chemical composition. Addition of Sm reduces the susceptibility of the BFO perovskite to phase degradation by Si impurities. Si was observed to react into Sm-rich grains dispersed within the microstructure, with no large increases in the amount of bismuth-parasitic phases, namely Bi25FeO39 and Bi2Fe4O9. These as-prepared ceramics exhibited robust polarization behavior showing maximum remnant polarizations of ~40 to 50 μC/cm(2). The electric-fieldinduced strain showed an appreciable stability in terms of the driving field frequency with maximum peak-to-peak strains of ~0.3% and a coercive field of ~130 kV/cm.

  13. Thermal frequency shift and tunable microwave absorption in BiFeO3 family

    Science.gov (United States)

    Li, Yong; Fang, Xiaoyong; Cao, Maosheng

    2016-04-01

    Tunable frequency is highly sought-after task of researcher, because of the potential for applications in selecting frequency, absorber, imaging and biomedical diagnosis. Here, we report the original observation of thermal frequency shift of dielectric relaxation in La/Nd doped BiFeO3 (BFO) in X-band from 300 to 673 K. It exhibits an unexpected result: the relaxation shifts to lower frequency with increasing temperature. The relaxation maximally shifts about a quarter of X-band. The nonlinear term of lattice vibration plays an important role in the frequency shift. The frequency shift leads to tuning microwave absorption, which almost covers the whole X-band by changing temperature. Meanwhile, the great increase of dielectric loss of La/Nd doped BFO due to thermal excited electron hopping enhances microwave absorption above ~460 and ~480 K, respectively. The microwave absorption of La/Nd doped BFO surpasses ‑20 dB at 673 K, and the minimum reflection loss of La doped BFO reaches ‑39 dB. These results open a new pathway to develop BFO-based materials in electromagnetic functional materials and devices for tunable frequency, stealth and thermal imaging at long wavelength.

  14. Degradation of Tetracycline with BiFeO3 Prepared by a Simple Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Zhehua Xue

    2015-09-01

    Full Text Available BiFeO3 particles (BFO were prepared by a simple hydrothermal method and characterized. BFO was pure, with a wide particle size distribution, and was visible light responsive. Tetracycline was chosen as the model pollutant in this study. The pH value was an important factor influencing the degradation efficiency. The total organic carbon (TOC measurement was emphasized as a potential standard to evaluate the visible light photocatalytic degradation efficiency. The photo-Fenton process showed much better degradation efficiency and a wider pH adaptive range than photocatalysis or the Fenton process solely. The optimal residual TOC concentrations of the photocatalysis, Fenton and photo-Fenton processes were 81%, 65% and 21%, while the rate constants of the three processes under the same condition where the best residual TOC was acquired were 9.7 × 10−3, 3.2 × 10−2 and 1.5 × 10−1 min−1, respectively. BFO was demonstrated to have excellent stability and reusability. A comparison among different reported advanced oxidation processes removing tetracycline (TC was also made. Our findings showed that the photo-Fenton process had good potential for antibiotic-containing waste water treatment. It provides a new method to deal with antibiotic pollution.

  15. Calcination temperature influenced multiferroic properties of Ca-doped BiFeO3 nanoparticles

    Science.gov (United States)

    Dhir, Gitanjali; Uniyal, Poonam; Verma, N. K.

    2015-06-01

    The influence of Ca-doping and particle size on structural, morphological and magnetic properties of BiFeO3 nanoparticles has been studied. A sol-gel method was employed for the synthesis of nanoparticles and their particle size was tailored by varying the calcination temperature. Structural analysis revealed a rhombohedral distortion induced by Ca-substitution. The broadening of diffraction peaks with decreasing calcination temperature was indicative of reduction in crystallite size. The morphological analysis revealed the formation of agglomerated nanoparticles having average particle size ranging from 10-15 and 50-55 nm for C4 and C6, respectively. The agglomeration is attributed to high surface energy of nanoparticles. Ferromagnetism has been displayed by all the synthesized nanoparticles. Enhancement of saturation magnetization with Ca-substitution is attributed to suppression of spin cycloid structure by the reduction in size, lattice distortion and creation of oxygen vacancies by the substitution of divalent ion at trivalent site. Further, this value increases as a function of decreasing particle size. Strong particle size effects on magnetic properties of the synthesized nanoparticles are owed to increasing surface to volume ratio. All these observations are indicative of strong dependence of multiferroism on particle size.

  16. Reinforced magnetic properties of Ni-doped BiFeO3 ceramic

    Science.gov (United States)

    Hwang, J. S.; Yoo, Y. J.; Lee, Y. P.; Kang, J.-H.; Lee, K. H.; Lee, B. W.; Park, S. Y.

    2016-08-01

    Multiferroic materials attract considerable interest because of the wide range of potential applications such as spintronic devices, data storage devices and sensors. As a strong candidate for the applications among the limited list of single-phase multiferroic materials, BiFeO3 (BFO) is a quite attractive material due to its multiferroic properties at room temperature (RT). However, BFO is widely known to have large leakage current and small spontaneous polarization due to the existence of crystalline defects such as oxygen vacancies. Furthermore, the magnetic moment of pure BFO is very weak owing to its antiferromagnetic nature. In this paper, the effects of Ni2+ substitution on the magnetic properties of bulk BFO were investigated. BFO, and BiFe0.99Ni0.01O3, BiFe0.98Ni0.02O3 and BiFe0.97Ni0.03O3 (BFNO: Ni-doped BFO) ceramics were prepared by solid-state reaction and rapid sintering, and analyzed by structural and magnetic-property measurements. The leakage current density was measured at RT by using a standard ferroelectric tester. All the Ni-doped BFO samples exhibited the similar rhombohedral perovskite structure ( R3c) to that of BFO. The magnetic properties of Ni-doped BFO were much enhanced with respect to BFO prepared at the same conditions, because the enhanced ferromagnetic interaction is caused by the Fe/Ni coupling.

  17. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  18. Electrical Resistance Tomography of Conductive Thin Films

    CERN Document Server

    Cultrera, Alessandro

    2016-01-01

    The Electrical Resistance Tomography (ERT) technique is applied to the measurement of sheet conductance maps of both uniform and patterned conductive thin films. Images of the sheet conductance spatial distribution, and local conductivity values are obtained. Test samples are tin oxide films on glass substrates, with electrical contacts on the sample boundary, some samples are deliberately patterned in order to induce null conductivity zones of known geometry while others contain higher conductivity inclusions. Four-terminal resistance measurements among the contacts are performed with a scanning setup. The ERT reconstruction is performed by a numerical algorithm based on the total variation regularization and the L-curve method. ERT correctly images the sheet conductance spatial distribution of the samples. The reconstructed conductance values are in good quantitative agreement with independent measurements performed with the van der Pauw and the four-point probe methods.

  19. Levan nanostructured thin films by MAPLE assembling.

    Science.gov (United States)

    Sima, Felix; Mutlu, Esra Cansever; Eroglu, Mehmet S; Sima, Livia E; Serban, Natalia; Ristoscu, Carmen; Petrescu, Stefana M; Oner, Ebru Toksoy; Mihailescu, Ion N

    2011-06-13

    Synthesis of nanostructured thin films of pure and oxidized levan exopolysaccharide by matrix-assisted pulsed laser evaporation is reported. Solutions of pure exopolysaccharides in dimethyl sulfoxide were frozen in liquid nitrogen to obtain solid cryogenic pellets that have been used as targets in pulsed laser evaporation experiments with a KrF* excimer source. The expulsed material was collected and assembled onto glass slides and Si wafers. The contact angle studies evidenced a higher hydrophilic behavior in the case of oxidized levan structures because of the presence of acidic aldehyde-hydrogen bonds of the coating formed after oxidation. The obtained films preserved the base material composition as confirmed by Fourier transform infrared spectroscopy. They were compact with high specific surface areas, as demonstrated by scanning electron and atomic force microscopy investigations. In vitro colorimetric assays revealed a high potential for cell proliferation for all coatings with certain predominance for oxidized levan. PMID:21520921

  20. Separation Efficiency of Thin-film Evaporators

    Institute of Scientific and Technical Information of China (English)

    R.Billet

    2004-01-01

    The recovery of contaminants and useful substances from liquid wastes, the purification of production effluents and the separation of thermally instable mixtures are some of the multivarious applications of thin-film distillors in many processes of the chemical and allied industries and of the food industries. In a study carried out in pilot plants with distillation test systems there was found a good agreement between the experimental separation results and those obtained by computing with a theorectical model; the latter is based on the assumption of phase equilibrium between the vapour formed on an infinitely small element of area in a liquid film of any given concentric periphery of the vertically arranged evaporator. These tests were perfomed under various phase loads.

  1. Modelling the tribology of thin film interfaces

    CERN Document Server

    Zugic, R

    2000-01-01

    substrate). Within each group of simulations, three lubricant film thicknesses are studied to examine the effect of varying lubricant thickness. Statistical data are collected from each simulation and presented in this work. Via these data, together with the evolution, of atomic and molecular configurations, a very detailed picture of the properties of this thin film interface is presented. In particular, we conclude that perfluoropolyether lubricant forms distinct molecular layers when confined between two substrates, the rate of heat generation under shearing conditions typical of those in a head-disk interface is insufficient for thermal mechanisms to result directly in lubricant degradation, and mechanical stresses attained in the head-disk interface are unlikely to result in any significant degree of lubricant degradation. This thesis examines the tribology of a head-disk interface in an operating hard disk drive via non-equilibrium molecular dynamics computer simulations. The aim of this work is to deri...

  2. Analysis on mechanism of thin film lubrication

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chaohui; LUO Jianbin; HUANG Zhiqiang

    2005-01-01

    It is an important concern to explore the properties and principles of lubrication at nano or molecularscale. For a long time, measurement apparatus for filmthickness of thin film lubrication (TFL) at nano scale havebeen devised on the basis of superthin interferometry technique. Many experiments were carried out to study the lubrication principles of TFL by taking advantages of aforementioned techniques, in an attempt to unveil the mechanism of TFL. Comprehensive experiments were conducted to explore the distinctive characteristics of TFL. Results show that TFL is a distinctive lubrication state other than any known lubrication ones, and serves as a bridge between elastohydrodynamic lubrication (EHL) and boundary lubrication (BL). Two main influence factors of TFL are the solid surface effects and the molecular properties of the lubricant, whose combination effects result in alignment of liquid molecules near the solid surfaces and subsequently lubrication with ordered film emerged. Results of theoretical analysis considering microstructure are consistent with experimental outcomes, thus validating the proposed mechanism.

  3. Thin-film optical shutter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  4. Fabrication of Optical Tunable Helical Thin Films

    Institute of Scientific and Technical Information of China (English)

    Linxin Hu; Peng Wang; Xingyang Wan; Shaoji Jiang

    2012-01-01

    Circular polarization selection of light is an important property of helical micro-nanostructure. The helical thin films fabricated by glancing angle deposition can provide both circular polarization selection and wavelength tuning in this work. Their selective transmissions were depicted in calculations and experiments. The wave- length tuning mechanism was revealed as the relationship between peak wavelength and deposition parameters. Therefore, tunable circular polarization components can be designed according to the mechanism mentioned above and fabricated by glancing angle deposition techniques. Potential applications include tunable optical filters, optical pulse-shapers, biosensors etc.

  5. Stable localized patterns in thin liquid films

    Science.gov (United States)

    Deissler, Robert J.; Oron, Alexander

    1992-01-01

    A two-dimensional nonlinear evolution equation is studied which describes the three-dimensional spatiotemporal behavior of the air-liquid interface of a thin liquid film lying on the underside of a cooled horizontal plate. It is shown that the equation has a Liapunov functional, and this fact is exploited to demonstrate that the Marangoni effect can stabilize the destabilizing effect of gravity (the Rayleigh-Taylor instability), allowing for the existence of stable localized axisymmetric solutions for a wide range of parameter values. Various properties of these structures are discussed.

  6. Thin Film Photovoltaics: Markets and Industry

    OpenAIRE

    Arnulf Jäger-Waldau

    2012-01-01

    Since 2000, total PV production increased almost by two orders of magnitude, with a compound annual growth rate of over 52%. The most rapid growth in annual cell and module production over the last five years could be observed in Asia, where China and Taiwan together now account for about 60% of worldwide production. Between 2005 and 2009, thin film production capacity and volume increased more than the overall industry but did not keep up in 2010 and 2011 due to the rapid price decline for s...

  7. Optical and Nonlinear Optical Response of Light Sensor Thin Films

    OpenAIRE

    Weisz, S.Z.; O. Resto; Fonseca, F; Fernandez, L. F.E.; Vikhnin, V. S.; O. Vasquez; A. J. Rua; H. Liu

    2005-01-01

    For potential ultrafast optical sensor application, both VO2 thin films and nanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates were successfully prepared using pulsed laser deposition (PLD) and RF co-sputtering techniques. In photoluminescence (PL) measurement c-Si/SiO2 film contains nanoparticles of crystal Si exhibits strong red emission with the band maximum ranging from 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremely intense ...

  8. Capillary instabilities in thin films. II. Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Srolovitz, D.J.; Safran, S.A.

    1986-07-01

    We consider the kinetic evolution of perturbations to thin films. Since all small (nonsubstrate intersecting) perturbations to the film surface decay, we consider the evolution of large perturbations, in the form of a single hole which exposes the substrate. For large holes, the hole radius increases at a constant rate under the assumption of evaporation/condensation kinetics. When the dominant transport mode is surface diffusion, large holes grow with a rate proportional to t/sup -3/4/ (log/sup 3/(t/ rho/sup 4//sub c/)). Small holes with a radii less than rho/sub c/ shrink, where rho/sub c/ is the film thickness divided by the tangent of the equilibrium wetting angle. The growth of these holes eventually leads to hole impingement which ruptures the film, creating a set of disconnected islands. The relaxation time for these islands to go to their equilibrium shape and size (rho/sub eq/) scales as rho/sup 2//sub eq/ or rho/sup 4//sub eq/ for evaporation/condensation or surface diffusion kinetics, respectively.

  9. High Tc thin film and device development

    Energy Technology Data Exchange (ETDEWEB)

    Betts, K.; Burbank, M.B.; Cragg, A.; Fife, A.A.; Kubik, P.R.; Lee, S.; Chaklader, A.C.D.; Roemer, G.; Heinrich, B.; Chrzanowski, J.

    1989-03-01

    Thin films of the high Tc superconductor YBa/sub 2/Cu/sub 3/O/sub y/ have been deposited on various substrates by diode and magnetron sputtering using bulk sintered targets. These films have been analyzed by a variety of methods - SEM, X-rays, Electron Beam Microprobe, Mass Spectrometry and Raman Spectroscopy. The stoichiometries of the films have been measured as a function of the radial position from the centre of the sputtered beam at a fixed target-substrate distance. Patterning of the films has been carried out to form planar structures such as strip lines, microbridges and RF SQUIDs. DC current-voltage characteristics of the microbridges were measured as a function of temperature. RF SQUID behaviour has been observed for single loop devices and their properties established at 4.2 K and higher temperatures. Flux locked noise spectra with a 1/f noise power response were recorded in the frequency range 0.01 to approx.100 Hz. RF SQUID signals have been observed for temperatures up to 55 K.

  10. Phase transitions in pure and dilute thin ferromagnetic films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1983-10-01

    The mean-field model of a thin ferromagnetic film where the nearest-neighbor exchange coupling in surface layers can be different from that inside the film is considered. The phase diagram, equations for the second-order phase-transition lines, and the spontaneous magnetization profiles near the phase transitions are given. It is shown that there is no extra-ordinary transition in a thin film. If the thickness of the film tends to infinity the well-known results for the mean-field model of a semi-infinite ferromagnet are obtained. The generalization for disordered dilute thin ferromagnetic films and semi-infinite ferromagnets is also given.

  11. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  12. Calculation of Specific Heat for Aluminium Thin Films

    Institute of Scientific and Technical Information of China (English)

    LU Yao; SONG Qing-Lin; XIA Shan-Hong

    2005-01-01

    @@ We employ Prasher's non-dimensional form to analyse the size effects on specific heat of Al thin films. Compared the calculation results of pure aluminium film with the experimental data, it is found that the reduction of phonon states is not the main reason of the size effect on the specific heat Al thin films with thickness from 10hm to 370nm. However, the Al thin film in air usually has an oxidation layer and the specific heat of the layer is smaller than Al. By including the contribution of the oxidation layer to the thin-film specific heat, the calculation results are much closer to the experimental data. This may be a possible reason of the size effects on specific heat of Al thin films.

  13. CLSM and UV-VIS researches on polyoxadiazoles thin films

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2012-06-01

    Full Text Available Purpose: The purpose of this paper was to analyse the surface morphology and optical properties of polyoxadiazoles thin films.Design/methodology/approach: A few different conducting polymers were dissolved in N-methyl-2-pyrrolid(inone. Then the solutions were deposited on a glass substrate by spin coating method with a different spin rate. Changes in surface topography and optical properties were observed. A confocal laser scanning microscope CLSM Zeiss LSM 5 Exciter has been used. Photos have been taken from area of 120 x 120 microns.Findings: The analysis of images and spectra has confirmed that the quality of thin films depends upon the used polymers. It was also observed that the parameters of the spin coating method have significant effect on the morphology and the optical properties. The spin rate has got a strong impact on them.Research limitations/implications: The morphology and optical properties of polyoxadiazoles thin films has been described. This paper include description how the spin rate influence on the polymer thin films. In order to use a polymer thin film in photovoltaics or optoelectronics it must have a high internal transmission density. Further research of polymer thin films are recommended.Practical implications: The spin coating method allows to deposit a uniform thin films. It is important to know how the spin rate influence on the thin films properties. It is also important to find a new use for this group of material engineering in photovoltaic or optoelectronics devices.Originality/value: The good properties of thin films make them suitable for various applications. The value of this paper is defining the optimal parameters of spin-coating technology for polyoxadiazoles thin films. The results allow the choosing optimal parameters of the deposition process. Spin coating is a very good method to obtain thin films which are obligated to have the same thickness over the whole surface.

  14. Metal nanoparticles for thin film solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia

    Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution in the infr......Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution...... the promotion of electrons from the valence band of the semiconductor. The photoemission would extend the spectral response of the photovoltaic device. Thus, NPs are placed at the metal/semiconductor interface (in order to exploit the localization characteristic of the LSP enhancement) and are used as active...... the solar cell structure (GaAs, SiO2, Si3N4, AZO/Cr), in order to investigate the LSP resonance and tune it to exploit it below the energy band gap of the semiconductor. EBL is a difficult technique when working by lift-off on critical size (20-50 nm) nanoparticles. The optimization of the process saw...

  15. Optical thin film metrology for optoelectronics

    Science.gov (United States)

    Petrik, Peter

    2012-12-01

    The manufacturing of optoelectronic thin films is of key importance, because it underpins a significant number of industries. The aim of the European joint research project for optoelectronic thin film characterization (IND07) in the European Metrology Research Programme of EURAMET is to develop optical and X-ray metrologies for the assessment of quality as well as key parameters of relevant materials and layer systems. This work is intended to be a step towards the establishment of validated reference metrologies for the reliable characterization, and the development of calibrated reference samples with well-defined and controlled parameters. In a recent comprehensive study (including XPS, AES, GD-OES, GD-MS, SNMS, SIMS, Raman, SE, RBS, ERDA, GIXRD), Abou-Ras et al. (Microscopy and Microanalysis 17 [2011] 728) demonstrated that most characterization techniques have limitations and bottle-necks, and the agreement of the measurement results in terms of accurate, absolute values is not as perfect as one would expect. This paper focuses on optical characterization techniques, laying emphasis on hardware and model development, which determine the kind and number of parameters that can be measured, as well as their accuracy. Some examples will be discussed including optical techniques and materials for photovoltaics, biosensors and waveguides.

  16. Antimony selenide thin-film solar cells

    Science.gov (United States)

    Zeng, Kai; Xue, Ding-Jiang; Tang, Jiang

    2016-06-01

    Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb2Se3, SnS, FeS2, CuSbS2 and CuSbSe2. Among them, Sb2Se3-based solar cells are a viable prospect because of their suitable band gap, high absorption coefficient, excellent electronic properties, non-toxicity, low cost, earth-abundant constituents, and intrinsically benign grain boundaries, if suitably oriented. This review surveys the recent development of Sb2Se3-based solar cells with special emphasis on the material and optoelectronic properties of Sb2Se3, the solution-based and vacuum-based fabrication process and the recent progress of Sb2Se3-sensitized and Sb2Se3 thin-film solar cells. A brief overview further addresses some of the future challenges to achieve low-cost, environmentally-friendly and high-efficiency Sb2Se3 solar cells.

  17. Critical misfit of epitaxial growth metallic thin films

    Institute of Scientific and Technical Information of China (English)

    LI Jian-Chen; LIU Wei; JIANG Qing

    2005-01-01

    The critical misfit of epitaxial growth metallic thin films fc was thermodynamically considered. It is found that there exists a competition between the energy of the misfit dislocation of film and non-coherent interface energy of film-substrate. Equilibrium between these energies was present at a critical atomic misfit fc. When the atomic misfit is larger than the critical value, epitaxial growth does not occur. The critical misfit of the epitaxial growth thin films can be predicted. The results show that fc is proportional to the non-coherent interface energy of the film-substrate, and inversely proportional to the elastic modulus and the thickness of the film.

  18. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  19. The preparation and refractive index of BST thin films

    International Nuclear Information System (INIS)

    Radio-frequency magnetron sputtering technique is used to deposit Ba0.65Sr0.35TiO3 (BST) thin films on fused quartz substrates. In order to prepare the high-quality BST thin films, the crystallization and microstructure of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). More intense characteristic diffraction peaks and better crystallization can be observed in BST thin films deposited at 600 deg. C and subsequently annealed at 700 deg. C. The refractive index of the films is determined from the measured transmission spectra. The dependences of the refractive index on the deposition parameters of BST thin films are different. The refractive index of the films increases with the substrate temperature. At lower sputtering pressure, the refractive index increases from 1.797 to 2.197 with pressure increase. However, when the pressure increases up to 3.9 Pa, the refractive index reduces to 1.86. The oxygen to argon ratio also plays an important effect on the refractive index of the films. It has been found that the refractive index increases with increase in the ratio of oxygen to argon. The refractive index of BST thin films is strongly dependent on the annealing temperature, which also increases as the annealing temperature ascends. In a word, the refractive index of BST thin films is finally affected by the films' microstructure and texture

  20. Thinning and rupture of a thin liquid film on a heated surface

    Energy Technology Data Exchange (ETDEWEB)

    Bankoff, S.G.; Davis, S.H.

    1992-08-05

    Results on the dynamics and stability of thin films are summarized on the following topics: forced dryout, film instabilities on a horizontal plane and on inclined planes, instrumentation, coating flows, and droplet spreading. (DLC)

  1. The NO2 sensing ITO thin films prepared by ultrasonic spray pyrolysis

    OpenAIRE

    Jianzhong Gu; Minghua Lu; Zheng Qin; Minghong Wu; Zheng Jiao

    2003-01-01

    In this paper ITO thin films were deposited on alumina substrates by ultrasonic spray pyrolysis. The NO2 sensing properties of ITO thin films were investigated. The results show ITO thin films have good sensitivity to nitrogen dioxide.

  2. Controlled nanostructuration of polycrystalline tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d' Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  3. Vertically aligned biaxially textured molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Rahul [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Riley, Michael [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina [US Army Armament Research, Development and Engineering Center, Benet Labs, Watervliet, New York 12189 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-09-15

    Vertically aligned, biaxially textured molybdenum nanorods were deposited using dc magnetron sputtering with glancing flux incidence (alpha = 85 degrees with respect to the substrate normal) and a two-step substrate-rotation mode. These nanorods were identified with a body-centered cubic crystal structure. The formation of a vertically aligned biaxial texture with a [110] out-of-plane orientation was combined with a [-110] in-plane orientation. The kinetics of the growth process was found to be highly sensitive to an optimum rest time of 35 seconds for the two-step substrate rotation mode. At all other rest times, the nanorods possessed two separate biaxial textures each tilted toward one flux direction. While the in-plane texture for the vertical nanorods maintains maximum flux capture area, inclined Mo nanorods deposited at alpha = 85 degrees without substrate rotation display a [-1-1-4] in-plane texture that does not comply with the maximum flux capture area argument. Finally, an in situ capping film was deposited with normal flux incidence over the biaxially textured vertical nanorods resulting in a thin film over the porous nanorods. This capping film possessed the same biaxial texture as the nanorods and could serve as an effective substrate for the epitaxial growth of other functional materials.

  4. Use of thin films in high-temperature superconducting bearings.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.; Cansiz, A.

    1999-09-30

    In a PM/HTS bearing, locating a thin-film HTS above a bulk HTS was expected to maintain the large levitation force provided by the bulk with a lower rotational drag provided by the very high current density of the film. For low drag to be achieved, the thin film must shield the bulk from inhomogeneous magnetic fields. Measurement of rotational drag of a PM/HTS bearing that used a combination of bulk and film HTS showed that the thin film is not effective in reducing the rotational drag. Subsequent experiments, in which an AC coil was placed above the thin-film HTS and the magnetic field on the other side of the film was measured, showed that the thin film provides good shielding when the coil axis is perpendicular to the film surface but poor shielding when the coil axis is parallel to the surface. This is consistent with the lack of reduction in rotational drag being due to a horizontal magnetic moment of the permanent magnet. The poor shielding with the coil axis parallel to the film surface is attributed to the aspect ratio of the film and the three-dimensional nature of the current flow in the film for this coil orientation.

  5. Structural and Optical Properties of Nanoscale Galinobisuitite Thin Films

    Directory of Open Access Journals (Sweden)

    Omar H. Abd-Elkader

    2014-01-01

    Full Text Available Galinobisuitite thin films of (Bi2S3(PbS were prepared using the chemical bath deposition technique (CBD. Thin films were prepared by a modified chemical deposition process by allowing the triethanolamine (TEA complex of Bi3+ and Pb2+ to react with S2− ions, which are released slowly by the dissociation of the thiourea (TU solution. The films are polycrystalline and the average crystallite size is 35 nm. The composition of the films was measured using the atomic absorption spectroscopy (AAS technique. The films are very adherent to the substrates. The crystal structure of Galinobisuitite thin films was calculated by using the X-ray diffraction (XRD technique. The surface morphology and roughness of the films were studied using scanning electron microscopes (SEM, transmission electron microscopes (TEM and stylus profilers respectively. The optical band gaps of the films were estimated from optical measurements.

  6. Structural And Optical Properties Of VOx Thin Films

    OpenAIRE

    Schneider K.

    2015-01-01

    VOx thin films were deposited on Corning glass, fused silica and Ti foils by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. Influence of the oxygen partial pressure in the sputtering chamber on the structural and optical properties of thin films has been investigated.

  7. Optimized grid design for thin film solar panels

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid d

  8. Eutectic bonds on wafer scale by thin film multilayers

    Science.gov (United States)

    Christensen, Carsten; Bouwstra, Siebe

    1996-09-01

    The use of gold based thin film multilayer systems for forming eutectic bonds on wafer scale is investigated and preliminary results will be presented. On polished 4 inch wafers different multilayer systems are developed using thin film techniques and bonded afterwards under reactive atmospheres and different bonding temperatures and forces. Pull tests are performed to extract the bonding strengths.

  9. Effect of film thickness and texture morphology on the physical properties of lead sulfide thin films

    Science.gov (United States)

    Azadi Motlagh, Z.; Azim Araghi, M. E.

    2016-02-01

    Lead sulfide (PbS) thin films were prepared onto ultra-clean quartz substrate by the electron beam gun (EBG) evaporation method. The thicknesses of the thin films were 50, 100, 150 and 200 nm. They were annealed at 423 K for 2 h. Field emission scanning electron microscopy (FESEM) images of the thin films showed their texture morphology at the surface of the quartz substrate. X-ray diffraction (XRD) patterns of the thin films showed that they have a cubic phase and rock-salt structure after annealing. The average crystallite size for the thin films was in the range of 32-100 nm. Optical measurements confirmed that crystalline thin films have a direct band gap that increases by decreasing the film thickness. This blue shift of the band gap of thin films compared to the bulk structure can be attributed to the quantum confinement effects in the nanoparticles. A decrease in conductivity by increasing the temperature confirmed the positive temperature coefficient of resistance in the thin films that showed the dominant conduction mechanism is via a band-like transition. The density of localized states at the Fermi level increases by increasing the film thickness. Current-voltage behavior of the thin films showed an increase in both dark current and photocurrent by increasing the crystallite size which is discussed, based on the presence of trap states and barriers in nanostructures.

  10. Effect of film thickness and texture morphology on the physical properties of lead sulfide thin films

    International Nuclear Information System (INIS)

    Lead sulfide (PbS) thin films were prepared onto ultra-clean quartz substrate by the electron beam gun (EBG) evaporation method. The thicknesses of the thin films were 50, 100, 150 and 200 nm. They were annealed at 423 K for 2 h. Field emission scanning electron microscopy (FESEM) images of the thin films showed their texture morphology at the surface of the quartz substrate. X-ray diffraction (XRD) patterns of the thin films showed that they have a cubic phase and rock-salt structure after annealing. The average crystallite size for the thin films was in the range of 32–100 nm. Optical measurements confirmed that crystalline thin films have a direct band gap that increases by decreasing the film thickness. This blue shift of the band gap of thin films compared to the bulk structure can be attributed to the quantum confinement effects in the nanoparticles. A decrease in conductivity by increasing the temperature confirmed the positive temperature coefficient of resistance in the thin films that showed the dominant conduction mechanism is via a band-like transition. The density of localized states at the Fermi level increases by increasing the film thickness. Current–voltage behavior of the thin films showed an increase in both dark current and photocurrent by increasing the crystallite size which is discussed, based on the presence of trap states and barriers in nanostructures. (paper)

  11. Structural, dielectric and multiferroic properties of Er and La substituted BiFeO3 ceramics

    Indian Academy of Sciences (India)

    Pragya Pandit; S Satapathy; Poorva Sharma; P K Gupta; S M Yusuf; V G Sathe

    2011-07-01

    Erbium (Er) and lanthanum (La) substituted BiFeO3 (BFO) ceramics have been prepared through conventional solid solution route. X-ray diffraction data indicated a gradual phase transition from rhombohedral to monoclinic structure in Bi0.9– La0.1Er FeO3 ( = 0.05, 0.07 and 0.1) (BLEFO = 0.05, 0.07,0.1) ceramics. Differential thermal analysis (DTA) measurements of BFO samples showed a ferroelectric transition at 835°C, whereas it is shifted to 792°C for BLEFO = 0.1. The Raman spectra of BLEFO = 0.05,0.07,0.1 samples showed the shift of Raman modes to higher wavenumbers and suppression of A1 modes indicating decrease in ferroelectricity. The Raman spectra also indicated the structural transformation due to Er and La substitution in BFO. On subsequent erbium doping, the intrinsic dielectric constant is found to decrease from 68 (for pure BFO) to 52 for BLEFO = 0.05 to 43 for BLEFO = 0.07 but increased to 89 for BLEFO = 0.1 when compared to pure BFO. The increase in Er content resulted in the increase in spontaneous magnetization (0.1178 emu/g at 8T for BLEFO = 0.1) due to collapse of spin cycloid structure. Ferroelectric remnant polarization of BLEFO = 0.05 and BLEFO = 0.07 decreases when compared to pure BFO while small remnant polarization (close to paraelectric behaviour) is evident for BLEFO = 0.1.

  12. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  13. Nanotwin hardening in a cubic chromium oxide thin film

    Directory of Open Access Journals (Sweden)

    Kazuma Suzuki

    2015-09-01

    Full Text Available NaCl-type (B1 chromium oxide (CrO has been expected to have a high hardness value and does not exist as an equilibrium phase. We report a B1-based Cr0.67O thin film with a thickness of 144 nm prepared by pulsed laser deposition as an epitaxial thin film on a MgO single crystal. The thin film contained a number of stacking faults and had a nanotwinned structure composed of B1 with disordered vacancies and corundum structures. The Cr0.67O thin film had a high indentation hardness value of 44 GPa, making it the hardest oxide thin film reported to date.

  14. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  15. Physical properties in thin films of iron oxides.

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, J. D.; Osorio, J.; Barrero, C. A.; Girata, D.; Morales, A. L.; Hoffmann, A.; Materials Science Division; Univ. de Antioquia

    2008-01-01

    We have grown hematite ({alpha}-Fe{sub 2}O{sub 3}) thin films on stainless steel substrates and magnetite (Fe{sub 3}O{sub 4}) thin films on (0 0 1)-Si single crystal substrates by a RF magnetron sputtering process. {alpha}-Fe{sub 2}O{sub 3} thin films were grown in an Ar atmosphere at substrate temperatures around 400 C, and Fe{sub 3}O{sub 4} thin films in an Ar/O{sub 2} reactive atmosphere at substrate temperatures around 500 C. Conversion electron Moessbauer (CEM) spectra of {alpha}-Fe{sub 2}O{sub 3} thin films exhibit values for hyperfine parameter characteristic of the hematite stoichiometric phase in the weak ferromagnetic state [R.E. Vandenberghe, in: Moessbauer Spectroscopy and Applications in Geology, University Gent, Belgium, 1990. [1

  16. Thin films and coatings toughening and toughness characterization

    CERN Document Server

    Zhang, Sam

    2015-01-01

    Thin Films and Coatings: Toughening and Toughness Characterization captures the latest developments in the toughening of hard coatings and in the measurement of the toughness of thin films and coatings. Featuring chapters contributed by experts from Australia, China, Czech Republic, Poland, Singapore, Spain, and the United Kingdom, this first-of-its-kind book:Presents the current status of hard-yet-tough ceramic coatingsReviews various toughness evaluation methods for films and hard coatingsExplores the toughness and toughening mechanisms of porous thin films and laser-treated surfacesExamines

  17. Preface: Advanced Thin Film Developments and Nano Structures

    Institute of Scientific and Technical Information of China (English)

    Ray Y.Lin

    2005-01-01

    @@ In this special issue, we invited a few leading materials researchers to present topics in thin films, coatings, and nano structures. Readers will find most recent developments in topics, including recent advances in hard, tough, and low friction nanocomposite coatings; thin films for coating nanomaterials; electroless plating of silver thin films on porous Al2O3 substrate; CrN/Nano Cr interlayer coatings; nano-structured carbide derived carbon (CDC) films and their tribology; predicting interdiffusion in high-temperature coatings; gallium-catalyzed silica nanowire growth; and corrosion protection properties of organofunctional silanes. Authors are from both national laboratories and academia.

  18. Peculiarities of spin reorientation in a thin YIG film

    Energy Technology Data Exchange (ETDEWEB)

    Bazaliy, Ya.B.; Tsymbal, L.T.; Linnik, A.I.; Dan' shin, N.K.; Izotov, A.I.; Wigen, P.E

    2003-05-01

    The issue of magnetic orientation transitions in thin films combines interesting physics and importance for applications. We study the magnetic transition and phase diagram of a 0.1 {mu}m thick (YLaGd){sub 3}(FeGa){sub 5}O{sub 12} films grown on GGG substrate by liquid phase epitaxy. Observed transitions are compared with those in BiGa:TmIG thin films, studied in previous work by one of the authors. A general picture of orientation transitions in thin films of substituted YIG is discussed.

  19. Peculiarities of spin reorientation in a thin YIG film.

    Energy Technology Data Exchange (ETDEWEB)

    Bazaliy, Ya. B.; Tsymbal, L. T.; Linnik, A. I.; Dan' shin, N. K.; Izotov, A. I.; Wigen, P. E.

    2002-06-28

    The issue of magnetic orientation transitions in thin films combines interesting physics and importance for applications. We study the magnetic transition and phase diagram of a 0.1{micro}m thick (YLaGd){sub 3}(FeGa){sub 5}O{sub 12} films grown on GGG substrate by liquid phase epitaxy. Observed transitions are compared with those in BiGa:TmIG thin films, studied in previous work by one of the authors. A general picture of orientation transitions in thin films of substituted YIG is discussed.

  20. Electrochemical Intercalation of Sodium into Silicon Thin Film

    Institute of Scientific and Technical Information of China (English)

    Dong-Yeon Kim; Hyo-Jun Ahn; Gyu-Bong Cho; Jong-Seon Kim; Ho-Suk Ryu; Ki-Won Kim; Jou-Hyeon Ahn; Won-Cheol Shin

    2008-01-01

    In order to investigate the possibility of Si thin film as an anode for Na battery, we studied the electrochemical intercalation of sodium into the Si film. Amorphous Si thin film electrode was prepared using DC magnetron sputtering. Sodium ion could intercalate into Si thin film upto Na0.52Si, i.e. 530mAh · g-1-Si. The first discharge capacity was 80mAh.·g-1-Si, which meant reversible amount of sodium intercalation. The discharge capacity slightly decreased to 70mAh · g-1-Si after 10 cycles.

  1. Thin Films for Advanced Glazing Applications

    Directory of Open Access Journals (Sweden)

    Ann-Louise Anderson

    2016-09-01

    Full Text Available Functional thin films provide many opportunities for advanced glazing systems. This can be achieved by adding additional functionalities such as self-cleaning or power generation, or alternately by providing energy demand reduction through the management or modulation of solar heat gain or blackbody radiation using spectrally selective films or chromogenic materials. Self-cleaning materials have been generating increasing interest for the past two decades. They may be based on hydrophobic or hydrophilic systems and are often inspired by nature, for example hydrophobic systems based on mimicking the lotus leaf. These materials help to maintain the aesthetic properties of the building, help to maintain a comfortable working environment and in the case of photocatalytic materials, may provide external pollutant remediation. Power generation through window coatings is a relatively new idea and is based around the use of semi-transparent solar cells as windows. In this fashion, energy can be generated whilst also absorbing some solar heat. There is also the possibility, in the case of dye sensitized solar cells, to tune the coloration of the window that provides unheralded external aesthetic possibilities. Materials and coatings for energy demand reduction is highly desirable in an increasingly energy intensive world. We discuss new developments with low emissivity coatings as the need to replace scarce indium becomes more apparent. We go on to discuss thermochromic systems based on vanadium dioxide films. Such systems are dynamic in nature and present a more sophisticated and potentially more beneficial approach to reducing energy demand than static systems such as low emissivity and solar control coatings. The ability to be able to tune some of the material parameters in order to optimize the film performance for a given climate provides exciting opportunities for future technologies. In this article, we review recent progress and challenges in

  2. A versatile platform for magnetostriction measurements in thin films

    Science.gov (United States)

    Pernpeintner, M.; Holländer, R. B.; Seitner, M. J.; Weig, E. M.; Gross, R.; Goennenwein, S. T. B.; Huebl, H.

    2016-03-01

    We present a versatile nanomechanical sensing platform for the investigation of magnetostriction in thin films. It is based on a doubly clamped silicon nitride nanobeam resonator covered with a thin magnetostrictive film. Changing the magnetization direction within the film plane by an applied magnetic field generates a magnetoelastic stress and thus changes the resonance frequency of the nanobeam. A measurement of the resulting resonance frequency shift, e.g., by optical interferometry, allows to quantitatively determine the magnetostriction constants of the thin film. In a proof-of-principle experiment, we determine the magnetostriction constants of a 10 nm thick polycrystalline cobalt film, showing very good agreement with literature values. The presented technique aims, in particular, for the precise measurement of magnetostriction in a variety of (conducting and insulating) thin films, which can be deposited by, e.g., electron beam deposition, thermal evaporation, or sputtering.

  3. The Structure and Stability of Molybdenum Ditelluride Thin Films

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Molybdenum-tellurium alloy thin films were fabricated by electron beam evaporation and the films were annealed in different conditions in N2 ambient. The hexagonal molybdenum ditelluride thin films with well crystallization annealed at 470°C or higher were obtained by solid state reactions. Thermal stability measurements indicate the formation of MoTe2 took place at about 350°C, and a subtle weight-loss was in the range between 30°C and 500°C. The evolution of the chemistry for Mo-Te thin films was performed to investigate the growth of the MoTe2 thin films free of any secondary phase. And the effect of other postdeposition treatments on the film characteristics was also investigated.

  4. Mechanism and characters of thin film lubrication at nanometer scale

    Institute of Scientific and Technical Information of China (English)

    雒建斌; 温诗铸

    1996-01-01

    Thin film lubrication is a transition region between elastohydrodynamic lubrication and boundary lubrication, A technique of relative optical interference intensity with the resolution of 0.5 nm in the vertical direction and 1.5 nm in the horizontal direction is used in a pure rolling process to measure the film thickness with different lubricants, speeds, loads and substrate surface energy. Experimental data show that the characteristics of thin film lubrication are different from those of elastohydrodynamic lubrication and boundary lubrication. As the rolling speed decreases, a critical film thickness can be found to distinguish thin film lubrication from elastohydrodynamic lubrication. Such thickness is related to the substrate surface energy, atmospheric viscosity of lubricant, etc. A physical model of thin film lubrication with the fluid layer, the ordered liquid layer and the adsorbed layer is proposed and the functions of these different layers are discussed.

  5. Slippage and Nanorheology of Thin Liquid Polymer Films

    OpenAIRE

    Bäumchen, Oliver; Fetzer, Renate; Klos, Mischa; Lessel, Matthias; Marquant, Ludovic; Hähl, Hendrik; Jacobs, Karin

    2012-01-01

    Thin liquid films on surfaces are part of our everyday life, they serve e.g. as coatings or lubricants. The stability of a thin layer is governed by interfacial forces, described by the effective interface potential, and has been subject of many studies in the last decades. In recent years, the dynamics of thin liquid films came into focus since results on the reduction of the glass transition temperature raised new questions on the behavior of especially polymeric liquids in confined geometr...

  6. The Potentiostatic Electrodeposition of Indium doped Aluminium Selenide Thin Films

    Directory of Open Access Journals (Sweden)

    R.K. Pathak and Sipi Mohan

    2013-12-01

    Full Text Available The In containing AlSe thin films were electrosynthesized by electrochemical co-deposition technique. The morphological properties of thin films were studied through the Scanning Electron Micrograph (SEM while the structural features through X-Ray Diffraction technique (XRD. The deposition current along with the film thickness values, the charge carrier density, flat band potential, corrosion characteristics i.e., corrosion current, corrosion potential and corrosion rate were calculated.

  7. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A. [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  8. Production of selective membranes using plasma deposited nanochanneled thin films

    OpenAIRE

    Rodrigo Amorim Motta Carvalho; Alexsander Tressino Carvalho; Maria Lúcia Pereira da Silva; Nicole Raymond Demarquette

    2006-01-01

    The hydrolization of thin films obtained by tetraethoxysilane plasma polymerization results in the formation of a nanochanneled silicone like structure that could be useful for the production of selective membranes. Therefore, the aim of this work is to test the permeation properties of hydrolyzed thin films. The films were tested for: 1) permeation of polar organic compounds and/or water in gaseous phase and 2) permeation of salt in liquid phase. The efficiency of permeation was tested using...

  9. Thin film adhesion by nanoindentation-induced superlayers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, William W.; Volinsky, A.A.

    2001-06-01

    This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

  10. On the nature of shear thinning in nanoscopically confined films

    OpenAIRE

    Manias, E; Bitsanis, I.; Hadziioannou, G.; Brinke, G. ten

    1996-01-01

    Non-Equilibrium Molecular Dynamics (NEMD) computer simulations were employed to study films in nanometer confinements under shear. Focusing on the response of the viscosity, we found that nearly all the shear thinning takes place inside the solid-oligomer interface and that the adsorbed layers are more viscous than the middle part of the films. Moreover, the shear thinning inside the interfacial area is determined by the wall affinity and is largely insensitive to changes of the film thicknes...

  11. On Ginzburg-Landau Vortices of Superconducting Thin Films

    Institute of Scientific and Technical Information of China (English)

    Shi Jin DING; Qiang DU

    2006-01-01

    In this paper, we discuss the vortex structure of the superconducting thin films placed in a magnetic field. We show that the global minimizer of the functional modelling the superconducting thin films has a bounded number of vortices when the applied magnetic field hex < Hc1 + K log |log ε|where Hc1 is the lower critical field of the film obtained by Ding and Du in SIAM J. Math. Anal.,2002. The locations of the vortices are also given.

  12. Amperometric Noise at Thin Film Band Electrodes

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Heien, Michael L.; Taboryski, Rafael

    2012-01-01

    polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains......; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model......Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive...

  13. Electrochromism: from oxide thin films to devices

    Science.gov (United States)

    Rougier, A.; Danine, A.; Faure, C.; Buffière, S.

    2014-03-01

    In respect of their adaptability and performance, electrochromic devices, ECDs, which are able to change their optical properties under an applied voltage, have received significant attention. Target applications are multifold both in the visible region (automotive sunroofs, smart windows, ophthalmic lenses, and domestic appliances (oven, fridge…)) and in the infrared region (Satellites Thermal Control, IR furtivity). In our group, focusing on oxide thin films grown preferentially at room temperature, optimization of ECDs performances have been achieved by tuning the microstructure, the stoichiometry and the cationic composition of the various layers. Herein, our approach for optimized ECDs is illustrated through the example of WO3 electrochromic layer in the visible and in the IR domain as well as ZnO based transparent conducting oxide layer. Targeting the field of printed electronics, simplification of the device architecture for low power ECDs is also reported.

  14. Transport measurements in overdoped YBCO thin films

    International Nuclear Information System (INIS)

    Temperature dependence of Hall constant RH and longitudinal resistivity ρxx have been measured in Ca-doped YBCO thin films with varying oxygen contents, with emphasis on the overdoped regime. RH vs. T data present a peak near Tc whose height reduces with doping and disappears at optimal doping. Unexpectedly, the peak reappears above optimal doping with a height that increases with doping. A similar behavior was observed in the parameters that fit cot(θH) vs. T to a parabola. They decrease smoothly with increasing doping in the underdoped region and present a peculiar peak in the overdoped region. This behavior might indicate the crossover to a new regime of transport properties in strongly overdoped HTSC. We discuss the possible origin and implications of these results

  15. Surfactant Spreading on Thin Viscous Fluid Films

    Science.gov (United States)

    Bonilla, Caitlyn; Leslie, Nathaniel; Liu, Jeanette; Sinclair, Dina; Levy, Rachel

    2014-11-01

    We examine the spreading of insoluble lipids on a viscous Newtonian thin fluid film. This spreading can be modeled as two coupled nonlinear fourth-order partial differential equations, though inconsistencies between the timescale of experiments and simulations have been reported in recent research. In simulations, we replace traditional models for the equation of state relating surfactant concentration to surface tension with an empirical equation of state. Isotherms collected via a Langmuir-Pockels scale provide data for the equation of state. We compare the timescale of simulation results to measurements of the fluorescently tagged lipid (NBD-PC) spreading as well as the height profile, captured with laser profilometry. Research supported by NSF-DMS-FRG 9068154, RCSA-CCS-19788, HHMI.

  16. Photoluminescence studies in epitaxial CZTSe thin films

    Science.gov (United States)

    Sendler, Jan; Thevenin, Maxime; Werner, Florian; Redinger, Alex; Li, Shuyi; Hägglund, Carl; Platzer-Björkman, Charlotte; Siebentritt, Susanne

    2016-09-01

    Epitaxial Cu 2 ZnSnSe 4 (CZTSe) thin films were grown by molecular beam epitaxy on GaAs(001) using two different growth processes, one containing an in-situ annealing stage as used for solar cell absorbers and one for which this step was omitted. Photoluminescences (PL) measurements carried out on these samples show no dependence of the emission shape on the excitation intensity at different temperatures ranging from 4 K to 300 K . To describe the PL measurements, we employ a model with fluctuating band edges in which the density of states of the resulting tail states does not seem to depend on the excited charge carrier density. In this interpretation, the PL measurements show that the annealing stage removes a defect level, which is present in the samples without this annealing.

  17. Structure and Microstructure of Ni-Mn-Ga thin films

    OpenAIRE

    A. Annadurai

    2013-01-01

    Ni-Mn-Ga thin films were dc magnetron sputter deposited onto well cleaned substrates of si(100) and glass in high pure argon atmosphere of pressure of 0.01 mbar using NiMnGa alloy targets prepared in ourlaboratory by vacuum induction melting technique. Pristine thin films were investigated. Crystal structure of the films was studied using x-ray diffraction (XRD) technique. Microstructure of the films was investigated using scanning electron microscope (SEM). XRD reveals that the films on glas...

  18. Fluorine doped vanadium dioxide thin films for smart windows

    Energy Technology Data Exchange (ETDEWEB)

    Kiri, Pragna [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Warwick, Michael E.A. [UCL Energy Institute, Central House, 14 Upper Woburn Place, London, WC1H 0HY (United Kingdom); Ridley, Ian [Bartlett School of Graduate Studies, University College London, Wates House, 22 Gordon Street, WC1H 0QB, London (United Kingdom); Binions, Russell, E-mail: r.binions@ucl.ac.uk [Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London, WC1H 0AJ (United Kingdom)

    2011-12-01

    Thermochromic fluorine doped thin films of vanadium dioxide were deposited from the aerosol assisted chemical vapour deposition reaction of vanadyl acetylacetonate, ethanol and trifluoroacetic acid on glass substrates. The films were characterised with scanning electron microscopy, variable temperature Raman spectroscopy and variable temperature UV/Vis spectroscopy. The incorporation of fluorine in the films led to an increase in the visible transmittance of the films whilst retaining the thermochromic properties. This approach shows promise for improving the aesthetic properties of vanadium dioxide thin films.

  19. Structural, electrical and thermoelectrical analysis of nickel sulphide thin films

    Science.gov (United States)

    Chate, P. A.; Sathe, D. J.

    2016-06-01

    A dip method is employed for the deposition of NiS2 thin film at room temperature. Nickel sulphate, succinic acid and thiourea were used as the source materials. The X-ray diffraction analysis shows that the film samples are cubic phase. The specific electrical conductivity of the film was found to be 3.16 × 10-6 (Ω cm)-1. The films show high absorption, and band gap energy value was found to be 1.37 eV. The temperature dependence of an electrical conductivity, thermoelectrical power, carrier density and carrier mobility for NiS2 thin films has been examined.

  20. Determination of magnetic properties of multilayer metallic thin films

    CERN Document Server

    Birlikseven, C

    2000-01-01

    and magnetization measurements were taken. In recent year, Giant Magnetoresistance Effect has been attracting an increasingly high interest. High sensitivity magnetic field detectors and high sensitivity read heads of magnetic media can be named as important applications of these films. In this work, magnetic and electrical properties of single layer and thin films were investigated. Multilayer thin films were supplied by Prof. Dr. A. Riza Koeymen from Texas University. Multilayer magnetic thin films are used especially for magnetic reading and magnetic writing. storing of large amount of information into small areas become possible with this technology. Single layer films were prepared using the electron beam evaporation technique. For the exact determination of film thicknesses, a careful calibration of the thicknesses was made. Magnetic properties of the multilayer films were studied using the magnetization, magnetoresistance measurements and ferromagnetic resonance technique. Besides, by fitting the exper...

  1. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S. [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  2. Plasma synthesis of photocatalytic TiO x thin films

    Science.gov (United States)

    Sirghi, L.

    2016-06-01

    The development of efficient photocatalytic materials is promising technology for sustainable and green energy production, fabrication of self-cleaning, bactericidal, and super hydrophilic surfaces, CO2 photoreduction, and decomposition of toxic pollutants in air and water. Semiconductors with good photocatalytic activity have been known for four decades and they are regarded as promising candidates for these new technologies. Low-pressure discharge plasma is one of the most versatile technologies being used for the deposition of photocatalytic semiconductor thin films. This article reviews the main results obtained by the author in using low-pressure plasma for synthesis of TiO x thin films with applications in photocatalysis. Titanium dioxide thin films were obtained by radio frequency magnetron sputtering deposition, plasma enhanced chemical vapour deposition, and high power impulse magnetron sputtering deposition. The effects of the plasma deposition method, plasma parameters, film thickness and substrate on the film structure, chemical composition and photocatalytic activity are investigated. The photocatalytic activity of plasma synthesised TiO x thin films was estimated by UV light induced hydrophilicity. Measurements of photocurrent decay in TiO x thin films in vacuum and air showed that the photocatalytic activity is closely connected to the production, recombination and availability for surface reactions of photo-generated charge carriers. The photocatalytic activity of TiO x thin films was investigated at nanoscale by atomic force microscopy. Microscopic regions of different hydrophilicity on UV light irradiated films are discriminated by AFM atomic force microscopy measurements of adhesion and friction force.

  3. Laser induced vibration of a thin soap film.

    OpenAIRE

    Emile, Olivier; Emile, Janine

    2014-01-01

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be implemented in an optofluidic...

  4. Nonlinear generation of vorticity in thin smectic films

    CERN Document Server

    Parfenyev, V M; Lebedev, V V

    2015-01-01

    We analyze a solenoidal motion in a vertically vibrated freely suspended thin smectic film. We demonstrate analytically that transverse oscillations of the film generate two-dimensional vortices in the plane of the film owing to hydrodynamic nonlinearity. An explicit expression for the vorticity of the in-plane film motion in terms of the film displacement is obtained. The air around the film is proven to play a crucial role, since it changes the dispersion relation of transverse oscillations and transmits viscous stresses to the film, modifying its bending motion. We propose possible experimental observations enabling to check our predictions.

  5. The effects of mechanical activation energy on the solid-state synthesis process of BiFeO3

    International Nuclear Information System (INIS)

    Highlights: • BiFeO3 was successfully synthesized via a mechano-thermal route. • The effects of milling energy on the process were studied. • Applying an optimum milling energy lowered the formation temperature of BiFeO3. • Sample with optimum energy showed antiferromagnetic state and less leakage current. - Abstract: The effects of milling energy induced during intermediate mechanical activation of precursors on the synthesis of nano-structured BiFeO3 powders have been systematically investigated. X-ray diffractometer, laser particles size analyzer, field emission scanning electron microscope, vibrating sample magnetometer and electrical evaluation techniques were used to study phase composition, particles size distribution, morphology, magnetic properties and ferroelectric properties of the products, respectively. Applying a total energy of 171.18 kJ/g during milling led to formation of an amorphous structure which resulted in decreasing the formation temperature of bismuth ferrite phase by about 100 °C, although small amounts of secondary phases were detected. This sample shows the mean particles size of 170 nm and the mean crystallite size of 40 nm, when calcined at 750 °C. Saturation magnetization (MS) increased from 0.054 to 0.071 A m2/kg and coercive field (HC) decreased from 32.63 to 6.37 kA/m by increasing the milling energy from 13.48 to 171.18 kJ/g. In addition, electrical hysteresis loops demonstrated a decrease in the current leakage by increasing the milling energy and lowering the calcination temperature

  6. Tuning ferroic states in La doped BiFeO3-PbTiO3 displacive multiferroic compounds

    International Nuclear Information System (INIS)

    In this manuscript, X-ray and high-resolution neutron powder diffraction investigations, associated with Rietveld refinements, magnetic hysteresis curves and a modeling of electron-density distributions around the ions, are used to describe the driving forces responsible for tuning the ferroic states in La doped (0.6)BiFeO3-(0.4)PbTiO3 compositions. The intrinsic relations between the ferroic orders and the structural arrangements (angles, distances and electron-density distributions around the ions) are revealed, helping in the understanding of some aspects comprising the ferroic properties of perovskite-based displacive multiferroic compounds.

  7. Two approaches for enhancing the hydrogenation properties of palladium: Metal nanoparticle and thin film over layers

    Indian Academy of Sciences (India)

    Manika Khanuja; B R Mehta; S M Shivaprasad

    2008-11-01

    In the present study, two approaches have been used for enhancing the hydrogenation properties of Pd. In the first approach, metal thin film (Cu, Ag) has been deposited over Pd and hydrogenation properties of bimetal layer Cu (thin film)/Pd(thin film) and Ag(thin film)/Pd(thin film) have been studied. In the second approach, Ag metal nanoparticles have been deposited over Pd and hydrogenation properties of Ag (nanoparticle)/Pd (thin film) have been studied and compared with Ag(thin film)/Pd(thin film) bimetal layer system. The observed hydrogen sensing response is stable and reversible over a number of hydrogen loading and deloading cycles in both bimetallic systems. Alloying between Ag and Pd is suppressed in case of Ag(nanoparticle)/Pd(thin film) bimetallic layer on annealing as compared to Ag (thin film)/Pd(thin film).

  8. Process optimization for the sputter deposition of molybdenum thin films as electrode for AlN thin films

    International Nuclear Information System (INIS)

    Molybdenum thin films have been deposited on Ti/(100) Si substrates by dc sputtering. For process optimization, a design of experiments method was used with three input factors (target power, substrate temperature, and process gas flow). Deposition rate, resistivity, roughness, diffraction angle, and rocking curve width were analyzed as output responses using statistical analysis method. Subsequently, a process allowing the deposition of highly crystalline, smooth, and low resistivity Mo film was selected and tested against film thickness. The as-optimized sputtered molybdenum thin film was used as seeding electrode for the growth of highly c-axis textured AlN film by dc pulsed reactive sputtering

  9. thin films grown with additional NaF layers

    Science.gov (United States)

    Kim, Gee Yeong; Kim, Juran; Jo, William; Son, Dae-Ho; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-10-01

    CZTS precursors [SLG/Mo (300 nm)/ZnS (460 nm)/SnS (480 nm)/Cu (240 nm)] were deposited by RF/DC sputtering, and then NaF layers (0, 15, and 30 nm) were grown by electron beam evaporation. The precursors were annealed in a furnace with Se metals at 590°C for 20 minutes. The final composition of the CZTSSe thin-films was of Cu/(Zn + Sn) ~ 0.88 and Zn/Sn ~ 1.05, with a metal S/Se ratio estimated at ~0.05. The CZTSSe thin-films have different NaF layer thicknesses in the range from 0 to 30 nm, achieving a ~3% conversion efficiency, and the CZTSSe thin-films contain ~3% of Na. Kelvin probe force microscopy was used to identify the local potential difference that varied according to the thickness of the NaF layer on the CZTSSe thin-films. The potential values at the grain boundaries were observed to increase as the NaF thickness increased. Moreover, the ratio of the positively charged GBs in the CZTSSe thin-films with an NaF layer was higher than that of pure CZTSSe thin-films. A positively charged potential was observed around the grain boundaries of the CZTSSe thin-films, which is a beneficial characteristic that can improve the performance of a device.

  10. Plasma polymerised thin films for flexible electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Mohan V., E-mail: mohan.jacob@jcu.edu.au [Electronic Materials Research Lab, School of Engineering and Physical Sciences, James Cook University, Townsville 4811 (Australia); Olsen, Natalie S.; Anderson, Liam J.; Bazaka, Kateryna [Electronic Materials Research Lab, School of Engineering and Physical Sciences, James Cook University, Townsville 4811 (Australia); Shanks, Robert A. [Applied Sciences, RMIT University, GPO Box 2476V, Melbourne 3001 (Australia)

    2013-11-01

    The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased. - Highlights: • Fabrication of a novel polymer thin film from non-synthetic source • The surface, optical and chemical properties are reported. • The fabricated thin film is transparent and smooth. • An environmentally friendly material • Candidate for flexible electronics as dielectric layer or as an encapsulation layer.

  11. Thin film nitinol covered stents: design and animal testing.

    Science.gov (United States)

    Levi, Daniel S; Williams, Ryan J; Liu, Jasen; Danon, Saar; Stepan, Lenka L; Panduranga, Mohanchandra K; Fishbein, Michael C; Carman, Greg P

    2008-01-01

    Interventionalists in many specialties have the need for improved, low profile covered stents. Thin films of nitinol (<5-10 microns) could be used to improve current covered stent technology. A "hot target" sputter deposition technique was used to create thin films of nitinol for this study. Covered stents were created from commercially available balloon-inflatable and self-expanding stents. Stents were deployed in a laboratory flow loop and in four swine. Uncovered stent portions served as controls. Postmortem examinations were performed 2-6 weeks after implantation. In short-term testing, thin film nitinol covered stents deployed in the arterial circulation showed no intimal proliferation and were easily removed from the arterial wall postmortem. Scanning electron microscopy showed a thin layer of endothelial cells on the thin film, which covered the entire film by 3 weeks. By contrast, significant neointimal hyperplasia occurred on the luminal side of stents deployed in the venous circulation. Extremely low-profile covered stents can be manufactured using thin films of nitinol. Although long-term studies are needed, thin film nitinol may allow for the development of low-profile, nonthrombogenic covered stents. PMID:18496269

  12. Thin film thickness measurements using Scanning White Light Interferometry

    International Nuclear Information System (INIS)

    Scanning White Light Interferometry is a well-established technique for providing accurate surface roughness measurements and three dimensional topographical images. Here we report on the use of a variant of Scanning White Light Interferometry called coherence correlation interferometry which is now capable of providing accurate thickness measurements from transparent and semi-transparent thin films with thickness below 1 μm. This capability will have many important applications which include measurements on optical coatings, displays, semiconductor devices, transparent conducting oxides and thin film photovoltaics. In this paper we report measurements of thin film thickness made using coherence correlation interferometry on a variety of materials including metal-oxides (Nb2O5 and ZrO2), a metal-nitride (SiNx:H), a carbon-nitride (SiCxNy:H) and indium tin oxide, a transparent conducting oxide. The measurements are compared with those obtained using spectroscopic ellipsometry and in all cases excellent correlation is obtained between the techniques. A key advantage of this capability is the combination of thin film thickness and surface roughness and other three-dimensional metrology measurements from the same sample area. - Highlights: • Capability to make thin film measurements with sub-nanometre accuracy • Measurements of thin film thickness made on metal-oxides, nitrides and carbon-nitrides • Excellent correlation with thickness measurements using spectroscopic ellipsometry • Thin film measurement and nanometrology from the same sample area

  13. Electron field emission from amorphous semiconductor thin films

    International Nuclear Information System (INIS)

    The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford backscattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment. (author)

  14. Organic photo detectors for an integrated thin-film spectrometer

    Science.gov (United States)

    Peters, Sabine; Sui, Yunwu; Glöckler, Felix; Lemmer, Uli; Gerken, Martina

    2007-09-01

    We introduce a thin-film spectrometer that is based on the superprism effect in photonic crystals. While the reliable fabrication of two and three dimensional photonic crystals is still a challenge, the realization of one-dimensional photonic crystals as thin-film stacks is a relatively easy and inexpensive approach. Additionally, dispersive thin-film stacks offer the possibility to custom-design the dispersion profile according to the application. The thin-film stack is designed such that light incident at an angle experiences a wavelength-dependent spatial beam shift at the output surface. We propose the monolithic integration of organic photo detectors to register the spatial beam position and thus determine the beam wavelength. This thin-film spectrometer has a size of approximately 5 mm2. We demonstrate that the output position of a laser beam is determined with a resolution of at least 20 μm by the fabricated organic photo detectors. Depending on the design of the thin-film filter the wavelength resolution of the proposed spectrometer is at least 1 nm. Possible applications for the proposed thin-film spectrometer are in the field of absorption spectroscopy, e.g., for gas analysis or biomedical applications.

  15. Thin film thickness measurements using Scanning White Light Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Maniscalco, B.; Kaminski, P.M.; Walls, J.M., E-mail: J.M.Walls@lboro.ac.uk

    2014-01-01

    Scanning White Light Interferometry is a well-established technique for providing accurate surface roughness measurements and three dimensional topographical images. Here we report on the use of a variant of Scanning White Light Interferometry called coherence correlation interferometry which is now capable of providing accurate thickness measurements from transparent and semi-transparent thin films with thickness below 1 μm. This capability will have many important applications which include measurements on optical coatings, displays, semiconductor devices, transparent conducting oxides and thin film photovoltaics. In this paper we report measurements of thin film thickness made using coherence correlation interferometry on a variety of materials including metal-oxides (Nb{sub 2}O{sub 5} and ZrO{sub 2}), a metal-nitride (SiN{sub x}:H), a carbon-nitride (SiC{sub x}N{sub y}:H) and indium tin oxide, a transparent conducting oxide. The measurements are compared with those obtained using spectroscopic ellipsometry and in all cases excellent correlation is obtained between the techniques. A key advantage of this capability is the combination of thin film thickness and surface roughness and other three-dimensional metrology measurements from the same sample area. - Highlights: • Capability to make thin film measurements with sub-nanometre accuracy • Measurements of thin film thickness made on metal-oxides, nitrides and carbon-nitrides • Excellent correlation with thickness measurements using spectroscopic ellipsometry • Thin film measurement and nanometrology from the same sample area.

  16. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    Science.gov (United States)

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-03-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature.

  17. Optical properties of rubrene thin film prepared by thermal evaporation

    Institute of Scientific and Technical Information of China (English)

    陈亮; 邓金祥; 孔乐; 崔敏; 陈仁刚; 张紫佳

    2015-01-01

    Rubrene thin films are deposited on quartz substrates and silver nanoparticles (Ag NPs) films by the thermal evapo-ration technique. The optical properties of rubrene thin film are investigated in a spectral range of 190 nm–1600 nm. The analysis of the absorption coefficient (α) reveals direct allowed transition with a corresponding energy of 2.24 eV. The photoluminescence (PL) peak of the rubrene thin film is observed to be at 563 nm (2.21 eV). With the use of Ag NPs which are fabricated by radio-frequency (RF) magnetron sputtering on the quartz, the PL intensity is 8.5 times that of as-deposited rubrene thin film. It is attributed to the fact that the surface plasmon enhances the photoluminescence.

  18. Optical and Structural Properties of Ultra-thin Gold Films

    CERN Document Server

    Kossoy, Anna; Simakov, Denis; Leosson, Kristjan; Kéna-Cohen, Stéphane; Maier, Stefan A

    2014-01-01

    Realizing laterally continuous ultra-thin gold films on transparent substrates is a challenge of significant technological importance. In the present work, formation of ultra-thin gold films on fused silica is studied, demonstrating how suppression of island formation and reduction of plasmonic absorption can be achieved by treating substrates with (3-mercaptopropyl) trimethoxysilane prior to deposition. Void-free fi lms with deposition thickness as low as 5.4 nm are realized and remain structurally stable at room temperature. Based on detailed structural analysis of the fi lms by specular and diffuse X-ray reflectivity measurements, it is shown that optical transmission properties of continuous ultra-thin films can be accounted for using the bulk dielectric function of gold. However, it is important to take into account the non-abrupt transition zone between the metal and the surrounding dielectrics, which extends through several lattice constants for the laterally continuous ultra-thin films (film thickness...

  19. Nanomechanical behavior of (1 0 0) oriented titanium thin films

    Science.gov (United States)

    Vasu, Kuraganti; Ghanashyam Krishna, Mamidipudi; Padmanabhan, Kuppuswamy Anantha

    2014-03-01

    Titanium thin films were deposited on single crystal Si (3 1 1) and polycrystalline 316 LN nuclear grade stainless steel substrates by RF magnetron sputtering. X-ray diffraction revealed that, irrespective of substrate type, films exhibit preferential growth along the (1 0 0) plane. The microstructure of the films corresponds to the zone-I type in structure zone model on both substrates. The hardness and Young's modulus of the films were extracted from load-displacement curves. The maximum values of hardness and Young's modulus were 12 and 132 GPa respectively for 220 nm thin film on SS substrate. The electrical resistivity data revealed that the films are metallic in nature and the resistivity is lower in the case of the 220 nm thickness film, on both substrates. The observed changes in mechanical and electrical properties can be correlated with variations in the microstructure of Ti films.

  20. Fracture of nanoporous organosilicate thin films

    Science.gov (United States)

    Gage, David Maxwell

    Nanoporous organosilicate thin films are attractive candidates for a number of emerging technologies, ranging from biotechnology to optics and microelectronics. However, integration of these materials is challenged by their fragile nature and susceptibility to mechanical failure. Debonding and cohesive cracking of the organosilicate film are principal concerns that threaten the reliability and yield of device structures. Despite the intense interest in these materials, there is currently a need for greater understanding of the relationship between glass structure and thermomechanical integrity. The objective of this research was to investigate strategies for improving mechanical performance through variations in film chemistry, process conditions, and pore morphology. Several approaches to effecting improvements in elastic and fracture properties were examined in depth, including post-deposition curing, molecular reinforcement using hydrocarbon network groups, and manipulation of pore size and architecture. Detailed structural characterization was employed along with quantitative fracture mechanics based testing methods. It was shown that ultra-violet irradiation and electron bombardment post-deposition treatments can significantly impact glass structure in ways that cannot be achieved through thermal activation alone. Both techniques demonstrated high porogen removal efficiency and enhanced the glass matrix through increased network connectivity and local bond rearrangements. The increases in network connectivity were achieved predominantly through the replacement of terminal groups, particularly methyl and silanol groups, with Si-O network bonds. Nuclear magnetic resonance spectroscopy was shown to be a powerful and quantitative method for gaining new insight into the underlying cure reactions and mechanisms. It was demonstrated that curing leads to significant progressive enhancement of elastic modulus and adhesive fracture energies due to increased network bond

  1. Superior Properties of Energetically Stable La2/3Sr1/3MnO3/Tetragonal BiFeO3 Multiferroic Superlattices

    KAUST Repository

    Feng, Nan

    2015-04-30

    The superlattice of energetically stable La2/3Sr1/3MnO3 and tetragonal BiFeO3 is investigated by means of density functional theory. The superlattice as a whole exhibits a half-metallic character, as is desired for spintronic devices. The interfacial electronic states and exchange coupling are analyzed in details. We demonstrate that the interfacial O atoms play a key role in controlling the coupling. The higher ferroelectricity of tetragonal BiFeO3 and stronger response to the magnetic moment in La2/3Sr1/3MnO3/BiFeO3 superlattice show a strongly enhanced electric control of the magnetism as compared to the rhombohedral one. Therefore, it is particularly practical interest in the magnetoelectric controlled spintronic devices.

  2. Development of neutron diffuse scattering analysis code by thin film and multilayer film

    International Nuclear Information System (INIS)

    To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering

  3. Thin liquid film flow and heat transfer under spray impingement

    International Nuclear Information System (INIS)

    A mathematical model was derived to investigate thin liquid film flow under spray impingement. Based on predicted flow patterns, a heat transfer model was developed to investigate the heat transfer performance in the non-boiling regime of spray cooling. The film thickness predicted by the thin film flow model favourably compares with reported experimental results obtained at different measurement locations and nozzle inlet pressures. It is found that the film thickness is sensitive to droplet flux distribution but not the nozzle inlet pressure. The comparison of the heated surface temperature between the proposed heat transfer model and the published experimental data shows good agreement. - Highlights: ► Thin liquid film flow in spray cooling is theoretically studied. ► A thin liquid film flow model is derived to predict the thin film flow pattern under spray impingement. ► A heat transfer model is developed to predict the heat transfer performance in the non-boiling regime of spray cooling. ► Film thickness of the liquid film flow is sensitive to droplet flux distribution but not the nozzle inlet pressure. ► Droplet impingement cooling is the primary cooling mechanism in the non-boiling regime of spray cooling.

  4. Buckling of Thin Films in Nano-Scale

    Science.gov (United States)

    Wang, S.; Jia, H. K.; Sun, J.; Ren, X. N.; Li, L. A.

    2010-06-01

    Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  5. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  6. Chemical Liquid Phase Deposition of Thin Aluminum Oxide Films

    OpenAIRE

    Sun, Jie; Sun, Yingchun

    2007-01-01

    Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system pH value played an important role in this experiment. The growth rate is 12 nm/h at room temperature. Post-growth annealing not only densifies and purifies the films, but results in film crystallization a...

  7. Nonlinear absorption of ultrashort laser pulses in thin metal films

    OpenAIRE

    Manfredi, Giovanni; Hervieux, Paul-Antoine

    2005-01-01

    Self-consistent simulations of the ultrafast electron dynamics in thin metal films are performed. A regime of nonlinear oscillations is observed, which corresponds to ballistic electrons bouncing back and forth against the film surfaces. When an oscillatory laser field is applied to the film, the field energy is partially absorbed by the electron gas. Maximum absorption occurs when the period of the external field matches the period of the nonlinear oscillations, which, for sodium films, lies...

  8. Electro-optical Properties of Ultra-Thin Organic Films

    OpenAIRE

    Hodges, Ping Y.

    2001-01-01

    Electro-optical properties of thin film are of great interest owing to the perpetual demand for miniaturization and higher speed devices for communication, electronic, and biomedical applications. The thickness of polymer films developed for these applications has decreased dramatically making interfacial effects significant. It is well documented that, in submicron thickness range, both film/substrate & film/air interface are critical. In this study, we probe the dynamics of electro-optic...

  9. Nonlinear optical properties of Au/PVP composite thin films

    Institute of Scientific and Technical Information of China (English)

    Shen Hong; Cheng Bo-Lin; Lu Guo-Wei; Wang Wei-Tian; Guan Dong-Yi; Chen Zheng-Hao; Yang Guo-Zhen

    2005-01-01

    Colloidal Au and poly(vinylpyrrolidone) (PVP) composite thin films are fabricated by spin-coating method. Linear optical absorption measurements of the Au/PVP composite films indicate an absorption peak around 530 nm due to the surface plasmon resonance of gold nanoparticles. Nonlinear optical properties are studied using standard Z-scan technique, and experimental results show large optical nonlinearities of the Au/PVP composite films. A large value of films.

  10. Quantum-well-induced ferromagnetism in thin films

    DEFF Research Database (Denmark)

    Niklasson, A.M.N.; Mirbt, S.; Skriver, Hans Lomholt;

    1997-01-01

    We have used a first-principles Green's-function technique to investigate the magnetic properties of thin films of Rh, Pd, and Pt deposited on a fee Ag (001) substrate. We find that the magnetic moment of the film is periodically suppressed and enhanced as a function of film thickness....... The phenomenon is explained in terms of quantum-well states moving through the Fermi level with increasing film thickness....

  11. Residual stress in spin-cast polyurethane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Zhang, Li, E-mail: lizhang@mae.cuhk.edu.hk [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China); Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China)

    2015-01-19

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  12. Electrochromic properties of nanocrystalline MoO3 thin films

    International Nuclear Information System (INIS)

    Electrochromic MoO3 thin films were prepared by a sol-gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO3 thin films. The effects of annealing temperatures ranging from 100 oC to 500 oC were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO4/propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO3 thin films heat-treated at 350 oC varied from 80% to 35% at λ = 550 nm (ΔT = ∼ 45%) and from 86% to 21% at λ ≥ 700 nm (ΔT = ∼ 65%) after coloration. Films heat-treated at 350 deg. C exhibited the best electrochromic properties in the present study

  13. Thin-film organic photonics molecular layer deposition and applications

    CERN Document Server

    Yoshimura, Tetsuzo

    2011-01-01

    Among the many atomic/molecular assembling techniques used to develop artificial materials, molecular layer deposition (MLD) continues to receive special attention as the next-generation growth technique for organic thin-film materials used in photonics and electronics. Thin-Film Organic Photonics: Molecular Layer Deposition and Applications describes how photonic/electronic properties of thin films can be improved through MLD, which enables precise control of atomic and molecular arrangements to construct a wire network that achieves ""three-dimensional growth"". MLD facilitates dot-by-dot--o

  14. Preparation and superconductivity of iron selenide thin films

    OpenAIRE

    Han, Y.; Li, W. Y.; Cao, L. X.; S. Zhang; Xu, B; Zhao, B. R.

    2009-01-01

    FeSex (x = 0.80, 0.84, 0.88, 0.92) thin films were prepared on SrTiO3(001) (STO), (La,Sr)(Al,Ta)O3(001) (LSAT), and LaAlO3(001) (LAO) substrates by pulsed laser deposition method. All thin films show single-phase and c-axis oriented epitaxial growth, and are superconducting. Among them, the FeSe0.88 thin films show Tc, onset of 11.8 K and Tc, 0 of 3.4 K. The upper critical magnetic field is estimated to be 14.0 T.

  15. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong, E-mail: xzzhang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People' s Republic of China and Beijing National Center for Electron Microscopy, Beijing 100084 (China)

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  16. Double Laser for Depth Measurement of Thin Films of Ice.

    Science.gov (United States)

    Beltrán, Manuel Domingo; Molina, Ramón Luna; Aznar, Miguel Ángel Satorre; Moltó, Carmina Santonja; Verdú, Carlos Millán

    2015-01-01

    The use of thin films is extensive in both science and industry. We have created an experimental system that allows us to measure the thicknesses of thin films (with typical thicknesses of around 1 µm) in real time without the need for any prior knowledge or parameters. Using the proposed system, we can also measure the refractive index of the thin film material exactly under the same experimental conditions. We have also obtained interesting results with regard to structural changes in the solid substance with changing temperature and have observed the corresponding behavior of mixtures of substances. PMID:26426024

  17. Hydrogenation Effect on Mg/Co Multilayer Thin Films

    OpenAIRE

    M.K. Jangid; S.P. NEHRA, M.SINGH

    2010-01-01

    Multilayer Mg/Co thin films have been prepared using thermal evaporation method at pressure 10-5torr. Annealing of structure has been performed in atmospheric condition at 600 K constant temperature for one hour. Hydrogenation of annealed thin films has been performed by keeping these in hydrogenation cell at different hydrogen pressures for 30 min. The UV–VIS absorption spectra of thin films have been carried out at room temperature in the wavelength range of 300–800 nm. The optical band gap...

  18. The state of the art of thin-film photovoltaics

    International Nuclear Information System (INIS)

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future

  19. Light management in thin-film silicon solar cells

    OpenAIRE

    Isabella, O.

    2013-01-01

    Solar energy can fulfil mankind’s energy needs and secure a more balanced distribution of primary sources of energy. Wafer-based and thin-film silicon solar cells dominate todays’ photovoltaic market because silicon is a non-toxic and abundant material and high conversion efficiencies are achieved with silicon-based solar cells. To stay competitive with bulk crystalline silicon and other thin-film solar cell technologies, thin-film silicon solar cells have to achieve a conversion efficiency l...

  20. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  1. Organic nanostructured thin film devices and coatings for clean energy

    CERN Document Server

    Zhang, Sam

    2010-01-01

    Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the proc

  2. Assembly and Applications of Carbon Nanotube Thin Films

    Institute of Scientific and Technical Information of China (English)

    Hongwei ZHU; Bingqing WEI

    2008-01-01

    The ultimate goal of current research on carbon nanotubes (CNTs) is to make breakthroughs that advance nanotechnological applications of bulk CNT materials. Especially, there has been growing interest in CNT thin films because of their unique and usually enhanced properties and tremendous potential as components for use in nano-electronic and nano-mechanical device applications or as structural elements in various devices. If a synthetic or a post processing method can produce high yield of nanotube thin films, these structures will provide tremendous potential for fundamental research on these devices. This review will address the synthesis, the post processing and the device applications of self-assembled nanotube thin films.

  3. Nanoscale phenomena in ferroelectric thin films

    Science.gov (United States)

    Ganpule, Chandan S.

    Ferroelectric materials are a subject of intense research as potential candidates for applications in non-volatile ferroelectric random access memories (FeRAM), piezoelectric actuators, infrared detectors, optical switches and as high dielectric constant materials for dynamic random access memories (DRAMs). With current trends in miniaturization, it becomes important that the fundamental aspects of scaling of ferroelectric and piezoelectric properties in these devices be studied thoroughly and their impact on the device reliability assessed. In keeping with this spirit of miniaturization, the dissertation has two broad themes: (a) Scaling of ferroelectric and piezoelectric properties and (b) The key reliability issue of retention loss. The thesis begins with a look at results on scaling studies of focused-ion-beam milled submicron ferroelectric capacitors using a variety of scanning probe characterization tools. The technique of piezoresponse microscopy, which is rapidly becoming an accepted form of domain imaging in ferroelectrics, has been used in this work for another very important application: providing reliable, repeatable and quantitative numbers for the electromechanical properties of submicron structures milled in ferroelectric films. This marriage of FIB and SPM based characterization of electromechanical and electrical properties has proven unbeatable in the last few years to characterize nanostructures qualitatively and quantitatively. The second half of this dissertation focuses on polarization relaxation in FeRAMs. In an attempt to understand the nanoscale origins of back-switching of ferroelectric domains, the time dependent relaxation of remnant polarization in epitaxial lead zirconate titanate (PbZr0.2Ti0.8O 3, PZT) ferroelectric thin films (used as a model system), containing a uniform 2-dimensional grid of 90° domains (c-axis in the plane of the film) has been examined using voltage modulated scanning force microscopy. A novel approach of

  4. Efficient visible light photo-Fenton-like degradation of organic pollutants using in situ surface-modified BiFeO3 as a catalyst

    Institute of Scientific and Technical Information of China (English)

    Junjian An; Lihua Zhu; Yingying Zhang; Heqing Tang

    2013-01-01

    The visible light photo-Fenton-like catalytic performance of BiFeO3 nanoparticles was investigated using Methyl Violet (MV),Rhodamine B (RhB) and phenol as probes.Under optimum conditions,the pseudo first-order rate constant (k) was determined to be 2.21 × 10-2,5.56 × 10-2 and 2.01 × 10-2 min-1 for the degradation of MV (30 μmol/L),RhB (10 μmol/L) and phenol (3 mmol/L),respectively,in the BiFeO3-H2O2-visible light (Vis) system.The introduction of visible light irradiation increased the k values of MV,RhB and phenol degradation 3.47,1.95 and 2.07 times in comparison with those in dark.Generally,the k values in the BiFeO3-H2O2-Vis system were accelerated by increasing BiFeO3 load and H2O2 concentration,but decreased with increasing initial pollutant concentration.To further enhance the degradation of pollutants at high concentrations,BiFeO3 was modified with the addition of surface modifiers.The addition of ethylenediamineteraacetic acid (EDTA,0.4 mmol/L) increased the k value of MV degradation (60 μmol/L)from 1.01 × 10-2 min-1 in the BiFeO3-H2O2-Vis system to 1.30 min-1 in the EDTA-BiFeO3-H2O2-Vis system by a factor of 128.This suggests that in situ surface modification can enable BiFeO3 nano-particles to be a promising visible light photo-Fenton-like catalyst for the degradation of organic pollutants.

  5. Fluorescent thin gel films using organic dyes and pigments

    Science.gov (United States)

    Nakazumi, Hiroyuki; Takashi, Tarao; Taniguchi, Shin-ichi; Nanto, Hidehito

    1997-10-01

    New organic-inorganic fluorescent thin gel films included with laser dyes or fluorescent organic pigments have been prepared for display application. The florescent dyes (benzoxazolium, pyrromethene, and rhodamine dyes) and super-fine particles of fluorescent pigments (coumarin and perylene) were successfully incorporated into thin silicate gel films prepared from tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), and methoxysilane oligomer (MTSO) under acid catalyzed hydrolysis. The blue, green, and red luminescence were observed from these thin films (thickness: 100 - 400 nm), respectively. Fluorescence spectra, fluorescent quantum yield and lifetime of thin gel films are examined. Fluorescent peaks for most of dyes and pigments used in gel films were similar to those in solution, and fluorescent lifetime for dyes and pigments used in gel films were 2.9 - 4.5 ns. Photostability of fluorescent gel films is dependent on fluorescent organic dyes and pigments used and/or silicate gel matrixes. Coumarin and perylene pigments have higher fluorescent quantum yield in gel film prepared from MTSO. The large Stokes shift was observed in fluorescent gel film using coumarin and benzoxazolium dyes. The coumarin and perylene pigments are significantly photo- stable in gel film prepared from MTSO, and photodegradation of perylene red after irradiation of 500 W Xi-lamp for 30 min is below 20%.

  6. Process compilation methods for thin film devices

    Science.gov (United States)

    Zaman, Mohammed Hasanuz

    This doctoral thesis presents the development of a systematic method of automatic generation of fabrication processes (or process flows) for thin film devices starting from schematics of the device structures. This new top-down design methodology combines formal mathematical flow construction methods with a set of library-specific available resources to generate flows compatible with a particular laboratory. Because this methodology combines laboratory resource libraries with a logical description of thin film device structure and generates a set of sequential fabrication processing instructions, this procedure is referred to as process compilation, in analogy to the procedure used for compilation of computer programs. Basically, the method developed uses a partially ordered set (poset) representation of the final device structure which describes the order between its various components expressed in the form of a directed graph. Each of these components are essentially fabricated "one at a time" in a sequential fashion. If the directed graph is acyclic, the sequence in which these components are fabricated is determined from the poset linear extensions, and the component sequence is finally expanded into the corresponding process flow. This graph-theoretic process flow construction method is powerful enough to formally prove the existence and multiplicity of flows thus creating a design space {cal D} suitable for optimization. The cardinality Vert{cal D}Vert for a device with N components can be large with a worst case Vert{cal D}Vert≤(N-1)! yielding in general a combinatorial explosion of solutions. The number of solutions is hence controlled through a-priori estimates of Vert{cal D}Vert and condensation (i.e., reduction) of the device component graph. The mathematical method has been implemented in a set of algorithms that are parts of the software tool MISTIC (Michigan Synthesis Tools for Integrated Circuits). MISTIC is a planar process compiler that generates

  7. Soft Magnetic Multilayered Thin Films for HF Applications

    Science.gov (United States)

    Loizos, George; Giannopoulos, George; Serletis, Christos; Maity, Tuhin; Roy, Saibal; Lupu, Nicoleta; Kijima, Hanae; Yamaguchi, Masahiro; Niarchos, Dimitris

    Multilayered thin films from various soft magnetic materials were successfully prepared by magnetron sputtering in Ar atmosphere. The magnetic properties and microstructure were investigated. It is found that the films show good soft magnetic properties: magnetic coercivity of 1-10 Oe and saturation magnetization higher than 1T. The initial permeability of the films is greater than 300 and flattens up to 600 MHz. The multilayer thin film properties in combination with their easy, fast and reproducible fabrication indicate that they are potential candidates for high frequency applications.

  8. Magnetoelectric effect in (BiFeO3x–(BaTiO31-x solid solutions

    Directory of Open Access Journals (Sweden)

    Kowal Karol

    2015-03-01

    Full Text Available The aim of the present work was to study magnetoelectric effect (ME in (BiFeO3x-(BaTiO31-x solid solutions in terms of technological conditions applied in the samples fabrication process. The rapidly growing interest in these materials is caused by their multiferroic behaviour, i.e. coexistence of both electric and magnetic ordering. It creates possibility for many innovative applications, e.g. in steering the magnetic memory by electric field and vice versa. The investigated samples of various chemical compositions (i.e. x = 0.7, 0.8 and 0.9 were prepared by the solid-state sintering method under three sets of technological conditions differing in the applied temperature and soaking time. Measurements of the magnetoelectric voltage coefficient αME were performed using a dynamic lock-in technique. The highest value of αME was observed for 0.7BiFeO3-0.3BaTiO3 solid solution sintered at the highest temperature (T = 1153 K after initial electrical poling despite that the soaking time was reduced 10 times in this case.

  9. Effects of (La, Sr) co-doping on electrical conduction and magnetic properties of BiFeO3 nanoparticles

    Science.gov (United States)

    Liu, Li; Wang, Shouyu; Yin, Zi; Liu, Weifang; Xu, Xunling; Zhang, Chuang; Li, Xiu; Yang, Jiabin

    2016-09-01

    Multiferroic material as a photovoltaic material has gained considerable attention in recent years. Nanoparticles (NPs) La0.1Bi0.9-xSrxFeOy (LBSF, x = 0, 0.2, 0.4) with dopant Sr2+ ions were synthesized by the sol-gel method. A systematic change in the crystal structure from rhombohedral to tetragonal upon increasing Sr doping was observed. There is an obvious change in the particle size from 180 nm to 50 nm with increasing Sr substitution into LBFO. It was found that Sr doping effectively narrows the band gap from ˜ 2.08 eV to ˜ 1.94 eV, while it leads to an apparent enhancement in the electrical conductivity of LBSF NPs, making a transition from insulator to semiconductor. This suggests an effective way to modulate the conductivity of BiFeO3-based multiferroic materials with pure phase by co-doping with La and Sr at the A sites of BiFeO3. Project supported by the National Natural Science Foundation of China (Grant Nos. 11104202 and 51572193).

  10. Effects of oxygen content on the electric and magnetic properties of BiFeO3 compound

    Science.gov (United States)

    Guilin, Song; Jian, Su; Zhang, Na; Fanggao, Chang

    2016-07-01

    Multiferroic BiFeOδ (δ=2.67, 2.95 and 3.02) compound of various oxygen contents (δ) have been prepared by gel sol method. The influence of oxygen contents on the structure, electric and magnetic properties of BiFeO3 compound has been investigated. X-ray diffraction (XRD) measurements indicate that all the samples of BiFeOδ have the same crystal structure regardless of oxygen content. The SEM micrograph reveals microstructures comprising of grains with various sizes from 200 nm to 1 μm. XPS study confirms the coexistence of Fe3+ and Fe2+ ions in BiFeOδ compound. The M(H) curves exhibit weak ferromagnetic behavior with unsaturated magnetization at room temperature, independent of the oxygen content. The M(T) curves of suggest anti-ferromagnetic behavior with Neel temperature of ~370 °C for BiFeO2.95 and BiFeO3.02 samples and paramagnetic behavior of BiFeO2.67 sample from RT up to 500 °C. The experimental results show that the antiferromagnetic ordering is strongly correlated with the oxygen content and is almost entirely suppressed in BiFeOδ with δ=2.67. The effect of oxygen vacancies is to weaken the magnetic ordering rather than to enhance it as previously suggested in the literature.

  11. High-field study of strong magnetoelectric coupling in single-domain crystals of BiFeO3

    International Nuclear Information System (INIS)

    Magnetic and dielectric properties of single-domain crystals of BiFeO3 were studied in pulsed magnetic fields up to 55 T. At low temperatures, metamagnetic transitions accompanied with sharp changes in electric polarization (P) were observed at around 18 T. The angular dependence of the transition field coincides with that of the transition from the cycloidal state to the canted antiferromagnetic spin state studied in the framework of the Landau-Ginzburg theory incorporated with the Lifshitz-life invariant. The parasitic P component caused by the cycloidal spin structure amounts to 210±30 μC/m2 in terms of the projected component on the pseudocubic principal axis, which can be controlled by applying magnetic fields at least up to 500 K. This result indicates that the microscopic magnetoelectric coupling in BiFeO3 is not weak: In fact, it is rather strong as compared to that in the canonical multiferroic material TbMnO3. (author)

  12. Improved structure stability, optical and magnetic properties of Ca and Ti co-substituted BiFeO3 nanoparticles

    Science.gov (United States)

    Kumar, Vijay; Singh, Satyendra

    2016-11-01

    We report the optical and magnetic properties of single-crystalline Ca and Ti co-substituted bismuth ferrite, Bi1-xCaxFe1-xTixO3, nanoparticles, synthesized by a facile sol-gel methodology in the compositional range wherein 0 ≤ x ≤ 0.25. X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations show that all samples possess a rhombohedrally distorted perovskite structure with space group R3c. Ca and Ti co-substitution controls the formation of secondary phases and improved the stability of perovskite phase of BiFeO3. The average particle size was estimated by Williamson Hall plot, confirmed by TEM, and found to be about 59, 50, 46, 41, 40 and 38 nm of Bi1-xCaxFe1-xTixO3 for x = 0, 0.05, 0.10, 0.15, 0.20 and 0.25, respectively. The UV-vis absorption study reveal the strong absorption of visible light with a small optical band gap (1.77-2.25 eV) for 0 ≤ x ≤ 0.25 indicates a possibility of utilizing for photocatalytic activities. The magnetic study at room-temperature displays the improved magnetization and coercive field in Bi1-xCaxFe1-xTixO3 nanoparticles due to the release of the latent magnetization locked within the toroidal spin structure of BiFeO3.

  13. Composition-driven enhanced magnetic properties and magnetoelectric coupling in Gd substituted BiFeO3 nanoparticles

    Science.gov (United States)

    Vijayasundaram, S. V.; Suresh, G.; Mondal, R. A.; Kanagadurai, R.

    2016-11-01

    Bi1-xGdxFeO3 (x=0, 0.05 and 0.1) samples were synthesized by modified sol-gel process. X-ray diffraction studies confirmed that the crystal structures of Gd substituted samples remain stable for xnanoparticles were found to be in the range 62-46 nm. The size of the oblate spherical particles decreased with increasing Gd concentration. XPS studies revealed the trivalent oxidation states of Bi and Fe ions along with sample purity. Pure BiFeO3 exhibited linear M-H loop indicating its antiferromagnetic characteristics, whereas obvious non-linear M-H loops were observed in Gd substituted samples. In contrast to the observed room temperature magnetization (0.36 emu/g) under 40 kOe for BiFeO3, the sample with 10% Gd exhibited appreciable enhancement of magnetization (1.88 emu/g). A leaky type P-E hysteresis loop was observed for the pure one, whereas concave-like ferroelectric loops were obtained for Gd substituted samples. The possible origins of enhanced multiferroic properties have been explained on the basis of substituent, its concentration, phase purity, particle size, structural distortion and the modified magnetic structure. The measurement of magnetoelectric studies at room temperature revealed the coupling between magnetic and ferroelectric ordering, which is desirable for multifunctional device applications of multiferroics.

  14. Chemical analysis of thin films at Sandia National Laboratories

    International Nuclear Information System (INIS)

    The characterization of thin films produced by chemical and physical vapor deposition requires special analytical techniques. When the average compositions of the films are required, dissolution of the thin films and measurement of the concentrations of the solubilized species is the appropriate analytical approach. In this report techniques for the wet chemical analysis of thin films of Si:Al, P2O5:SiO2, B2O3:SiO2, TiB/sub x/ and TaB/sub x/ are described. The analyses are complicated by the small total quantities of these analytes present in the films, the refractory characters of these analytes, and the possibility of interferences from the substrates on which the films are deposited. Etching conditions are described which dissolve the thin films without introducing interferences from the substrates. A chemical amplification technique and inductively coupled plasma atomic emission spectrometry are shown to provide the sensitivity required to measure the small total quantities (micrograms to milligrams) of analytes present. Also the chemical analysis data has been used to calibrate normal infrared absorption spectroscopy to give fast estimates of the phosphorus and/or boron dopant levels in thin SiO2 films

  15. Production of nickel oxide thin films by magnetron sputtering

    International Nuclear Information System (INIS)

    Discrepancies between short-circuit diffusion data derived from nickel oxide bicrystals and specimens produced by the oxidation of nickel has led to a requirement for thin film nickel oxide specimens of controlled microstructure and impurity level that can be produced independently of the oxidation process. RF magnetron sputtering of nickel oxide has been used to produce thin films intended for this application. The as-deposited films contain excess oxygen compared to stoichiometric nickel oxide and exhibit strong preferred orientation. Annealing in argon leads to oxygen deficient films. The reduction in porosity which accompanies the annealing leads to the formation of through-thickness cracks in the films. Subsequent oxygen tracer studies demonstrate that the cracks give rise to excessive oxygen transport through the films compared to that expected for thermally oxidised scales. The microstructural anomalies produced by the annealing process mean that the required microstructures were not achieved and these films are not useful analogues of thermal nickel oxide scales. (author)

  16. Structure and Microstructure of Ni-Mn-Ga thin films

    Directory of Open Access Journals (Sweden)

    A.Annadurai

    2013-04-01

    Full Text Available Ni-Mn-Ga thin films were dc magnetron sputter deposited onto well cleaned substrates of si(100 and glass in high pure argon atmosphere of pressure of 0.01 mbar using NiMnGa alloy targets prepared in ourlaboratory by vacuum induction melting technique. Pristine thin films were investigated. Crystal structure of the films was studied using x-ray diffraction (XRD technique. Microstructure of the films was investigated using scanning electron microscope (SEM. XRD reveals that the films on glass substrates are amorphous and films on si(100 substrates posses L21 structure. SEM microstructure shows that the films on si(100 are polycrystalline in pristine form.

  17. Light waves in thin films and integrated optics.

    Science.gov (United States)

    Tien, P K

    1971-11-01

    Integrated optics is a far-reaching attempt to apply thin-film technology to optical circuits and devices, and, by using methods of integrated circuitry, to achieve a better and more economical optical system. The specific topics discussed here are physics of light waves in thin films, materials and losses involved, methods of couplings light beam into and out of a thin film, and nonlinear interactions in waveguide structures. The purpose of this paper is to review in some detail the important development of this new and fascinating field, and to caution the reader that the technology involved is difficult because of the smallness and perfection demanded by thin-film optical devices.

  18. Investigation on guided wave dispersion characteristics for metal thin films

    International Nuclear Information System (INIS)

    In this study, we investigated the dispersion characteristics of guided waves in thin films. Dispersion curves are essential for understanding not only the behavior of ultrasonic waves, but also the mechanical properties of thin films. Matrix techniques are presented for modeling ultrasonic waves in multilayered structures before being used to calculate the dispersion curves for Al-steel and Al-composite specimens. When compared with the dispersion curves obtained using the commercial program (Disperse), the dispersion curves generated from the transfer matrix method show its validity. These developed methods are used to obtain dispersion curves for Al thin films deposited on a Si substrate. The resulting dispersion curves enable observation of both dispersive and non-dispersive behavior for the guided waves, depending on the thickness of the thin films.

  19. Rip-Stop Reinforced Thin Film Sun Shield Structure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During a proposed Phase I and Phase II program, PSI will advance the TRL from 3 to 6 for the ripstop reinforcement of thin film membranes used for large deployable...

  20. Mechanism of spontaneous hole formation in thin polymeric films

    DEFF Research Database (Denmark)

    Yu, Kaijia; Rasmussen, Henrik K.; Román Marín, José Manuel;

    2012-01-01

    We show computationally that (molten) thin polymeric film containing nonequilibrium configurations originating from a solvent evaporation may develop holes spontaneously in the molten state, and that they appear delayed. Polymers above the glass transition temperature are liquids where the flow...