WorldWideScience

Sample records for bidirectional hebbian plasticity

  1. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons

    Science.gov (United States)

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information. PMID:28203145

  2. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.

    Science.gov (United States)

    Panda, Priyadarshini; Roy, Kaushik

    2017-01-01

    Synaptic Plasticity, the foundation for learning and memory formation in the human brain, manifests in various forms. Here, we combine the standard spike timing correlation based Hebbian plasticity with a non-Hebbian synaptic decay mechanism for training a recurrent spiking neural model to generate sequences. We show that inclusion of the adaptive decay of synaptic weights with standard STDP helps learn stable contextual dependencies between temporal sequences, while reducing the strong attractor states that emerge in recurrent models due to feedback loops. Furthermore, we show that the combined learning scheme suppresses the chaotic activity in the recurrent model substantially, thereby enhancing its' ability to generate sequences consistently even in the presence of perturbations.

  3. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity

    Science.gov (United States)

    Hiratani, Naoki; Fukai, Tomoki

    2016-01-01

    In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance. PMID:27303271

  4. Hebbian Wiring Plasticity Generates Efficient Network Structures for Robust Inference with Synaptic Weight Plasticity.

    Science.gov (United States)

    Hiratani, Naoki; Fukai, Tomoki

    2016-01-01

    In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it remains unknown whether a particular synaptic connection structure is functionally advantageous in local circuits, and why creation and elimination of synaptic connections is necessary in addition to rich synaptic weight plasticity. To answer these questions, we studied an inference task model through theoretical and numerical analyses. We demonstrate that a robustly beneficial network structure naturally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially in a sparsely connected network, wiring plasticity achieves reliable computation by enabling efficient information transmission. Furthermore, the proposed rule reproduces experimental observed correlation between spine dynamics and task performance.

  5. Anti-Hebbian Spike Timing Dependent Plasticity and Adaptive Sensory Processing

    Directory of Open Access Journals (Sweden)

    Patrick D Roberts

    2010-12-01

    Full Text Available Adaptive processing influences the central nervous system's interpretation of incoming sensory information. One of the functions of this adaptative sensory processing is to allow the nervous system to ignore predictable sensory information so that it may focus on important new information needed to improve performance of specific tasks. The mechanism of spike timing-dependent plasticity (STDP has proven to be intriguing in this context because of its dual role in long-term memory and ongoing adaptation to maintain optimal tuning of neural responses. Some of the clearest links between STDP and adaptive sensory processing have come from in vitro, in vivo, and modeling studies of the electrosensory systems of fish. Plasticity in such systems is anti-Hebbian, i.e. presynaptic inputs that repeatedly precede and hence could contribute to a postsynaptic neuron’s firing are weakened. The learning dynamics of anti-Hebbian STDP learning rules are stable if the timing relations obey strict constraints. The stability of these learning rules leads to clear predictions of how functional consequences can arise from the detailed structure of the plasticity. Here we review the connection between theoretical predictions and functional consequences of anti-Hebbian STDP, focusing on adaptive processing in the electrosensory system of weakly electric fish. After introducing electrosensory adaptive processing and the dynamics of anti-Hebbian STDP learning rules, we address issues of predictive sensory cancellation and novelty detection, descending control of plasticity, synaptic scaling, and optimal sensory tuning. We conclude with examples in other systems where these principles may apply.

  6. The dependence of neuronal encoding efficiency on Hebbian plasticity and homeostatic regulation of neurotransmitter release

    Directory of Open Access Journals (Sweden)

    Faramarz eFaghihi

    2015-04-01

    Full Text Available Synapses act as information filters by different molecular mechanisms including retrograde messenger that affect neuronal spiking activity. One of the well-known effects of retrograde messenger in presynaptic neurons is a change of the probability of neurotransmitter release. Hebbian learning describe a strengthening of a synapse between a presynaptic input onto a postsynaptic neuron when both pre- and postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal encoding is presented. Encoding efficiency was measured for different synaptic conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron should be dependent on the intensity of the input and show low levels of noise. In this work, we represent spiking trains as zeros and ones (corresponding to non-spike or spike in a time bin, respectively as words with length equal to three. Then the frequency of each word (here eight words is measured using spiking trains. These frequencies are used to measure neuronal efficiency in different conditions and for different parameter values. Results show that neurons that have synapses acting as band-pass filters show the highest efficiency to encode their input when both Hebbian mechanism and homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and homeostatic regulation of neurotransmitter release in the synapses leads to even higher efficiency when high stimulus intensity is presented to the neurons. However, neurons with synapses acting as high-pass filters show no remarkable increase in encoding efficiency for all simulated synaptic plasticity mechanisms.

  7. Learning with three factors: modulating Hebbian plasticity with errors.

    Science.gov (United States)

    Kuśmierz, Łukasz; Isomura, Takuya; Toyoizumi, Taro

    2017-10-01

    Synaptic plasticity is a central theme in neuroscience. A framework of three-factor learning rules provides a powerful abstraction, helping to navigate through the abundance of models of synaptic plasticity. It is well-known that the dopamine modulation of learning is related to reward, but theoretical models predict other functional roles of the modulatory third factor; it may encode errors for supervised learning, summary statistics of the population activity for unsupervised learning or attentional feedback. Specialized structures may be needed in order to generate and propagate third factors in the neural network. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum

    Directory of Open Access Journals (Sweden)

    Tjeerd V. olde Scheper

    2018-01-01

    Full Text Available Spike Timing-Dependent Plasticity has been found to assume many different forms. The classic STDP curve, with one potentiating and one depressing window, is only one of many possible curves that describe synaptic learning using the STDP mechanism. It has been shown experimentally that STDP curves may contain multiple LTP and LTD windows of variable width, and even inverted windows. The underlying STDP mechanism that is capable of producing such an extensive, and apparently incompatible, range of learning curves is still under investigation. In this paper, it is shown that STDP originates from a combination of two dynamic Hebbian cross-correlations of local activity at the synapse. The correlation of the presynaptic activity with the local postsynaptic activity is a robust and reliable indicator of the discrepancy between the presynaptic neuron and the postsynaptic neuron's activity. The second correlation is between the local postsynaptic activity with dendritic activity which is a good indicator of matching local synaptic and dendritic activity. We show that this simple time-independent learning rule can give rise to many forms of the STDP learning curve. The rule regulates synaptic strength without the need for spike matching or other supervisory learning mechanisms. Local differences in dendritic activity at the synapse greatly affect the cross-correlation difference which determines the relative contributions of different neural activity sources. Dendritic activity due to nearby synapses, action potentials, both forward and back-propagating, as well as inhibitory synapses will dynamically modify the local activity at the synapse, and the resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore, that the resulting synaptic strength is dynamically stable, and that interactions between synapses do not result in local instabilities. The rule clearly demonstrates that synapses function as independent localized

  9. Reward-Modulated Hebbian Plasticity as Leverage for Partially Embodied Control in Compliant Robotics.

    Science.gov (United States)

    Burms, Jeroen; Caluwaerts, Ken; Dambre, Joni

    2015-01-01

    In embodied computation (or morphological computation), part of the complexity of motor control is offloaded to the body dynamics. We demonstrate that a simple Hebbian-like learning rule can be used to train systems with (partial) embodiment, and can be extended outside of the scope of traditional neural networks. To this end, we apply the learning rule to optimize the connection weights of recurrent neural networks with different topologies and for various tasks. We then apply this learning rule to a simulated compliant tensegrity robot by optimizing static feedback controllers that directly exploit the dynamics of the robot body. This leads to partially embodied controllers, i.e., hybrid controllers that naturally integrate the computations that are performed by the robot body into a neural network architecture. Our results demonstrate the universal applicability of reward-modulated Hebbian learning. Furthermore, they demonstrate the robustness of systems trained with the learning rule. This study strengthens our belief that compliant robots should or can be seen as computational units, instead of dumb hardware that needs a complex controller. This link between compliant robotics and neural networks is also the main reason for our search for simple universal learning rules for both neural networks and robotics.

  10. Reward-Modulated Hebbian Plasticity as Leverage for Partially Embodied Control in Compliant Robotics

    Science.gov (United States)

    Burms, Jeroen; Caluwaerts, Ken; Dambre, Joni

    2015-01-01

    In embodied computation (or morphological computation), part of the complexity of motor control is offloaded to the body dynamics. We demonstrate that a simple Hebbian-like learning rule can be used to train systems with (partial) embodiment, and can be extended outside of the scope of traditional neural networks. To this end, we apply the learning rule to optimize the connection weights of recurrent neural networks with different topologies and for various tasks. We then apply this learning rule to a simulated compliant tensegrity robot by optimizing static feedback controllers that directly exploit the dynamics of the robot body. This leads to partially embodied controllers, i.e., hybrid controllers that naturally integrate the computations that are performed by the robot body into a neural network architecture. Our results demonstrate the universal applicability of reward-modulated Hebbian learning. Furthermore, they demonstrate the robustness of systems trained with the learning rule. This study strengthens our belief that compliant robots should or can be seen as computational units, instead of dumb hardware that needs a complex controller. This link between compliant robotics and neural networks is also the main reason for our search for simple universal learning rules for both neural networks and robotics. PMID:26347645

  11. Corticosterone alters AMPAR mobility and facilitates bidirectional synaptic plasticity

    NARCIS (Netherlands)

    Martin, S.; Henley, J.M.; Holman, D.; Zhou, M.; Wiegert, O.; van Spronsen, M.; Joëls, M.; Hoogenraad, C.C.; Krugers, H.J.

    2009-01-01

    Background: The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and learning and memory processes. However, until today there is very little known about the molecular mechanism that underlies the bidirectional effects of stress and corticosteroid

  12. Pannexin 1 Regulates Bidirectional Hippocampal Synaptic Plasticity in Adult Mice

    Directory of Open Access Journals (Sweden)

    Alvaro O. Ardiles

    2014-10-01

    Full Text Available The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR composition of GluN2 subunits. Pannexin 1 (Panx1, a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP, it remains unknown whether these channels also modulate long-term depression (LTD or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  13. Pannexin 1 regulates bidirectional hippocampal synaptic plasticity in adult mice.

    Science.gov (United States)

    Ardiles, Alvaro O; Flores-Muñoz, Carolina; Toro-Ayala, Gabriela; Cárdenas, Ana M; Palacios, Adrian G; Muñoz, Pablo; Fuenzalida, Marco; Sáez, Juan C; Martínez, Agustín D

    2014-01-01

    The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca(2+) concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.

  14. Coordinated activation of distinct Ca2+ sources and metabotropic glutamate receptors encodes Hebbian synaptic plasticity

    Science.gov (United States)

    Tigaret, Cezar M.; Olivo, Valeria; Sadowski, Josef H.L.P.; Ashby, Michael C.; Mellor, Jack R.

    2016-01-01

    At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The magnitudes of the ensuing Ca2+ transients within dendritic spines are thought to determine the amplitude and direction of synaptic change. In contrast, we show that at mature hippocampal Schaffer collateral synapses the magnitudes of Ca2+ transients during plasticity induction do not match this rule. Indeed, LTP induced by time-correlated pre- and postsynaptic spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive Ca2+ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs. Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium rise, LTP induction requires the coordinated activation of distinct sources of Ca2+ and mGluR1-dependent facilitation of NMDAR function. PMID:26758963

  15. Exercise-Induced Fatigue Impairs Bidirectional Corticostriatal Synaptic Plasticity.

    Science.gov (United States)

    Ma, Jing; Chen, Huimin; Liu, Xiaoli; Zhang, Lingtao; Qiao, Decai

    2018-01-01

    Exercise-induced fatigue (EF) is a ubiquitous phenomenon in sports competition and training. It can impair athletes' motor skill execution and cognition. Corticostriatal synaptic plasticity is considered to be the cellular mechanism of movement control and motor learning. However, the effect of EF on corticostriatal synaptic plasticity remains elusive. In the present study, using field excitatory postsynaptic potential recording, we found that the corticostriatal long-term potentiation (LTP) and long-term depression (LTD) were both impaired in EF mice. To further investigate the cellular mechanisms underlying the impaired synaptic plasticity in corticostriatal pathway, whole-cell patch clamp recordings were carried out on striatal medium spiny neurons (MSNs). MSNs in EF mice exhibited increased spontaneous excitatory postsynaptic current (sEPSC) frequency and decreased paired-pulse ratio (PPR), while with normal basic electrophysiological properties and normal sEPSC amplitude. Furthermore, the N-methyl-D-aspartate (NMDA)/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) ratio of MSNs was reduced in EF mice. These results suggest that the enhanced presynaptic glutamate (Glu) release and downregulated postsynaptic NMDA receptor function lead to the impaired corticostriatal plasticity in EF mice. Taken together, our findings for the first time show that the bidirectional corticostriatal synaptic plasticity is impaired after EF, and suggest that the aberrant corticostriatal synaptic plasticity may be involved in the production and/or maintenance of EF.

  16. Non-Hebbian spike-timing-dependent plasticity in cerebellar circuits

    Science.gov (United States)

    Piochon, Claire; Kruskal, Peter; MacLean, Jason; Hansel, Christian

    2013-01-01

    Spike-timing-dependent plasticity (STDP) provides a cellular implementation of the Hebb postulate, which states that synapses, whose activity repeatedly drives action potential firing in target cells, are potentiated. At glutamatergic synapses onto hippocampal and neocortical pyramidal cells, synaptic activation followed by spike firing in the target cell causes long-term potentiation (LTP)—as predicted by Hebb—whereas excitatory postsynaptic potentials (EPSPs) evoked after a spike elicit long-term depression (LTD)—a phenomenon that was not specifically addressed by Hebb. In both instances the action potential in the postsynaptic target neuron is an instructive signal that is capable of supporting synaptic plasticity. STDP generally relies on the propagation of Na+ action potentials that are initiated in the axon hillhock back into the dendrite, where they cause depolarization and boost local calcium influx. However, recent studies in CA1 hippocampal pyramidal neurons have suggested that local calcium spikes might provide a more efficient trigger for LTP induction than backpropagating action potentials. Dendritic calcium spikes also play a role in an entirely different type of STDP that can be observed in cerebellar Purkinje cells. These neurons lack backpropagating Na+ spikes. Instead, plasticity at parallel fiber (PF) to Purkinje cell synapses depends on the relative timing of PF-EPSPs and activation of the glutamatergic climbing fiber (CF) input that causes dendritic calcium spikes. Thus, the instructive signal in this system is externalized. Importantly when EPSPs are elicited before CF activity, PF-LTD is induced rather than LTP. Thus, STDP in the cerebellum follows a timing rule that is opposite to its hippocampal/neocortical counterparts. Regardless, a common motif in plasticity is that LTD/LTP induction depends on the relative timing of synaptic activity and regenerative dendritic spikes which are driven by the instructive signal. PMID:23335888

  17. Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity

    Science.gov (United States)

    Massa, Federico; Koehl, Muriel; Wiesner, Theresa; Grosjean, Noelle; Revest, Jean-Michel; Piazza, Pier-Vincenzo; Abrous, Djoher Nora; Oliet, Stéphane H. R.

    2011-01-01

    Adult neurogenesis is a process by which the brain produces new neurons once development has ceased. Adult hippocampal neurogenesis has been linked to the relational processing of spatial information, a role attributed to the contribution of newborn neurons to long-term potentiation (LTP). However, whether newborn neurons also influence long-term depression (LTD), and how synaptic transmission and plasticity are affected as they incorporate their network, remain to be determined. To address these issues, we took advantage of a genetic model in which a majority of adult-born neurons can be selectively ablated in the dentate gyrus (DG) and, most importantly, in which neurogenesis can be restored on demand. Using electrophysiological recordings, we show that selective reduction of adult-born neurons impairs synaptic transmission at medial perforant pathway synapses onto DG granule cells. Furthermore, LTP and LTD are largely compromised at these synapses, probably as a result of an increased induction threshold. Whereas the deficits in synaptic transmission and plasticity are completely rescued by restoring neurogenesis, these synapses regain their ability to express LTP much faster than their ability to express LTD. These results demonstrate that both LTP and LTD are influenced by adult neurogenesis. They also indicate that as newborn neurons integrate their network, the ability to express bidirectional synaptic plasticity is largely improved at these synapses. These findings establish that adult neurogenesis is an important process for synaptic transmission and bidirectional plasticity in the DG, accounting for its role in efficiently integrating novel incoming information and in forming new memories. PMID:21464314

  18. A Model of Bidirectional Synaptic Plasticity: From Signaling Network to Channel Conductance

    Science.gov (United States)

    Castellani, Gastone C.; Quinlan, Elizabeth M.; Bersani, Ferdinando; Cooper, Leon N.; Shouval, Harel Z.

    2005-01-01

    In many regions of the brain, including the mammalian cortex, the strength of synaptic transmission can be bidirectionally regulated by cortical activity (synaptic plasticity). One line of evidence indicates that long-term synaptic potentiation (LTP) and long-term synaptic depression (LTD), correlate with the phosphorylation/dephosphorylation of…

  19. "The seven sins" of the Hebbian synapse: can the hypothesis of synaptic plasticity explain long-term memory consolidation?

    Science.gov (United States)

    Arshavsky, Yuri I

    2006-10-01

    Memorizing new facts and events means that entering information produces specific physical changes within the brain. According to the commonly accepted view, traces of memory are stored through the structural modifications of synaptic connections, which result in changes of synaptic efficiency and, therefore, in formations of new patterns of neural activity (the hypothesis of synaptic plasticity). Most of the current knowledge on learning and initial stages of memory consolidation ("synaptic consolidation") is based on this hypothesis. However, the hypothesis of synaptic plasticity faces a number of conceptual and experimental difficulties when it deals with potentially permanent consolidation of declarative memory ("system consolidation"). These difficulties are rooted in the major intrinsic self-contradiction of the hypothesis: stable declarative memory is unlikely to be based on such a non-stable foundation as synaptic plasticity. Memory that can last throughout an entire lifespan should be "etched in stone." The only "stone-like" molecules within living cells are DNA molecules. Therefore, I advocate an alternative, genomic hypothesis of memory, which suggests that acquired information is persistently stored within individual neurons through modifications of DNA, and that these modifications serve as the carriers of elementary memory traces.

  20. Hebbian learning and predictive mirror neurons for actions, sensations and emotions

    NARCIS (Netherlands)

    Keysers, Christian; Gazzola, Valeria

    2014-01-01

    Spike-timing-dependent plasticity is considered the neurophysiological basis of Hebbian learning and has been shown to be sensitive to both contingency and contiguity between pre- and postsynaptic activity. Here, we will examine how applying this Hebbian learning rule to a system of interconnected

  1. Familiarity Detection is an Intrinsic Property of Cortical Microcircuits with Bidirectional Synaptic Plasticity

    Science.gov (United States)

    2017-01-01

    Abstract Humans instantly recognize a previously seen face as “familiar.” To deepen our understanding of familiarity-novelty detection, we simulated biologically plausible neural network models of generic cortical microcircuits consisting of spiking neurons with random recurrent synaptic connections. NMDA receptor (NMDAR)-dependent synaptic plasticity was implemented to allow for unsupervised learning and bidirectional modifications. Network spiking activity evoked by sensory inputs consisting of face images altered synaptic efficacy, which resulted in the network responding more strongly to a previously seen face than a novel face. Network size determined how many faces could be accurately recognized as familiar. When the simulated model became sufficiently complex in structure, multiple familiarity traces could be retained in the same network by forming partially-overlapping subnetworks that differ slightly from each other, thereby resulting in a high storage capacity. Fisher’s discriminant analysis was applied to identify critical neurons whose spiking activity predicted familiar input patterns. Intriguingly, as sensory exposure was prolonged, the selected critical neurons tended to appear at deeper layers of the network model, suggesting recruitment of additional circuits in the network for incremental information storage. We conclude that generic cortical microcircuits with bidirectional synaptic plasticity have an intrinsic ability to detect familiar inputs. This ability does not require a specialized wiring diagram or supervision and can therefore be expected to emerge naturally in developing cortical circuits. PMID:28534043

  2. ERK Pathway Activation Bidirectionally Affects Visual Recognition Memory and Synaptic Plasticity in the Perirhinal Cortex

    Science.gov (United States)

    Silingardi, Davide; Angelucci, Andrea; De Pasquale, Roberto; Borsotti, Marco; Squitieri, Giovanni; Brambilla, Riccardo; Putignano, Elena; Pizzorusso, Tommaso; Berardi, Nicoletta

    2011-01-01

    ERK 1,2 pathway mediates experience-dependent gene transcription in neurons and several studies have identified its pivotal role in experience-dependent synaptic plasticity and in forms of long term memory involving hippocampus, amygdala, or striatum. The perirhinal cortex (PRHC) plays an essential role in familiarity-based object recognition memory. It is still unknown whether ERK activation in PRHC is necessary for recognition memory consolidation. Most important, it is unknown whether by modulating the gain of the ERK pathway it is possible to bidirectionally affect visual recognition memory and PRHC synaptic plasticity. We have first pharmacologically blocked ERK activation in the PRHC of adult mice and found that this was sufficient to impair long term recognition memory in a familiarity-based task, the object recognition task (ORT). We have then tested performance in the ORT in Ras-GRF1 knock-out (KO) mice, which exhibit a reduced activation of ERK by neuronal activity, and in ERK1 KO mice, which have an increased activation of ERK2 and exhibit enhanced striatal plasticity and striatal mediated memory. We found that Ras-GRF1 KO mice have normal short term memory but display a long term memory deficit; memory reconsolidation is also impaired. On the contrary, ERK1 KO mice exhibit a better performance than WT mice at 72 h retention interval, suggesting a longer lasting recognition memory. In parallel with behavioral data, LTD was strongly reduced and LTP was significantly smaller in PRHC slices from Ras-GRF1 KO than in WT mice while enhanced LTP and LTD were found in PRHC slices from ERK1 KO mice. PMID:22232579

  3. Orexin A induces bidirectional modulation of synaptic plasticity: Inhibiting long-term potentiation and preventing depotentiation.

    Science.gov (United States)

    Lu, Guan-Ling; Lee, Chia-Hsu; Chiou, Lih-Chu

    2016-08-01

    The orexin system consists of two peptides, orexin A and B and two receptors, OX1R and OX2R. It is implicated in learning and memory regulation while controversy remains on its role in modulating hippocampal synaptic plasticity in vivo and in vitro. Here, we investigated effects of orexin A on two forms of synaptic plasticity, long-term potentiation (LTP) and depotentiation of field excitatory postsynaptic potentials (fEPSPs), at the Schaffer Collateral-CA1 synapse of mouse hippocampal slices. Orexin A (≧30 nM) attenuated LTP induced by theta burst stimulation (TBS) in a manner antagonized by an OX1R (SB-334867), but not OX2R (EMPA), antagonist. Conversely, at 1 pM, co-application of orexin A prevented the induction of depotentiation induced by low frequency stimulation (LFS), i.e. restoring LTP. This re-potentiation effect of sub-nanomolar orexin A occurred at LFS of 1 Hz, but not 2 Hz, and with LTP induced by either TBS or tetanic stimulation. It was significantly antagonized by SB-334867, EMPA and TCS-1102, selective OX1R, OX2R and dual OXR antagonists, respectively, and prevented by D609, SQ22536 and H89, inhibitors of phospholipase C (PLC), adenylyl cyclase (AC) and protein kinase A (PKA), respectively. LFS-induced depotentiation was antagonized by blockers of NMDA, A1-adenosine and type 1/5 metabotropic glutamate (mGlu1/5) receptors, respectively. However, orexin A (1 pM) did not affect chemical-induced depotentiation by agonists of these receptors. These results suggest that orexin A bidirectionally modulates hippocampal CA1 synaptic plasticity, inhibiting LTP via OX1Rs at moderate concentrations while inducing re-potentiation via OX1Rs and OX2Rs, possibly through PLC and AC-PKA signaling at sub-nanomolar concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Enhanced detection threshold for in vivo cortical stimulation produced by Hebbian conditioning

    Science.gov (United States)

    Rebesco, James M.; Miller, Lee E.

    2011-02-01

    Normal brain function requires constant adaptation, as an organism learns to associate important sensory stimuli with the appropriate motor actions. Neurological disorders may disrupt these learned associations and require the nervous system to reorganize itself. As a consequence, neural plasticity is a crucial component of normal brain function and a critical mechanism for recovery from injury. Associative, or Hebbian, pairing of pre- and post-synaptic activity has been shown to alter stimulus-evoked responses in vivo; however, to date, such protocols have not been shown to affect the animal's subsequent behavior. We paired stimulus trains separated by a brief time delay to two electrodes in rat sensorimotor cortex, which changed the statistical pattern of spikes during subsequent behavior. These changes were consistent with strengthened functional connections from the leading electrode to the lagging electrode. We then trained rats to respond to a microstimulation cue, and repeated the paradigm using the cue electrode as the leading electrode. This pairing lowered the rat's ICMS-detection threshold, with the same dependence on intra-electrode time lag that we found for the functional connectivity changes. The timecourse of the behavioral effects was very similar to that of the connectivity changes. We propose that the behavioral changes were a consequence of strengthened functional connections from the cue electrode to other regions of sensorimotor cortex. Such paradigms might be used to augment recovery from a stroke, or to promote adaptation in a bidirectional brain-machine interface.

  5. Mechanism for optimization of signal-to-noise ratio of dopamine release based on short-term bidirectional plasticity.

    Science.gov (United States)

    Da Cunha, Claudio; McKimm, Eric; Da Cunha, Rafael M; Boschen, Suelen L; Redgrave, Peter; Blaha, Charles D

    2017-07-15

    Repeated electrical stimulation of dopamine (dopamine) fibers can cause variable effects on further dopamine release; sometimes there are short-term decreases while in other cases short-term increases have been reported. Previous studies have failed to discover what factors determine in which way dopamine neurons will respond to repeated stimulation. The aim of the present study was therefore to investigate what determines the direction and magnitude of this particular form of short-term plasticity. Fixed potential amperometry was used to measure dopamine release in the nucleus accumbens in response to two trains of electrical pulses administered to the ventral tegmental area of anesthetized mice. When the pulse trains were of equal magnitude we found that low magnitude stimulation was associated with short-term suppression and high magnitude stimulation with short-term facilitation of dopamine release. Secondly, we found that the magnitude of the second pulse train was critical for determining the sign of the plasticity (suppression or facilitation), while the magnitude of the first pulse train determined the extent to which the response to the second train was suppressed or facilitated. This form of bidirectional plasticity might provide a mechanism to enhance signal-to-noise ratio of dopamine neurotransmission. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Correlation-based model of artificially induced plasticity in motor cortex by a bidirectional brain-computer interface.

    Directory of Open Access Journals (Sweden)

    Guillaume Lajoie

    2017-02-01

    Full Text Available Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI can artificially strengthen connections between separate neural sites in motor cortex (MC. When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.

  7. Hebbian learning and predictive mirror neurons for actions, sensations and emotions.

    Science.gov (United States)

    Keysers, Christian; Gazzola, Valeria

    2014-01-01

    Spike-timing-dependent plasticity is considered the neurophysiological basis of Hebbian learning and has been shown to be sensitive to both contingency and contiguity between pre- and postsynaptic activity. Here, we will examine how applying this Hebbian learning rule to a system of interconnected neurons in the presence of direct or indirect re-afference (e.g. seeing/hearing one's own actions) predicts the emergence of mirror neurons with predictive properties. In this framework, we analyse how mirror neurons become a dynamic system that performs active inferences about the actions of others and allows joint actions despite sensorimotor delays. We explore how this system performs a projection of the self onto others, with egocentric biases to contribute to mind-reading. Finally, we argue that Hebbian learning predicts mirror-like neurons for sensations and emotions and review evidence for the presence of such vicarious activations outside the motor system.

  8. Long-Term Homeostatic Properties Complementary to Hebbian Rules in CuPc-Based Multifunctional Memristor

    Science.gov (United States)

    Wang, Laiyuan; Wang, Zhiyong; Lin, Jinyi; Yang, Jie; Xie, Linghai; Yi, Mingdong; Li, Wen; Ling, Haifeng; Ou, Changjin; Huang, Wei

    2016-10-01

    Most simulations of neuroplasticity in memristors, which are potentially used to develop artificial synapses, are confined to the basic biological Hebbian rules. However, the simplex rules potentially can induce excessive excitation/inhibition, even collapse of neural activities, because they neglect the properties of long-term homeostasis involved in the frameworks of realistic neural networks. Here, we develop organic CuPc-based memristors of which excitatory and inhibitory conductivities can implement both Hebbian rules and homeostatic plasticity, complementary to Hebbian patterns and conductive to the long-term homeostasis. In another adaptive situation for homeostasis, in thicker samples, the overall excitement under periodic moderate stimuli tends to decrease and be recovered under intense inputs. Interestingly, the prototypes can be equipped with bio-inspired habituation and sensitization functions outperforming the conventional simplified algorithms. They mutually regulate each other to obtain the homeostasis. Therefore, we develop a novel versatile memristor with advanced synaptic homeostasis for comprehensive neural functions.

  9. Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Sadra Sadeh

    2015-06-01

    Full Text Available In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational

  10. Hebbian Learning is about contingency, not contiguity, and explains the emergence of predictive mirror neurons

    NARCIS (Netherlands)

    Keysers, Christian; Perrett, David I.; Gazzola, Valeria

    Hebbian Learning should not be reduced to contiguity, as it detects contingency and causality. Hebbian Learning accounts of mirror neurons make predictions that differ from associative learning: Through Hebbian Learning, mirror neurons become dynamic networks that calculate predictions and

  11. Modelling bidirectional modulations in synaptic plasticity: A biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD).

    Science.gov (United States)

    He, Yao; Kulasiri, Don; Samarasinghe, Sandhya

    2016-08-21

    Synaptic plasticity induces bidirectional modulations of the postsynaptic response following a synaptic transmission. The long term forms of synaptic plasticity, named long term potentiation (LTP) and long term depression (LTD), are critical for the antithetic functions of the memory system, memory formation and removal, respectively. A common Ca(2+) signalling upstream triggers both LTP and LTD, and the critical proteins and factors coordinating the LTP/LTD inductions are not well understood. We develop an integrated model based on the sub-models of the indispensable synaptic proteins in the emergence of synaptic plasticity to validate and understand their potential roles in the expression of synaptic plasticity. The model explains Ca(2+)/calmodulin (CaM) complex dependent coordination of LTP/LTD expressions by the interactions among the indispensable proteins using the experimentally estimated kinetic parameters. Analysis of the integrated model provides us with insights into the effective timescales of the key proteins and we conclude that the CaM pool size is critical for the coordination between LTP/LTD expressions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Logarithmic distributions prove that intrinsic learning is Hebbian.

    Science.gov (United States)

    Scheler, Gabriele

    2017-01-01

    In this paper, we present data for the lognormal distributions of spike rates, synaptic weights and intrinsic excitability (gain) for neurons in various brain areas, such as auditory or visual cortex, hippocampus, cerebellum, striatum, midbrain nuclei. We find a remarkable consistency of heavy-tailed, specifically lognormal, distributions for rates, weights and gains in all brain areas examined. The difference between strongly recurrent and feed-forward connectivity (cortex vs. striatum and cerebellum), neurotransmitter (GABA (striatum) or glutamate (cortex)) or the level of activation (low in cortex, high in Purkinje cells and midbrain nuclei) turns out to be irrelevant for this feature. Logarithmic scale distribution of weights and gains appears to be a general, functional property in all cases analyzed. We then created a generic neural model to investigate adaptive learning rules that create and maintain lognormal distributions. We conclusively demonstrate that not only weights, but also intrinsic gains, need to have strong Hebbian learning in order to produce and maintain the experimentally attested distributions. This provides a solution to the long-standing question about the type of plasticity exhibited by intrinsic excitability.

  13. Altered AMPA receptor expression plays an important role in inducing bidirectional synaptic plasticity during contextual fear memory reconsolidation.

    Science.gov (United States)

    Bhattacharya, Subhrajit; Kimble, Whitney; Buabeid, Manal; Bhattacharya, Dwipayan; Bloemer, Jenna; Alhowail, Ahmad; Reed, Miranda; Dhanasekaran, Muralikrishnan; Escobar, Martha; Suppiramaniam, Vishnu

    2017-03-01

    Retrieval of a memory appears to render it unstable until the memory is once again re-stabilized or reconsolidated. Although the occurrence and consequences of reconsolidation have received much attention in recent years, the specific mechanisms that underlie the process of reconsolidation have not been fully described. Here, we present the first electrophysiological model of the synaptic plasticity changes underlying the different stages of reconsolidation of a conditioned fear memory. In this model, retrieval of a fear memory results in immediate but transient alterations in synaptic plasticity, mediated by modified expression of the glutamate receptor subunits GluA1 and GluA2 in the hippocampus of rodents. Retrieval of a memory results in an immediate impairment in LTP, which is enhanced 6h following memory retrieval. Conversely, memory retrieval results in an immediate enhancement of LTD, which decreases with time. These changes in plasticity are accompanied by decreased expression of GluA2 receptor subunits. Recovery of LTP and LTD correlates with progressive overexpression of GluA2 receptor subunits. The contribution of the GluA2 receptor was confirmed by interfering with receptor expression at the postsynaptic sites. Blocking GluA2 endocytosis restored LTP and attenuated LTD during the initial portion of the reconsolidation period. These findings suggest that altered GluA2 receptor expression is one of the mechanisms that controls different forms of synaptic plasticity during reconsolidation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Time-sensitive reorganization of the somatosensory cortex poststroke depends on interaction between Hebbian and homeoplasticity: a simulation study.

    Science.gov (United States)

    Bains, Amarpreet Singh; Schweighofer, Nicolas

    2014-12-15

    Together with Hebbian plasticity, homeoplasticity presumably plays a significant, yet unclear, role in recovery postlesion. Here, we undertake a simulation study addressing the role of homeoplasticity and rehabilitation timing poststroke. We first hypothesize that homeoplasticity is essential for recovery and second that rehabilitation training delivered too early, before homeoplasticity has compensated for activity disturbances postlesion, is less effective for recovery than training delivered after a delay. We developed a neural network model of the sensory cortex driven by muscle spindle inputs arising from a six-muscle arm. All synapses underwent Hebbian plasticity, while homeoplasticity adjusted cell excitability to maintain a desired firing distribution. After initial training, the network was lesioned, leading to areas of hyper- and hypoactivity due to the loss of lateral synaptic connections. The network was then retrained through rehabilitative arm movements. We found that network recovery was unsuccessful in the absence of homeoplasticity, as measured by reestablishment of lesion-affected inputs. We also found that a delay preceding rehabilitation led to faster network recovery during the rehabilitation training than no delay. Our simulation results thus suggest that homeoplastic restoration of prelesion activity patterns is essential to functional network recovery via Hebbian plasticity. Copyright © 2014 the American Physiological Society.

  15. Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models.

    Science.gov (United States)

    Thiele, Sherri L; Chen, Betty; Lo, Charlotte; Gertler, Tracey S; Warre, Ruth; Surmeier, James D; Brotchie, Jonathan M; Nash, Joanne E

    2014-11-01

    Parkinsonian symptoms arise due to over-activity of the indirect striatal output pathway, and under-activity of the direct striatal output pathway. l-DOPA-induced dyskinesia (LID) is caused when the opposite circuitry problems are established, with the indirect pathway becoming underactive, and the direct pathway becoming over-active. Here, we define synaptic plasticity abnormalities in these pathways associated with parkinsonism, symptomatic benefits of l-DOPA, and LID. We applied spike-timing dependent plasticity protocols to cortico-striatal synapses in slices from 6-OHDA-lesioned mouse models of parkinsonism and LID, generated in BAC transgenic mice with eGFP targeting the direct or indirect output pathways, with and without l-DOPA present. In naïve mice, bidirectional synaptic plasticity, i.e. LTP and LTD, was induced, resulting in an EPSP amplitude change of approximately 50% in each direction in both striatal output pathways, as shown previously. In parkinsonism and dyskinesia, both pathways exhibited unidirectional plasticity, irrespective of stimulation paradigm. In parkinsonian animals, the indirect pathway only exhibited LTP (LTP protocol: 143.5±14.6%; LTD protocol 177.7±22.3% of baseline), whereas the direct pathway only showed LTD (LTP protocol: 74.3±4.0% and LTD protocol: 63.3±8.7%). A symptomatic dose of l-DOPA restored bidirectional plasticity on both pathways to levels comparable to naïve animals (Indirect pathway: LTP protocol: 124.4±22.0% and LTD protocol: 52.1±18.5% of baseline. Direct pathway: LTP protocol: 140.7±7.3% and LTD protocol: 58.4±6.0% of baseline). In dyskinesia, in the presence of l-DOPA, the indirect pathway exhibited only LTD (LTP protocol: 68.9±21.3% and LTD protocol 52.0±14.2% of baseline), whereas in the direct pathway, only LTP could be induced (LTP protocol: 156.6±13.2% and LTD protocol 166.7±15.8% of baseline). We conclude that normal motor control requires bidirectional plasticity of both striatal outputs

  16. A Model of Fast Hebbian Spike Latency Normalization

    Directory of Open Access Journals (Sweden)

    Hafsteinn Einarsson

    2017-05-01

    Full Text Available Hebbian changes of excitatory synapses are driven by and enhance correlations between pre- and postsynaptic neuronal activations, forming a positive feedback loop that can lead to instability in simulated neural networks. Because Hebbian learning may occur on time scales of seconds to minutes, it is conjectured that some form of fast stabilization of neural firing is necessary to avoid runaway of excitation, but both the theoretical underpinning and the biological implementation for such homeostatic mechanism are to be fully investigated. Supported by analytical and computational arguments, we show that a Hebbian spike-timing-dependent metaplasticity rule, accounts for inherently-stable, quick tuning of the total input weight of a single neuron in the general scenario of asynchronous neural firing characterized by UP and DOWN states of activity.

  17. Cocaine Promotes Coincidence Detection and Lowers Induction Threshold during Hebbian Associative Synaptic Potentiation in Prefrontal Cortex.

    Science.gov (United States)

    Ruan, Hongyu; Yao, Wei-Dong

    2017-01-25

    Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca 2+ channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to

  18. Plastic

    International Nuclear Information System (INIS)

    Jeong Gi Hyeon

    1987-04-01

    This book deals with plastic, which includes introduction for plastic, chemistry of high polymers, polymerization, speciality and structure of a high molecule property of plastic, molding, thermosetting plastic, such as polyethylene, polyether, polyamide and polyvinyl acetyl, thermal plastic like phenolic resins, xylene resins, melamine resin, epoxy resin, alkyd resin and poly urethan resin, new plastic like ionomer and PPS resin, synthetic laminated tape and synthetic wood, mixed materials in plastic, reprocessing of waste plastic, polymer blend, test method for plastic materials and auxiliary materials of plastic.

  19. Hebbian Learning is about contingency, not contiguity, and explains the emergence of predictive mirror neurons.

    Science.gov (United States)

    Keysers, Christian; Perrett, David I; Gazzola, Valeria

    2014-04-01

    Hebbian Learning should not be reduced to contiguity, as it detects contingency and causality. Hebbian Learning accounts of mirror neurons make predictions that differ from associative learning: Through Hebbian Learning, mirror neurons become dynamic networks that calculate predictions and prediction errors and relate to ideomotor theories. The social force of imitation is important for mirror neuron emergence and suggests canalization.

  20. Effects of Hebbian learning on the dynamics and structure of random networks with inhibitory and excitatory neurons.

    Science.gov (United States)

    Siri, Benoît; Quoy, Mathias; Delord, Bruno; Cessac, Bruno; Berry, Hugues

    2007-01-01

    The aim of the present paper is to study the effects of Hebbian learning in random recurrent neural networks with biological connectivity, i.e. sparse connections and separate populations of excitatory and inhibitory neurons. We furthermore consider that the neuron dynamics may occur at a (shorter) time scale than synaptic plasticity and consider the possibility of learning rules with passive forgetting. We show that the application of such Hebbian learning leads to drastic changes in the network dynamics and structure. In particular, the learning rule contracts the norm of the weight matrix and yields a rapid decay of the dynamics complexity and entropy. In other words, the network is rewired by Hebbian learning into a new synaptic structure that emerges with learning on the basis of the correlations that progressively build up between neurons. We also observe that, within this emerging structure, the strongest synapses organize as a small-world network. The second effect of the decay of the weight matrix spectral radius consists in a rapid contraction of the spectral radius of the Jacobian matrix. This drives the system through the "edge of chaos" where sensitivity to the input pattern is maximal. Taken together, this scenario is remarkably predicted by theoretical arguments derived from dynamical systems and graph theory.

  1. Homeostatic role of heterosynaptic plasticity: Models and experiments

    Directory of Open Access Journals (Sweden)

    Marina eChistiakova

    2015-07-01

    Full Text Available Homosynaptic Hebbian-type plasticity provides a cellular mechanism of learning and refinement of connectivity during development in a variety of biological systems. In this review we argue that a complimentary form of plasticity - heterosynaptic plasticity - represents a necessary cellular component for homeostatic regulation of synaptic weights and neuronal activity. The required properties of a homeostatic mechanism which acutely constrains the runaway dynamics imposed by Hebbian associative plasticity have been well-articulated by theoretical and modeling studies. Such mechanism(s should robustly support the stability of operation of neuronal networks and synaptic competition, include changes at non-active synapses, and operate on a similar time scale to Hebbian-type plasticity. The experimentally observed properties of heterosynaptic plasticity have introduced it as a strong candidate to fulfill this homeostatic role. Subsequent modeling studies which incorporate heterosynaptic plasticity into model neurons with Hebbian synapses (utilizing an STDP learning rule have confirmed its ability to robustly provide stability and competition. In contrast, properties of homeostatic synaptic scaling, which is triggered by extreme and long lasting (hours and days changes of neuronal activity, do not fit two crucial requirements for a hypothetical homeostatic mechanism needed to provide stability of operation in the face of on-going synaptic changes driven by Hebbian-type learning rules. Both the trigger and the time scale of homeostatic synaptic scaling are fundamentally different from those of the Hebbian-type plasticity. We conclude that heterosynaptic plasticity, which is triggered by the same episodes of strong postsynaptic activity and operates on the same time scale as Hebbian-type associative plasticity, is ideally suited to serve homeostatic role during on-going synaptic plasticity.

  2. Hebbian errors in learning: an analysis using the Oja model.

    Science.gov (United States)

    Rădulescu, Anca; Cox, Kingsley; Adams, Paul

    2009-06-21

    Recent work on long term potentiation in brain slices shows that Hebb's rule is not completely synapse-specific, probably due to intersynapse diffusion of calcium or other factors. We previously suggested that such errors in Hebbian learning might be analogous to mutations in evolution. We examine this proposal quantitatively, extending the classical Oja unsupervised model of learning by a single linear neuron to include Hebbian inspecificity. We introduce an error matrix E, which expresses possible crosstalk between updating at different connections. When there is no inspecificity, this gives the classical result of convergence to the first principal component of the input distribution (PC1). We show the modified algorithm converges to the leading eigenvector of the matrix EC, where C is the input covariance matrix. In the most biologically plausible case when there are no intrinsically privileged connections, E has diagonal elements Q and off-diagonal elements (1-Q)/(n-1), where Q, the quality, is expected to decrease with the number of inputs n and with a synaptic parameter b that reflects synapse density, calcium diffusion, etc. We study the dependence of the learning accuracy on b, n and the amount of input activity or correlation (analytically and computationally). We find that accuracy increases (learning becomes gradually less useful) with increases in b, particularly for intermediate (i.e., biologically realistic) correlation strength, although some useful learning always occurs up to the trivial limit Q=1/n. We discuss the relation of our results to Hebbian unsupervised learning in the brain. When the mechanism lacks specificity, the network fails to learn the expected, and typically most useful, result, especially when the input correlation is weak. Hebbian crosstalk would reflect the very high density of synapses along dendrites, and inevitably degrades learning.

  3. Plastics

    OpenAIRE

    Cassou, Emilie

    2018-01-01

    Although the agricultural sector is not the largest user of plastics, their rapid appearance on farms the world over is quietly turning into a substantial pollution concern. Versatile and economical as they are, plastics are found all over farms. From machines to mulches, they are the stuff of bags and tubs, of tubes and tools, of tags and trays, and of pots and twine. Plastic films are us...

  4. Sleep: The hebbian reinforcement of the local inhibitory synapses.

    Science.gov (United States)

    Touzet, Claude

    2015-09-01

    Sleep is ubiquitous among the animal realm, and represents about 30% of our lives. Despite numerous efforts, the reason behind our need for sleep is still unknown. The Theory of neuronal Cognition (TnC) proposes that sleep is the period of time during which the local inhibitory synapses (in particular the cortical ones) are replenished. Indeed, as long as the active brain stays awake, hebbian learning guarantees that efficient inhibitory synapses lose their efficiency – just because they are efficient at avoiding the activation of the targeted neurons. Since hebbian learning is the only known mechanism of synapse modification, it follows that to replenish the inhibitory synapses' efficiency, source and targeted neurons must be activated together. This is achieved by a local depolarization that may travel (wave). The period of time during which such slow waves are experienced has been named the "slow-wave sleep" (SWS). It is cut into several pieces by shorter periods of paradoxical sleep (REM) which activity resembles that of the awake state. Indeed, SWS – because it only allows local neural activation – decreases the excitatory long distance connections strength. To avoid losing the associations built during the awake state, these long distance activations are played again during the REM sleep. REM and SWS sleeps act together to guarantee that when the subject awakes again, his inhibitory synaptic efficiency is restored and his (excitatory) long distance associations are still there. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus.

    Science.gov (United States)

    Stefanescu, Roxana A; Shore, Susan E

    2015-01-01

    Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NMDAr). Well-timed bimodal auditory-somatosensory stimulation, in vivo equivalent of spike-timing-dependent plasticity, can induce stimulus-timing-dependent plasticity (StTDP) of the FCs spontaneous and tone-evoked firing rates. In healthy guinea pigs, the resulting distribution of StTDP learning rules across a FC neural population is dominated by a Hebbian profile while anti-Hebbian, suppressive and enhancing LRs are less frequent. In this study, we investigate in vivo, the NMDAr contribution to FC baseline activity and long term plasticity. We find that blocking the NMDAr decreases the synchronization of FC- spontaneous activity and mediates differential modulation of FC rate-level functions such that low, and high threshold units are more likely to increase, and decrease, respectively, their maximum amplitudes. Three significant alterations in mean learning-rule profiles were identified: transitions from an initial Hebbian profile towards (1) an anti-Hebbian; (2) a suppressive profile; and (3) transitions from an anti-Hebbian to a Hebbian profile. FC units preserving their learning rules showed instead, NMDAr-dependent plasticity to unimodal acoustic stimulation, with persistent depression of tone-evoked responses changing to persistent enhancement following the NMDAr antagonist. These results reveal a crucial role of the NMDAr in mediating FC baseline activity and long-term plasticity which have important implications for signal processing and auditory pathologies related to maladaptive plasticity of dorsal cochlear nucleus circuitry.

  6. Logarithmic distributions prove that intrinsic learning is Hebbian [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    2017-10-01

    Full Text Available In this paper, we present data for the lognormal distributions of spike rates, synaptic weights and intrinsic excitability (gain for neurons in various brain areas, such as auditory or visual cortex, hippocampus, cerebellum, striatum, midbrain nuclei. We find a remarkable consistency of heavy-tailed, specifically lognormal, distributions for rates, weights and gains in all brain areas examined. The difference between strongly recurrent and feed-forward connectivity (cortex vs. striatum and cerebellum, neurotransmitter (GABA (striatum or glutamate (cortex or the level of activation (low in cortex, high in Purkinje cells and midbrain nuclei turns out to be irrelevant for this feature. Logarithmic scale distribution of weights and gains appears to be a general, functional property in all cases analyzed. We then created a generic neural model to investigate adaptive learning rules that create and maintain lognormal distributions. We conclusively demonstrate that not only weights, but also intrinsic gains, need to have strong Hebbian learning in order to produce and maintain the experimentally attested distributions. This provides a solution to the long-standing question about the type of plasticity exhibited by intrinsic excitability.

  7. Brain plasticity and sleep: Implication for movement disorders.

    Science.gov (United States)

    Caverzasio, Serena; Amato, Ninfa; Manconi, Mauro; Prosperetti, Chiara; Kaelin-Lang, Alain; Hutchison, William Duncan; Galati, Salvatore

    2018-03-01

    Brain plasticity is a lifelong process and involves both Hebbian and non-Hebbian synaptic plasticity. The latter, such as intrinsic plasticity and homeostatic synaptic plasticity or synaptic scaling, is thought to counteract Hebbian plasticity, in order to maintain a balanced network. Recent studies support the role of sleep in the regulation of homeostatic synaptic plasticity involved in memory and learning processes. Most evidence focus on the dependence of memory and plasticity in sleep mechanisms. Abnormal brain plasticity during sleep might be implicated in the development of movement disorders, particularly Parkinson's disease (PD) and dystonia. From that, the great interest to understand the underlying process of sleep in relation to movement disorders. The first objective of the review is to summarize the latest knowledge about brain plasticity. The second objective is to analyze the association between sleep, memory and brain plasticity. Finally, the review aims to assess the consequence of abnormal plasticity during PD and dystonia with a viewpoint on the underling pathogenesis of these disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice.

    Science.gov (United States)

    Xu, Xin; Pozzo-Miller, Lucas

    2017-08-15

    Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Mecp2 deletion in mice results in an imbalance of excitation and inhibition in hippocampal neurons, which affects 'Hebbian' synaptic plasticity. We show that Mecp2-deficient neurons also lack homeostatic synaptic plasticity, likely due to reduced levels of EEA1, a protein involved in AMPA receptor endocytosis. Expression of EEA1 restored homeostatic synaptic plasticity in Mecp2-deficient neurons, providing novel targets of intervention in Rett syndrome. Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in MECP2, the gene encoding the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Deletion of Mecp2 in mice results in an imbalance of synaptic excitation and inhibition in hippocampal pyramidal neurons, which affects 'Hebbian' long-term synaptic plasticity. Since the excitatory-inhibitory balance is maintained by homeostatic mechanisms, we examined the role of MeCP2 in homeostatic synaptic plasticity (HSP) at excitatory synapses. Negative feedback HSP, also known as synaptic scaling, maintains the global synaptic strength of individual neurons in response to sustained alterations in neuronal activity. Hippocampal neurons from Mecp2 knockout (KO) mice do not show the characteristic homeostatic scaling up of the amplitude of miniature excitatory postsynaptic currents (mEPSCs) and of synaptic levels of the GluA1 subunit of AMPA-type glutamate receptors after 48 h silencing with the Na + channel blocker tetrodotoxin. This deficit in HSP is bidirectional because Mecp2 KO neurons also failed to scale down mEPSC amplitudes and GluA1 synaptic levels after 48 h blockade of type A GABA receptor (GABA A R)-mediated inhibition with bicuculline. Consistent with the role of synaptic trafficking of AMPA-type of glutamate receptors in HSP, Mecp2 KO neurons

  9. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  10. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.

    Science.gov (United States)

    Lu, Bing; Dibazar, Alireza; Berger, Theodore W

    2010-12-01

    We propose using a new biologically inspired approach, nonlinear Hebbian learning (NHL), to implement acoustic signal recognition in noisy environments. The proposed learning processes both spectral and temporal features of input acoustic data. The spectral analysis is realized by using auditory gammatone filterbanks. The temporal dynamics is addressed by analyzing gammatone-filtered feature vectors over multiple temporal frames, which is called a spectro-temporal representation (STR). Given STR features, the exact acoustic signatures of signals of interest and the mixing property between signals of interest and noises are generally unknown. The nonlinear Hebbian learning is then employed to extract representative independent features from STRs, and to reduce their dimensionality. The extracted independent features of signals of interest are called signatures. In the meantime of learning, the synaptic weight vectors between input and output neurons are adaptively updated. These weight vectors project data into a feature subspace, in which signals of interest are selected, while noises are attenuated. Compared with linear Hebbian learning (LHL) which explores the second-order moment of data, the applied NHL involves the higher-order statistics of data. Therefore, NHL can capture representative features that are more statistically independent than LHL can. Besides, the nonlinear activation function of NHL can be chosen to refer to the implicit distribution of many acoustic sounds, and thus making the learning optimized in an aspect of mutual information. Simulation results show that the whole proposed system can more accurately recognize signals of interest than other conventional methods in severely noisy circumstances. One applicable project is detecting moving vehicles. Noise-contaminated vehicle sound is recognized while other non-vehicle sounds are rejected. When vehicle is contaminated by human vowel, bird chirp, or additive white Gaussian noise (AWGN) at SNR=0

  11. Functional consequences of pre- and postsynaptic expression of synaptic plasticity.

    Science.gov (United States)

    Costa, Rui Ponte; Mizusaki, Beatriz E P; Sjöström, P Jesper; van Rossum, Mark C W

    2017-03-05

    Growing experimental evidence shows that both homeostatic and Hebbian synaptic plasticity can be expressed presynaptically as well as postsynaptically. In this review, we start by discussing this evidence and methods used to determine expression loci. Next, we discuss the functional consequences of this diversity in pre- and postsynaptic expression of both homeostatic and Hebbian synaptic plasticity. In particular, we explore the functional consequences of a biologically tuned model of pre- and postsynaptically expressed spike-timing-dependent plasticity complemented with postsynaptic homeostatic control. The pre- and postsynaptic expression in this model predicts (i) more reliable receptive fields and sensory perception, (ii) rapid recovery of forgotten information (memory savings), and (iii) reduced response latencies, compared with a model with postsynaptic expression only. Finally, we discuss open questions that will require a considerable research effort to better elucidate how the specific locus of expression of homeostatic and Hebbian plasticity alters synaptic and network computations.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'. © 2017 The Authors.

  12. In search for the neural mechanisms of individual development: behavior-driven differential Hebbian learning

    Directory of Open Access Journals (Sweden)

    Ralf eDer

    2016-01-01

    Full Text Available When Donald Hebb published his 1949 book ``The Organization of Behavior'' he opened a new way of thinking in theoretical neuroscience which, in retrospective, is very close to contemporary ideas in self-organization. His metaphor of ``wiring'' together what ``fires together'' matches very closely the commonparadigm that global organization can derive from simple local rules. While ingenious at his time and inspiring the research over decades, the results still fall short of the expectations. For instance,unsupervised as they are, such neural mechanisms should be able to explain and realize the self-organizedacquisition of sensorimotor competencies. This paper proposes a new synaptic law which replaces Hebb's original metaphor by that of ``chaining together'' what ``changes together''. Starting from differential Hebbian learning,the new rule grounds the behavior of the agent directly in the internal synaptic dynamics.Therefore, one may call this a behavior-driven synaptic plasticity.Neurorobotics is an ideal testing ground for this new, unsupervised learning rule. This paper focuses on the close coupling between body, control, and environmentin challenging physical settings. The examples demonstrate how the new synaptic mechanism induces a self-determined ``search and converge'' strategy in behavior space, generating spontaneously a variety of sensorimotor competencies. The emerging behavior patterns are qualified by involving body and environment inan irreducible conjunction with the internal mechanism.The results may not only be of immediate interest for the further development of embodied intelligence.They also offer a new view on the role of self-learning processes in natural evolutionand in the brain.Videos and further details may be found under url{http://robot.informatik.uni-leipzig.de/research/supplementary/NeuroAutonomy/}.

  13. Homeostatic Presynaptic Plasticity Is Specifically Regulated by P/Q-type Ca2+ Channels at Mammalian Hippocampal Synapses

    Directory of Open Access Journals (Sweden)

    Alexander F. Jeans

    2017-10-01

    Full Text Available Voltage-dependent Ca2+ channels (VGCC represent the principal source of Ca2+ ions driving evoked neurotransmitter release at presynaptic boutons. In mammals, presynaptic Ca2+ influx is mediated mainly via P/Q-type and N-type VGCC, which differ in their properties. Changes in their relative contributions tune neurotransmission both during development and in Hebbian plasticity. However, whether this represents a functional motif also present in other forms of activity-dependent regulation is unknown. Here, we study the role of VGCC in homeostatic plasticity (HSP in mammalian hippocampal neurons using optical techniques. We find that changes in evoked Ca2+ currents specifically through P/Q-type, but not N-type, VGCC mediate bidirectional homeostatic regulation of both neurotransmitter release efficacy and the size of the major synaptic vesicle pools. Selective dependence of HSP on P/Q-type VGCC in mammalian terminals has important implications for phenotypes associated with P/Q-type channelopathies, including migraine and epilepsy.

  14. Spike-timing dependent plasticity and the cognitive map

    Directory of Open Access Journals (Sweden)

    Daniel eBush

    2010-10-01

    Full Text Available Since the discovery of place cells – single pyramidal neurons that encode spatial location – it has been hypothesised that the hippocampus may act as a cognitive map of known environments. This putative function has been extensively modelled using auto-associative networks, which utilise rate-coded synaptic plasticity rules in order to generate strong bi-directional connections between concurrently active place cells that encode for neighbouring place fields. However, empirical studies using hippocampal cultures have demonstrated that the magnitude and direction of changes in synaptic strength can also be dictated by the relative timing of pre- and post- synaptic firing according to a spike-timing dependent plasticity (STDP rule. Furthermore, electrophysiology studies have identified persistent ‘theta-coded’ temporal correlations in place cell activity in vivo, characterised by phase precession of firing as the corresponding place field is traversed. It is not yet clear if STDP and theta-coded neural dynamics are compatible with cognitive map theory and previous rate-coded models of spatial learning in the hippocampus. Here, we demonstrate that an STDP rule based on empirical data obtained from the hippocampus can mediate rate-coded Hebbian learning when pre- and post- synaptic activity is stochastic and has no persistent sequence bias. We subsequently demonstrate that a spiking recurrent neural network that utilises this STDP rule, alongside theta-coded neural activity, allows the rapid development of a cognitive map during directed or random exploration of an environment of overlapping place fields. Hence, we establish that STDP and phase precession are compatible with rate-coded models of cognitive map development.

  15. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks.

    Science.gov (United States)

    Zenke, Friedemann; Agnes, Everton J; Gerstner, Wulfram

    2015-04-21

    Synaptic plasticity, the putative basis of learning and memory formation, manifests in various forms and across different timescales. Here we show that the interaction of Hebbian homosynaptic plasticity with rapid non-Hebbian heterosynaptic plasticity is, when complemented with slower homeostatic changes and consolidation, sufficient for assembly formation and memory recall in a spiking recurrent network model of excitatory and inhibitory neurons. In the model, assemblies were formed during repeated sensory stimulation and characterized by strong recurrent excitatory connections. Even days after formation, and despite ongoing network activity and synaptic plasticity, memories could be recalled through selective delay activity following the brief stimulation of a subset of assembly neurons. Blocking any component of plasticity prevented stable functioning as a memory network. Our modelling results suggest that the diversity of plasticity phenomena in the brain is orchestrated towards achieving common functional goals.

  16. Real-time modeling of primitive environments through wavelet sensors and Hebbian learning

    Science.gov (United States)

    Vaccaro, James M.; Yaworsky, Paul S.

    1999-06-01

    Modeling the world through sensory input necessarily provides a unique perspective for the observer. Given a limited perspective, objects and events cannot always be encoded precisely but must involve crude, quick approximations to deal with sensory information in a real- time manner. As an example, when avoiding an oncoming car, a pedestrian needs to identify the fact that a car is approaching before ascertaining the model or color of the vehicle. In our methodology, we use wavelet-based sensors with self-organized learning to encode basic sensory information in real-time. The wavelet-based sensors provide necessary transformations while a rank-based Hebbian learning scheme encodes a self-organized environment through translation, scale and orientation invariant sensors. Such a self-organized environment is made possible by combining wavelet sets which are orthonormal, log-scale with linear orientation and have automatically generated membership functions. In earlier work we used Gabor wavelet filters, rank-based Hebbian learning and an exponential modulation function to encode textural information from images. Many different types of modulation are possible, but based on biological findings the exponential modulation function provided a good approximation of first spike coding of `integrate and fire' neurons. These types of Hebbian encoding schemes (e.g., exponential modulation, etc.) are useful for quick response and learning, provide several advantages over contemporary neural network learning approaches, and have been found to quantize data nonlinearly. By combining wavelets with Hebbian learning we can provide a real-time front-end for modeling an intelligent process, such as the autonomous control of agents in a simulated environment.

  17. The Use of Hebbian Cell Assemblies for Nonlinear Computation

    DEFF Research Database (Denmark)

    Tetzlaff, Christian; Dasgupta, Sakyasingha; Kulvicius, Tomas

    2015-01-01

    preserving a rich diversity of neural dynamics needed for computation is still unknown. Here we show that the combination of synaptic plasticity with the slower process of synaptic scaling achieves (i) the formation of cell assemblies and (ii) enhances the diversity of neural dynamics facilitating...... the learning of complex calculations. Due to synaptic scaling the dynamics of different cell assemblies do not interfere with each other. As a consequence, this type of self-organization allows executing a difficult, six degrees of freedom, manipulation task with a robot where assemblies need to learn...

  18. Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks.

    Science.gov (United States)

    Vértes, Petra E; Alexander-Bloch, Aaron; Bullmore, Edward T

    2014-10-05

    Rich clubs arise when nodes that are 'rich' in connections also form an elite, densely connected 'club'. In brain networks, rich clubs incur high physical connection costs but also appear to be especially valuable to brain function. However, little is known about the selection pressures that drive their formation. Here, we take two complementary approaches to this question: firstly we show, using generative modelling, that the emergence of rich clubs in large-scale human brain networks can be driven by an economic trade-off between connection costs and a second, competing topological term. Secondly we show, using simulated neural networks, that Hebbian learning rules also drive the emergence of rich clubs at the microscopic level, and that the prominence of these features increases with learning time. These results suggest that Hebbian learning may provide a neuronal mechanism for the selection of complex features such as rich clubs. The neural networks that we investigate are explicitly Hebbian, and we argue that the topological term in our model of large-scale brain connectivity may represent an analogous connection rule. This putative link between learning and rich clubs is also consistent with predictions that integrative aspects of brain network organization are especially important for adaptive behaviour. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Beta Hebbian Learning as a New Method for Exploratory Projection Pursuit.

    Science.gov (United States)

    Quintián, Héctor; Corchado, Emilio

    2017-09-01

    In this research, a novel family of learning rules called Beta Hebbian Learning (BHL) is thoroughly investigated to extract information from high-dimensional datasets by projecting the data onto low-dimensional (typically two dimensional) subspaces, improving the existing exploratory methods by providing a clear representation of data's internal structure. BHL applies a family of learning rules derived from the Probability Density Function (PDF) of the residual based on the beta distribution. This family of rules may be called Hebbian in that all use a simple multiplication of the output of the neural network with some function of the residuals after feedback. The derived learning rules can be linked to an adaptive form of Exploratory Projection Pursuit and with artificial distributions, the networks perform as the theory suggests they should: the use of different learning rules derived from different PDFs allows the identification of "interesting" dimensions (as far from the Gaussian distribution as possible) in high-dimensional datasets. This novel algorithm, BHL, has been tested over seven artificial datasets to study the behavior of BHL parameters, and was later applied successfully over four real datasets, comparing its results, in terms of performance, with other well-known Exploratory and projection models such as Maximum Likelihood Hebbian Learning (MLHL), Locally-Linear Embedding (LLE), Curvilinear Component Analysis (CCA), Isomap and Neural Principal Component Analysis (Neural PCA).

  20. Augmented Hebbian reweighting accounts for accuracy and induced bias in perceptual learning with reverse feedback

    Science.gov (United States)

    Liu, Jiajuan; Dosher, Barbara Anne; Lu, Zhong-Lin

    2015-01-01

    Using an asymmetrical set of vernier stimuli (−15″, −10″, −5″, +10″, +15″) together with reverse feedback on the small subthreshold offset stimulus (−5″) induces response bias in performance (Aberg & Herzog, 2012; Herzog, Eward, Hermens, & Fahle, 2006; Herzog & Fahle, 1999). These conditions are of interest for testing models of perceptual learning because the world does not always present balanced stimulus frequencies or accurate feedback. Here we provide a comprehensive model for the complex set of asymmetric training results using the augmented Hebbian reweighting model (Liu, Dosher, & Lu, 2014; Petrov, Dosher, & Lu, 2005, 2006) and the multilocation integrated reweighting theory (Dosher, Jeter, Liu, & Lu, 2013). The augmented Hebbian learning algorithm incorporates trial-by-trial feedback, when present, as another input to the decision unit and uses the observer's internal response to update the weights otherwise; block feedback alters the weights on bias correction (Liu et al., 2014). Asymmetric training with reversed feedback incorporates biases into the weights between representation and decision. The model correctly predicts the basic induction effect, its dependence on trial-by-trial feedback, and the specificity of bias to stimulus orientation and spatial location, extending the range of augmented Hebbian reweighting accounts of perceptual learning. PMID:26418382

  1. Spike-Based Bayesian-Hebbian Learning of Temporal Sequences.

    Directory of Open Access Journals (Sweden)

    Philip J Tully

    2016-05-01

    Full Text Available Many cognitive and motor functions are enabled by the temporal representation and processing of stimuli, but it remains an open issue how neocortical microcircuits can reliably encode and replay such sequences of information. To better understand this, a modular attractor memory network is proposed in which meta-stable sequential attractor transitions are learned through changes to synaptic weights and intrinsic excitabilities via the spike-based Bayesian Confidence Propagation Neural Network (BCPNN learning rule. We find that the formation of distributed memories, embodied by increased periods of firing in pools of excitatory neurons, together with asymmetrical associations between these distinct network states, can be acquired through plasticity. The model's feasibility is demonstrated using simulations of adaptive exponential integrate-and-fire model neurons (AdEx. We show that the learning and speed of sequence replay depends on a confluence of biophysically relevant parameters including stimulus duration, level of background noise, ratio of synaptic currents, and strengths of short-term depression and adaptation. Moreover, sequence elements are shown to flexibly participate multiple times in the sequence, suggesting that spiking attractor networks of this type can support an efficient combinatorial code. The model provides a principled approach towards understanding how multiple interacting plasticity mechanisms can coordinate hetero-associative learning in unison.

  2. Multiple shared mechanisms for homeostatic plasticity in rodent somatosensory and visual cortex.

    Science.gov (United States)

    Gainey, Melanie A; Feldman, Daniel E

    2017-03-05

    We compare the circuit and cellular mechanisms for homeostatic plasticity that have been discovered in rodent somatosensory (S1) and visual (V1) cortex. Both areas use similar mechanisms to restore mean firing rate after sensory deprivation. Two time scales of homeostasis are evident, with distinct mechanisms. Slow homeostasis occurs over several days, and is mediated by homeostatic synaptic scaling in excitatory networks and, in some cases, homeostatic adjustment of pyramidal cell intrinsic excitability. Fast homeostasis occurs within less than 1 day, and is mediated by rapid disinhibition, implemented by activity-dependent plasticity in parvalbumin interneuron circuits. These processes interact with Hebbian synaptic plasticity to maintain cortical firing rates during learned adjustments in sensory representations.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'. © 2017 The Author(s).

  3. A Statistical Theory of Bidirectionality

    Science.gov (United States)

    DeLoach, Richard; Ulbrich, Norbert

    2013-01-01

    Original concepts related to the quantification and assessment of bidirectionality in strain-gage balances were introduced by Ulbrich in 2012. These concepts are extended here in three ways: 1) the metric originally proposed by Ulbrich is normalized, 2) a categorical variable is introduced in the regression analysis to account for load polarity, and 3) the uncertainty in both normalized and non-normalized bidirectionality metrics is quantified. These extensions are applied to four representative balances to assess the bidirectionality characteristics of each. The paper is tutorial in nature, featuring reviews of certain elements of regression and formal inference. Principal findings are that bidirectionality appears to be a common characteristic of most balance outputs and that unless it is taken into account, it is likely to consume the entire error budget of a typical balance calibration experiment. Data volume and correlation among calibration loads are shown to have a significant impact on the precision with which bidirectionality metrics can be assessed.

  4. Probabilistic Connections for Bidirectional Path Tracing

    OpenAIRE

    Popov, Stefan; Ramamoorthi, Ravi; Durand, Fredo; Drettakis, George

    2015-01-01

    International audience; Bidirectional Path Tracing Probabilistic Connections for Bidirectional Path Tracing Figure 1: Our Probabilistic Connections for Bidirectional Path Tracing approach importance samples connections to an eye sub-path, and greatly reduces variance, by considering and reusing multiple light sub-paths at once. Our approach (right) achieves much higher quality than bidirectional path-tracing on the left for the same computation time (~8.4 min).. Abstract Bidirectional path tr...

  5. Experience-dependent homeostatic synaptic plasticity in neocortex.

    Science.gov (United States)

    Whitt, Jessica L; Petrus, Emily; Lee, Hey-Kyoung

    2014-03-01

    The organism's ability to adapt to the changing sensory environment is due in part to the ability of the nervous system to change with experience. Input and synapse specific Hebbian plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), are critical for sculpting the nervous system to wire its circuit in tune with the environment and for storing memories. However, these synaptic plasticity mechanisms are innately unstable and require another mode of plasticity that maintains homeostasis to allow neurons to function within a desired dynamic range. Several modes of homeostatic adaptation are known, some of which work at the synaptic level. This review will focus on the known mechanisms of experience-induced homeostatic synaptic plasticity in the neocortex and their potential function in sensory cortex plasticity. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Hebbian Learning in a Random Network Captures Selectivity Properties of the Prefrontal Cortex.

    Science.gov (United States)

    Lindsay, Grace W; Rigotti, Mattia; Warden, Melissa R; Miller, Earl K; Fusi, Stefano

    2017-11-08

    Complex cognitive behaviors, such as context-switching and rule-following, are thought to be supported by the prefrontal cortex (PFC). Neural activity in the PFC must thus be specialized to specific tasks while retaining flexibility. Nonlinear "mixed" selectivity is an important neurophysiological trait for enabling complex and context-dependent behaviors. Here we investigate (1) the extent to which the PFC exhibits computationally relevant properties, such as mixed selectivity, and (2) how such properties could arise via circuit mechanisms. We show that PFC cells recorded from male and female rhesus macaques during a complex task show a moderate level of specialization and structure that is not replicated by a model wherein cells receive random feedforward inputs. While random connectivity can be effective at generating mixed selectivity, the data show significantly more mixed selectivity than predicted by a model with otherwise matched parameters. A simple Hebbian learning rule applied to the random connectivity, however, increases mixed selectivity and enables the model to match the data more accurately. To explain how learning achieves this, we provide analysis along with a clear geometric interpretation of the impact of learning on selectivity. After learning, the model also matches the data on measures of noise, response density, clustering, and the distribution of selectivities. Of two styles of Hebbian learning tested, the simpler and more biologically plausible option better matches the data. These modeling results provide clues about how neural properties important for cognition can arise in a circuit and make clear experimental predictions regarding how various measures of selectivity would evolve during animal training. SIGNIFICANCE STATEMENT The prefrontal cortex is a brain region believed to support the ability of animals to engage in complex behavior. How neurons in this area respond to stimuli-and in particular, to combinations of stimuli ("mixed

  7. Heterosynaptic Plasticity Prevents Runaway Synaptic Dynamics

    Science.gov (United States)

    Chen, Jen-Yung; Lonjers, Peter; Lee, Christopher; Chistiakova, Marina; Volgushev, Maxim

    2013-01-01

    Spike timing-dependent plasticity (STDP) and other conventional Hebbian-type plasticity rules are prone to produce runaway dynamics of synaptic weights. Once potentiated, a synapse would have higher probability to lead to spikes and thus to be further potentiated, but once depressed, a synapse would tend to be further depressed. The runaway synaptic dynamics can be prevented by precisely balancing STDP rules for potentiation and depression; however, experimental evidence shows a great variety of potentiation and depression windows and magnitudes. Here we show that modifications of synapses to layer 2/3 pyramidal neurons from rat visual and auditory cortices in slices can be induced by intracellular tetanization: bursts of postsynaptic spikes without presynaptic stimulation. Induction of these heterosynaptic changes depended on the rise of intracellular calcium, and their direction and magnitude correlated with initial state of release mechanisms. We suggest that this type of plasticity serves as a mechanism that stabilizes the distribution of synaptic weights and prevents their runaway dynamics. To test this hypothesis, we develop a cortical neuron model implementing both homosynaptic (STDP) and heterosynaptic plasticity with properties matching the experimental data. We find that heterosynaptic plasticity effectively prevented runaway dynamics for the tested range of STDP and input parameters. Synaptic weights, although shifted from the original, remained normally distributed and nonsaturated. Our study presents a biophysically constrained model of how the interaction of different forms of plasticity—Hebbian and heterosynaptic—may prevent runaway synaptic dynamics and keep synaptic weights unsaturated and thus capable of further plastic changes and formation of new memories. PMID:24089497

  8. Bidirectional optical rotation of cells

    Science.gov (United States)

    Wu, Jiyi; Zhang, Weina; Li, Juan

    2017-08-01

    Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  9. Bidirectional optical rotation of cells

    Directory of Open Access Journals (Sweden)

    Jiyi Wu

    2017-08-01

    Full Text Available Precise and controlled rotation manipulation of cells is extremely important in biological applications and biomedical studies. Particularly, bidirectional rotation manipulation of a single or multiple cells is a challenge for cell tomography and analysis. In this paper, we report an optical method that is capable of bidirectional rotation manipulation of a single or multiple cells. By launching a laser beam at 980 nm into dual-beam tapered fibers, a single or multiple cells in solutions can be trapped and rotated bidirectionally under the action of optical forces. Moreover, the rotational behavior can be controlled by altering the relative distance between the two fibers and the input optical power. Experimental results were interpreted by numerical simulations.

  10. Bidirectional DC/DC Converter

    Science.gov (United States)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  11. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules

    Science.gov (United States)

    Frémaux, Nicolas; Gerstner, Wulfram

    2016-01-01

    Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide “when” to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators. PMID:26834568

  12. Neuromodulated Spike-Timing-Dependent Plasticity and Theory of Three-Factor Learning Rules

    Directory of Open Access Journals (Sweden)

    Wulfram eGerstner

    2016-01-01

    Full Text Available Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulatorson synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide 'when' to create new memories in response to a flow of sensory stimuli.In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discusssome experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity.We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators.

  13. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules.

    Science.gov (United States)

    Frémaux, Nicolas; Gerstner, Wulfram

    2015-01-01

    Classical Hebbian learning puts the emphasis on joint pre- and postsynaptic activity, but neglects the potential role of neuromodulators. Since neuromodulators convey information about novelty or reward, the influence of neuromodulators on synaptic plasticity is useful not just for action learning in classical conditioning, but also to decide "when" to create new memories in response to a flow of sensory stimuli. In this review, we focus on timing requirements for pre- and postsynaptic activity in conjunction with one or several phasic neuromodulatory signals. While the emphasis of the text is on conceptual models and mathematical theories, we also discuss some experimental evidence for neuromodulation of Spike-Timing-Dependent Plasticity. We highlight the importance of synaptic mechanisms in bridging the temporal gap between sensory stimulation and neuromodulatory signals, and develop a framework for a class of neo-Hebbian three-factor learning rules that depend on presynaptic activity, postsynaptic variables as well as the influence of neuromodulators.

  14. Bidirectional reachability-based modules

    CSIR Research Space (South Africa)

    Nortje, R

    2011-07-01

    Full Text Available The authors introduce an algorithm for MinA extraction in EL based on bidirectional reachability. They obtain a significant reduction in the size of modules extracted at almost no additional cost to that of extracting standard reachability...

  15. An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm

    Directory of Open Access Journals (Sweden)

    Ying-Lun Chen

    2015-08-01

    Full Text Available A novel VLSI architecture for multi-channel online spike sorting is presented in this paper. In the architecture, the spike detection is based on nonlinear energy operator (NEO, and the feature extraction is carried out by the generalized Hebbian algorithm (GHA. To lower the power consumption and area costs of the circuits, all of the channels share the same core for spike detection and feature extraction operations. Each channel has dedicated buffers for storing the detected spikes and the principal components of that channel. The proposed circuit also contains a clock gating system supplying the clock to only the buffers of channels currently using the computation core to further reduce the power consumption. The architecture has been implemented by an application-specific integrated circuit (ASIC with 90-nm technology. Comparisons to the existing works show that the proposed architecture has lower power consumption and hardware area costs for real-time multi-channel spike detection and feature extraction.

  16. Behavioral analysis of differential Hebbian learning in closed-loop systems.

    Science.gov (United States)

    Kulvicius, Tomas; Kolodziejski, Christoph; Tamosiunaite, Minija; Porr, Bernd; Wörgötter, Florentin

    2010-10-01

    Understanding closed loop behavioral systems is a non-trivial problem, especially when they change during learning. Descriptions of closed loop systems in terms of information theory date back to the 1950s, however, there have been only a few attempts which take into account learning, mostly measuring information of inputs. In this study we analyze a specific type of closed loop system by looking at the input as well as the output space. For this, we investigate simulated agents that perform differential Hebbian learning (STDP). In the first part we show that analytical solutions can be found for the temporal development of such systems for relatively simple cases. In the second part of this study we try to answer the following question: How can we predict which system from a given class would be the best for a particular scenario? This question is addressed using energy, input/output ratio and entropy measures and investigating their development during learning. This way we can show that within well-specified scenarios there are indeed agents which are optimal with respect to their structure and adaptive properties.

  17. Symmetry of learning rate in synaptic plasticity modulates formation of flexible and stable memories.

    Science.gov (United States)

    Park, Youngjin; Choi, Woochul; Paik, Se-Bum

    2017-07-18

    Spike-timing-dependent plasticity (STDP) is considered critical to learning and memory functions in the human brain. Across various types of synapse, STDP is observed as different profiles of Hebbian and anti-Hebbian learning rules. However, the specific roles of diverse STDP profiles in memory formation still remain elusive. Here, we show that the symmetry of the learning rate profile in STDP is crucial to determining the character of stored memory. Using computer simulations, we found that an asymmetric learning rate generates flexible memory that is volatile and easily overwritten by newly appended information. Moreover, a symmetric learning rate generates stable memory that can coexist with newly appended information. In addition, by combining these two conditions, we could realize a hybrid memory type that operates in a way intermediate between stable and flexible memory. Our results demonstrate that various attributes of memory functions may originate from differences in the synaptic stability.

  18. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system

    Science.gov (United States)

    Born, Jannis; Stringer, Simon M.

    2017-01-01

    A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT) learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior of Hebbian learning

  19. Hebbian learning of hand-centred representations in a hierarchical neural network model of the primate visual system.

    Directory of Open Access Journals (Sweden)

    Jannis Born

    Full Text Available A subset of neurons in the posterior parietal and premotor areas of the primate brain respond to the locations of visual targets in a hand-centred frame of reference. Such hand-centred visual representations are thought to play an important role in visually-guided reaching to target locations in space. In this paper we show how a biologically plausible, Hebbian learning mechanism may account for the development of localized hand-centred representations in a hierarchical neural network model of the primate visual system, VisNet. The hand-centered neurons developed in the model use an invariance learning mechanism known as continuous transformation (CT learning. In contrast to previous theoretical proposals for the development of hand-centered visual representations, CT learning does not need a memory trace of recent neuronal activity to be incorporated in the synaptic learning rule. Instead, CT learning relies solely on a Hebbian learning rule, which is able to exploit the spatial overlap that naturally occurs between successive images of a hand-object configuration as it is shifted across different retinal locations due to saccades. Our simulations show how individual neurons in the network model can learn to respond selectively to target objects in particular locations with respect to the hand, irrespective of where the hand-object configuration occurs on the retina. The response properties of these hand-centred neurons further generalise to localised receptive fields in the hand-centred space when tested on novel hand-object configurations that have not been explored during training. Indeed, even when the network is trained with target objects presented across a near continuum of locations around the hand during training, the model continues to develop hand-centred neurons with localised receptive fields in hand-centred space. With the help of principal component analysis, we provide the first theoretical framework that explains the behavior

  20. A novel generic hebbian ordering-based fuzzy rule base reduction approach to mamdani neuro-fuzzy system.

    Science.gov (United States)

    Liu, Feng; Quek, Chai; Ng, Geok See

    2007-06-01

    There are two important issues in neuro-fuzzy modeling: (1) interpretability--the ability to describe the behavior of the system in an interpretable way--and (2) accuracy--the ability to approximate the outcome of the system accurately. As these two objectives usually exert contradictory requirements on the neuro-fuzzy model, certain compromise has to be undertaken. This letter proposes a novel rule reduction algorithm, namely, Hebb rule reduction, and an iterative tuning process to balance interpretability and accuracy. The Hebb rule reduction algorithm uses Hebbian ordering, which represents the degree of coverage of the samples by the rule, as an importance measure of each rule to merge the membership functions and hence reduces the number of the rules. Similar membership functions (MFs) are merged by a specified similarity measure in an order of Hebbian importance, and the resultant equivalent rules are deleted from the rule base. The rule with a higher Hebbian importance will be retained among a set of rules. The MFs are tuned through the least mean square (LMS) algorithm to reduce the modeling error. The tuning of the MFs and the reduction of the rules proceed iteratively to achieve a balance between interpretability and accuracy. Three published data sets by Nakanishi (Nakanishi, Turksen, & Sugeno, 1993), the Pat synthetic data set (Pal, Mitra, & Mitra, 2003), and the traffic flow density prediction data set are used as benchmarks to demonstrate the effectiveness of the proposed method. Good interpretability, as well as high modeling accuracy, are derivable simultaneously and are suitably benchmarked against other well-established neuro-fuzzy models.

  1. A mathematical analysis of the effects of Hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks.

    Science.gov (United States)

    Siri, Benoît; Berry, Hugues; Cessac, Bruno; Delord, Bruno; Quoy, Mathias

    2008-12-01

    We present a mathematical analysis of the effects of Hebbian learning in random recurrent neural networks, with a generic Hebbian learning rule, including passive forgetting and different timescales, for neuronal activity and learning dynamics. Previous numerical work has reported that Hebbian learning drives the system from chaos to a steady state through a sequence of bifurcations. Here, we interpret these results mathematically and show that these effects, involving a complex coupling between neuronal dynamics and synaptic graph structure, can be analyzed using Jacobian matrices, which introduce both a structural and a dynamical point of view on neural network evolution. Furthermore, we show that sensitivity to a learned pattern is maximal when the largest Lyapunov exponent is close to 0. We discuss how neural networks may take advantage of this regime of high functional interest.

  2. Abnormal Bidirectional Plasticity-Like Effects in Parkinson's Disease

    Science.gov (United States)

    Huang, Ying-Zu; Rothwell, John C.; Lu, Chin-Song; Chuang, Wen-Li; Chen, Rou-Shayn

    2011-01-01

    Levodopa-induced dyskinesia is a major complication of long-term dopamine replacement therapy for Parkinson's disease that becomes increasingly problematic in advanced Parkinson's disease. Although the cause of levodopa-induced dyskinesias is still unclear, recent work in animal models of the corticostriatal system has suggested that…

  3. Emergent spatial synaptic structure from diffusive plasticity.

    Science.gov (United States)

    Sweeney, Yann; Clopath, Claudia

    2017-04-01

    Some neurotransmitters can diffuse freely across cell membranes, influencing neighbouring neurons regardless of their synaptic coupling. This provides a means of neural communication, alternative to synaptic transmission, which can influence the way in which neural networks process information. Here, we ask whether diffusive neurotransmission can also influence the structure of synaptic connectivity in a network undergoing plasticity. We propose a form of Hebbian synaptic plasticity which is mediated by a diffusive neurotransmitter. Whenever a synapse is modified at an individual neuron through our proposed mechanism, similar but smaller modifications occur in synapses connecting to neighbouring neurons. The effects of this diffusive plasticity are explored in networks of rate-based neurons. This leads to the emergence of spatial structure in the synaptic connectivity of the network. We show that this spatial structure can coexist with other forms of structure in the synaptic connectivity, such as with groups of strongly interconnected neurons that form in response to correlated external drive. Finally, we explore diffusive plasticity in a simple feedforward network model of receptive field development. We show that, as widely observed across sensory cortex, the preferred stimulus identity of neurons in our network become spatially correlated due to diffusion. Our proposed mechanism of diffusive plasticity provides an efficient mechanism for generating these spatial correlations in stimulus preference which can flexibly interact with other forms of synaptic organisation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Projective synchronization of chaotic systems with bidirectional ...

    Indian Academy of Sciences (India)

    Sufficient conditions for PS of two bidirectionally coupled chaotic systems are derived. We discuss the proposed theory by considering two bidirectionally coupled unified chaotic systems, Lorenz–Stenflo (LS) systems and the chaotic Van der Pol–Duffing oscillators. Finally, simulation results are presented and discussed. 2.

  5. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus.

    Science.gov (United States)

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2015-12-01

    Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit. Copyright © 2015 the American Physiological Society.

  6. Evidence from a rare case-study for Hebbian-like changes in structural connectivity induced by long-term deep brain stimulation

    Directory of Open Access Journals (Sweden)

    Tim J Van Hartevelt

    2015-06-01

    Full Text Available It is unclear whether Hebbian-like learning occurs at the level of long-range white matter connections in humans, i.e. where measurable changes in structural connectivity are correlated with changes in functional connectivity. However, the behavioral changes observed after deep brain stimulation (DBS suggest the existence of such Hebbian-like mechanisms occurring at the structural level with functional consequences. In this rare case study, we obtained the full network of white matter connections of one patient with Parkinson's disease before and after long-term DBS and combined it with a computational model of ongoing activity to investigate the effects of DBS-induced long-term structural changes. The results show that the long-term effects of DBS on resting-state functional connectivity is best obtained in the computational model by changing the structural weights from the subthalamic nucleus to the putamen and the thalamus in a Hebbian-like manner. Moreover, long-term DBS also significantly changed the structural connectivity towards normality in terms of model-based measures of segregation and integration of information processing, two key concepts of brain organization. This novel approach using computational models to model the effects of Hebbian-like changes in structural connectivity allowed us to causally identify the possible underlying neural mechanisms of long-term DBS using rare case study data. In time, this could help predict the efficacy of individual DBS targeting and identify novel DBS targets.

  7. Bidirectional communication using delay coupled chaotic directly ...

    Indian Academy of Sciences (India)

    Isochronal synchronization; bidirectional communication; directly modulated semiconductor lasers; delayed optoelectronic feedback. ... Sophisticated Test and Instrumentation Centre; Cochin University of Science and Technology, Cochin 682 022, India; International School of Photonics, Cochin University of Science and ...

  8. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models

    Directory of Open Access Journals (Sweden)

    Alexander eHanuschkin

    2013-06-01

    Full Text Available Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: Random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, they allow for imitating arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions.Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird’s own song

  9. A Hebbian learning rule gives rise to mirror neurons and links them to control theoretic inverse models.

    Science.gov (United States)

    Hanuschkin, A; Ganguli, S; Hahnloser, R H R

    2013-01-01

    Mirror neurons are neurons whose responses to the observation of a motor act resemble responses measured during production of that act. Computationally, mirror neurons have been viewed as evidence for the existence of internal inverse models. Such models, rooted within control theory, map-desired sensory targets onto the motor commands required to generate those targets. To jointly explore both the formation of mirrored responses and their functional contribution to inverse models, we develop a correlation-based theory of interactions between a sensory and a motor area. We show that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor loop during motor explorations and stabilized by heterosynaptic competition, naturally gives rise to mirror neurons as well as control theoretic inverse models encoded in the synaptic weights from sensory to motor neurons. Crucially, we find that the correlational structure or stereotypy of the neural code underlying motor explorations determines the nature of the learned inverse model: random motor codes lead to causal inverses that map sensory activity patterns to their motor causes; such inverses are maximally useful, by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped motor codes lead to less useful predictive inverses that map sensory activity to future motor actions. Our theory generalizes previous work on inverse models by showing that such models can be learned in a simple Hebbian framework without the need for error signals or backpropagation, and it makes new conceptual connections between the causal nature of inverse models, the statistical structure of motor variability, and the time-lag between sensory and motor responses of mirror neurons. Applied to bird song learning, our theory can account for puzzling aspects of the song system, including necessity of sensorimotor gating and selectivity of auditory responses to bird's own song (BOS) stimuli.

  10. Definition of a Bidirectional Activity-Dependent Pathway Involving BDNF and Narp

    Directory of Open Access Journals (Sweden)

    Abigail Mariga

    2015-12-01

    Full Text Available One of the cardinal features of neural development and adult plasticity is the contribution of activity-dependent signaling pathways. However, the interrelationships between different activity-dependent genes are not well understood. The immediate early gene neuronal-activity-regulated pentraxin (NPTX2 or Narp encodes a protein that has been associated with excitatory synaptogenesis, AMPA receptor aggregation, and the onset of critical periods. Here, we show that Narp is a direct transcriptional target of brain-derived neurotrophic factor (BDNF, another highly regulated activity-dependent gene involved in synaptic plasticity. Unexpectedly, Narp is bidirectionally regulated by BDNF. Acute BDNF withdrawal results in downregulation of Narp, whereas transcription of Narp is greatly enhanced by BDNF. Furthermore, our results show that BDNF directly regulates Narp to mediate glutamatergic transmission and mossy fiber plasticity. Hence, Narp serves as a significant epistatic target of BDNF to regulate synaptic plasticity during periods of dynamic activity.

  11. Plasticity theory

    CERN Document Server

    Lubliner, Jacob

    2008-01-01

    The aim of Plasticity Theory is to provide a comprehensive introduction to the contemporary state of knowledge in basic plasticity theory and to its applications. It treats several areas not commonly found between the covers of a single book: the physics of plasticity, constitutive theory, dynamic plasticity, large-deformation plasticity, and numerical methods, in addition to a representative survey of problems treated by classical methods, such as elastic-plastic problems, plane plastic flow, and limit analysis; the problem discussed come from areas of interest to mechanical, structural, and

  12. Comparative analyses of bidirectional promoters in vertebrates

    Directory of Open Access Journals (Sweden)

    Taylor James

    2008-05-01

    Full Text Available Abstract Background Orthologous genes with deep phylogenetic histories are likely to retain similar regulatory features. In this report we utilize orthology assignments for pairs of genes co-regulated by bidirectional promoters to map the ancestral history of the promoter regions. Results Our mapping of bidirectional promoters from humans to fish shows that many such promoters emerged after the divergence of chickens and fish. Furthermore, annotations of promoters in deep phylogenies enable detection of missing data or assembly problems present in higher vertebrates. The functional importance of bidirectional promoters is indicated by selective pressure to maintain the arrangement of genes regulated by the promoter over long evolutionary time spans. Characteristics unique to bidirectional promoters are further elucidated using a technique for unsupervised classification, known as ESPERR. Conclusion Results of these analyses will aid in our understanding of the evolution of bidirectional promoters, including whether the regulation of two genes evolved as a consequence of their proximity or if function dictated their co-regulation.

  13. A bidirectional shape memory alloy folding actuator

    International Nuclear Information System (INIS)

    Paik, Jamie K; Wood, Robert J

    2012-01-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)

  14. A bidirectional Optimality Theoretic analysis of multiple negative ...

    African Journals Online (AJOL)

    IT

    In the next section, we provide our analysis of this variation, first providing a brief motivation for the use of. (bidirectional) OT as a framework for the analysis. 3. A bidirectional OT account of multiple indefinites in the scope of negation in Afrikaans. 3.1. (Bidirectional) Optimality Theory. Optimality Theory is a general theory of ...

  15. Critical neural networks with short- and long-term plasticity

    Science.gov (United States)

    Michiels van Kessenich, L.; Luković, M.; de Arcangelis, L.; Herrmann, H. J.

    2018-03-01

    In recent years self organized critical neuronal models have provided insights regarding the origin of the experimentally observed avalanching behavior of neuronal systems. It has been shown that dynamical synapses, as a form of short-term plasticity, can cause critical neuronal dynamics. Whereas long-term plasticity, such as Hebbian or activity dependent plasticity, have a crucial role in shaping the network structure and endowing neural systems with learning abilities. In this work we provide a model which combines both plasticity mechanisms, acting on two different time scales. The measured avalanche statistics are compatible with experimental results for both the avalanche size and duration distribution with biologically observed percentages of inhibitory neurons. The time series of neuronal activity exhibits temporal bursts leading to 1 /f decay in the power spectrum. The presence of long-term plasticity gives the system the ability to learn binary rules such as xor, providing the foundation of future research on more complicated tasks such as pattern recognition.

  16. Bidirectional ventricular tachycardia of unusual etiology

    Directory of Open Access Journals (Sweden)

    Praloy Chakraborty

    2015-11-01

    Full Text Available Bidirectional ventricular tachycardia (BDVT is a rare form of ventricular arrhythmia, characterized by changing QRS axis of 180 degrees. Digitalis toxicity is considered as commonest cause of BDVT; other causes include aconite toxicity, myocarditis, myocardial infarction, metastatic cardiac tumour and cardiac channelopathies. We describe a case of BDVT in a patient with Anderson-Tawil syndrome.

  17. Predistortion of a Bidirectional Cuk Audio Amplifier

    DEFF Research Database (Denmark)

    Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold

    2014-01-01

    using predistortion. This paper suggests linearizing a nonlinear bidirectional Cuk audio amplifier using an analog predistortion approach. A prototype power stage was built and results show that a voltage gain of up to 9 dB and reduction in THD from 6% down to 3% was obtainable using this approach....

  18. Uncertainties in the Bidirectional Biodiesel Supply Chain

    NARCIS (Netherlands)

    Bot, Pieter; van Donk, Dirk Pieter; Pennink, Bartjan; Simatupang, Togar M.

    2015-01-01

    For remote areas, small-scale local biodiesel production is particularly attractive if producers and consumers are the same. Such supply chains are labeled as bidirectional. However, little is known on how raw material supply, transportation, logistics, production and operations uncertainties impact

  19. Bidirectional communication using delay coupled chaotic directly ...

    Indian Academy of Sciences (India)

    Abstract. Chaotic synchronization of two directly modulated semiconductor lasers with negative delayed optoelectronic feedback is investigated and this scheme is found to be useful for efficient bidirectional communication between the lasers. A symmetric bidirec- tional coupling is identified as a suitable method for ...

  20. Bidirectional communication using delay coupled chaotic directly ...

    Indian Academy of Sciences (India)

    Bidirectional communication. 2. Laser model. The dynamics of semiconductor lasers with direct current modulation and negative- delayed optoelectronic feedback can be represented by rate equations for the photon ..... [39] Y Liu, P Davis, Y Takiguchi, T Aida, A Saito and J M Liu, IEEE J. Quantum. Electron. 39, 269 (2003).

  1. Bidirectional solar wind electron heat flux events

    International Nuclear Information System (INIS)

    Gosling, J.T.; Baker, D.N.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Smith, E.J.

    1987-01-01

    Normally the approx. >80-eV electrons which carry the solar wind electron heat flux are collimated along the interplanetary magnetic field (IMF) in the direction pointing outward away from the sun. Occasionally, however, collimated fluxes of approx. >80-eV electrons are observed traveling both parallel and antiparallel to the IMF. Here we present the results of a survey of such bidirectional electron heat flux events as observed with the plasma and magnetic field experiments aboard ISEE 3 at times when the spacecraft was not magnetically connected to the earth's bow shock. The onset of a bidirectional electron heat flux at ISEE 3 usually signals spacecraft entry into a distinct solar wind plasma and field entity, most often characterized by anomalously low proton and electron temperatures, a strong, smoothly varying magnetic field, a low plasma beta, and a high total pressure. Significant field rotations often occur at the beginning and/or end of bidirectional heat flux events, and, at times, the large field rotations characteristic of ''magnetic clouds'' are present. Approximately half of all bidirectional heat flux events are associated with and follow interplanetary shocks, while the other events have no obvious shock associations

  2. Adjuvant Bidirectional Chemotherapy Using an Intraperitoneal Port

    Directory of Open Access Journals (Sweden)

    Paul H. Sugarbaker

    2012-01-01

    Full Text Available Cytoreductive surgery (CRS and hyperthermic intraperitoneal chemotherapy (HIPEC have been established as treatment options for patients with peritoneal metastases or peritoneal mesothelioma. However, this novel treatment strategy remains associated with a large percentage of local-regional treatment failures. These treatment failures are attributed to the inadequacy of HIPEC to maintain a surgical complete response. Management strategies to supplement CRS and HIPEC are indicated. A simplified approach to the intraoperative placement of an intraperitoneal port for adjuvant bidirectional chemotherapy (ABC was devised. Four different chemotherapy treatment plans were utilized depending upon the primary site of the malignancy. Thirty-one consecutive patients with an intraoperative placement of the intraperitoneal port were available for study. The incidence of adverse events that caused an early discontinuation of the bidirectional chemotherapy occurred in 75% of the 8 patients who had an incomplete cytoreduction and in 0% of patients who had a complete cytoreduction. All of the patients who had complete cytoreduction completed at least 5 of the scheduled 6 bidirectional chemotherapy treatments. Adjuvant bidirectional chemotherapy is possible following a major cytoreductive surgical procedure using a simplified method of intraoperative intraperitoneal port placement.

  3. Intergenerational Transmission in a Bidirectional Context

    Directory of Open Access Journals (Sweden)

    Jan De Mol

    2013-07-01

    Full Text Available Traditional approaches to the study of parent-child relationships view intergenerational transmission as a top-down phenomenon in which parents transfer their values, beliefs, and practices to their children. Furthermore, the focus of these unidirectional approaches regarding children's internalisation processes is on continuity or the transmission of similar values, beliefs, and practices from parents to children. Analogous unidirectional perspectives have also influenced the domain of family therapy. In this paper a cognitive-bidirectional and dialectical model of dynamics in parent-child relationships is discussed in which the focus is on continual creation of novel meanings and not just reproduction of old ones in the bidirectional transmission processes between parents and children. Parents and children are addressed as full and equally agents in their interdependent relationship, while these relational dynamics are embedded within culture. This cultural context complicates bidirectional transmission influences in the parent-child relationship as both parents and children are influenced by many other contexts. Further, current research in the domain of parent-child relationships and current concepts of intergenerational transmission in family therapy are reviewed from a bidirectional cognitive-dialectical perspective.

  4. Battery impedance spectroscopy using bidirectional grid connected ...

    Indian Academy of Sciences (India)

    Battery impedance can provide valuable insight into the condition of the battery. Commercially available impedance measurement instruments are expensive. Hence their direct use in a battery management system is not justifiable. In this work, a 3-kW bi-directional converter for charging and discharging a batterybank has ...

  5. Neural ECM molecules in axonal and synaptic homeostatic plasticity.

    Science.gov (United States)

    Frischknecht, Renato; Chang, Kae-Jiun; Rasband, Matthew N; Seidenbecher, Constanze I

    2014-01-01

    Neural circuits can express different forms of plasticity. So far, Hebbian synaptic plasticity was considered the most important plastic phenomenon, but over the last decade, homeostatic mechanisms gained more interest because they can explain how a neuronal network maintains stable baseline function despite multiple plastic challenges, like developmental plasticity, learning, or lesion. Such destabilizing influences can be counterbalanced by the mechanisms of homeostatic plasticity, which restore the stability of neuronal circuits. Synaptic scaling is a mechanism in which neurons can detect changes in their own firing rates through a set of molecular sensors that then regulate receptor trafficking to scale the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms allow local changes in synaptic activation to generate local synaptic adaptations and network-wide changes in activity, which lead to adjustments in the balance between excitation and inhibition. The molecular pathways underlying these forms of homeostatic plasticity are currently under intense investigation, and it becomes clear that the extracellular matrix (ECM) of the brain, which surrounds individual neurons and integrates them into the tissue, is an important element in these processes. As a highly dynamic structure, which can be remodeled and degraded in an activity-dependent manner and in concerted action of neurons and glial cells, it can on one hand promote structural and functional plasticity and on the other hand stabilize neural microcircuits. This chapter highlights the composition of brain ECM with particular emphasis on perisynaptic and axonal matrix formations and its involvement in plastic and adaptive processes of the central nervous system.

  6. Calcineurin mediates homeostatic synaptic plasticity by regulating retinoic acid synthesis.

    Science.gov (United States)

    Arendt, Kristin L; Zhang, Zhenjie; Ganesan, Subhashree; Hintze, Maik; Shin, Maggie M; Tang, Yitai; Cho, Ahryon; Graef, Isabella A; Chen, Lu

    2015-10-20

    Homeostatic synaptic plasticity is a form of non-Hebbian plasticity that maintains stability of the network and fidelity for information processing in response to prolonged perturbation of network and synaptic activity. Prolonged blockade of synaptic activity decreases resting Ca(2+) levels in neurons, thereby inducing retinoic acid (RA) synthesis and RA-dependent homeostatic synaptic plasticity; however, the signal transduction pathway that links reduced Ca(2+)-levels to RA synthesis remains unknown. Here we identify the Ca(2+)-dependent protein phosphatase calcineurin (CaN) as a key regulator for RA synthesis and homeostatic synaptic plasticity. Prolonged inhibition of CaN activity promotes RA synthesis in neurons, and leads to increased excitatory and decreased inhibitory synaptic transmission. These effects of CaN inhibitors on synaptic transmission are blocked by pharmacological inhibitors of RA synthesis or acute genetic deletion of the RA receptor RARα. Thus, CaN, acting upstream of RA, plays a critical role in gating RA signaling pathway in response to synaptic activity. Moreover, activity blockade-induced homeostatic synaptic plasticity is absent in CaN knockout neurons, demonstrating the essential role of CaN in RA-dependent homeostatic synaptic plasticity. Interestingly, in GluA1 S831A and S845A knockin mice, CaN inhibitor- and RA-induced regulation of synaptic transmission is intact, suggesting that phosphorylation of GluA1 C-terminal serine residues S831 and S845 is not required for CaN inhibitor- or RA-induced homeostatic synaptic plasticity. Thus, our study uncovers an unforeseen role of CaN in postsynaptic signaling, and defines CaN as the Ca(2+)-sensing signaling molecule that mediates RA-dependent homeostatic synaptic plasticity.

  7. Controller-independent bidirectional quantum direct communication

    Science.gov (United States)

    Mohapatra, Amit Kumar; Balakrishnan, S.

    2017-06-01

    Recently, Chang et al. (Quantum Inf Process 14:3515-3522, 2015) proposed a controlled bidirectional quantum direct communication protocol using Bell states. In this work, the significance of Bell states, which are being used as initial states in Chang et al. protocol, is elucidated. The possibility of preparing initial state based on the secret message of the communicants is explored. In doing so, the controller-independent bidirectional quantum direct communication protocol has evolved naturally. It is shown that any communicant cannot read the secret message without knowing the initial states generated by the other communicant. Further, intercept-and-resend attack and information leakage can be avoided. The proposed protocol is like a conversion between two persons without the help of any third person with high-level security.

  8. Bidirectional, synchronously pumped, ring optical parametric oscillator.

    Science.gov (United States)

    Meng, X; Diels, J C; Kuehlke, D; Batchko, R; Byer, R

    2001-03-01

    We report the operation of a bidirectional femtosecond pulsed ring optical parametric oscillator based on periodically poled lithium niobate, pumped alternately with nonsimultaneous pulses from a Ti:sapphire mode-locked laser. A beat note between the two counterpropagating beams attests to a gyro response without dead band. The sensitivity of the device to differential phase changes is demonstrated by measurement of the nonlinear index of lithium niobate.

  9. Bidirectional American Sign Language to English Translation

    OpenAIRE

    Cate, Hardie; Hussain, Zeshan

    2017-01-01

    We outline a bidirectional translation system that converts sentences from American Sign Language (ASL) to English, and vice versa. To perform machine translation between ASL and English, we utilize a generative approach. Specifically, we employ an adjustment to the IBM word-alignment model 1 (IBM WAM1), where we define language models for English and ASL, as well as a translation model, and attempt to generate a translation that maximizes the posterior distribution defined by these models. T...

  10. Synaptic plasticity in medial vestibular nucleus neurons: comparison with computational requirements of VOR adaptation.

    Directory of Open Access Journals (Sweden)

    John R W Menzies

    Full Text Available BACKGROUND: Vestibulo-ocular reflex (VOR gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD at vestibular synapses. METHODOLOGY/PRINCIPAL FINDINGS: Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular and inhibitory (floccular inputs converging on medial vestibular nucleus (MVN neurons (input-spike-timing dependent plasticity, iSTDP. To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarization, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning. CONCLUSIONS: These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR

  11. Systems and methods for bi-directional energy delivery with galvanic isolation

    Science.gov (United States)

    Kajouke, Lateef A.

    2013-06-18

    Systems and methods are provided for bi-directional energy delivery. A charging system comprises a first bi-directional conversion module, a second bi-directional conversion module, and an isolation module coupled between the first bi-directional conversion module and the second bi-directional conversion module. The isolation module provides galvanic isolation between the first bi-directional conversion module and the second bi-directional conversion module.

  12. Plastic Surgery

    Science.gov (United States)

    ... idea for teens? As with everything, there are right and wrong reasons to have surgery. Cosmetic surgery is unlikely to change your life. Most board-certified plastic surgeons spend a lot of time ... the right reasons. Many plastic surgery procedures are just that — ...

  13. Regulation of neuromodulator receptor efficacy--implications for whole-neuron and synaptic plasticity.

    Science.gov (United States)

    Scheler, Gabriele

    2004-04-01

    Membrane receptors for neuromodulators (NM) are highly regulated in their distribution and efficacy-a phenomenon which influences the individual cell's response to central signals of NM release. Even though NM receptor regulation is implicated in the pharmacological action of many drugs, and is also known to be influenced by various environmental factors, its functional consequences and modes of action are not well understood. In this paper we summarize relevant experimental evidence on NM receptor regulation (specifically dopamine D1 and D2 receptors) in order to explore its significance for neural and synaptic plasticity. We identify the relevant components of NM receptor regulation (receptor phosphorylation, receptor trafficking and sensitization of second-messenger pathways) gained from studies on cultured cells. Key principles in the regulation and control of short-term plasticity (sensitization) are identified, and a model is presented which employs direct and indirect feedback regulation of receptor efficacy. We also discuss long-term plasticity which involves shifts in receptor sensitivity and loss of responsivity to NM signals. Finally, we discuss the implications of NM receptor regulation for models of brain plasticity and memorization. We emphasize that a realistic model of brain plasticity will have to go beyond Hebbian models of long-term potentiation and depression. Plasticity in the distribution and efficacy of NM receptors may provide another important source of functional plasticity with implications for learning and memory.

  14. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways

    Science.gov (United States)

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses. PMID:26241953

  15. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways.

    Science.gov (United States)

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses.

  16. Learning-induced synchronization and plasticity of a developing neural network.

    Science.gov (United States)

    Chao, T C; Chen, C M

    2005-12-01

    Learning-induced synchronization of a neural network at various developing stages is studied by computer simulations using a pulse-coupled neural network model in which the neuronal activity is simulated by a one-dimensional map. Two types of Hebbian plasticity rules are investigated and their differences are compared. For both models, our simulations show a logarithmic increase in the synchronous firing frequency of the network with the culturing time of the neural network. This result is consistent with recent experimental observations. To investigate how to control the synchronization behavior of a neural network after learning, we compare the occurrence of synchronization for four networks with different designed patterns under the influence of an external signal. The effect of such a signal on the network activity highly depends on the number of connections between neurons. We discuss the synaptic plasticity and enhancement effects for a random network after learning at various developing stages.

  17. Plastic dosimeter

    International Nuclear Information System (INIS)

    Nagai, Shiro; Matsuda, Kohji.

    1988-01-01

    The report outlines major features and applications of plastic dosimeters. Some plastic dosimeters, including the CTA and PVC types, detect the response of the plastic material itself to radiations while others, such as pigment-added plastic dosimeters, contain additives as radiation detecting material. Most of these dosimeters make use of color centers produced in the dosimeter by radiations. The PMMA dosimeter is widely used in the field of radiation sterilization of food, feed and medical apparatus. The blue cellophane dosimeter is easy to handle if calibrated appropriately. The rad-color dosimeter serves to determine whether products have been irradiated appropriately. The CTA dosimeter has better damp proofing properties than the blue cellophane type. The pigment-added plastic dosimeter consists of a resin such as nylon, CTA or PVC that contains a dye. Some other plastic dosimeters are also described briefly. Though having many advantages, these plastic dosimeter have disadvantages as well. Some of their major disadvantages, including fading as well as large dependence on dose, temperature, humidity and anviroment, are discussed. (Nogami, K.)

  18. Bidirectional Relationship between Cognitive Function and Pneumonia

    Science.gov (United States)

    Shah, Faraaz Ali; Pike, Francis; Alvarez, Karina; Angus, Derek; Newman, Anne B.; Lopez, Oscar; Tate, Judith; Kapur, Vishesh; Wilsdon, Anthony; Krishnan, Jerry A.; Hansel, Nadia; Au, David; Avdalovic, Mark; Fan, Vincent S.; Barr, R. Graham

    2013-01-01

    Rationale: Relationships between chronic health conditions and acute infections remain poorly understood. Preclinical studies suggest crosstalk between nervous and immune systems. Objectives: To determine bidirectional relationships between cognition and pneumonia. Methods: We conducted longitudinal analyses of a population-based cohort over 10 years. We determined whether changes in cognition increase risk of pneumonia hospitalization by trajectory analyses and joint modeling. We then determined whether pneumonia hospitalization increased risk of subsequent dementia using a Cox model with pneumonia as a time-varying covariate. Measurements and Main Results: Of the 5,888 participants, 639 (10.9%) were hospitalized with pneumonia at least once. Most participants had normal cognition before pneumonia. Three cognition trajectories were identified: no, minimal, and severe rapid decline. A greater proportion of participants hospitalized with pneumonia were on trajectories of minimal or severe decline before occurrence of pneumonia compared with those never hospitalized with pneumonia (proportion with no, minimal, and severe decline were 67.1%, 22.8%, and 10.0% vs. 76.0%, 19.3%, and 4.6% for participants with and without pneumonia, respectively; P pneumonia, even in those with normal cognition and physical function before pneumonia (β = −0.02; P pneumonia were subsequently at an increased risk of dementia (hazard ratio, 2.24 [95% confidence interval, 1.62–3.11]; P = 0.01). Associations were independent of demographics, health behaviors, other chronic conditions, and physical function. Bidirectional relationship did not vary based on severity of disease, and similar associations were noted for those with severe sepsis and other infections. Conclusions: A bidirectional relationship exists between pneumonia and cognition and may explain how a single episode of infection in well-appearing older individuals accelerates decline in chronic health conditions and loss of

  19. Predistortion of a Bidirectional Cuk Audio Amplifier

    DEFF Research Database (Denmark)

    Birch, Thomas Hagen; Nielsen, Dennis; Knott, Arnold

    2014-01-01

    Some non-linear amplifier topologies are capable of providing a larger voltage gain than one from a DC source, which could make them suitable for various applications. However, the non-linearities introduce a significant amount of harmonic distortion (THD). Some of this distortion could be reduced...... using predistortion. This paper suggests linearizing a nonlinear bidirectional Cuk audio amplifier using an analog predistortion approach. A prototype power stage was built and results show that a voltage gain of up to 9 dB and reduction in THD from 6% down to 3% was obtainable using this approach....

  20. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP.

    Science.gov (United States)

    Ravassard, Pascal; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Fraize, Nicolas; Libourel, Paul-Antoine; Lebarillier, Léa; Arthaud, Sébastien; Meissirel, Claire; Touret, Monique; Malleret, Gaël; Salin, Paul-Antoine

    2016-04-01

    Prolonged rapid-eye-movement (REM) sleep deprivation has long been used to study the role of REM sleep in learning and memory processes. However, this method potentially induces stress and fatigue that may directly affect cognitive functions. Here, by using a short-term and nonstressful REM sleep deprivation (RSD) method we assessed in rats the bidirectional influence of reduced and increased REM sleep amount on hippocampal-dependent emotional memory and plasticity. Our results indicate that 4 h RSD impaired consolidation of contextual fear conditioning (CFC) and induction of long-term potentiation (LTP), while decreasing density of Egr1/Zif268-expressing neurons in the CA1 region of the dorsal hippocampus. LTP and Egr1 expression were not affected in ventral CA1. Conversely, an increase in REM sleep restores and further facilitates CFC consolidation and LTP induction, and also increases Egr1 expression in dorsal CA1. Moreover, CFC consolidation, Egr1 neuron density, and LTP amplitude in dorsal CA1 show a positive correlation with REM sleep amount. Altogether, these results indicate that mild changes in REM sleep amount bidirectionally affect memory and synaptic plasticity mechanisms occurring in the CA1 area of the dorsal hippocampus. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Emerging Link between Alzheimer's Disease and Homeostatic Synaptic Plasticity

    Science.gov (United States)

    Jang, Sung-Soo; Chung, Hee Jung

    2016-01-01

    Alzheimer's disease (AD) is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ) peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets. PMID:27019755

  2. Plastic Fishes

    CERN Multimedia

    Trettnak, Wolfgang

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness. The slideshow below gives you a taste of the artworks by Wolfgang Trettnak and Margarita Cimadevila.

  3. Developmental plasticity

    Science.gov (United States)

    Lea, Amanda J; Tung, Jenny; Archie, Elizabeth A; Alberts, Susan C

    2017-01-01

    Abstract Early life experiences can have profound and persistent effects on traits expressed throughout the life course, with consequences for later life behavior, disease risk, and mortality rates. The shaping of later life traits by early life environments, known as ‘developmental plasticity’, has been well-documented in humans and non-human animals, and has consequently captured the attention of both evolutionary biologists and researchers studying human health. Importantly, the parallel significance of developmental plasticity across multiple fields presents a timely opportunity to build a comprehensive understanding of this phenomenon. We aim to facilitate this goal by highlighting key outstanding questions shared by both evolutionary and health researchers, and by identifying theory and empirical work from both research traditions that is designed to address these questions. Specifically, we focus on: (i) evolutionary explanations for developmental plasticity, (ii) the genetics of developmental plasticity and (iii) the molecular mechanisms that mediate developmental plasticity. In each section, we emphasize the conceptual gains in human health and evolutionary biology that would follow from filling current knowledge gaps using interdisciplinary approaches. We encourage researchers interested in developmental plasticity to evaluate their own work in light of research from diverse fields, with the ultimate goal of establishing a cross-disciplinary understanding of developmental plasticity. PMID:29424834

  4. Non-Hermitian bidirectional robust transport

    Science.gov (United States)

    Longhi, Stefano

    2017-01-01

    Transport of quantum or classical waves in open systems is known to be strongly affected by non-Hermitian terms that arise from an effective description of system-environment interaction. A simple and paradigmatic example of non-Hermitian transport, originally introduced by Hatano and Nelson two decades ago [N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996), 10.1103/PhysRevLett.77.570], is the hopping dynamics of a quantum particle on a one-dimensional tight-binding lattice in the presence of an imaginary vectorial potential. The imaginary gauge field can prevent Anderson localization via non-Hermitian delocalization, opening up a mobility region and realizing robust transport immune to disorder and backscattering. Like for robust transport of topologically protected edge states in quantum Hall and topological insulator systems, non-Hermitian robust transport in the Hatano-Nelson model is unidirectional. However, there is not any physical impediment to observe robust bidirectional non-Hermitian transport. Here it is shown that in a quasi-one-dimensional zigzag lattice, with non-Hermitian (imaginary) hopping amplitudes and a synthetic gauge field, robust transport immune to backscattering can occur bidirectionally along the lattice.

  5. Bidirectional telemetry controller for neuroprosthetic devices.

    Science.gov (United States)

    Sharma, Vishnu; McCreery, Douglas B; Han, Martin; Pikov, Victor

    2010-02-01

    We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s , allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes approximately 420 mW and operates without recharge for 8 h . It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 mus after the end of the stimulus pulse applied in the cochlear nucleus.

  6. Personalized recommendation based on heat bidirectional transfer

    Science.gov (United States)

    Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

    2016-02-01

    Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

  7. Emulating Realistic Bidirectional Spatial Channels for MIMO OTA Testing

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Nielsen, Jesper Ødum

    2015-01-01

    the importance of emulating full bidirectional channel and proposing possible directions to implement uplink channels in the literature. Nevertheless, there is no currently published work reporting an experimental validation of such concepts. In this paper, a general framework to emulate bidirectional channels...

  8. GREEN PLASTIC: A NEW PLASTIC FOR PACKAGING

    OpenAIRE

    Mr. Pankaj Kumar*, Sonia

    2016-01-01

    This paper gives a brief idea about a new type of plastic called as bio-plastic or green plastic. Plastic is used as a packaging material for various products, but this plastic is made up of non renewable raw materials. There are various disadvantages of using conventional plastic like littering, CO2 production, non-degradable in nature etc. To overcome these problems a new type of plastic is discovered called bio-plastic or green plastic. Bio-plastic is made from renewable resources and also...

  9. Bidirectional magnetic microactuators for uTAS

    Science.gov (United States)

    Hilbich, Daniel D.; Khosla, Ajit; Gray, Bonnie L.; Shannon, Lesley

    2011-02-01

    We present the design, fabrication and characterization of a novel bidirectional magnetic microactuator. The actuator has a planar structure and is easily fabricated using processes based on laser micromachining and soft lithography, allowing it to be readily integrated into microfluidic, microelectromechanical systems (MEMS) and lab-on-a-chip (LOC) designs. The new microactuator is a thin magnetic membrane with a central magnet feature. The membrane and magnet are both composed of a magnetic nanocomposite polymer (M-NCP) material that is fabricated by embedding magnetic powder in a polydimethysiloxane (PDMS) polymer matrix. The magnetic powder (MQP-12-5) has the chemical composition of (Nd0.7Ce0.3)10.5Fe83.9B5.6, and contains grains that are 5-6 microns in size. The powder is uniformly dispersed at a weight percentage of 75 wt-% in the PDMS matrix, and micropatterned using soft lithography micromolding to realize magnetic microstructures, which sit on a thinner magnetic PDMS membrane of the same material. The molds are fabricated by laser-etching into Poly (methyl methacrylate) (PMMA) using a Universal Laser System's VersaLASERlaser ablation system. The PDMS-based M-NCP is then poured and spun over the mold patterns, producing a thin polymer membrane to which the polymer micromagnets are attached, forming a one-piece actuator. The M-NCP is initially un-magnetized, but is then magnetized by placing it in a 2.5T magnetic field to produce permanent bidirectional magnetization that is polarized in the specified direction. To characterize the bidirectional actuators, a uniform magnetic field is established via a Helmholtz coil pair, and is characterized by applying varying currents. The magnetic field (and thus the actuator deflection) is controlled by regulating the current in the Helmholtz pair. Using this apparatus, deflection versus field characteristics are obtained, with maximum deflections varying as a function of actuator dimensions and the applied magnetic

  10. Network Coding in the Bidirectional Cross

    DEFF Research Database (Denmark)

    Ertli, Gergö; Paramanathan, Achuthan; Rein, Stephan Alexander

    2013-01-01

    .11 medium access. One of the three approaches is pure relaying, while the other two approaches are using network coding with and without overhearing of other flows. The main outcome of the paper is that network coding without and with overhearing can increase the throughput by the factor of two and four......This paper presents a detailed performance evaluation of inter-session network coding in wireless meshed networks in terms of throughput and energy consumption. A full analytical model is given for three different communication approaches for the bidirectional cross topology using an IEEE 802......, respectively, for high load scenarios. Furthermore we show that the energy/bit ratio is decreased by the use of network coding approaches, underlining that the added complexity of network coding pays off when considering the overall system....

  11. Bidirectional scalable motion for scalable video coding.

    Science.gov (United States)

    Chen, Hu; Kao, Meng-Ping; Nguyen, Truong Q

    2010-11-01

    Motion information scalability is an important requirement for a fully scalable video codec, especially in low bit rate or small resolution decoding scenarios, for which the fully scalable motion model (SMM) has been proposed. SMM can collaborate flawlessly with other scalabilities, such as spatial, temporal and quality, in a scalable video codec. It performs better than the nonscalable motion model. To further improve the SMM, this paper extends the algorithm to support the hierarchical B frame structure and bidirectional or multidirectional motion estimation. Furthermore, the corresponding rate distortion optimized estimation for improved efficiency in several scenarios is discussed. Several simulation results based on the updated framework are presented to verify the advantage of this extension.

  12. Magical Engineering Plastic

    International Nuclear Information System (INIS)

    Kim, Gwang Ung

    1988-01-01

    This book introduces engineering plastic about advantage of engineering plastic, plastic material from processing method, plastic shock, plastic until now, background of making of engineering plastic, wonderful engineering plastic science such as a high molecule and molecule, classification of high molecule, difference between metal and high molecule, heat and high molecule materials, and property of surface, engineering plastic of dream like from linseed oil to aramid, small dictionary of engineering plastic.

  13. Mixed plastics recycling technology

    CERN Document Server

    Hegberg, Bruce

    1995-01-01

    Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.

  14. Plastic fish

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In terms of weight, the plastic pollution in the world’s oceans is estimated to be around 300,000 tonnes. This plastic comes from both land-based and ocean-based sources. A lecture at CERN by chemist Wolfgang Trettnak addressed this issue and highlighted the role of art in raising people’s awareness.   Artwork by Wolfgang Trettnak. Packaging materials, consumer goods (shoes, kids’ toys, etc.), leftovers from fishing and aquaculture activities… our oceans and beaches are full of plastic litter. Most of the debris from beaches is plastic bottles. “PET bottles have high durability and stability,” explains Wolfgang Trettnak, a chemist by education and artist from Austria, who gave a lecture on this topic organised by the Staff Association at CERN on 26 May. “PET degrades very slowly and the estimated lifetime of a bottle is 450 years.” In addition to the beach litter accumulated from human use, rivers bring several ki...

  15. Plastic zonnecellen

    NARCIS (Netherlands)

    Roggen, Marjolein

    1998-01-01

    De zonnecel van de toekomst is in de maak. Onderzoekers van uiteenlopend pluimage werken eendrachtig aan een plastic zonnecel. De basis is technisch gelegd met een optimale, door invallend licht veroorzaakte, vorming van ladingdragers binnen een composiet van polymeren en buckyballs. Nu is het zaak

  16. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2015-08-01

    Full Text Available The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  17. Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach.

    Directory of Open Access Journals (Sweden)

    John J Wade

    Full Text Available In recent years research suggests that astrocyte networks, in addition to nutrient and waste processing functions, regulate both structural and synaptic plasticity. To understand the biological mechanisms that underpin such plasticity requires the development of cell level models that capture the mutual interaction between astrocytes and neurons. This paper presents a detailed model of bidirectional signaling between astrocytes and neurons (the astrocyte-neuron model or AN model which yields new insights into the computational role of astrocyte-neuronal coupling. From a set of modeling studies we demonstrate two significant findings. Firstly, that spatial signaling via astrocytes can relay a "learning signal" to remote synaptic sites. Results show that slow inward currents cause synchronized postsynaptic activity in remote neurons and subsequently allow Spike-Timing-Dependent Plasticity based learning to occur at the associated synapses. Secondly, that bidirectional communication between neurons and astrocytes underpins dynamic coordination between neuron clusters. Although our composite AN model is presently applied to simplified neural structures and limited to coordination between localized neurons, the principle (which embodies structural, functional and dynamic complexity, and the modeling strategy may be extended to coordination among remote neuron clusters.

  18. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.

    Science.gov (United States)

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive.

  19. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder

    Science.gov (United States)

    Boi, Fabio; Moraitis, Timoleon; De Feo, Vito; Diotalevi, Francesco; Bartolozzi, Chiara; Indiveri, Giacomo; Vato, Alessandro

    2016-01-01

    Bidirectional brain-machine interfaces (BMIs) establish a two-way direct communication link between the brain and the external world. A decoder translates recorded neural activity into motor commands and an encoder delivers sensory information collected from the environment directly to the brain creating a closed-loop system. These two modules are typically integrated in bulky external devices. However, the clinical support of patients with severe motor and sensory deficits requires compact, low-power, and fully implantable systems that can decode neural signals to control external devices. As a first step toward this goal, we developed a modular bidirectional BMI setup that uses a compact neuromorphic processor as a decoder. On this chip we implemented a network of spiking neurons built using its ultra-low-power mixed-signal analog/digital circuits. On-chip on-line spike-timing-dependent plasticity synapse circuits enabled the network to learn to decode neural signals recorded from the brain into motor outputs controlling the movements of an external device. The modularity of the BMI allowed us to tune the individual components of the setup without modifying the whole system. In this paper, we present the features of this modular BMI and describe how we configured the network of spiking neuron circuits to implement the decoder and to coordinate it with the encoder in an experimental BMI paradigm that connects bidirectionally the brain of an anesthetized rat with an external object. We show that the chip learned the decoding task correctly, allowing the interfaced brain to control the object's trajectories robustly. Based on our demonstration, we propose that neuromorphic technology is mature enough for the development of BMI modules that are sufficiently low-power and compact, while being highly computationally powerful and adaptive. PMID:28018162

  20. Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca2+-Permeable AMPA Receptors.

    Science.gov (United States)

    Sanderson, Jennifer L; Scott, John D; Dell'Acqua, Mark L

    2018-02-13

    Neuronal information processing requires multiple forms of synaptic plasticity mediated by NMDA and AMPA-type glutamate receptors (NMDAR, AMPAR). These plasticity mechanisms include long-term potentiation (LTP) and depression (LTD), which are Hebbian, homosynaptic mechanisms locally regulating synaptic strength of specific inputs, and homeostatic synaptic scaling, which is a heterosynaptic mechanism globally regulating synaptic strength across all inputs. In many cases, LTP and homeostatic scaling regulate AMPAR subunit composition to increase synaptic strength via incorporation of Ca 2+ -permeable receptors (CP-AMPAR) containing GluA1, but lacking GluA2, subunits. Previous work by our group and others demonstrated that anchoring of the kinase PKA and the phosphatase calcineurin (CaN) to A-kinase anchoring protein (AKAP) 150 play opposing roles in regulation of GluA1 Ser845 phosphorylation and CP-AMPAR synaptic incorporation during hippocampal LTP and LTD. Here, using both male and female knock-in mice that are deficient in PKA or CaN anchoring, we show that AKAP150-anchored PKA and CaN also play novel roles in controlling CP-AMPAR synaptic incorporation during homeostatic plasticity in hippocampal neurons. We found that genetic disruption of AKAP-PKA anchoring prevented increases in Ser845 phosphorylation and CP-AMPAR synaptic recruitment during rapid homeostatic synaptic scaling-up induced by combined blockade of action potential firing and NMDAR activity. In contrast, genetic disruption of AKAP-CaN anchoring resulted in basal increases in Ser845 phosphorylation and CP-AMPAR synaptic activity that blocked subsequent scaling-up by preventing additional CP-AMPAR recruitment. Thus, the balanced, opposing phospho-regulation provided by AKAP-anchored PKA and CaN is essential for control of both Hebbian and homeostatic plasticity mechanisms that require CP-AMPARs. Significance statement: Neuronal circuit function is shaped by multiple forms of activity

  1. Effect of particle nonsphericity on bidirectional reflectance of cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, M.I.; Rossow, W.B.; Macke, A.; Lacis, A.A. [Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    This paper describes the use of the fractal ice particle method to study the differences in bidirectional reflectance caused by the differences in the single scattering phase functions of spherical water droplets and nonspherical ice crystals.

  2. Silent and Efficient Supersonic Bi-Directional Flying Wing

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  3. Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity.

    Science.gov (United States)

    Gancarz, Amy M; Wang, Zi-Jun; Schroeder, Gabrielle L; Damez-Werno, Diane; Braunscheidel, Kevin M; Mueller, Lauren E; Humby, Monica S; Caccamise, Aaron; Martin, Jennifer A; Dietz, Karen C; Neve, Rachael L; Dietz, David M

    2015-07-01

    Activin receptor signaling, including the transcription factor Smad3, was upregulated in the rat nucleus accumbens (NAc) shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally altered cocaine seeking while governing morphological plasticity in NAc neurons. Thus, Activin/Smad3 signaling is induced following withdrawal from cocaine, and such regulation may be a key molecular mechanism underlying behavioral and cellular plasticity in the brain following cocaine self-administration.

  4. Plastic bronchitis

    Directory of Open Access Journals (Sweden)

    Anil Kumar Singhi

    2015-01-01

    Full Text Available Plastic bronchitis, a rare but serious clinical condition, commonly seen after Fontan surgeries in children, may be a manifestation of suboptimal adaptation to the cavopulmonary circulation with unfavorable hemodynamics. They are ominous with poor prognosis. Sometimes, infection or airway reactivity may provoke cast bronchitis as a two-step insult on a vulnerable vascular bed. In such instances, aggressive management leads to longer survival. This report of cast bronchitis discusses its current understanding.

  5. Bidirectional uncompressed HD video distribution over fiber employing VCSELs

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Vegas Olmos, Juan José; Rodes, G. A.

    2012-01-01

    We report on a bidirectional system in which VCSELs are simultaneously modulated with two uncompressed HD video signals. The results show a large power budget and a negligible penalty over 10 km long transmission links.......We report on a bidirectional system in which VCSELs are simultaneously modulated with two uncompressed HD video signals. The results show a large power budget and a negligible penalty over 10 km long transmission links....

  6. A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.

    Science.gov (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  7. A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.

    Directory of Open Access Journals (Sweden)

    Suraj Honnuraiah

    Full Text Available Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific

  8. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    Science.gov (United States)

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  9. Bidirectional associations between emotions and school adjustment.

    Science.gov (United States)

    Hernández, Maciel M; Eisenberg, Nancy; Valiente, Carlos; Spinrad, Tracy L; Berger, Rebecca H; VanSchyndel, Sarah K; Silva, Kassondra M; Diaz, Anjolii; Thompson, Marilyn S; Gal, Diana E; Southworth, Jody

    2017-11-24

    We examined the relations of children's (N = 301) observed expression of negative and positive emotion in classes or nonclassroom school contexts (i.e., lunch and recess) to school adjustment from kindergarten to first grade. Naturalistic observations of children's emotional expressivity were collected, as were teachers' reports of children's school engagement and relationship quality with teachers and peers. In longitudinal panel models, greater teacher-student conflict and lower student engagement in kindergarten predicted greater negative expressivity in both school contexts. School engagement and peer acceptance in kindergarten positively predicted first grade positive emotion in the classroom. Suggestive of possible bidirectional relations, there was also small unique prediction (near significant) from negative expressivity at lunch and recess to higher teacher-student conflict, from negative expressivity in the classroom to low peer acceptance, and from positive expressivity in the classroom to higher peer acceptance. The pattern of findings suggests that the quality of experience at school uniquely predicts children's emotional expressivity at school more consistently than vice versa-a finding that highlights the important role of school context in young children's emotionality at school. © 2017 Wiley Periodicals, Inc.

  10. Single coil bistable, bidirectional micromechanical actuator

    Science.gov (United States)

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  11. Emulating Realistic Bidirectional Spatial Channels for MIMO OTA Testing

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2015-01-01

    Full Text Available This paper discusses over the air (OTA testing for multiple input multiple output (MIMO capable terminals with emphasis on modeling bidirectional spatial channel models in multiprobe anechoic chamber (MPAC setups. In the literature, work on this topic has been mainly focused on how to emulate downlink channel models, whereas uplink channel is often modeled as free space line-of-sight channel without fading. Modeling realistic bidirectional (i.e., both uplink and downlink propagation environments is essential to evaluate any bidirectional communication systems. There have been works stressing the importance of emulating full bidirectional channel and proposing possible directions to implement uplink channels in the literature. Nevertheless, there is no currently published work reporting an experimental validation of such concepts. In this paper, a general framework to emulate bidirectional channels for time division duplexing (TDD and frequency division duplexing (FDD communication systems is proposed. The proposed technique works for MPAC setups with arbitrary uplink and downlink probe configurations, that is, possibly different probe configurations (e.g., number of probes or their configurations in the uplink and downlink. The simulation results are further supported by measurements in a practical MPAC setup. The proposed algorithm is shown to be a valid method to emulate bidirectional spatial channel models.

  12. A framework for plasticity implementation on the SpiNNaker neural architecture.

    Science.gov (United States)

    Galluppi, Francesco; Lagorce, Xavier; Stromatias, Evangelos; Pfeiffer, Michael; Plana, Luis A; Furber, Steve B; Benosman, Ryad B

    2014-01-01

    Many of the precise biological mechanisms of synaptic plasticity remain elusive, but simulations of neural networks have greatly enhanced our understanding of how specific global functions arise from the massively parallel computation of neurons and local Hebbian or spike-timing dependent plasticity rules. For simulating large portions of neural tissue, this has created an increasingly strong need for large scale simulations of plastic neural networks on special purpose hardware platforms, because synaptic transmissions and updates are badly matched to computing style supported by current architectures. Because of the great diversity of biological plasticity phenomena and the corresponding diversity of models, there is a great need for testing various hypotheses about plasticity before committing to one hardware implementation. Here we present a novel framework for investigating different plasticity approaches on the SpiNNaker distributed digital neural simulation platform. The key innovation of the proposed architecture is to exploit the reconfigurability of the ARM processors inside SpiNNaker, dedicating a subset of them exclusively to process synaptic plasticity updates, while the rest perform the usual neural and synaptic simulations. We demonstrate the flexibility of the proposed approach by showing the implementation of a variety of spike- and rate-based learning rules, including standard Spike-Timing dependent plasticity (STDP), voltage-dependent STDP, and the rate-based BCM rule. We analyze their performance and validate them by running classical learning experiments in real time on a 4-chip SpiNNaker board. The result is an efficient, modular, flexible and scalable framework, which provides a valuable tool for the fast and easy exploration of learning models of very different kinds on the parallel and reconfigurable SpiNNaker system.

  13. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Directory of Open Access Journals (Sweden)

    Christian Albers

    Full Text Available Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP. Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious and strong (teacher spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  14. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  15. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    Science.gov (United States)

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  16. Bidirectional Frontoparietal Oscillatory Systems Support Working Memory.

    Science.gov (United States)

    Johnson, Elizabeth L; Dewar, Callum D; Solbakk, Anne-Kristin; Endestad, Tor; Meling, Torstein R; Knight, Robert T

    2017-06-19

    The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Design principles of electrical synaptic plasticity.

    Science.gov (United States)

    O'Brien, John

    2017-09-08

    Essentially all animals with nervous systems utilize electrical synapses as a core element of communication. Electrical synapses, formed by gap junctions between neurons, provide rapid, bidirectional communication that accomplishes tasks distinct from and complementary to chemical synapses. These include coordination of neuron activity, suppression of voltage noise, establishment of electrical pathways that define circuits, and modulation of high order network behavior. In keeping with the omnipresent demand to alter neural network function in order to respond to environmental cues and perform tasks, electrical synapses exhibit extensive plasticity. In some networks, this plasticity can have dramatic effects that completely remodel circuits or remove the influence of certain cell types from networks. Electrical synaptic plasticity occurs on three distinct time scales, ranging from milliseconds to days, with different mechanisms accounting for each. This essay highlights principles that dictate the properties of electrical coupling within networks and the plasticity of the electrical synapses, drawing examples extensively from retinal networks. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  18. Overcoming maladaptive plasticity through plastic compensation

    Directory of Open Access Journals (Sweden)

    Matthew R.J. MORRIS, Sean M. ROGERS

    2013-08-01

    Full Text Available Most species evolve within fluctuating environments, and have developed adaptations to meet the challenges posed by environmental heterogeneity. One such adaptation is phenotypic plasticity, or the ability of a single genotype to produce multiple environmentally-induced phenotypes. Yet, not all plasticity is adaptive. Despite the renewed interest in adaptive phenotypic plasticity and its consequences for evolution, much less is known about maladaptive plasticity. However, maladaptive plasticity is likely an important driver of phenotypic similarity among populations living in different environments. This paper traces four strategies for overcoming maladaptive plasticity that result in phenotypic similarity, two of which involve genetic changes (standing genetic variation, genetic compensation and two of which do not (standing epigenetic variation, plastic compensation. Plastic compensation is defined as adaptive plasticity overcoming maladaptive plasticity. In particular, plastic compensation may increase the likelihood of genetic compensation by facilitating population persistence. We provide key terms to disentangle these aspects of phenotypic plasticity and introduce examples to reinforce the potential importance of plastic compensation for understanding evolutionary change [Current Zoology 59 (4: 526–536, 2013].

  19. Piezoelectric power converter with bi-directional power transfer

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a bi-directional piezoelectric power converter com¬ prising a piezoelectric transformer. The piezoelectric transformer comprises an input electrode electrically coupled to a primary section of the piezoelectric transformer and an output electrode electrically...... coupled to an output section of the piezoelectric transformer to provide a transformer output signal. A bi-directional switching circuit is coupled between the output electrode and a DC or AC output voltage of the power converter. Forward and reverse current conducting periods of the bi......, a reverse current is conducted through the bi-directional switching circuit from the DC or AC output voltage to the output electrode to discharge the DC or AC output voltage and return power to the primary section of the piezoelectric transformer....

  20. Closing the gap: long-term presynaptic plasticity in brain function and disease.

    Science.gov (United States)

    Monday, Hannah R; Castillo, Pablo E

    2017-08-01

    Synaptic plasticity is critical for experience-dependent adjustments of brain function. While most research has focused on the mechanisms that underlie postsynaptic forms of plasticity, comparatively little is known about how neurotransmitter release is altered in a long-term manner. Emerging research suggests that many of the features of canonical 'postsynaptic' plasticity, such as associativity, structural changes and bidirectionality, also characterize long-term presynaptic plasticity. Recent studies demonstrate that presynaptic plasticity is a potent regulator of circuit output and function. Moreover, aberrant presynaptic plasticity is a convergent factor of synaptopathies like schizophrenia, addiction, and Autism Spectrum Disorders, and may be a potential target for treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bidirectional Associations between Sport Involvement and Mental Health in Adolescence.

    Science.gov (United States)

    Vella, Stewart A; Swann, Christian; Allen, Mark S; Schweickle, Matthew J; Magee, Christopher A

    2017-04-01

    This study aimed to investigate potential bidirectional relationships between sport participation and mental health during early adolescence. Data were taken from wave 5 (2012) and wave 6 (2014) of the K cohort of the Longitudinal Study of Australian Children. In total, there were 4023 participants (mean age = 12.41 yr, SD = 0.49 yr, at baseline), and this sample was followed up 24 months later. Cross-lagged panel models were used to examine bidirectional relationships between sport participation (hours per week for team, individual, and total sport participation) and mental health (total psychological difficulties, internalizing problems, and externalizing problems) as measured by the parent-report version of the Strengths and Difficulties Questionnaire (SDQ). Bidirectional relationships were evident between time involved in sport and overall mental health (Sport12→SDQ14: β = -0.048; SDQ12→Sport14: β = -0.062). Bidirectional relationships were also evident between time involved in sport participation and internalizing (social and emotional) problems (Sport12→SDQ14: β = -0.068; SDQ12→Sport14: β = -0.067). The relationship between time in organized sport and externalizing problems (conduct problems and inattention/hyperactivity problems) was not bidirectional. Externalizing problems predicted later sports participation (β = -0.039), but not vice versa. Findings demonstrate bidirectional relationships between sport participation and adolescent mental health. The design and implementation of youth sport programs should maximize mental health benefits, and programs should be designed, implemented, and marketed to be attractive to participants with poor psychosocial health.

  2. Use of HRSC-A for sampling bidirectional reflectance

    Science.gov (United States)

    Kukko, Antero; Hyyppä, Juha; Kuittinen, Risto

    This paper describes a method for sampling bidirectional reflectance information from multiangular airborne images. The method uses high resolution surface models to determinate the location of the imaged point on the ground and the orientation of the measured surface fragment. Since natural surfaces scatter incident radiation anisotropically, viewing and illumination conditions play a critical role in the interpretation of remotely sensed images. Thus, directionally defined reflectance data are needed for the modelling and correction of bidirectional effects on airborne optical images. Two test sites were imaged with a wide range of viewing azimuth angles at two different times. A high resolution HRSC-A stereo camera was used for image acquisition. Algorithms were implemented to reconstruct the image acquisition and retrieve the image samples from the HRSC-A image data. Combined with GPS and INS data, automatically derived high resolution digital surface models, including vegetation canopies, houses, etc., were used to determine the viewing and illumination geometry on the target surface. The brightness of a sample point was recorded as a measure for reflectance. A large number of directionally defined samples and a wide angular range of sample geometry were obtained. The images were first classified. Sampled reflectance data were verified by investigating the bidirectional reflectance of five agricultural and forest targets. Errors affecting the data quality, such as angular uncertainty, were studied. The multiangular image data, the developed sampling methods and the obtained bidirectional dataset proved to be applicable in investigations of bidirectional reflectance effects of natural targets. Airborne imagery combined with high resolution digital surface models permit extensive investigation of the bidirectional reflectance of a wide range of natural objects and large habitats.

  3. Bi-directional associations between psychological arousal, cortisol, and sleep

    DEFF Research Database (Denmark)

    Garde, Anne Helene; Albertsen, Karen; Persson, Roger

    2012-01-01

    The aim was to elucidate the possible bi-directional relation between daytime psychological arousal, cortisol, and self-reported sleep in a group of healthy employees in active employment. Logbook ratings of sleep (Karolinska Sleep Questionnaire), stress, and energy, as well as positive and negat......The aim was to elucidate the possible bi-directional relation between daytime psychological arousal, cortisol, and self-reported sleep in a group of healthy employees in active employment. Logbook ratings of sleep (Karolinska Sleep Questionnaire), stress, and energy, as well as positive...

  4. Exact bidirectional X -wave solutions in fiber Bragg gratings

    Science.gov (United States)

    Efremidis, Nikolaos K.; Nye, Nicholas S.; Christodoulides, Demetrios N.

    2017-10-01

    We find exact solutions describing bidirectional pulses propagating in fiber Bragg gratings. They are derived by solving the coupled-mode theory equations and are expressed in terms of products of modified Bessel functions with algebraic functions. Depending on the values of the two free parameters, the general bidirectional X -wave solution can also take the form of a unidirectional pulse. We analyze the symmetries and the asymptotic properties of the solutions and also discuss additional waveforms that are obtained by interference of more than one solution. Depending on their parameters, such pulses can create a sharp focus with high contrast.

  5. A psychophysically validated metric for bidirectional texture data reduction

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Chantler, M.J.; Green, P.R.; Haindl, Michal

    2008-01-01

    Roč. 27, č. 5 (2008), s. 138:1-138:11 ISSN 0730-0301 R&D Projects: GA AV ČR 1ET400750407; GA ČR GA102/08/0593 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bidirectional Texture Functions * texture compression Subject RIV: BD - Theory of Information Impact factor: 3.383, year: 2008 http://library.utia.cas.cz/separaty/2008/RO/haindl-a psychophysically validated metric for bidirectional texture data reduction.pdf

  6. Neural plasticity and behavior - sixty years of conceptual advances.

    Science.gov (United States)

    Sweatt, J David

    2016-10-01

    This brief review summarizes 60 years of conceptual advances that have demonstrated a role for active changes in neuronal connectivity as a controller of behavior and behavioral change. Seminal studies in the first phase of the six-decade span of this review firmly established the cellular basis of behavior - a concept that we take for granted now, but which was an open question at the time. Hebbian plasticity, including long-term potentiation and long-term depression, was then discovered as being important for local circuit refinement in the context of memory formation and behavioral change and stabilization in the mammalian central nervous system. Direct demonstration of plasticity of neuronal circuit function in vivo, for example, hippocampal neurons forming place cell firing patterns, extended this concept. However, additional neurophysiologic and computational studies demonstrated that circuit development and stabilization additionally relies on non-Hebbian, homoeostatic, forms of plasticity, such as synaptic scaling and control of membrane intrinsic properties. Activity-dependent neurodevelopment was found to be associated with cell-wide adjustments in post-synaptic receptor density, and found to occur in conjunction with synaptic pruning. Pioneering cellular neurophysiologic studies demonstrated the critical roles of transmembrane signal transduction, NMDA receptor regulation, regulation of neural membrane biophysical properties, and back-propagating action potential in critical time-dependent coincidence detection in behavior-modifying circuits. Concerning the molecular mechanisms underlying these processes, regulation of gene transcription was found to serve as a bridge between experience and behavioral change, closing the 'nature versus nurture' divide. Both active DNA (de)methylation and regulation of chromatin structure have been validated as crucial regulators of gene transcription during learning. The discovery of protein synthesis dependence on the

  7. Neural stem cells show bidirectional experience-dependent plasticity in the perinatal mammalian brain.

    Science.gov (United States)

    Kippin, Tod E; Cain, Sean W; Masum, Zahra; Ralph, Martin R

    2004-03-17

    Many of the effects of prenatal stress on the endocrine function, brain morphology, and behavior in mammals can be reversed by brief sessions of postnatal separation and handling. We have tested the hypothesis that the effects of both the prenatal and postnatal experiences are mediated by negative and positive regulation of neural stem cell (NSC) number during critical stages in neurodevelopment. We used the in vitro clonal neurosphere assay to quantify NSCs in hamsters that had experienced prenatal stress (maternal restraint stress for 2 hr per day, for the last 7 d of gestation), postnatal handling (maternal-offspring separation for 15 min per day during postnatal days 1-21), orboth. Prenatal stress reduced the number of NSCs derived from the subependyma of the lateral ventricle. The effect was already present at postnatal day 1 and persisted into adulthood (at least 14 months of age). Similarly, prenatal stress reduced in vivo proliferation in the adult subependyma of the lateral ventricle. Conversely, postnatal handling increased NSC number and reversed the effect of prenatal stress. The effects of prenatal stress on NSCs and proliferation and the effect of postnatal handling on NSCs did not differ between male and females. The findings demonstrate that environmental factors can produce changes in NSC number that are present at birth and endure into late adulthood. These changes may underlie some of the behavioral effects produced by prenatal stress and postnatal handling.

  8. Emerging Link between Alzheimer’s Disease and Homeostatic Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Sung-Soo Jang

    2016-01-01

    Full Text Available Alzheimer’s disease (AD is an irreversible brain disorder characterized by progressive cognitive decline and neurodegeneration of brain regions that are crucial for learning and memory. Although intracellular neurofibrillary tangles and extracellular senile plaques, composed of insoluble amyloid-β (Aβ peptides, have been the hallmarks of postmortem AD brains, memory impairment in early AD correlates better with pathological accumulation of soluble Aβ oligomers and persistent weakening of excitatory synaptic strength, which is demonstrated by inhibition of long-term potentiation, enhancement of long-term depression, and loss of synapses. However, current, approved interventions aiming to reduce Aβ levels have failed to retard disease progression; this has led to a pressing need to identify and target alternative pathogenic mechanisms of AD. Recently, it has been suggested that the disruption of Hebbian synaptic plasticity in AD is due to aberrant metaplasticity, which is a form of homeostatic plasticity that tunes the magnitude and direction of future synaptic plasticity based on previous neuronal or synaptic activity. This review examines emerging evidence for aberrant metaplasticity in AD. Putative mechanisms underlying aberrant metaplasticity in AD will also be discussed. We hope this review inspires future studies to test the extent to which these mechanisms contribute to the etiology of AD and offer therapeutic targets.

  9. "Figuring" Bidirectional Home and School Connections along the Biliteracy Continuum

    Science.gov (United States)

    Fránquiz, María E.; Leija, María G.; Garza, Irene

    2015-01-01

    This article centers on the significant practices identified by bilingual teachers who participated in Proyecto Bilingüe, a specialized master's degree program. The notion of bidirectional theory of bilingual pedagogy and the theoretical construct of the continua of biliteracy are utilized to illustrate how the teachers centered home and school…

  10. Optimum Water Quality Monitoring Network Design for Bidirectional River Systems

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhu

    2018-01-01

    Full Text Available Affected by regular tides, bidirectional water flows play a crucial role in surface river systems. Using optimization theory to design a water quality monitoring network can reduce the redundant monitoring nodes as well as save the costs for building and running a monitoring network. A novel algorithm is proposed to design an optimum water quality monitoring network for tidal rivers with bidirectional water flows. Two optimization objectives of minimum pollution detection time and maximum pollution detection probability are used in our optimization algorithm. We modify the Multi-Objective Particle Swarm Optimization (MOPSO algorithm and develop new fitness functions to calculate pollution detection time and pollution detection probability in a discrete manner. In addition, the Storm Water Management Model (SWMM is used to simulate hydraulic characteristics and pollution events based on a hypothetical river system studied in the literature. Experimental results show that our algorithm can obtain a better Pareto frontier. The influence of bidirectional water flows to the network design is also identified, which has not been studied in the literature. Besides that, we also find that the probability of bidirectional water flows has no effect on the optimum monitoring network design but slightly changes the mean pollution detection time.

  11. Bidirectional Associations among Sensitive Parenting, Language Development, and Social Competence

    Science.gov (United States)

    Barnett, Melissa A.; Gustafsson, Hanna; Deng, Min; Mills-Koonce, W. Roger; Cox, Martha

    2012-01-01

    Rapid changes in language skills and social competence, both of which are linked to sensitive parenting, characterize early childhood. The present study examines bidirectional associations among mothers' sensitive parenting and children's language skills and social competence from 24 to 36?months in a community sample of 174 families. In addition,…

  12. Bidirectional Relations between Authoritative Parenting and Adolescents' Prosocial Behaviors

    Science.gov (United States)

    Padilla-Walker, Laura M.; Carlo, Gustavo; Christensen, Katherine J.; Yorgason, Jeremy B.

    2012-01-01

    This study examined the bidirectional relations between authoritative parenting and adolescents' prosocial behavior over a 1-year time period. Data were taken from Time 2 and 3 of the Flourishing Families Project, and included reports from 319 two-parent families with an adolescent child (M age of child at Time 2 = 12.34, SD = 1.06, 52% girls).…

  13. Impulsive Personality and Alcohol Use: Bidirectional Relations Over One Year

    Science.gov (United States)

    Kaiser, Alison; Bonsu, Jacqueline A.; Charnigo, Richard J.; Milich, Richard; Lynam, Donald R.

    2016-01-01

    Objective: Impulsive personality traits have been found to be robust predictors of substance use and problems in both cross-sectional and longitudinal research. Studies examining the relations of substance use and impulsive personality over time indicate a bidirectional relation, where substance use is also predictive of increases in later impulsive personality. The present study sought to build on these findings by examining the bidirectional relations among the different impulsive personality traits assessed by the UPPS-P Impulsive Behavior Scale, with an interest in urgency (the tendency to act rashly when experiencing strong affect). Method: Participants were 525 first-year college students (48.0% male, 81.1% White), who completed self-report measures assessing personality traits and a structured interview assessing past and current substance use. Data collection took place at two different time points: the first occurred during the participants’ first year of college, and the second occurred approximately 1 year later. Bidirectional relations were examined using structural equation modeling. Results: Time 1 (T1) positive urgency predicted higher levels of alcohol use at Time 2 (T2), whereas T1 lack of perseverance predicted lower levels of alcohol use at T2. T1 alcohol use predicted higher levels of positive urgency, negative urgency, sensation seeking, and lack of premeditation at T2. Conclusions: Findings provide greater resolution in characterizing the bidirectional relation between impulsive personality traits and substance use. PMID:27172580

  14. Bidirectional converter interface for a battery energy storage test bench

    DEFF Research Database (Denmark)

    Trintis, Ionut; Thomas, Stephan; Blank, Tobias

    2011-01-01

    This paper presents the bidirectional converter interface for a 6 kV battery energy storage test bench. The power electronic interface consists a two stage converter topology having a low voltage dc-ac grid connected converter and a new dual active bridge dc-dc converter with high transformation...

  15. Optical properties (bidirectional reflectance distribution function) of shot fabric

    NARCIS (Netherlands)

    Lu, Rong; Koenderink, Jan J.; Kappers, Astrid M L

    2000-01-01

    To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical

  16. Parenting and children's externalizing behavior: Bidirectionality during toddlerhood

    NARCIS (Netherlands)

    Verhoeven, Marjolein; Junger, Marianne; van Aken, Chantal; Dekovic, Maja; van Aken, Marcel A.G.

    2010-01-01

    This study examined the bidirectional relationship between parenting and boys' externalizing behaviors in a four-wave longitudinal study of toddlers. Participants were 104 intact two-parent families with toddler sons. When their sons were 17, 23, 29, and 35 months of age, mothers and fathers

  17. Primary Parallel Isolated Boost Converter with Bidirectional Operation

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gökhan

    2012-01-01

    This paper presents a bidirectional dc/dc converter operated with batteries both in the input and output. Primary parallel isolated boost converter (PPIBC) with transformer series connection on the high voltage side is preferred due to its ability to handle high currents in the low voltage side...

  18. On the Generating Power of Regularly Controlled Bidirectional Grammars

    NARCIS (Netherlands)

    Asveld, P.R.J.; Hogendorp, J.A.; Hogendorp, J.A.

    1991-01-01

    RCB-grammars or regularly controlled bidirectional grammars are context-free grammars of which the rules can be used in a productive and in a reductive fashion. In addition, the application of these rules is controlled by a regular language. Several modes of derivation can be distinguished for this

  19. On the Generating Power of Regularly Controlled Bidirectional Grammars

    NARCIS (Netherlands)

    Asveld, P.R.J.; Hogendorp, Jan Anne

    1989-01-01

    RCB-grammars or regularly controlled bidirectional grammars are context-free grammars of which the rules can be used in a productive and in a reductive fashion. In addition, the application of these rules is controlled by a regular language. Several modes of derivation can be distinguished for this

  20. A new setup to measure bidirectional reflectance distribution functions

    NARCIS (Netherlands)

    Roosjen, P.P.J.; Clevers, J.G.P.W.; Bartholomeus, H.

    2012-01-01

    The Plant Facility, a new laboratory goniometer system, built by the Wageningen University has been tested in order to take bidirectional reflectance distribution function (BRDF) measurements. An ASD FieldSpec 3 spectroradiometer mounted on an industrial robot arm is able to measure small targets

  1. Providing plastic zone extrusion

    Science.gov (United States)

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.; Yu, Zhenzhen

    2017-04-11

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  2. Design of Bidirectional Check Valve for Discrete Fluid Power Force System for Wave Energy Converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    introduces large switching losses, especially when large pressure difference is present across the valves in the manifold. The current paper therefore focus on designing a bidirectional check valve for use in the switching manifold of the discrete force systems. The use of the bidirectional check valve...... enables passive force switching under minimal pressure difference, hence minimal energy loss. The bidirectional check valve is designed with a rated flow in the range of 1000L/min@5bar. The flow direction of the bidirectional check valve is set by the setting the pilot pressure. This paper presents...... a functionality test of a 125 L/min@5bar bidirectional check, leading to the design and modelling of a bidirectional check valve for ocean wave energy. It shows that a feasible bidirectional check valve may be configured by employing a multi-poppet topology for the main stage and utilising a 3/2 switching valve...

  3. Recycling of Plastic

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Fruergaard, Thilde

    2011-01-01

    Plastic is produced from fossil oil. Plastic is used for many different products. Some plastic products like, for example, wrapping foil, bags and disposable containers for food and beverage have very short lifetimes and thus constitute a major fraction of most waste. Other plastic products like......, for example, gutters, window frames, car parts and transportation boxes have long lifetimes and thus appear as waste only many years after they have been introduced on the market. Plastic is constantly being used for new products because of its attractive material properties: relatively cheap, easy to form......, good strength and long durability. Recycling of plastic waste from production is well-established, while recycling of postconsumer plastic waste still is in its infancy. This chapter describes briefly how plastic is produced and how waste plastic is recycled in the industry. Quality requirements...

  4. A Unifying Framework of Synaptic and Intrinsic Plasticity in Neural Populations.

    Science.gov (United States)

    Leugering, Johannes; Pipa, Gordon

    2018-01-17

    A neuronal population is a computational unit that receives a multivariate, time-varying input signal and creates a related multivariate output. These neural signals are modeled as stochastic processes that transmit information in real time, subject to stochastic noise. In a stationary environment, where the input signals can be characterized by constant statistical properties, the systematic relationship between its input and output processes determines the computation carried out by a population. When these statistical characteristics unexpectedly change, the population needs to adapt to its new environment if it is to maintain stable operation. Based on the general concept of homeostatic plasticity, we propose a simple compositional model of adaptive networks that achieve invariance with regard to undesired changes in the statistical properties of their input signals and maintain outputs with well-defined joint statistics. To achieve such invariance, the network model combines two functionally distinct types of plasticity. An abstract stochastic process neuron model implements a generalized form of intrinsic plasticity that adapts marginal statistics, relying only on mechanisms locally confined within each neuron and operating continuously in time, while a simple form of Hebbian synaptic plasticity operates on synaptic connections, thus shaping the interrelation between neurons as captured by a copula function. The combined effect of both mechanisms allows a neuron population to discover invariant representations of its inputs that remain stable under a wide range of transformations (e.g., shifting, scaling and (affine linear) mixing). The probabilistic model of homeostatic adaptation on a population level as presented here allows us to isolate and study the individual and the interaction dynamics of both mechanisms of plasticity and could guide the future search for computationally beneficial types of adaptation.

  5. The influence of following on bidirectional flow through a doorway

    Science.gov (United States)

    Graves, Amy; Diamond, Rachel; Saakashvili, Eduard

    Pedestrian dynamics is a subset of the study of self-propelled particles. We simulate two species of pedestrians undergoing bidirectional flow through a narrow doorway. Using the Helbing-Monlár-Farkas-Vicsek Social Force Model, our pedestrians are soft discs that experience psychosocial and physical contact forces. We vary the ``following'' parameter which determines the degree to which a pedestrian matches its direction of movement to the average of nearby, same-species pedestrians. Current density, efficiency and statistics of bursts and lags are calculated. These indicate that choosing different following parameters for each species affects the efficacy of transport - greater following being associated with lower efficacy. The information entropy associated with velocity and the long time tails of the complementary CDF of lag times are additional indicators of the dynamical consequences of following during bidirectional flow. Acknowledgement is made to the donors of the ACS Petrolium Research Fund, and the Vandervelde-Cheung Fund of Swarthmore College.

  6. Bidirectional Barbed Sutures for Wound Closure: Evolution and Applications

    Science.gov (United States)

    Paul, Malcolm D.

    2009-01-01

    Traditionally, wound closure sutures have in common the need to tie knots with the inherent risk of extrusion, palpability, microinfarcts, breakage, and slippage. Bidirectional barbed sutures have barbs arrayed in a helical fashion in opposing directions on either side of an unbarbed midsegment. This suture is inserted at the midpoint of a wound and pulled through till resistance is encountered from the opposing barbs; each half of the suture is then advanced to the lateral ends of the wound. This design provides a method of evenly distributing tension along the incision line, a faster suture placement and closure time with no need to tie knots, and the possibility of improved cosmesis. Bidirectional barbed sutures, which are available in both absorbable and nonabsorbable forms, can be used for simple closures, multilayered closures, and closure of high-tension wounds in a variety of surgical settings. PMID:24527114

  7. Optimization Control of Bidirectional Cascaded DC-AC Converter Systems

    DEFF Research Database (Denmark)

    Tian, Yanjun

    in bidirectional cascaded converter. This research work analyses the control strategies based on the topology of dual active bridges converter cascaded with a three phase inverter. It firstly proposed a dc link voltage and active power coordinative control method for this cascaded topology, and it can reduce dc....... The connections of the renewable energy sources to the power system are mostly through the power electronic converters. Moreover, for high controllability and flexibility, power electronic devices are gradually acting as the interface between different networks in power systems, promoting conventional power...... the bidirectional power flow in the distribution level of power systems. Therefore direct contact of converters introduces significant uncertainties to power system, especially for the stability and reliability. This dissertation studies the optimization control of the two stages directly connected converters...

  8. A Bidirectional Relationship between Conceptual Organization and Word Learning

    Directory of Open Access Journals (Sweden)

    Tanya Kaefer

    2013-01-01

    Full Text Available This study explores the relationship between word learning and conceptual organization for preschool-aged children. We proposed a bidirectional model in which increases in word learning lead to increases in taxonomic organization, which, in turn, leads to further increases in word learning. In order to examine this model, we recruited 104 4-year olds from Head Start classrooms; 52 children participated in a two-week training program, and 52 children were in a control group. Results indicated that children in the training program learned more words and were more likely to sort taxonomically than children in the control condition. Furthermore, the number of words learned over the training period predicted the extent to which children categorized taxonomically. Additionally, this ability to categorize taxonomically predicted the number of words learned outside the training program, over and above the number of words learned in the program. These results suggest a bi-directional relationship between conceptual organization and word learning.

  9. Indistinguishable encoding for bidirectional quantum key distribution: Theory to experiment

    Science.gov (United States)

    Shamsul Shaari, Jesni; Soekardjo, Suryadi

    2017-12-01

    We present a bidirectional quantum key distribution protocol with minimal encoding operations derived from the use of only two “nonorthogonal” unitary transformations selected from two mutually unbiased unitary bases. Differently from many bidirectional protocols, these transformations are indistinguishable in principle for a single use. Along with its decoding procedure, it is unique compared to its “orthogonal encoding” predecessors. Given the nature of such protocols where key rates are usually dependent on two different types of error rates, we define a more relevant notion of security threshold for such protocols to allow for proper comparisons to be made. The current protocol outperforms its predecessor in terms of security as the amount of information an eavesdropper can glean is limited by the indistinguishability of the transformations. We further propose adaptations for a practical scenario and report on a proof of concept experimental scheme based on polarised photons from an attenuated pulsed laser for qubits, demonstrating the feasibility of such a protocol.

  10. Bidirectional selection between two classes in complex social networks.

    Science.gov (United States)

    Zhou, Bin; He, Zhe; Jiang, Luo-Luo; Wang, Nian-Xin; Wang, Bing-Hong

    2014-12-19

    The bidirectional selection between two classes widely emerges in various social lives, such as commercial trading and mate choosing. Until now, the discussions on bidirectional selection in structured human society are quite limited. We demonstrated theoretically that the rate of successfully matching is affected greatly by individuals' neighborhoods in social networks, regardless of the type of networks. Furthermore, it is found that the high average degree of networks contributes to increasing rates of successful matches. The matching performance in different types of networks has been quantitatively investigated, revealing that the small-world networks reinforces the matching rate more than scale-free networks at given average degree. In addition, our analysis is consistent with the modeling result, which provides the theoretical understanding of underlying mechanisms of matching in complex networks.

  11. Personalized recommendation based on preferential bidirectional mass diffusion

    Science.gov (United States)

    Chen, Guilin; Gao, Tianrun; Zhu, Xuzhen; Tian, Hui; Yang, Zhao

    2017-03-01

    Recommendation system provides a promising way to alleviate the dilemma of information overload. In physical dynamics, mass diffusion has been used to design effective recommendation algorithms on bipartite network. However, most of the previous studies focus overwhelmingly on unidirectional mass diffusion from collected objects to uncollected objects, while overlooking the opposite direction, leading to the risk of similarity estimation deviation and performance degradation. In addition, they are biased towards recommending popular objects which will not necessarily promote the accuracy but make the recommendation lack diversity and novelty that indeed contribute to the vitality of the system. To overcome the aforementioned disadvantages, we propose a preferential bidirectional mass diffusion (PBMD) algorithm by penalizing the weight of popular objects in bidirectional diffusion. Experiments are evaluated on three benchmark datasets (Movielens, Netflix and Amazon) by 10-fold cross validation, and results indicate that PBMD remarkably outperforms the mainstream methods in accuracy, diversity and novelty.

  12. High Voltage Bi-directional Flyback Converter for Capacitive Actuator

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    This paper presents a high voltage DC-DC converter topology for bi-directional energy transfer between a low voltage DC source and a high voltage capacitive load. The topology is a bi-directional flyback converter with variable switching frequency control during the charge mode, and constant...... switching frequency control during the discharge mode. The converter is capable of charging the capacitive load from 24 V DC source to 2.5 kV, and discharges it to 0 V. The flyback converter has been analyzed in detail during both charge and discharge modes, by considering all the parasitic elements...... in the converter, including the most dominating parameters of the high voltage transformer viz., self-capacitance and leakage inductance. The specific capacitive load for this converter is a dielectric electro active polymer (DEAP) actuator, which can be used as an effective replacement for conventional actuators...

  13. A Bidirectional Relationship between Conceptual Organization and Word Learning

    OpenAIRE

    Kaefer, Tanya; Neuman, Susan B.

    2013-01-01

    This study explores the relationship between word learning and conceptual organization for preschool-aged children. We proposed a bidirectional model in which increases in word learning lead to increases in taxonomic organization, which, in turn, leads to further increases in word learning. In order to examine this model, we recruited 104 4-year olds from Head Start classrooms; 52 children participated in a two-week training program, and 52 children were in a control group. Results indicated ...

  14. Bidirectional Relations between Temperament and Parenting Styles in Chinese Children

    OpenAIRE

    Lee, Erica H.; Zhou, Qing; Eisenberg, Nancy; Wang, Yun

    2012-01-01

    The present study examined bidirectional relations between child temperament and parenting styles in a sample (n = 425) of Chinese children during elementary school period (age range = 6 to 9 years at Wave 1). Using two waves (3.8 years apart) of longitudinal data, we tested two hypotheses: (1) whether child temperament (effortful control and anger/frustration) at Wave 1 predicts parenting styles (authoritative and authoritarian parenting) at Wave 2, controlling for Wave 1 parenting; and (2) ...

  15. Hybrid battery with bi-directional DC/DC converter

    Directory of Open Access Journals (Sweden)

    DUDRIK Jaroslav

    2010-05-01

    Full Text Available Bi-directional buck-boost DC/DC converterfor hybrid battery is described in this paper. The firstpart of the paper is aimed at concept of hybrid battery;main advance compared to conventional accumulatoris explained there. Control circuit with UC3637 andpower circuit of the converter are described in thesecond part of the paper. Experimental results frommeasuring of converter are mentioned in the last part.

  16. Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans

    OpenAIRE

    Ohnishi, Noriyuki; Kuhara, Atsushi; Nakamura, Fumiya; Okochi, Yoshifumi; Mori, Ikue

    2011-01-01

    In complex neural circuits of the brain, massive information is processed with neuronal communication through synaptic transmissions. It is thus fundamental to delineate information flows encoded by various kinds of transmissions. Here, we show that glutamate signals from two distinct sensory neurons bidirectionally affect the same postsynaptic interneuron, thereby producing the opposite behaviours. EAT-4/VGLUT (vesicular glutamate transporter)-dependent glutamate signals from AFD thermosenso...

  17. An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations

    OpenAIRE

    Wang, Feng; Sun, Jian-Gang; Zhang, Ning

    2014-01-01

    Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA) method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two compone...

  18. Modulation of synaptic plasticity by stress hormone associates with plastic alteration of synaptic NMDA receptor in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Yiu Chung Tse

    Full Text Available Stress exerts a profound impact on learning and memory, in part, through the actions of adrenal corticosterone (CORT on synaptic plasticity, a cellular model of learning and memory. Increasing findings suggest that CORT exerts its impact on synaptic plasticity by altering the functional properties of glutamate receptors, which include changes in the motility and function of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of glutamate receptor (AMPAR that are responsible for the expression of synaptic plasticity. Here we provide evidence that CORT could also regulate synaptic plasticity by modulating the function of synaptic N-methyl-D-aspartate receptors (NMDARs, which mediate the induction of synaptic plasticity. We found that stress level CORT applied to adult rat hippocampal slices potentiated evoked NMDAR-mediated synaptic responses within 30 min. Surprisingly, following this fast-onset change, we observed a slow-onset (>1 hour after termination of CORT exposure increase in synaptic expression of GluN2A-containing NMDARs. To investigate the consequences of the distinct fast- and slow-onset modulation of NMDARs for synaptic plasticity, we examined the formation of long-term potentiation (LTP and long-term depression (LTD within relevant time windows. Paralleling the increased NMDAR function, both LTP and LTD were facilitated during CORT treatment. However, 1-2 hours after CORT treatment when synaptic expression of GluN2A-containing NMDARs is increased, bidirectional plasticity was no longer facilitated. Our findings reveal the remarkable plasticity of NMDARs in the adult hippocampus in response to CORT. CORT-mediated slow-onset increase in GluN2A in hippocampal synapses could be a homeostatic mechanism to normalize synaptic plasticity following fast-onset stress-induced facilitation.

  19. Evolution of the optimum bidirectional (+/- biphasic) wave for defibrillation.

    Science.gov (United States)

    Geddes, L A; Havel, W

    2000-01-01

    Introduction of the asymmetric bidirectional (+/- biphasic) current waveform has made it possible to achieve ventricular defibrillation with less energy and current than are needed with a unidirectional (monophasic) waveform. The symmetrical bidirectional (sinusoidal) waveform was used for the first human-heart defibrillation. Subsequent studies employed the underdamped and overdamped sine waves, then the trapezoidal (monophasic) wave. Studies were then undertaken to investigate the benefit of adding a second identical and inverted wave; little success rewarded these efforts until it was discovered that the second inverted wave needed to be much less in amplitude to lower the threshold for defibrillation. However, there is no physiologic theory that explains the mechanism of action of the bidirectional wave, nor does any theory predict the optimum amplitude and time dimensions for the second inverted wave. The authors analyze the research that shows that the threshold defibrillation energy is lowest when the charge in the second, inverted phase is slightly more than a third of that in the first phase. An ion-flux, spatial-K+ summation hypothesis is presented that shows the effect on myocardial cells of adding the second inverted current pulse.

  20. Plasticity and Geotechnics

    Science.gov (United States)

    Yu, Hai-Sui

    Plasticity and Geotechnics is the first attempt to summarize and present, in one volume, the major developments achieved to date in the field of plasticity theory for geotechnical materials and its applications to geotechnical analysis and design.

  1. Wood-plastic combination

    International Nuclear Information System (INIS)

    Schaudy, R.

    1978-02-01

    A review on wood-plastic combinations is given including the production (wood and plastic component, radiation hardening, curing), the obtained properties, present applications and prospects for the future of these materials. (author)

  2. Weinig plastic in vissenmaag

    NARCIS (Netherlands)

    Foekema, E.M.

    2012-01-01

    Waar de magen van sommige zeevogels vol plastic zitten, lijken vissen in de Noordzee nauwelijks last te hebben van kunststofafval. Onderzoekers die plastic resten zochten in vissenmagen vonden ze in elk geval nauwelijks.

  3. Plastic casting resin poisoning

    Science.gov (United States)

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  4. Chemical Recycle of Plastics

    OpenAIRE

    Sara Fatima

    2014-01-01

    Various chemical processes currently prevalent in the chemical industry for plastics recycling have been discussed. Possible future scenarios in chemical recycling have also been discussed. Also analyzed are the effects on the environment, the risks, costs and benefits of PVC recycling. Also listed are the various types of plastics and which plastics are safe to use and which not after rcycle

  5. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    Science.gov (United States)

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  6. Synaptic plasticity and neuronal refractory time cause scaling behaviour of neuronal avalanches

    Science.gov (United States)

    Michiels van Kessenich, L.; de Arcangelis, L.; Herrmann, H. J.

    2016-08-01

    Neuronal avalanches measured in vitro and in vivo in different cortical networks consistently exhibit power law behaviour for the size and duration distributions with exponents typical for a mean field self-organized branching process. These exponents are also recovered in neuronal network simulations implementing various neuronal dynamics on different network topologies. They can therefore be considered a very robust feature of spontaneous neuronal activity. Interestingly, this scaling behaviour is also observed on regular lattices in finite dimensions, which raises the question about the origin of the mean field behavior observed experimentally. In this study we provide an answer to this open question by investigating the effect of activity dependent plasticity in combination with the neuronal refractory time in a neuronal network. Results show that the refractory time hinders backward avalanches forcing a directed propagation. Hebbian plastic adaptation plays the role of sculpting these directed avalanche patterns into the topology of the network slowly changing it into a branched structure where loops are marginal.

  7. Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity

    Directory of Open Access Journals (Sweden)

    Matthews Paul

    2004-11-01

    Full Text Available Abstract Background Knowledge of how synapses alter their efficiency of communication is central to the understanding of learning and memory. The most extensively studied forms of synaptic plasticity are long-term potentiation (LTP and its counterpart long-term depression (LTD of AMPA receptor-mediated synaptic transmission. In the CA1 region of the hippocampus, it has been shown that LTP often involves a rapid increase in the unitary conductance of AMPA receptor channels. However, LTP can also occur in the absence of any alteration in AMPA receptor unitary conductance. In the present study we have used whole-cell dendritic recording, failures analysis and non-stationary fluctuation analysis to investigate the mechanism of depotentiation of LTP. Results We find that when LTP involves an increase in unitary conductance, subsequent depotentiation invariably involves the return of unitary conductance to pre-LTP values. In contrast, when LTP does not involve a change in unitary conductance then depotentiation also occurs in the absence of any change in unitary conductance, indicating a reduction in the number of activated receptors as the most likely mechanism. Conclusions These data show that unitary conductance can be bi-directionally modified by synaptic activity. Furthermore, there are at least two distinct mechanisms to restore synaptic strength from a potentiated state, which depend upon the mechanism of the previous potentiation.

  8. Plastic value chains

    DEFF Research Database (Denmark)

    Baxter, John; Wahlstrom, Margareta; Zu Castell-Rüdenhausen, Malin

    2014-01-01

    Optimizing plastic value chains is regarded as an important measure in order to increase recycling of plastics in an efficient way. This can also lead to improved awareness of the hazardous substances contained in plastic waste, and how to avoid that these substances are recycled. As an example......, plastics from WEEE is chosen as a Nordic case study. The project aims to propose a number of improvements for this value chain together with representatives from Nordic stakeholders. Based on the experiences made, a guide for other plastic value chains shall be developed....

  9. Glassy metallic plastics

    Science.gov (United States)

    Li, Jianfu; Wang, Junqiang; Liu, Xiaofeng; Zhao, Kun; Zhang, Bo; Bai, Haiyang; Pan, Mingxiang; Wang, Weihua

    2010-03-01

    This paper reports a class of bulk metallic glass including Ce-, LaCe-, CaLi-, Yb-, and Sr-based metallic glasses, which are regarded as glassy metallic plastics because they combine some unique properties of both plastics and metallic alloys. These glassy metallic plastics have very low glass transition temperature ( T g ˜25°C to 150°C) and low Young’s modulus (˜20 GPa to 35 GPa). Similar to glassy plastics, these metallic plastics show excellent plastic-like deformability on macro-, micro- and even nano-scale in their supercooled liquid range and can be processed, such as elongated, compressed, bent, and imprinted at low temperatures, in hot water for instance. Under ambient conditions, they display such metallic properties as high thermal and electric conductivities and excellent mechanical properties and other unique properties. The metallic plastics have potential applications and are also a model system for studying issues in glass physics.

  10. Bi-directional WDM transmission by use of SOAs as inline amplifiers without isolators

    DEFF Research Database (Denmark)

    Jeppesen, Palle; Yu, Jianjun

    2001-01-01

    Error-free bi-directional transmission of 8×10 Gb/s signals over two inline SOAs is realized for the first time. It is demonstrated that SOAs can be used for inline amplifiers in bidirectional multi-wavelength transmission systems at 10 Gb/s without any isolator.......Error-free bi-directional transmission of 8×10 Gb/s signals over two inline SOAs is realized for the first time. It is demonstrated that SOAs can be used for inline amplifiers in bidirectional multi-wavelength transmission systems at 10 Gb/s without any isolator....

  11. Shaping the Dynamics of a Bidirectional Neural Interface

    Science.gov (United States)

    Vato, Alessandro; Semprini, Marianna; Maggiolini, Emma; Szymanski, Francois D.; Fadiga, Luciano; Panzeri, Stefano; Mussa-Ivaldi, Ferdinando A.

    2012-01-01

    Progress in decoding neural signals has enabled the development of interfaces that translate cortical brain activities into commands for operating robotic arms and other devices. The electrical stimulation of sensory areas provides a means to create artificial sensory information about the state of a device. Taken together, neural activity recording and microstimulation techniques allow us to embed a portion of the central nervous system within a closed-loop system, whose behavior emerges from the combined dynamical properties of its neural and artificial components. In this study we asked if it is possible to concurrently regulate this bidirectional brain-machine interaction so as to shape a desired dynamical behavior of the combined system. To this end, we followed a well-known biological pathway. In vertebrates, the communications between brain and limb mechanics are mediated by the spinal cord, which combines brain instructions with sensory information and organizes coordinated patterns of muscle forces driving the limbs along dynamically stable trajectories. We report the creation and testing of the first neural interface that emulates this sensory-motor interaction. The interface organizes a bidirectional communication between sensory and motor areas of the brain of anaesthetized rats and an external dynamical object with programmable properties. The system includes (a) a motor interface decoding signals from a motor cortical area, and (b) a sensory interface encoding the state of the external object into electrical stimuli to a somatosensory area. The interactions between brain activities and the state of the external object generate a family of trajectories converging upon a selected equilibrium point from arbitrary starting locations. Thus, the bidirectional interface establishes the possibility to specify not only a particular movement trajectory but an entire family of motions, which includes the prescribed reactions to unexpected perturbations. PMID

  12. Bidirectional MIMO Channel Tracking Based on PASTd and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Shayevitz Ofer

    2010-01-01

    Full Text Available Abstract We consider a bidirectional time division duplex (TDD multiple-input multiple-output (MIMO communication system with time-varying channel and additive white Gaussian noise (AWGN. A blind bidirectional channel tracking algorithm, based on the projection approximation subspace tracking (PAST algorithm, is applied in both terminals. The resulting singular value decomposition (SVD of the channel matrix is then used to approximately diagonalize the channel. The proposed method is applied to an orthogonal frequency-division multiplexing-(OFDM-MIMO setting with a typical indoor time-domain reflection model. The computational cost of the proposed algorithm, compared with other state-of-the-art algorithms, is relatively small. The Kalman filter is utilized for establishing a benchmark for the obtained performance of the proposed tracking algorithm. The performance degradation relative to a full channel state information (CSI due to the application of the tracking algorithm is evaluated in terms of average effective rate and the outage probability and compared with alternative tracking algorithms. The obtained results are also compared with a benchmark obtained by the Kalman filter with known input signal and channel characteristics. It is shown that the expected degradation in performance of frequency-domain algorithms (which do not exploit the smooth frequency response of the channel is only minor compared with time-domain algorithms in a range of reasonable signal-to-noise ratio (SNR levels. The proposed bidirectional frequency-domain tracking algorithm, proposed in this paper, is shown to attain communication rates close to the benchmark and to outperform a competing algorithm. The paper is concluded by evaluating the proposed blind tracking method in terms of the outage probability and the symbol error rate (SER versus. SNR for binary phase shift keying (BPSK and 4-Quadrature amplitude modulation (QAM constellations.

  13. Bidirectional Quantum Secure Direct Communication Network Protocol with Hyperentanglement

    International Nuclear Information System (INIS)

    Gu Bin; Chen Yulin; Huang Yugai; Fang Xia

    2011-01-01

    We propose a bidirectional quantum secure direct communication (QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. Compared with other QSDC network protocols, our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information. Also, we discuss the security of our QSDC network protocol and its feasibility with current techniques. (general)

  14. A New Algorithm for Bi-Directional Evolutionary Structural Optimization

    Science.gov (United States)

    Huang, Xiaodong; Xie, Yi Min; Burry, Mark Cameron

    In this paper, a new algorithm for bi-directional evolutionary structural optimization (BESO) is proposed. In the new BESO method, the adding and removing of material is controlled by a single parameter, i.e. the removal ratio of volume (or weight). The convergence of the iteration is determined by a performance index of the structure. It is found that the new BESO algorithm has many advantages over existing ESO and BESO methods in terms of efficiency and robustness. Several 2D and 3D examples of stiffness optimization problems are presented and discussed.

  15. Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network.

    Science.gov (United States)

    Ortega, Beatriz; Mora, José; Puerto, Gustavo; Capmany, José

    2007-12-10

    This paper presents a novel architecture for DWDM bidirectional access networks providing symmetric dynamic capacity allocation for both downlink and uplink signals. A foldback arrayed waveguide grating incorporating an optical switch enables the experimental demonstration of flexible assignment of multiservice capacity. Different analog and digital services, such as CATV, 10 GHz-tone, 155Mb/s PRBS and UMTS signals have been transmitted in order to successfully test the system performance under different scenarios of total capacity distribution from the Central Station to different Base Stations with two reconfigurable extra channels for each down and upstream direction.

  16. Ultrafast all-optical technologies for bidirectional optical wireless communications.

    Science.gov (United States)

    Jin, Xian; Hristovski, Blago A; Collier, Christopher M; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F

    2015-04-01

    In this Letter, a spherical retro-modulator architecture is introduced for operation as a bidirectional transceiver in passive optical wireless communication links. The architecture uses spherical retroreflection to enable retroreflection with broad directionality (2π steradians), and it uses all-optical beam interaction to enable modulation on ultrafast timescales (120 fs duration). The spherical retro-modulator is investigated from a theoretical standpoint and is fabricated for testing with three glasses, N-BK7, N-LASF9, and S-LAH79. It is found that the S-LAH79 structure provides the optimal refraction and nonlinearity for the desired retroreflection and modulation capabilities.

  17. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching.......Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...

  18. A Bidirectional Flow Joint Sobolev Gradient for Image Interpolation

    Directory of Open Access Journals (Sweden)

    Yi Zhan

    2013-01-01

    Full Text Available An energy functional with bidirectional flow is presented to sharpen image by reducing its edge width, which performs a forward diffusion in brighter lateral on edge ramp and backward diffusion that proceeds in darker lateral. We first consider the diffusion equations as L2 gradient flows on integral functionals and then modify the inner product from L2 to a Sobolev inner product. The experimental results demonstrate that our model efficiently reconstructs the real image, leading to a natural interpolation with reduced blurring, staircase artifacts and preserving better the texture features of image.

  19. On uniform resampling and gaze analysis of bidirectional texture functions

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Chantler, M.J.; Haindl, Michal

    2009-01-01

    Roč. 6, č. 3 (2009), s. 1-15 ISSN 1544-3558 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593 Grant - others:EC Marie Curie(BE) 41358 Institutional research plan: CEZ:AV0Z10750506 Keywords : BTF * texture * eye tracking Subject RIV: BD - Theory of Information Impact factor: 1.447, year: 2009 http://library.utia.cas.cz/separaty/2009/RO/haindl-on uniform resampling and gaze analysis of bidirectional texture functions.pdf

  20. Bi-Directional DC-DC Converter for PHEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  1. Bidirectional peritoneal transport of albumin in continuous ambulatory peritoneal dialysis

    DEFF Research Database (Denmark)

    Joffe, P; Henriksen, Jens Henrik Sahl

    1995-01-01

    The present study was undertaken in order to assess bidirectional peritoneal kinetics of albumin after simultaneous i.v. and i.p. injection of radioiodinated albumin tracers (125I-RISA and 131I-RISA) in eight clinically stable uraemic patients undergoing continuous ambulatory peritoneal dialysis...... mass at the end of the dialysis (54 +/- 19 mumol, P peritoneal...... (CAPD). The plasma volume, intravascular albumin mass (IVM), and overall extravasation rate of albumin were not significantly different from that found in healthy controls. Albumin flux from the plasma into the peritoneal cavity was 3.71 +/- 0.82 (SD) mumol/h, which was only 3% of the overall...

  2. Bidirectional converter interface for a battery energy storage test bench

    DEFF Research Database (Denmark)

    Trintis, Ionut; Thomas, Stephan; Blank, Tobias

    2011-01-01

    This paper presents the bidirectional converter interface for a 6 kV battery energy storage test bench. The power electronic interface consists a two stage converter topology having a low voltage dc-ac grid connected converter and a new dual active bridge dc-dc converter with high transformation...... ratio. The dc-dc converter controls the battery charge/discharge current while the grid converter controls the common dc-link voltage and the grid current. The applied control structures and the hardware implementation of both converters are presented, together with their interaction. Experimental...

  3. Bidirectional Texture Function Modeling: State of the Art Survey

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Haindl, Michal

    2009-01-01

    Roč. 31, č. 11 (2009), s. 1921-1940 ISSN 0162-8828 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593; GA AV ČR 1ET400750407 Grant - others:EC Marie Curie(BE) 41358; GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : BTF * surface texture * 3D texture Subject RIV: BD - Theory of Information Impact factor: 4.378, year: 2009 http://library.utia.cas.cz/separaty/2009/RO/filip-bidirectional texture function modeling state of the art survey.pdf

  4. Our plastic age

    Science.gov (United States)

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049

  5. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  6. Our plastic age

    OpenAIRE

    Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.

    2009-01-01

    Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste pl...

  7. Plastic surgery pitfalls.

    Science.gov (United States)

    Gorney, M

    1999-01-01

    As a founding member of the physician-owned insurance carrier The Doctors' Company, the author has reviewed many plastic surgery policy claims. In this article, he presents an overview of the plastic surgery procedures that produce the most severe losses. He then offers suggestions on how to proceed with these "medical malpractice favorites." The author discusses potential antitrust traps and legal recourse for plastic surgeons.

  8. Challenges in plastics recycling

    OpenAIRE

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann; Damgaard, Anders; Astrup, Thomas Fruergaard

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamin...

  9. Plasticized phenolphthalein polycarbonate

    Science.gov (United States)

    Harrison, E. S.

    1976-01-01

    Phenolphthalein polycarbonate was successfully plasticized with polychlorinated biphenyls (e.g., Aroclor 1231) or tricresyl phosphate and cast from tetrahydrofuran to give clear films without loss of fire resistance. At loadings of 20 to 30 percent plasticizer the Tg was lowered to approximately 100 C which would render phenolphthalein polycarbonate easily moldable. Although these materials had some mechanical integrity as shown by their film forming ability, the room temperature toughness of the plasticized polymer was not significantly improved over unmodified polymer.

  10. Plasticity: modeling & computation

    National Research Council Canada - National Science Library

    Borja, Ronaldo Israel

    2013-01-01

    .... "Plasticity Modeling & Computation" is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids...

  11. What Is Neural Plasticity?

    Science.gov (United States)

    von Bernhardi, Rommy; Bernhardi, Laura Eugenín-von; Eugenín, Jaime

    2017-01-01

    "Neural plasticity" refers to the capacity of the nervous system to modify itself, functionally and structurally, in response to experience and injury. As the various chapters in this volume show, plasticity is a key component of neural development and normal functioning of the nervous system, as well as a response to the changing environment, aging, or pathological insult. This chapter discusses how plasticity is necessary not only for neural networks to acquire new functional properties, but also for them to remain robust and stable. The article also reviews the seminal proposals developed over the years that have driven experiments and strongly influenced concepts of neural plasticity.

  12. Additives in plastics.

    Science.gov (United States)

    Deanin, R D

    1975-01-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products. PMID:1175566

  13. An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2014-01-01

    Full Text Available Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two components earthquake excitations, and independent analysis in each direction is not required and the application of simplified superposition formulas is avoided. The strength reduction factor spectra based on superposition of earthquake excitations are discussed and compared with the traditional strength reduction factor spectra. The step-by-step procedure is proposed to estimate seismic demands of structures. Two examples are implemented to verify the accuracy of the method, and the results of the examples show that (1 the IMMPA method can be used to estimate the responses of structure subjected to bidirectional earthquake excitations. (2 Along with increase of peak of earthquake acceleration, structural response deviation estimated with the IMMPA method may also increase. (3 Along with increase of the number of total floors of structures, structural response deviation estimated with the IMMPA method may also increase.

  14. Bidirectional Intimate Partner Violence and Drug Use Among Homeless Youth.

    Science.gov (United States)

    Petering, Robin; Rhoades, Harmony; Rice, Eric; Yoshioka-Maxwell, Amanda

    2015-07-10

    Intimate partner violence (IPV) among homeless youth (HY) is common, yet it has continuously been understudied, especially in relation to substance use. As part of a longitudinal study of Los Angeles area HY, drop-in service seeking youth completed a self-administered questionnaire. The presented results are from the third panel of data collection (N = 238), and the Revised Conflict Tactics Scale (CTS2) was used to assess IPV behavior regarding the participant's most recent intimate relationship. Approximately 38% of participants reported IPV behavior in their most recent relationship, and the majority of this behavior was bidirectional. It was unlikely that a HY was only a victim or only a perpetrator. Multivariable models revealed that bidirectional IPV was related to increased odds of recent methamphetamine; whereas sole perpetration was associated with an increased likelihood of ecstasy use. Specific substance use and IPV are closely related to risk behaviors for HY. Comprehensive interventions should be developed to address both these risk behaviors. © The Author(s) 2015.

  15. Bidirectional associations between personality and physical activity in adulthood.

    Science.gov (United States)

    Allen, Mark S; Magee, Christopher A; Vella, Stewart A; Laborde, Sylvain

    2017-04-01

    Personality and physical activity are important for critical life outcomes. This study tested the hypothesis that there is a bidirectional association between personality and physical activity. A nationally representative sample of 10,227 Australian adults (5,422 women; 4,805 men) completed self-report measures of physical activity and personality in 2006 (Time 1), 2010 (Time 2), and 2014 (Time 3). A latent change score modeling approach was used to test bidirectional associations, controlling for age, sex, education, physical health, and mental health. Conscientiousness and openness predicted subsequent increases in physical activity, whereas agreeableness predicted subsequent decreases in physical activity. Physical activity was associated with increases in openness (and conscientiousness for women) at Time 1-Time 2, but was unrelated to change in personality between Time 2-Time 3. In addition, there was some evidence that temporal associations between personality and physical activity were moderated by participant age. These findings indicate that personality is important for change in physical activity, but physical activity is relatively unimportant for change in personality. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. The Bidirectional Relationship between Sleep and Immunity against Infections

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Ibarra-Coronado

    2015-01-01

    Full Text Available Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  17. Bidirectional Relations between Temperament and Parenting Styles in Chinese Children.

    Science.gov (United States)

    Lee, Erica H; Zhou, Qing; Eisenberg, Nancy; Wang, Yun

    2013-01-01

    The present study examined bidirectional relations between child temperament and parenting styles in a sample ( n = 425) of Chinese children during elementary school period (age range = 6 to 9 years at Wave 1). Using two waves (3.8 years apart) of longitudinal data, we tested two hypotheses: (1) whether child temperament (effortful control and anger/frustration) at Wave 1 predicts parenting styles (authoritative and authoritarian parenting) at Wave 2, controlling for Wave 1 parenting; and (2) whether parenting styles at Wave 1 predict Wave 2 temperament, controlling for Wave 1 temperament. We found support for bidirectional relations between temperament and authoritarian parenting, such that higher effortful control and lower anger/frustration were associated with higher authoritarian parenting across time and in both directions. There were no significant cross-time associations between children's temperament and authoritative parenting. These findings extend the previous tests of transactional relations between child temperament and parenting in Chinese children and are consistent with the cultural values toward effortful control and control of anger/frustration in Chinese society.

  18. An Improved Multidimensional MPA Procedure for Bidirectional Earthquake Excitations

    Science.gov (United States)

    Wang, Feng; Sun, Jian-Gang; Zhang, Ning

    2014-01-01

    Presently, the modal pushover analysis procedure is extended to multidimensional analysis of structures subjected to multidimensional earthquake excitations. an improved multidimensional modal pushover analysis (IMMPA) method is presented in the paper in order to estimate the response demands of structures subjected to bidirectional earthquake excitations, in which the unidirectional earthquake excitation applied on equivalent SDOF system is replaced by the direct superposition of two components earthquake excitations, and independent analysis in each direction is not required and the application of simplified superposition formulas is avoided. The strength reduction factor spectra based on superposition of earthquake excitations are discussed and compared with the traditional strength reduction factor spectra. The step-by-step procedure is proposed to estimate seismic demands of structures. Two examples are implemented to verify the accuracy of the method, and the results of the examples show that (1) the IMMPA method can be used to estimate the responses of structure subjected to bidirectional earthquake excitations. (2) Along with increase of peak of earthquake acceleration, structural response deviation estimated with the IMMPA method may also increase. (3) Along with increase of the number of total floors of structures, structural response deviation estimated with the IMMPA method may also increase. PMID:25140333

  19. Bidirectional Relations between Temperament and Parenting Styles in Chinese Children

    Science.gov (United States)

    Lee, Erica H.; Zhou, Qing; Eisenberg, Nancy; Wang, Yun

    2012-01-01

    The present study examined bidirectional relations between child temperament and parenting styles in a sample (n = 425) of Chinese children during elementary school period (age range = 6 to 9 years at Wave 1). Using two waves (3.8 years apart) of longitudinal data, we tested two hypotheses: (1) whether child temperament (effortful control and anger/frustration) at Wave 1 predicts parenting styles (authoritative and authoritarian parenting) at Wave 2, controlling for Wave 1 parenting; and (2) whether parenting styles at Wave 1 predict Wave 2 temperament, controlling for Wave 1 temperament. We found support for bidirectional relations between temperament and authoritarian parenting, such that higher effortful control and lower anger/frustration were associated with higher authoritarian parenting across time and in both directions. There were no significant cross-time associations between children’s temperament and authoritative parenting. These findings extend the previous tests of transactional relations between child temperament and parenting in Chinese children and are consistent with the cultural values toward effortful control and control of anger/frustration in Chinese society. PMID:23482684

  20. Bidirectional Microglia-Neuron Communication in the Healthy Brain

    Directory of Open Access Journals (Sweden)

    Ukpong B. Eyo

    2013-01-01

    Full Text Available Unlike other resident neural cells that are of neuroectodermal origin, microglia are resident neural cells of mesodermal origin. Traditionally recognized for their immune functions during disease, new roles are being attributed to these cells in the development and maintenance of the central nervous system (CNS including specific communication with neurons. In this review, we highlight some of the recent findings on the bidirectional interaction between neurons and microglia. We discuss these interactions along two lines. First, we review data that suggest that microglial activity is modulated by neuronal signals, focusing on evidence that (i neurons are capable of regulating microglial activation state and influence basal microglial activities; (ii classic neurotransmitters affect microglial behavior; (iii chemotactic signals attract microglia during acute neuronal injury. Next, we discuss some of the recent data on how microglia signal to neurons. Signaling mechanisms include (i direct physical contact of microglial processes with neuronal elements; (ii microglial regulation of neuronal synapse and circuit by fractalkine, complement, and DAP12 signaling. In addition, we discuss the use of microglial depletion strategies in studying the role of microglia in neuronal development and synaptic physiology. Deciphering the mechanisms of bidirectional microglial-neuronal communication provides novel insights in understanding microglial function in both the healthy and diseased brain.

  1. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  2. The Bidirectional Relationship between Sleep and Immunity against Infections.

    Science.gov (United States)

    Ibarra-Coronado, Elizabeth G; Pantaleón-Martínez, Ana Ma; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  3. Active Flow Control on Bidirectional Rotors for Tidal MHK Applications

    Energy Technology Data Exchange (ETDEWEB)

    Shiu, Henry [Research Engineer; van Dam, Cornelis P. [Professor

    2013-08-22

    A marine and hydrokinetic (MHK) tidal turbine extracts energy from tidal currents, providing clean, sustainable electricity generation. In general, all MHK conversion technologies are confronted with significant operational hurdles, resulting in both increased capital and operations and maintenance (O&M) costs. To counter these high costs while maintaining reliability, MHK turbine designs can be simplified. Prior study found that a tidal turbine could be cost-effectively simplified by removing blade pitch and rotor/nacelle yaw. Its rotor would run in one direction during ebb and then reverse direction when the current switched to flood. We dubbed such a turbine a bidirectional rotor tidal turbine (BRTT). The bidirectional hydrofoils of a BRTT are less efficient than conventional hydrofoils and capture less energy, but the elimination of the pitch and yaw systems were estimated to reduce levelized cost of energy by 7.8%-9.6%. In this study, we investigated two mechanisms for recapturing some of the performance shortfall of the BRTT. First, we developed a novel set of hydrofoils, designated the yy series, for BRTT application. Second, we investigated the use of active flow control via microtabs. Microtabs are small deployable/retractable tabs, typically located near the leading or trailing edge of an air/hydrofoil with height on the order of the boundary layer thickness (1% - 2% of chord). They deploy approximately perpendicularly to the foil surface and, like gurney flaps and plain flaps, globally affect the aerodynamics of the airfoil. By strategically placing microtabs and selectively deploying them based on the direction of the inflow, performance of a BRTT rotor can be improved while retaining bidirectional operation. The yy foils were computationally designed and analyzed. They exhibited better performance than the baseline bidirectional foil, the ellipse. For example, the yyb07cn-180 had 14.7% higher (l/d)max than an ellipse of equal thickness. The yyb07cn

  4. Control of parallel-connected bidirectional AC-DC converters in stationary frame for microgrid application

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Teodorescu, Remus

    2011-01-01

    With the penetration of renewable energy in modern power system, microgrid has become a popular application worldwide. In this paper, parallel-connected bidirectional converters for AC and DC hybrid microgrid application are proposed as an efficient interface. To reach the goal of bidirectional...

  5. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes

    Science.gov (United States)

    Bidirectional air–surface exchange of ammonia (NH3) has been neglected in many air quality models. In this study, we implement the bidirectional exchange of NH3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for NH3...

  6. Bidirectional communication in an HF hybrid organic/solution-processed metal-oxide RFID tag

    NARCIS (Netherlands)

    Myny, K.; Rockelé, M.; Chasin, A.; Pham, D.V.; Steiger, J.; Botnaras, S.; Weber, D.; Herold, B.; Ficker, J.; Van Putten, B.D.; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2014-01-01

    A bidirectional communication protocol allows radio-frequency identification (RFID) tags to have readout of multiple tags in the RF field without collision of data. In this paper, we realized bidirectional communication between a reader system and thin-film RFID tag by introducing a novel protocol

  7. Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold

    2015-01-01

    This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch...

  8. Arc protein: a flexible hub for synaptic plasticity and cognition.

    Science.gov (United States)

    Nikolaienko, Oleksii; Patil, Sudarshan; Eriksen, Maria Steene; Bramham, Clive R

    2017-09-07

    Mammalian excitatory synapses express diverse types of synaptic plasticity. A major challenge in neuroscience is to understand how a neuron utilizes different types of plasticity to sculpt brain development, function, and behavior. Neuronal activity-induced expression of the immediate early protein, Arc, is critical for long-term potentiation and depression of synaptic transmission, homeostatic synaptic scaling, and adaptive functions such as long-term memory formation. However, the molecular basis of Arc protein function as a regulator of synaptic plasticity and cognition remains a puzzle. Recent work on the biophysical and structural properties of Arc, its protein-protein interactions and post-translational modifications have shed light on the issue. Here, we present Arc protein as a flexible, multifunctional and interactive hub. Arc interacts with specific effector proteins in neuronal compartments (dendritic spines, nuclear domains) to bidirectionally regulate synaptic strength by distinct molecular mechanisms. Arc stability, subcellular localization, and interactions are dictated by synaptic activity and post-translational modification of Arc. This functional versatility and context-dependent signaling supports a view of Arc as a highly specialized master organizer of long-term synaptic plasticity, critical for information storage and cognition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Plastic Surgery: Tackling Misconceptions

    African Journals Online (AJOL)

    Misconceptions. Dear Sir,. Denadai and Raposo-Amaral have presented an interesting account of undergraduate plastic surgery education and the challenges associated with it.[1] They have outlined a comprehensive program to ensure that medical students get a much deeper understanding of the activities of plastic ...

  10. Plastic soep en Stormvogels

    NARCIS (Netherlands)

    Franeker, van J.A.; Offereins, M.; Domis, M.

    2017-01-01

    Plastic soep is een van de grootste problemen in het oppervlaktewater. Dat verschijnsel is niet nieuw; in 1997 werd al melding gemaakt van grote hoeveelheden plastic afval in het zeewater. Voor een langlopend onderzoek
    naar de trends in de kwaliteit van het zeewater wordt gebruikgemaakt van de

  11. DESIGNERS’ KNOWLEDGE IN PLASTICS

    DEFF Research Database (Denmark)

    Eriksen, Kaare

    2013-01-01

    The Industrial designers’ knowledge in plastics materials and manufacturing principles of polymer products is very important for the innovative strength of the industry, according to a group of Danish plastics manufacturers, design students and practicing industrial designers. These three groups...... that the designers’ lack of knowledge concerning polymer materials and manufacturing methods can be problematic or annoying, and design students from most Danish design universities express the need for more contact with the industry and more competencies and tools to handle even simple topics when designing plastic...... answered the first Danish national survey, PD13[1], investigating the importance of industrial designers’ knowledge in plastics and the collaboration between designers and the polymer industry. The plastics industry and the industrial designers collaborate well, but both groups frequently experience...

  12. Malignant melanoma and breast carcinoma: a bidirectional correlation.

    LENUS (Irish Health Repository)

    Ho, W L

    2012-02-01

    BACKGROUND: Epidemiologic and genetic studies have suggested a bidirectional association between breast carcinoma (BC) and malignant melanoma (MM). OBSERVATION: We present a series of patients with MM and BC detected in our department within a span of 6 months, raising concerns for the high associations between the two malignancies. This led us to match the concordance of the two tumours in the National Irish Cancer Registry. CONCLUSION: The national figures provide evidence of a link between BC and MM. We recommend increased awareness among clinicians leading to more detailed surveillance of both second primary tumours. All MM patients with a family history of BC should be referred to a breast clinic. Women above the age of 40 with MM should undergo annual mammography and those less than 40 may be better evaluated with a breast MRI. All breast cancer patients should be made aware of the significance of changing moles and those with suspicious lesions referred to a dermatologist for evaluation.

  13. Malignant melanoma and breast carcinoma: a bidirectional correlation.

    LENUS (Irish Health Repository)

    Ho, W L

    2009-03-05

    BACKGROUND: Epidemiologic and genetic studies have suggested a bidirectional association between breast carcinoma (BC) and malignant melanoma (MM). OBSERVATION: We present a series of patients with MM and BC detected in our department within a span of 6 months, raising concerns for the high associations between the two malignancies. This led us to match the concordance of the two tumours in the National Irish Cancer Registry. CONCLUSION: The national figures provide evidence of a link between BC and MM. We recommend increased awareness among clinicians leading to more detailed surveillance of both second primary tumours. All MM patients with a family history of BC should be referred to a breast clinic. Women above the age of 40 with MM should undergo annual mammography and those less than 40 may be better evaluated with a breast MRI. All breast cancer patients should be made aware of the significance of changing moles and those with suspicious lesions referred to a dermatologist for evaluation.

  14. Bi-directional evolutionary optimization for photonic band gap structures

    Science.gov (United States)

    Meng, Fei; Huang, Xiaodong; Jia, Baohua

    2015-12-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

  15. Bi-directional evolutionary optimization for photonic band gap structures

    International Nuclear Information System (INIS)

    Meng, Fei; Huang, Xiaodong; Jia, Baohua

    2015-01-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gaps from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.

  16. Multibeam bidirectional raster scanning in retinal scanning displays

    Science.gov (United States)

    Powell, Karlton D.; Urey, Hakan; Bayer, Mircea M.

    2001-08-01

    A Retinal Scanning Display (RSD) utilizes scanning mirrors and optics to produce a flying spot that forms a raster image directly on the retina of the eye. A high-frequency resonant horizontal scanner and a linear ramp vertical scanner function together to produce video typically at a 60Hz frame rate. Although the raster can be formed by Unidirectional Writing (using only the forward half-period of the horizontal scan function) and one flying spot, it is desirable to achieve Bidirectional Writing (utilizing the full period of the Horizontal scan function) with multiple scanned spots for the purpose of increased efficiency of the display with a limited horizontal scanner frequency. This paper will look at the limitations and requirements for the scanning functions to make this possible.

  17. Bidirectional peritoneal transport of albumin in continuous ambulatory peritoneal dialysis

    DEFF Research Database (Denmark)

    Joffe, P; Henriksen, Jens Henrik Sahl

    1995-01-01

    The present study was undertaken in order to assess bidirectional peritoneal kinetics of albumin after simultaneous i.v. and i.p. injection of radioiodinated albumin tracers (125I-RISA and 131I-RISA) in eight clinically stable uraemic patients undergoing continuous ambulatory peritoneal dialysis...... (CAPD). The plasma volume, intravascular albumin mass (IVM), and overall extravasation rate of albumin were not significantly different from that found in healthy controls. Albumin flux from the plasma into the peritoneal cavity was 3.71 +/- 0.82 (SD) mumol/h, which was only 3% of the overall...... extravasation rate (137 +/- 52 mumol/h). Albumin flux from the peritoneal cavity into the plasma was substantially lower (0.22 +/- 0.07 mumol/h, P albumin from plasma over 4 h was 14 +/- 3.2 mumol, which was significantly lower than the intraperitoneal albumin...

  18. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    Science.gov (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  19. Convective Flow of Sisko Fluid over a Bidirectional Stretching Surface.

    Science.gov (United States)

    Munir, Asif; Shahzad, Azeem; Khan, Masood

    2015-01-01

    The present investigation focuses the flow and heat transfer characteristics of the steady three-dimensional Sisko fluid driven by a bidirectional stretching sheet. The modeled partial differential equations are reduced to coupled ordinary differential equations by a suitable transformation. The resulting equations are solved numerically by the shooting method using adaptive Runge Kutta algorithm in combination with Newton's method in the domain [0,∞). The numerical results for the velocity and temperature fields are graphically presented and effects of the relevant parameters are discussed in detail. Moreover, the skin-friction coefficient and local Nusselt number for different values of the power-law index and stretching ratio parameter are presented through tabulated data. The numerical results are also verified with the results obtained analytically by the homotopy analysis method (HAM). Additionally, the results are validated with previously published pertinent literature as a limiting case of the problem.

  20. A Current-Fed Isolated Bidirectional DC-DC Converter

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Wu, Xiaoying; Shen, Yanfeng

    2017-01-01

    This paper proposes a current-fed isolated bidirectional DC-DC converter (CF-IBDC) which has the advantages of wide input voltage range, low input current ripple, low conduction losses, and soft switching over the full operating range. Compared with conventional CF-IBDCs, the voltage spikes...... of the low-voltage (LV) side switches in the proposed converter can be eliminated without additional clamp circuits. The converter adopts the pulse width modulation (PWM) plus hybrid phase-shift control scheme such that the bus voltage can match the output voltage by means of the transformer. Thus......, the current stresses and conduction losses of the converter become lower. In addition, the practical ZVS of the secondary-side switches can be realized by adjusting the phase-shift angle within the secondary side when in light load or no load condition. The operating principles and characteristics including...

  1. Study on bi-directional pedestrian movement using ant algorithms

    International Nuclear Information System (INIS)

    Gokce, Sibel; Kayacan, Ozhan

    2016-01-01

    A cellular automata model is proposed to simulate bi-directional pedestrian flow. Pedestrian movement is investigated by using ant algorithms. Ants communicate with each other by dropping a chemical, called a pheromone, on the substrate while crawling forward. Similarly, it is considered that oppositely moving pedestrians drop ‘visual pheromones’ on their way and the visual pheromones might cause attractive or repulsive interactions. This pheromenon is introduced into modelling the pedestrians’ walking preference. In this way, the decision-making process of pedestrians will be based on ‘the instinct of following’. At some densities, the relationships of velocity–density and flux–density are analyzed for different evaporation rates of visual pheromones. Lane formation and phase transition are observed for certain evaporation rates of visual pheromones. (paper)

  2. The start of lightning: Evidence of bidirectional lightning initiation.

    Science.gov (United States)

    Montanyà, Joan; van der Velde, Oscar; Williams, Earle R

    2015-10-16

    Lightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders. We report here a serendipitous recording of bidirectional lightning initiation in virgin air under the cloud base at ~11,000 images per second, and the differences in characteristics of opposite polarity leader sections during the earliest stages of the discharge. This case reveals natural lightning initiation, propagation and a return stroke as in negative cloud-to-ground flashes, upon connection to another lightning channel - without any masking by cloud.

  3. Bidirectional relationship between diabetes and periodontal disease: Review of Evidence

    International Nuclear Information System (INIS)

    Mirza, B.A.Q.; Syed, A.; Izhar, F.; Ali Khan, A.A.

    2010-01-01

    Presently there are 170 million diabetic patients worldwide. Pakistan ranks sixth in the world with approximately 6.2 million in the 20-79 year age affected by the diabetes. 6-10% of the 35-44 year old diabetic patients have been reported to be affected by moderate form of periodontal disease in Pakistan. Periodontal disease is referred to as sixth complication of diabetes. The association between diabetes and periodontal disease has been reported for more than 40 years but reverse has not been the focus of researchers until recently. Studies have suggested a bidirectional relationship between periodontal disease and glycemic control with each disease having a potential impact on the other. (author)

  4. A Piezoelectric Inchworm Actuator with Bidirectional Thrust Force

    Directory of Open Access Journals (Sweden)

    Shunming HUA

    2014-05-01

    Full Text Available An inchworm actuator is designed as symmetrical structural layout, which can generate bidirectional thrust force. The clamped flexible mechanisms are set in stator and that of driven are in mover. Firstly, the parameters of flexible hinges are analyzed and optimized. Then, a kind of 6- division time-sequence signal applied to clamped/driven mechanism is discussed. As a result, trapezoid waveform is adopted which rise-rate is limited within 1 V/ms. Prototype actuator as well as specified three channels controller is finally manufactured and some tests are performed on them. The maximum step-length is 10.5 mm under 100 V. The displacement resolution is about 0.048 mm under 9 V. The maximum velocity and dynamic force are 412 mm/s and 2.85 Kgf separately.

  5. Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans.

    Science.gov (United States)

    Ohnishi, Noriyuki; Kuhara, Atsushi; Nakamura, Fumiya; Okochi, Yoshifumi; Mori, Ikue

    2011-04-06

    In complex neural circuits of the brain, massive information is processed with neuronal communication through synaptic transmissions. It is thus fundamental to delineate information flows encoded by various kinds of transmissions. Here, we show that glutamate signals from two distinct sensory neurons bidirectionally affect the same postsynaptic interneuron, thereby producing the opposite behaviours. EAT-4/VGLUT (vesicular glutamate transporter)-dependent glutamate signals from AFD thermosensory neurons inhibit the postsynaptic AIY interneurons through activation of GLC-3/GluCl inhibitory glutamate receptor and behaviourally drive migration towards colder temperature. By contrast, EAT-4-dependent glutamate signals from AWC thermosensory neurons stimulate the AIY neurons to induce migration towards warmer temperature. Alteration of the strength of AFD and AWC signals led to significant changes of AIY activity, resulting in drastic modulation of behaviour. We thus provide an important insight on information processing, in which two glutamate transmissions encoding opposite information flows regulate neural activities to produce a large spectrum of behavioural outputs.

  6. Bidirectional Cardio-Respiratory Interactions in Heart Failure.

    Science.gov (United States)

    Radovanović, Nikola N; Pavlović, Siniša U; Milašinović, Goran; Kirćanski, Bratislav; Platiša, Mirjana M

    2018-01-01

    We investigated cardio-respiratory coupling in patients with heart failure by quantification of bidirectional interactions between cardiac (RR intervals) and respiratory signals with complementary measures of time series analysis. Heart failure patients were divided into three groups of twenty, age and gender matched, subjects: with sinus rhythm (HF-Sin), with sinus rhythm and ventricular extrasystoles (HF-VES), and with permanent atrial fibrillation (HF-AF). We included patients with indication for implantation of implantable cardioverter defibrillator or cardiac resynchronization therapy device. ECG and respiratory signals were simultaneously acquired during 20 min in supine position at spontaneous breathing frequency in 20 healthy control subjects and in patients before device implantation. We used coherence, Granger causality and cross-sample entropy analysis as complementary measures of bidirectional interactions between RR intervals and respiratory rhythm. In heart failure patients with arrhythmias (HF-VES and HF-AF) there is no coherence between signals ( p failure groups causality between signals is diminished, but with significantly stronger causality of RR signal in respiratory signal in HF-VES. Cross-sample entropy analysis revealed the strongest synchrony between respiratory and RR signal in HF-VES group. Beside respiratory sinus arrhythmia there is another type of cardio-respiratory interaction based on the synchrony between cardiac and respiratory rhythm. Both of them are altered in heart failure patients. Respiratory sinus arrhythmia is reduced in HF-Sin patients and vanished in heart failure patients with arrhythmias. Contrary, in HF-Sin and HF-VES groups, synchrony increased, probably as consequence of some dominant neural compensatory mechanisms. The coupling of cardiac and respiratory rhythm in heart failure patients varies depending on the presence of atrial/ventricular arrhythmias and it could be revealed by complementary methods of time series

  7. Coincidence of pheromone and plant odor leads to sensory plasticity in the heliothine olfactory system.

    Directory of Open Access Journals (Sweden)

    Elena Ian

    Full Text Available Male moths possess a highly specialized olfactory system comprised of two segregated sub-arrangements dedicated to processing information about plant odors and pheromones, respectively. Communication between these two sub-systems has been described at the peripheral level, but relatively little is known about putative interactions at subsequent synaptic relays. The male moth faces the challenge of seeking out the conspecific female in a highly dynamic odor world. The female-produced pheromone blend, which is a limited resource serving as guidance for the male, will reach his antennae in intermittent pockets of odor filaments mixed with volatiles from various plants. In the present study we performed calcium imaging for measuring odor-evoked responses in the uni-glomerular antennal-lobe projection neurons (analog to mitral cells in the vertebrate olfactory bulb of Helicoverpa armigera. In order to investigate putative interactions between the two sub-systems tuned to plant volatiles and pheromones, respectively, we performed repeated stimulations with a selection of biologically relevant odors. We found that paired stimulation with a plant odor and the pheromone led to suppressed responses in both sub-systems as compared to those evoked during initial stimulation including application of each odor stimulus alone. The fact that the suppression persisted also after pairing, indicates the existence of a Hebbian-like plasticity in the primary olfactory center established by temporal pairing of the two odor stimulation categories.

  8. Informative document waste plastics

    NARCIS (Netherlands)

    Nagelhout D; Sein AA; Duvoort GL

    1989-01-01

    This "Informative document waste plastics" forms part of a series of "informative documents waste materials". These documents are conducted by RIVM on the indstruction of the Directorate General for the Environment, Waste Materials Directorate, in behalf of the program of

  9. Art and Plastic Surgery.

    Science.gov (United States)

    Fernandes, Julio Wilson; Metka, Susanne

    2016-04-01

    The roots of science and art of plastic surgery are very antique. Anatomy, drawing, painting, and sculpting have been very important to the surgery and medicine development over the centuries. Artistic skills besides shape, volume, and lines perception can be a practical aid to the plastic surgeons' daily work. An overview about the interactions between art and plastic surgery is presented, with a few applications to rhinoplasty, cleft lip, and other reconstructive plastic surgeries. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  10. Mesocycles in conserving plastics

    DEFF Research Database (Denmark)

    Shashoua, Yvonne

    2016-01-01

    driven by the need to balance the requirements for reversibility in conservation practices with the artist’s intent and significance. Developments within each of the three mesocycles from the 1990s to date are discussed in this article. Environmental science and toxicology of waste plastics offer a novel......Analysis suggests that progress in conservation of plastics objects and artworks can be described by a series of overlapping mesocycles. Focus has been placed for periods of 5-10 years each on determining the degradation pathways in the 1990s, developing strategies to inhibit those pathways from...... plastics has been the origin of the data describing lifetimes. By contrast, mesocycles in developing suitable storage and display microclimates for plastics have mirrored preventive conservation practices for natural polymeric materials. The rate of the third mesocycle, interventive conservation, has been...

  11. A Plastic Menagerie

    Science.gov (United States)

    Hadley, Mary Jane

    2010-01-01

    Bobble heads had become quite popular, depicting all sorts of sports figures, animals, and even presidents. In this article, the author describes how her fourth graders made bobble head sculptures out of empty plastic drink bottles. (Contains 1 online resource.)

  12. Plastic soep en Stormvogels

    OpenAIRE

    Franeker, van, J.A.; Offereins, M.; Domis, M.

    2017-01-01

    Plastic soep is een van de grootste problemen in het oppervlaktewater. Dat verschijnsel is niet nieuw; in 1997 werd al melding gemaakt van grote hoeveelheden plastic afval in het zeewater. Voor een langlopend onderzoeknaar de trends in de kwaliteit van het zeewater wordt gebruikgemaakt van de maaginhoud van aangespoelde Noordse Stormvogels. Doel van het onderzoek is een antwoord op de vraag: is door beleid en bewustwording een verbetering zichtbaar?

  13. DEVELOPMENT OF PLASTIC SURGERY.

    Science.gov (United States)

    Pećanac, Marija Đ

    2015-01-01

    Plastic surgery is a medical specialty dealing with corrections of defects, improvements in appearance and restoration of lost function. Ancient times. The first recorded account of reconstructive plastic surgery was found in ancient Indian Sanskrit texts, which described reconstructive surgeries of the nose and ears. In ancient Greece and Rome, many medicine men performed simple plastic cosmetic surgeries to repair damaged parts of the body caused by war mutilation, punishment or humiliation. In the Middle Ages, the development of all medical braches, including plastic surgery was hindered. New age. The interest in surgical reconstruction of mutilated body parts was renewed in the XVIII century by a great number of enthusiastic and charismatic surgeons, who mastered surgical disciplines and became true artists that created new forms. Modern era. In the XX century, plastic surgery developed as a modern branch in medicine including many types of reconstructive surgery, hand, head and neck surgery, microsurgery and replantation, treatment of burns and their sequelae, and esthetic surgery. Contemporary and future plastic surgery will continue to evolve and improve with regenerative medicine and tissue engineering resulting in a lot of benefits to be gained by patients in reconstruction after body trauma, oncology amputation, and for congenital disfigurement and dysfunction.

  14. Neural plasticity in pancreatitis and pancreatic cancer.

    Science.gov (United States)

    Demir, Ihsan Ekin; Friess, Helmut; Ceyhan, Güralp O

    2015-11-01

    Pancreatic nerves undergo prominent alterations during the evolution and progression of human chronic pancreatitis and pancreatic cancer. Intrapancreatic nerves increase in size (neural hypertrophy) and number (increased neural density). The proportion of autonomic and sensory fibres (neural remodelling) is switched, and are infiltrated by perineural inflammatory cells (pancreatic neuritis) or invaded by pancreatic cancer cells (neural invasion). These neuropathic alterations also correlate with neuropathic pain. Instead of being mere histopathological manifestations of disease progression, pancreatic neural plasticity synergizes with the enhanced excitability of sensory neurons, with Schwann cell recruitment toward cancer and with central nervous system alterations. These alterations maintain a bidirectional interaction between nerves and non-neural pancreatic cells, as demonstrated by tissue and neural damage inducing neuropathic pain, and activated neurons releasing mediators that modulate inflammation and cancer growth. Owing to the prognostic effects of pain and neural invasion in pancreatic cancer, dissecting the mechanism of pancreatic neuroplasticity holds major translational relevance. However, current in vivo models of pancreatic cancer and chronic pancreatitis contain many discrepancies from human disease that overshadow their translational value. The present Review discusses novel possibilities for mechanistically uncovering the role of the nervous system in pancreatic disease progression.

  15. Sorting Plastic Waste in Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Ernestas Šutinys

    2011-02-01

    Full Text Available The article presents material about sorting plastic waste in hydrocyclone. The tests on sorting plastic waste were carried out. Also, the findings received from the performed experiment on the technology of sorting plastic waste are interpreted applying an experimental model of the equipment used for sorting plastics of different density.Article in Lithuanian

  16. The Need for Plastics Education.

    Science.gov (United States)

    Society of Plastics Engineers, Inc., Stamford, CT.

    In view of a lack of trained personnel in the industry, the Plastics Education Foundation proposes that educators (1) add more plastics programs, (2) establish plastics engineering degrees at appropriate 4-year institutions, (3) add plastics processing technology to current engineering curricula, and (4) interest younger students in courses and/or…

  17. Prenatal Ethanol Exposure Persistently Alters Endocannabinoid Signaling and Endocannabinoid-Mediated Excitatory Synaptic Plasticity in Ventral Tegmental Area Dopamine Neurons.

    Science.gov (United States)

    Hausknecht, Kathryn; Shen, Ying-Ling; Wang, Rui-Xiang; Haj-Dahmane, Samir; Shen, Roh-Yu

    2017-06-14

    Prenatal ethanol exposure (PE) leads to increased addiction risk which could be mediated by enhanced excitatory synaptic strength in ventral tegmental area (VTA) dopamine (DA) neurons. Previous studies have shown that PE enhances excitatory synaptic strength by facilitating an anti-Hebbian form of long-term potentiation (LTP). In this study, we investigated the effect of PE on endocannabinoid-mediated long-term depression (eCB-LTD) in VTA DA neurons. Rats were exposed to moderate (3 g/kg/d) or high (6 g/kg/d) levels of ethanol during gestation. Whole-cell recordings were conducted in male offspring between 4 and 10 weeks old.We found that PE led to increased amphetamine self-administration. Both moderate and high levels of PE persistently reduced low-frequency stimulation-induced eCB-LTD. Furthermore, action potential-independent glutamate release was regulated by tonic eCB signaling in PE animals. Mechanistic studies for impaired eCB-LTD revealed that PE downregulated CB1 receptor function. Interestingly, eCB-LTD in PE animals was rescued by metabotropic glutamate receptor I activation, suggesting that PE did not impair the synthesis/release of eCBs. In contrast, eCB-LTD in PE animals was not rescued by increasing presynaptic activity, which actually led to LTP in PE animals, whereas LTD was still observed in controls. This result shows that the regulation of excitatory synaptic plasticity is fundamentally altered in PE animals. Together, PE leads to impaired eCB-LTD at the excitatory synapses of VTA DA neurons primarily due to CB1 receptor downregulation. This effect could contribute to enhanced LTP and the maintenance of augmented excitatory synaptic strength in VTA DA neurons and increased addiction risk after PE. SIGNIFICANCE STATEMENT Prenatal ethanol exposure (PE) is among many adverse developmental factors known to increase drug addiction risk. Increased excitatory synaptic strength in VTA DA neurons is a critical cellular mechanism for addiction risk. Our

  18. Cluster of CubeSats for Multi-Angle Measurements of Bidirectional Reflectance Distribution Function (BRDF)

    Data.gov (United States)

    National Aeronautics and Space Administration — Cluster of CubeSats for Multi-Angle Measurements of Bidirectional Reflectance Distribution Function (BRDF) The rapidly advancing capabilities of small satellite...

  19. Bidirectional Dual Active Bridge Power Converter for Spacecraft Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A bidirectional dual active bridge (DAB) dc-dc converter for electrical power systems (EPS) is proposed. The converter operates as a charger, upconverter, and...

  20. Bidirectional Dual Active Bridge Power Converter for Spacecraft Power Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A bidirectional dual active bridge (DAB) dc-dc converter for electrical power systems (EPS) is proposed. The converter operates as a charger, upconverter, and...

  1. Bidirectional partner violence among homeless young adults: risk factors and outcomes.

    Science.gov (United States)

    Tyler, Kimberly A; Melander, Lisa A; Noel, Harmonijoie

    2009-06-01

    One of the most prevalent forms of violence in contemporary society is the victimization of intimate partners. Although it has been established that homeless young people experience high levels of victimization on the street, little is known about partner violence (PV) experiences among this group, especially bidirectional violence. As such, the purpose of this study is to examine the prevalence of PV and bidirectional violence and to investigate risk factors and outcomes of this form of violence using a sample of homeless young adults. Overall, 59% of the sample experienced bidirectional violence. Multivariate results reveal that sexual abuse and neglect are significant correlates of PV. In addition, being either a victim or perpetrator of PV is associated with more severe substance use and higher levels of posttraumatic stress disorder (PTSD). Finally, there is support for bidirectional violence among homeless young adults even after controlling for early histories of maltreatment.

  2. Bilateral Coordination Strategy of Supply Chain with Bidirectional Option Contracts under Inflation

    Directory of Open Access Journals (Sweden)

    Nana Wan

    2015-01-01

    Full Text Available As far as the price increase and the demand contraction caused by inflation are concerned, we establish a Stackelberg game model that incorporates bidirectional option contracts and the effect of inflation and derive the optimal ordering and production policies on a one-period two-stage supply chain composed of one supplier and one retailer. Through using the model of wholesale price contracts as the benchmark, we find that the introduction of bidirectional option contracts can benefit both the supplier and the retailer under inflation scenarios. Based on the conclusions drawn above, we design the bilateral coordination mechanism from the different perspective of two members involved and discuss how bidirectional option contracts should be set to achieve channel coordination under inflation scenarios. Through the sensitivity analysis, we illustrate the effect of inflation on the optimal decision variables and the optimal expected profits of the two parties with bidirectional option contracts.

  3. 77 FR 54930 - Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics...

    Science.gov (United States)

    2012-09-06

    ... Employment and Training Administration Carlyle Plastics and Resins, Formerly Known as Fortis Plastics, A Subsidiary of Plastics Acquisitions Inc., Including On-Site Leased Workers From Kelly Services and Shelley... Adjustment Assistance on July 3, 2012, applicable to workers and former workers of workers of Fortis Plastics...

  4. A Bidirectional Generalized Synchronization Theorem-Based Chaotic Pseudo-random Number Generator

    OpenAIRE

    Han Shuangshuang; Min Lequan

    2013-01-01

    Based on a bidirectional generalized synchronization theorem for discrete chaos system, this paper introduces a new 5-dimensional bidirectional generalized chaos synchronization system (BGCSDS), whose prototype is a novel chaotic system introduced in [12]. Numerical simulation showed that two pair variables of the BGCSDS achieve generalized chaos synchronization via a transform H.A chaos-based pseudo-random number generator (CPNG) was designed by the new BGCSDS. Using the FIPS-140-2 tests iss...

  5. Bi-directional Multi Dimension CAP Transmission for Smart Grid Communication Services

    DEFF Research Database (Denmark)

    Zhang, Xu; Binti Othman, Maisara; Pang, Xiaodan

    2012-01-01

    We experimentally demonstrate bi-directional multi dimension carrierless amplitude and phase (CAP) transmission for smart grid communication services based on optical fiber networks. The proposed system is able to support multi-Gb/s transmission with high spectral efficiency.......We experimentally demonstrate bi-directional multi dimension carrierless amplitude and phase (CAP) transmission for smart grid communication services based on optical fiber networks. The proposed system is able to support multi-Gb/s transmission with high spectral efficiency....

  6. Bidirectional DC-DC conversion device use at system of urban electric transport

    Science.gov (United States)

    Vilberger, M. E.; Vislogusov, D. P.; Kotin, D. A.; Kulekina, A. V.

    2017-10-01

    The paper considers questions of energy storage devices used in electric transport, especially in the electric traction drive of a trolley bus, in order to provide an autonomous motion, overhead system’s load leveling and energy recovering. For efficiency of the proposed system, a bidirectional DC-DC converter is used. During the simulation, regulation characteristics of the bidirectional DC-DC converters were obtained.

  7. Günther Tulip inferior vena cava filter retrieval using a bidirectional loop-snare technique.

    Science.gov (United States)

    Ross, Jordan; Allison, Stephen; Vaidya, Sandeep; Monroe, Eric

    2016-01-01

    Many advanced techniques have been reported in the literature for difficult Günther Tulip filter removal. This report describes a bidirectional loop-snare technique in the setting of a fibrin scar formation around the filter leg anchors. The bidirectional loop-snare technique allows for maximal axial tension and alignment for stripping fibrin scar from the filter legs, a commonly encountered complication of prolonged dwell times.

  8. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface

    Science.gov (United States)

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S.; Lee, Sung Q.; Youm, WooSub; Ozturk, Yusuf

    2016-01-01

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time. PMID:27669264

  9. A Wireless 32-Channel Implantable Bidirectional Brain Machine Interface.

    Science.gov (United States)

    Su, Yi; Routhu, Sudhamayee; Moon, Kee S; Lee, Sung Q; Youm, WooSub; Ozturk, Yusuf

    2016-09-24

    All neural information systems (NIS) rely on sensing neural activity to supply commands and control signals for computers, machines and a variety of prosthetic devices. Invasive systems achieve a high signal-to-noise ratio (SNR) by eliminating the volume conduction problems caused by tissue and bone. An implantable brain machine interface (BMI) using intracortical electrodes provides excellent detection of a broad range of frequency oscillatory activities through the placement of a sensor in direct contact with cortex. This paper introduces a compact-sized implantable wireless 32-channel bidirectional brain machine interface (BBMI) to be used with freely-moving primates. The system is designed to monitor brain sensorimotor rhythms and present current stimuli with a configurable duration, frequency and amplitude in real time to the brain based on the brain activity report. The battery is charged via a novel ultrasonic wireless power delivery module developed for efficient delivery of power into a deeply-implanted system. The system was successfully tested through bench tests and in vivo tests on a behaving primate to record the local field potential (LFP) oscillation and stimulate the target area at the same time.

  10. Micropower circuits for bidirectional wireless telemetry in neural recording applications.

    Science.gov (United States)

    Neihart, Nathan M; Harrison, Reid R

    2005-11-01

    State-of-the art neural recording systems require electronics allowing for transcutaneous, bidirectional data transfer. As these circuits will be implanted near the brain, they must be small and low power. We have developed micropower integrated circuits for recovering clock and data signals over a transcutaneous power link. The data recovery circuit produces a digital data signal from an ac power waveform that has been amplitude modulated. We have also developed an FM transmitter with the lowest power dissipation reported for biosignal telemetry. The FM transmitter consists of a low-noise biopotential amplifier and a voltage controlled oscillator used to transmit amplified neural signals at a frequency near 433 MHz. All circuits were fabricated in a standard 0.5-microm CMOS VLSI process. The resulting chip is powered through a wireless inductive link. The power consumption of the clock and data recovery circuits is measured to be 129 microW; the power consumption of the transmitter is measured to be 465 microW when using an external surface mount inductor. Using a parasitic antenna less than 2 mm long, a received power level was measured to be -59.73 dBm at a distance of one meter.

  11. Extreme compression and modeling of bidirectional texture function.

    Science.gov (United States)

    Haindl, Michal; Filip, Jirí

    2007-10-01

    The recent advanced representation for realistic real-world materials in virtual reality applications is the Bidirectional Texture Function (BTF) which describes rough texture appearance for varying illumination and viewing conditions. Such a function can be represented by thousands of measurements (images) per material sample. The resulting BTF size excludes its direct rendering in graphical applications and some compression of these huge BTF data spaces is obviously inevitable. In this paper we present a novel, fast probabilistic model-based algorithm for realistic BTF modeling allowing an extreme compression with the possibility of a fast hardware implementation. Its ultimate aim is to create a visual impression of the same material without a pixel-wise correspondence to the original measurements. The analytical step of the algorithm starts with a BTF space segmentation and a range map estimation by photometric stereo of the BTF surface, followed by the spectral and spatial factorization of selected sub-space color texture images. Single mono-spectral band-limited factors are independently modeled by their dedicated spatial probabilistic model. During rendering, the sub-space images of arbitrary size are synthesized and both color (possibly multi-spectral) and range information is combined in a bump-mapping filter according to the view and illumination directions. The presented model offers a huge BTF compression ratio unattainable by any alternative sampling-based BTF synthesis method. Simultaneously this model can be used to reconstruct missing parts of the BTF measurement space.

  12. Design of Bi-Directional Hydrofoils for Tidal Current Turbines

    Science.gov (United States)

    Nedyalkov, Ivaylo; Wosnik, Martin

    2015-11-01

    Tidal Current Turbines operate in flows which reverse direction. Bi-directional hydrofoils have rotational symmetry and allow such turbines to operate without the need for pitch or yaw control, decreasing the initial and maintenance costs. A numerical test-bed was developed to automate the simulations of hydrofoils in OpenFOAM and was utilized to simulate the flow over eleven classes of hydrofoils comprising a total of 700 foil shapes at different angles of attack. For promising candidate foil shapes physical models of 75 mm chord and 150 mm span were fabricated and tested in the University of New Hampshire High-Speed Cavitation Tunnel (HiCaT). The experimental results were compared to the simulations for model validation. The numerical test-bed successfully generated simulations for a wide range of foil shapes, although, as expected, the k - ω - SST turbulence model employed here was not adequate for some of the foils and for large angles of attack at which separation occurred. An optimization algorithm is currently being coupled with the numerical test-bed and additional turbulence models will be implemented in the future.

  13. Biwavelength transceiver module for parallel simultaneous bidirectional optical interconnections

    Science.gov (United States)

    Nguyen, Nga T. H.; Ukaegbu, Ikechi A.; Sangirov, Jamshid; Cho, Mu-Hee; Lee, Tae-Woo; Park, Hyo-Hoon

    2013-12-01

    The design of a biwavelength transceiver (TRx) module for parallel simultaneous bidirectional optical interconnects is described. The TRx module has been implemented using two different wavelengths, 850 and 1060 nm, to send and receive signals simultaneously through a common optical interface while optimizing cost and performance. Filtering mirrors are formed in the optical fibers which are embedded on a V-grooved silicon substrate for reflecting and filtering optical signals from/to vertical-cavity surface-emitting laser (VCSEL)/photodiode (PD). The VCSEL and PD are flip-chip bonded on individual silicon optical benches, which are attached on the silicon substrate for optical signal coupling from the VCSEL to fiber and from fiber to the PD. A high-speed and low-loss ceramic printed circuit board, which has a compact size of 0.033 cc, has been designed to carry transmitter and receiver chips for easy packaging of the TRx module. Applied for quad small form-factor pluggable applications at 40-Gbps operation, the four-channel biwavelength TRx module showed clear eye diagrams with a bit error rate (BER) of 10-12 at input powers of -5 and -5.8 dBm for 1060 and 850 nm operation modes, respectively.

  14. Corporate Governance and Financial Performance Nexus: Any Bidirectional Causality?

    Directory of Open Access Journals (Sweden)

    Alley Ibrahim S.

    2016-06-01

    Full Text Available Most studies on corporate governance recognize endogeneity in the nexus between corporate governance and financial performance. Little attention has, however, been paid to the direction of causality between the two phenomena, and hence the Vector Error Correction (VEC model, which allows for endogenous determination of the direction of causality, has not been widely employed. This study fills that gap by estimating the nexus and the direction of causality using the VEC model to analyze panel data on selected listed firms in Nigeria. The results agree with the findings of most previous studies that corporate governance significantly affects financial performance. Board skills, board composition and management skills enhanced financial performance indicators – return on equity (ROE, return on asset (ROA and net profit margin (NPM; in many occasions, significantly. Board size and audit committee size did not, and can actually undermine financial performance. More importantly, financial performance did not significantly affect corporate governance. On the basis of the lag structure of the VEC model, this study affirms unidirectional causality in the nexus, running from corporate governance to financial performance, nullifying the hypothesis of bidirectional causality in the nexus.

  15. Aplikasi Migrasi Database dan Replikasi Bi-Directional

    Directory of Open Access Journals (Sweden)

    Michael Yoseph Ricky

    2011-12-01

    Full Text Available This study aims to analyze and design a migration and replication configurations in an enterprise using several methods such as literary study and direc survey to the company; analysis on hangar systems, process migration and replication as well as existing problems; and a prototype design for migration process implementated with Oracle SQL Developer and replication process implementated with Oracle GoldenGate. The study resluts ini a prototype for migration and replication configuration processes using Oracle's Golden Gate which can produce two sets of identical data for backup and recovery. Also a simple tool is designed to assist active-active replication process as well as active-passive one. The migration process from MySQL database to Oracle database using Oracle GoldenGate can not be done because GoldenGate Oracle has bugs related to the binary log, so database migration is done using Oracle SQL Developer. However, bi-directional replication between Oracle database using Oracle GoldenGate can ensure data availability and reduce the workload of primary database. 

  16. Bidirectional effects of cannabidiol on contextual fear memory extinction

    Directory of Open Access Journals (Sweden)

    Chenchen Song

    2016-12-01

    Full Text Available Cannabidiol (CBD has been established to have both acute and long-lasting effects to reduce fear memory expression. The long-lasting impact might be mediated by an enhancement of memory extinction or an impairment of memory reconsolidation. Here, we directly compared the effects of i.p. injections of cannabidiol (10 mg/kg with those of the NMDA receptor antagonist MK-801 (0.1 mg/kg and partial agonist D-cycloserine (DCS; 15 mg/kg in order to determine the mnemonic basis of long-term fear reduction. We showed that under conditions of strong fear conditioning, CBD reduced contextual fear memory expression both acutely during the extinction session as well as later at a fear retention test. The latter test reduction was replicated by DCS, but MK-801 instead elevated test freezing. In contrast, when initial conditioning was weaker, CBD and MK-801 had similar effects to increase freezing at the fear retention test relative to vehicle controls, whereas DCS had no observable impact. This pattern of results is consistent with CBD enhancing contextual fear memory extinction when the initial conditioning is strong, but impairing extinction when conditioning is weak. This bidirectional effect of CBD may be related to stress levels induced by conditioning and evoked at retrieval during extinction, rather than the strength of the memory per se.

  17. Bidirectional motility of the fission yeast kinesin-5, Cut7

    Energy Technology Data Exchange (ETDEWEB)

    Edamatsu, Masaki, E-mail: cedam@mail.ecc.u-tokyo.ac.jp

    2014-03-28

    Highlights: • Motile properties of Cut7 (fission yeast kinesin-5) were studied for the first time. • Half-length Cut7 moved toward plus-end direction of microtubule. • Full-length Cut7 moved toward minus-end direction of microtubule. • N- and C-terminal microtubule binding sites did not switch the motile direction. - Abstract: Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.

  18. Bidirectional transport model of morphogen gradient formation via cytonemes

    Science.gov (United States)

    Bressloff, Paul C.; Kim, Hyunjoong

    2018-03-01

    Morphogen protein gradients play an important role in the spatial regulation of patterning during embryonic development. The most commonly accepted mechanism for gradient formation is diffusion from a source combined with degradation. Recently, there has been growing interest in an alternative mechanism, which is based on the direct delivery of morphogens along thin, actin-rich cellular extensions known as cytonemes. In this paper, we develop a bidirectional motor transport model for the flux of morphogens along cytonemes, linking a source cell to a one-dimensional array of target cells. By solving the steady-state transport equations, we show how a morphogen gradient can be established, and explore how the mean velocity of the motors affects properties of the morphogen gradient such as accumulation time and robustness. In particular, our analysis suggests that in order to achieve robustness with respect to changes in the rate of synthesis of morphogen, the mean velocity has to be negative, that is, retrograde flow or treadmilling dominates. Thus the potential targeting precision of cytonemes comes at an energy cost. We then study the effects of non-uniformly allocating morphogens to the various cytonemes projecting from a source cell. This competition for resources provides a potential regulatory control mechanism not available in diffusion-based models.

  19. Bidirectional interactions between the baroreceptor reflex and arousal: an update.

    Science.gov (United States)

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Benarroch, Eduardo E; Dampney, Roger A L; Cortelli, Pietro

    2015-02-01

    Studies involving genetic engineering on animal models and mathematical analysis of cardiovascular signals on humans are shedding new light on the interactions between the arterial baroreceptor reflex (baroreflex) and arousal. Baroreceptor stimulation, if very mild or performed under anaesthesia, may inhibit cortical arousal. However, substantial increases or decreases in baroreflex activation cause arousal in animal models and human subjects in physiological conditions. On the other hand, cardiovascular changes during autonomic arousals and between the states of wakefulness and sleep involve changes in the baroreflex set point and balance with central autonomic commands. Neural connectivity and functional data suggest that the nucleus of the solitary tract, adrenergic C1 neurons of the medulla, and the parabrachial nucleus of the pons mediate the bidirectional interactions between the baroreflex and arousal. These interactions may constitute a positive feedback loop that facilitates sharp and coordinated brain state and autonomic transitions upon arousal: upon arousal, central autonomic commands may increase blood pressure, thereby loading baroreceptors and further increasing arousal. Anomalies of this feedback loop may play a role in the pathophysiology of disease conditions associated with cardiovascular and sleep-wake cycle alterations. These conditions include: obstructive sleep apnoea syndrome, with its association with excessive daytime sleepiness and baroreflex impairment; and insomnia, with its association with autonomic hyperarousal and hypertension. When faced with disorders associated with cardiovascular and sleep-wake cycle alterations, clinical reasoning should entertain the possibility that both conditions are strongly influenced by anomalies of baroreflex function. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Robust Visual Tracking Using the Bidirectional Scale Estimation

    Directory of Open Access Journals (Sweden)

    An Zhiyong

    2017-01-01

    Full Text Available Object tracking with robust scale estimation is a challenging task in computer vision. This paper presents a novel tracking algorithm that learns the translation and scale filters with a complementary scheme. The translation filter is constructed using the ridge regression and multidimensional features. A robust scale filter is constructed by the bidirectional scale estimation, including the forward scale and backward scale. Firstly, we learn the scale filter using the forward tracking information. Then the forward scale and backward scale can be estimated using the respective scale filter. Secondly, a conservative strategy is adopted to compromise the forward and backward scales. Finally, the scale filter is updated based on the final scale estimation. It is effective to update scale filter since the stable scale estimation can improve the performance of scale filter. To reveal the effectiveness of our tracker, experiments are performed on 32 sequences with significant scale variation and on the benchmark dataset with 50 challenging videos. Our results show that the proposed tracker outperforms several state-of-the-art trackers in terms of robustness and accuracy.

  1. Imitation and emulation by dogs using a bidirectional control procedure.

    Science.gov (United States)

    Miller, Holly C; Rayburn-Reeves, Rebecca; Zentall, Thomas R

    2009-02-01

    A successful procedure for studying imitative behavior in non-humans is the bidirectional control procedure in which observers are exposed to a demonstrator that responds by moving a manipulandum in one of two different directions (e.g., left vs. right). Imitative learning is demonstrated when observers make the response in the direction that they observed it being made. This procedure controls for socially mediated effects (the mere presence of a demonstrator), stimulus enhancement (attention drawn to a manipulandum by its movement), and if an appropriate control is included, emulation (learning how the environment works). Recent research with dogs has found that dogs may not demonstrate imitative learning when the demonstrator is human. In the present research, we found that when odors were controlled for, dogs imitated the direction of a screen-push demonstrated by another dog more than in a control condition in which they observed the screen move independently while another dog was present. Furthermore, we found that dogs would match the direction of screen-push demonstrated by a human and they were equally likely to match the direction in which the screen moved independently while a human was present.

  2. Plastic Organic Scintillator Chemistry

    Science.gov (United States)

    Brightwell, C. R.; Temanson, E. S.; Febbraro, M. T.

    2017-09-01

    Due to their high light output, quick decay time, affordability, durability and ability to be molded, plastic organic scintillators are increasingly becoming a more viable method of particle detection. Since the plastic is composed entirely of single molecular chains with repeating units, scintillating properties remain stable despite changes in experimental conditions. Different scintillating plastics can be modified and tailored to suit specific experiments depending on a variety of requirements such as light output, scintillating wavelength, and PMT compatibility. The synthesis chemistry of a recent but well-known scintillating polyester, polyethylene naphthalate (PEN) will be presented to demonstrate how plastic organic scintillators can be modified for different particle detection experiments. PEN has been successfully synthesized at ORNL, and procedures are currently being investigated to modify PEN using different reactants and catalysts. The goal is to achieve a transparent scintillating plastic with an incorporated wavelength shifter in the chain that scintillates with a wavelength around 440 nm. The status of this project will be presented. This research is supported by the U. S. Department of Energy Office of Science.

  3. Elastic plastic fracture mechanics

    International Nuclear Information System (INIS)

    Simpson, L.A.

    1978-07-01

    The application of linear elastic fracture mechanics (LEFM) to crack stability in brittle structures is now well understood and widely applied. However, in many structural materials, crack propagation is accompanied by considerable crack-tip plasticity which invalidates the use of LEFM. Thus, present day research in fracture mechanics is aimed at developing parameters for predicting crack propagation under elastic-plastic conditions. These include critical crack-opening-displacement methods, the J integral and R-curve techniques. This report provides an introduction to these concepts and gives some examples of their applications. (author)

  4. Investigation into Plastic Cards

    Directory of Open Access Journals (Sweden)

    Neringa Stašelytė

    2015-03-01

    Full Text Available The article examines the strength of laminating plastic cards at different lamination temperatures. For investigation purposes, two types of plastic substrate and films have been used. Laminate strength has been tested (CMYK to establish the impact of colours on the strength of laminate. The paper compares inks supplied by two different producers. The colour characteristics of CIE L*a*b* space before and after the lamination process have been found. According to lamination strength and characteristics of the colours, the most suitable inks, temperature and films have been chosen.

  5. Recycling of plastics in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, K. [Clean Japan Center, Tokyo (Japan). PET Bottle Recycling Project Dept.

    1998-10-01

    The Clean Japan Center is an NGO concerned with recycling. This article presents an overview of methods for recyling products made of various types of plastic. A number of such methods are in use or being studied. Emphasis is given to the state of plastics recycling in Japan. The uses of waste plastics as materials in other industrials is outlined - these include waste plastics as a reducer in blast furnaces, replacing coke and pulverized coal; waste plastics as a source of heat in cement kilns as an alternative to pulverized coal; and waste plastics being incinerated to generate power. 3 figs.

  6. Individual differences in behavioural plasticities.

    Science.gov (United States)

    Stamps, Judy A

    2016-05-01

    Interest in individual differences in animal behavioural plasticities has surged in recent years, but research in this area has been hampered by semantic confusion as different investigators use the same terms (e.g. plasticity, flexibility, responsiveness) to refer to different phenomena. The first goal of this review is to suggest a framework for categorizing the many different types of behavioural plasticities, describe examples of each, and indicate why using reversibility as a criterion for categorizing behavioural plasticities is problematic. This framework is then used to address a number of timely questions about individual differences in behavioural plasticities. One set of questions concerns the experimental designs that can be used to study individual differences in various types of behavioural plasticities. Although within-individual designs are the default option for empirical studies of many types of behavioural plasticities, in some situations (e.g. when experience at an early age affects the behaviour expressed at subsequent ages), 'replicate individual' designs can provide useful insights into individual differences in behavioural plasticities. To date, researchers using within-individual and replicate individual designs have documented individual differences in all of the major categories of behavioural plasticities described herein. Another important question is whether and how different types of behavioural plasticities are related to one another. Currently there is empirical evidence that many behavioural plasticities [e.g. contextual plasticity, learning rates, IIV (intra-individual variability), endogenous plasticities, ontogenetic plasticities) can themselves vary as a function of experiences earlier in life, that is, many types of behavioural plasticity are themselves developmentally plastic. These findings support the assumption that differences among individuals in prior experiences may contribute to individual differences in behavioural

  7. A chronic generalized bi-directional brain-machine interface.

    Science.gov (United States)

    Rouse, A G; Stanslaski, S R; Cong, P; Jensen, R M; Afshar, P; Ullestad, D; Gupta, R; Molnar, G F; Moran, D W; Denison, T J

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  8. Bidirectional associations between insomnia symptoms and unhealthy behaviours.

    Science.gov (United States)

    Haario, Peppi; Rahkonen, Ossi; Laaksonen, Mikko; Lahelma, Eero; Lallukka, Tea

    2013-02-01

    It has been suggested that there are associations among insomnia symptoms and unhealthy behaviours. However, previous studies are sparse and mainly cross-sectional, and have not been focused on several key unhealthy behaviours. The aim of this study was to examine whether the associations are bidirectional, i.e. whether insomnia symptoms are associated with subsequent unhealthy behaviours, and whether unhealthy behaviours are associated with subsequent insomnia symptoms. The data were derived from the Helsinki Health Study prospective cohort study. The baseline data were collected in 2000-02 (n = 8960, response rate 67%) among 40-60-year-old employees of the City Helsinki, Finland. The follow-up data were collected in 2007 (n = 7332, response rate 83%). Logistic regression analysis was used to examine the associations among insomnia symptoms and unhealthy behaviours, including smoking, heavy and binge drinking, physical inactivity and unhealthy food habits. Frequent insomnia symptoms at baseline were associated with subsequent heavy drinking [odds ratio (OR): 1.34; 95% confidence interval (CI): 1.07-1.68] and physical inactivity (OR: 1.27; 95% CI: 1.08-1.48) after full adjustment for gender, age, corresponding unhealthy behaviour at baseline, marital status, occupational class, sleep duration and common mental disorders. Additionally, heavy drinking (OR: 1.48; 95% CI: 1.22-1.80) and binge drinking (OR: 1.26; 95% CI: 1.08-1.46) at baseline were associated with subsequent insomnia symptoms at follow-up after full adjustment. In conclusion, insomnia symptoms were associated with subsequent heavy drinking and physical inactivity, and heavy and binge drinking were also associated with subsequent insomnia symptoms. © 2012 European Sleep Research Society.

  9. Parenting and Anxiety: Bi-directional Relations in Young Children.

    Science.gov (United States)

    Gouze, Karen R; Hopkins, Joyce; Bryant, Fred B; Lavigne, John V

    2017-08-01

    Developmental psychopathologists have long posited a reciprocal relation between parenting behaviors and the development of child anxiety symptoms. Yet, little empirical research has utilized a longitudinal design that would allow exploration of this bi-directional influence. The present study examined the reciprocal relations between parental respect for autonomy, parental hostility, and parental support, and the development of childhood anxiety during a critical developmental period-the transition from preschool to kindergarten and then first grade. Study participants included a community sample of 391 male and 405 female socioeconomically, racially and ethnically diverse 4 to 6-7 year olds. 54 % of the sample was White, non-Hispanic, 16.8 % was African American, 20.4 % was Hispanic, 2.4 % were Asian and 4.4 % self-identified as Other or mixed race. Parent report and observational methodology were used. Parenting and anxiety were found to interact reciprocally over time. Higher levels of age 4 anxiety led to reduced respect for child autonomy at age 5. At age 4 higher levels of parental hostility led to small increases in age 5 anxiety, and increased age 5 anxiety led to increased levels of age 6 parent hostility. Parental support at age 5 resulted in decreased anxiety symptoms at age 6-7 while higher age 5 anxiety levels were associated with reductions in age 6-7 parental support. No relations were found between these variables at the younger ages. Although the magnitude of these findings was small, they suggest that early treatment for childhood anxiety should include both parent intervention and direct treatment of the child's anxiety symptoms.

  10. A chronic generalized bi-directional brain-machine interface

    Science.gov (United States)

    Rouse, A. G.; Stanslaski, S. R.; Cong, P.; Jensen, R. M.; Afshar, P.; Ullestad, D.; Gupta, R.; Molnar, G. F.; Moran, D. W.; Denison, T. J.

    2011-06-01

    A bi-directional neural interface (NI) system was designed and prototyped by incorporating a novel neural recording and processing subsystem into a commercial neural stimulator architecture. The NI system prototype leverages the system infrastructure from an existing neurostimulator to ensure reliable operation in a chronic implantation environment. In addition to providing predicate therapy capabilities, the device adds key elements to facilitate chronic research, such as four channels of electrocortigram/local field potential amplification and spectral analysis, a three-axis accelerometer, algorithm processing, event-based data logging, and wireless telemetry for data uploads and algorithm/configuration updates. The custom-integrated micropower sensor and interface circuits facilitate extended operation in a power-limited device. The prototype underwent significant verification testing to ensure reliability, and meets the requirements for a class CF instrument per IEC-60601 protocols. The ability of the device system to process and aid in classifying brain states was preclinically validated using an in vivo non-human primate model for brain control of a computer cursor (i.e. brain-machine interface or BMI). The primate BMI model was chosen for its ability to quantitatively measure signal decoding performance from brain activity that is similar in both amplitude and spectral content to other biomarkers used to detect disease states (e.g. Parkinson's disease). A key goal of this research prototype is to help broaden the clinical scope and acceptance of NI techniques, particularly real-time brain state detection. These techniques have the potential to be generalized beyond motor prosthesis, and are being explored for unmet needs in other neurological conditions such as movement disorders, stroke and epilepsy.

  11. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  12. Bidirectional introgressive hybridization between a cattle and human schistosome species.

    Science.gov (United States)

    Huyse, Tine; Webster, Bonnie L; Geldof, Sarah; Stothard, J Russell; Diaw, Oumar T; Polman, Katja; Rollinson, David

    2009-09-01

    Schistosomiasis is a disease of great medical and veterinary importance in tropical and subtropical regions, caused by parasitic flatworms of the genus Schistosoma (subclass Digenea). Following major water development schemes in the 1980s, schistosomiasis has become an important parasitic disease of children living in the Senegal River Basin (SRB). During molecular parasitological surveys, nuclear and mitochondrial markers revealed unexpected natural interactions between a bovine and human Schistosoma species: S. bovis and S. haematobium, respectively. Hybrid schistosomes recovered from the urine and faeces of children and the intermediate snail hosts of both parental species, Bulinus truncatus and B. globosus, presented a nuclear ITS rRNA sequence identical to S. haematobium, while the partial mitochondrial cox1 sequence was identified as S. bovis. Molecular data suggest that the hybrids are not 1st generation and are a result of parental and/or hybrid backcrosses, indicating a stable hybrid zone. Larval stages with the reverse genetic profile were also found and are suggested to be F1 progeny. The data provide indisputable evidence for the occurrence of bidirectional introgressive hybridization between a bovine and a human Schistosoma species. Hybrid species have been found infecting B. truncatus, a snail species that is now very abundant throughout the SRB. The recent increase in urinary schistosomiasis in the villages along the SRB could therefore be a direct effect of the increased transmission through B. truncatus. Hybridization between schistosomes under laboratory conditions has been shown to result in heterosis (higher fecundity, faster maturation time, wider intermediate host spectrum), having important implications on disease prevalence, pathology and treatment. If this new hybrid exhibits the same hybrid vigour, it could develop into an emerging pathogen, necessitating further control strategies in zones where both parental species overlap.

  13. Thermodynamics of perfect plasticity

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš

    2013-01-01

    Roč. 6, č. 1 (2013), s. 193-214 ISSN 1937-1632 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : Prandtl-Reuss plasticity * small strains * Kelvin-Voigt rheology Subject RIV: BA - General Mathematics http://aimsciences.org/journals/home.jsp?journalID=15

  14. Plastic Surgery: Tackling Misconceptions

    African Journals Online (AJOL)

    will succeed. First impressions tend to last, and if young people's first impression of plastic surgeons is that they spend much of their time doing cosmetic surgery then this is a first impression that might be long ... Res 2014;4 Suppl S3:169‑70. Access this article online. Quick Response Code: Website: www.amhsr.org. DOI:.

  15. New plastic recycling technology

    Science.gov (United States)

    Greater than 60% of the total plastic content of municipal solid waste is comprised of polyolefins (high-density, low-density, and linear polyethylene and polypropylene. Polyethylene (PE) is the largest-volume component but presents a challenge due to the absence of low-energy de...

  16. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study wa...

  17. Reliability of Plastic Slabs

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    1989-01-01

    In the paper it is shown how upper and lower bounds for the reliability of plastic slabs can be determined. For the fundamental case it is shown that optimal bounds of a deterministic and a stochastic analysis are obtained on the basis of the same failure mechanisms and the same stress fields....

  18. Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System

    Directory of Open Access Journals (Sweden)

    Mantas Mikaitis

    2018-02-01

    Full Text Available SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power simulation of large-scale spiking neural networks at speeds close to biological real-time. Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has proved to be a powerful tool for studying different neuron models as well as synaptic plasticity—believed to be one of the main mechanisms behind learning and memory in the brain. A number of Spike-Timing-Dependent-Plasticity(STDP rules have already been implemented on SpiNNaker and have been shown to be capable of solving various learning tasks in real-time. However, while STDP is an important biological theory of learning, it is a form of Hebbian or unsupervised learning and therefore does not explain behaviors that depend on feedback from the environment. Instead, learning rules based on neuromodulated STDP (three-factor learning rules have been shown to be capable of solving reinforcement learning tasks in a biologically plausible manner. In this paper we demonstrate for the first time how a model of three-factor STDP, with the third-factor representing spikes from dopaminergic neurons, can be implemented on the SpiNNaker neuromorphic system. Using this learning rule we first show how reward and punishment signals can be delivered to a single synapse before going on to demonstrate it in a larger network which solves the credit assignment problem in a Pavlovian conditioning experiment. Because of its extra complexity, we find that our three-factor learning rule requires approximately 2× as much processing time as the existing SpiNNaker STDP learning rules. However, we show that it is still possible to run our Pavlovian conditioning model with up to 1 × 104 neurons in real-time, opening up new research opportunities for modeling behavioral learning on SpiNNaker.

  19. The Bloomsburg University Goniometer (B.U.G.) Laboratory: An Integrated Laboratory for Measuring Bidirectional Reflectance Functions

    Science.gov (United States)

    Shepard, M. K.

    2001-01-01

    We have constructed a photometric goniometer for measuring the full bidirectional reflectance function of planetary analog materials. Additional information is contained in the original extended abstract.

  20. Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon

    Directory of Open Access Journals (Sweden)

    Michal Segal

    2012-01-01

    Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate non-vesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.

  1. Analytical investigation of bidirectional ductile diaphragms in multi-span bridges

    Science.gov (United States)

    Wei, Xiaone; Bruneau, Michel

    2018-04-01

    In the AASHTO Guide Specifications for Seismic Bridge Design Provisions, ductile diaphragms are identified as Permissible Earthquake-Resisting Elements (EREs), designed to help resist seismic loads applied in the transverse direction of bridges. When adding longitudinal ductile diaphragms, a bidirectional ductile diaphragm system is created that can address seismic excitations acting along both the bridge's longitudinal and transverse axes. This paper investigates bidirectional ductile diaphragms with Buckling Restrained Braces (BRBs) in straight multi-span bridge with simply supported floating spans. The flexibility of the substructures in the transverse and longitudinal direction of the bridge is considered. Design procedures for the bidirectional ductile diaphragms are first proposed. An analytical model of the example bridge with bidirectional ductile diaphragms, designed based on the proposed methodology, is then built in SAP2000. Pushover and nonlinear time history analyses are performed on the bridge model, and corresponding results are presented. The effect of changing the longitudinal stiffness of the bidirectional ductile diaphragms in the end spans connecting to the abutment is also investigated, in order to better understand the impact on the bridge's dynamic performance.

  2. Energy-efficient three-phase bidirectional converter for grid-connected storage applications

    International Nuclear Information System (INIS)

    Colmenar-Santos, Antonio; Linares-Mena, Ana-Rosa; Velázquez, Jesús Fernández; Borge-Diez, David

    2016-01-01

    Highlights: • Storage control system developed based on AC DC three phase bidirectional converter. • Bidirectional AC DC converter for storage integration into distribution grids. • Efficiencies over 98% for values over 30% of the bidirectional converter rated power. • Sensitivity analysis of the parameters set by the transmission system operator. • Low-cost option for control and integration of new grid-connected storage systems. - Abstract: Grid connected energy storage systems are expected to play an essential role in the development of Smart Grids, providing, among other benefits, ancillary services to power grids. It is therefore crucial to design and develop control and conversion systems that represent the key instrument where intelligence for decision-making is applied, in order to validate and ensure its optimal operation as part and parcel of the electrical system. The present research describes the design and development of a battery energy storage system based on an AC-DC three-phase bidirectional converter capable of operating either in charge mode to store electrical energy, or in discharge mode to supply load demands. The design is modelled with MATLAB® Simulink® environment in order to evaluate the performance during load variations. Moreover, the assessment is complemented by a global sensitivity analysis for variations in the operating parameters set by the transmission system operator. The effectiveness of the simulation is confirmed by implementing the system and carrying out grid connection tests, obtaining efficiencies over 98% for values over the 30% of the bidirectional converter rated power.

  3. Introduction to Computational Plasticity

    International Nuclear Information System (INIS)

    Hartley, P

    2006-01-01

    The focus of the book on computational plasticity embodies techniques of relevance not only to academic researchers, but also of interest to industrialists engaged in the production of components using bulk or sheet forming processes. Of particular interest is the guidance on how to create modules for use with the commercial system Abaqus for specific types of material behaviour. The book is in two parts, the first of which contains six chapters, starting with microplasticity, but predominantly on continuum plasticity. The first chapter on microplasticty gives a brief description of the grain structure of metals and the existence of slip systems within the grains. This provides an introduction to the concept of incompressibility during plastic deformation, the nature of plastic yield and the importance of the critically resolved shear stress on the slip planes (Schmid's law). Some knowledge of the notation commonly used to describe slip systems is assumed, which will be familiar to students of metallurgy, but anyone with a more general engineering background may need to undertake additional reading to understand the various descriptions. Chapter two introduces one of several yield criteria, that normally attributed to von Mises (though historians of mechanics might argue over who was first to develop the theory of yielding associated with strain energy density), and its two or three-dimensional representation as a yield surface. The expansion of the yield surface during plastic deformation, its translation due to kinematic hardening and the Bauschinger effect in reversed loading are described with a direct link to the material stress-strain curve. The assumption, that the increment of strain is normal to the yield surface, the normality principle, is introduced. Uniaxial loading of an elastic-plastic material is used as an example in which to develop expressions to describe increments in stress and strain. The full presentation of numerous expressions, tensors and

  4. Bidirectional Glenn on cardiopulmonary bypass: A comparison of three techniques.

    Science.gov (United States)

    Talwar, Sachin; Kumar, Manikala Vinod; Nehra, Ashima; Malhotra Kapoor, Poonam; Makhija, Neeti; Sreenivas, Vishnubhatla; Choudhary, Shiv Kumar; Airan, Balram

    2017-05-01

    To analyze the intraoperative and early results of the bidirectional Glenn (BDG) procedure performed on cardiopulmonary bypass (CPB) using three different techniques. Between September 2013 and June 2015, 75 consecutive patients (mean age 42 ± 34.4 months) undergoing BDG were randomly assigned to either technique I: open anastomosis or technique II: superior vena cava (SVC) cannulation or technique III: intermittent SVC clamping. We monitored the cerebral near infrared spectrophotometry (NIRS), SVC pressure, CPB time, intensive care unit (ICU) stay, and neurocognitive function. Patients in technique III had abnormal lower NIRS values during the procedure (57 ± 7.4) compared to techniques I and II (64 ± 7.5 and 61 ± 8.0, P = 0.01). Postoperative SVC pressure in technique III was higher than other two groups (17.6 ± 3.7 mmHg vs. 14.2 ± 3.5 mmHg and 15.3 ± 2.0 mmHg in techniques I and II, respectively = 0.0008). CPB time was highest in technique II (44 ± 18 min) compared to techniques I and III (29 ± 14 min and 38 ± 16 min, P = 0.006), respectively. ICU stay was longer in technique III (30 ± 15 h) compared to the other two techniques (22 ± 8.5 h and 27 ± 8.3 h in techniques I and II, respectively = 0.04). No patient experienced significant neurocognitive dysfunction. All techniques of BDG provided acceptable results. The open technique was faster and its use in smaller children merits consideration. The technique of intermittent clamping should be used as a last resort. © 2017 Wiley Periodicals, Inc.

  5. Bidirectional log-polar mapping for invariant object recognition

    Science.gov (United States)

    Mehanian, Courosh; Rak, Steven J.

    1991-08-01

    corrupted by increasing levels of sensor noise are used for this evaluation. This study indicates that feature mapping based on the bi-directional log-polar map provides translation, rotation, and scale- invariant recognition capabilities as well as robustness to noise and discretization.

  6. Bidirectional Fano Algorithm for Lattice Coded MIMO Channels

    KAUST Repository

    Al-Quwaiee, Hessa

    2013-05-08

    Recently, lattices - a mathematical representation of infinite discrete points in the Euclidean space, have become an effective way to describe and analyze communication systems especially system those that can be modeled as linear Gaussian vector channel model. Channel codes based on lattices are preferred due to three facts: lattice codes have simple structure, the code can achieve the limits of the channel, and they can be decoded efficiently using lattice decoders which can be considered as the Closest Lattice Point Search (CLPS). Since the time lattice codes were introduced to Multiple Input Multiple Output (MIMO) channel, Sphere Decoder (SD) has been an efficient way to implement lattice decoders. Sphere decoder offers the optimal performance at the expense of high decoding complexity especially for low signal-to-noise ratios (SNR) and for high- dimensional systems. On the other hand, linear and non-linear receivers, Minimum Mean Square Error (MMSE), and MMSE Decision-Feedback Equalization (DFE), provide the lowest decoding complexity but unfortunately with poor performance. Several studies works have been conducted in the last years to address the problem of designing low complexity decoders for the MIMO channel that can achieve near optimal performance. It was found that sequential decoders using backward tree 
search can bridge the gap between SD and MMSE. The sequential decoder provides an interesting performance-complexity trade-off using a bias term. Yet, the sequential decoder still suffers from high complexity for mid-to-high SNR values. In this work, we propose a new algorithm for Bidirectional Fano sequential Decoder (BFD) in order to reduce the mid-to-high SNR complexity. Our algorithm consists of first constructing a unidirectional Sequential Decoder based on forward search using the QL decomposition. After that, BFD incorporates two searches, forward and backward, to work simultaneously till they merge and find the closest lattice point to the

  7. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  8. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  9. Plasticity modeling & computation

    CERN Document Server

    Borja, Ronaldo I

    2013-01-01

    There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. “Plasticity Modeling & Computation” is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the “lecture.” Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.

  10. Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity

    Directory of Open Access Journals (Sweden)

    Wayne Croft

    2015-01-01

    Full Text Available The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology.

  11. Nanotechnology in plastic surgery.

    Science.gov (United States)

    Ibrahim, Ahmed M S; Gerstle, Theodore L; Rabie, Amr N; Song, Yong-Ak; Melik, Rohat; Han, Jongyoon; Lin, Samuel J

    2012-12-01

    Nanotechnology has made inroads over time within surgery and medicine. Translational medical devices and therapies based on nanotechnology are being developed and put into practice. In plastic surgery, it is anticipated that this new technology may be instrumental in the future. Microelectromechanical systems are one form of nanotechnology that offers the ability to develop miniaturized implants for use in the treatment of numerous clinical conditions. The authors summarize their published preliminary findings regarding a microelectromechanical systems-based electrochemical stimulation method through modulation of ions around the nerve that is potentially implantable and clinically efficacious, and expand upon current and potential usages of nanotechnology in plastic surgery. Sciatic nerves (n = 100) of 50 American bullfrogs were placed on a microfabricated planar gold electrode array and stimulated electrically. Using Ca(2+)-selective membranes, ion concentrations were modulated around the nerve environment in situ. In addition, a comprehensive review of the literature was performed to identify all available data pertaining to the use of nanotechnology in medicine. A 40 percent reduction of the electrical threshold value was observed using the Ca(2+) ion-selective membrane. The uses of nanotechnology specifically applicable to plastic surgery are detailed. Nanotechnology may likely lead to advancements in the art and science of plastic surgery. Using microelectromechanical systems nanotechnology, the authors have demonstrated a novel means of modulating the activation of nerve impulses. These findings have potentially significant implications for the design of special nano-enhanced materials that can be used to promote healing, control infection, restore function, and aid nerve regeneration and rehabilitation.

  12. New heavy plastic scintillators

    International Nuclear Information System (INIS)

    Britvich, G.I.; Vasil'chenko, V.G.; Lapshin, V.G.; Solov'ev, A.S.

    2000-01-01

    The possibility of manufacturing through the quenching method new transparent heavy scintillators on the basis of polystyrene with the light yield of approximately 32% from anthracene by general concentration of metalloorganic additions of approximately 17% by weight is shown. Doping of plastic scintillators through a set of various metalloorganic additives makes it possible to achieve more efficient and homogeneous by energy absorption of soft γ-quanta therein [ru

  13. Synthesis of SYEP Plasticizer

    Science.gov (United States)

    1975-10-01

    mmm ^ Unclassified —..■■.■„ 5 .»„.^TmN OF THIS MiiCg P«" BSg (20) Abstract K* •** *~ «• K? "involved a 6cale"up oieration vhloh resu1’ ted in...Fluorochem, RPL, and Lawrence Llvermore Laboratory Indicate that SYEP possesses suitable chemical and physical properties for a high energy plasticizer

  14. New perspectives in plastic biodegradation.

    Science.gov (United States)

    Sivan, Alex

    2011-06-01

    During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  16. Microelectronics plastic molded packaging

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R. [Ktech Corp., Albuquerque, NM (United States); Palmer, D.W.; Peterson, D.W. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  17. Respiratory Muscle Plasticity

    Science.gov (United States)

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  18. Bidirectional automatic release of reserve for low voltage network made with low capacity PLCs

    Science.gov (United States)

    Popa, I.; Popa, G. N.; Diniş, C. M.; Deaconu, S. I.

    2018-01-01

    The article presents the design of a bidirectional automatic release of reserve made on two types low capacity programmable logic controllers: PS-3 from Klöckner-Moeller and Zelio from Schneider. It analyses the electronic timing circuits that can be used for making the bidirectional automatic release of reserve: time-on delay circuit and time-off delay circuit (two types). In the paper are present the sequences code for timing performed on the PS-3 PLC, the logical functions for the bidirectional automatic release of reserve, the classical control electrical diagram (with contacts, relays, and time relays), the electronic control diagram (with logical gates and timing circuits), the code (in IL language) made for the PS-3 PLC, and the code (in FBD language) made for Zelio PLC. A comparative analysis will be carried out on the use of the two types of PLC and will be present the advantages of using PLCs.

  19. A physical model of the bidirectional reflectance of vegetation canopies. I - Theory. II - Inversion and validation

    Science.gov (United States)

    Verstraete, Michel M.; Pinty, Bernard; Dickinson, Robert E.

    1990-01-01

    A new physically based analytical model of the bidirectional reflectance of vegetation canopies is derived. The model expresses the bidirectional reflectance field of a semiinfinite canopy as a combination of functions describing (1) the optical properties of the leaves through their single-scattering albedo and their phase function, (2) the average distribution of leaf orientations, and (3) the architecture of the canopy. The model is validated against laboratory and ground-based measurements in the visible and IR spectral regions, taken over two vegetation covers. The intrinsic optical properties of leaves and the information on the geometrical canopy arrangements in space were obtained using an inversion procedure based on a nonlinear optimization technique. Model predictions of bidirectional reflectances obtained using the inversion procedure compare well with actual observations.

  20. FBG-based reconfigurable bidirectional OXC for 8×10 Gb/s DWDM transmission

    Science.gov (United States)

    Liaw, Shien-Kuei; Tsai, Pei-Shih; Wang, Hsiang; Le Minh, Hoa; Ghassemlooy, Zabih

    2016-01-01

    The paper presents a bidirectional high-speed, power-compensated, 3×3 reconfigurable and multiwavelength optical cross-connect (RMB-OXC) for all-optical networks. RMB-OXC characteristics and its performance are experimentally verified in a bidirectional 8-channel×10 Gb/s capacity system. The optical signal to noise ratio (OSNR) is achieved of 18.4 dB corresponds to a BER of 5×10-10. The channel cross-connect function was demonstrated by incorporating RMB-OXC in an 50 km lightwave system. We have observed only ~0.5 dB power penalty in the bidirectional transmission in comparison to the unidirectional transmission. The proposed RMB-OXC has vast potential and it can be utilized in many applications in high-speed wavelength division multiplexed (WDM) networks.

  1. Synchronization and bidirectional communication without delay line using strong mutually coupled semiconductor lasers

    Science.gov (United States)

    Li, Guang-Hui; Wang, An-Bang; Feng, Ye; Wang, Yang

    2010-07-01

    This paper numerically demonstrates synchronization and bidirectional communication without delay line by using two semiconductor lasers with strong mutual injection in a face-to-face configuration. These results show that both of the two lasers' outputs synchronize with their input chaotic carriers. In addition, simulations demonstrate that this kind of synchronization can be used to realize bidirectional communications without delay line. Further studies indicate that within a small deviation in message amplitudes of two sides (±6%), the message can be extracted with signal-noise-ratio more than 10 dB; and the signal-noise-ratio is extremely sensitive to the message rates mismatch of two sides, which may be used as a key of bidirectional communication.

  2. Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning.

    Science.gov (United States)

    Hira, Riichiro; Ohkubo, Fuki; Masamizu, Yoshito; Ohkura, Masamichi; Nakai, Junichi; Okada, Takashi; Matsuzaki, Masanori

    2014-11-24

    Animals rapidly adapt to environmental change. To reveal how cortical microcircuits are rapidly reorganized when an animal recognizes novel reward contingency, we conduct two-photon calcium imaging of layer 2/3 motor cortex neurons in mice and simultaneously reinforce the activity of a single cortical neuron with water delivery. Here we show that when the target neuron is not relevant to a pre-trained forelimb movement, the mouse increases the target neuron activity and the number of rewards delivered during 15-min operant conditioning without changing forelimb movement behaviour. The reinforcement bidirectionally modulates the activity of subsets of non-target neurons, independent of distance from the target neuron. The bidirectional modulation depends on the relative timing between the reward delivery and the neuronal activity, and is recreated by pairing reward delivery and photoactivation of a subset of neurons. Reward-timing-dependent bidirectional modulation may be one of the fundamental processes in microcircuit reorganization for rapid adaptation.

  3. The Topologies Research of a Soft Switching Bidirectional DC/DC Converter

    DEFF Research Database (Denmark)

    Zhang, Qi; Zhang, Yongping; Sun, Xiangdong

    2017-01-01

    A soft-switching solution implemented to the traditional bidirectional DC/DC converter is developed. The soft-switching cell, which composed of three auxiliary switches, one resonant capacitor and one resonant inductor, is equipped in the traditional bidirectional DC/DC converter to realize circuit...... from a hard turning off process in one of the auxiliary switches, while the others experience the soft operation. As for the other method, the zero voltage or zero current transmissions in all switches are realized, however, the relative higher but fixed conduction losses are introduced by the resonant...... circle. And the proposed topology of bidirectional soft-switching dc-dc converter(TASBC) performs ideal soft switching at boost operations. The characteristics of the proposed converter has been verified by MATLAB simulations and experimental results....

  4. Interfacial interactions between plastic particles in plastics flotation.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Gu, Guo-hua; Fu, Jian-gang; Lin, Qing-quan; Liu, You-nian

    2015-12-01

    Plastics flotation used for recycling of plastic wastes receives increasing attention for its industrial application. In order to study the mechanism of plastics flotation, the interfacial interactions between plastic particles in flotation system were investigated through calculation of Lifshitz-van der Waals (LW) function, Lewis acid-base (AB) Gibbs function, and the extended Derjaguin-Landau-Verwey-Overbeek potential energy profiles. The results showed that van der Waals force between plastic particles is attraction force in flotation system. The large hydrophobic attraction, caused by the AB Gibbs function, is the dominant interparticle force. Wetting agents present significant effects on the interfacial interactions between plastic particles. It is found that adsorption of wetting agents promotes dispersion of plastic particles and decreases the floatability. Pneumatic flotation may improve the recovery and purity of separated plastics through selective adsorption of wetting agents on plastic surface. The relationships between hydrophobic attraction and surface properties were also examined. It is revealed that there exists a three-order polynomial relationship between the AB Gibbs function and Lewis base component. Our finding provides some insights into mechanism of plastics flotation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Emerging Links between Homeostatic Synaptic Plasticity and Neurological Disease

    Directory of Open Access Journals (Sweden)

    Dion eDickman

    2013-11-01

    Full Text Available Homeostatic signaling systems are ubiquitous forms of biological regulation, having been studied for hundreds of years in the context of diverse physiological processes including body temperature and osmotic balance. However, only recently has this concept been brought to the study of excitatory and inhibitory electrical activity that the nervous system uses to establish and maintain stable communication. Synapses are a primary target of neuronal regulation with a variety of studies over the past 15 years demonstrating that these cellular junctions are under bidirectional homeostatic control. Recent work from an array of diverse systems and approaches has revealed exciting new links between homeostatic synaptic plasticity and a variety of seemingly disparate neurological and psychiatric diseases. These include autism spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X Syndrome. Although the molecular mechanisms through which defective homeostatic signaling may lead to disease pathogenesis remain unclear, rapid progress is likely to be made in the coming years using a powerful combination of genetic, imaging, electrophysiological, and next generation sequencing approaches. Importantly, understanding homeostatic synaptic plasticity at a cellular and molecular level may lead to developments in new therapeutic innovations to treat these diseases. In this review we will examine recent studies that demonstrate homeostatic control of postsynaptic protein translation, retrograde signaling, and presynaptic function that may contribute to the etiology of complex neurological and psychiatric diseases.

  6. Emotional Distress, Alcohol Use, and Bidirectional Partner Violence Among Lesbian Women.

    Science.gov (United States)

    Lewis, Robin J; Padilla, Miguel A; Milletich, Robert J; Kelley, Michelle L; Winstead, Barbara A; Lau-Barraco, Cathy; Mason, Tyler B

    2015-08-01

    This study examined the relationship between emotional distress (defined as depression, brooding, and negative affect), alcohol outcomes, and bidirectional intimate partner violence among lesbian women. Results lend support to the self-medication hypothesis, which predicts that lesbian women who experience more emotional distress are more likely to drink to cope, and in turn report more alcohol use, problem drinking, and alcohol-related problems. These alcohol outcomes were, in turn, associated with bidirectional partner violence (BPV). These results offer preliminary evidence that, similar to findings for heterosexual women, emotional distress, alcohol use, and particularly, alcohol-related problems are risk factors for BPV among lesbian women. © The Author(s) 2015.

  7. Energy-autonomous Bi-directional Wireless Power Transmission (WPT) and Energy Harvesting Circuit

    OpenAIRE

    del Petre, Massimo; Costanzo, Alessandra; Georgiadis, Apostolos; Collado, Ana; Masotti, Diego; Popovic, Zoya

    2015-01-01

    This work demonstrates a novel 2.45-GHz bi-directional circuit that can operate as both a wireless power transmitter and energy harvester. The circuit is based on a class-F oscillator/rectifier and is energy-autonomous since it does not need an external bias supply for either power transmission or power reception. Bi-directionality is exploited in two steps: the system first operates in rectifying mode with harvested DC voltages for biasing the oscillator; followed by the transmitting mode wh...

  8. Deadbeat control of power leveling unit with bidirectional buck/boost DC/DC converter

    OpenAIRE

    Hamasaki, Shin-ichi; Mukai, Ryosuke; Yano, Yoshihiro; Tsuji, Mineo

    2014-01-01

    As a distributed generation system increases, a stable power supply becomes difficult. Thus control of power leveling (PL) unit is required to maintain the balance of power flow for irregular power generation. The unit is required to respond to change of voltage and bidirectional power flow. So the bidirectional buck/boost DC/DC converter is applied for the control of PL unit in this research. The PL unit with Electric double-layer capacitor (EDLC) is able to absorb change of power, and it is...

  9. Optimization of Bi-Directional Flyback Converter for a High Voltage Capacitor Charging Application

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2014-01-01

    This paper presents an optimization technique for a flyback converter with a bidirectional energy transfer. The main goal is to optimize the converter for driving an incremental dielectric electro active polymer actuator, which must be charged and discharged from 0 V to 2500 V DC, supplied from...... for this application. The efficiency and loss distribution results provided by the optimization routine provide a deep insight into the transformer design and its impact on total converter efficiency. Finally, experimental work on a prototype of the bi-directional flyback converter is presented. The maximum charging...

  10. A Review of 25 Years of Research in Bidirectionality in Parent-Child Relationships: An Examination of Methodological Approaches

    Science.gov (United States)

    Paschall, Katherine W.; Mastergeorge, Ann M.

    2016-01-01

    The concept of bidirectionality represents a process of mutual influence between parent and child, whereby each influences the other as well as the dyadic relationship. Despite the widespread acceptance of bidirectional models of influence, there is still a lack of integration of such models in current research designs. Research on…

  11. Abiotic degradation of plastic films

    Science.gov (United States)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  12. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  13. Use of recycled plastics in wood plastic composites - a review.

    Science.gov (United States)

    Kazemi Najafi, Saeed

    2013-09-01

    The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  15. Tree plastic bark

    OpenAIRE

    Casado Arroyo, Carlos

    2016-01-01

    “Tree plastic bark" consiste en la realización de una intervención artística en un entorno natural concreto, generando de esta manera un Site Specific(1). Como hace alusión Rosalind Krauss en sus reflexiones “La escultura en el campo expandido”(2), comenta que su origen esta claramente ligado con el concepto de monumentalidad. La escultura es un monumento, se crea para conmemorar algún hecho o personaje relevante y está realizada para una ubicación concreta. La investigación parte de la id...

  16. Plastic pollutants in water environment

    Directory of Open Access Journals (Sweden)

    Mrowiec Bożena

    2017-12-01

    Full Text Available Nowadays, wide applications of plastics result in plastic waste being present in the water environment in a wide variety of sizes. Plastic wastes are in water mainly as microplastics (the size range of 1 nm to < 5 mm. Microplastics have been recognized as an emerging threat, as well as ecotoxicological and ecological risk for water ecosystems. In this review are presented some of the physicochemical properties of plastic materials that determine their toxic effect on the aquatic environment. Wastewater treatment plants (WWTPs are mentioned as one of main sources of microplastics introduced into fresh water, and rivers are the pathways for the transportation of the pollutants to seas and oceans. But, effluents from tertiary wastewater treatment facilities can contain only minimally microplastic loads. The issue of discharge reduction of plastic pollutants into water environment needs activities in the scope of efficient wastewater treatment, waste disposal, recycling of plastic materials, education and public involvement.

  17. Plastic food packaging and health

    Directory of Open Access Journals (Sweden)

    Raika Durusoy

    2011-02-01

    Full Text Available Plastics have a wide usage in our daily lives. One of their uses is for food packaging and food containers. The aim of this review is to introduce different types of chemicals that can leach from food packaging plastics into foods and cause human exposure and to mention their effects on health. The types of plastics were reviewed under the 13 headings in Turkish Codex Alimentarius and plastics recycling symbols were provided to enable the recognition of the type of plastic when applicable. Chemicals used during the production and that can cause health risks are investigated under the heading of the relevant type of plastic. The most important chemicals from plastic food packaging that can cause toxicity are styrene, 1,3-butadiene, melamine, formaldehyde, acrylamide, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate, vinyl chloride and bisphenol A. These chemicals have endocrine disrupting, carcinogenic and/or development disrupting effects. These chemicals may leach into foods depending on the chemical properties of the plastic or food, temperature during packaging, processing and storage, exposure to UV and duration of storage. Contact with fatty/oily or acidic foods, heating of the food inside the container, or drinking hot drinks from plastic cups, use of old and scratched plastics and some detergents increase the risk of leaching. The use of plastic containers and packaging for food and beveradges should be avoided whenever possible and when necessary, less harmful types of plastic should be preferred. [TAF Prev Med Bull 2011; 10(1.000: 87-96

  18. Clinical disorders of brain plasticity.

    Science.gov (United States)

    Johnston, Michael V

    2004-03-01

    Clinical disorders of brain plasticity are common in the practice of child neurology. Children have an enhanced capacity for brain plasticity compared to adults as demonstrated by their superior ability to learn a second language or their capacity to recover from brain injuries or radical surgery such as hemispherectomy for epilepsy. Basic mechanisms that support plasticity during development include persistence of neurogenesis in some parts of the brain, elimination of neurons through apoptosis or programmed cell death, postnatal proliferation and pruning of synapses, and activity-dependent refinement of neuronal connections. Brain plasticity in children can be divided into four types: adaptive plasticity that enhances skill development or recovery from brain injury; impaired plasticity associated with cognitive impairment; excessive plasticity leading to maladaptive brain circuits; and plasticity that becomes the brain's 'Achilles' Heel' because makes it vulnerable to injury. A broad group of pediatric neurologic disorders can be understood in terms of their impact on fundamental mechanisms for brain plasticity. These include neurofibromatosis, tuberous sclerosis, Fragile X syndrome, other inherited forms of mental retardation, cretinism, Coffin-Lowry syndrome, lead poisoning, Rett syndrome, epilepsy, hypoxic-ischemic encephalopathy and cerebral palsy.

  19. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  20. Americium behaviour in plastic vessels

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.; Idoeta, R.; Abelairas, A.

    2010-01-01

    The adsorption of 241 Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of 241 Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of 241 Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  1. Assessment of bidirectional influences between family relationships and adolescent problem behavior: Discrete versus continuous time analysis

    NARCIS (Netherlands)

    Delsing, M.J.M.H.; Oud, J.H.L.; Bruyn, E.E.J. De

    2005-01-01

    In family research, bidirectional influences between the family and the individual are usually analyzed in discrete time. Results from discrete time analysis, however, have been shown to be highly dependent on the length of the observation interval. Continuous time analysis using stochastic

  2. GaN-based High Efficiency Bidirectional DC-DC Converter with 10 MHz Switching Frequency

    DEFF Research Database (Denmark)

    Kruse, Kristian; Zhang, Zhe; Elbo, Mads

    2017-01-01

    -isolated bidirectional DC-DC converter equipped with Gallium Nitride (GaN) semiconductor transistors is presented. The converter’s operation principles, zero-voltage switching (ZVS) constraints and dead-time effects are studied. Moreover, the optimization and tradeoffs on the adopted high-frequency inductor...

  3. Bidirectional Partner Violence among Homeless Young Adults: Risk Factors and Outcomes

    Science.gov (United States)

    Tyler, Kimberly A.; Melander, Lisa A.; Noel, HarmoniJoie

    2009-01-01

    One of the most prevalent forms of violence in contemporary society is the victimization of intimate partners. Although it has been established that homeless young people experience high levels of victimization on the street, little is known about partner violence (PV) experiences among this group, especially bidirectional violence. As such, the…

  4. Bidirectional electron anisotropies in the distant tail: ISEE-3 observations of polar rain

    International Nuclear Information System (INIS)

    Baker, D.N.; Bame, S.J.; Feldman, W.C.; Gosling, J.T.; Zwickl, R.D.; Slavin, J.A.; Smith, E.J.

    1985-01-01

    A detailed observational treatment of bidirectional electrons (50 approx.500 eV) in the distant magnetotail (r greater than or equal to 100 R/sub E/) is presented. It is found that electrons in this energy range commonly exhibit strong, field-aligned anisotropies in the tail lobes. Because of large tail motions, the ISEE-3 data provide extensive sampling of both the north and south lobes in rapid succession, demonstrating directly the strong asymmetries that exist between the north and south lobes at any one time. The bidirectional fluxes are found to occur predominantly in the lobe directly connected to the sunward IMF in the open magnetosphere model (north lobe for away sectors and south lobe for toward sectors). Electron anisotropy and magnetic field data are presented which show the transition from unidirectional (sheath) electron populations to bidirectional (lobe) populations. Taken together, the present evidence suggests that the bidirectional electrons that we observe in the distant tail are closely related to the polar rain electrons observed previously at lower altitudes. Furthermore, these data provide strong evidence that the distant tail is comprised largely of open magnetic field lines in contradistinction to some recently advanced models

  5. Multispectral Resource Sampler: Proof of concept. Literature survey of bidirectional reflectance

    Science.gov (United States)

    1981-01-01

    A bibliography compiled in order to give a comprehensive review of previous work in scene bidirectional reflectance, particularly those studies relevant to the Multispectral Resource Sampler (MRS) is presented. The bibliography contains 124 abstracts. In addition a synthesis of the literature results is given along with background information concerning MRS.

  6. Block-classified bidirectional motion compensation scheme for wavelet-decomposed digital video

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, S. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Zhang, Y.Q. [David Sarnoff Research Center, Princeton, NJ (United States); Jabbari, B. [George Mason Univ., Fairfax, VA (United States)

    1997-08-01

    In this paper the authors introduce a block-classified bidirectional motion compensation scheme for the previously developed wavelet-based video codec, where multiresolution motion estimation is performed in the wavelet domain. The frame classification structure described in this paper is similar to that used in the MPEG standard. Specifically, the I-frames are intraframe coded, the P-frames are interpolated from a previous I- or a P-frame, and the B-frames are bidirectional interpolated frames. They apply this frame classification structure to the wavelet domain with variable block sizes and multiresolution representation. They use a symmetric bidirectional scheme for the B-frames and classify the motion blocks as intraframe, compensated either from the preceding or the following frame, or bidirectional (i.e., compensated based on which type yields the minimum energy). They also introduce the concept of F-frames, which are analogous to P-frames but are predicted from the following frame only. This improves the overall quality of the reconstruction in a group of pictures (GOP) but at the expense of extra buffering. They also study the effect of quantization of the I-frames on the reconstruction of a GOP, and they provide intuitive explanation for the results. In addition, the authors study a variety of wavelet filter-banks to be used in a multiresolution motion-compensated hierarchical video codec.

  7. Robust stability of bidirectional associative memory neural networks with time delays

    International Nuclear Information System (INIS)

    Park, Ju H.

    2006-01-01

    Based on the Lyapunov-Krasovskii functionals combined with linear matrix inequality approach, a novel stability criterion is proposed for asymptotic stability of bidirectional associative memory neural networks with time delays. A novel delay-dependent stability criterion is given in terms of linear matrix inequalities, which can be solved easily by various optimization algorithms

  8. Bidirectional dynamics of materialism and loneliness : Not just a vicious cycle

    NARCIS (Netherlands)

    Pieters, R.

    2013-01-01

    This research is the first to test the hypothesis that consumers face a “material trap” in which materialism fosters social isolation which in turn reinforces materialism. It provides evidence that materialism and loneliness are engaged in bidirectional relationships over time. Importantly, it finds

  9. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check...... structural loads in the WEC....

  10. Bidirectional relations between work-related stress, sleep quality and perseverative cognition.

    Science.gov (United States)

    Van Laethem, Michelle; Beckers, Debby G J; Kompier, Michiel A J; Kecklund, Göran; van den Bossche, Seth N J; Geurts, Sabine A E

    2015-11-01

    In this longitudinal two-wave study, bidirectional relations between work-related stress and sleep quality were examined. Moreover, it was investigated whether perseverative cognition is a potential underlying mechanism in this association, related to both work-related stress and sleep quality. A randomly selected sample of Dutch employees received an online survey in 2012 and 2013. Of all invited employees, 877 participated in both waves. Structural equation modeling was performed to analyze the data. We found evidence for reversed relations between work-related stress and sleep quality. Specifically, when controlling for perseverative cognition, work-related stress was not directly related to subsequent sleep quality, but low sleep quality was associated with an increase in work-related stress over time. Moreover, negative bidirectional associations over time were found between perseverative cognition and sleep quality, and positive bidirectional associations were found between work-related stress and perseverative cognition. Lastly, a mediation analysis showed that perseverative cognition fully mediated the relationship between work-related stress and sleep quality. The study findings suggest that perseverative cognition could be an important underlying mechanism in the association between work-related stress and sleep quality. The bidirectionality of the studied relationships could be an indication of a vicious cycle, in which work-related stress, perseverative cognition, and sleep quality mutually influence each other over time. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Bidirectional relations between work-related stress, sleep quality and perseverative cognition

    NARCIS (Netherlands)

    Laethem, M. van; Beckers, D.G.J.; Kompier, M.A.J.; Kecklund, G.; Bossche, S.N.J. van den; Geurts, S.A.E.

    2015-01-01

    Objective In this longitudinal two-wave study, bidirectional relations between work-related stress and sleep quality were examined. Moreover, it was investigated whether perseverative cognition is a potential underlying mechanism in this association, related to both work-related stress and sleep

  12. MEASUREMENT OF BI-DIRECTIONAL AMMONIA FLUXES OVER SOYBEAN USING MODIFIED BOWEN-RATIO TECHNIQUE

    Science.gov (United States)

    Measurements of bi-directional ammonia exchange over a fertilized soybean canopy are presented for an 8-week period during the summer of 2002. The modified Bowne-ratio approach was used to determine fluxes from vertical NH3 and temperature gradients in combination with eddy covar...

  13. Bidirectional soliton spectral tunneling effects in the regime of optical event horizon

    DEFF Research Database (Denmark)

    Gu, Jie; Guo, Hairun; Wang, Shaofei

    2015-01-01

    We study the cross-phase-modulation-induced soliton spectral shifting in the regime of the optical event horizon. The perturbed soliton to either red-shifting or blue-shifting is controllable, which could evoke bidirectional soliton spectral tunneling effects....

  14. Colours sometimes count : Awareness and bidirectionality in grapheme-colour synaesthesia

    NARCIS (Netherlands)

    Johnson, Addie; Jepma, Marieke; de Jong, Ritske

    2007-01-01

    Three experiments were conducted with 10 grapheme-colour synaesthetes and 10 matched controls to investigate (a) whether awareness of the inducer grapheme is necessary for synaesthetic colour induction and (b) whether grapheme-colour synaesthesia may be bidirectional in the sense that not only do

  15. Bidirectional Influences of Violence Exposure and Adjustment in Early Adolescence: Externalizing Behaviors and School Connectedness

    Science.gov (United States)

    Mrug, Sylvie; Windle, Michael

    2009-01-01

    This study utilized cross-lagged longitudinal models to examine prospective, bidirectional relationships between witnessing violence and victimization and three adjustment variables--delinquency, conduct problems, and school connectedness. Participants included 603 early adolescent boys and girls (78% African American, 20% Caucasian). Witnessing…

  16. A Bipolar Current Actuated Gate Driver for JFET Based Bidirectional Scalable Solid-State Circuit Breakers

    Science.gov (United States)

    2010-12-16

    inverter systems • Bidirectional DC-DC converters • Charge and discharge of energy storage systems • Regenerative power ( brakes , elevators, etc.) P.M.3...PROTECTION APPROVED FOR PUBLIC RELEASE Commercial Applications BDSSCB applications: DC or AC • Hybrid electric vehicle systems • Grid -tie renewable energy

  17. Analysis of bi-directional piezoelectric-based converters for zero-voltage switching operation

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi-directional piezoel......This paper deals with a thorough analysis of zerovoltage switching especially for bi-directional, inductorless, piezoelectric transformer-based switch-mode power supplies with a half-bridge topology. Practically, obtaining zero-voltage switching for all of the switches in a bi......-directional piezoelectric power converter is a difficult task. However, the analysis in this work will be convenient for overcoming this challenge. The analysis defines the zero-voltage region indicating the operating points whether or not soft switching can be met over the switching frequency and load range. For the first...... time, a comprehensive analysis is provided, which can be used as a design guideline for applying control techniques in order to drive switches in piezoelectric transformer-based converters. This study further conveys the proposed method to the region where all the switches can obtain soft switching...

  18. Building a bi-directional promoter binary vector from the intergenic ...

    African Journals Online (AJOL)

    ajl

    2013-03-13

    Mar 13, 2013 ... excision of the LOX-P Cre-cassette leaving only a single LOX-P site in MCS2 which is part of the '5 UTR of the GUS transcript. The sequence data of this bidirectional promoter transformation vector,. p2CABA have been submitted to the GenBank databases under accession number JQ965697 (Figure 1).

  19. Bidirectional Influences between Maternal and Paternal Parenting and Children's Disruptive Behaviour from Kindergarten to Grade 2

    Science.gov (United States)

    Besnard, Therese; Verlaan, Pierrette; Davidson, Marilyne; Vitaro, Frank; Poulin, Francois; Capuano, France

    2013-01-01

    Empirical evidence suggests that children's disruptive behaviour (CDB) and quality of parenting influence one another bidirectionally. However, few studies have considered the separate contribution of the mother--child and father--child relationships to disruptive behaviours within a longitudinal context. Against this background, the reciprocal…

  20. Bidirectional Influences between Maternal Parenting and Children's Peer Problems: A Longitudinal Monozygotic Twin Difference Study

    Science.gov (United States)

    Yamagata, Shinji; Takahashi, Yusuke; Ozaki, Koken; Fujisawa, Keiko K.; Nonaka, Koichi; Ando, Juko

    2013-01-01

    This twin study examined the bidirectional relationship between maternal parenting behaviors and children's peer problems that were not confounded by genetic and family environmental factors. Mothers of 259 monozygotic twin pairs reported parenting behaviors and peer problems when twins were 42 and 48 months. Path analyses on monozygotic twin…

  1. Bidirectional electrical coupling between inspiratory motoneurons in the newborn mouse nucleus ambiguus

    DEFF Research Database (Denmark)

    Rekling, J C; Feldman, J L

    1997-01-01

    and hyperpolarization of one cell led to hyperpolarization of the other with a coupling ratio (DeltaV2:DeltaV1) of 0.03-0.14. We conclude that inspiratory ambiguus motoneurons in the newborn mouse brain stem are bidirectionally electrically coupled, which may serve to transmit or coordinate signals, chemical...

  2. Analysis and design of PPFHB bidirectional DC-DC converter with coupled inductors

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael Andreas E.

    2009-01-01

    In this paper, a novel push-pull-forward half-bridge (PPFHB) bi-directional DC-DC converter with coupled inductors is proposed. All switches can operate under zero-voltage-switching (ZVS). The operation principle with phase-shift modulation scheme, characteristics of coupled inductors, the steady...

  3. A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency. It i...

  4. Associative, Bidirectional Changes in Neural Signaling Utilizing NMDA Receptor- and Endocannabinoid-Dependent Mechanisms

    Science.gov (United States)

    Li, Qin; Burrell, Brian D.

    2011-01-01

    Persistent, bidirectional changes in synaptic signaling (that is, potentiation and depression of the synapse) can be induced by the precise timing of individual pre- and postsynaptic action potentials. However, far less attention has been paid to the ability of paired trains of action potentials to elicit persistent potentiation or depression. We…

  5. Studi Komparasi Fungsi Keanggotaan Fuzzy sebagai Kontroler Bidirectional DC-DC Converter pada Sistem Penyimpan Energi

    Directory of Open Access Journals (Sweden)

    Eka Prasetyono

    2015-09-01

    Full Text Available Bidirectional DC-DC converter is needed in the energy storage system. The converter topology used in this paper was a non-isolated bidirectional DC-DC buck-boost converter. This converter worked in two ways, which the charging mode stored energy into battery when load current was less than nominal main DC current (set point and discharging mode transferred energy from battery to the load when its current exceeded set point value. Both of these modes worked automatically according to the load current. The charging and discharging currents were controlled by fuzzy logic controller which was implemented on microcontroller ARM Cortex-M4F STM32F407VG. This paper compares two types of fuzzy membership function (triangular and sigmoid in controlling bidirectional DC-DC converter. The results showed that fuzzy logic controller with triangle membership function and sigmoid as control bidirectional DC-DC converter had no significant different response, both had an average error for charging and discharging process under 4% with ripple current on the main DC bus around 0.5%. The computing time of program for fuzzy logic controller with triangular membership functions had 19.01% faster than sigmoid, and fuzzy logic computation time on a microcontroller with hardware floating point was 60% faster than software floating point.

  6. Poor School Bonding and Delinquency over Time: Bidirectional Effects and Sex Differences

    Science.gov (United States)

    Liljeberg, Jenny Freidenfelt; Eklund, Jenny M.; Fritz, Marie Vafors; Klinteberg, Britt af

    2011-01-01

    The association between poor school bonding and delinquency has only been partly addressed in earlier research. Using a longitudinal design, the objective of our study was to investigate possible bidirectional effects and sex differences between adolescents' experienced school bonding and self-rated delinquency over time. A total of 788…

  7. A Bidirectional Multi-Port DC-DC Converter Integrating Voltage Equalizer

    DEFF Research Database (Denmark)

    Chen, Jianfei; Hou, Shiying; Deng, Fujin

    2015-01-01

    A novel bidirectional multi-port dc-dc converter integrating voltage equalizer based on switched-capacitor voltage accumulator (SCVA) is proposed. It has two operating modes of charging and discharging for battery modules. All battery modules are connected in series indirectly and can be equalized...

  8. Longitudinal Bi-Directional Relationships between Sleep and Youth Substance Use

    Science.gov (United States)

    Pasch, Keryn E.; Latimer, Lara A.; Cance, Jessica Duncan; Moe, Stacey G.; Lytle, Leslie A.

    2012-01-01

    Despite the known deficits in sleep that occur during adolescence and the high prevalence of substance use behaviors among this group, relatively little research has explored how sleep and substance use may be causally related. The purpose of this study was to explore the longitudinal bi-directional relationships between sleep duration, sleep…

  9. Bidirectional Associations between Sleep (Quality and Duration) and Psychosocial Functioning across the University Years

    Science.gov (United States)

    Tavernier, Royette; Willoughby, Teena

    2014-01-01

    Despite extensive research on sleep and psychosocial functioning, an important gap within the literature is the lack of inquiry into the direction of effects between these 2 constructs. The purpose of the present 3-year longitudinal study was to examine bidirectional associations between sleep (quality and duration) and 3 indices of psychosocial…

  10. Bidirectional Associations Between Adolescents' Sexual Behaviors and Psychological Well-Being

    NARCIS (Netherlands)

    Nogueira Avelar e Silva, Raquel; van de Bongardt, Daphne; Baams, Laura; Raat, Hein

    Purpose: Assessing bidirectional longitudinal associations between early sexual behaviors (≤16.0 years) and psychological well-being (global self-esteem, physical self-esteem, depression) among 716 adolescents, and the direct and buffering effect of parent-adolescent relationship quality. Methods:

  11. Electrolyte system for fast preparative focusing in wide pH range based on bidirectional isotachophoresis

    Czech Academy of Sciences Publication Activity Database

    Šlais, Karel; Šťastná, Miroslava

    2014-01-01

    Roč. 35, č. 17 (2014), s. 2438-2445 ISSN 0173-0835 R&D Projects: GA MV VG20102015023 Institutional support: RVO:68081715 Keywords : bidirectional isotachophoresis * electrofocusing * wide pH range Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.028, year: 2014 http://hdl.handle.net/11104/0236230

  12. Analysis of Bi-directional Effects on the Response of a Seismic Base Isolation System

    International Nuclear Information System (INIS)

    Park, Hyung-Kui; Kim, Jung-Han; Kim, Min Kyu; Choi, In-Kil

    2014-01-01

    The floor response spectrum depends on the height of the floor of the structure. Also FRS depends on the characteristics of the seismic base isolation system such as the natural frequency, damping ratio. In the previous study, the floor response spectrum of the base isolated structure was calculated for each axis without considering bi-directional effect. However, the shear behavior of the seismic base isolation system of two horizontal directions are correlated each other by the bi-directional effects. If the shear behavior of the seismic isolation system changes, it can influence the floor response spectrum and displacement response of isolators. In this study, the analysis of a bi-directional effect on the floor response spectrum was performed. In this study, the response of the seismic base isolation system based on the bi-directional effects was analyzed. By analyzing the time history result, while there is no alteration in the maximum shear force of seismic base isolation system, it is confirmed that the shear force is generally more decreased in a one-directional that in a two-directional in most parts. Due to the overall decreased shear force, the floor response spectrum is more reduced in a two-directional than in a one-directional

  13. Regularly Controlled Bidirectional Extended Linear Basic Grammars (Revised and extended version)

    NARCIS (Netherlands)

    Hogendorp, Jan Anne

    1989-01-01

    We study the concept of bidirectional application of productions -- i.e., using a production of a grammar as a reduction too -- with respect to regularly controlled extended linear basic (macro) grammars [3], provided with a restricted mode of derivation. So this new grammatical model is in essence

  14. Bidirectional Flyback Converter with Multiple Series Connected Outputs for High Voltage Capacitive Charge and Discharge Applications

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Schneider, Henrik; Zhang, Zhe

    2015-01-01

    This paper evaluates two different implementations of a bidirectional flyback converter for driving a capacitive electro active actuator, which must be charged and discharged from 0 V to 2.5 kV DC and vice versa, supplied from a 24 V battery. In one implementation, a high voltage MOSFET (4 k...

  15. New polyvinylchloride plasticizers

    Directory of Open Access Journals (Sweden)

    MAZITOVA Aliya Karamovna

    2017-11-01

    Full Text Available One of the main large-capacity polymers of modern chemical industry is polyvinylchloride (PVC. Polyvinylchloride is characterized by many useful engineering properties – chemical firmness in different environments, good electric properties, etc. It explains immensely various use of materials on the basis of PVC in different engineering industries. It is cable, building, light industries, mechanical engineering and automotive industry where PVC is widely applied. One of the reasons why PVC production is dramatically growing is that there is no yet other polymer which could be subjected to such various modifying as it is done with PVC. However under normal temperature this polymer is fragile and isn't elastic that limits the field of its application. Rapid growth of production of polyvinylchloride is explained by its ability to modify properties, due to introduction of special additives when processing. Introduction of plasticizers – mostlly esters of organic and inorganic acids – into PVC allows significant changing properties of polymer. Plasticizers facilitate process of receiving polymeric composition, increase flexibility and elasticity of the final polymeric product due to internal modification of polymeric molecule.

  16. Coordination of hand grip and load forces in uni- and bidirectional static force production tasks.

    Science.gov (United States)

    Jaric, Slobodan; Russell, Elizabeth M; Collins, Jeffrey J; Marwaha, Rahul

    The purpose of the study was to explore the differences in coordination of grip (G) and load forces (L) in a unidirectional and bidirectional bimanual static force production task. Subjects (N=10) exerted oscillatory isometric L profiles against an externally fixed hand-held device, modulated either in pure tension (unidirectional) or in alternating tension and compression (bidirectional) at a rate of either 1.33 or 2.67 Hz. The unidirectional task revealed a high level of coordination of both the ipsilateral (i.e., G and L of each hand) and contralateral pairs of forces (two Gs and two Ls) as assessed by correlation and stability of force ratios. The bidirectional task demonstrated a low level of inconsistently modulated Gs with respect to the change of L, which resulted in a deteriorated coordination, particularly between the ipsilateral forces. The overall effect of task on the force coordination was higher than the effect of frequency suggesting that the higher frequency of G modulation required in the bidirectional task is not likely to be the main cause of the observed phenomenon. We interpret these differences by a relative simplicity of the control mechanisms of the unidirectional task based on a single synergy of G and L muscles that allows simultaneous coordination of both the ipsilateral and contralateral forces. Due to the switching between two distinctive synergies involving G muscles, the bidirectional task could possess a higher control complexity causing a decoupled coordination of the ipsilateral forces, while retaining the coordination of contralateral forces at a relatively high level.

  17. Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials

    International Nuclear Information System (INIS)

    Siddhartha,; Gupta, Kuldeep

    2012-01-01

    Highlights: ► Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated. ► Three body abrasive wear behavior of fabricated composites has been assessed. ► Results are validated against existing microscopic models of Lancaster and Wang. ► Tensile strength of bi-directional E-glass fiber reinforced composites increases. ► Chopped glass fiber composites are found better in abrasive wear situations. -- Abstract: Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated in five different (15, 20, 25, 30 and 35) wt% in an epoxy resin matrix. The mechanical characterization of these composites is performed. The three body abrasive wear behavior of fabricated composites has been assessed under different operating conditions. Abrasive wear characteristics of these composites are successfully analysed using Taguchi’s experimental design scheme and analysis of variance (ANOVA). The results obtained from these experiments are also validated against existing microscopic models of Ratner-Lancaster and Wang. It is observed that quite good linear relationships is held between specific wear rate and reciprocal of ultimate strength and strain at tensile fracture of these composites which is an indicative that the experimental results are in fair agreement with these existing models. Out of all composites fabricated it is found that tensile strength of bi-directional E-glass fiber reinforced composites increases because of interface strength enhancement. Chopped glass fiber reinforced composites are observed to perform better than bi-directional glass fiber reinforced composites under abrasive wear situations. The morphology of worn composite specimens has been examined by scanning electron microscopy (SEM) to understand about dominant wear mechanisms.

  18. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  19. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  20. Public perception of Plastic Surgery.

    Science.gov (United States)

    de Blacam, Catherine; Kilmartin, Darren; Mc Dermott, Clodagh; Kelly, Jack

    2015-02-01

    Public perception of Plastic Surgery is strongly influenced by the media and may not reflect the broad scope of work within the speciality. The aim of this study was to provide an assessment of the general public's perception of plastic surgical practice and to report the perceived importance of Plastic Surgery relative to other specialities working within a large tertiary referral centre. 899 members of the public who attended our Emergency Department completed a questionnaire where they matched eight surgical specialities with 30 operative procedures and ranked the importance of 30 different hospital specialities using a Likert scale. The majority of respondents correctly identified plastic surgeons as performing each of the cosmetic procedures listed (abdominoplasty 63.7%; breast augmentation 59.1%; facelift 61.35%; liposuction 59.7%). Plastic Surgery was identified as the primary speciality involved in breast reconstruction (49.3%) and burns surgery (43.0%). There was poor understanding of the role of plastic surgeons in hand surgery, with only 4.7% of respondents attributing tendon repair to plastic surgeons. Plastic Surgery ranked lowest of 30 specialities in terms of importance in providing care for patients within the hospital. Plastic Surgery is often misunderstood within the wider community and misconceptions reflect the influence of the media in highlighting certain aspects of the speciality. It behoves our professional organisations to highlight the importance of Plastic and Reconstructive Surgery within major tertiary referral centres. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (plastics. One possible way of processing nanoceramic coatings at low temperatures (plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  2. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste”

    PhD Candidate: Xiaoyun Bing

    Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower

  3. Sustainable reverse logistics for household plastic waste

    NARCIS (Netherlands)

    Bing, X.

    2014-01-01

    Summary of the thesis titled “Sustainable Reverse Logistics for Household Plastic Waste” PhD Candidate: Xiaoyun Bing Recycled plastic can be used in the manufacturing of plastic products to reduce the use of virgin plastics material. The cost of recycled plastics is usually lower than

  4. Double-loop flows and bidirectional Hebb's law in neural networks

    Science.gov (United States)

    Lecerf, Christophe

    1999-03-01

    This paper presents the double loop feedback model, which is used for structure and data flow modeling through reinforcement learning in an artificial neural network. We first consider physiological arguments suggesting that loops and double loops are widely spread in the exchange flows of the central nervous system. We then demonstrate that the double loop pattern, named a mental object, works as a functional memory unit and we describe the main properties of a double loop resonator built with the classical Hebb's law learning principle in a feedforward basis. In this model, we show how some mental objects aggregate themselves in building blocks, then what are the properties of such blocks. We propose the mental objects block as the representing structure of a concept in a neural network. We show how the local application of Hebb's law at the cell level leads to the concept of functional organization cost at the network level (upward effect), which explains spontaneous reorganization of mental blocks (downward effect). In this model, the simple hebbian learning paradigm appears to have emergent effects in both upward and downward directions.

  5. Architecture of European Plastic Surgery

    NARCIS (Netherlands)

    Nicolai, J. -P. A.; Banic, A.; Molea, G.; Mazzola, R.; Poell, J. G.

    2006-01-01

    The architecture of European Plastic Surgery was published in 1996 [Nicolai JPA, Scuderi N. Plastic surgical Europe in an organogram. Eur J Plast Surg 1996; 19: 253-6.] It is the objective of this paper to update information of that article. Continuing medical education (CME), science, training,

  6. Nigerian Journal of Plastic Surgery

    African Journals Online (AJOL)

    The Nigerian Journal of Plastic Surgery has its objectives in publishing original articles about developments in all areas related to plastic and reconstructive surgery as well as to trauma surgery. It also serves as a means of providing a forum for correspondence, information and discussion. It also accepts review articles that ...

  7. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...

  8. Plastics to fuel: A review

    Science.gov (United States)

    This paper reviews recent developments in catalytic and non-catalytic degradation of waste plastics into fuels. Thermal degradation decomposes plastic into three fractions: gas, crude oil, and solid residue. Crude oil from non-catalytic pyrolysis is usually composed of higher boiling point hydrocarb...

  9. Plastics for corrosion inhibition

    CERN Document Server

    Goldade, Victor A; Makarevich, Anna V; Kestelman, Vladimir N

    2005-01-01

    The development of polymer composites containing inhibitors of metal corrosion is an important endeavour in modern materials science and technology. Corrosion inhibitors can be located in a polymer matrix in the solid, liquid or gaseous phase. This book details the thermodynamic principles for selecting these components, their compatibility and their effectiveness. The various mechanisms of metal protection – barrier, inhibiting and electromechanical – are considered, as are the conflicting requirements placed on the structure of the combined material. Two main classes of inhibited materials (structural and films/coatings) are described in detail. Examples are given of structural plastics used in friction units subjected to mechano-chemical wear and of polymer films/coatings for protecting metal objects against corrosion.

  10. Neural plasticity across the lifespan.

    Science.gov (United States)

    Power, Jonathan D; Schlaggar, Bradley L

    2017-01-01

    An essential feature of the brain is its capacity to change. Neuroscientists use the term 'plasticity' to describe the malleability of neuronal connectivity and circuitry. How does plasticity work? A review of current data suggests that plasticity encompasses many distinct phenomena, some of which operate across most or all of the lifespan, and others that operate exclusively in early development. This essay surveys some of the key concepts related to neural plasticity, beginning with how current patterns of neural activity (e.g., as you read this essay) come to impact future patterns of activity (e.g., your memory of this essay), and then extending this framework backward into more development-specific mechanisms of plasticity. WIREs Dev Biol 2017, 6:e216. doi: 10.1002/wdev.216 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  11. Phenotypic Plasticity and Species Coexistence.

    Science.gov (United States)

    Turcotte, Martin M; Levine, Jonathan M

    2016-10-01

    Ecologists are increasingly interested in predicting how intraspecific variation and changing trait values impact species interactions and community composition. For many traits, much of this variation is caused by phenotypic plasticity, and thus the impact of plasticity on species coexistence deserves robust quantification. Partly due to a lack of sound theoretical expectations, empirical studies make contradictory claims regarding plasticity effects on coexistence. Our critical review of this literature, framed in modern coexistence theory, reveals that plasticity affects species interactions in ways that could impact stabilizing niche differences and competitive asymmetries. However, almost no study integrates these measures to quantify the net effect of plasticity on species coexistence. To address this challenge, we outline novel empirical approaches grounded in modern theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Biodegradability of degradable plastic waste.

    Science.gov (United States)

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  13. Bidirectional fiber-wireless and fiber-VLLC transmission system based on an OEO-based BLS and a RSOA.

    Science.gov (United States)

    Lu, Hai-Han; Li, Chung-Yi; Lu, Ting-Chien; Wu, Chang-Jen; Chu, Chien-An; Shiva, Ajay; Mochii, Takao

    2016-02-01

    A bidirectional fiber-wireless and fiber-visible-laser-light-communication (VLLC) transmission system based on an optoelectronic oscillator (OEO)-based broadband light source (BLS) and a reflective semiconductor optical amplifier (RSOA) is proposed and experimentally demonstrated. Through an in-depth observation of such bidirectional fiber-wireless and fiber-VLLC transmission systems, good bit error rate performances are obtained over a 40 km single-mode fiber and a 10 m RF/optical wireless transport. Such a bidirectional fiber-wireless and fiber-VLLC transmission system is an attractive option for providing broadband integrated services.

  14. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Science.gov (United States)

    Rioult-Pedotti, Mengia-Seraina; Pekanovic, Ana; Atiemo, Clement Osei; Marshall, John; Luft, Andreas Rüdiger

    2015-01-01

    Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA), leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC) activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  15. Dopamine Promotes Motor Cortex Plasticity and Motor Skill Learning via PLC Activation.

    Directory of Open Access Journals (Sweden)

    Mengia-Seraina Rioult-Pedotti

    Full Text Available Dopaminergic neurons in the ventral tegmental area, the major midbrain nucleus projecting to the motor cortex, play a key role in motor skill learning and motor cortex synaptic plasticity. Dopamine D1 and D2 receptor antagonists exert parallel effects in the motor system: they impair motor skill learning and reduce long-term potentiation. Traditionally, D1 and D2 receptor modulate adenylyl cyclase activity and cyclic adenosine monophosphate accumulation in opposite directions via different G-proteins and bidirectionally modulate protein kinase A (PKA, leading to distinct physiological and behavioral effects. Here we show that D1 and D2 receptor activity influences motor skill acquisition and long term synaptic potentiation via phospholipase C (PLC activation in rat primary motor cortex. Learning a new forelimb reaching task is severely impaired in the presence of PLC, but not PKA-inhibitor. Similarly, long term potentiation in motor cortex, a mechanism involved in motor skill learning, is reduced when PLC is inhibited but remains unaffected by the PKA inhibitor. Skill learning deficits and reduced synaptic plasticity caused by dopamine antagonists are prevented by co-administration of a PLC agonist. These results provide evidence for a role of intracellular PLC signaling in motor skill learning and associated cortical synaptic plasticity, challenging the traditional view of bidirectional modulation of PKA by D1 and D2 receptors. These findings reveal a novel and important action of dopamine in motor cortex that might be a future target for selective therapeutic interventions to support learning and recovery of movement resulting from injury and disease.

  16. Plasticity and beyond microstructures, crystal-plasticity and phase transitions

    CERN Document Server

    Hackl, Klaus

    2014-01-01

    The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

  17. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs

    Directory of Open Access Journals (Sweden)

    Vaughn Matthew

    2010-11-01

    Full Text Available Abstract Background Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories - based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an O(n/p time parallel algorithm has been given for this problem. Here n is the size of the input and p is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(nΣ messages (Σ being the size of the alphabet. Results In this paper we present a Θ(n/p time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of Θ(nlog(n/BBlog(M/B (M being the main memory size and B being the size of the disk block. We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster - both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem. Conclusions The bi-directed

  18. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.

    Science.gov (United States)

    Kundeti, Vamsi K; Rajasekaran, Sanguthevar; Dinh, Hieu; Vaughn, Matthew; Thapar, Vishal

    2010-11-15

    Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories - based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an O(n/p) time parallel algorithm has been given for this problem. Here n is the size of the input and p is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(nΣ) messages (Σ being the size of the alphabet). In this paper we present a Θ(n/p) time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of Θ(nlog(n/B)Blog(M/B)) (M being the main memory size and B being the size of the disk block). We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster--both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem. The bi-directed de Bruijn graph is a fundamental data structure for

  19. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): A review.

    Science.gov (United States)

    Xanthos, Dirk; Walker, Tony R

    2017-05-15

    Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Space Plastic Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot's proposed Space Plastic Recycler (SPR) is an automated closed loop plastic recycling system that allows the automated conversion of disposable ISS...

  1. Plastic debris in Mediterranean seabirds.

    Science.gov (United States)

    Codina-García, Marina; Militão, Teresa; Moreno, Javier; González-Solís, Jacob

    2013-12-15

    Plastic debris is often ingested by marine predators and can cause health disorders and even death. We present the first assessment of plastic ingestion in Mediterranean seabirds. We quantified and measured plastics accumulated in the stomach of 171 birds from 9 species accidentally caught by longliners in the western Mediterranean from 2003 to 2010. Cory's shearwaters (Calonectris diomedea) showed the highest occurrence (94%) and large numbers of small plastic particles per affected bird (on average N = 15.3 ± 24.4 plastics and mass = 23.4 ± 49.6 mg), followed by Yelkouan shearwaters (Puffinus yelkouan, 70%, N = 7.0 ± 7.9, 42.1 ± 100.0 mg), Balearic shearwaters (Puffinus mauretanicus, 70%, N = 3.6 ± 2.9, 5.5 ± 9.7 mg) and the rest of species (below 33%, N = 2.7, 113.6 ± 128.4 mg). Plastic characteristics did not differ between sexes and were not related to the physical condition of the birds. Our results point out the three endemic and threatened shearwater species as being particularly exposed to plastic accumulation.

  2. Water Vapor Permeation in Plastics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.

  3. Durability of wood plastic composites manufactured from recycled plastic

    Directory of Open Access Journals (Sweden)

    Irina Turku

    2018-03-01

    Full Text Available The influence of accelerated weathering, xenon-arc light and freeze-thaw cycling on wood plastic composites extruded from a recycled plastic was studied. The results showed that, in general, weathering had a stronger impact on samples made from plastic waste compared to a sample made from virgin material. After weathering, the mechanical properties, tensile and flexural, were reduced by 2–30%, depending on the plastic source. Wettability of the samples was shown to play a significant role in their stability. Chemical analysis with infrared spectroscopy and surface observation with a scan electron microscope confirmed the mechanical test results. Incorporation of carbon black retained the properties during weathering, reducing the wettability of the sample, diminishing the change of mechanical properties, and improving color stability. Keywords: Environmental science, Mechanical engineering, Materials science

  4. Durability of wood plastic composites manufactured from recycled plastic.

    Science.gov (United States)

    Turku, Irina; Kärki, Timo; Puurtinen, Ari

    2018-03-01

    The influence of accelerated weathering, xenon-arc light and freeze-thaw cycling on wood plastic composites extruded from a recycled plastic was studied. The results showed that, in general, weathering had a stronger impact on samples made from plastic waste compared to a sample made from virgin material. After weathering, the mechanical properties, tensile and flexural, were reduced by 2-30%, depending on the plastic source. Wettability of the samples was shown to play a significant role in their stability. Chemical analysis with infrared spectroscopy and surface observation with a scan electron microscope confirmed the mechanical test results. Incorporation of carbon black retained the properties during weathering, reducing the wettability of the sample, diminishing the change of mechanical properties, and improving color stability.

  5. Phenotypic plasticity, costs of phenotypes, and costs of plasticity

    DEFF Research Database (Denmark)

    Callahan, Hilary S; Maughan, Heather; Steiner, Uli

    2008-01-01

    Why are some traits constitutive and others inducible? The term costs often appears in work addressing this issue but may be ambiguously defined. This review distinguishes two conceptually distinct types of costs: phenotypic costs and plasticity costs. Phenotypic costs are assessed from patterns...... of covariation, typically between a focal trait and a separate trait relevant to fitness. Plasticity costs, separable from phenotypic costs, are gauged by comparing the fitness of genotypes with equivalent phenotypes within two environments but differing in plasticity and fitness. Subtleties associated with both...... types of costs are illustrated by a body of work addressing predator-induced plasticity. Such subtleties, and potential interplay between the two types of costs, have also been addressed, often in studies involving genetic model organisms. In some instances, investigators have pinpointed the mechanistic...

  6. PLASMA GASIFICATION OF WASTE PLASTICS

    Directory of Open Access Journals (Sweden)

    Tadeusz Mączka

    2013-01-01

    Full Text Available The article presents the process of obtaining liquid fuels and fuel gas in the process of plasma processing of organic materials, including waste plastics. The concept of plasma pyrolysis of plastics was presented and on its basis a prototype installation was developed. The article describes a general rule of operating the installation and its elements in the process and basic operation parameters determined during its start-up. Initial results of processing plastics and the directions further investigations are also discussed. The effect of the research is to be the design of effective technology of obtaining fuels from gasification/pyrolysis of organic waste and biomass.

  7. Circadian Regulation of Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Marcos G. Frank

    2016-07-01

    Full Text Available Circadian rhythms refer to oscillations in biological processes with a period of approximately 24 h. In addition to the sleep/wake cycle, there are circadian rhythms in metabolism, body temperature, hormone output, organ function and gene expression. There is also evidence of circadian rhythms in synaptic plasticity, in some cases driven by a master central clock and in other cases by peripheral clocks. In this article, I review the evidence for circadian influences on synaptic plasticity. I also discuss ways to disentangle the effects of brain state and rhythms on synaptic plasticity.

  8. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system.

    Science.gov (United States)

    Peng, Feng; Li, Chuang; Yang, Jun; Hou, Chengcheng; Zhang, Haoliang; Yu, Zhangjun; Yuan, Yonggui; Li, Hanyang; Yuan, Libo

    2017-07-10

    We propose a dual-channel measurement system for evaluating the optical path symmetry of an interferometric fiber optic gyro (IFOG) coil. Utilizing a bidirectional distributed polarization measurement system, the forward and backward transmission performances of an IFOG coil are characterized simultaneously by just a one-time measurement. The simple but practical configuration is composed of a bidirectional Mach-Zehnder interferometer and multichannel transmission devices connected to the IFOG coil under test. The static and dynamic temperature results of the IFOG coil reveal that its polarization-related symmetric properties can be effectively obtained with high accuracy. The optical path symmetry investigation is highly beneficial in monitoring and improving the winding technology of an IFOG coil and reducing the nonreciprocal effect of an IFOG.

  9. Bi-directional triplexer with butterfly MMI coupler using SU-8 polymer waveguides

    Science.gov (United States)

    Mareš, David; Jeřábek, Vítězslav; Prajzler, Václav

    2015-01-01

    We report about a design of a bi-directional planar optical multiplex/demultiplex filter (triplexer) for the optical part of planar hybrid WDM bi-directional transceiver in fiber-to-the-home (FTTH) PON applications. The triplex lightwave circuit is based on the Epoxy Novolak Resin SU-8 waveguides on the silica-on-silicon substrate with Polymethylmethacrylate cladding layer. The triplexer is comprised of a linear butterfly concept of multimode interference (MMI) coupler separating downstream optical signals of 1490 nm and 1550 nm. For the upstream channel of 1310 nm, an additional directional coupler (DC) is used to add optical signal of 1310 nm propagating in opposite direction. The optical triplexer was designed and optimized using beam propagation method. The insertion losses, crosstalk attenuation, and extinction ratio for all three inputs/outputs were investigated. The intended triplexer was designed using the parameters of the separated DC and MMI filter to approximate the idealized direct connection of both devices.

  10. Mechanics of an elastic solid reinforced with bidirectional fiber in finite plane elastostatics: complete analysis

    Science.gov (United States)

    Zeidi, Mahdi; Kim, Chun I. L.

    2018-01-01

    A continuum-based model is presented for the mechanics of bidirectional composites subjected to finite plane deformations. This is framed in the development of a constitutive relation within which the constraint of material incompressibility is augmented. The elastic resistance of the fibers is accounted for directly via the computation of variational derivatives along the lengths of bidirectional fibers. The equilibrium equation and necessary boundary conditions are derived by virtue of the principles of virtual work statement. A rigorous derivation of the corresponding linear theory is developed and used to obtain a complete analytical solution for small deformations superposed on large. The proposed model can serve as an alternative 2D Cosserat theory of nonlinear elasticity.

  11. Bidirectional composition on lie groups for gradient-based image alignment.

    Science.gov (United States)

    Mégret, Rémi; Authesserre, Jean-Baptiste; Berthoumieu, Yannick

    2010-09-01

    In this paper, a new formulation based on bidirectional composition on Lie groups (BCL) for parametric gradient-based image alignment is presented. Contrary to the conventional approaches, the BCL method takes advantage of the gradients of both template and current image without combining them a priori. Based on this bidirectional formulation, two methods are proposed and their relationship with state-of-the-art gradient based approaches is fully discussed. The first one, i.e., the BCL method, relies on the compositional framework to provide the minimization of the compensated error with respect to an augmented parameter vector. The second one, the projected BCL (PBCL), corresponds to a close approximation of the BCL approach. A comparative study is carried out dealing with computational complexity, convergence rate and frequence of convergence. Numerical experiments using a conventional benchmark show the performance improvement especially for asymmetric levels of noise, which is also discussed from a theoretical point of view.

  12. Numerical Simulation Bidirectional Chaotic Synchronization of Spiegel-Moore Circuit and Its Application for Secure Communication

    Science.gov (United States)

    Sanjaya, W. S. M.; Anggraeni, D.; Denya, R.; Ismail, N.

    2017-03-01

    Spiegel-Moore is a dynamical chaotic system which shows irregular variability in the luminosity of stars. In this paper present the performed the design and numerical simulation of the synchronization Spiegel-Moore circuit and applied to security system for communication. The initial study in this paper is to analyze the eigenvalue structures, various attractors, Bifurcation diagram, and Lyapunov exponent analysis. We have studied the dynamic behavior of the system in the case of the bidirectional coupling via a linear resistor. Both experimental and simulation results have shown that chaotic synchronization is possible. Finally, the effectiveness of the bidirectional coupling scheme between two identical Spiegel-Moore circuits in a secure communication system is presented in details. Integration of theoretical electronic circuit, the numerical simulation by using MATLAB®, as well as the implementation of circuit simulations by using Multisim® has been performed in this study.

  13. A bidirectional brain-machine interface connecting alert rodents to a dynamical system.

    Science.gov (United States)

    Boi, Fabio; Semprini, Marianna; Mussa Ivaldi, Ferdinando A; Panzeri, Stefano; Vato, Alessandro

    2015-01-01

    We present a novel experimental framework that implements a bidirectional brain-machine interface inspired by the operation of the spinal cord in vertebrates that generates a control policy in the form of a force field. The proposed experimental set-up allows connecting the brain of freely moving rats to an external device. We tested this apparatus in a preliminary experiment with an alert rat that used the interface for acquiring a food reward. The goal of this approach to bidirectional interfaces is to explore the role of voluntary neural commands in controlling a dynamical system represented by a small cart moving on vertical plane and connected to a water/pellet dispenser.

  14. A bidirectional association between cognitive ability in young adulthood and epilepsy

    DEFF Research Database (Denmark)

    Osler, Merete; Mortensen, Erik L; Christensen, Kaare

    2018-01-01

    Aim: To investigate the bidirectional association between cognitive ability in young adulthood and epilepsy. Methods: This cohort study included 1 159 076 men enrolled in the mandatory conscription board examination from the Danish Conscription Database (DCD; 658 465 men examined 1957-84), the Da......Aim: To investigate the bidirectional association between cognitive ability in young adulthood and epilepsy. Methods: This cohort study included 1 159 076 men enrolled in the mandatory conscription board examination from the Danish Conscription Database (DCD; 658 465 men examined 1957...... with epilepsy before conscription, and they had about 0.25 standard deviation (SD) lower cognitive scores than men without epilepsy. The largest difference in cognition was seen for those with the largest number of hospital contacts. A total of 22 364 (1.9%) men developed epilepsy, and cognitive ability......: The cognitive impairment seen in adults with epilepsy seems to reflect combined effects of epileptic processes and lower premorbid cognitive ability....

  15. The internal flow pattern analysis of a tidal power turbine operating on bidirectional generation-pumping

    International Nuclear Information System (INIS)

    Luo, Y Y; Xiao, Y X; Wang, Z W

    2013-01-01

    Using tidal energy can reduce environment pollution, save conventional energy and improve energy structure, hence it presents great advantage and is developing potential. Influenced by flood tide and low tide, a fully functional tidal power station needs to experience six operating modes, including bidirectional generation, pumping and sluice; the internal unsteady flow pattern and dynamic characters are very complicated. Based on a bidirectional tidal generator unit, three-dimensional unsteady flows in the flow path were calculated for four typical operating conditions with the pressure pulsation characteristics analyzed. According to the numerical results, the internal flow characteristics in the flow path were discussed. The influence of gravity to the hydraulic performance and flow characteristics were analysed. The results provide a theoretical analysis method of the hydraulic optimization design of the same type unit as well as a direction for stable operation and optimal scheduling of existing tidal power unit

  16. A Bidirectional Generalized Synchronization Theorem-Based Chaotic Pseudo-random Number Generator

    Directory of Open Access Journals (Sweden)

    Han Shuangshuang

    2013-07-01

    Full Text Available Based on a bidirectional generalized synchronization theorem for discrete chaos system, this paper introduces a new 5-dimensional bidirectional generalized chaos synchronization system (BGCSDS, whose prototype is a novel chaotic system introduced in [12]. Numerical simulation showed that two pair variables of the BGCSDS achieve generalized chaos synchronization via a transform H.A chaos-based pseudo-random number generator (CPNG was designed by the new BGCSDS. Using the FIPS-140-2 tests issued by the National Institute of Standard and Technology (NIST verified the randomness of the 1000 binary number sequences generated via the CPNG and the RC4 algorithm respectively. The results showed that all the tested sequences passed the FIPS-140-2 tests. The confidence interval analysis showed the statistical properties of the randomness of the sequences generated via the CPNG and the RC4 algorithm do not have significant differences.

  17. 5W1H Information Extraction with CNN-Bidirectional LSTM

    Science.gov (United States)

    Nurdin, A.; Maulidevi, N. U.

    2018-03-01

    In this work, information about who, did what, when, where, why, and how on Indonesian news articles were extracted by combining Convolutional Neural Network and Bidirectional Long Short-Term Memory. Convolutional Neural Network can learn semantically meaningful representations of sentences. Bidirectional LSTM can analyze the relations among words in the sequence. We also use word embedding word2vec for word representation. By combining these algorithms, we obtained F-measure 0.808. Our experiments show that CNN-BLSTM outperforms other shallow methods, namely IBk, C4.5, and Naïve Bayes with the F-measure 0.655, 0.645, and 0.595, respectively.

  18. Consistency of Earth Radiation Budget Experiment bidirectional models and the observed anisotropy of reflected sunlight

    Science.gov (United States)

    Baldwin, Daniel G.; Coakley, James A., Jr.

    1991-01-01

    The anisotropy of the radiance field estimated from bidirectional models derived from Nimbus 7 ERB scanner data is compared with the anisotropy observed with the ERB Experiment (ERBE) scanner aboard the ERB satellite. The results of averaging over groups of 40 ERBE scanner scan lines for a period of a month revealed significant differences between the modeled and the observed anisotropy for given scene types and the sun-earth-satellite viewing geometries. By comparing the radiative fluxes derived using the observed anisotropy with those derived assuming isotropic reflection, it is concluded that a reasonable estimate for the maximum error due to the use of incorrect bidirectional models is a bias of about 4 percent for a typical 2.5 deg latitude-longitude monthly mean, and an rms error of 15 percent.

  19. Superior vena cava syndrome after pulsatile bidirectional Glenn shunt procedure: Perioperative implications

    Directory of Open Access Journals (Sweden)

    Neema Praveen

    2009-01-01

    Full Text Available Bidirectional superior cavopulmonary shunt (bidirectional Glenn shunt is generally performed in many congenital cardiac anomalies where complete two ventricle circulations cannot be easily achieved. The advantages of BDG shunt are achieved by partially separating the pulmonary and systemic venous circuits, and include reduced ventricular preload and long-term preservation of myocardium. The benefits of additional pulsatile pulmonary blood flow include the potential growth of pulmonary arteries, possible improvement in arterial oxygen saturation, and possible prevention of development of pulmonary arteriovenous malformations. However, increase in the systemic venous pressure after BDG with additional pulsatile blood flow is known. We describe the peri-operative implications of severe flow reversal in the superior vena cava after pulsatile BDG shunt construction in a child who presented for surgical interruption of the main pulmonary artery.

  20. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  1. Helene: A Plastic Model

    Science.gov (United States)

    Umurhan, O. M.; Moore, J. M.; Howard, A. D.; Schenk, P.; White, O. L.

    2014-12-01

    Helene, the Saturnian L4 Trojan satellite co-orbiting Dionne and sitting within the E-ring, possesses an unusual morphology characteristic of broad km-scale basins and depressions and a generally smooth surface patterned with streaks and grooves which are indicative of non-typical mass transport. Elevation angles do not appear to exceed 10o at most. The nature and origin of the surface materials forming these grooved patterns is unknown. Given the low surface gravity (plastic-like flow like a Bingham fluid, we setup and test a number of likely scenarios to explain the observations. The numerical results qualitatively indicate that treating the mass-wasting materials as a Bingham material reproduces many of the qualitative features observed. We also find that in those simulations in which accretion is concomitant with Bingham mass-wasting, the long time-evolution of the surface flow shows intermittency in the total surface activity (defined as total surface integral of the absolute magnitude of the mass-flux). Detailed analyses identify the locations where this activity is most pronounced and we will discuss these and its implications in further detail.

  2. Combined endocardiectomy and bidirectional glenn shunt for right ventricular endomyocardial fibrosis.

    Science.gov (United States)

    Heredero, Angeles; Garcia-Vega, Maribel; Tomas, Marta; Cremades, Marta; Calderon, Pilar; Karagounis, Apostolos Paul; Aldamiz-Echevarria, Gonzalo

    2012-01-01

    We report the case of a young African woman with a history of right ventricular failure. Image studies suggested endomyocardial fibrosis affecting only the right side of the heart. The right ventricle was extremely small and restricted. The surgical approach entailed endocardectomy and a bidirectional cavopulmonary shunt to improve weaning off bypass and postoperative recovery, both of which were successfully achieved. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  3. In vitro bidirectional permeability studies identify pharmacokinetic limitations of NKCC1 inhibitor bumetanide.

    Science.gov (United States)

    Donovan, Maria D; Schellekens, Harriët; Boylan, Geraldine B; Cryan, John F; Griffin, Brendan T

    2016-01-05

    Recently, it has been suggested that bumetanide, an inhibitor of the Na-K-2Cl co-transporter (NKCC1), may be useful in the treatment of central nervous system (CNS) disorders. However, from a physicochemical perspective, bumetanide may not cross the blood-brain barrier to the extent that is necessary for it to be an effective brain NKCC1 inhibitor in vivo. High plasma-protein binding, potentially high brain-tissue binding and putative efflux transporters including organic anion transporter 3 (OAT3) contribute to the poor pharmacokinetic profile of bumetanide. Bidirectional permeability assays are an in vitro method to determine the impact of plasma-protein/brain tissue binding, as well as efflux transport, on the permeability of a compound. We established and validated a cell line stably overexpressing human OAT3 using lentiviral cloning techniques for use in in vitro bidirectional permeability assays. Using efflux transport studies, we show that bumetanide is a transported substrate of human OAT3, exhibiting a transport ratio of ≥1.5, which is attenuated by OAT3 inhibitors. Bidirectional permeability assays were carried out in the presence and absence of either albumin or brain homogenate to elucidate the effect of plasma-protein/brain tissue binding. These tests confirmed the pharmacokinetic limitations for brain delivery of bumetanide. In this experiment, bumetanide is 53% bound to albumin, 77% bound to brain tissue and accumulates in brain cells. Moreover, we conclusively established that bumetanide is a transported substrate of OAT3. Taken together, these bidirectional permeability studies highlight the potential of efflux transporter inhibition as an augmentation strategy for enhanced delivery of bumetanide to the CNS. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Tools for the assessment of business models around the exploitation of bidirectional electric vehicle chargers

    OpenAIRE

    Bayascas Caseras, Julia

    2017-01-01

    Electric vehicles can be considered as important amounts of energy stored in batteries. The possibility of taking advantage of such energy to other ends out of transport is a great opportunity for the transition from combustion engine's vehicles to electric vehicles. To do this, it is necessary to use bidirectional chargers, so the energy can ow in both directions: from the vehicle to the electrical system it is connected to and vice versa. This project studies an optimizat...

  5. Evaluation of Bidirectional Silicon Carbide Solid-State Circuit Breaker v3.2

    Science.gov (United States)

    2013-07-01

    shown in figure 3 (1). The DC supply charges the 3 capacitor through a high resistance. Then the insulated gate bipolar transistor (IGBT) is...insulated gate bipolar transistor JFET junction field-effect transistor SiC silicon carbide TRL technical readiness level USCi United Silicon...field-effect transistor (JFET) based bidirectional solid-state circuit breaker (BDSSCB) to reduce self-trigging and reset response times, and increase

  6. The bidirectional relationship between exercise and sleep: Implications for exercise adherence and sleep improvement

    OpenAIRE

    Kline, Christopher E.

    2014-01-01

    Exercise has long been associated with better sleep, and evidence is accumulating on the efficacy of exercise as a nonpharmacologic treatment option for disturbed sleep. Recent research, however, has noted that poor sleep may contribute to low physical activity levels, emphasizing a robust bidirectional relationship between exercise and sleep. This article will briefly review the evidence supporting the use of exercise as a nonpharmacologic treatment for sleep disturbance, outline future rese...

  7. Transmitter Systems and Bidirectional RF Front-End for Millimeter-Wave Communications

    OpenAIRE

    Wu, Po-Yi

    2015-01-01

    In this dissertation, millimeter-wave transmitter systems and a bidirectional transceiver front-end circuit are presented. To reach high data rate for next generation communication systems, complex modulation schemes such as QAM are necessary to take advantage of the signal bandwidth. In a transmitter system, higher-order QAM not only requires the PA to operate in linear region, while the output power and efficiency are maintained, but also requires the calibrations for the modulator to minim...

  8. Estimation of Nitrogen Vertical Distribution by Bi-Directional Canopy Reflectance in Winter Wheat

    OpenAIRE

    Huang, Wenjiang; Yang, Qinying; Pu, Ruiliang; Yang, Shaoyuan

    2014-01-01

    Timely measurement of vertical foliage nitrogen distribution is critical for increasing crop yield and reducing environmental impact. In this study, a novel method with partial least square regression (PLSR) and vegetation indices was developed to determine optimal models for extracting vertical foliage nitrogen distribution of winter wheat by using bi-directional reflectance distribution function (BRDF) data. The BRDF data were collected from ground-based hyperspectral reflectance measuremen...

  9. Bidirectional cross-linguistic influence in event conceptualization? Expressions of Path among Japanese learners of English

    OpenAIRE

    Brown, Amanda; Gullberg, Marianne

    2011-01-01

    Typological differences in expressions of motion are argued to have consequences for event conceptualization. In SLA, studies generally find transfer of L1 expressions and accompanying event construals, suggesting resistance to the restructuring of event conceptualization. The current study tackles such restructuring in SLA within the context of bidirectional cross-linguistic influence, focusing on expressions of Path in English and Japanese. We probe the effects of lexicalization patterns on...

  10. Global asymptotic stability of hybrid bidirectional associative memory neural networks with time delays

    International Nuclear Information System (INIS)

    Arik, Sabri

    2006-01-01

    This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature

  11. Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference.

    Science.gov (United States)

    Liu, Y F; Yeh, C H; Chow, C W; Liu, Y; Liu, Y L; Tsang, H K

    2012-10-08

    In this work, we experimentally demonstrate a bi-directional transmission link using light emitting diode (LED) visible light communication (VLC) for both downlink and uplink paths. Time-division-duplex (TDD) is proposed and demonstrated to significantly eliminate the reflection interference in VLC. A free space bi-directional transmission of 2 m using simple on-off keying (OOK) modulation with bit error rate (BER) of reflection interference is analyzed, showing the proposed scheme can significantly eliminate the reflection interference.

  12. Color coded multiple access scheme for bidirectional multiuser visible light communications in smart home technologies

    Science.gov (United States)

    Tiwari, Samrat Vikramaditya; Sewaiwar, Atul; Chung, Yeon-Ho

    2015-10-01

    In optical wireless communications, multiple channel transmission is an attractive solution to enhancing capacity and system performance. A new modulation scheme called color coded multiple access (CCMA) for bidirectional multiuser visible light communications (VLC) is presented for smart home applications. The proposed scheme uses red, green and blue (RGB) light emitting diodes (LED) for downlink and phosphor based white LED (P-LED) for uplink to establish a bidirectional VLC and also employs orthogonal codes to support multiple users and devices. The downlink transmission for data user devices and smart home devices is provided using red and green colors from the RGB LEDs, respectively, while uplink transmission from both types of devices is performed using the blue color from P-LEDs. Simulations are conducted to verify the performance of the proposed scheme. It is found that the proposed bidirectional multiuser scheme is efficient in terms of data rate and performance. In addition, since the proposed scheme uses RGB signals for downlink data transmission, it provides flicker-free illumination that would lend itself to multiuser VLC system for smart home applications.

  13. Dynamic Brain-Machine Interface: a novel paradigm for bidirectional interaction between brains and dynamical systems.

    Science.gov (United States)

    Szymanski, Francois D; Semprini, Marianna; Mussa-Ivaldi, Ferdinando A; Fadiga, Luciano; Panzeri, Stefano; Vato, Alessandro

    2011-01-01

    Brain-Machine Interfaces (BMIs) are systems which mediate communication between brains and artificial devices. Their long term goal is to restore motor functions, and this ultimately demands the development of a new generation of bidirectional brain-machine interfaces establishing a two-way brain-world communication channel, by both decoding motor commands from neural activity and providing feedback to the brain by electrical stimulation. Taking inspiration from how the spinal cord of vertebrates mediates communication between the brain and the limbs, here we present a model of a bidirectional brain-machine interface that interacts with a dynamical system by generating a control policy in the form of a force field. In our model, bidirectional communication takes place via two elements: (a) a motor interface decoding activities recorded from a motor cortical area, and (b) a sensory interface encoding the state of the controlled device into electrical stimuli delivered to a somatosensory area. We propose a specific mathematical model of the sensory and motor interfaces guiding a point mass moving in a viscous medium, and we demonstrate its performance by testing it on realistically simulated neural responses.

  14. Magnetically actuated bi-directional microactuators with permalloy and Fe/Pt hard magnet

    International Nuclear Information System (INIS)

    Pan, C.T.; Shen, S.C.

    2005-01-01

    Bi-directional polyimide (PI) electromagnetic microactuator with different geometries are designed, fabricated and tested. Fabrication of the electromagnetic microactuator consists of 10 μm thick Ni/Fe (80/20) permalloy deposition on the PI diaphragm by electroplating, high aspect ratio electroplating of copper planar coil with 10 μm in thickness, bulk micromachining, and excimer laser selective ablation. They were fabricated by a novel concept avoiding the etching selectivity and residual stress problems during wafer etching. A mathematical model is created by ANSYS software to analyze the microactuator. The external magnetic field intensity (H ext ) generated by the planar coil is simulated by ANSYS software. ANSYS software is used to predict the deflection angle of the microactuator. Besides, to provide bi-directional and large deflection angle of microactuator, hard magnet Fe/Pt is deposited at a low temperature of 300 deg. C by sputtering onto the PI diaphragm to produce a perpendicular magnetic anisotropic field. This magnetic field can enhance the interaction with H ext to induce attractive and repulsive bi-directional force to provide large displacement. The results of magnetic microactuator with and without hard magnets are compared and discussed. The preliminary result reveals that the electromagnetic microactuator with hard magnet shows a greater deflection angle than that without one

  15. Improved MISO-SAR System Based on BiDirectional Imaging

    Directory of Open Access Journals (Sweden)

    Jiang Hai

    2015-10-01

    Full Text Available In 2012, the German Aerospace Center (DLR. proposed a BiDirectional mode that can achieve several seconds of repeated time lags by single star and single flight. Its basic principle includes the generation of a double-beam antenna pattern by electronic beam steering and simultaneous emission of two pulses that irradiate the front and back imaging area. The two pulses, which are simultaneously received will be separated by band-pass filtering in the Doppler domain and imaged, respectively. This paper presents an improved Multi Input Single Output (MISO-SAR system based on the BiDirectional mode which converts the traditional simultaneous dual beam emitting and receiving into time-division emitting and simultaneous receiving, respectively. This results in an improved emitting antenna pattern owning to the suppression of the Azimuth Ambiguity to Signal Ratio (AASR. The current paper describes the spectrum separation effects, AASR analysis, and the system design process. Therefore, to confirm effectiveness, point target 1-D and 2-D simulation results are compared before and after the improvement. Furthermore, the BiDirectional and other short-term repeated SAR modes are compared.

  16. Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems

    KAUST Repository

    Kalathil, Shafeer

    2016-03-17

    An electrically active bacterium transports its metabolically generated electrons to insoluble substrates such as electrodes via a process known as extracellular electron transport (EET). Bacterial EET is a crucial process in the geochemical cycling of metals, bioremediation and bioenergy devices such as microbial fuel cells (MFCs). Recently, it has been found that electroactive bacteria can reverse their respiratory pathways by accepting electrons from a negatively poised electrode to produce high-value chemicals such as ethanol in a process termed as microbial electrosynthesis (MES). A poor electrical connection between bacteria and the electrode hinders the EET and MES processes significantly. Also, the bidirectional EET process is sluggish and needs to be improved drastically to extend its practical applications. Several attempts have been undertaken to improve the bidirectional EET by employing various advanced nanostructured materials such as carbon nanotubes and graphene. This review covers the recent progress in the bacterial bidirectional EET processes using advanced nanostructures in the light of current understandings of bacteria–nanomaterial interactions.

  17. Bidirectional Tachycardia after an Acute Intravenous Administration of Digitalis for a Suicidal Gesture

    Directory of Open Access Journals (Sweden)

    Diletta Sabatini

    2014-01-01

    Full Text Available Acute digoxin intoxication is a life-threating condition associated with severe cardiotoxicity. Female gender, age, low lean body mass, hypertension, and renal insufficiency may worsen the prognosis. Arrhythmias caused by digitalis glycosides are characterized by an increased automaticity coupled with concomitant conduction delay. Bidirectional tachycardia is pathognomonic of digoxin intoxication, but it is rarely observed. An 83-year-old woman was admitted to the Emergency Department after self-administration of 5 mg of digoxin i.v. for suicidal purpose. Her digoxin serum concentration was 17.4 ng/mL. The patient developed a bidirectional tachycardia and the Poison Control Center of the hospital provided digoxin immune fab. Bidirectional tachycardia quickly reversed and the patient remained stable throughout the hospital stay. This case shows that a multiple disciplinary approach, involving cardiologists and toxicologists, is essential for the management of digoxin intoxication. The optimal treatment of this rare event depends on the clinical conditions and on the serum drug concentration of the patient. Digoxin immune fab represents a safe, effective, and specific method for rapidly reversing digitalis cardiotoxicity and should be started as soon as the diagnosis is defined.

  18. A bidirectionally coupled magnetoelastic model and its validation using a Galfenol unimorph sensor

    International Nuclear Information System (INIS)

    Mudivarthi, C; Flatau, A B; Datta, S; Atulasimha, J

    2008-01-01

    This paper describes a bidirectionally coupled magnetoelastic model, BCMEM. BCMEM is a 3D nonlinear finite element-based model comprising magnetic and elastic boundary value problems (BVPs) that are bidirectionally coupled through stress and field dependent coupling variables—magnetostriction and magnetization. The coupling variables are calculated using an energy-based magnetomechanical model. The BVPs are solved iteratively using the finite element method with values of coupling variables updated every iteration to account for the bidirectional coupling. Such an approach is effective in incorporating the apparent variation in modulus of elasticity (the ΔE effect) and permeability with changing stress and magnetic field, as well as modeling their effects on stress and field distributions. Thus, BCMEM allows the prediction of both nonlinear sensing and actuating behaviors of magnetostrictive materials. Moreover, the use of the finite element method provides the model with the ability to incorporate demagnetizing fields due to shape anisotropy and hence the capability to predict the response of magnetostrictive materials in complex 3D structures. The model predictions of magnetic flux density and bending strain for an aluminum–Galfenol unimorph cantilever structure showed good correlation when compared against experimental results obtained from both magnetically unbiased and biased single-crystal Galfenol (Fe 84 Ga 16 ) active layers

  19. Bi-directional electrons in the near-Earth plasma sheet

    Directory of Open Access Journals (Sweden)

    K. Shiokawa

    2003-07-01

    Full Text Available We have studied the occurrence characteristics of bi-directional electron pitch angle anisotropy (enhanced flux in field-aligned directions, F^ /F|| > 1.5 at energies of 0.1–30 keV using plasma and magnetic field data from the AMPTE/IRM satellite in the near-Earth plasma sheet. The occurrence rate increases in the tailward direction from XGSM = - 9 RE to - 19 RE . The occurrence rate is also enhanced in the midnight sector, and furthermore, whenever the elevation angle of the magnetic field is large while the magnetic field intensity is small, B ~ 15 nT. From these facts, we conclude that the bi-directional electrons in the central plasma sheet are produced mainly in the vicinity of the neutral sheet and that the contribution from ionospheric electrons is minor. A high occurrence is also found after earthward high-speed ion flows, suggesting Fermi-type field-aligned electron acceleration in the neutral sheet. Occurrence characteristics of bi-directional electrons in the plasma sheet boundary layer are also discussed.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; magnetotail; plasma sheet

  20. Impact of Interference in Coexisting Wireless Networks with Applications to Arbitrarily Varying Bidirectional Broadcast Channels

    Directory of Open Access Journals (Sweden)

    Holger Boche

    2012-08-01

    Full Text Available The paradigm shift from an exclusive allocation of frequency bands, one for each system, to a shared use of frequencies comes along with the need of new concepts since interference will be an ubiquitous phenomenon. In this paper, we use the concept of arbitrarily varying channels to model the impact of unknown interference caused by coexisting wireless systems which operate on the same frequencies. Within this framework, capacity can be zero if pre-specified encoders and decoders are used. This necessitates the use of more sophisticated coordination schemes where the choice of encoders and decoders is additionally coordinated based on common randomness. As an application we study the arbitrarily varying bidirectional broadcast channel and derive the capacity regions for different coordination strategies. This problem is motivated by decode-and-forward bidirectional or two-way relaying, where a relay establishes a bidirectional communication between two other nodes while sharing the resources with other coexisting wireless networks.

  1. Bidirectional relationship between time preference and adolescent smoking and alcohol use: Evidence from longitudinal data.

    Science.gov (United States)

    Do, Young Kyung; Shin, Eunhae

    2017-07-01

    Scholarly interest in time preference as a potential predictor of risky health behaviors in adolescents has increased in recent years. However, most of the existing literature is limited due to the exclusive reliance on cross-sectional data, precluding the possibility of establishing the direction of causality. Using longitudinal data from the Korea Youth Panel Survey (2003-7), which followed up a nationally representative sample of 3449 adolescents aged 14years for five years, this study examines a bidirectional relationship between time preference and smoking and drinking behaviors among adolescents. We used discrete time hazard models of smoking and drinking initiation as a function of time preference measured at the baseline and fixed-effects ordered logit model of time preference, respectively. Our measure of time preference was derived from the survey question on a hypothetical choice between immediate enjoyment today and likely higher scores on an exam tomorrow. The overall results provide evidence on the bidirectional relationship; that is, higher time discounting (i.e., greater relative preference for present utility over future utility) results in an increased risk of engaging in smoking and drinking, and conversely, adopting such behaviors leads to a higher discount rate. The bidirectional relationship may function as a mechanism for adolescents to engage in increased smoking and drinking or additional negative health behaviors via gateway effects, strengthening the case for preventing the initiation of risky health behaviors among adolescents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Topology of a Bidirectional Converter for Energy Interaction between Electric Vehicles and the Grid

    Directory of Open Access Journals (Sweden)

    Jiuchun Jiang

    2014-07-01

    Full Text Available In vehicle-to-grid (V2G systems, electric vehicles interact with the grid as distributed energy storage systems that offer many potential benefits. As an energy interface between a vehicle and the grid, the bidirectional converter plays a crucial role in their interaction. Its reliability, safety, cost, efficiency, weight, size, harmonics, and other factors are of essential importance for V2G realization, especially for on-board operations. Beyond the common existing topologies for bidirectional chargers, this paper introduces a novel high-power-factor bidirectional single-stage full-bridge (BSS-FBC topology, which offers advantages in power density, size, weight, cost, efficiency, power quality, dynamic characteristic, reliability, and complexity. Its operational principles and control strategies are presented. Harmonic analysis on the basis of double-Fourier integral is performed with detailed comparison of line current harmonic characteristics between the BSS-FBC topology and unipolar/bipolar controlled single-phase pulse width modulation (PWM converters. A dynamic model of the topology is derived, its dynamic behavior analyzed, and its compensator design method developed. Simulation and experimental results are employed to verify the design and analysis. Design considerations for the key parameters are discussed. A 3.3 kW prototype is developed for this topology and validated in its vehicle applications. The results demonstrate clearly the benefits and advantages of the new topology.

  3. Remote Sensing of Plastic Debris

    Science.gov (United States)

    Garaba, S. P.; Dierssen, H. M.

    2016-02-01

    Plastic debris is becoming a nuisance in the environment and as a result there has been a dire need to synoptically detect and quantify them in the ocean and on land. We investigate the possible utility of spectral information determined from hand held, airborne and satellite remote sensing tools in the detection and identification polymer source of plastic debris. Sampled debris will be compared to our derived spectral library of typical raw polymer sources found at sea and in household waste. Additional work will be to determine ways to estimate the abundance of plastic debris in target areas. Implications of successful remote detection, tracking and quantification of plastic debris will be towards validating field observations over large areas and at repeated time intervals both on land and at sea.

  4. Plasticity and creep of metals

    CERN Document Server

    Rusinko, Andrew

    2011-01-01

    Here is a systematic presentation of the postulates, theorems and principles of mathematical theories of plasticity and creep in metals, and their applications. Special attention is paid to analysis of the advantages and shortcomings of the classical theories.

  5. Radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    Balcazar, M.; Tavera, L.

    2007-01-01

    Full text: The damage induced by ionizing radiation in plastics produce a wide diversity of changes in the either the whole polymer structure or a localized high destruction. The first effect is achieved by using gamma and/or electron irradiation, whereas the second is carry out by employing positive ions irradiation. The damage intensity can be controlled by the dose delivery to the plastic, in the first case and by the rate of energy loss of the incident ion in the second case. Damage deepness in the thickness of the plastic, depends of radiation energy, although, attenuation effects have to be considered for gamma and electron irradiation. This paper presents an overview of those effects, the applications for radiation dosimetry and the production of micro and nano pores, as well as the methodology for control all parameters involved in the damage. Techniques for visualization the localized high destruction in the plastics are also presented. (Author)

  6. Exceptional plasticity of silicon nanobridges

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Tadashi; Sato, Takaaki; Toshiyoshi, Hiroshi; Collard, Dominique; Fujita, Hiroyuki [University of Tokyo, Institute of Industrial Science, 4-6-1 Komaba Meguro, Tokyo 153-8505 (Japan); Cleri, Fabrizio [Institut d' Electronique Microelectronique et Nanotechnologie (CNRS UMR 8520), Universite de Lille I, Avenue Poincare BP60069 59652 Villeneuve d' Ascq (France); Kakushima, Kuniyuki [Tokyo Institute of Technology, 4259, Nagatsuda, Midori, Yokohama, Kanagawa 226-8502 (Japan); Mita, Makoto [Department of Spacecraft Engineering, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Miyata, Masaki; Itamura, Noriaki; Sasaki, Naruo [Department of Materials and Life Sciences, Seikei University, 3-3-1, Kitamachi, Kichijoji, Musashino, Tokyo 180-8633 (Japan); Endo, Junji, E-mail: tadashii@iis.u-tokyo.ac.jp [FK Optical laboratory, 1-13-4 Nakano Niiza Saitama, 352-0005 (Japan)

    2011-09-02

    The plasticity of covalently bonded materials is a subject at the forefront of materials science, bearing on a wide range of technological and fundamental aspects. However, covalent materials fracture in a brittle manner when the deformation exceeds just a few per cent. It is predicted that a macroscopically brittle material like silicon can show nanoscale plasticity. Here we report the exceptional plasticity observed in silicon nanocontacts ('nanobridges') at room temperature using a special experimental setup combining a transmission electron microscope and a microelectromechanical system. When accounting for surface diffusion, we succeeded in elongating the nanocontact into a wire-like structure, with a fivefold increase in volume, up to more than twenty times the original length. Such a large plasticity was caused by the stress-assisted diffusion and the sliding of the intergranular, amorphous-like material among the nanocrystals.

  7. Evolution of bidirectional sex change and gonochorism in fishes of the gobiid genera Trimma, Priolepis, and Trimmatom

    Science.gov (United States)

    Sunobe, Tomoki; Sado, Tetsuya; Hagiwara, Kiyoshi; Manabe, Hisaya; Suzuki, Toshiyuki; Kobayashi, Yasuhisa; Sakurai, Makoto; Dewa, Shin-ichi; Matsuoka, Midori; Shinomiya, Akihiko; Fukuda, Kazuya; Miya, Masaki

    2017-04-01

    Size-advantage and low-density models have been used to explain how mating systems favor hermaphroditism or gonochorism. However, these models do not indicate historical transitions in sexuality. Here, we investigate the evolution of bidirectional sex change and gonochorism by phylogenetic analysis using the mitochondrial gene of the gobiids Trimma (31 species), Priolepis (eight species), and Trimmatom (two species). Trimma and Priolepis formed a clade within the sister group Trimmatom. Gonadal histology and rearing experiments revealed that Trimma marinae, Trimma nasa, and Trimmatom spp. were gonochoric, whereas all other Trimma and Priolepis spp. were bidirectional sex changers or inferred ones. A maximum-likelihood reconstruction analysis demonstrated that the common ancestor of the three genera was gonochoristic. Bidirectional sex change probably evolved from gonochorism in a common ancestor of Trimma and Priolepis. As the gonads of bidirectional sex changers simultaneously contain mature ovarian and immature testicular components or vice versa, individuals are always potentially capable of functioning as females or males, respectively. Monogamy under low-density conditions may have been the ecological condition for the evolution of bidirectional sex change in a common ancestor. As T. marinae and T. nasa are a monophyletic group, gonochorism should have evolved from bidirectional sex change in a common ancestor.

  8. Office-Based Plastic Surgery

    OpenAIRE

    Ersek, Robert A.

    2007-01-01

    Office-based plastic surgery began in the 1960s and has expanded exponentially since then. The majority of plastic surgeons now have their own office-based facilities, and every elective aesthetic procedure from hair transplantation to abdominoplasty and breast reduction can be done as an outpatient procedure with tremendous increases in efficiency, safety, and time. We started with a single room and have expanded to three operating rooms, two specific preoperative, postoperative private room...

  9. Biocide Usage in Plastic Products

    OpenAIRE

    Kavak, Nergizhan; Çakır, Ayşegül; Koltuk, Fatmagül; Uzun, Utku

    2015-01-01

    People’s demand of improving their life quality caused to the term of hygiene become popular and increased the tendency to use more reliable and healthy products. This tendency makes the continuous developments in the properties of the materials used in manufactured goods compulsory. It is possible to create anti-bacterial plastic products by adding biocidal additives to plastic materials which have a wide-range of application in the areas such as health (medicine), food and many other indust...

  10. Computational materials science: Nanoscale plasticity

    DEFF Research Database (Denmark)

    Jacobsen, Karsten Wedel; Schiøtz, Jakob

    2002-01-01

    How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour.......How does plastic deformation of polycrystalline materials with grain sizes less than 100 nm look at the atomic scale? A large-scale molecular dynamics simulation of nanocrystalline alluminium reveals some surprising behaviour....

  11. Impact properties of aluminium - glass fiber reinforced plastics sandwich panels

    Directory of Open Access Journals (Sweden)

    Mathivanan Periasamy

    2012-06-01

    Full Text Available Aluminium - glass fiber reinforced plastics (GFRP sandwich panels are hybrid laminates consisting of GFRP bonded with thin aluminum sheets on either side. Such sandwich materials are increasingly used in airplane and automobile structures. Laminates with varying aluminium thickness fractions, fiber volume fractions and orientation in the layers of GFRP were fabricated by hand lay up method and evaluated for their impact performance by conducting drop weight tests under low velocity impacts. The impact energy required for initiating a crack in the outer aluminium layer as well as the energy required for perforation was recorded. The impact load-time history was also recorded to understand the failure behavior. The damage depth and the damage area were measured to evaluate the impact resistance. Optical photography and scanning electron micrographs were taken to visualize the crack and the damage zone. The bidirectional cross-ply hybrid laminate (CPHL has been found to exhibit better impact performance and damage resistance than the unidirectional hybrid laminate (UDHL. Increase in aluminium thickness fraction (Al tf and fiber volume fraction (Vf resulted in an increase in the impact energy required for cracking and perforation. On an overall basis, the sandwich panels exhibited better impact performance than the monolithic aluminium.

  12. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-Thomsen, S.; Ditlevsen, Ove Dalager

    1999-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  13. Experiments with elasto-plastic oscillator

    DEFF Research Database (Denmark)

    Randrup-thomsen, Søren; Ditlevsen, Ove Dalager

    1996-01-01

    Plastic displacements of a Gaussian white noise excited three degrees of freedom non-ideal elasto-plastic oscillator are measured in laboratory experiments and the plastic displacements are compared to computer simulated results for the corresponding ideal elasto-plastic oscillator. The comparative...

  14. 49 CFR 192.59 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.59 Section 192.59 Transportation... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Materials § 192.59 Plastic pipe. (a) New plastic pipe... specification; and (2) It is resistant to chemicals with which contact may be anticipated. (b) Used plastic pipe...

  15. 49 CFR 192.281 - Plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Plastic pipe. 192.281 Section 192.281... Plastic pipe. (a) General. A plastic pipe joint that is joined by solvent cement, adhesive, or heat fusion may not be disturbed until it has properly set. Plastic pipe may not be joined by a threaded joint or...

  16. Evolution of phenotypic plasticity in colonizing species.

    Science.gov (United States)

    Lande, Russell

    2015-05-01

    I elaborate an hypothesis to explain inconsistent empirical findings comparing phenotypic plasticity in colonizing populations or species with plasticity from their native or ancestral range. Quantitative genetic theory on the evolution of plasticity reveals that colonization of a novel environment can cause a transient increase in plasticity: a rapid initial increase in plasticity accelerates evolution of a new optimal phenotype, followed by slow genetic assimilation of the new phenotype and reduction of plasticity. An association of colonization with increased plasticity depends on the difference in the optimal phenotype between ancestral and colonized environments, the difference in mean, variance and predictability of the environment, the cost of plasticity, and the time elapsed since colonization. The relative importance of these parameters depends on whether a phenotypic character develops by one-shot plasticity to a constant adult phenotype or by labile plasticity involving continuous and reversible development throughout adult life. © 2014 John Wiley & Sons Ltd.

  17. Elimination of Plastic Polymers in Natural Environments

    OpenAIRE

    Ramirez-Ekner, Sofia; Bidstrup, Marie Juliane Svea; Brusen, Nicklas Hald; Rugaard-Morgan, Zsa-Zsa Sophie Oona Ophelia

    2017-01-01

    Plastic production and consumption continues to rise and subsequently plastic waste continues to accumulates in natural environments, causing harm to ecosystems.The aim of this paper was to come up with a way to utilize organisms, that have been identified to produce plastic degrading enzymes, as a waste disposal technology. This review includes accounts of plastic production rates, the occurrence of plastic in natural environments and the current waste management systems to create an underst...

  18. New rules governing synaptic plasticity in core nucleus accumbens medium spiny neurons.

    Science.gov (United States)

    Ji, Xincai; Martin, Gilles E

    2012-12-01

    The nucleus accumbens is a forebrain region responsible for drug reward and goal-directed behaviors. It has long been believed that drugs of abuse exert their addictive properties on behavior by altering the strength of synaptic communication over long periods of time. To date, attempts at understanding the relationship between drugs of abuse and synaptic plasticity have relied on the high-frequency long-term potentiation model of T.V. Bliss & T. Lømo [(1973) Journal of Physiology, 232, 331-356]. We examined synaptic plasticity using spike-timing-dependent plasticity, a stimulation paradigm that reflects more closely the in vivo firing patterns of mouse core nucleus accumbens medium spiny neurons and their afferents. In contrast to other brain regions, the same stimulation paradigm evoked bidirectional long-term plasticity. The magnitude of spike-timing-dependent long-term potentiation (tLTP) changed with the delay between action potentials and excitatory post-synaptic potentials, and frequency, whereas that of spike-timing-dependent long-term depression (tLTD) remained unchanged. We showed that tLTP depended on N-methyl-d-aspartate receptors, whereas tLTD relied on action potentials. Importantly, the intracellular calcium signaling pathways mobilised during tLTP and tLTD were different. Thus, calcium-induced calcium release underlies tLTD but not tLTP. Finally, we found that the firing pattern of a subset of medium spiny neurons was strongly inhibited by dopamine receptor agonists. Surprisingly, these neurons were exclusively associated with tLTP but not with tLTD. Taken together, these data point to the existence of two subgroups of medium spiny neurons with distinct properties, each displaying unique abilities to undergo synaptic plasticity. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Translational control of auditory imprinting and structural plasticity by eIF2α

    Science.gov (United States)

    Batista, Gervasio; Johnson, Jennifer Leigh; Dominguez, Elena; Costa-Mattioli, Mauro; Pena, Jose L

    2016-01-01

    The formation of imprinted memories during a critical period is crucial for vital behaviors, including filial attachment. Yet, little is known about the underlying molecular mechanisms. Using a combination of behavior, pharmacology, in vivo surface sensing of translation (SUnSET) and DiOlistic labeling we found that, translational control by the eukaryotic translation initiation factor 2 alpha (eIF2α) bidirectionally regulates auditory but not visual imprinting and related changes in structural plasticity in chickens. Increasing phosphorylation of eIF2α (p-eIF2α) reduces translation rates and spine plasticity, and selectively impairs auditory imprinting. By contrast, inhibition of an eIF2α kinase or blocking the translational program controlled by p-eIF2α enhances auditory imprinting. Importantly, these manipulations are able to reopen the critical period. Thus, we have identified a translational control mechanism that selectively underlies auditory imprinting. Restoring translational control of eIF2α holds the promise to rejuvenate adult brain plasticity and restore learning and memory in a variety of cognitive disorders. DOI: http://dx.doi.org/10.7554/eLife.17197.001 PMID:28009255

  20. Blood response to plasticized poly(vinyl chloride): dependence of fibrinogen adsorption on plasticizer selection and surface plasticizer level.

    Science.gov (United States)

    Zhao, X B; Courtney, J M

    2003-10-01

    The high level of plasticizer in plasticized poly(vinyl chloride) (PVC) ensures that plasticizer selection has an important influence on the suitability of PVC to function in blood-contacting applications. In this study, three types of plasticized PVC in sheet form, with di-(2-ethylhexyl)phthalate (DEHP), tri-(2-ethylhexyl)trimellitate (TEHTM) and n-butyryltri-n-hexyl citrate (BTHC) as plasticizer, were selected for assessment and single solute fibrinogen adsorption was utilized as an initial index of interactions with blood components. Fibrinogen adsorption behavior shows a strong dependence on the plasticizer selection, plasticizer level at the surface and the adsorption conditions, such as adsorption time and fibrinogen solution concentration. Results indicate that BTHC plasticized PVC possesses the lowest adsorption capacity in the three types of plasticized PVC, while TEHTM plasticized PVC seems to have the strongest reactivity in certain fibrinogen solution concentrations. The alteration of surface plasticizer level was achieved by a methanol-cleaning treatment with a variety of cleaning times and the fibrinogen adsorption on plasticized PVC decreases with the reduction of surface plasticizer level. The migration behavior of two phthalate esters (DEHP and TEHTM) was evaluated using UV-Spectrophotometer to determine the plasticizer level at the surfaces. In addition, the fibrinogen adsorption mechanism was examined with Freundlich adsorption modeling.

  1. Neurogenomic mechanisms of social plasticity.

    Science.gov (United States)

    Cardoso, Sara D; Teles, Magda C; Oliveira, Rui F

    2015-01-01

    Group-living animals must adjust the expression of their social behaviour to changes in their social environment and to transitions between life-history stages, and this social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. Here, we propose a conceptual framework for understanding the neuromolecular mechanisms of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of a neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different genomic and epigenetic states of this brain network correspond to different behavioural states, and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. Different types of social plasticity can be recognized based on the observed patterns of inter- versus intra-individual occurrence, time scale and reversibility. It is proposed that these different types of social plasticity rely on different proximate mechanisms at the physiological, neural and genomic level. © 2015. Published by The Company of Biologists Ltd.

  2. Strain rate dependence in plasticized and un-plasticized PVC

    OpenAIRE

    Siviour C.R.; Kendall M.J.

    2012-01-01

    An experimental and analytical investigation has been made into the mechanical behaviour of two poly (vinyl chloride) (PVC) polymers – an un-plasticized PVC and a diisononyl phthalate (DINP)-plasticized PVC. Measurements of the compressive stress-strain behaviour of the PVCs at strain rates ranging from 10−3 to 103s−1 and temperatures from − 60 to 100∘C are presented. Dynamic Mechanical Analysis was also performed in order to understand the material transitions observed in compression testing...

  3. Sniff-Like Patterned Input Results in Long-Term Plasticity at the Rat Olfactory Bulb Mitral and Tufted Cell to Granule Cell Synapse

    Directory of Open Access Journals (Sweden)

    Mahua Chatterjee

    2016-01-01

    Full Text Available During odor sensing the activity of principal neurons of the mammalian olfactory bulb, the mitral and tufted cells (MTCs, occurs in repetitive bursts that are synchronized to respiration, reminiscent of hippocampal theta-gamma coupling. Axonless granule cells (GCs mediate self- and lateral inhibitory interactions between the excitatory MTCs via reciprocal dendrodendritic synapses. We have explored long-term plasticity at this synapse by using a theta burst stimulation (TBS protocol and variations thereof. GCs were excited via glomerular stimulation in acute brain slices. We find that TBS induces exclusively long-term depression in the majority of experiments, whereas single bursts (“single-sniff paradigm” can elicit both long-term potentiation and depression. Statistical analysis predicts that the mechanism underlying this bidirectional plasticity involves the proportional addition or removal of presynaptic release sites. Gamma stimulation with the same number of APs as in TBS was less efficient in inducing plasticity. Both TBS- and “single-sniff paradigm”-induced plasticity depend on NMDA receptor activation. Since the onset of plasticity is very rapid and requires little extra activity, we propose that these forms of plasticity might play a role already during an ongoing search for odor sources. Our results imply that components of both short-term and long-term olfactory memory may be encoded at this synapse.

  4. Extruded plastic scintillator including inorganic powders

    Science.gov (United States)

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-06-27

    A method for producing a plastic scintillator is disclosed. A plurality of nano-sized particles and one or more dopants can be combined with a plastic material for the formation of a plastic scintillator thereof. The nano-sized particles, the dopant and the plastic material can be combined within the dry inert atmosphere of an extruder to produce a reaction that results in the formation of a plastic scintillator thereof and the deposition of energy within the plastic scintillator, such that the plastic scintillator produces light signifying the detection of a radiative element. The nano-sized particles can be treated with an inert gas prior to processing the nano-sized particles, the dopant and the plastic material utilizing the extruder. The plastic scintillator can be a neutron-sensitive scintillator, x-ray sensitive scintillator and/or a scintillator for the detection of minimum ionizing particles.

  5. Plastic solidification of radioactive wastes

    International Nuclear Information System (INIS)

    Moriyama, Noboru

    1981-01-01

    Over 20 years have elapsed after the start of nuclear power development, and the nuclear power generation in Japan now exceeds the level of 10,000 MW. In order to meet the energy demands, the problem of the treatment and disposal of radioactive wastes produced in nuclear power stations must be solved. The purpose of the plastic solidification of such wastes is to immobilize the contained radionuclides, same as other solidification methods, to provide the first barrier against their move into the environment. The following matters are described: the nuclear power generation in Japan, the radioactive wastes from LWR plants, the position of plastic solidification, the status of plastic solidification in overseas countries and in Japan, the solidification process for radioactive wastes with polyethylene, and the properties of solidified products, and the leachability of radionuclides in asphalt solids. (J.P.N.)

  6. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  7. Phenomenological model of local plasticity

    Directory of Open Access Journals (Sweden)

    Dolgorukov Vadim Aleksandrovich

    2012-10-01

    Full Text Available Two points of an elastic and perfectly plastic material exposed to the plane stress are examined by the author. One point is located on the stress concentrator surface. The other one is located at a certain distance from the first one (it is considered as a secondary point within the framework of the kinetic theory of a plastic flow. As a result of the finite element analysis of the stress-strain state it has been discovered that the material in the point located in the front area of the kinetic plastic flow remains linearly elastic in terms of its physical condition, and the load is applied to it in accordance with a curved trajectory.

  8. MIPP Plastic Ball electronics upgrade

    Science.gov (United States)

    Baldin, Boris; MIPP Collaboration

    2009-10-01

    An upgrade electronics design for Plastic Ball detector is described. The Plastic Ball detector was a part of several experiments in the past and its back portion (proposed to be used in Main Injector Particle Production (MIPP)) consists of 340 photomultipliers equipped with a sandwich scintillator. The scintillator sandwich has fast and slow signal component with decay times 10 ns and 1 μs, respectively. The upgraded MIPP experiment will collect up to 12,000 events during each 4 s spill and read them out in ˜50 s between spills. The MIPP data acquisition system will employ deadtime-less concept successfully implemented in Muon Electronics of Dzero experiment at Fermilab An 8-channel prototype design of the Plastic Ball Front-End (PBFE) implementing these requirements is discussed. Details of the schematic design, simulation and prototype test results are discussed.

  9. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  10. Outcome measurement in plastic surgery.

    Science.gov (United States)

    Wormald, Justin C R; Rodrigues, Jeremy N

    2018-03-01

    Outcome measurement in plastic surgery is often surgeon-centred, and clinician-derived. Greater emphasis is being placed on patient-reported outcomes (PROs), in which the patients' perspective is measured directly from them. Numerous patient-reported outcome measures (PROMs) have been developed in a range of fields, with a number of good quality PROMs in plastic surgery. They can be deployed to support diagnosis, disease severity determination, referral pathways, treatment decision-making, post-operative care and in determining cost-effectiveness. In order to understand the impact of disease and health interventions, appropriate PROMs are a logical choice in plastic surgery, where many conditions involve detriment of function or cosmesis. PROMS can be classified as disease-specific, domain-specific, dimension-specific, population-specific and generic. Choosing the correct outcome and measure can be nebulous. The two most important considerations are: is it suitable for the intended purpose? And how valid is it? Measurement that combines being patient-centred and aligning with clinicians' understanding is achievable, and can be studied scientifically. Rational design of new PROMs and considered choice of measures is critical in clinical practice and research. There are a number of tools that can be employed to assess the quality of PROMs that are outlined in this overview. Clinicians should consider the quality of measures both in their own practice and when critically appraising evidence. This overview of outcome measurement in plastic surgery provides a tool set enabling plastic surgeons to understand, implement and analyse outcome measures across clinical and academic practice. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Modeling the distribution of ammonia across Europe including bi-directional surface–atmosphere exchange

    Directory of Open Access Journals (Sweden)

    R. J. Wichink Kruit

    2012-12-01

    Full Text Available A large shortcoming of current chemistry transport models (CTM for simulating the fate of ammonia in the atmosphere is the lack of a description of the bi-directional surface–atmosphere exchange. In this paper, results of an update of the surface–atmosphere exchange module DEPAC, i.e. DEPosition of Acidifying Compounds, in the chemistry transport model LOTOS-EUROS are discussed. It is shown that with the new description, which includes bi-directional surface–atmosphere exchange, the modeled ammonia concentrations increase almost everywhere, in particular in agricultural source areas. The reason is that by using a compensation point the ammonia lifetime and transport distance is increased. As a consequence, deposition of ammonia and ammonium decreases in agricultural source areas, while it increases in large nature areas and remote regions especially in southern Scandinavia. The inclusion of a compensation point for water reduces the dry deposition over sea and allows reproducing the observed marine background concentrations at coastal locations to a better extent. A comparison with measurements shows that the model results better represent the measured ammonia concentrations. The concentrations in nature areas are slightly overestimated, while the concentrations in agricultural source areas are still underestimated. Although the introduction of the compensation point improves the model performance, the modeling of ammonia remains challenging. Important aspects are emission patterns in space and time as well as a proper approach to deal with the high concentration gradients in relation to model resolution. In short, the inclusion of a bi-directional surface–atmosphere exchange is a significant step forward for modeling ammonia.

  12. Observations of a bi-directional lightning leader producing an M-component

    Science.gov (United States)

    Kotovsky, D. A.; Uman, M. A.; Wilkes, R.; Carvalho, F. L.; Jordan, D. M.

    2017-12-01

    Lightning discharges to ground often exhibit millisecond-scale surges in the continuing currents following return strokes, called M-components. Relatively little is known regarding the source of M-component charge and the mechanisms by which that charge is transferred to ground. In this work, we seek to directly address these questions by presenting correlated high-speed video and Lightning Mapping Array (LMA) observations of a bi-directional leader that resulted in an M-component occurring in a rocket-and-wire triggered lightning flash. The observed leader initiated in the decayed remnants of a positive leader channel that had traversed virgin air approximately 90 msec prior. Three-dimensional locations and speeds of the photographed bi-directional leader and M-component processes are calculated by mapping video images to the observed LMA channel geometry. Both ends of the bi-directional leader exhibited speeds on the order of 2 x106 m sec-1 over 570 meters of the visible channel. Propagation of the luminosity wave from the in-cloud leader to ground ( 8.8 km channel length) exhibited appreciable dispersion, with rise-times (10-90%) increasing from 330 to 410 μsec and pulse-widths (half-maximum) increasing from 380 to 810 μsec - the M-component current pulse measured at ground-level exhibited a rise-time of 290 μsec and a pulse-width of 770 μsec. Group velocities of the luminosity wave have been calculated as a function of frequency, increasing from 2 x107 to 6 x107 m sec-1 over the dominant signal bandwidth (DC to 2 kHz). Additionally, multiple waves of luminosity are observed within the in-cloud channel, indicating nuanced wave phenomena possibly associated with reflection from the end of the leader channel and attachment with the main lightning channel carrying continuing current to ground.

  13. Bidirectional promoters as important drivers for the emergence of species-specific transcripts.

    Science.gov (United States)

    Gotea, Valer; Petrykowska, Hanna M; Elnitski, Laura

    2013-01-01

    The diversification of gene functions has been largely attributed to the process of gene duplication. Novel examples of genes originating from previously untranscribed regions have been recently described without regard to a unifying functional mechanism for their emergence. Here we propose a model mechanism that could generate a large number of lineage-specific novel transcripts in vertebrates through the activation of bidirectional transcription from unidirectional promoters. We examined this model in silico using human transcriptomic and genomic data and identified evidence consistent with the emergence of more than 1,000 primate-specific transcripts. These are transcripts with low coding potential and virtually no functional annotation. They initiate at less than 1 kb upstream of an oppositely transcribed conserved protein coding gene, in agreement with the generally accepted definition of bidirectional promoters. We found that the genomic regions upstream of ancestral promoters, where the novel transcripts in our dataset reside, are characterized by preferential accumulation of transposable elements. This enhances the sequence diversity of regions located upstream of ancestral promoters, further highlighting their evolutionary importance for the emergence of transcriptional novelties. By applying a newly developed test for positive selection to transposable element-derived fragments in our set of novel transcripts, we found evidence of adaptive evolution in the human lineage in nearly 3% of the novel transcripts in our dataset. These findings indicate that at least some novel transcripts could become functionally relevant, and thus highlight the evolutionary importance of promoters, through their capacity for bidirectional transcription, for the emergence of novel genes.

  14. Bidirectional promoters as important drivers for the emergence of species-specific transcripts.

    Directory of Open Access Journals (Sweden)

    Valer Gotea

    Full Text Available The diversification of gene functions has been largely attributed to the process of gene duplication. Novel examples of genes originating from previously untranscribed regions have been recently described without regard to a unifying functional mechanism for their emergence. Here we propose a model mechanism that could generate a large number of lineage-specific novel transcripts in vertebrates through the activation of bidirectional transcription from unidirectional promoters. We examined this model in silico using human transcriptomic and genomic data and identified evidence consistent with the emergence of more than 1,000 primate-specific transcripts. These are transcripts with low coding potential and virtually no functional annotation. They initiate at less than 1 kb upstream of an oppositely transcribed conserved protein coding gene, in agreement with the generally accepted definition of bidirectional promoters. We found that the genomic regions upstream of ancestral promoters, where the novel transcripts in our dataset reside, are characterized by preferential accumulation of transposable elements. This enhances the sequence diversity of regions located upstream of ancestral promoters, further highlighting their evolutionary importance for the emergence of transcriptional novelties. By applying a newly developed test for positive selection to transposable element-derived fragments in our set of novel transcripts, we found evidence of adaptive evolution in the human lineage in nearly 3% of the novel transcripts in our dataset. These findings indicate that at least some novel transcripts could become functionally relevant, and thus highlight the evolutionary importance of promoters, through their capacity for bidirectional transcription, for the emergence of novel genes.

  15. Bi-directional Reflectance of Icy Surface Analogs: A Dual Approach

    Science.gov (United States)

    Quinones, Juan Manuel; Vides, Christina; Nelson, Robert M.; Boryta, Mark; Mannat, Ken s.

    2018-01-01

    Bi-directional reflectance measurements of analogs for planetary regolith have provided insight into the surface properties of planetary satellites and small bodies. Because Aluminum Oxide (Al2O3) and water ice share a similar hexagonal crystalline structure, the former has been used in laboratory experiments to simulate the regolith of both icy and dusty planetary bodies. By measuring various sizes of well sorted size fractions of Al2O3, the reflectance phase curve and porosity of a planetary regolith can be determined. We have designed an experiment to test the laboratory measurements produced by Nelson et al. (2000). Additionally, we made reflectance measurements for other alkali-halide compounds that could be used for applications beyond astronomy and planetary science.In order to provide an independent check on the Nelson et al. data, we designed an instrument with a different configuration. While both instruments take bidirectional reflectance measurements, our instrument, the Rigid Photometric Goniometer (RPG), is fixed at a phase angle of 5° and detects the scattered light with a photomultiplier tube (PMT). The PMT current is then measured with an electrometer. Following the example of Nelson et al., we measured the bidirectional reflectance of Al2O3 particulate size fractions between 0.1

  16. Consistency of Earth Radiation Budget Experiment bidirectional models and the observed anisotropy of reflected sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, D.G. (Univ. of Colorado, Boulder (USA)); Coakley, J.A. (Oregon State Univ., Corvallis (USA))

    1991-03-20

    The Earth Radiation Budget Experiment (ERBE) uses bidirectional models to estimate radiative fluxes from observed radiances. The anisotropy of the radiance field derived from these models is compared with that observed with the ERBE scanner on the Earth Radiation Budget Satellite (ERBS). The bidirectional models used by ERBE were derived from NIMBUS 7 Earth radiation budget (ERB) scanner observations. Because of probable differences in the radiometric calibrations of the ERB and ERBE scanners and because of differences in their field of view sizes, the authors expect to find systematic differences of a few percent between the NIMBUS 7 ERB-derived radiation field anisotropy and the ERBS scanner-observed anisotropy. The differences expected are small compared with the variability of the anisotropy which arises from the variability in cloud cover allowed to occur within the individual scene types. By averaging over groups of 40 ERBE scanner scan lines (equivalent to an average over approximately 2,000 km) for a period of a month, they detect significant differences between the modeled and observed anisotropy for particular scene types and Sun-Earth-satellite viewing geometries. For a typical 2.5{degree} latitude-longitude region these differences give rise to a bias in the radiative flux that is at least 0.3% for the monthly mean and an rms error that is at least 4% for instantaneous observations. By comparing the fluxes derived using the observed anisotropy with those derived assuming isotropic reflection, they conclude that a reasonable estimate for the maximum error due to the use of incorrect bidirectional models is a bias of approximately 4% for a typical 2.5{degree} latitude-longitude, monthly mean and an rms error of 15%.

  17. Computational Strain Gradient Crystal Plasticity

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Kysar, Jeffrey W.

    2011-01-01

    element solution method is presented, which delivers the slip-rate field and the velocity-field based on two minimum principles. Some plane deformation problems relevant for certain specific orientations of a face centered cubic crystal under plane loading conditions are studied, and effective in......A model for strain gradient crystal visco-plasticity is formulated along the lines proposed by Fleck andWillis (2009) for isotropic plasticity. Size-effects are included in the model due to the addition of gradient terms in both the free energy as well as through a dissipation potential. A finite...

  18. Size effects in crystal plasticity

    DEFF Research Database (Denmark)

    Borg, Ulrik

    2007-01-01

    Numerical analyses of plasticity size effects have been carried out for different problems using a developed strain gradient crystal plasticiy theory. The theory employs higher order stresses as work conjugates to slip gradients and uses higher order boundary conditions. Problems on localization...... of plastic flow in a single crystal, grain boundary effects in a bicrystal, and grain size effects in a polycrystal are studied. Single crystals containing micro-scale voids have also been analyzed at different loading conditions with focus on the stress and deformation fields around the voids, on void...

  19. Plasticity Theory of Fillet Welds

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    This paper deals with simple methods for calculation of fillet welds based on the theory of plasticity. In developing the solutions the lower-bound theorem is used. The welding material and parts of the base material are subdivided into triangular regions with homogeneous stress fields; thereby...... a safe and statically admissible stress distribution is established. The plasticity solutions are compared with tests carried out at the Engineering Academy of Denmark, Lyngby, in the early nineties, and old fillet weld tests. The new failure conditions are in very good agreement with the yield load...

  20. Plasticity: Resource justification and development

    Science.gov (United States)

    Sayre, Eleanor C.

    Physics education research is fundamentally concerned with understanding the processes of student learning and facilitating the development of student understanding. A better understanding of learning processes and outcomes is integral to improving said learning. In this thesis, I detail and expand upon Resource Theory, allowing it to account for the development of resources and connecting the activation and use of resources to experimental data. Resource Theory is a general knowledge-in-pieces schema theory. It bridges cognitive science and education research to describe the phenomenology of problem solving. Resources are small, reusable pieces of thought that make up concepts and arguments. The physical context and cognitive state of the user determine which resources are available to be activated; different people have different resources about different things. Over time, resources may develop, acquiring new meanings as they activate in different situations. In this thesis, I introduce "plasticity," a continuum for describing the development of resources. The plasticity continuum blends elements of Process/Object and Cognitive Science with Resource Theory. The name evokes brain plasticity and myelination (markers of learning power and reasoning speed, respectively) and materials plasticity and solidity (with their attendant properties, deformability and stability). In the plasticity continuum, the two directions are more plastic and more solid. More solid resources are more durable and more connected to other resources. Users tend to be more committed to them because reasoning with them has been fruitful in the past. Similarly, users tend not to perform consistency checks on them any more. In contrast, more plastic resources need to be tested against the existing network more often, as users forge links between them and other resources. To explore these expansions and their application, I present several extended examples drawn from an Intermediate Mechanics