WorldWideScience

Sample records for bicuculline

  1. Convulsant bicuculline modifies CNS muscarinic receptor affinity

    Directory of Open Access Journals (Sweden)

    Rodríguez de Lores Arnaiz Georgina

    2006-04-01

    Full Text Available Abstract Background Previous work from this laboratory has shown that the administration of the convulsant drug 3-mercaptopropionic acid (MP, a GAD inhibitor, modifies not only GABA synthesis but also binding of the antagonist [3H]-quinuclidinyl benzilate ([3H]-QNB to central muscarinic receptors, an effect due to an increase in affinity without modifications in binding site number. The cholinergic system has been implicated in several experimental epilepsy models and the ability of acetylcholine to regulate neuronal excitability in the neocortex is well known. To study the potential relationship between GABAergic and cholinergic systems with seizure activity, we analyzed the muscarinic receptor after inducing seizure by bicuculline (BIC, known to antagonize the GABA-A postsynaptic receptor subtype. Results We analyzed binding of muscarinic antagonist [3H]-QNB to rat CNS membranes after i.p. administration of BIC at subconvulsant (1.0 mg/kg and convulsant (7.5 mg/kg doses. Subconvulsant BIC dose failed to develop seizures but produced binding alteration in the cerebellum and hippocampus with roughly 40% increase and 10% decrease, respectively. After convulsant BIC dose, which invariably led to generalized tonic-clonic seizures, binding increased 36% and 15% to cerebellar and striatal membranes respectively, but decreased 12% to hippocampal membranes. Kd value was accordingly modified: with the subconvulsant dose it decreased 27% in cerebellum whereas it increased 61% in hippocampus; with the convulsant dose, Kd value decreased 33% in cerebellum but increased 85% in hippocampus. No change in receptor number site was found, and Hill number was invariably close to unity. Conclusion Results indicate dissimilar central nervous system area susceptibility of muscarinic receptor to BIC. Ligand binding was modified not only by a convulsant BIC dose but also by a subconvulsant dose, indicating that changes are not attributable to the seizure process

  2. Sodium-independent, bicuculline-sensitive (/sup 3/H)GABA binding to isolated rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Minuk, G.Y.; Bear, C.E.; Sarjeant, E.J.

    1987-05-01

    To determine whether hepatocytes possess specific receptor sites for gamma-aminobutyric acid (GABA), a potent amino acid neurotransmitter, (/sup 3/H)GABA, was added to sodium-free suspensions of Percoll-purified hepatocytes derived from collagenase-perfused rat livers under various experimental conditions and in the presence or absence of specific GABA receptor agonists (muscimol) and antagonists (bicuculline). The effects of GABA, muscimol, and bicuculline on hepatocyte resting membrane potentials were also determined. Specific binding of (/sup 3/H)GABA to hepatocytes was a consistent finding. GABA-hepatocyte interactions were reversible and temperature dependent. Muscimol and bicuculline inhibited binding in a dose-dependent manner (IC50, 30 nM and 50 microM, respectively), whereas strychnine (1.0-100 microM), a nonspecific central nervous system stimulant, had no appreciable effect. Both GABA and muscimol (100 microM) caused significant hyperpolarization of hepatocyte resting membrane potential (delta PD 5.4 +/- 3.1 and 22.2 +/- 16.2 mV, respectively, means +/- SD, P less than 0.0005). Bicuculline (100 microM) inhibited the effect of muscimol (P less than 0.05). The results of this study suggest that specific GABA receptor sites exist on the surface of isolated rat hepatocytes. The presence of such sites raises the possibility that, in addition to adrenergic and cholinergic innervation, hepatic function may be influenced by GABA-ergic neurotransmitter mechanisms.

  3. Bicuculline methiodide in the blood-brain barrier-epileptogen model of epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Remler, M.P.; Marcussen, W.H.

    Focal epilepsy can be produced by a blood-brain barrier (BBB)-excluded systemic convulsant (penicillin, folic acid, etc.) in the presence of a focal BBB lesion. Bicuculline methiodide, a gamma-aminobutyric acid blocking epileptogen, crosses the normal BBB of rats poorly and produces no consistent abnormality behaviorally or on EEG at 36 mg/kg. When the BBB is opened in 0.25 ml of cortex by 6,000 rad of alpha particles, by a pin trauma lesion, or by a heat lesion, the rats are normal clinically and on EEG. When these lesioned rats are challenged with bicuculline methiodide, 36 mg/kg, an intense, highly localized epileptiform discharge results that begins approximately 20 min after injection and lasts 30-90 min. The plausibility and experimental utility of the BBB-epileptogen model of epilepsy are enhanced by these observations.

  4. Enhanced inositide turnover in brain during bicuculline-induced status epilepticus

    Energy Technology Data Exchange (ETDEWEB)

    Van Rooijen, L.A.; Vadnal, R.; Dobard, P.; Bazan, N.G.

    1986-04-29

    Because brain inositides are enriched in the 1-stearoyl-2-arachidonoyl species, they form a likely source for the tetraenoic free fatty acids (FFA) and diacylglycerols (DG) that are accumulated during seizures. To study inositide turnover during bicuculline-induced seizures, rats were injected intraventricularly and bilaterally with 10-20 microCi /sup 32/P, mechanically ventilated and sacrificed by 6.5 KW head-focused microwave irradiation. Seizure activity was recorded by electroencephalography. Bicuculline-induced seizure activity resulted in: a) almost 50% increase in /sup 32/P labeling of phosphatidic acid (PA); phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2) also increased (24% and 36%, respectively); b) no change in other lipids; and c) water-soluble phosphodiesteratic degradation products, analyzed by high voltage paper electrophoresis, increased 24% in the amount of radiotracer recovered as inositol 1,4-bisphosphate (IP2) and by 44% in the amount recovered as inositol 1,4,5-trisphosphate (IP3). These data indicate that during experimental status epilepticus the cerebral inositide cycle is accelerated: PIP2----(IP3----IP2----IP----I) + DG----PA----PI----PIP----PIP2.

  5. Diazepam prophylaxis for bicuculline-induced seizures: a rat dose-response model.

    Science.gov (United States)

    Anschel, David J; Ortega, Erik; Fisher, Robert S

    2004-02-06

    We developed a screening methodology to test the ability of putative antiepileptic drugs delivered directly to a seizure focus to prevent epileptiform activity. The left hippocampi of 15 rats were implanted with an injection cannula and bipolar recording electrodes. Bone screws were used to record neocortical EEG activity. Diazepam (DZP) at one of four possible concentrations or control solution was injected into the hippocampus, followed 5 min later by bicuculline methiodide. DZP suppressed spikes and ictal events in a dose-dependent manner (P<0.0001). At 100 mM, DZP reduced spikes from 678+/-128 to 87+/-35 for a 15 min segment. Numbers of ictal events (seizure) and latency to the first event were reduced by prophylactic DZP. The study establishes a protocol for testing of intracranially-injected drugs to prevent focal seizures.

  6. GABAρ subunits confer a bicuculline-insensitive component to GFAP+ cells of cerebellum

    Science.gov (United States)

    Pétriz, Adriana; Reyes-Haro, Daniel; González-González, María Alejandra; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2014-01-01

    GABA-A receptors mediating synaptic or extrasynaptic transmission are molecularly and functionally distinct, and glial cells are known to express a plethora of GABA-A subunits. Here we demonstrate that GFAP+ cells of the granular layer of cerebellum express GABAρ subunits during early postnatal development, thereby conferring peculiar pharmacologic characteristics to GABA responses. Electron microscopy revealed the presence of GABAρ in the plasma membrane of GFAP+ cells. In contrast, expression in the adult was restricted to Purkinje neurons and a subset of ependymal cells. Electrophysiological studies in vitro revealed that astrocytes express functional receptors with an EC50 of 52.2 ± 11.8 μM for GABA. The evoked currents were inhibited by bicuculline (100 μM) and TPMPA (IC50, 5.9 ± 0.6 μM), indicating the presence of a GABAρ component. Coimmunoprecipitation demonstrated protein–protein interactions between GABAρ1 and GABAα1, and double immunofluorescence showed that these subunits colocalize in the plasma membrane. Three populations of GABA-A receptors in astrocytes were identified: classic GABA-A, bicuculline-insensitive GABAρ, and GABA-A–GABAρ hybrids. Clusters of GABA-A receptors were distributed in the perinuclear space and along the processes of GFAP+ cells. Time-lapse microscopy showed GABAρ2-GFP accumulation in clusters located in the soma and along the processes. The clusters were relatively immobile, with mean displacement of 9.4 ± 0.9 μm and a net distance traveled of 1–2 μm, owing mainly to directional movement or simple diffusion. Modulation of GABAρ dynamics may be a novel mechanism of extrasynaptic transmission regulating GABAergic control of GFAP+ cells during early postnatal development. PMID:25422464

  7. Coadministration of intrathecal strychnine and bicuculline effects synergistic allodynia in the rat: an isobolographic analysis.

    Science.gov (United States)

    Loomis, C W; Khandwala, H; Osmond, G; Hefferan, M P

    2001-03-01

    Tactile allodynia can be modeled in experimental animals by acutely blocking spinal glycine or GABA(A) receptors with intrathecal (i.t.) strychnine (STR) or bicuculline (BIC), respectively. To test the hypothesis that glycine and GABA effect cooperative (supra-additive) inhibition of touch-evoked responses in the spinal cord, male Sprague-Dawley rats, fitted with chronic i.t. catheters, were used. Following i.t. STR, BIC, or STR + BIC, hair deflection evoked cardiovascular (increased blood pressure and heart rate), motor (scratching, kicking and rippling of the affected dermatomes), and cortical encephalographic responses. Hair deflection was without effect in i.t. saline-treated rats. Isobolographic analysis of STR (ED(50) = 25.1-36.9 microg), BIC (ED(50) = 0.5-0.6 microg), and BIC:STR combination (ED(50) = 0.026-0.034:2.6-3.4 microg) dose-response curves confirmed a supra-additive interaction between BIC and STR in this model. BIC-allodynia was reproduced by i.t. picrotoxin. Pretreatment with i.t. scopolamine, or i.t. muscarine had no effect. STR-allodynia was dose dependently inhibited by i.t. muscimol but not baclofen. The results of this study indicate that 1) glycine and GABA effect cooperative inhibition of low-threshold mechanical input in the spinal cord of the rat; and 2) BIC-allodynia arises from the blockade of GABA(A) receptors and is unrelated to any secondary anticholinesterase activity. The allodynic state induced by the blockade of glycine or GABA receptors is clearly exacerbated by the removal of both inhibitory systems. Their combined loss after neural injury may explain the exaggerated sensitivity to and subsequent miscoding of tactile information as pain.

  8. Infusions of bicuculline to the ventral tegmental area attenuates sexual, exploratory, and anti-anxiety behavior of proestrous rats.

    Science.gov (United States)

    Frye, Cheryl A; Paris, Jason J

    2009-10-01

    Actions of 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), in the midbrain ventral tegmental area (VTA) modulate sexual receptivity of female rats. Actions of 3alpha,5alpha-THP at GABAergic substrates in the VTA are known to modulate consummatory aspects of sexual behavior among rodents, such as lordosis. However, the extent to which GABA(A) receptors in the VTA are important for appetitive (exploratory, anti-anxiety, social) aspects of sexual receptivity is not well-understood. Proestrous rats were bilaterally-infused with saline or bicuculline (100 ng), a GABA(A) receptor antagonist, to the VTA or missed control sites. Rats were assessed for exploratory/anti-anxiety (open field/elevated plus maze), social (social interaction), and sexual (paced-mating) behavior. Compared to saline or missed site controls, intra-VTA bicuculline significantly reduced the number of central entries in an open field, time spent on the open arms of an elevated plus maze, frequency and intensity of lordosis, anti-aggression towards a male, pacing of sexual contacts, and 3alpha,5alpha-THP concentrations in midbrain and hippocampus. Bicuculline-infused rats also displayed less affiliation with a novel conspecific, fewer sexual solicitations, and had lower 3alpha,5alpha-THP concentrations in diencephalon and cortex, albeit these were not significant differences. Thus, actions at GABA(A) receptors in the midbrain VTA are essential for appetitive and consummatory aspects of sexual receptivity among rats.

  9. Effect of bicuculline and angiotensin II fragment 3-7 on learning and memory processes in rats chronically treated with ethanol.

    Science.gov (United States)

    Kuziemka-Leska, M; Car, H; Wiśniewski, K

    1998-01-01

    The aim of this study was to determine the possible influence of bicuculline, the antagonist of GABA-A receptor on behavioral activity (recall, acquisition of conditioned reflexes) of angiotension II fragment 3-7 (A II 3-7) in rats chronically treated with ethanol. Long term (9 weeks) ethanol intoxication profoundly impaired learning and memory processes in all testes used. The GABA-A receptor antagonist bicuculline (0.5 mg/kg ip) did not influence exploratory and motor activity in the control rats, but we observed tendency (without significance) to decrease the locomotor activity, in the alcohol-intoxicated groups of animals, when the drug was injected together with A II 3-7 (2 microgram icv). Bicuculline did not influence retrieval process in passive avoidance recall in both investigated groups, and when the drug was given together with AII 3-7 significantly enhanced its action in the control group and in rats chronically treated with ethanol. Bicuculline significantly improved acquisition in the active avoidance test in the control and alcohol-intoxicated groups. Bicuculline injected together with A II 3-7 significantly decreased its action in the control group. Coadministration of bicuculline with A II 3-7 did not significantly change the activity of A II 3-7 in the acquisition of active avoidance test in the alcohol-intoxicated groups of rats.

  10. Bicuculline, a GABAA-receptor antagonist, blocked HPA axis activation induced by ghrelin under an acute stress.

    Science.gov (United States)

    Gastón, M S; Cid, M P; Salvatierra, N A

    2017-03-01

    Ghrelin is a peptide of 28 amino acids with a homology between species, which acts on the central nervous system to regulate different actions, including the control of growth hormone secretion and metabolic regulation. It has been suggested that central ghrelin is a mediator of behavior linked to stress responses and induces anxiety in rodents and birds. Previously, we observed that the anxiogenic-like behavior induced by ghrelin injected into the intermediate medial mesopallium (IMM) of the forebrain was blocked by bicuculline (a GABAA receptor competitive antagonist) but not by diazepam (a GABAA receptor allosteric agonist) in neonatal meat-type chicks (Cobb). Numerous studies have indicated that hypothalamic-pituitary-adrenal (HPA) axis activation mediates the response to stress in mammals and birds. However, it is still unclear whether this effect of ghrelin is associated with HPA activation. Therefore, we investigated whether anxiety behavior induced by intra-IMM ghrelin and mediated through GABAA receptors could be associated with HPA axis activation in the neonatal chick. In the present study, in an Open Field test, intraperitoneal bicuculline methiodide blocked anxiogenic-like behavior as well as the increase in plasma ACTH and corticosterone levels induced by ghrelin (30pmol) in neonatal chicks. Moreover, we showed for the first time that a competitive antagonist of GABAA receptor suppressed the HPA axis activation induced by an anxiogenic dose of ghrelin. These results show that the anxiogenic ghrelin action involves the activation of the HPA axis, with a complex functional interaction with the GABAA receptor.

  11. Effects of agomelatine in a murine model of obsessive-compulsive disorder: interaction with meta-chlorophenylpiperazine, bicuculline, and diazepam.

    Science.gov (United States)

    Bhutada, Pravinkumar; Dixit, Pankaj; Thakur, Kapil; Deshmukh, Prashant; Kaulaskar, Shyam

    2013-07-01

    The anticompulsive potential of agomelatine, a potent MT1/2 receptor agonist, and its combined effect with m-chlorophenylpiperazine hydrochloride (mCPP), bicuculline, and diazepam, were investigated in male C57BLJ/6 mice using marble-burying behavior (MBB) test. Acute administration of agomelatine (30-40 mg/kg, intraperitoneal (i.p.)) significantly inhibited the MBB in mice without influencing their locomotor activity. Further, chronic (28 days) administration of lower doses of agomelatine (10 and 20 mg/kg, i.p.) dose-dependently reduced the MBB without influencing their locomotor activity. Interaction studies revealed that pretreatment with mCPP (0.5 mg/kg, i.p.), a serotonin 5HT2C agonist, partially attenuated the anticompulsive effect of agomelatine (30 mg/kg). Further, a GABAA receptor agonist (diazepam, 1.25 mg/kg, i.p.) and antagonist (bicuculline, 1 mg/kg, i.p.) had no influence on the effects of agomelatine on MBB and locomotor activity. The doses of modulators were selected on the basis of dose-response studies. The results indicate that agomelatine has a potent anticompulsive effect that can be attributed to 5HT2C antagonism and MT1/2 agonism, and is certainly not mediated via its effects on the GABAergic system. Thus, the study adds to the growing literature on the psychopharmacological effects of agomelatine, and warrants further exploration in multiple paradigms.

  12. Nitric oxide (NO) is an endogenous anticonvulsant but not a mediator of the increase in cerebral blood flow accompanying bicuculline-induced seizures in rats

    DEFF Research Database (Denmark)

    Wang, Qian; Theard, M A; Pelligrino, D A;

    1994-01-01

    ) is NO an endogenous anticonvulsant or proconvulsant substance? and (2) is the cerebral blood flow (CBF) increase accompanying bicuculline (BC)-induced seizures mediated by NO? The experiments were performed in 300-400-g Wistar rats anesthetized with 0.6% halothane and 70% N2O/30% O2. CBF was measured using...

  13. INFLUENCE OF KETAMINE AND BICUCULLIN ON MICE WITH THE PARKINSON'S DISEASE%Ketamine和Bicucullin对帕金森模型的影响

    Institute of Scientific and Technical Information of China (English)

    仲伟法; 王彦英

    2001-01-01

    目的为帕金森氏病的发病机理及兴奋性氨基酸受体拮抗剂对帕金森氏病的防治提供理论根据.方法本实验采用MPTP腹腔注射建立C57BL小黑鼠帕金森氏病模型的过程中,同时用兴奋性氨基酸NMDA受体拮抗剂Ketamine和GABA受体拮抗剂Bicucullin,观察其帕金森行为症状、病理变化及生化改变.结果Ketamine加MPTP组和Bicucullin加MPTP组及MPTP组和生理盐水组比较,上述指标都有明显改变.结论NMDA受体拮抗剂对小鼠帕金森氏病模型具有防治作用,GABA神经元的功能降低可加重帕金森氏病的症状.

  14. Induction of c-fos mRNA expression in an in vitro hippocampal slice model of adult rats after kainate but not gamma-aminobutyric acid or bicuculline treatment.

    Science.gov (United States)

    Massamiri, T; Khrestchatisky, M; Ben-Ari, Y

    1994-01-17

    Levels of gene expression following in vitro treatment of rat hippocampal slices with kainate, gamma-aminobutyric acid (GABA), or bicuculline were measured by the reverse transcription-coupled polymerase chain reaction method. Following a short-term exposure to kainate, c-fos gene expression was induced by 12-fold in the adult, but not the newborn, hippocampus. Under the same experimental conditions, zifl268 and brain-derived neurotrophic factor (BDNF) gene expression were unchanged. Our results also demonstrate a lack of induction of c-fos, zifl268 and BDNF after short-time treatment of either adult or newborn hippocampal slices with GABA or bicuculline. The relevance of the differential induction of gene expression in the adult and newborn in an in vitro hippocampal slice model as compared to previously described in vivo models is discussed.

  15. NMDA和GABA受体拮抗剂对帕金森模型小鼠神经细胞的影响%Effect of Ketamine and Bicucullin on Dopamine Nerve Cell in Mice Model of Parkinson's Disease

    Institute of Scientific and Technical Information of China (English)

    王传功; 王旭; 齐汝霞

    2006-01-01

    目的探讨Ketamine和Bicucullin对帕金森病动物模型神经细胞的影响.方法采用MPTP腹腔注射建立C57小鼠帕金森氏病模型,腹腔内分别注射Ketamine和Bicucullin,光镜下观察黑质-纹状体多巴胺神经细胞的变化.结果在Bicucullin组可见神经细胞胞膜破坏、胞核固缩、变性坏死及炎细胞浸润等;而Ketamine组可见细胞破坏减轻、炎细胞减少.Bicucullin+MPTP组与MPTP组、Ketamine+MPTP组相比,变性细胞数量明显增加(均P<0.05);而Ketamine+MPTP组与MPTP组相比,变性细胞数量明显减少(P<0.05).结论 Bicucullin可引起多巴胺神经细胞变性,可能参与了帕金森病的发生;Ketamine可引起神经细胞的修复反应,可能具有治疗作用.

  16. Characterization of bicuculline/baclofen-insensitive (rho-like) gamma-aminobutyric acid receptors expressed in Xenopus oocytes. II. Pharmacology of gamma-aminobutyric acidA and gamma-aminobutyric acidB receptor agonists and antagonists.

    Science.gov (United States)

    Woodward, R M; Polenzani, L; Miledi, R

    1993-04-01

    Poly(A)+ RNA from mammalian retina expresses bicuculline/baclofen-insensitive gamma-aminobutyric acid (GABA) receptors in Xenopus oocytes with properties similar to those of homooligomeric GABA rho 1 receptors. The pharmacological profile of these rho-like receptors was extended by measuring sensitivities to various GABAA and GABAB receptor ligands. For direct comparison the same compounds were also assayed with GABAA receptors expressed by rat brain RNA. The potency sequence for heterocyclic GABA analogues at the GABA rho-like receptors was GABA (1.3) > muscimol (2.3) > isoguvacine (100) (approximate EC50 in parentheses; all EC50 and Kb values given in microM). Both muscimol and isoguvacine were partial agonists at the rho-like receptors. 4,5,6,7-Tetrahydroisoxazolo[5,4-c]pyridin-3-ol (Kb congruent to 32), piperidine-4-sulfonic acid (Kb congruent to 85), and isonipecotic acid (Kb congruent to 1000) acted primarily as competitive antagonists, showing little or no activity as agonists. The sulfonic acid GABA analogue 3-aminopropanesulfonic acid was also a competitive antagonist (Kb congruent to 20). Conformationally restricted GABA analogues trans- and cis-4-aminocrotonic acid (TACA and CACA) were agonists at the rho-like receptors. TACA (EC50 congruent to 0.6) had twice the potency of GABA and was 125 times more potent than CACA (EC50 congruent to 75). Z-3-(Amidinothio)propenoic acid, an isothiouronium analogue of GABA, had little activity as an agonist but instead acted as a competitive antagonist (Kb congruent to 20). At concentrations of > 100 microM, bicuculline did have some weak competitive inhibitory effects on the GABA rho-like receptors (Kb congruent to 6000), but it was at least 5000 times more potent at GABAA receptors. Strychnine (Kb congruent to 70) and SR-95531 (Kb congruent to 35) also were competitive inhibitors of the rho-like receptors but were, respectively, 20 and 240 times more potent at GABAA receptors. The GABAB receptor ligands baclofen

  17. 阿托品、荷包牡丹碱对家鸽(Columba livia)顶盖Ⅱa-f亚层与Ⅲ层神经元间突触传递的影响%Effects of atropine and bicuculline on synapse transmission between sublayer Ⅱa-f and layer Ⅲ in optic tectum in pigeons

    Institute of Scientific and Technical Information of China (English)

    余小平; 王彬

    2000-01-01

    目的:探讨阿托品(Atropine,ATR)、荷包牡丹碱(Bicuculline,BIC)对家鸽顶盖Ⅱa-f亚层与Ⅲ层神经元间突触传递的影响.方法:在孵育离体顶盖脑片标本上,采用脉冲方波电刺激Ⅱa-f亚层,利用玻璃微电极胞外记录技术记录Ⅲ层神经元放电频率.结果:Ⅲ层神经元对电刺激Ⅱa-f亚层有反应的28个单位中,13个单位(占46.4%)表现为增频,15个单位(占53.6%)表现为减频.表现为增频的13个Ⅲ层神经元中10个单位(占76.9%)的增频效应可被ATR部分或完全逆转,另3个单位的阻断效果不明显;15个被Ⅱa-f亚层刺激传入减频的Ⅲ层神经元,其中11个单位(占73.3%)的减频作用可被BIC阻断,另4个单位则不产生阻遏作用.上述药物的作用具有可逆性和重复性.结论:乙酰胆碱(Acetylcholine,ACh)可能参与了家鸽顶盖Ⅱa-f亚层与Ⅲ层神经元间兴奋性突触传递,而γ-氨基丁酸(Gamma-aminobutyric,GABA)则参与其抑制性突触传递.

  18. Dissociation between the panicolytic effect of cannabidiol microinjected into the substantia nigra, pars reticulata, and fear-induced antinociception elicited by bicuculline administration in deep layers of the superior colliculus: The role of CB1-cannabinoid receptor in the ventral mesencephalon.

    Science.gov (United States)

    da Silva, Juliana Almeida; Biagioni, Audrey Francisco; Almada, Rafael Carvalho; de Souza Crippa, José Alexandre; Cecílio Hallak, Jaime Eduardo; Zuardi, Antônio Waldo; Coimbra, Norberto Cysne

    2015-07-05

    Many studies suggest that the substantia nigra, pars reticulata (SNpr), a tegmental mesencephalic structure rich in γ-aminobutyric acid (GABA)- and cannabinoid receptor-containing neurons, is involved in the complex control of defensive responses through the neostriatum-nigral disinhibitory and nigro-tectal inhibitory GABAergic pathways during imminently dangerous situations. The aim of the present work was to investigate the role played by CB1-cannabinoid receptor of GABAergic pathways terminal boutons in the SNpr or of SNpr-endocannabinoid receptor-containing interneurons on the effect of intra-nigral microinjections of cannabidiol in the activity of nigro-tectal inhibitory pathways. GABAA receptor blockade in the deep layers of the superior colliculus (dlSC) elicited vigorous defensive behaviour. This explosive escape behaviour was followed by significant antinociception. Cannabidiol microinjection into the SNpr had a clear anti-aversive effect, decreasing the duration of defensive alertness, the frequency and duration of defensive immobility, and the frequency and duration of explosive escape behaviour, expressed by running and jumps, elicited by transitory GABAergic dysfunction in dlSC. However, the innate fear induced-antinociception was not significantly changed. The blockade of CB1 endocannabinoid receptor in the SNpr decreased the anti-aversive effect of canabidiol based on the frequency and duration of defensive immobility, the frequency of escape expressed by running, and both the frequency and duration of escape expressed by jumps. These findings suggest a CB1 mediated endocannabinoid signalling in cannabidiol modulation of panic-like defensive behaviour, but not of innate fear-induced antinociception evoked by GABAA receptor blockade with bicuculline microinjection into the superior colliculus, with a putative activity in nigro-collicular GABAergic pathways.

  19. Effects of intrathecal and intracerebroventricular injection of NMDA or bicuculline on isoflurane-induced muscle relaxation%鞘内及侧脑室注射NMDA、荷包牡丹碱对异氟烷肌松作用的影响

    Institute of Scientific and Technical Information of China (English)

    刘亚君; 周美艳; 张明阳; 戴体俊

    2011-01-01

    Objective To investigate the mechanisms of isoflurane-induced muscle relaxation and its relationship with N-methyl-D-aspartate (NMDA) and GABAA receptors. Methods Two minutes after intraperitoneal injection of isoflurane, the rats were treated with intrathecal and intracerebroventricular injection of ddferent doses of NMDA or bicuculline(Bic). Grip strength of the rats was measured with YLS-13A grip strength meter at different time points. Results The isoflurane-induced muscle relaxation was partly antagonized by intrathecal injection of NMDA 10 ng or 20 ng, intrathecal injection of different doses of Bic, or intracerebroventricular injection of Bic 0. 2 μg (P< 0. 05 or P< 0.01 ). Conclusion The isoflurane-induced muscle relaxation is mainly through its effect on the spinal cord. NMDA receptors and GABAA receptors are probably the targets of muscle relaxation produced by isoflurane.%目的 探讨异氟烷的肌肉松弛作用机制及与N-甲基-D-天冬氨酸(NMDA)、γ-氨基丁酸A(GABAA)受体的关系.方法 小鼠腹腔注射异氟烷,2 min后在鞘内或侧脑室注射不同剂量的NMDA或荷包牡丹碱(Bic).用YLS-13A大小鼠抓力测定仪测定各组给药前后不同时间点的抓力.结果 鞘内注射10、20ng的NMDA或鞘内注射不同剂量的Bic及侧脑室注射0.2μg的Bic均能部分拮抗异氟烷所致肌松作用(P<0.01或P<0.05).结论 异氟烷主要作用于脊髓产生肌松作用,NMDA及GABAA受体可能是异氟烷产生肌松作用的靶点之一.

  20. GABAρ subunits confer a bicuculline-insensitive component to GFAP+ cells of cerebellum

    OpenAIRE

    Pétriz, Adriana; Reyes-Haro, Daniel; González-González, María Alejandra; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2014-01-01

    Early postnatal development of the cerebellum involves a number of events that require signaling via the neurotransmitter GABA, which acts on specific receptors anchored in the plasma membrane. GABAergic transmission regulates the proliferation and migration of neuronal precursors of astrocytic lineage. Glial cells are known to express GABA-A receptors that include GABAρ subunits, but their expression pattern, functional properties, and trafficking dynamics remain unknown. This study found th...

  1. Infusions of bicuculline to the ventral tegmental area attenuates sexual, exploratory, and anti-anxiety behavior of proestrous rats

    OpenAIRE

    2009-01-01

    Actions of 5α-pregnan-3α-ol-20-one (3α,5α-THP), in the midbrain ventral tegmental area (VTA) modulate sexual receptivity of female rats. Actions of 3α,5α-THP at GABAergic substrates in the VTA are known to modulate consummatory aspects of sexual behavior among rodents, such as lordosis. However, the extent to which GABAA receptors in the VTA are important for appetitive (exploratory, anti-anxiety, social) aspects of sexual-receptivity is not well-understood. Proestrous rats were bilaterally-i...

  2. GABA受体在静脉全麻药催眠作用的作用%Effcets of bicuculline or securinine on the hypnotic effects of intravenous anesthetics

    Institute of Scientific and Technical Information of China (English)

    许鹏程; 程伟; 马丽丽; 戴体俊

    2010-01-01

    Objective To investigate the relationship between GABA_A receptor and the hypnotic effects of pentobarbital sodium,sodium hydroxybutyrate, etomidate, propofol and ketamine. Methods After having established the mice model of hypnosis by intraperitoneally injected appropriate doses of pentobarbital sodium, sodium hydroxybutyrate, etomidate, propofol or ketamine, we intracerebroventricularly or intravenously injected the mice with different doses of bieuculline (Bic) or seeurinine (Se); and then observed effects on the sleeping time by using awaken test. Results Bic and Se significantly and dose-dependently decreased the sleeping time of mice treated with pentobarbital sodium, etomidate, prepofol or ketamine (P0.05). Conclusion GABA_A receptor may be important target for the hypnotic effect of pentobarbital sodium, etomidate, propofol and ketamine, but not be the targets for the hypnotic effects of sodium hydroxybutyrate.%目的 探讨γ-氨基丁酸A(GABA_A)受体与静脉全麻药戊巴比妥钠、羟丁酸钠、依托咪酯、丙泊酚和氯胺酮催眠作用的关系.方法 建立小鼠腹腔注射静脉全麻药催眠模型,在催醒实验中分别观察侧脑室注射不同剂量的GABA_A受体阻断药荷包牡丹碱(Bic)和静脉注射不同剂量的GABA_A受体阻断药-秋碱(Se)对小鼠睡眠时间(sleeping time,ST)的影响.结果 Bic和Se能够剂量依赖性地缩短戊巴比妥钠、依托咪酯、丙泊酚和氯胺酮催眠小鼠的ST(P<0.05或P<0.01),但不能缩短羟丁酸钠催眠小鼠的ST.结论 GABA_A受体是戊巴比妥钠、依托咪酯、丙泊酚和氯胺酮催眠作用的重要靶位,可能不是羟丁酸钠催眠作用的靶位.

  3. Exercise combined with low-level GABAA receptor inhibition up-regulates the expression of neurotrophins in the motor cortex.

    Science.gov (United States)

    Takahashi, Kazuma; Maejima, Hiroshi; Ikuta, Gaku; Mani, Hiroki; Asaka, Tadayoshi

    2017-01-01

    Neurotrophins play a crucial role in neuroplasticity, neurogenesis, and neuroprotection in the central nervous system. Aerobic exercise is known to increase the expression of BDNF in the cerebral cortex. Several animal studies have evaluated the tonic inhibition of GABAergic synapses to enhance hippocampal plasticity as well as learning and memory, whereas the effects of GABAergic inhibition on plasticity in the cerebral cortex related to motor learning are not well characterized. The objective of the present study was to examine the interactive effect of low-level GABAA receptor inhibition and exercise on the expression of neurotrophins including BDNF in the murine motor cortex. ICR mice were randomly distributed among 4 groups based on two factors of GABAA receptor inhibition and exercise, i.e. control group, an exercise group, a bicuculline group, and an exercise plus bicuculline group. We administered GABAA receptor antagonist, bicuculline intraperitoneally to the mice (bicuculline and exercise plus bicuculline group) at a non-epileptic dose of 0.25mg/kg, whereas the mice (exercise and exercise plus bicuculline group) were exercised on a treadmill for 1h every day. After two week intervention, the expression of mRNA and protein abundance of neurotrophins in the motor cortex was assayed using Real time PCR and ELISA. BDNF gene expression was significantly increased by approximately 3-fold in the bicuculline group relative to the control, exercise, and bicuculline plus exercise groups. Protein abundance of BDNF expression was significantly increased by approximately 3-fold in the bicuculline plus exercise group relative to other groups. Therefore, the present study revealed that combined GABAA receptor inhibition and moderate aerobic exercise up-regulated BDNF protein expression in the motor cortex without producing side effects on motor or cognitive functions. Alterations in BDNF expression could positively contribute to plasticity by regulating the balance

  4. Activation of metabotropic glutamate 5 and NMDA receptors underlies the induction of persistent bursting and associated long-lasting changes in CA3 recurrent connections.

    OpenAIRE

    Stoop, Ron; Conquet, François; Zuber, Benoît; Voronin, Leon L.; Pralong, Etienne

    2003-01-01

    The aim of this study was to describe the induction and expression mechanisms of a persistent bursting activity in a horizontal slice preparation of the rat limbic system that includes the ventral part of the hippocampus and the entorhinal cortex. Disinhibition of this preparation by bicuculline led to interictal-like bursts in the CA3 region that triggered synchronous activity in the entorhinal cortex. Washout of bicuculline after a 1 hr application resulted in a maintained production of hip...

  5. PIRACETAM AND ANIRACETAM ANTAGONISM OF CENTRALLY ACTIVE DRUG-INDUCED ANTINOCICEPTION

    OpenAIRE

    1996-01-01

    The effects of the nootropic drugs piracetam and aniracetam on antinociception induced by baclofen, bicuculline, and picrotoxin and on baclofen-induced muscle relaxation were studied in mice. Antinociception was investigated using both the hot plate (thermal stimulus) and abdominal constriction (chemical stimulus) tests. Both behaviour inhibition and muscle relaxation were observed by using the rota-rod test. Piracetam (30 mg/kg, IP) and aniracetam (10 mg/kg, PO) reduced baclofen, bicuculline...

  6. Tonic control of kisspeptin release in prepubertal monkeys: implications to the mechanism of puberty onset.

    Science.gov (United States)

    Kurian, Joseph R; Keen, Kim L; Guerriero, Kathryn A; Terasawa, Ei

    2012-07-01

    Previously we have shown that a reduction in γ-amino butyric acid (GABA) inhibition is critical for the mechanism initiating puberty onset because chronic infusion of the GABA(A) receptor antagonist, bicuculline, significantly increased GnRH release and accelerated the timing of menarche and first ovulation in female rhesus monkeys. Because previous studies in our laboratory indicate that in prepubertal female monkeys, kisspeptin release in the medial basal hypothalamus is low, whereas kisspeptin-10 can stimulate GnRH release, we hypothesized that a low level of kisspeptin release prior to puberty onset is due to tonic GABA inhibition. To test this hypothesis we examined the effects of bicuculline infusion on kisspeptin release using a microdialysis method. We found that bicuculline at 1 μM dramatically stimulates kisspeptin release in the medial basal hypothalamus of prepubertal monkeys but had little effect on kisspeptin release in midpubertal monkeys. We further examined whether bicuculline-induced GnRH release is blocked by the presence of the kisspeptin antagonist, peptide 234. We found that inhibition of kisspeptin signaling blocked the bicuculline-induced stimulation of GnRH release, suggesting that kisspeptin neurons may relay inhibitory GABA signals to GnRH neurons. This implies that a reduction in tonic GABA inhibition of GnRH release is, at least in part, mediated through kisspeptin neurons.

  7. Gamma-aminobutyric acid and GABA_A receptors are involved in directional selectivity of pretectal neurons in pigeons

    Institute of Scientific and Technical Information of China (English)

    肖泉; 付煜西; 胡婧; 高洪峰; 王书荣

    2000-01-01

    The present study describes the effects of gamma-aminobutyric acid (GABA) and its antagonists, bicuculline and 2-hydroxysaclofen, on visual responses of neurons in the pigeon nucleus lentiformis mesencephali (nLM). The results indicate that GABA significantly reduces both spontaneous activity and visual responsiveness, and GABAA antagonist bicuculline but not GABAB antagonist 2-hydroxysaclofen enhances visual responses of nLM cells examined. Furthermore, inhibition produced by motion in the null-direction of pretectal neurons is diminished by bicuculline but not by 2-hydroxysaclofen. It is therefore concluded that the null-direction inhibition of directional cells in the pigeon nLM is predominantly mediated by GABA and GABAA receptors. This inhibition may at least in part underlie directional asymmetry of optokinetic responses.

  8. [Participation of GABA--benzodiazepine receptor complex in the anxiolytic effect of piracetam].

    Science.gov (United States)

    Moldavkin, G M; Voronina, T A; Neznamov, G G; Maletova, O K; Eliava, N V

    2006-01-01

    It is established that bicuculline, picrotoxin, and flumazenil (agents blocking different sites of GABA receptor) decrease the anxiolytic effect of piracetam as manifested in the conflict situation test. The most pronounced interaction was observed between piracetam and flumazenyl. On the background of antagonist action, piracetam inhibited the effects of flumazenil (but not those of bicuculline and picrotoxin). Based on these data, it is assumed that the anxiolytic effect of piracetam is mediated to some extent by benzodiazepine site of the GABA-benzodiazepine receptor complex.

  9. PHYTOCHEMICAL ANALYSIS OF FUMARIA OFFICINALIS L. (FUMARIACEAE)

    OpenAIRE

    Paltinean, Ramona; Toiu, Anca; Wauters, Jean-Noël; Frederich, Michel; Tits, Monique; Angenot, Luc; Mircea TAMAS; Crisan, Gianina

    2016-01-01

    The present study describes the investigation of active compounds from several samples of Fumaria officinalis L. (Fumariaceae). The identification of the isoquinoline alkaloids (allocryptopine, chelidonine, protopine, bicuculline, sanguinarine, cheleritrine, stylopine and hydrastine) was performed by comparison with reference standards using an HPLC-DAD method, and their quantification by LC-DAD and spectrophotometric methods. The presence of polyphenolic compounds was simultaneously assessed...

  10. CB1 cannabinoid receptor-mediated anandamide signalling reduces the defensive behaviour evoked through GABAA receptor blockade in the dorsomedial division of the ventromedial hypothalamus.

    Science.gov (United States)

    Dos Anjos-Garcia, Tayllon; Ullah, Farhad; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2017-02-01

    The effects of cannabinoids in brain areas expressing cannabinoid receptors, such as hypothalamic nuclei, are not yet well known. Several studies have demonstrated the role of hypothalamic nuclei in the organisation of behavioural responses induced through innate fear and panic attacks. Panic-prone states are experimentally induced in laboratory animals through a reduction in the GABAergic activity. The aim of the present study was to examine panic-like elaborated defensive behaviour evoked by GABAA receptor blockade with bicuculline (BIC) in the dorsomedial division of the ventromedial hypothalamus (VMHdm). We also aimed to characterise the involvement of endocannabinoids and the CB1 cannabinoid receptor in the modulation of elaborated defence behavioural responses organised with the VMHdm. The guide-cannula was stereotaxicaly implanted in VMHdm and the animals were treated with anandamide (AEA) at different doses, and the effective dose was used after the pre-treatment with the CB1 receptor antagonist AM251, followed by GABAA receptor blockade in VMHdm. The results showed that the intra-hypothalamic administration of AEA at an intermediate dose (5 pmol) attenuated defence responses induced through the intra-VMHdm microinjection of bicuculline (40 ng). This effect, however, was inhibited when applied central microinjection of the CB1 receptor antagonist AM251 in the VMHdm. Moreover, AM251 potentiates de non-oriented escape induced by bicuculline, effect blocked by pre-treatment with the TRPV1 channel antagonist 6-I-CPS. These results indicate that AEA modulates the pro-aversive effects of intra-VMHdm-bicuculline treatment, recruiting CB1 cannabinoid receptors and the TRPV1 channel is involved in the AM251-related potentiation of bicuculline effects on non-oriented escape behaviour.

  11. GABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness.

    Science.gov (United States)

    Flint, RaShonda R; Chang, Theresa; Lydic, Ralph; Baghdoyan, Helen A

    2010-09-15

    Drugs that potentiate transmission at GABA(A) receptors are widely used to enhance sleep and to cause general anesthesia. The mechanisms underlying these effects are unknown. This study tested the hypothesis that GABA(A) receptors in the pontine reticular nucleus, oral part (PnO) of mouse modulate five phenotypes of arousal: sleep and wakefulness, cortical electroencephalogram (EEG) activity, acetylcholine (ACh) release in the PnO, breathing, and recovery time from general anesthesia. Microinjections into the PnO of saline (vehicle control), the GABA(A) receptor agonist muscimol, muscimol with the GABA(A) receptor antagonist bicuculline, and bicuculline alone were performed in male C57BL/6J mice (n = 33) implanted with EEG recording electrodes. Muscimol caused a significant increase in wakefulness and decrease in rapid eye movement (REM) and non-REM (NREM) sleep. These effects were reversed by coadministration of bicuculline. Bicuculline administered alone caused a significant decrease in wakefulness and increase in NREM sleep and REM sleep. Muscimol significantly increased EEG power in the delta range (0.5-4 Hz) during wakefulness and in the theta range (4-9 Hz) during REM sleep. Dialysis delivery of bicuculline to the PnO of male mice (n = 18) anesthetized with isoflurane significantly increased ACh release in the PnO, decreased breathing rate, and increased anesthesia recovery time. All drug effects were concentration dependent. The effects on phenotypes of arousal support the conclusion that GABA(A) receptors in the PnO promote wakefulness and suggest that increasing GABAergic transmission in the PnO may be one mechanism underlying the phenomenon of paradoxical behavioral activation by some benzodiazepines.

  12. GABAA receptor partially mediated propofol-induced hyperalgesia at superspinal level and analgesia at spinal cord level in rats

    Institute of Scientific and Technical Information of China (English)

    Qin-yun WANG; Jun-li CAO; Yin-ming ZENG; Ti-jun DAI

    2004-01-01

    AIM: To observe effects of propofol on nociceptive response at superspinal and spinal level in rats. METHODS:Two hundreds and fifty-eight Sprague-Dawley male rats were randomized into thirty-two groups. Propofol and bicuculline were microinjected into lateral ventricle (icv), ventrolateral periaqueductal gray (vlPAG), intrathecal (ith), and intraperitoneal (ip). The noxious responses were evaluated by hot plate and formalin test. RESULTS: In hot-plate test, systemic and superspinal administration of propofol (40 mg·kg-1 ip, 100μg in 10μL, icy, and 4μg in 0.4μL vlPAG microinjection) produced hyperalgesia (P<0.01). Hyperalgesia induced by vlPAG microinjection of propofol was significantly antagonized by 69.8%, 71.2%, 98.8% at 10, 20, and 30 min by microinjection of bicuculline (10 ng in 0.4μL, vlPAG) (P<0.01). Analgesia induced by ith propofol (100μg·10μL-1) was antagonized about 81.3%, 54.8%, 80.8%, and 97.4% at 10, 20, 30 and 40 min by ith bicuculline (P<0.05). In formalin test,systemic and superspinal administration of propofol (40 mg·kg-1 ip, 4μg in 0.4μL, vlPAG) also produced hyperalgesia (P<0.01). The increased formalin pain scores were antagonized about 57.1% by bicuculline (10ng, vlPAG)(P<0.05) at 60 min after formalin injection. The decreased formalin pain scores induced by ith propofol (100μg in 10μL) were antagonized about 66.7% at 30 min by ith bicuculline (P<0.05) after formalin injection. Hyperalgesia produced by ip propofol in both hot plate and formalin test could not be antagonized by vlPAG administration of bicuculline. CONCLUSION: GABAA receptor partly mediated propofol-induced hyperalgesia at superspinal and analgesia at spinal cord in rats.

  13. Systemic focal epileptogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Remler, M.P.; Marcussen, W.H.

    1986-01-01

    Rats that receive radiation to 0.25 cc of one cerebral hemisphere are clinically and electroencephalographically normal until there is a breakdown of the blood-brain barrier (BBB) at 3 to 6 months postradiation. This BBB lesion can be detected by transient focal seizure activity produced by the BBB-excluded systemic convulsant bicuculline methiodide. In two rats the seizure activity induced by this one injection was self-sustaining. In seven of 15 other rats tested, the subsequent administration of repeated 2 mg/kg injections created a chronic focus that continued to spike with great frequency for 3 weeks or more without further administration of any convulsant. In three of eight other rats, implanted minipumps delivering 180 micrograms/h of bicuculline methiodide produced self-sustaining epileptic activity.

  14. Anticonvulsant activity of aqueous extract of Leonotis leonurus.

    Science.gov (United States)

    Bienvenu, E; Amabeoku, G J; Eagles, P K; Scott, G; Springfield, E P

    2002-04-01

    Water extract of Leonotis leonurus was tested for anticonvulsant activity against seizures produced in mice by pentylenetetrazole, picrotoxin, bicuculline and N-methyl-DL-aspartic acid (intraperitoneal injections). L. leonurus extract in the doses of 200 and 400 mg/kg respectively protected 37.5% and 50% of animals used and significantly (p leonurus extract significantly (p leonurus used did not alter the seizures induced by bicuculline (20 mg/kg) to any significant extent. The data suggest that the extract of L. leonurus has anticonvulsant activity and may probably be acting through non-specific mechanisms, since it affects both gabaergic and glutaminergic systems. High performance liquid chromatography (HPLC) and phytochemical tests carried out respectively show a spectrum profile, characteristic of L. leonurus and the presence of alkaloids, saponins and tannins in the extract.

  15. Gamma-aminobutyric acid and GABAA receptors are involved in directional selectivity of pretectal neurons in pigeons

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The present study describes the effects of gamma-aminobutyric acid (GABA) and itsantagonists, bicuculline and 2-hydroxysaclofen, on visual responses of neurons in the pigeon nucleuslentiformis mesencephali (nLM). The results indicate that GABA significantly reduces bothspontaneous activity and visual responsiveness, and GABAA antagonist bicuculline but not GABABantagonist 2-hydroxysaclofen enhances visual responses of nLM cells examined. Furthermore,inhibition produced by motion in the null-direction of pretectal neurons is diminished by bicucullinebut not by 2-hydroxysaclofen. It is therefore concluded that the null-direction inhibition of directionalcells in the pigeon nLM is predominantly mediated by GABA and GABAA receptors. This inhibitionmay at least in part underlie directional asymmetry of optokinetic responses.

  16. Electrophysiological effects of Drugs Known to Affect Acetylcholinesterase and Its Inhibition on Neural Mechanisms of Rat Septal Nuclei, in vitro

    Science.gov (United States)

    1986-11-30

    potential ( EPSP ); followed by B) a rapid GABA-activated, chloride-mediated, bicuculline/picrotoxin-sensitivq, fast inhibitory postsynaptic potential...receptors on DLSN neurons Based on the earlier studies with atropine by DeFrance et al. (8), a suggestion had been made that cholinergic interneurons might...applied focally within the slice and activates fimbrial input to the septum, from the hippocampus. A. EPSP mediated by excitatory amino acid acting

  17. Gabaergic control of anxiety-like behavior, but not food intake, induced by ghrelin in the intermediate medial mesopallium of the neonatal chick.

    Science.gov (United States)

    Gastón, M S; Schiöth, H B; De Barioglio, S R; Salvatierra, N A

    2015-01-01

    Ghrelin (Grh) is an endogenous ligand of the growth hormone secretagogue receptor. In neonatal chicks, central Ghr induces anxiogenic-like behavior but strongly inhibits food intake. The intermediate medial mesopallium (IMM) of the chick forebrain has been identified to be a site of the memory formation, and the modulation of the GABAA receptors that are present here modifies the expression of behavior. Thus, the GABAergic system may constitute a central pathway for Ghr action in regulating the processes of food intake and stress-related behaviors. Therefore, we investigated if the effect of systemic administration of bicuculline (GABAA receptor antagonist) and diazepam (benzodiazepine receptor agonist) on the anxiety in an Open Field test and inhibition in food intake induced by Grh (30pmol) when injected into IMM, were mediated by GABAergic transmission. In Open Field test, bicuculline was able to block the anxiogenic-like behavior induced by Ghr, whereas diazepam did not produce it. However, the co-administration of bicuculline or diazepam plus Ghr did not show any change in food intake at 30, 60 and 120min after injection compared to Ghr alone. Our results indicate for the first time that Ghr, injected into the forebrain IMM area, induces an anxiogenic-like behavior, which was blocked by bicuculline but not diazepam, thus suggesting that Ghr plays an important role in the response pattern to acute stressor, involving the possible participation of the GABAergic system. Nevertheless, as neither drug affected the hypophagia induced by intra-IMM Ghr, this suggests that it may be mediated by different mechanisms.

  18. JPRS Report, Science & Technology, USSR: Life Sciences.

    Science.gov (United States)

    2007-11-02

    Azot industrial association releases such a large quantity of chemical pollutants into the air, that the concentration of ammonia , formaldehyde...nucleus-containing cells in the spleens of the mice. The direct GABA-receptor agonist mucimol, the competitive GABA-receptor inhibitor bicuculline and...forming cells in the spleen on the fifth day after immunization. Bicucul- line at 0.5 mg/kg suppressed the immune reaction, halving the number of

  19. Activity-Dependent Ubiquitination of GluA1 and GluA2 Regulates AMPA Receptor Intracellular Sorting and Degradation

    OpenAIRE

    Jocelyn Widagdo; Ye Jin Chai; Margreet C. Ridder; Yu Qian Chau; Richard C. Johnson; Pankaj Sah; Richard L. Huganir; Victor Anggono

    2015-01-01

    AMPA receptors (AMPARs) have recently been shown to undergo post-translational ubiquitination in mammalian neurons. However, the underlying molecular mechanisms are poorly understood and remain controversial. Here, we report that all four AMPAR subunits (GluA1-4) are rapidly ubiquitinated upon brief application of AMPA or bicuculline in cultured neurons. This process is Ca2+ dependent and requires the activity of L-type voltage-gated Ca2+ channels and Ca2+/calmodulin-dependent kinase II. The ...

  20. Neuronal activity and brain-derived neurotrophic factor regulate the density of inhibitory synapses in organotypic slice cultures of postnatal hippocampus.

    Science.gov (United States)

    Marty, S; Wehrlé, R; Sotelo, C

    2000-11-01

    Hippocampal interneurons inhibit pyramidal neurons through the release of the neurotransmitter GABA. Given the importance of this inhibition for the proper functioning of the hippocampus, the development of inhibitory synapses must be tightly regulated. In this study, the possibility that neuronal activity and neurotrophins regulate the density of GABAergic inhibitory synapses was investigated in organotypic slice cultures taken from postnatal day 7 rats. In hippocampal slices cultured for 13 d in the presence of the GABA(A) receptor antagonist bicuculline, the density of glutamic acid decarboxylase (GAD) 65-immunoreactive terminals was increased in the CA1 area when compared with control slices. Treatment with the glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione decreased the density of GAD65-immunoreactive terminals in the stratum oriens of CA1. These treatments had parallel effects on the density of GABA-immunoreactive processes. Electron microscopic analysis after postembedding immunogold labeling with antibodies against GABA indicated that bicuculline treatment increased the density of inhibitory but not excitatory synapses. Application of exogenous BDNF partly mimicked the stimulatory effect of bicuculline on GAD65-immunoreactive terminals. Finally, antibodies against BDNF, but not antibodies against nerve growth factor, decrease the density of GAD65-immunoreactive terminals in bicuculline-treated slices. Thus, neuronal activity regulates the density of inhibitory synapses made by postnatal hippocampal interneurons, and BDNF could mediate part of this regulation. This regulation of the density of inhibitory synapses could represent a feedback mechanism aimed at maintaining an appropriate level of activity in the developing hippocampal networks.

  1. The blockade of GABAA receptors attenuates the inhibitory effect of orexin type 1 receptors antagonist on morphine withdrawal syndrome in rats.

    Science.gov (United States)

    Davoudi, Mahnaz; Azizi, Hossein; Mirnajafi-Zadeh, Javad; Semnanian, Saeed

    2016-03-23

    The aim of present study was to investigate the involvement of orexin-A neuropeptide in naloxone-induced morphine withdrawal syndrome via modulating neurons bearing GABAA receptors. The locus coeruleus (LC) is a sensitive site for expression of the somatic aspects of morphine withdrawal. Intra-LC microinjection of GABAA receptor agonist attenuates morphine withdrawal signs in rats. Here we studied the influence of LC orexin type 1 receptors blockade by SB-334867 in presence of bicuculline, a GABAA receptor antagonist, on naloxone-induced morphine withdrawal syndrome. Adult male Wistar rats, weighing 250-300 g, were rendered dependent on morphine by subcutaneous (s.c.) injection of increasing morphine doses (6, 16, 26, 36, 46, 56 and 66 mg/kg, 2 ml/kg) at set intervals of 24 h for 7 days. On 8th day, naloxone (3 mg/kg, s.c.) was injected and the somatic signs of morphine withdrawal were evaluated. Intra-LC microinjections (0.2 μl) of either bicuculline (15 μM) or SB-334867 (3 mM) or a combination of both chemicals were done immediately before naloxone injection. Intra-LC microinjection of bicuculline (15 μM) had no significant effect on morphine withdrawal signs, whereas intra-LC microinjection of SB-334867 considerably attenuated morphine withdrawal signs. However, the effect of SB-334867 in attenuating naloxone-induced morphine withdrawal signs was blocked in presence of bicuculline. This finding, for the first time, indicated that orexin-A may participate in expression of naloxone-induced morphine withdrawal syndrome partly through decreasing the activity of neurons bearing GABAA receptors.

  2. Participation of central GABAA receptors in the trigeminal processing of mechanical allodynia in rats

    Science.gov (United States)

    Kim, Min Ji; Park, Young Hong; Yang, Kui Ye; Ju, Jin Sook; Bae, Yong Chul

    2017-01-01

    Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta (IL-1β) (1 ng/10 µL) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A (GABAA) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the IL-1β-induced mechanical allodynia. In the control group, application of GABA (100 µM) or muscimol (3 µM) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the IL-1β-treated rats. These results suggest that some large myelinated Aβ fibers gain access to the nociceptive system and elicit pain sensation via GABAA receptors under inflammatory pain conditions. PMID:28066142

  3. 塞北紫堇化学成分的研究%Research on Chemical Constituents of SaiBei ZiJin

    Institute of Scientific and Technical Information of China (English)

    李怀平; 马斌; 任松鹏; 李丽

    2015-01-01

    目的:对塞北紫堇的化学成分进行研究。方法:通过硅胶柱层析和重结晶法进行分离,根据理化性质及ID-NMR、ESI-MS等波谱方法进行结构鉴定。结果:从塞北紫堇中共分离得到5种生物碱类单体化合物,分别为:α-比枯枯灵、原阿片碱、黄紫堇明碱、β-hydrastine、β-比枯枯灵。结论:α-比枯枯灵、原阿片碱、β-hydrastine为首次从该药材分离得到。%Objective: To study chemical constituents of SaiBei ZiJin [Corydalis impatiens (pall.) Fisch.]. Methods:SaiBei ZiJin was abstracted by silica column chromatography method and recrystalization method, struc-ture identification were performed according to physicochemical property, ID-NMR, ESI-MS and other spectral methods. Results: Five alkaloid monomer compounds were extracted from SaiBei ZiJin, they were: α-bicuculline, protopine, ochotensimine,β-hydrastine andβ-bicuculline. Conclusion:α-bicuculline, protopine andβ-hydrastine are isolated from medicinal materials for the first time.

  4. Involvement of GABA and opioid peptide receptors in sevoflurane-induced antinociception in rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    Ying-wei WANG; Xiao-ming DENG; Xin-min YOU; Shu-xiao LIU; Zhi-qi ZHAO

    2005-01-01

    Aim: The spinal cord is pivotal in immobility induced by volatile anesthetics because the anesthetics depress the activity of motor neurons in the spinal cord.The aim of this study was to observe the effects of sevoflurane on pain processing at the spinal level. Methods: The firing of the gastrocnemius muscle was evoked by electrical stimulation to the ipsilateral hindpaw in rats. The nociceptive C response of electromyography (EMG)was selected to study. The GABAA receptor antagonist bicuculline (0.1 mg/kg) and opioid receptor antagonist naloxone (0.4 mg/kg) were administered intravenously, either in the presence or in the absence of 1.0% sevoflurane. Results: In rats with transected spinal cord,sevoflurane produced a profound reduction in the C response in a dose- and timedependent manner. In the presence of 1.0% sevoflurane, the C responses were increased after injections of bicuculline and naloxone. Conclusion: Sevoflurane is a volatile anesthetic that acts directly on the spinal cord to suppress the nociceptive reflex. The sevoflurane-induced suppression of the C response is antagonized by either bicuculline or naloxone. The results suggest that spinal GABAA receptors and opioid peptide receptors are involved in the sevoflurane-induced suppression of spinal nociception.

  5. Activation of metabotropic glutamate 5 and NMDA receptors underlies the induction of persistent bursting and associated long-lasting changes in CA3 recurrent connections.

    Science.gov (United States)

    Stoop, Ron; Conquet, François; Zuber, Benoit; Voronin, Leon L; Pralong, Etienne

    2003-07-02

    The aim of this study was to describe the induction and expression mechanisms of a persistent bursting activity in a horizontal slice preparation of the rat limbic system that includes the ventral part of the hippocampus and the entorhinal cortex. Disinhibition of this preparation by bicuculline led to interictal-like bursts in the CA3 region that triggered synchronous activity in the entorhinal cortex. Washout of bicuculline after a 1 hr application resulted in a maintained production of hippocampal bursts that continued to spread to the entorhinal cortex. Separation of CA3 from the entorhinal cortex caused the activity in the latter to become asynchronous with CA3 activity in the presence of bicuculline and disappear after washout; however, in CA3, neither the induction of bursting nor its persistence were affected. Associated with the CA3 persistent bursting, a strengthening of recurrent collateral excitatory input to CA3 pyramidal cells and a decreased input to CA3 interneurons was found. Both the induction of the persistent bursting and the changes in synaptic strength were prevented by antagonists of metabotropic glutamate 5 (mGlu5) or NMDA receptors or protein synthesis inhibitors and did not occur in slices from mGlu5 receptor knock-out mice. The above findings suggest potential synaptic mechanisms by which the hippocampus switches to a persistent interictal bursting mode that may support a spread of interictal-like bursting to surrounding temporal lobe regions.

  6. NAC1 regulates the recruitment of the proteasome complex into dendritic spines.

    Science.gov (United States)

    Shen, Haowei; Korutla, Laxminarayana; Champtiaux, Nicholas; Toda, Shigenobu; LaLumiere, Ryan; Vallone, Joseph; Klugmann, Matthias; Blendy, Julie A; Mackler, Scott A; Kalivas, Peter W

    2007-08-15

    Coordinated proteolysis of synaptic proteins is required for synaptic plasticity, but a mechanism for recruiting the ubiquitin-proteasome system (UPS) into dendritic spines is not known. NAC1 is a cocaine-regulated transcriptional protein that was found to complex with proteins in the UPS, including cullins and Mov34. NAC1 and the proteasome were cotranslocated from the nucleus into dendritic spines in cortical neurons in response to proteasome inhibition or disinhibiting synaptic activity with bicuculline. Bicuculline also produced a progressive accumulation of the proteasome and NAC1 in the postsynaptic density. Recruitment of the proteasome into dendrites and postsynaptic density by bicuculline was prevented in neurons from mice harboring an NAC1 gene deletion or in neurons transfected with mutated NAC1 lacking the proteasome binding domain. These experiments show that NAC1 modulates the translocation of the UPS from the nucleus into dendritic spines, thereby suggesting a potential missing link in the recruitment of necessary proteolysis machinery for synaptic remodeling.

  7. CB1 receptor activation in the rat paraventricular nucleus induces bi-directional cardiovascular effects via modification of glutamatergic and GABAergic neurotransmission.

    Science.gov (United States)

    Grzęda, Emilia; Schlicker, Eberhard; Toczek, Marek; Zalewska, Iwona; Baranowska-Kuczko, Marta; Malinowska, Barbara

    2017-01-01

    We have shown previously that the cannabinoid receptor agonist CP55940 microinjected into the paraventricular nucleus of the hypothalamus (PVN) of urethane-anaesthetized rats induces depressor and pressor cardiovascular effects in the absence and presence of the CB1 antagonist AM251, respectively. The aim of our study was to examine whether the hypotension and/or hypertension induced by CP55940 given into the PVN results from its influence on glutamatergic and GABAergic neurotransmission. CP55940 was microinjected into the PVN of urethane-anaesthetized rats twice (S1 and S2, 20 min apart). Antagonists of the following receptors, NMDA (MK801), β2-adrenergic (ICI118551), thromboxane A2-TP (SQ29548), angiotensin II-AT1 (losartan) or GABAA (bicuculline), or the NO synthase inhibitor L-NAME were administered intravenously 5 min before S2 alone or together with AM251. The CP55940-induced hypotension was reversed into a pressor response by AM251, bicuculline and L-NAME, but not by the other antagonists. The CP55940-induced pressor effect examined in the presence of AM251 was completely reversed by losartan, reduced by about 50-60 % by MK801, ICI118551 and SQ29548, prevented by bilateral adrenalectomy but not modified by bicuculline and L-NAME. Parallel, but smaller, changes in heart rate accompanied the changes in blood pressure. The bi-directional CB1 receptor-mediated cardiovascular effects of cannabinoids microinjected into the PVN of anaesthetized rats depend on stimulatory glutamatergic and inhibitory GABAergic inputs to the sympathetic tone; the glutamatergic input is related to AT1, TP and β2-adrenergic receptors and catecholamine release from the adrenal medulla whereas the GABAergic input is reinforced by NO.

  8. Transient epileptiform signaling during neuronal network development: regulation by external stimulation and bimodal GABAergic activity.

    Science.gov (United States)

    Zemianek, Jill M; Shultz, Abraham M; Lee, Sangmook; Guaraldi, Mary; Yanco, Holly A; Shea, Thomas B

    2013-04-01

    A predominance of excitatory activity, with protracted appearance of inhibitory activity, accompanies cortical neuronal development. It is unclear whether or not inhibitory neuronal activity is solicited exclusively by excitatory neurons or whether the transient excitatory activity displayed by developing GABAergic neurons contributes to an excitatory threshold that fosters their conversion to inhibitory activity. We addressed this possibility by culturing murine embryonic neurons on multi-electrode arrays. A wave of individual 0.2-0.4 mV signals ("spikes") appeared between approx. 20-30 days in culture, then declined. A transient wave of high amplitude (>0.5 mV) epileptiform activity coincided with the developmental decline in spikes. Bursts (clusters of ≥3 low-amplitude spikes within 0.7s prior to returning to baseline) persisted following this decline. Addition of the GABAergic antagonist bicuculline initially had no effect on signaling, consistent with delayed development of GABAergic synapses. This was followed by a period in which bicuculline inhibited overall signaling, confirming that GABAergic neurons initially display excitatory activity in ex vivo networks. Following the transient developmental wave of epileptiform signaling, bicuculline induced a resurgence of epileptiform signaling, indicating that GABAergic neurons at this point displayed inhibitory activity. The appearance of transition after the developmental and decline of epileptiform activity, rather than immediately after the developmental decline in lower-amplitude spikes, suggests that the initial excitatory activity of GABAergic neurons contributes to their transition into inhibitory neurons, and that inhibitory GABAergic activity is essential for network development. Prior studies indicate that a minority (25%) of neurons in these cultures were GABAergic, suggesting that inhibitory neurons regulate multiple excitatory neurons. A similar robust increase in signaling following cessation of

  9. Agonistic-like responses from the torus semicircularis dorsalis elicited by GABA A blockade in the weakly electric fish Gymnotus carapo

    Directory of Open Access Journals (Sweden)

    T.T. Duarte

    2006-07-01

    Full Text Available Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd and that presumably this connection is involved in the changes in electric organ discharge (EOD and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM and muscimol (15.35 mM were microinjected (0.1 µL in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 ± 2.7 and 3.8 ± 2.0 Hz, P < 0.05 and persisted until 10 min (11 ± 5.7 and 8.7 ± 5.2 Hz, P < 0.05. Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.

  10. GABAergic inhibition modulates intensity sensitivity of temporally patterned pulse trains in the inferior collicular neurons in big brown bats.

    Science.gov (United States)

    Luan, Rui-Hong; Wu, Fei-Jian; Jen, Philip H-S; Sun, Xin-De

    2007-12-25

    The echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals with duration, amplitude, repetition rate, and sweep structure changing systematically during interception of their prey. In the present study, the sound stimuli of temporally patterned pulse trains at three different pulse repetition rates (PRRs) were used to mimic the sounds received during search, approach, and terminal stages of echolocation. Electrophysiological method was adopted in recordings from the inferior colliculus (IC) of midbrain. By means of iontophoretic application of bicuculline, the effect of GABAergic inhibition on the intensity sensitivity of IC neurons responding to three different PRRs of 10, 30 and 90 pulses per second (pps) was examined. The rate-intensity functions (RIFs) were acquired. The dynamic range (DR) of RIFs was considered as a criterion of intensity sensitivity. Comparing the average DR of RIFs at different PRRs, we found that the intensity sensitivity of some neurons improved, but that of other neurons decayed when repetition rate of stimulus trains increased from 10 to 30 and 90 pps. During application of bicuculline, the number of impulses responding to the different pulse trains increased under all stimulating conditions, while the DR differences of RIFs at different PRRs were abolished. The results indicate that GABAergic inhibition was involved in modulating the intensity sensitivity of IC neurons responding to pulse trains at different PRRs. Before and during bicuculline application, the percentage of changes in responses was maximal in lower stimulus intensity near to the minimum threshold (MT), and decreased gradually with the increment of stimulus intensity. This observation suggests that GABAergic inhibition contributes more effectively to the intensity sensitivity of the IC neurons responding to pulse trains at lower sound level.

  11. Distinct roles of the hippocampus and perirhinal cortex in GABAA receptor blockade-induced enhancement of object recognition memory.

    Science.gov (United States)

    Kim, Jong Min; Kim, Dong Hyun; Lee, Younghwan; Park, Se Jin; Ryu, Jong Hoon

    2014-03-13

    It is well known that the hippocampus plays a role in spatial and contextual memory, and that spatial information is tightly regulated by the hippocampus. However, it is still highly controversial whether the hippocampus plays a role in object recognition memory. In a pilot study, the administration of bicuculline, a GABAA receptor antagonist, enhanced memory in the passive avoidance task, but not in the novel object recognition task. In the present study, we hypothesized that these different results are related to the characteristics of each task and the different roles of hippocampus and perirhinal cortex. A region-specific drug-treatment model was employed to clarify the role of the hippocampus and perirhinal cortex in object recognition memory. After a single habituation in the novel object recognition task, intra-perirhinal cortical injection of bicuculline increased and intra-hippocampal injection decreased the exploration time ratio to novel object. In addition, when animals were repeatedly habituated to the context, intra-perirhinal cortical administration of bicuculline still increased exploration time ratio to novel object, but the effect of intra-hippocampal administration disappeared. Concurrent increases of c-Fos expression and ERK phosphorylation were observed in the perirhinal cortex of the object with context-exposed group either after single or repeated habituation to the context, but no changes were noted in the hippocampus. Altogether, these results suggest that object recognition memory formation requires the perirhinal cortex but not the hippocampus, and that hippocampal activation interferes with object recognition memory by the information encoding of unfamiliar environment.

  12. α₄β₂ Nicotinic receptor stimulation of the GABAergic system within the orbitofrontal cortex ameliorates the severe crossmodal object recognition impairment in ketamine-treated rats: implications for cognitive dysfunction in schizophrenia.

    Science.gov (United States)

    Cloke, Jacob M; Winters, Boyer D

    2015-03-01

    Schizophrenia is associated with atypical multisensory integration. Rats treated sub-chronically with NMDA receptor antagonists to model schizophrenia are severely impaired on a tactile-to-visual crossmodal object recognition (CMOR) task, and this deficit is reversed by systemic nicotine. The current study assessed the receptor specificity of the ameliorative effect of nicotine in the CMOR task, as well as the potential for nicotinic receptor (nAChR) interactions with GABA and glutamate. Male Long-Evans rats were treated sub-chronically for 10 days with ketamine or saline and then tested on the CMOR task after a 10-day washout. Systemic nicotine given before the sample phase of the CMOR task reversed the ketamine-induced impairment, but this effect was blocked by co-administration of the GABAA receptor antagonist bicuculline at a dosage that itself did not cause impairment. Pre-sample systemic co-administration of the NMDA receptor antagonist MK-801 did not block the remediating effect of nicotine in ketamine-treated rats. The selective α7 nAChR agonist GTS-21 and α4β2 nAChR agonist ABT-418 were also tested, with only the latter reversing the ketamine impairment dose-dependently; bicuculline also blocked this effect. Similarly, infusions of nicotine or ABT-418 into the orbitofrontal cortex (OFC) reversed the CMOR impairment in ketamine-treated rats, and systemic bicuculline blocked the effect of intra-OFC ABT-418. These results suggest that nicotine-induced agonism of α4β2 nAChRs within the OFC ameliorates CMOR deficits in ketamine-treated rats via stimulation of the GABAergic system. The findings of this research may have important implications for understanding the nature and potential treatment of cognitive impairment in schizophrenia.

  13. Development of motor maps in rats and their modulation by experience.

    Science.gov (United States)

    Young, Nicole A; Vuong, Jennifer; Teskey, G Campbell

    2012-09-01

    While a substantial literature demonstrates the effect of differential experience on development of mammalian sensory cortices and plasticity of adult motor cortex, characterization of differential experience on the functional development of motor cortex is meager. We first determined when forelimb movement representations (motor maps) could be detected in rats during postnatal development and then whether their motor map expression could be altered with rearing in an enriched environment consisting of group housing and novel toys or skilled learning by training on the single pellet reaching task. All offspring had high-resolution intracortical microstimulation (ICMS)-derived motor maps using methodologies previously optimized for the adult rat. First, cortical GABA-mediated inhibition was depressed by bicuculline infusion directly into layer V of motor cortex and ICMS-responsive points were first reliably detected on postnatal day (PND) 13. Without relying on bicuculline disinhibition of cortex, motor maps emerged on PND 35 and then increased in size until PND 60 and had progressively lower movement thresholds. Second, environmental enrichment did not affect initial detection of responsive points and motor maps in non-bicuculline-treated pups on PND 35. However, motor maps were larger on PND 45 in enriched rat pups relative to pups in the standard housing condition. Rats in both conditions had similar map sizes on PNDs 60, 75, and 90. Third, reach training in rat pups resulted in an internal reorganization of the map in the hemisphere contralateral, but not ipsilateral, to the trained forelimb. The map reorganization was expressed as proportionately more distal (digit and wrist) representations on PND 45. Our data indicate that both environmental enrichment and skilled reach training experience can differentially modify expression of motor maps during development.

  14. Roles of forebrain GABA receptors in controlling vasopressin secretion and related phenomena under basal and hyperosmotic circumstances in conscious rats.

    Science.gov (United States)

    Yamaguchi, Ken'ichi; Yamada, Takaho

    2008-09-05

    Although the anteroventral third ventricular region (AV3V), a forebrain area essential for homeostatic responses, includes receptors for gamma-aminobutyric acid (GABA), the roles of these receptors in controlling vasopressin (AVP) secretion and related phenomena have not been clarified as yet. This study aimed to pursue this problem in conscious rats implanted with indwelling catheters. Cerebral injection sites were determined histologically. Applications of bicuculline, a GABA(A) receptor antagonist, to the AV3V induced prompt and marked augmentations in plasma AVP, osmolality, glucose, arterial pressure and heart rate, without affecting plasma electrolytes. Such phenomena did not occur when phaclofen, a GABA(B) receptor antagonist, was applied to the AV3V. All of the effects of AV3V-administered bicuculline were abolished by preadministration of the GABA(A) receptor agonist muscimol. Preadministration of either MK-801 or NBQX, ionotropic glutamatergic receptor antagonists, was also potent to abolish the AVP response to AV3V bicuculline. When hypertonic saline was infused intravenously, plasma AVP increased progressively, in parallel with rises in plasma osmolality, sodium and arterial pressure. AV3V application of muscimol or baclofen, a GABA(B) receptor agonist, was found to abolish the response of plasma AVP, without inhibiting that of the osmolality or sodium. The response of arterial pressure was also blocked by muscimol treatment, but not by baclofen treatment. Based on these results, we concluded that, under basal conditions, GABA receptors in the AV3V or vicinity may tonically operate to attenuate AVP secretion and cardiovascular functions through mechanisms associated with glutamatergic activity, and that plasma hyperosmolality may cause facilitation of AVP release by decreasing forebrain GABAergic activity.

  15. Glycine and GABAA receptors mediate tonic and phasic inhibitory processes that contribute to prepulse inhibition in the goldfish startle network

    Directory of Open Access Journals (Sweden)

    Paul C.P. Curtin

    2015-03-01

    Full Text Available Prepulse inhibition (PPI is understood as an inhibitory process that attenuates sensory flow during early stages (20-1000ms of information processing. Here, we applied in vivo electrophysiology and pharmacology to determine if prepulse inhibition (PPI is mediated by glycine receptors (GlyRs and/or GABAA receptors (GABAARs in the goldfish auditory startle circuit. Specifically, we used selective antagonists to dissect the contributions of target receptors on sound-evoked postsynaptic potentials (PSPs recorded in the neurons that initiate startle, the Mauthner-cells (M-cell. We found that strychnine, a GlyR antagonist, disrupted a fast-activated (5 ms and rapidly (< 50ms decaying (feed-forward inhibitory process that disrupts PPI at 20 ms prepulse/pulse inter-stimulus intervals (ISI. Additionally we observed increases of the evoked postsynaptic potential (PSP peak amplitude (+87.43 ± 21.53%; N=9 and duration (+204 ± 48.91%, N=9. In contrast, treatment with bicuculline, a GABAAR antagonist, caused a general reduction in PPI across all tested ISIs (20-500 ms, essentially eliminating PPI at ISIs from 20-100 ms. Bicuculline also increased PSP peak amplitude (+133.8 ± 10.3%, N=5 and PSP duration (+284.95 ± 65.64%, N=5. Treatment with either antagonist also tonically increased post-synaptic excitability in the M-cells, reflected by an increase in the magnitude of antidromically-evoked action potentials (APs by 15.07 ± 3.21%, N=7 and 16.23 ± 7.08%, N=5 for strychnine and bicuculline, respectively. These results suggest that GABAARs and GlyRs are functionally segregated to short- and longer-lasting sound-evoked (phasic inhibitory processes that contribute to PPI, with the mediation of tonic inhibition by both receptor systems being critical for gain control within the M-cell startle circuit.

  16. Metabolic changes assessed by MRS accurately reflect brain function during drug-induced epilepsy in mice in contrast to fMRI-based hemodynamic readouts.

    Science.gov (United States)

    Seuwen, Aline; Schroeter, Aileen; Grandjean, Joanes; Rudin, Markus

    2015-10-15

    Functional proton magnetic resonance spectroscopy (1H-MRS) enables the non-invasive assessment of neural activity by measuring signals arising from endogenous metabolites in a time resolved manner. Proof-of-principle of this approach has been demonstrated in humans and rats; yet functional 1H-MRS has not been applied in mice so far, although it would be of considerable interest given the many genetically engineered models of neurological disorders established in this species only. Mouse 1H-MRS is challenging as the high demands on spatial resolution typically result in long data acquisition times not commensurable with functional studies. Here, we propose an approach based on spectroscopic imaging in combination with the acquisition of the free induction decay to maximize signal intensity. Highly resolved metabolite maps have been recorded from mouse brain with 12 min temporal resolution. This enabled monitoring of metabolic changes following the administration of bicuculline, a GABA-A receptor antagonist. Changes in levels of metabolites involved in energy metabolism (lactate and phosphocreatine) and neurotransmitters (glutamate) were investigated in a region-dependent manner and shown to scale with the bicuculline dose. GABAergic inhibition induced spectral changes characteristic for increased neurotransmitter turnover and oxidative stress. In contrast to metabolic readouts, BOLD and CBV fMRI responses did not scale with the bicuculline dose indicative of the failure of neurovascular coupling. Nevertheless fMRI measurements supported the notion of increased oxidative stress revealed by functional MRS. Hence, the combined analysis of metabolic and hemodynamic changes in response to stimulation provides complementary insight into processes associated with neural activity.

  17. BDNF and NT-4 differentiate two pathways in the modulation of neuropeptide protein levels in postnatal hippocampal interneurons.

    Science.gov (United States)

    Marty, S; Onténiente, B

    1999-05-01

    Neuropeptide protein levels in hippocampal interneurons exhibit a considerable maturation in postnatal animals. This study characterizes the role of neuronal activity in determining neuropeptide protein levels in postnatal hippocampal interneurons, and the involvement of neurotrophins. In hippocampal slices from 7-day-old rats cultured for 2 weeks, treatment with the gamma-aminobutyric acidA (GABAA) receptor antagonist bicuculline increased the staining intensity and the number of neurons immunoreactive for neuropeptide Y (NPY). An opposite effect was observed when non-N-methyl-d-aspartate (non-NMDA) excitatory transmission was blocked. The effects of either treatment were reversed after return to control medium. These findings were similar to those previously obtained on the effects of activity on somatostatin immunostaining. Blockade of endogenous tyrosine kinase neurotrophin receptors using K252a prevented the effects of bicuculline on NPY- and somatostatin-immunoreactive neurons. Application of exogenous neurotrophin-3 (NT-3) increased NPY and somatostatin protein levels in long-term but not short-term cultures, while nerve growth factor (NGF) had no effect. In contrast, brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT-4) did not affect equally NPY and somatostatin immunoreactivity: they mimicked the effects of bicuculline treatment on NPY-immunoreactive neurons, but exerted no conspicuous effect on somatostatin immunostaining. These results indicate that although neuronal activity plays a major role in determining neuropeptide protein levels in postnatal hippocampal interneurons, its effects on different neuropeptides might be exerted through different mechanisms, with or without the mediation of BDNF or NT-4.

  18. Heterogeneous effects of antiepileptic drugs in an in vitro epilepsy model--a functional multineuron calcium imaging study.

    Science.gov (United States)

    Hongo, Yoshie; Takasu, Keiko; Ikegaya, Yuji; Hasegawa, Minoru; Sakaguchi, Gaku; Ogawa, Koichi

    2015-07-01

    Epilepsy is a chronic brain disease characterised by recurrent seizures. Many studies of this disease have focused on local neuronal activity, such as local field potentials in the brain. In addition, several recent studies have elucidated the collective behavior of individual neurons in a neuronal network that emits epileptic activity. However, little is known about the effects of antiepileptic drugs on neuronal networks during seizure-like events (SLEs) at single-cell resolution. Using functional multineuron Ca(2+) imaging (fMCI), we monitored the activities of multiple neurons in the rat hippocampal CA1 region on treatment with the proconvulsant bicuculline under Mg(2+) -free conditions. Bicuculline induced recurrent synchronous Ca(2+) influx, and the events were correlated with SLEs. Other proconvulsants, such as 4-aminopyridine, pentetrazol, and pilocarpine, also induced synchronous Ca(2+) influx. We found that the antiepileptic drugs phenytoin, flupirtine, and ethosuximide, which have different mechanisms of action, exerted heterogeneous effects on bicuculline-induced synchronous Ca(2+) influx. Phenytoin and flupirtine significantly decreased the peak, the amount of Ca(2+) influx and the duration of synchronous events in parallel with the duration of SLEs, whereas they did not abolish the synchronous events themselves. Ethosuximide increased the duration of synchronous Ca(2+) influx and SLEs. Furthermore, the magnitude of the inhibitory effect of phenytoin on the peak synchronous Ca(2+) influx level differed according to the peak amplitude of the synchronous event in each individual cell. Evaluation of the collective behavior of individual neurons by fMCI seems to be a powerful tool for elucidating the profiles of antiepileptic drugs.

  19. Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus.

    Science.gov (United States)

    Khazipov, Roustem; Khalilov, Ilgam; Tyzio, Roman; Morozova, Elena; Ben-Ari, Yezekiel; Holmes, Gregory L

    2004-02-01

    The immature brain is prone to seizures but the underlying mechanisms are poorly understood. We explored the hypothesis that increased seizure susceptibility during early development is due to the excitatory action of GABA. Using noninvasive extracellular field potential and cell-attached recordings in CA3 of Sprague-Dawley rat hippocampal slices, we compared the developmental alterations in three parameters: excitatory actions of GABA, presence of the immature pattern of giant depolarizing potentials (GDPs) and severity of epileptiform activity generated by high potassium. The GABA(A) receptor agonist isoguvacine increased firing of CA3 pyramidal cells in neonatal slices while inhibiting activity in adults. A switch in the GABA(A) signalling from excitation to inhibition occurred at postnatal day (P) 13.5 +/- 0.4. Field GDPs were present in the form of spontaneous population bursts until P12.7 +/- 0.3. High potassium (8.5 mm) induced seizure-like events (SLEs) in 35% of slices at P7-16 (peak at P11.3 +/- 0.4), but only interictal activity before and after that age. The GABA(A) receptor antagonist bicuculline reduced the frequency or completely blocked SLEs and induced interictal clonic-like activity accompanied by a reduction in the frequency but an increase in the amplitude of the population spikes. In slices with interictal activity, bicuculline typically caused a large amplitude interictal clonic-like activity at all ages; in slices from P5-16 rats it was often preceded by one SLE at the beginning of bicuculline application. These results suggest that, in the immature hippocampus, GABA exerts dual (both excitatory and inhibitory) actions and that the excitatory component in the action of GABA may contribute to increased excitability during early development.

  20. GABA Australis, some reflections on the history of GABA receptor research in Australia.

    Science.gov (United States)

    Johnston, Graham A R

    2017-02-01

    Research on GABA receptors has a long history in Australia dating from 1958 with David Curtis and his colleagues in Canberra. This review traces many of the advances made in Australia guided by highly cited publications and some obscure ones. It covers the discovery of key chemicals with which to investigate GABA receptor function including bicuculline, muscimol, phaclofen, THIP and (+)-CAMP. Also described are findings relevant to the involvement of mutant GABA receptors in inherited epilepsy. The modulation of GABA receptors by a bewildering range of chemicals, especially by flavonoids and terpenoids, is discussed.

  1. The role of γ-aminobutyric acid and its receptors in the nucleus of basal optic root in pigeons

    Institute of Scientific and Technical Information of China (English)

    付煜西; 高宏峰; 王书荣; Stephen A.George

    1997-01-01

    The effects of γ-aminobutyric acid (GABA) and its antagonists bicuculline and 2-hydroxysaclofen on neuronal firings in the nucleus of basal optic root (nBOR) in pigeons were studied by using extracellular recording and microiontophoretic techniques. The results suggest that GABA may be an inhibitory neurotransmitter or modulator within nBOR, functioning by means of main mediation of GABAA receptors and of minor mediation of GABAB receptors. Furthermore, GABA and its GABAA receptors are involved in the modulation of directional selectivity in part of nBOR neurons.

  2. The Initiation of Spontaneous Epileptiform Events in the Rat Neocortex, In Vivo

    OpenAIRE

    Ma, Hong-Tao; Wu, Cai-Hong; Wu, Jian-young

    2003-01-01

    We used voltage-sensitive dye imaging to visualize the distribution of initiation sites of the spontaneous interictal-like spikes (sISs) in rat neocortex, in vivo, induced by bicuculline or picrotoxin over the exposed cortex. The initiation site was small (~200 µm in diameter). On average each initiation site initiated 2.0±0.8 sISs (nine animals, 499 sISs, 251 sites). This is significantly different from that in neocortical slices, where each initiation site initiated 30–100 sISs. The initiat...

  3. Innervation by a GABAergic neuron depresses spontaneous release in glutamatergic neurons and unveils the clamping phenotype of synaptotagmin-1

    DEFF Research Database (Denmark)

    Wierda, Keimpe D B; Sørensen, Jakob Balslev

    2014-01-01

    EPSC and mIPSC frequencies did not deviate between autaptic and synaptic connections, the frequency of mEPSCs in mixed pairs was strongly depressed compared with either autaptic neurons or glutamatergic pairs. Simultaneous imaging of synapses, or comparison to evoked release amplitudes, showed...... that this decrease was not caused by fewer active synapses. The mEPSC frequency was negatively correlated with the mIPSC frequency, indicating interdependence. Moreover, the reduction in mEPSC frequency was abolished when established pairs were exposed to bicuculline for 3 d, but not by long-term incubation...

  4. Photoacoustic Imaging of Epilepsy

    Science.gov (United States)

    2013-04-01

    excised rat brains were cryoprotected in a 30% sucrose PBS solution for 24-48 hrs then sectioned frozen at 50 µm with a sliding microtome. Every sixth...incubation in silver nitrate/ammonium hydroxide solution in the dark for 15 min. For pathological visualization of iron , sections was incubated in...μl of 1.9 mM bicuculline methiodide (BMI) into the neocortex of one rat, while saline solution was injected into the brain of another rat as control

  5. A new type of anticonvulsant, stiripentol. Pharmacological profile and neurochemical study.

    Science.gov (United States)

    Poisson, M; Huguet, F; Savattier, A; Bakri-Logeais, F; Narcisse, G

    1984-01-01

    4,4-Dimethyl-1-[3,4-(methylenedioxy)-phenyl]-1-penten-3-ol (stiripentol), selected from a series of alpha-ethylene alcohols, demonstrated anticonvulsant activity in studies in the rat and rabbit in which convulsions were induced electrically and chemically using pentetrazol, bicuculline and strychnine. Neurochemical studies showed that stiripentol in vitro did not act as a GABA receptor agonist, instead it inhibited the synaptosomal uptake of 3H-labelled GABA. Stiripentol has been shown elsewhere to inhibit GABA transaminase. These findings suggest that the anticonvulsant activity of stiripentol involves two aspects of the GABAergic mechanism in which the metabolic transamination and synaptosomal uptake of this neurotransmitter are inhibited.

  6. [Effect of nootropic agents on impulse activity of cerebral cortex neurons].

    Science.gov (United States)

    Iasnetsov, V V; Pravdivtsev, V A; Krylova, I N; Kozlov, S B; Provornova, N A; Ivanov, Iu V; Iasnetsov, V V

    2001-01-01

    The effect of nootropes (semax, mexidol, and GVS-111) on the activity of individual neurons in various cerebral cortex regions was studied by microelectrode and microionophoresis techniques in cats immobilized by myorelaxants. It was established that the inhibiting effect of mexidol upon neurons in more than half of cases is prevented or significantly decreased by the GABA antagonists bicuculline and picrotoxin. The inhibiting effect of semax and GVS-111 upon neurons in more than half of cases is related to stimulation of the M-choline and NMDA receptors, respectively.

  7. Excessive Cap-dependent Translation as a Molecular Mechanism Underlying ASD

    Science.gov (United States)

    2014-10-01

    chaperone properties . Nucleic Acids Res. 32, 2129–2137 (2004). 27. I. Napoli, V. Mercaldo, P. P. Boyl, B. Eleuteri, F. Zalfa, S. De Rubeis, D. Di...the homogenate were used for protein deter- mination with a BCA (bicinchoninic acid ) assay kit (Pierce, Thermo Scientific). Equal amounts of protein...methane- sulphonate , 10HEPES, 10 EGTA, 4MgCl2, 0.4NaGTP, 4MgATP, 10 phosphocreatine and 5QX-314 (pH adjusted to 7.3 with CsOH, 290mOsm). Bicuculline

  8. Responses from two firing patterns in inferior colliculus neurons to stimulation of the lateral lemniscus dorsal nucleus

    Science.gov (United States)

    Li, Xiao-ting; Wang, Ning-yu; Wang, Yan-jun; Xu, Zhi-qing; Liu, Jin-feng; Bai, Yun-fei; Dai, Jin-sheng; Zhao, Jing-yi

    2016-01-01

    The γ-aminobutyric acid neurons (GABAergic neurons) in the inferior colliculus are classified into various patterns based on their intrinsic electrical properties to a constant current injection. Although this classification is associated with physiological function, the exact role for neurons with various firing patterns in acoustic processing remains poorly understood. In the present study, we analyzed characteristics of inferior colliculus neurons in vitro, and recorded responses to stimulation of the dorsal nucleus of the lateral lemniscus using the whole-cell patch clamp technique. Seven inferior colliculus neurons were tested and were classified into two firing patterns: sustained-regular (n = 4) and sustained-adapting firing patterns (n = 3). The majority of inferior colliculus neurons exhibited slight changes in response to stimulation and bicuculline. The responses of one neuron with a sustained-adapting firing pattern were suppressed after stimulation, but recovered to normal levels following application of the γ-aminobutyric acid receptor antagonist. One neuron with a sustained-regular pattern showed suppressed stimulation responses, which were not affected by bicuculline. Results suggest that GABAergic neurons in the inferior colliculus exhibit sustained-regular or sustained-adapting firing patterns. Additionally, GABAergic projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus are associated with sound localization. The different neuronal responses of various firing patterns suggest a role in sound localization. A better understanding of these mechanisms and functions will provide better clinical treatment paradigms for hearing deficiencies. PMID:27335563

  9. Responses from two firing patterns in inferior colliculus neurons to stimulation of the lateral lemniscus dorsal nucleus

    Directory of Open Access Journals (Sweden)

    Xiao-ting Li

    2016-01-01

    Full Text Available The γ-aminobutyric acid neurons (GABAergic neurons in the inferior colliculus are classified into various patterns based on their intrinsic electrical properties to a constant current injection. Although this classification is associated with physiological function, the exact role for neurons with various firing patterns in acoustic processing remains poorly understood. In the present study, we analyzed characteristics of inferior colliculus neurons in vitro, and recorded responses to stimulation of the dorsal nucleus of the lateral lemniscus using the whole-cell patch clamp technique. Seven inferior colliculus neurons were tested and were classified into two firing patterns: sustained-regular (n = 4 and sustained-adapting firing patterns (n = 3. The majority of inferior colliculus neurons exhibited slight changes in response to stimulation and bicuculline. The responses of one neuron with a sustained-adapting firing pattern were suppressed after stimulation, but recovered to normal levels following application of the γ-aminobutyric acid receptor antagonist. One neuron with a sustained-regular pattern showed suppressed stimulation responses, which were not affected by bicuculline. Results suggest that GABAergic neurons in the inferior colliculus exhibit sustained-regular or sustained-adapting firing patterns. Additionally, GABAergic projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus are associated with sound localization. The different neuronal responses of various firing patterns suggest a role in sound localization. A better understanding of these mechanisms and functions will provide better clinical treatment paradigms for hearing deficiencies.

  10. Responses from two ifring patterns in inferior colliculus neurons to stimulation of the lateral lemniscus dorsal nucleus

    Institute of Scientific and Technical Information of China (English)

    Xiao-ting Li; Ning-yu Wang; Yan-jun Wang; Zhi-qing Xu; Jin-feng Liu; Yun-fei Bai; Jin-sheng Dai; Jing-yi Zhao

    2016-01-01

    Theγ-aminobutyric acid neurons (GABAergic neurons) in the inferior colliculus are classiifed into various patterns based on their intrin-sic electrical properties to a constant current injection. Although this classiifcation is associated with physiological function, the exact role for neurons with various ifring patterns in acoustic processing remains poorly understood. In the present study, we analyzed characteristics of inferior colliculus neuronsin vitro, and recorded responses to stimulation of the dorsal nucleus of the lateral lemniscus using the whole-cell patch clamp technique. Seven inferior colliculus neurons were tested and were classiifed into two ifring patterns: sustained-regular (n = 4) and sustained-adapting ifring patterns (n = 3). The majority of inferior colliculus neurons exhibited slight changes in response to stimulation and bicuculline. The responses of one neuron with a sustained-adapting ifring pattern were suppressed after stimulation, but recovered to normal levels following application of theγ-aminobutyric acid receptor antagonist. One neuron with a sustained-regular pattern showed suppressed stimulation responses, which were not affected by bicuculline. Results suggest that GABAergic neurons in the inferior colliculus exhibit sustained-regular or sustained-adapting ifring patterns. Additionally, GABAergic projections from the dorsal nu-cleus of the lateral lemniscus to the inferior colliculus are associated with sound localization. The different neuronal responses of various ifring patterns suggest a role in sound localization. A better understanding of these mechanisms and functions will provide better clinical treatment paradigms for hearing deifciencies.

  11. Allopregnanolone microinjected into the lateral septum or dorsal hippocampus reduces immobility in the forced swim test: participation of the GABAA receptor.

    Science.gov (United States)

    Rodríguez-Landa, Juan Francisco; Contreras, Carlos M; García-Ríos, Rosa Isela

    2009-10-01

    Allopregnanolone is a 5α-reduced metabolite of progesterone with actions on γ-aminobutyric acid-A (GABAA) receptors that produce antidepressant-like effects. However, little is known about the target brain regions that mediate its antidepressant-like effects. In this study, allopregnanolone (2.0 μg/0.3 μl/rat) or its vehicle (35% cyclodextrin solution) were microinjected into the lateral septum, septofimbrial, or dorsal hippocampus of male Wistar rats that had previously received intraperitoneal injections of either saline or the GABAA antagonist bicuculline (1.0 mg/kg), and its effects were evaluated in the open field and forced swim tests. Allopregnanolone microinjected into the lateral septum or dorsal hippocampus, but not septofimbrial nucleus, induced a longer latency to the first immobility and a shorter total immobility time in the forced swim test compared with vehicle. Bicuculline pretreatment reversed the effect of allopregnanolone. None of the treatments produced significant changes in crossings in the open field test. In conclusion, allopregnanolone produces an antidepressant-like effect in rats submitted to the forced swim test through actions on GABAA receptors located in the lateral septum and dorsal hippocampus, which is consistent with the antistress effect of GABAA agonists in these particular brain structures.

  12. Characterization of the Antinociceptive Mechanisms of Khat Extract (Catha edulis) in Mice

    Science.gov (United States)

    Afify, Elham A.; Alkreathy, Huda M.; Ali, Ahmed S.; Alfaifi, Hassan A.; Khan, Lateef M.

    2017-01-01

    This study investigated the antinociceptive mechanisms of khat extract (100, 200, and 400 mg/kg, i.p.) in four pain models: two thermic (hot plate, tail-flick) and two chemical (acetic acid, formalin) models. Male mice were pretreated intraperitoneally (i.p.) with the opioid receptor blocker naloxone (5 mg/kg), the cholinergic antagonist atropine (2 mg/kg), the selective α1 blocker prazosin (1 mg/kg), the dopamine D2 antagonist haloperidol (1.5 mg/kg), or the GABAA receptor antagonist, bicuculline (1 mg/kg) 15 minutes prior to i.p. injection of khat extract (400 mg/kg). Khat extract reduced the nociceptive response of mice in the four pain tests. Naloxone significantly inhibited the antinociceptive effect of khat extract in the hot plate, tail-flick, and the first phase of formalin tests. Bicuculline significantly antagonized the antinociceptive effect of khat extract on the hot plate and tail-flick tests. Haloperidol significantly reversed the antinociceptive effect of khat extract on the tail-flick test and the first phase of formalin test. These results provide strong evidence that the antinociceptive activity of khat extract is mediated via opioidergic, GABAergic, and dopaminergic pathways. The mechanism of the antinociceptive action of khat may be linked to the different types of pain generated in animal models. PMID:28316587

  13. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters

    Science.gov (United States)

    Jolivalt, Corinne G.; Lee, Corinne A.; Ramos, Khara M.; Calcutt, Nigel A.

    2008-01-01

    Diabetic rats show behavioral indices of painful neuropathy that may model the human condition. Hyperalgesia during the formalin test in diabetic rats is accompanied by the apparently paradoxical decrease in spinal release of excitatory neurotransmitters and increase in the inhibitory neurotransmitter GABA. Decreased expression of the potassium-chloride co-transporter, KCC2, in the spinal cord promotes excitatory properties of GABA. We therefore measured spinal KCC2 expression and explored the role of the GABAA receptor in rats with painful diabetic neuropathy. KCC2 protein levels were significantly reduced in the spinal cord of diabetic rats while levels of NKCC1 and the GABAA receptor were unchanged. Spinal delivery of the GABAA receptor antagonist bicuculline reduced formalin-evoked flinching in diabetic rats and also dose-dependently alleviated tactile allodynia. GABAA receptor-mediated rate-dependent depression of the spinal H reflex was absent in the spinal cord of diabetic rats. Control rats treated with the KCC2 blocker DIOA, mimicked diabetes by showing increased formalin-evoked flinching and diminished rate dependent depression. The ability of bicuculline to alleviate allodynia and formalin-evoked hyperalgesia in diabetic rats is consistent with a reversal of the properties of GABA predicted by reduced spinal KCC2 and suggests that reduced KCC2 expression and increased GABA release contribute to spinally-mediated hyperalgesia in diabetes. PMID:18755547

  14. Allodynia and hyperalgesia in diabetic rats are mediated by GABA and depletion of spinal potassium-chloride co-transporters.

    Science.gov (United States)

    Jolivalt, Corinne G; Lee, Corinne A; Ramos, Khara M; Calcutt, Nigel A

    2008-11-15

    Diabetic rats show behavioral indices of painful neuropathy that may model the human condition. Hyperalgesia during the formalin test in diabetic rats is accompanied by the apparently paradoxical decrease in spinal release of excitatory neurotransmitters and increase in the inhibitory neurotransmitter GABA. Decreased expression of the potassium-chloride co-transporter, KCC2, in the spinal cord promotes excitatory properties of GABA. We therefore measured spinal KCC2 expression and explored the role of the GABA(A) receptor in rats with painful diabetic neuropathy. KCC2 protein levels were significantly reduced in the spinal cord of diabetic rats, while levels of NKCC1 and the GABA(A) receptor were unchanged. Spinal delivery of the GABA(A) receptor antagonist bicuculline reduced formalin-evoked flinching in diabetic rats and also dose-dependently alleviated tactile allodynia. GABA(A) receptor-mediated rate-dependent depression of the spinal H reflex was absent in the spinal cord of diabetic rats. Control rats treated with the KCC2 blocker DIOA, mimicked diabetes by showing increased formalin-evoked flinching and diminished rate- dependent depression. The ability of bicuculline to alleviate allodynia and formalin-evoked hyperalgesia in diabetic rats is consistent with a reversal of the properties of GABA predicted by reduced spinal KCC2 and suggests that reduced KCC2 expression and increased GABA release contribute to spinally mediated hyperalgesia in diabetes.

  15. Inhibition of rat hippocampal excitability by the plant alkaloid 3-acetylaconitine mediated by interaction with voltage-dependent sodium channels.

    Science.gov (United States)

    Ameri, A

    1997-02-01

    The effects of the Aconitum alkaloid 3-acetylaconitine on neuronal activity were investigated in the slice preparation and on cultivated neurons of rat hippocampus by extracellular and patch-clamp recordings, respectively. 3-Acetylaconitine (0.01-1 microM) diminished the orthodromic and antidromic population spike in a concentration-dependent manner. The inhibitory action of the drug was preceded by a transiently enhanced excitability. The latency of onset of the inhibition was accelerated by increased stimulation frequency, whereas recovery during washout of the alkaloid was accelerated by decreased stimulation frequency. Moreover, the inhibitory effect of 3-acetylaconitine was evaluated in two different models of epileptiform activity induced either by blockade of GABA receptors by bicuculline (10 microM) or by a nominal Mg(2+)-free bathing medium. In accordance with the activity-dependent mode of action, this compound abolished the synaptically evoked population spikes in the presence of bicuculline or nominal Mg(2+)-free bathing medium, respectively. Whole-cell patch-clamp recordings revealed an interaction of 3-acetylaconitine with the voltage-dependent sodium channel. At a concentration of 1 microM, 3-acetylaconitine did not affect the peak amplitude of the sodium current, but shifted the current-voltage relationship in the hyperpolarized direction such that sodium currents were already activated at the resting potential.

  16. Effect of NMDA Receptor and GABA Receptor Antagonists on Dopamine Contents in Global Cerebra of Mice%NMDA受体和GABA受体拮抗剂对小鼠脑内多巴胺的影响

    Institute of Scientific and Technical Information of China (English)

    王传功

    2006-01-01

    目的观察兴奋性氨基酸受体拮抗剂和GABA受体拮抗剂对帕金森病(PD)模型动物全脑多巴胺(DA)含量的影响,为PD发病机制研究提供理论依据.方法采用MPTP腹腔注射建立C57BL小鼠PD模型,同时分别腹腔注射兴奋性氨基酸NMDA受体拮抗剂ketamine和GABA受体拮抗剂bicucullin,采用荧光分光光度计法测定各组小鼠全脑DA的含量.结果ketamine+MPTP组、bicucullin+MPTP组与MPTP组及NS组比较,DA含量差异有统计学意义.结论NMDA受体拮抗剂可抑制由MPTP引起的DA神经递质减少,GABA受体拮抗剂可增强MPTP引起的DA神经递质减少.

  17. Involvement of basolateral amygdala GABAA receptors in the effect of dexamethasone on memory in rats

    Institute of Scientific and Technical Information of China (English)

    Lotfollah KHAJEHPOUR; Acieh ALIZADEH-MAKVANDI; Mahnaz KESMATI; Hooman ESHAGH-HAROONI

    2011-01-01

    In this study we investigated whether GABAA receptors of the basolateral amygdala (BLA) interact with the effect of dexamethasone on the retrieval stage of memory.Adult male Wistar rats were bilaterally cannulated in the BLA by stereotaxic surgery.The animals were trained in step-through apparatus by induction of electric shock (1.5 mA,3 s) and were tested for memory retrieval after 1 d.The time of latency for entering the dark compartment of the instrument and the time spent by rats in this chamber were recorded for evaluation of the animals' retrieval in passive avoidance memory.Administration of dexamethasone (0.3 and 0.9 mg/kg,subcutaneously (s.c.)),immediately after training,enhanced memory retrieval.This effect was reduced by intra-BLA microinjection of muscimol (0.125,0.250 and 0.500 μg/rat),when administered before 0.9 mg/kg of dexamethasone.Microinjection of bicuculline (0.75 μg/rat,intra-BLA) with an ineffective dose of dexamethasone (0.1 mg/kg,s.c.) increased memory retrieval.However,the same doses of muscimol and bicuculline without dexamethasone did not affect memory processes.Our data support reports that dexamethasone enhances memory retrieval.It seems that GABAA receptors of the BLA mediate the effect of dexamethasone on memory retrieval in rats.

  18. Antihyperalgesic Effect of Hesperidin Improves with Diosmin in Experimental Neuropathic Pain.

    Science.gov (United States)

    Carballo-Villalobos, Azucena I; González-Trujano, María-Eva; Pellicer, Francisco; López-Muñoz, Francisco J

    Neuropathic pain is caused by a primary lesion, dysfunction, or transitory perturbation in the peripheral or central nervous system. In this study, we investigated the hesperidin antihyperalgesic effects alone or combined with diosmin in a model of neuropathic pain to corroborate a possible synergistic antinociceptive activity. Mechanical and thermal hyperalgesia were assessed in the aesthesiometer and plantar tests, respectively, after chronic constriction injury (CCI) model in rats receiving hesperidin (HS, 5 doses from 10 to 1000 mg/kg) alone or combined with diosmin (DS, 10 and 100 mg/kg) in comparison to gabapentin (31.6 mg/kg). UHPLC-MS analysis of cerebral samples was used to recognize the central concentrations of these flavonoids. Participation of different receptors was also investigated in the presence of haloperidol, bicuculline, and naloxone antagonists. Acute hesperidin administration significantly decreased mechanical and thermal hyperalgesia in CCI rats. Antihyperalgesic response of hesperidin, improved by a combination with diosmin (DS10/HS100) in both stimuli, was blockaded by haloperidol, bicuculline, and naloxone, but not WAY100635, antagonists. Both flavonoids were detected in brain samples. In conclusion, hesperidin alone and combined with diosmin produces antihyperalgesic response in the CCI model in rats. Antihyperalgesic effect of DS10/HS100 combination involves central activity partially modulated by D2, GABAA, and opioids, but not by 5-HT1A, receptors.

  19. Antihyperalgesic Effect of Hesperidin Improves with Diosmin in Experimental Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Azucena I. Carballo-Villalobos

    2016-01-01

    Full Text Available Neuropathic pain is caused by a primary lesion, dysfunction, or transitory perturbation in the peripheral or central nervous system. In this study, we investigated the hesperidin antihyperalgesic effects alone or combined with diosmin in a model of neuropathic pain to corroborate a possible synergistic antinociceptive activity. Mechanical and thermal hyperalgesia were assessed in the aesthesiometer and plantar tests, respectively, after chronic constriction injury (CCI model in rats receiving hesperidin (HS, 5 doses from 10 to 1000 mg/kg alone or combined with diosmin (DS, 10 and 100 mg/kg in comparison to gabapentin (31.6 mg/kg. UHPLC-MS analysis of cerebral samples was used to recognize the central concentrations of these flavonoids. Participation of different receptors was also investigated in the presence of haloperidol, bicuculline, and naloxone antagonists. Acute hesperidin administration significantly decreased mechanical and thermal hyperalgesia in CCI rats. Antihyperalgesic response of hesperidin, improved by a combination with diosmin (DS10/HS100 in both stimuli, was blockaded by haloperidol, bicuculline, and naloxone, but not WAY100635, antagonists. Both flavonoids were detected in brain samples. In conclusion, hesperidin alone and combined with diosmin produces antihyperalgesic response in the CCI model in rats. Antihyperalgesic effect of DS10/HS100 combination involves central activity partially modulated by D2, GABAA, and opioids, but not by 5-HT1A, receptors.

  20. Activation of NR2A receptors induces ischemic tolerance through CREB signaling.

    Science.gov (United States)

    Terasaki, Yasukazu; Sasaki, Tsutomu; Yagita, Yoshiki; Okazaki, Shuhei; Sugiyama, Yukio; Oyama, Naoki; Omura-Matsuoka, Emi; Sakoda, Saburo; Kitagawa, Kazuo

    2010-08-01

    Previous exposure to a nonlethal ischemic insult protects the brain against subsequent harmful ischemia. N-methyl-D-aspartate (NMDA) receptors are a highly studied target of neuroprotection after ischemia. Recently, NMDA receptor subtypes were implicated in neuronal survival and death. We focused on the contribution of NR2A and cyclic-AMP response element (CRE)-binding protein (CREB) signaling to ischemic tolerance using primary cortical neurons. Ischemia in vitro was modeled by oxygen-glucose deprivation (OGD). Ischemic tolerance was induced by applying 45-mins OGD 24 h before 180-mins OGD. Sublethal OGD also induced cross-tolerance against lethal glutamate and hydrogen peroxide. After sublethal OGD, expression of phosphorylated CREB and CRE transcriptional activity were significantly increased. When CRE activity was inhibited by CREB-S133A, a mutant CREB, ischemic tolerance was abolished. Inhibiting NR2A using NVP-AAM077 attenuated preconditioning-induced neuroprotection and correlated with decreased CRE activity levels. Activating NR2A using bicuculline and 4-aminopiridine induced resistance to lethal ischemia accompanied by elevated CRE activity levels, and this effect was abolished by NVP-AAM077. Elevated brain-derived neurotrophic factor (BDNF) transcriptional activities were observed after sublethal OGD and administration of bicuculline and 4-aminopiridine. NR2A-containing NMDA receptors and CREB signaling have important functions in the induction of ischemic tolerance. This may provide potential novel therapeutic strategies to treat ischemic stroke.

  1. An historical perspective on GABAergic drugs.

    Science.gov (United States)

    Froestl, Wolfgang

    2011-02-01

    In 1950, γ-aminobutyric acid (GABA) was discovered in the brain and in 1967 it was recognized as an inhibitory neurotransmitter. The discovery of the benzodiazepines Librium® (launched in 1960) and Valium® by Sternbach initiated huge research activities resulting in 50 marketed drugs. In 1975, Haefely found that GABA is involved in the actions of benzodiazepines. The baclofen-sensitive, bicuculline-insensitive GABA(B) receptor was discovered by Bowery in 1980, and the baclofen-insensitive, bicuculline-insensitive GABA(C) receptor by Johnston in 1984. Barnard & Seeburg reported the cloning of the GABA(A) receptor in 1987, Cutting the GABA(C) receptor in 1991 and Bettler the GABA(B1a) and GABA(B1b) receptors in 1997. Six groups cloned the GABA(B2) receptor in 1998/1999 showing that the GABA(B) receptor functions as a heterodimer with GABA(B1b)/GABA(B2) mediating postsynaptic inhibition and GABA(B1a)/GABA(B2) mediating presynaptic inhibition. Möhler and McKernan dissected the pharmacology of the benzodiazepine-receptor subtypes. Antagonists and positive allosteric modulators of GABA(B) receptors were discovered in 1987 and 2001, respectively. GABA transporter inhibitor, tiagabine, was launched in 1996, a GABA aminotransferase inhibitor, vigabatrin, in 1998 and a glutamic acid decarboxylase activator, pregabalin, in 2004. Most recently, brain-penetrating GABA(C)-receptor antagonists were reported in 2009.

  2. Cloning and functional expression of alternative spliced variants of the ρ1 γ-aminobutyrate receptor

    Science.gov (United States)

    Martínez-Torres, Ataúlfo; Vazquez, Ana E.; Panicker, Mitradas M.; Miledi, Ricardo

    1998-01-01

    The ρ1 γ-aminobutyrate receptor (GABAρ1) is expressed predominantly in the retina and forms homomeric GABA-gated Cl− channels that are clearly different from the multisubunit GABAA receptors. In contrast to these, GABAρ1 receptors desensitize very little and are not blocked by bicuculline. In addition to GABAρ1, two new variants were identified in human retina cDNA libraries. Cloning and sequence analysis showed that both variants contain large deletions in the putative extracellular domain of the receptor. These deletions extend from a common 5′ site to different 3′ sites. The cDNA with the largest deletion, named GABAρ1Δ450, contains a complete ORF identical to that of GABAρ1 but missing 450 nt. This cDNA encodes a protein of 323 aa, identical to the GABAρ1, but has a deletion of 150 aa in the amino-terminal extracellular domain. GABAρ1Δ450 mRNA injected into Xenopus oocytes did not produce functional GABA receptors. The second GABAρ1 variant (GABAρ1Δ51) contains a 51-nt deletion. In Xenopus oocytes, GABAρ1Δ51 led to the expression of GABA receptors that had the essential GABAρ1 characteristics of low desensitization and bicuculline resistance. Therefore, alternative splicing increases the coding potential of this gene family expressed in the human retina, but the functional diversity created by the alternative spliced forms is still not understood. PMID:9520485

  3. Differential involvement of GABAA and GABAB receptors in propofol self-administration in rats

    Institute of Scientific and Technical Information of China (English)

    Bo YANG; Ben-fu WANG; Miao-jun LAI; Fu-qiang ZHANG; Xiao-wei YANG; Wen-hua ZHOU; Qing-quan LIAN

    2011-01-01

    Propofol has shown abuse potential.The aim of the present study is to investigate the effects of GABAA antagonist and GABAB agonist on propofol reinforcement.Methods:Sprague-Dawley rats were trained to self-administer propofol at a dose of 1.7 mg/kg per infusion under a fixed ratio (FR1) schedule of reinforcement for 14 d.In a separate set of experiments,food-maintained self-administration under a fixed ratio (FR5) schedule and locomotor activities of Sprague-Dawley rats were examined.Results:GABAA receptor antagonist bicuculline (0.25 mg/kg,ip) significantly increased the number of injections and active responses.Pretreatment with GABAB receptor agonist baclofen (3 mg/kg,ip) significantly decreased the number of active responses and total infusions of propofol during the training session.Moreover,microinjection of baclofen (50 and 100 ng/side) into the ventral tegmental area (VTA) significantly decreased the number of active responses and total infusions of propofol.Neither baclofen (1-3 mg/kg,ip) nor bicuculline (0.25-1 mg/kg,ip) affected food-maintained responses or motor activities.Conclusion:Propofol maintains its reward properties partially through GABAA receptor activation.Stimulation of GABA~ receptors in VTA may counteract the reinforcing properties of propofol.

  4. Regulation of (/sup 3/H)GABA release from strips of guinea pig urinary bladder

    Energy Technology Data Exchange (ETDEWEB)

    Shirakawa, J.; Taniyama, K.; Iwai, S.; Tanaka, C.

    1988-12-01

    The presence of receptors that regulate the release of gamma-aminobutyric acid (GABA) was studied in strips of the guinea pig urinary bladder. GABA (10(-8)-10(-5) M) and muscimol (10(-8)-10(-5) M), but not baclofen (10(-5) M), reduced the Ca2+-dependent, tetrodotoxin-resistant release of (/sup 3/H)GABA evoked by high K+ from the urinary bladder strips preloaded with (/sup 3/H)GABA. The inhibitory effect of muscimol was antagonized by bicuculline and potentiated by diazepam, clonazepam, and pentobarbital sodium. The potentiating effect of clonazepam was antagonized by Ro 15-1788. Acetylcholine (ACh) inhibited the high K+-evoked release of (/sup 3/H)GABA. The inhibitory effect of ACh was antagonized by atropine sulfate and pirenzepine but not by hexamethonium. Norepinephrine (NE) inhibited the evoked release of (/sup 3/H)GABA. The inhibitory effect of NE was mimicked by clonidine, but not by phenylephrine, and was antagonized by yohimbine but not by prazosin. These results provide evidence that the release of GABA from strips of guinea pig urinary bladder is regulated via the bicuculline-sensitive GABAA receptor, M1-muscarinic, and alpha 2-adrenergic receptors.

  5. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons.

    Science.gov (United States)

    Massey, Kerri A; Zago, Wagner M; Berg, Darwin K

    2006-12-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing alpha7 subunits (alpha7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of alpha7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABA(A) receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased alpha7-nAChR clusters were most prominent on interneuron subtypes known to directly innervate excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling alpha7-nAChR levels.

  6. Effects of Etomidate on GABAergic and Glutamatergic Transmission in Rat Thalamocortical Slices.

    Science.gov (United States)

    Fu, Bao; Wang, Yuan; Yang, Hao; Yu, Tian

    2016-12-01

    Although accumulative evidence indicates that the thalamocortical system is an important target for general anesthetics, the underlying mechanisms of anesthetic action on thalamocortical neurotransmission are not fully understood. The aim of the study is to explore the action of etomidate on glutamatergic and GABAergic transmission in rat thalamocortical slices by using whole cell patch-clamp recording. We found that etomidate mainly prolonged the decay time of spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs), without changing the frequency. Furthermore, etomidate not only prolonged the decay time of miniature inhibitory postsynaptic currents (mIPSCs) but also increased the amplitude. On the other hand, etomidate significantly decreased the frequency of spontaneous glutamatergic excitatory postsynaptic currents (sEPSCs), without altering the amplitude or decay time in the absence of bicuculline. When GABAA receptors were blocked using bicuculline, the effects of etomidate on sEPSCs were mostly eliminated. These results suggest that etomidate enhances GABAergic transmission mainly through postsynaptic mechanism in thalamocortical neuronal network. Etomidate attenuates glutamatergic transmission predominantly through presynaptic action and requires presynaptic GABAA receptors involvement.

  7. Antihyperalgesic Effect of Hesperidin Improves with Diosmin in Experimental Neuropathic Pain

    Science.gov (United States)

    Pellicer, Francisco; López-Muñoz, Francisco J.

    2016-01-01

    Neuropathic pain is caused by a primary lesion, dysfunction, or transitory perturbation in the peripheral or central nervous system. In this study, we investigated the hesperidin antihyperalgesic effects alone or combined with diosmin in a model of neuropathic pain to corroborate a possible synergistic antinociceptive activity. Mechanical and thermal hyperalgesia were assessed in the aesthesiometer and plantar tests, respectively, after chronic constriction injury (CCI) model in rats receiving hesperidin (HS, 5 doses from 10 to 1000 mg/kg) alone or combined with diosmin (DS, 10 and 100 mg/kg) in comparison to gabapentin (31.6 mg/kg). UHPLC-MS analysis of cerebral samples was used to recognize the central concentrations of these flavonoids. Participation of different receptors was also investigated in the presence of haloperidol, bicuculline, and naloxone antagonists. Acute hesperidin administration significantly decreased mechanical and thermal hyperalgesia in CCI rats. Antihyperalgesic response of hesperidin, improved by a combination with diosmin (DS10/HS100) in both stimuli, was blockaded by haloperidol, bicuculline, and naloxone, but not WAY100635, antagonists. Both flavonoids were detected in brain samples. In conclusion, hesperidin alone and combined with diosmin produces antihyperalgesic response in the CCI model in rats. Antihyperalgesic effect of DS10/HS100 combination involves central activity partially modulated by D2, GABAA, and opioids, but not by 5-HT1A, receptors. PMID:27672659

  8. Elevated Expression of Acid-Sensing Ion Channel 3 Inhibits Epilepsy via Activation of Interneurons.

    Science.gov (United States)

    Cao, Qingqing; Wang, Wei; Gu, Juan; Jiang, Guohui; Bian, Xiling; Wang, Kewei; Xu, Zucai; Li, Jie; Chen, Guojun; Wang, Xuefeng

    2016-01-01

    Recent studies have indicated that acid-sensing ion channels may play a significant role in the termination of epilepsy. In particular, acid-sensing ion channel 3 (ASIC3) is expressed in the central nervous system and is most sensitive to extracellular pH. However, whether ASIC3 plays a role in epilepsy is unknown. In this study, qRT-PCR, Western blot, immunohistochemistry, double immunofluorescence labeling, and slice recordings were used. We first detected elevated ASIC3 expression patterns in the brains of temporal lobe epilepsy patients and epileptic rats. ASIC3 was expressed in neurons and glia in both humans and in an experimental model of epilepsy, and ASIC3 was colocalized with inhibitory GABAergic interneurons. By blocking ASIC3 with its antagonist APETx2, we observed that injected APETx2 shortened the latency to seizure and increased the incidence of generalized tonic clonic seizure compared to the control group in models of both pilocarpine- and pentylenetetrazole (PTZ)-induced seizures. Additionally, blocking ASIC3 significantly decreased the frequency of action potential (AP) firing in interneurons. Moreover, APETx2 significantly reduced the amplitudes and frequencies of miniature inhibitory postsynaptic currents (mIPSCs) while showed no differences with the APETx2 + bicuculline group and the bicuculline group. These findings suggest that elevated levels of ASIC3 may serve as an anti-epileptic mechanism via postsynaptic mechanisms in interneurons. It could represent a novel therapeutic strategy for epilepsy treatment.

  9. Feedback synaptic interaction in the dragonfly ocellar retina

    Science.gov (United States)

    1978-01-01

    The intracellular response of the ocellar nerve dendrite, the second order neuron in the retina of the dragonfly ocellus, has been modified by application of various drugs and a model developed to explain certain features of that response. Curare blocked the response completely. Both picrotoxin and bicuculline eliminated the "off" overshoot. Bicuculline also decreased the size of response and the sensitivity. gamma-Aminobutyric acid (GABA), however, increased the size of response. The evidence indicates the possibility that the receptor transmitter is acetylcholine and is inhibitory to the ocellar nerve dendrite whereas the feedback transmitter from the ocellar nerve dendrite may be GABA and is facilitory to receptor transmitter release. The model of synaptic feedback interaction developed to be consistent with these results has certain important features. It suggests that the feedback transmitter is released in the dark to increase input sensitivity from receptors in response to dim light. This implies that the dark potential of the ocellar nerve dendrite may be determined by a dynamic equilibrium established by synaptic interaction between it and the receptor terminals. Such a system is also well suited to signalling phasic information about changes in level of illumination over a wide range of intensities, a characteristic which appears to be a significant feature of the dragonfly median ocellar response. PMID:205624

  10. Role of spinal GABAA receptor in antinociceptive effect of alphadolone in rats%大鼠脊髓GABAA受体在乙酯羟孕双酮抗伤害性效应中的作用

    Institute of Scientific and Technical Information of China (English)

    严春燕; 张小梅; 徐建国

    2008-01-01

    目的 探讨脊髓γ氨基丁酸A(GABAA)受体在乙酯羟孕双酮抗伤害性效应中的作用.方法 雄性Wistar大鼠,体重176~181 g,经L2,3行蛛网膜下腔置管.取置管成功的大鼠27只,随机分为4组:荷包牡丹碱0.01 pmol组(Ⅰ组,n=9)、0.1 pmol组(Ⅱ组,n=7)、1 pmol组(Ⅲ组,n=5)和10pmol组(Ⅳ组,n=6).采用电刺激法测定大鼠颈部和尾部痛阈,记录诱发尾部和颈部伤害性反应的最小电流,测定3次,间隔5 min,取其平均值作为基础痛阈(TH1).腹腔注射乙酯羟孕双酮1 mg/kg,5min后测定痛阈(TH2).经蛛网膜下腔导管注入重比重荷包牡丹碱溶液(溶于5 μl 6%葡萄糖溶液),5min后测定痛阈(TH3).结果 与TH1比较,各组颈部TH2和TH3、尾部TH2和Ⅰ组尾部TH3升高(P<0.05);与TH2比较,Ⅱ组~Ⅳ组尾部TH3降低(P<0.05),各组颈部TH3,差异无统计学意义(P0.05).结论 乙酯羟孕双酮可通过激活脊髓GABAA受体产生抗伤害性效应.%Objective To investigate the role of spinal GABAA receptor in the antinociceptive effect of. alphadolone in rats. Methods Male Wistsr rats weighing 176-181 g were studied. A catheter was inserted into suharachnoid space via L2,3. Twenty-seven rats successfully catheterized were randomly divided into 4 groups: bicuculline 0.01 pmol group (Ⅰ , n = 9), bicuculline 0.1 pmol group (Ⅱ, n = 7), bicuculline 1 pmol group (Ⅲ, n = 5) and bicuculline 10 pmol group (Ⅳ, n = 6) .The pain threshold in the neck and tail was measured using electrical stimulation. The minimum current of antinociceptive effects caused by stimulating the tail and neck were recorded (3 times every 5 min ) and the mean value was calculated and defined as the baseline value (TH1 ). Alphadolone 1.0mg/kg was then injected intraperitoneally and 5 min later the pain threshold (TH2) was measured. Hyperbaric bicuculline (in 6% glucose 5 μl) was then injected through the catheter into the]umber region of the subarachnoid space and 5 min later the pain threshold (TH

  11. Giant synaptic potentials in immature rat CA3 hippocampal neurones.

    Science.gov (United States)

    Ben-Ari, Y; Cherubini, E; Corradetti, R; Gaiarsa, J L

    1989-09-01

    1. Intracellular recordings were made from rat CA3 hippocampal neurones in vitro during the first eighteen days of postnatal life. The cells had resting membrane potentials more negative than -51 mV, action potentials greater than 55 mV and membrane input resistances of 117 +/- 12 M omega. An unusual characteristic of these cells was the presence of spontaneous giant depolarizing potentials (GDPs) which were observed during the first eight postnatal (P) days in over 85% of neurones. They were less frequent between P9 and P12 (48%) and disappeared after P12. 2. The GDPs were synchronously generated by a population of neurones; they reversed polarity at -27 mV when recorded with KCl-containing electrodes and at -51 mV with potassium acetate- or potassium methylsulphate-filled electrodes. 3. The GDPs were blocked by bath application of bicuculline (10 microM) or picrotoxin (100-200 microM). Exogenously applied gamma-aminobutyric acid (GABA; 0.2-1 mM) induced at resting membrane potential a bicuculline-sensitive membrane depolarization which reversed polarity at -25 and -51 mV when recorded with KCl- or potassium methylsulphate-filled electrodes respectively. 4. The GDPs were reduced in frequency or blocked by the N-methyl-D-aspartate (NMDA) receptor antagonists DL-2-amino-7-phosphonoheptanoate (AP-7; 50 microM), D(-)2-amino-5-phosphonovalerate (AP-5, 10-50 microM) and (+-)3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10-50 microM) or NMDA channel blockers phencyclidine (2 microM) and ketamine (20 microM). 5. Stimulation of the hilus during the first week of life evoked a GDP followed by a hyperpolarization. The GDPs were generated by a population of synchronized neurones and reversed polarity at -27 mV with KCl-filled electrodes and at -52 mV with potassium acetate- or potassium methylsulphate-containing electrodes. 6. Bath application of bicuculline (1-10 microM) or picrotoxin (100-200 microM) reversibly blocked the evoked GDPs in the majority of cells

  12. Pain-related increase of excitatory transmission and decrease of inhibitory transmission in the central nucleus of the amygdala are mediated by mGluR1

    Directory of Open Access Journals (Sweden)

    Neugebauer Volker

    2010-12-01

    Full Text Available Abstract Neuroplasticity in the central nucleus of the amygdala (CeA, particularly its latero-capsular division (CeLC, is an important contributor to the emotional-affective aspects of pain. Previous studies showed synaptic plasticity of excitatory transmission to the CeLC in different pain models, but pain-related changes of inhibitory transmission remain to be determined. The CeLC receives convergent excitatory inputs from the parabrachial nucleus in the brainstem and from the basolateral amygdala (BLA. In addition, feedforward inhibition of CeA neurons is driven by glutamatergic projections from the BLA area to a cluster of GABAergic neurons in the intercalated cell masses (ITC. Using patch-clamp in rat brain slices we measured monosynaptic excitatory postsynaptic currents (EPSCs and polysynaptic inhibitory currents (IPSCs that were evoked by electrical stimulation in the BLA. In brain slices from arthritic rats, input-output functions of excitatory synaptic transmission were enhanced whereas inhibitory synaptic transmission was decreased compared to control slices from normal untreated rats. A non-NMDA receptor antagonist (NBQX blocked the EPSCs and reduced the IPSCs, suggesting that non-NMDA receptors mediate excitatory transmission and also contribute to glutamate-driven feed-forward inhibition of CeLC neurons. IPSCs were blocked by a GABAA receptor antagonist (bicuculline. Bicuculline increased EPSCs under normal conditions but not in slices from arthritic rats, which indicates a loss of GABAergic control of excitatory transmission. A metabotropic glutamate receptor subtype 1 (mGluR1 antagonist (LY367385 reversed both the increase of excitatory transmission and the decrease of inhibitory transmission in the arthritis pain model but had no effect on basal synaptic transmission in control slices from normal rats. The inhibitory effect of LY367385 on excitatory transmission was blocked by bicuculline suggesting the involvement of a GABAergic

  13. gamma-Aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life.

    Science.gov (United States)

    Ben-Ari, Y; Tseeb, V; Raggozzino, D; Khazipov, R; Gaiarsa, J L

    1994-01-01

    The properties of neonatal GABAergic synapses were investigated in neurones of the hippocampal CA3 region. GABA, acting on GABAA receptors, provides most of the excitatory drive on immature CA3 pyramidal neurones at an early stage of development, whereas glutamatergic synapses (in particular, those mediated by AMPA receptors) are mostly quiescent. Thus, during the first postnatal week of life, bicuculline fully blocked spontaneous and evoked depolarising potentials, and GABAA receptor agonists depolarised CA3 pyramidal neurones. GABAA mediated currents also had a reduced sensitivity to benzodiazepines. In the presence of bicuculline, between P0 and P4, increasing the stimulus strength reveals an excitatory postsynaptic potential which is mostly mediated by NMDA receptors. During the same developmental period, pre- (but not post) synaptic GABAB inhibition is present. Intracellular injections of biocytin showed that the axonal network of the GABAergic interneurones is well developed at birth, whereas the pyramidal recurrent collaterals are only beginning to develop. Finally, chronic bicuculline treatment of hippocampal neurones in culture reduced the extent of neuritic arborisation, suggesting that GABA acts as a trophic factor in that period. In conclusion, it is suggested that during the first postnatal week of life, when excitatory inputs are still poorly developed, GABAA receptors provide the excitatory drive necessary for pyramidal cell outgrowth. Starting from the end of the first postnatal week of life, when excitatory inputs are well developed, GABA (acting on both GABAA and GABAB receptors) will hyperpolarise the CA3 pyramidal neurones and, as in the adult, will prevent excessive neuronal discharges. Our electrophysiological and morphological studies have shown that hippocampal GABAergic interneurones are in a unique position to modulate the development of CA3 pyramidal neurones. Developing neurones require a certain degree of membrane depolarisation, and a

  14. Dorsomedial hypothalamic GABA regulates anxiety in the social interaction test.

    Science.gov (United States)

    Shekhar, A; Katner, J S

    1995-02-01

    Blockade of GABAA function in the region of the dorsomedial hypothalamus (DMH) of rats is known to elicit a constellation of physiologic responses including increases in heart rate (HR), mean arterial blood pressure (BP), respiratory rate, and plasma catecholamine levels, as well as behavioral responses such as increases in locomotor activity and anxiogenic-like effects as measured in a conflict test and the elevated plus-maze test. The aim of the present study was to test the effects of microinjecting GABAA antagonists bicuculline methiodide (BMI) and picrotoxin, as well as the GABAA agonist muscimol, into the DMH of rats placed in the social interaction (SI) test. Muscimol decreased HR and BP but increased SI, whereas the GABA antagonists increased HR and BP but decreased SI time. Blocking the HR changes elicited by GABAergic drugs injected into the DMH with systemic injections of atenolol and atropine methylbromide did not block their effects on SI.

  15. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    Science.gov (United States)

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  16. Blockade of N-methyl-D-aspartate induced convulsions by 1-aminocyclopropanecarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Skolnick, P.; Marvizon, J.C.G.; Jackson, B.W.; Monn, J.A.; Rice, K.C. (National Institutes of Health, Bethesda, MD (USA)); Lewin, A.H. (Research Triangle Institute, Research Triangle Park, NC (USA))

    1989-01-01

    1-Aminocyclopropanecarboxylic acid is a potent and selective ligand for the glycine modulatory site on the N-methyl-D-aspartate receptor complex. This compound blocks the convulsions and deaths produced by N-methyl-D-aspartate in a dose dependent fashion. In contrast, 1-aminocyclopropanecarboxylic acid does not protect mice against convulsions induced by pentylenetetrazole, strychnine, bicuculline, or maximal electroshock, and does not impair motor performance on either a rotarod or horizontal wire at doses of up to 2 g/kg. The methyl- and ethyl- esters of 1-aminocyclopropanecarboxylic acid are 5- and 2.3-fold more potent, respectively, than the parent compound in blocking the convulsant and lethal effects of N-methyl-D-aspartate. However, these esters are several orders of magnitude less potent than 1-aminocyclopropanecarboxylic acid as inhibitors of strychnine-insensitive ({sup 3}H)glycine binding, indicating that conversion to the parent compound may be required to elicit an anticonvulsant action.

  17. Anticonvulsant effects of Searsia dentata (Anacardiaceae) leaf extract in rats

    DEFF Research Database (Denmark)

    Pedersen, Mikael Egebjerg; Baldwin, Roger A; Niquet, Jerome;

    2010-01-01

    Searsia species are used in South Africa to treat epilepsy. Previous studies have demonstrated an in vitro N-methyl-D-aspartic acid (NMDA) receptor antagonistic effect of the ethanolic leaf extract. The aim of this study was to evaluate the potential anticonvulsant properties of the ethanolic...... extract of S. dentata in various animal models of epilepsy. The extract was submitted to a screening in anticonvulsant assays including NMDA-, kainic acid (KA)-, pentylenetetrazol (PTZ)- and bicuculline (BIC)-induced seizures in rats. The extract protected 47% of the PN 18 Wistar pups (postnatal day 18......% protection, p 8) in young adult and PN 18 rats, respectively. The ethanolic extract of S. dentata showed anticonvulsive properties in several models of epilepsy. These results are compatible with previous findings of NMDA receptor antagonism. Due to the complex composition of the extract...

  18. [PECULIARITIES OF THE CEREBROVASCULAR EFFECTS OF GLUTAMIC ACID].

    Science.gov (United States)

    Gan'shina, T S; Kurza, E V; Kurdyumov, I N; Maslennikov, D V; Mirzoyan, R S

    2016-01-01

    Experiments on nonlinear rats subjected to global transient cerebral ischemia revealed the ability of glutamic acid to improve cerebral circulation. Consequently, the excitatory amino acid can produce adverse (neurotoxic) and positive (anti-ischemic) effects in cerebral ischemia. The cerebrovascular effect of glutamic acid in cerebral ischemia is attenuated on the background action of the MNDA receptor blocker MK-801 (0.5 mg/kg intravenously) and eliminated by bicuculline. When glutamic acid is combined with the non-competitive MNDA receptor antagonist MK-801, neither one nor another drug shows its vasodilator effect. The results are indicative of the interaction between excitatory and inhibitory systems on the level of cerebral vessels and once again confirm our previous conclusion about the decisive role of GABA(A) receptors in brain vessels in the implementation of anti-ischemic activity of endogenous compounds (melatonin) and well-known pharmacological substances (mexidol, afobazole), and new chemical compounds based on GABA-containing lipid derivatives.

  19. Effects of gamma-aminobutyric acid A-receptor antagonist on sleep-wakefulness cycles following lesion to the ventrolateral preoptic area in rats

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Yina Sun; Peng Xie; Xuguang Yang; Yiping Hou

    2009-01-01

    BACKGROUND: Neurons expressing gamma-aminobutyric acid (GABA) play an important role in the regulation of wakefulness to sleep, as well as the maintenance of sleep. However, the role of GABAergic neurons in the tuberomammillary nucleus (TMn), with regard to the sleep-wakefulness cycle, is poorly understood.OBJECTIVE: To investigate the effects of GABAergic neurons in the TMn on the sleep-wakefulness cycle.DESIGN, TIME AND SETTING: Randomized controlled study, performed at the Laboratory of Neurobiology, Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Lanzhou University from July 2007 to February 2008.MATERIALS: Fifteen healthy, adult, male, Sprague Dawley rats were randomly divided into three groups(n = 5): control, ventrolateral preoptic area (VLPO) lesion, and VLPO lesion plus GABAA receptor antagonist-treated. Ibotenic acid and bicuculline were provided by Sigma (St. Louis, USA). METHODS: Four electroencephalogram screw electrodes were implanted into the skull at a frontal region (two) and parietal bones (two) on each side. Three flexible electromyogram wire electrodes were placed into the nuchal muscles. On day 8, a fine glass micropipette (10-20 mm tip diameter) containing ibotenic acid solution (10 nmol/L) was injected into the VLPO in both hemispheres following bone wax removal under anesthesia. One week after the second surgery, sleep-wakefulness states were recorded in rats from the VLPO lesion group. On day 10 after VLPO lesion, bicuculline (10 nmol/L), a GABAA-receptor antagonist, was microinjected into the TMn and sleep-wakefulness states were recorded for 24 hours.MAIN OUTCOME MEASURES: Duration of the sleep-wakefulness cycle in each group using a Data acquisition unit (Micro1 401 mk2) and Data collection software (Spike Ⅱ). RESULTS: VLPO lesion induced an increased duration of wakefulness (W, 13.17%) and light slow-wave sleep (SWS1, 28.9%), respectively. Deep slow-wave sleep (SWS2, 43.74%) and paradoxical sleep (PS

  20. GABA and glycine channels in isolated ganglion cells from the goldfish retina.

    Science.gov (United States)

    Cohen, B N; Fain, G L; Fain, M J

    1989-11-01

    1. Adult goldfish retinas were enzymatically dissociated and ganglion cells were maintained in culture for periods of 1-5 days. Ganglion cells could be identified by their morphology, and this identification was confirmed by retrograde transport of the fluorescent dye Fast Blue injected into the optic nerve stub. 2. All the ganglion cells tested responded to 30 microM-GABA or 100 microM-glycine between 2 and 30 h after enzymatic dissociation of the retina. 3. Whole-cell responses to 30 microM-GABA or glycine declined over a period of seconds during sustained applications of the agonists, probably as a result of desensitization. There was an irreversible decline in the peak whole-cell response to repeated applications of 30 microM-GABA unless the pipette-filling solution contained 2 mM-ATP, 4 mM-Mg2+, 10 mM-EGTA and no added Ca2+. Both GABA and glycine responses also showed an irreversible decline in outside-out patches but, in this case, Mg2+, ATP, and very low Ca2+ failed to stabilize the response. 4. Whole-cell currents activated by both GABA and glycine were demonstrated to be chloride-selective by investigating the dependence of reversal potential (Vr) on internal chloride concentration ([Cl-]i). For GABA responses, the dependence of Vr on [Cl-]i could not be distinguished from that predicted by the Nernst relation. For glycine, deviations from Nernstian dependence were observed, but the permeability to Cl- was at least 20 times greater than to isethionate, SO4(2-), or monovalent cations (Na+ and Cs+). 5. Bicuculline methochloride (10 microM) selectively blocked responses to 3-30 microM-GABA without affecting responses to 30 microM-glycine. Bicuculline itself was not as selective. At agonist concentrations of 30 microM, 3 microM-bicuculline partially blocked the response to GABA but not that to glycine, but bicuculline at 10 microM blocked responses to both GABA and glycine. Strychnine (0.3-1 microM) blocked responses to 30 microM-glycine but also competitively

  1. Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus.

    Science.gov (United States)

    McLean, H A; Caillard, O; Khazipov, R; Ben-Ari, Y; Gaiarsa, J L

    1996-08-01

    1. We investigated the effects of the selective gamma-aminobutyric acid-B (GABAB) receptor antagonist, P-3 aminopropyl-P-diethoxymethyl phosphoric acid (CGP 35348), on spontaneous and evoked postsynaptic potentials (PSPs) and currents (PSCs) in CA3 pyramidal cells and interneurons of hippocampal slices obtained between postnatal day 3 and 7 with the use of intracellular and whole cell recording techniques. The intracellular pipette solution contained either 2 M CsCl or 50 mM 2(triethylamino)-N-(2,6-dimethylphenyl) acetamine (QX314) dissolved in 2 M KMeSO4. Cesium and QX314 block postsynaptic responses mediated by GABAB receptors. 2. Under control conditions, bath application of CGP 35348 (0.5-1 mM) progressively increased the duration of spontaneous and evoked polysynaptic giant GABAergic PSPs leading to the appearance of ictal-like discharges. The effects of CGP 35348 were dose dependent and voltage independent. 3. In CA3 pyramidal neurons, CGP 35348 (0.5 mM) had no effect on monosynaptic GABAergic inhibitory PSPs (IPSPs) that were isolated in the presence of ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) and D(-)2-amino-5-phosphovaleric acid (D-APV, 50 microM). Similarly, CGP 35348 (0.5 mM) had no effect on monosynaptic glutamatergic excitatory PSPs (EPSPs) that were isolated in the presence of bicuculline (10 microM) and high divalent cation artificial cerebrospinal fluid (ACSF; 6 mM Mg2+/4 mM Ca2+). 4. In CA3 pyramidal neurons exposed to CNQX (20 microM) and D-APV (50 microM), application of the potassium channel blocker 4-aminopyridine (4-AP, 50 microM) generated synchronous giant GABAergic PSPS that were blocked in the presence of high divalent cation ACSF (6 mM Mg2+/4 mM Ca2+) or bicuculline (10 microM). The duration of these synchronous GABAergic PSPs was prolonged in the presence of CGP 35348 (0.5 mM) but did not lead to the appearance of ictal-like discharges. 5. In the presence of bicuculline, interictal

  2. Suppression of sustained and transient ON signals of amacrine cells by GABA is mediated by different receptor subtypes

    Institute of Scientific and Technical Information of China (English)

    张道启; 杨如; 杨雄里

    1999-01-01

    Intracellular recordings were made from amacrine cells in the isolated, superfused carp retina, and the effects of γ-aminobutyric acid (GABA) on sustained and transient ON signals of these cells were studied. Exogenous GABA application partially suppressed the sustained response of ON amacrine cells, which could be completely reversed by picrotoxin (PTX), a chloride channel blocker, and by bicuculline (BCC), a specific GABA_A receptor antagonist. On the other hand, suppression by GABA of the ON response which was predominantly driven by rod signals in a certain portion of transient ON-OFF amacrine cells was completely blocked by PTX, but not by BCC, indicating that GABA_C receptors may be involved in the effect. These results suggest that GABA_A and GABA_C receptors may be respectively involved in mediating the transmission of sustained and transient signals in the carp inner retina.

  3. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  4. Anticonvulsant effect of Persea americana Mill (Lauraceae) (Avocado) leaf aqueous extract in mice.

    Science.gov (United States)

    Ojewole, John A O; Amabeoku, George J

    2006-08-01

    Various morphological parts of Persea americana Mill (Lauraceae) (avocado) are widely used in African traditional medicines for the treatment, management and/or control of a variety of human ailments, including childhood convulsions and epilepsy. This study examined the anticonvulsant effect of the plant's leaf aqueous extract (PAE, 50-800 mg/kg i.p.) against pentylenetetrazole (PTZ)-, picrotoxin (PCT)- and bicuculline (BCL)-induced seizures in mice. Phenobarbitone and diazepam were used as reference anticonvulsant drugs for comparison. Like the reference anticonvulsant agents used, Persea americana leaf aqueous extract (PAE, 100-800 mg/kg i.p.) significantly (p Persea americana leaf aqueous extract possesses an anticonvulsant property, and thus lends pharmacological credence to the suggested ethnomedical uses of the plant in the management of childhood convulsions and epilepsy.

  5. Behavioral deficit and decreased GABA receptor functional regulation in the cerebellum of epileptic rats: effect of Bacopa monnieri and bacoside A.

    Science.gov (United States)

    Mathew, Jobin; Peeyush Kumar, T; Khan, Reas S; Paulose, C S

    2010-04-01

    In the present study, the effects of Bacopa monnieri and its active component, bacoside A, on motor deficit and alterations of GABA receptor functional regulation in the cerebellum of epileptic rats were investigated. Scatchard analysis of [(3)H]GABA and [(3)H]bicuculline in the cerebellum of epileptic rats revealed a significant decrease in B(max) compared with control. Real-time polymerase chain reaction amplification of GABA(A) receptor subunits-GABA(Aalpha1), GABA(Aalpha5,) and GABA(Adelta)-was downregulated (Pbacoside A reversed these changes to near-control levels. Our results suggest that changes in GABAergic activity, motor learning, and memory deficit are induced by the occurrence of repetitive seizures. Treatment with B. monnieri and bacoside A prevents the occurrence of seizures thereby reducing the impairment of GABAergic activity, motor learning, and memory deficit.

  6. Behavioral deficit and decreased GABA receptor functional regulation in the hippocampus of epileptic rats: effect of Bacopa monnieri.

    Science.gov (United States)

    Mathew, Jobin; Gangadharan, Gireesh; Kuruvilla, Korah P; Paulose, C S

    2011-01-01

    In the present study, alterations of the General GABA and GABA(A) receptors in the hippocampus of pilocarpine-induced temporal lobe epileptic rats and the therapeutic application of Bacopa monnieri and its active component Bacoside-A were investigated. Bacopa monnieri (Linn.) is a herbaceous plant belonging to the family Scrophulariaceae. Hippocampus is the major region of the brain belonging to the limbic system and plays an important role in epileptogenesis, memory and learning. Scatchard analysis of [³H]GABA and [³H]bicuculline in the hippocampus of the epileptic rat showed significant decrease in B(max) (P Bacoside-A treatment reverses all these changes near to control. Our results suggest that decreased GABA receptors in the hippocampus have an important role in epilepsy associated behavioral deficit, Bacopa monnieri and Bacoside-A have clinical significance in the management of epilepsy.

  7. GABA-B receptor activation and conflict behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ketelaars, C.E.J.; Bollen, E.L.; Rigter, H.; Bruinvels, J.

    1988-01-01

    Baclofen and oxazepam enhance extinction of conflict behavior in the Geller-Seifter test while baclofen and diazepam release punished behavior in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on (/sup 3/H)-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increase Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render it unlikely that the effect of baclofen on extinction of conflict behavior and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex. 50 references, 1 figure, 4 tables.

  8. Transmitters and pathways mediating inhibition of spinal itch-signaling neurons by scratching and other counterstimuli.

    Directory of Open Access Journals (Sweden)

    Tasuku Akiyama

    Full Text Available Scratching relieves itch, but the underlying neural mechanisms are poorly understood. We presently investigated a role for the inhibitory neurotransmitters GABA and glycine in scratch-evoked inhibition of spinal itch-signaling neurons in a mouse model of chronic dry skin itch. Superficial dorsal horn neurons ipsilateral to hindpaw dry skin treatment exhibited a high level of spontaneous firing that was significantly attenuated by cutaneous scratching, pinch and noxious heat. Scratch-evoked inhibition was nearly abolished by spinal delivery of the glycine antagonist, strychnine, and was markedly attenuated by respective GABA(A and GABA(B antagonists bicuculline and saclofen. Scratch-evoked inhibition was also significantly attenuated (but not abolished by interruption of the upper cervical spinal cord, indicating the involvement of both segmental and suprasegmental circuits that engage glycine- and GABA-mediated inhibition of spinal itch-signaling neurons by noxious counterstimuli.

  9. Dual role of GABA in the neonatal rat hippocampus.

    Science.gov (United States)

    Khalilov, I; Dzhala, V; Ben-Ari, Y; Khazipov, R

    1999-11-01

    The effects of modulators of GABA-A receptors on neuronal network activity were studied in the neonatal (postnatal days 0-5) rat hippocampus in vitro. Under control conditions, the physiological pattern of activity of the neonatal hippocampal network was characterized by spontaneous network-driven giant depolarizing potentials (GDPs). The GABA-A receptor agonist isoguvacine (1-2 microM) and the allosteric modulator diazepam (2 microM) induced biphasic responses: initially the frequency of GDPs increased 3 to 4 fold followed by blockade of GDPs and desynchronization of the network activity. The GABA-A receptor antagonists bicuculline (10 microM) and picrotoxin (100 microM) blocked GDPs and induced glutamate (AMPA and NMDA)-receptor-mediated interictal- and ictal-like activities in the hippocampal slices and the intact hippocampus. These data suggest that at early postnatal ages GABA can exert a dual - both excitatory and inhibitory - action on the network activity.

  10. Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qizhi; Carney, Paul R; Yuan Zhen; Jiang Huabei [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611 (United States); Liu Zhao [Department of Pediatrics, Division of Pediatric Neurology, University of Florida, Gainesville, FL 32610 (United States); Chen Huanxin; Roper, Steven N [Department of Neurosurgery, University of Florida, Gainesville, FL 32610-0265 (United States)], E-mail: hjiang@bme.ufl.edu

    2008-04-07

    Non-invasive laser-induced photoacoustic tomography (PAT) is an emerging imaging modality that has the potential to image the dynamic function of the brain due to its unique ability of imaging biological tissues with high optical contrast and ultrasound resolution. Here we report the first application of our finite-element-based PAT for imaging of epileptic seizures in an animal model. In vivo photoacoustic images were obtained in rats with focal seizures induced by microinjection of bicuculline, a GABA{sub A} antagonist, into the neocortex. The seizure focus was accurately localized by PAT as confirmed with gold-standard electroencephalogram (EEG). Compared to the existing neuroimaging modalities, PAT not only has the unprecedented advantage of high spatial and temporal resolution in a single imaging modality, but also is portable and low in cost, making it possible to bring brain imaging to the bedside.

  11. Involvement of Na+/Ca2+ exchanger in pentylenetetrazol-induced convulsion by use of Na+/Ca2+ exchanger knockout mice.

    Science.gov (United States)

    Saito, Ryo; Kaneko, Erina; Tanaka, Yusuke; Honda, Kenji; Matsuda, Toshio; Baba, Akemichi; Komuro, Issei; Kita, Satomi; Iwamoto, Takahiro; Takano, Yukio

    2009-11-01

    Involvement of Na+/Ca2+ exchanger (NCX) in pentylenetetrazol (PTZ)-induced convulsion by use of NCX knockout mice and the selective ligand SEA0400 to NCX was examined. In the SEA0400-administered group, the latency to clonic convulsion was extended into 210 s, although the latency to clonic convulsion was observed until 100 s in control group. SEA0400 had little effect on bicuculline-induced clonic seizure nicotine-induced wild running and 4-aminopyridine-induced tonic flexion, respectively. Tonic flexion convulsion was occurred three fifth in the wild type mice group by administration of PTZ, but tonic flexion was not observed in NCX1 knockout mice groups. These results suggest that NCX is involved in inhibitory action in PTZ-induced convulsion.

  12. VTA Projection Neurons Releasing GABA and Glutamate in the Dentate Gyrus

    Science.gov (United States)

    2016-01-01

    Abstract Both dopamine and nondopamine neurons from the ventral tegmental area (VTA) project to a variety of brain regions. Here we examine nondopaminergic neurons in the mouse VTA that send long-range projections to the hippocampus. Using a combination of retrograde tracers, optogenetic tools, and electrophysiological recordings, we show that VTA GABAergic axons make synaptic contacts in the granule cell layer of the dentate gyrus, where we can elicit small postsynaptic currents. Surprisingly, the currents displayed a partial sensitivity to both bicuculline and NBQX, suggesting that these mesohippocampal neurons corelease both GABA and glutamate. Finally, we show that this projection is functional in vivo and its stimulation reduces granule cell-firing rates under anesthesia. Altogether, the present results describe a novel connection between GABA and glutamate coreleasing of cells of the VTA and the dentate gyrus. This connection could be relevant for a variety of functions, including reward-related memory and neurogenesis. PMID:27648470

  13. Participation of GABAA Chloride Channels in the Anxiolytic-Like Effects of a Fatty Acid Mixture

    Directory of Open Access Journals (Sweden)

    Juan Francisco Rodríguez-Landa

    2013-01-01

    Full Text Available Human amniotic fluid and a mixture of eight fatty acids (FAT-M identified in this maternal fluid (C12:0, lauric acid, 0.9 μg%; C14:0, myristic acid, 6.9 μg%; C16:0, palmitic acid, 35.3 μg%; C16:1, palmitoleic acid, 16.4 μg%; C18:0, stearic acid, 8.5 μg%; C18:1cis, oleic acid, 18.4 μg%; C18:1trans, elaidic acid, 3.5 μg%; C18:2, linoleic acid, 10.1 μg% produce anxiolytic-like effects that are comparable to diazepam in Wistar rats, suggesting the involvement of γ-aminobutyric acid-A (GABAA receptors, a possibility not yet explored. Wistar rats were subjected to the defensive burying test, elevated plus maze, and open field test. In different groups, three GABAA receptor antagonists were administered 30 min before FAT-M administration, including the competitive GABA binding antagonist bicuculline (1 mg/kg, GABAA benzodiazepine antagonist flumazenil (5 mg/kg, and noncompetitive GABAA chloride channel antagonist picrotoxin (1 mg/kg. The FAT-M exerted anxiolytic-like effects in the defensive burying test and elevated plus maze, without affecting locomotor activity in the open field test. The GABAA antagonists alone did not produce significant changes in the behavioral tests. Picrotoxin but not bicuculline or flumazenil blocked the anxiolytic-like effect of the FAT-M. Based on the specific blocking action of picrotoxin on the effects of the FAT-M, we conclude that the FAT-M exerted its anxiolytic-like effects through GABAA receptor chloride channels.

  14. Comparative anticonvulsant activity and neurotoxicity of clobazam, diazepam, phenobarbital, and valproate in mice and rats.

    Science.gov (United States)

    Shenoy, A K; Miyahara, J T; Swinyard, E A; Kupferberg, H J

    1982-08-01

    The 1.5-benzodiazepine (clobazam), the 1,4-benzodiazepine (diazepam), and two nonbenzodiazepine antiepileptic drugs (phenobarbital and valproate) were evaluated in mice and rats with a battery of well-standardized anticonvulsant test procedures. The results obtained indicate that clobazam and valproate exhibit a wider range of experimental anticonvulsant activity than either diazepam or phenobarbital. Except for clobazam by the maximal electroshock seizure (MES) test in rats, clobazam and valproate are effective in nontoxic doses against MES and all four chemically induced seizures (Metrazol, bicuculline, picrotoxin, and strychnine). Clobazam is effective by the MES test in rats only in doses that exceed the median minimal toxic dose. Phenobarbital is effective against all of the above tests, but minimal toxic doses must be employed to prevent strychnine seizures. Diazepam, on the other hand, is effective in nontoxic doses against seizures induced by Metrazol, bicuculline, and picrotoxin, but protects animals from maximal electroshock and strychnine seizures only when given in toxic doses. When compared on the basis of protective indices (PI = TD50/ED50) calculated from intraperitoneal data, the PIs for clobazam were 1.6 to 13 times higher than those for diazepam. Overall, except for the MES test in rats, the PIs for clobazam were from 1.5 to 44 times higher than those for any of the other three substances. With respect to the MES test in rats, the PI for clobazam was 10.8 times higher than that for diazepam; however, the PIs for phenobarbital and valproate were 3.5 and 4.4 times higher, respectively, than that for clobazam. These data suggest that the spectrum of anticonvulsant activity for the 1,5-benzodiazepine (clobazam) is superior to that for the 1,4-benzodiazepine (diazepam). Also, the broad experimental profile of anticonvulsant activity of clobazam agrees well with its reported broad clinical efficacy.

  15. 5-Hydroxytryptamine 1A receptors in the dorsomedial hypothalamus connected to dorsal raphe nucleus inputs modulate defensive behaviours and mediate innate fear-induced antinociception.

    Science.gov (United States)

    Biagioni, Audrey Franceschi; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; da Silva, Juliana Almeida; dos Anjos-Garcia, Tayllon; Roncon, Camila Marroni; Corrado, Alexandre Pinto; Zangrossi, Hélio; Coimbra, Norberto Cysne

    2016-03-01

    The dorsal raphe nucleus (DRN) is an important brainstem source of 5-hydroxytryptamine (5-HT), and 5-HT plays a key role in the regulation of panic attacks. The aim of the present study was to determine whether 5-HT1A receptor-containing neurons in the medial hypothalamus (MH) receive neural projections from DRN and to then determine the role of this neural substrate in defensive responses. The neurotracer biotinylated dextran amine (BDA) was iontophoretically microinjected into the DRN, and immunohistochemical approaches were then used to identify 5HT1A receptor-labelled neurons in the MH. Moreover, the effects of pre-treatment of the dorsomedial hypothalamus (DMH) with 8-OH-DPAT and WAY-100635, a 5-HT1A receptor agonist and antagonist, respectively, followed by local microinjections of bicuculline, a GABAA receptor antagonist, were investigated. We found that there are many projections from the DRN to the perifornical lateral hypothalamus (PeFLH) but also to DMH and ventromedial (VMH) nuclei, reaching 5HT1A receptor-labelled perikarya. DMH GABAA receptor blockade elicited defensive responses that were followed by antinociception. DMH treatment with 8-OH-DPAT decreased escape responses, which strongly suggests that the 5-HT1A receptor modulates the defensive responses. However, DMH treatment with WAY-100635 failed to alter bicuculline-induced defensive responses, suggesting that 5-HT exerts a phasic influence on 5-HT1A DMH neurons. The activation of the inhibitory 5-HT1A receptor had no effect on antinociception. However, blockade of the 5-HT1A receptor decreased fear-induced antinociception. The present data suggest that the ascending pathways from the DRN to the DMH modulate panic-like defensive behaviours and mediate antinociceptive phenomenon by recruiting 5-HT1A receptor in the MH.

  16. Functional interactions within the parahippocampal region revealed by voltage-sensitive dye imaging in the isolated guinea pig brain.

    Science.gov (United States)

    Biella, Gerardo; Spaiardi, Paolo; Toselli, Mauro; de Curtis, Marco; Gnatkovsky, Vadym

    2010-02-01

    The massive transfer of information from the neocortex to the entorhinal cortex (and vice versa) is hindered by a powerful inhibitory control generated in the perirhinal cortex. In vivo and in vitro experiments performed in rodents and cats support this conclusion, further extended in the present study to the analysis of the interaction between the entorhinal cortex and other parahippocampal areas, such as the postrhinal and the retrosplenial cortices. The experiments were performed in the in vitro isolated guinea pig brain by a combined approach based on electrophysiological recordings and fast imaging of optical signals generated by voltage-sensitive dyes applied to the entire brain by arterial perfusion. Local stimuli delivered in different portions of the perirhinal, postrhinal, and retrosplenial cortex evoked local responses that did not propagate to the entorhinal cortex. Neither high- and low-frequency-patterned stimulation nor paired associative stimuli facilitated the propagation of activity to the entorhinal region. Similar stimulations performed during cholinergic neuromodulation with carbachol were also ineffective in overcoming the inhibitory network that controls propagation to the entorhinal cortex. The pharmacological inactivation of GABAergic transmission by local application of bicuculline (1 mM) in area 36 of the perirhinal cortex facilitated the longitudinal (rostrocaudal) propagation of activity into the perirhinal/postrhinal cortices but did not cause propagation into the entorhinal cortex. Bicuculline injection in both area 35 and medial entorhinal cortex released the inhibitory control and allowed the propagation of the neural activity to the entorhinal cortex. These results demonstrate that, as for the perirhinal-entorhinal reciprocal interactions, also the connections between the postrhinal/retrosplenial cortices and the entorhinal region are subject to a powerful inhibitory control.

  17. GABAA receptors modulate cannabinoid-evoked hypothermia.

    Science.gov (United States)

    Rawls, S M; Tallarida, R J; Kon, D A; Geller, E B; Adler, Martin W

    2004-05-01

    Cannabinoids evoke hypothermia by stimulating central CB(1) receptors. GABA induces hypothermia via GABA(A) or GABA(B) receptor activation. CB(1) receptor activation increases GABA release in the hypothalamus, a central locus for thermoregulation, suggesting that cannabinoid and GABA systems may be functionally linked in body temperature regulation. We investigated whether GABA receptors modulate the hypothermic actions of [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenyl-carbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one] (WIN 55212-2), a selective cannabinoid agonist, in male Sprague-Dawley rats. WIN 55212-2 (2.5 mg/kg im) produced a rapid hypothermia that peaked 45-90 min postinjection. The hypothermia was attenuated by bicuculline (2 mg/kg ip), a GABA(A) antagonist. However, SCH 50911 (1-10 mg/kg ip), a GABA(B) blocker, did not antagonize the hypothermia. Neither bicuculline (2 mg/kg) nor SCH 50911 (10 mg/kg) by itself altered body temperature. We also investigated a possible role for CB(1) receptors in GABA-generated hypothermia. Muscimol (2.5 mg/kg ip), a GABA(A) agonist, or baclofen (5 mg/kg ip), a GABA(B) agonist, evoked a significant hypothermia. Blockade of CB(1) receptors with SR141716A (2.5 mg/kg im) did not antagonize muscimol- or baclofen-induced hypothermia, indicating that GABA-evoked hypothermia does not contain a CB(1)-sensitive component. Our results implicate GABA(A) receptors in the hypothermic actions of cannabinoids and provide further evidence of a functional link between cannabinoid and GABA systems.

  18. Characterization of electrically evoked field potentials in the medial prefrontal cortex and orbitofrontal cortex of the rat: modulation by monoamines.

    Science.gov (United States)

    Wallace, Joanne; Jackson, Rosanna K; Shotton, Tanya L; Munjal, Ishaana; McQuade, Richard; Gartside, Sarah E

    2014-02-01

    Medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC) play critical roles in cognition and behavioural control. Glutamatergic, GABAergic, and monoaminergic dysfunction in the prefrontal cortex has been hypothesised to underlie symptoms in neuropsychiatric disorders. Here we characterised electrically-evoked field potentials in the mPFC and OFC. Electrical stimulation evoked field potentials in layer V/VI of the mPFC and layer V of the OFC. The earliest component (approximately 2 ms latency) was insensitive to glutamate receptor blockade and was presumed to be presynaptic. Later components were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX (20 µM)) and were assumed to reflect monosynaptic (latency 4-6 ms) and polysynaptic activity (latency 6-40 ms) mediated by glutamate via AMPA/kainate receptor. In the mPFC, but not the OFC, the monosynaptic component was also partly blocked by 2-amino-5-phosphonopentanoic acid (AP-5 (50-100µM)) indicating the involvement of NMDA receptors. Bicuculline (3-10 µM) enhanced the monosynaptic component suggesting electrically-evoked and/or glutamate induced GABA release inhibits the monosynaptic component via GABAA receptor activation. There were complex effects of bicuculline on polysynaptic components. In the mPFC both the mono- and polysynaptic components were attenuated by 5-HT (10-100 µM) and NA (30 and 60 µM) and the monosynaptic component was attenuated by DA (100 µM). In the OFC the mono- and polysynaptic components were also attenuated by 5-HT (100 µM), NA (10-100 µM) but DA (10-100 µM) had no effect. We propose that these pharmacologically characterised electrically-evoked field potentials in the mPFC and OFC are useful models for the study of prefrontal cortical physiology and pathophysiology.

  19. GABAρ1/GABAAα1 receptor chimeras to study receptor desensitization

    Science.gov (United States)

    Martínez-Torres, Ataúlfo; Demuro, Angelo; Miledi, Ricardo

    2000-01-01

    γ-Aminobutyrate type C (GABAC) receptors are ligand-gated ion channels that are expressed preponderantly in the vertebrate retina and are characterized, among other things, by a very low rate of desensitization and resistance to the specific GABAA antagonist bicuculline. To examine which structural elements determine the nondesensitizing character of the human homomeric ρ1 receptor, we used a combination of gene chimeras and electrophysiology of receptors expressed in Xenopus oocytes. Two chimeric genes were constructed, made up of portions of the ρ1-subunit and of the α1-subunit of the GABAA receptor. When expressed in Xenopus oocytes, one chimeric gene (ρ1/α1) formed functional homooligomeric receptors that were fully resistant to bicuculline and were blocked by the specific GABAC antagonist (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid and by zinc. Moreover, these chimeric receptors had a fast-desensitizing component, even faster than that of heterooligomeric GABAA receptors, in striking contrast to the almost nil desensitization of wild-type ρ1 (wt ρ1) receptors. To see whether the fast-desensitizing characteristic of the chimera was determined by the amino acids forming the ion channels, we replaced the second transmembrane segment (TM2) of ρ1 by that of the α1-subunit of GABAA. Although the α1-subunit forms fast-desensitizing receptors when coexpressed with other GABAA subunits, the sole transfer of the α1TM2 segment to ρ1 was not sufficient to form desensitizing receptors. All this suggests that the slow-desensitizing trait of ρ1 receptors is determined by a combination of several interacting domains along the molecule. PMID:10725369

  20. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  1. Differential Expression and Regulation of Brain-Derived Neurotrophic Factor (BDNF) mRNA Isoforms in Brain Cells from Mecp2(308/y) Mouse Model.

    Science.gov (United States)

    Rousseaud, Audrey; Delépine, Chloé; Nectoux, Juliette; Billuart, Pierre; Bienvenu, Thierry

    2015-08-01

    Rett syndrome (RTT) is a severe neurodevelopmental disease caused by mutations in methyl-CpG-binding protein 2 (MECP2), which encodes a transcriptional modulator of many genes including BDNF. BDNF comprises nine distinct promoter regions, each triggering the expression of a specific transcript. The role of this diversity of transcripts remains unknown. MeCP2 being highly expressed in neurons, RTT was initially considered as a neuronal disease. However, recent studies have shown that MeCP2 was also expressed in astrocytes. Though several studies explored Bdnf IV expression in Mecp2-deficient mice, the differential expression of Bdnf isoforms in Mecp2-deficient neurons and astrocytes was never studied. By using TaqMan technology and a mouse model expressing a truncated Mecp2 (Mecp2(308/y)), we firstly showed in neurons that Bdnf transcripts containing exon I, IIb, IIc, IV, and VI are prominently expressed, whereas in astrocytes, Bdnf transcript containing exon VI is preferentially expressed, suggesting a specific regulation of Bdnf expression at the cellular level. Secondly, we confirmed the repressive role of Mecp2 only on the expression of Bdnf VI in neurons. Our data suggested that the truncated Mecp2 protein maintains its function on Bdnf expression regulation in neurons and in astrocytes. Interestingly, we observed that Bdnf transcripts (I and IXA), regulated by neural activity induced by bicuculline in Mecp2(308/y) neurons, were not affected by histone deacetylase inhibition. In contrast, Bdnf transcripts (IIb, IIc, and VI), regulated by histone deacetylation, were not affected by bicuculline treatment in wild-type and Mecp2(308/y) neurons. All these results reflect the complexity of regulation of Bdnf gene.

  2. GABA mediated excitation in immature rat CA3 hippocampal neurons.

    Science.gov (United States)

    Cherubini, E; Rovira, C; Gaiarsa, J L; Corradetti, R; Ben Ari, Y

    1990-01-01

    Intracellular recordings from rat hippocampal neurons in vitro during the first postnatal week revealed the presence of spontaneous giant depolarizing potentials (GDPs). These were generated by the synchronous discharge of a population of neurons. GDPs reversed polarity at -27 and -51 mV when recorded with KCl or K-methylsulphate filled electrodes, respectively. GDPs were blocked by the GABAA receptor antagonist bicuculline (10 microM). Iontophoretic or bath applications of GABA (10-300 microM) in the presence of tetrodotoxin (1 microM), induced a membrane depolarization or in voltage clamp experiments an inward current which reversed polarity at the same potential as GDPs. The response to GABA was blocked in a non-competitive manner by bicuculline (10 microM) and did not desensitize. GABA mediated GDPs were presynaptically modulated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors. Their frequency was reduced or blocked by NMDA receptor antagonists and by the rather specific non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). The frequency of GDPs was enhanced by glycine and D-serine (10-30 microM) in a strychnine insensitive manner. This effect was blocked by AP-5, suggesting that it was mediated by the allosteric modulatory site of the NMDA receptor. These observations suggest that most of the 'excitatory' drive in immature neurons is mediated by GABA acting on GABAA receptors; furthermore excitatory amino acids modulate the release of GABA by a presynaptic action on GABAergic interneurons.

  3. Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase.

    Science.gov (United States)

    Gallo, Eduardo F; Iadecola, Costantino

    2011-05-11

    Nitric oxide (NO) synthesized by neuronal NO synthase (nNOS) has long been implicated in brain plasticity. However, it is unclear how this short-lived mediator contributes to the long-term molecular changes underlying neuroplasticity, which typically require activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) signaling pathway and gene expression. To address this issue, we used a neuroplasticity model based on treatment of neuronal cultures with bicuculline and a model of experience-dependent plasticity in the barrel cortex. In neuronal cultures, NOS inhibition attenuated the bicuculline-induced activation of ERK and the expression of c-Fos, Egr-1, Arc, and brain-derived neurotrophic factor (BDNF), proteins essential for neuroplasticity. Furthermore, inhibition of the NO target soluble guanylyl cyclase or of the cGMP effector kinase protein kinase G (PKG) reduced both ERK activation and plasticity-related protein expression. NOS inhibition did not affect phosphorylation of cAMP response element-binding protein (CREB), a well-established ERK nuclear target, but it attenuated the nuclear accumulation of the CREB coactivator TORC1 and suppressed the activation of Elk-1, another transcription factor target of ERK. Consistent with these in vitro observations, induction of c-Fos, Egr-1, and BDNF was attenuated in the D1 cortical barrel of nNOS(-/-) mice subjected to single whisker experience. These results establish nNOS-derived NO as a key factor in the expression of proteins involved in neuroplasticity, an effect mediated through cGMP, PKG, and ERK signaling. These actions of NO do not depend on CREB phosphorylation but may involve TORC1 and Elk-1. Our data unveil a previously unrecognized link between neuronal NO and the molecular machinery responsible for the sustained synaptic changes underlying neuroplasticity.

  4. Regulation of epileptiform discharges in rat neocortex by HCN channels.

    Science.gov (United States)

    Albertson, Asher J; Williams, Sidney B; Hablitz, John J

    2013-10-01

    Hyperpolarization-activated, cyclic nucleotide-gated, nonspecific cation (HCN) channels have a well-characterized role in regulation of cellular excitability and network activity. The role of these channels in control of epileptiform discharges is less thoroughly understood. This is especially pertinent given the altered HCN channel expression in epilepsy. We hypothesized that inhibition of HCN channels would enhance bicuculline-induced epileptiform discharges. Whole cell recordings were obtained from layer (L)2/3 and L5 pyramidal neurons and L1 and L5 GABAergic interneurons. In the presence of bicuculline (10 μM), HCN channel inhibition with ZD 7288 (20 μM) significantly increased the magnitude (defined as area) of evoked epileptiform events in both L2/3 and L5 neurons. We recorded activity associated with epileptiform discharges in L1 and L5 interneurons to test the hypothesis that HCN channels regulate excitatory synaptic inputs differently in interneurons versus pyramidal neurons. HCN channel inhibition increased the magnitude of epileptiform events in both L1 and L5 interneurons. The increased magnitude of epileptiform events in both pyramidal cells and interneurons was due to an increase in network activity, since holding cells at depolarized potentials under voltage-clamp conditions to minimize HCN channel opening did not prevent enhancement in the presence of ZD 7288. In neurons recorded with ZD 7288-containing pipettes, bath application of the noninactivating inward cationic current (Ih) antagonist still produced increases in epileptiform responses. These results show that epileptiform discharges in disinhibited rat neocortex are modulated by HCN channels.

  5. Anaesthetic impairment of immune function is mediated via GABA(A receptors.

    Directory of Open Access Journals (Sweden)

    Daniel W Wheeler

    Full Text Available GABA(A receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients.We demonstrate, using RT-PCR, that monocytes express GABA(A receptors constructed of α1, α4, β2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin.Our results show that functional GABA(A receptors are present on monocytes with properties similar to CNS GABA(A receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life

  6. Binding interactions of convulsant and anticonvulsant gamma-butyrolactones and gamma-thiobutyrolactones with the picrotoxin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Holland, K.D.; McKeon, A.C.; Covey, D.F.; Ferrendelli, J.A. (Washington Univ. School of Medicine, St. Louis, MO (USA))

    1990-08-01

    Alkyl-substituted gamma-butyrolactones (GBLs) and gamma-thiobutyrolactones (TBLs) are neuroactive chemicals. beta-Substituted compounds are convulsant, whereas alpha-alkyl substituted GBLs and TBLs are anticonvulsant. The structural similarities between beta-alkyl GBLs and the convulsant picrotoxinin suggested that alkyl substituted GBLs and TBLs act at the picrotoxin receptor. To test this hypothesis we examined the interactions of convulsant and anticonvulsant GBLs and TBLs with the picrotoxin, benzodiazepine and gamma-aminobutyric acid (GABA) binding sites of the GABA receptor complex. All of these convulsants and anticonvulsants studied competitively displaced 35S-t-butylbicyclophosphorothionate (35S-TBPS), a ligand that binds to the picrotoxin receptor. This inhibition of 35S-TBPS binding was not blocked by the GABA antagonist bicuculline methobromide. The convulsant GBLs and TBLs also partially inhibited (3H)muscimol binding to the GABA site and (3H)flunitrazepam binding to the benzodiazepine site, but they did so at concentrations substantially greater than those that inhibited 35S-TBPS binding. The anticonvulsant GBLs and TBLs had no effect on either (3H)muscimol or (3H)flunitrazepam binding. In contrast to the GBLs and TBLs, pentobarbital inhibited TBPS binding in a manner that was blocked by bicuculline methobromide, and it enhanced both (3H)flunitrazepam and (3H)muscimol binding. Both ethosuximide and tetramethylsuccinimide, neuroactive compounds structurally similar to GBLs, competitively displaced 35S-TBPS from the picrotoxin receptor and both compounds were weak inhibitors of (3H) muscimol binding. In addition, ethosuximide also partially diminished (3H)flunitrazepam binding. These data demonstrate that the site of action of alkyl-substituted GBLs and TBLs is different from that of GABA, barbiturates and benzodiazepines.

  7. The action of orexin B on passive avoidance learning. Involvement of neurotransmitters.

    Science.gov (United States)

    Palotai, Miklós; Telegdy, Gyula; Ekwerike, Alphonsus; Jászberényi, Miklós

    2014-10-01

    The extensive projection of orexigenic neurons and the diffuse expression of orexin receptors suggest that endogenous orexins are involved in several physiological functions of the central nervous system, including learning and memory. Our previous study demonstrated that orexin A improves learning, consolidation and retrieval processes, which involves α- and β-adrenergic, cholinergic, dopaminergic, GABA-A-ergic, opiate and nitrergic neurotransmissions. However, we have little evidence about the action of orexin B on memory processes and the underlying neuromodulation. Therefore, the aim of the present study was to investigate the action of orexin B on passive avoidance learning and the involvement of neurotransmitters in this action in rats. Accordingly, rats were pretreated with the selective orexin 2 receptor (OX2R) antagonist, EMPA; the γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, the bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; the nonselective opioid receptor antagonist, naloxone; the non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; the nonselective α-adrenergic receptor antagonist, phenoxybenzamine and the β-adrenergic receptor antagonist, propranolol. Our results demonstrate that orexin B can improve learning, consolidation of memory and retrieval. EMPA reversed completely the action of orexin B on memory consolidation. Bicuculline blocked fully; naloxone, nitro-l-arginine, phenoxybenzamine and propranolol attenuated the orexin B-induced memory consolidation, whereas haloperidol was ineffective. These data suggest that orexin B improves memory functions through OX2R and GABA-ergic, opiate, nitrergic, α- and β-adrenergic neurotransmissions are also involved in this action.

  8. N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine in striatal compartments of the rat: regulatory roles of dopamine and GABA

    Energy Technology Data Exchange (ETDEWEB)

    Glowinski, J.; Perez, S.; Desban, M.; Gauchy, C.; Kemel, M.L.; Blanchet, F. [Chaire de Neuropharmacologie, INSERM U114, College de France, 11 place Marcelin Berthelot, 75231 Paris (France)

    1997-08-26

    } receptors can either reduce (striosomes) or enhance (matrix) this response, since in the latter case the effect induced by the combined application of the D{sub 1} and D{sub 2} receptor antagonists was smaller than that observed with the D{sub 2} receptor antagonist alone.Indicating that released GABA facilitates N-methyl-d-aspartate responses, the blockade of GABA{sub A} receptors with bicuculline (5 {mu}M) reduced the 50 {mu}M N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine in both striatal compartments and the 1 mM N-methyl-d-aspartate + d-serine response in the matrix. These effects result from an inhibition by GABA of the evoked release of dopamine, since the reducing effects of bicuculline on N-methyl-d-aspartate responses were not observed under the complete blockade of dopaminergic transmission by the D{sub 1} and D{sub 2} receptor antagonists. Further demonstrating a facilitatory role of GABA in the control of N-methyl-d-aspartate-evoked release of [{sup 3}H]acetylcholine, in the presence of bicuculline, (-)-sulpiride and SCH23390 alone or in combination enhanced, in both compartments, the responses induced not only by 1 mM N-methyl-d-aspartate + d-serine, but also by 50 {mu}M N-methyl-d-aspartate. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice.

    Science.gov (United States)

    Tanaka, Masaru; Telegdy, Gyula

    2014-02-01

    Neuromedin U (NmU) is a widely distributed and multifunctional peptide in the central nervous system and the peripheral tissues. Little is know about the mechanisms of NmU on brain functions. The rodent isoform of the NmU, NmU-23, has been shown to have anxiolytic effects involved in the β-adrenergic and cholinergic nervous systems in elevated plus maze test. NmU-23 was tested for antidepressant-like effects in modified forced swimming test (FST) in mice and furthermore, the involvement of the adrenergic, serotonergic, cholinergic, dopaminergic or gaba-ergic receptors in the antidepressant-like effect of NmU-23 was studied in modified mice FST. Mice were pretreated with a non-selective α-adrenergic receptor antagonist phenoxybenzamine, an α1/α2β-adrenergic receptor antagonist, prazosin, an α2-adrenergic receptor antagonist, yohimbine, a β-adrenergic receptor antagonist, propranolol, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, nonselective muscarinic acetylcholine receptor antagonist, atropine, D2,D3,D4 dopamine receptor antagonist, haloperidol or γ-aminobutyric acid subunit A (GABAA) receptor antagonist, bicuculline. NmU-23 showed the antidepressant-like effects by decreasing the immobility time and increasing the climbing and swimming time. Prazosin, haloperidol, and bicuculline prevented the effects of NmU-23 on the climbing and swimming time. Methysergide and cyproheptadine prevented the effects of NmU-23 on the immobility, swimming and climbing time. Atropine prevented the effects of NmU-23 on the climbing time. Phenoxybenzamine, yohimbine and propranolol did not change the effects of NmU-23. The results demonstrated that the antidepressant-like effect of NmU-23 is mediated, at least in part, by an interaction of the α2-adrenergic, 5-HT1-2 serotonergic, D2,D3,D4 dopamine receptor, muscarinic acetylcholine receptors and γ-aminobutyric acid subunit A (GABAA

  10. Antagonistic action of pitrazepin on human and rat GABAA receptors

    Science.gov (United States)

    Demuro, Angelo; Martinez-Torres, Ataulfo; Francesconi, Walter; Miledi, Ricardo

    1999-01-01

    Pitrazepin, 3-(piperazinyl-1)-9H-dibenz(c,f) triazolo(4,5-a)azepin is a piperazine antagonist of GABA in a variety of electrophysiological and in vitro binding studies involving GABA and glycine receptors. In the present study we have investigated the effects of pitrazepin, and the GABAA antagonist bicuculline, on membrane currents elicited by GABA in Xenopus oocytes injected with rat cerebral cortex mRNA or cDNAs encoding α1β2 or α1β2γ2S human GABAA receptor subunits.The three types of GABAA receptors expressed were reversibly antagonized by bicuculline and pitrazepin in a concentration-dependent manner. GABA dose-current response curves for the three types of receptors were shifted to the right, in a parallel manner, by increasing concentrations of pitrazepin.Schild analyses gave pA2 values of 6.42±0.62, n=4, 6.41±1.2, n=5 and 6.21±1.24, n=6, in oocytes expressing rat cerebral cortex, α1β2 or α1β2γ2S human GABAA receptors respectively (values are given as means±s.e.mean), and the Hill coefficients were all close to unity. All this is consistent with the notion that pitrazepin acts as a competitive antagonist of these GABAA receptors; and that their antagonism by pitrazepin is not strongly dependent on the subunit composition of the receptors here studied.Since pitrazepin has been reported to act also at the benzodiazepine binding site, we studied the effect of the benzodiazepine antagonist Ro 15-1788 (flumazenil) on the inhibition of α1β2γ2S receptors by pitrazepin. Co-application of Ro 15-1788 did not alter the inhibiting effect of pitrazepin. Moreover, pitrazepin did not antagonize the potentiation of GABA-currents by flunitrazepam. All this suggests that pitrazepin does not affect the GABA receptor-chloride channel by interacting with the benzodiazepine receptor site. PMID:10369456

  11. Blocking GABA(A) inhibition reveals AMPA- and NMDA-receptor-mediated polysynaptic responses in the CA1 region of the rat hippocampus.

    Science.gov (United States)

    Crépel, V; Khazipov, R; Ben-Ari, Y

    1997-04-01

    We have investigated the conditions required to evoke polysynaptic responses in the isolated CA1 region of hippocampal slices from Wistar adult rats. Experiments were performed with extracellular and whole cell recording techniques. In the presence of bicuculline (10 microM), 6-cyano-7-nitroquinoxaline-2-3-dione (10 microM), glycine (10 microM), and a low external concentration of Mg2+ (0.3 mM), electrical stimulation of the Schaffer collaterals/commissural pathway evoked graded N-methyl-D-aspartate (NMDA)-receptor-mediated late field potentials in the stratum radiatum of the CA1 region. These responses were generated via polysynaptic connections because their latency varied strongly and inversely with the stimulation intensity and they were abolished by a high concentration of divalent cations (7 mM Ca2+). These responses likely were driven by local collateral branches of CA1 pyramidal cell axons because focal application of tetrodotoxin (30 microM) in the stratum oriens strongly reduced the late synaptic component and antidromic stimulation of CA1 pyramidal cells could evoke the polysynaptic response. Current-source density analysis suggested that the polysynaptic response was generated along the proximal part of the apical dendrites of CA1 pyramidal cells (50-150 microm below the pyramidal cell layer in the stratum radiatum). In physiological concentration of Mg2+ (1.3 mM), the pharmacologically isolated NMDA-receptor-mediated polysynaptic response was abolished. In control artificial cerebrospinal fluid (with physiological concentration of Mg2+), bicuculline ( 10 microM) generated a graded polysynaptic response. Under these conditions, this response was mediated both by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/NMDA receptors. In the presence of D-2-amino-5-phosphonovalerate (50 microM), the polysynaptic response could be mediated by AMPA receptors, although less efficiently. In conclusion, suppression of gamma-aminobutyric acid

  12. The effects of GABAA and NMDA receptors in the shell-accumbens on spatial memory of METH-treated rats.

    Science.gov (United States)

    Heysieattalab, Soomaayeh; Naghdi, Nasser; Zarrindast, Mohammad-Reza; Haghparast, Abbas; Mehr, Shahram Ejtemaei; Khoshbouei, Habibeh

    2016-03-01

    Methamphetamine (METH) is a highly addictive and neurotoxic psychostimulant. Its use in humans is often associated with neurocognitive impairment and deficits in hippocampal plasticity. Striatal dopamine system is one of the main targets of METH. The dopamine neurons in the striatum directly or indirectly regulate the GABA and glutamatergic signaling in this region and thus their outputs. This is consistent with previous reports showing modification of neuronal activity in the striatum modulates the expression of hippocampal LTP and hippocampal-dependent memory tasks such as Morris water maze (MWM). Therefore, reversing or preventing METH-induced synaptic modifications via pharmacological manipulations of the shell-nucleus accumbens (shell-NAc) may introduce a viable therapeutic target to attenuate the METH-induced memory deficits. This study is designed to investigate the role of intra-shell NAc manipulation of GABAA and NMDA receptors and their interaction with METH on memory performance in MWM task. Pharmacological manipulations were performed in rats received METH or saline. We found systemic saline plus intra-shell NAc infusions of muscimol dose-dependently impaired performance, while bicuculline had no effect. Surprisingly, the intra-NAc infusions of 0.005μg/rat muscimol that has no effect on memory performance (ineffective dose) prevented METH-induced memory impairment. In the contrary, the intra-NAc infusions of bicuculline (0.2μg/rat) increased METH-induced memory impairment. However, pre-training intra-NAc infusions of D-AP5 dose-dependently impaired performance, while NMDA had no effect in rats received systemic saline (control group). The intra-NAc infusions with an ineffective dose of NMDA (0.1μg/rat) increased METH-induced memory impairment. Furthermore, intra-NAc infusions of D-AP5 with an ineffective dose (0.1μg/rat) prevented METH-induced memory impairment. Our result is consistent with the interpretation that METH-mediated learning deficit

  13. Cerebrovasodilatory contribution of endogenous carbon monoxide during seizures in newborn pigs.

    Science.gov (United States)

    Pourcyrous, Massroor; Bada, Henrietta S; Parfenova, Helena; Daley, Michael L; Korones, Sheldon B; Leffler, Charles W

    2002-05-01

    Carbon monoxide (CO) and the excitatory amino acid glutamate both dilate cerebral arterioles in newborn pigs. The key enzyme in CO synthesis is heme oxygenase, which is highly expressed in neurons with glutamatergic receptor activity as well as cerebral microvessels. During seizures the extracellular level of glutamate is increased, which results in excessive depolarization of neurons. We hypothesized that CO is a mediator of excitatory amino acid-induced dilation of the cerebral microvasculature during seizures. Three groups of piglets were examined: 1) i.v. normal saline (sham control), 2) topical chromium mesoporphyrin (Cr-MP, 15 x 10(-6) M), and 3) i.v. tin-protoporphyrin (Sn-PP, 4 mg/kg). Synthetic metalloporphyrins (Cr-MP and Sn-PP) are heme oxygenase inhibitors, thereby reducing CO synthesis. Implanted closed cranial windows were used to monitor changes in pial arteriolar diameters. Seizures were induced by administration of i.v. bicuculline. Changes in pial arteriolar diameters were monitored during 30 min of status epilepticus. The percent increase in pial arteriolar dilation in the saline group during seizures was 68 +/- 3%. In the metalloporphyrin groups, the pial arteriolar dilation was markedly reduced (35 +/- 3% and 13 +/- 1%, for Cr-MP and Sn-PP, respectively; p synthesis attenuate pial arteriolar dilation during seizures. Therefore, CO appears to be involved in cerebral vasodilation caused by glutamatergic seizures.

  14. Early history of glycine receptor biology in mammalian spinal cord circuits

    Directory of Open Access Journals (Sweden)

    Robert J Callister

    2010-05-01

    Full Text Available In this review we provide an overview of key in vivo experiments, undertaken in the cat spinal cord in the 1950s and 1960s, and point out their contributions to our present understanding of glycine receptor (GlyR function. Importantly, some of these discoveries were made well before an inhibitory receptor, or its agonist, was identified. These contributions include the universal acceptance of a chemical mode of synaptic transmission, that GlyRs are chloride channels, are involved in reciprocal and recurrent spinal inhibition, are selectively blocked by strychnine, and can be distinguished from the GABAA receptor by their insensitivity to bicuculline. The early in vivo work on inhibitory mechanisms in spinal neurons also contributed to several enduring principles on synaptic function, such as the time associated with synaptic delay, the extension of Dale’s hypothesis (regarding the chemical unity of nerve cells and their terminals to neurons within the central nervous system, and the importance of inhibition for synaptic integration in motor and sensory circuits. We hope the work presented here will encourage those interested in GlyR biology and inhibitory mechanisms to seek out and read some of the “classic” articles that document the above discoveries.

  15. The effects of fruit essential oil of the Pimpinella anisum on acquisition and expression of morphine induced conditioned place preference in mice.

    Science.gov (United States)

    Sahraei, Hedayat; Ghoshooni, Hassan; Hossein Salimi, Sayed; Mohseni Astani, Abutaleb; Shafaghi, Bijan; Falahi, Mansoor; Kamalnegad, Mohammad

    2002-04-01

    The problem of drug dependence still remains unresolved. In the present study the effects of an essential oil of Pimpinella anisum (Umbeliferae) on the expression and acquisition of conditioned place preference (CPP) induced by morphine in mice were investigated. Subcutaneous (s.c.) injections of morphine (2-5 mg/kg) produced place preference in a dose-dependent manner. Furthermore, intraperitoneal (i.p.) injection of the essential oil of P. anisum (0.125-0.5 ml/kg) induced conditioned place aversion (CPA). The mice which have received the essential oil of the P. anisum (0.125-0.5 ml/kg, i.p.) as well as the oil with morphine (5 mg/kg, s.c.) reduced the morphine effect. Administration of the essential oil of P. anisum (0.125-0.5 ml/kg, i.p.) on the test day did not show any effect on morphine action. It appeared that pre-administration with bicuculline (GABA(A) receptor antagonist) (1.5 mg/kg, i.p., 20 min before essential oil) diminished the effect of the essential oil of the P. anisum on morphine which induced CPP, but this result was not found for the GABA(B) receptor antagonist, CGP35348 (200 and 400 mg/kg, i.p., 10 min before essential oil). In conclusion, it appeared that the essential oil of the P. anisum may reduce the morphine effects via a GABAergic mechanism.

  16. Role of GABA-active neurosteroids in the efficacy of metyrapone against cocaine addiction.

    Science.gov (United States)

    Schmoutz, Christopher D; Guerin, Glenn F; Goeders, Nicholas E

    2014-09-01

    Previous research has demonstrated a complicated role for stress and HPA axis activation in potentiating various cocaine-related behaviors in preclinical models of drug dependence. However, the investigation of several antiglucocorticoid therapies has yielded equivocal results in reducing cocaine-related behaviors, possibly because of varying mechanisms of actions. Specifically, research suggests that metyrapone (a corticosterone synthesis inhibitor) may reduce cocaine self-administration in rats via a nongenomic, extra-adrenal mechanism without altering plasma corticosterone. In the current experiments, male rats were trained to self-administer cocaine infusions and food pellets in a multiple, alternating schedule of reinforcement. Metyrapone pretreatment dose-dependently decreased cocaine self-administration as demonstrated previously. Pharmacological inhibition of neurosteroid production by finasteride had significant effects on cocaine self-administration, regardless of metyrapone pretreatment. However, metyrapone's effects on cocaine self-administration were significantly attenuated with bicuculline pretreatment, suggesting a role for GABA-active neurosteroids in cocaine-reinforced behaviors. In vitro binding data also confirmed that metyrapone does not selectively bind to GABA-related proteins. The results of these experiments support the hypothesis that metyrapone may increase neurosteroidogenesis to produce effects on cocaine-related behaviors.

  17. Effects of hippocampal high-frequency electrical stimulation in memory formation and their association with amino acid tissue content and release in normal rats.

    Science.gov (United States)

    Luna-Munguía, Hiram; Meneses, Alfredo; Peña-Ortega, Fernando; Gaona, Andres; Rocha, Luisa

    2012-01-01

    Hippocampal high frequency electrical stimulation (HFS) at 130 Hz has been proposed as a therapeutical strategy to control neurological disorders such as intractable temporal lobe epilepsy (TLE). This study was carried out to determine the effects of hippocampal HFS on the memory process and the probable involvement of amino acids. Using the autoshaping task, we found that animals receiving hippocampal HFS showed augmented short-term, but not long-term memory formation, an effect blocked by bicuculline pretreatment and associated with enhanced tissue levels of amino acids in hippocampus. In addition, microdialysis experiments revealed high extracellular levels of glutamate, aspartate, glycine, taurine, and alanine during the application of hippocampal HFS. In contrast, GABA release augmented during HFS and remained elevated for more than 1 h after the stimulation was ended. HFS had minimal effects on glutamine release. The present results suggest that HFS has an activating effect on specific amino acids in normal hippocampus that may be involved in the enhanced short-term memory formation. These data further provide experimental support for the concept that hippocampus may be a promising target for focal stimulation to treat intractable seizures in humans.

  18. Dorsal periaqueductal gray stimulation facilitates anxiety-, but not panic-related, defensive responses in rats tested in the elevated T-maze

    Energy Technology Data Exchange (ETDEWEB)

    Camplesi, M. Jr. [Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO (Brazil); Bortoli, V.C. de [Departamento de Ciências da Saúde, Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo, São Mateus, ES (Brazil); Paula Soares, V. de [Departamento de Biofísica e Farmacologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN (Brazil); Nogueira, R.L. [Laboratório de Psicologia Comparada, Universidade Estácio de Sá, Rio de Janeiro, RJ (Brazil); Zangrossi, H. Jr. [Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-08-03

    The escape response to electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) has been associated with panic attacks. In order to explore the validity of the DPAG stimulation model for the study of panic disorder, we determined if the aversive consequences of the electrical or chemical stimulation of this midbrain area can be detected subsequently in the elevated T-maze. This animal model, derived from the elevated plus-maze, permits the measurement in the same rat of a generalized anxiety- and a panic-related defensive response, i.e., inhibitory avoidance and escape, respectively. Facilitation of inhibitory avoidance, suggesting an anxiogenic effect, was detected in male Wistar rats (200-220 g) tested in the elevated T-maze 30 min after DPAG electrical stimulation (current generated by a sine-wave stimulator, frequency at 60 Hz) or after local microinjection of the GABA{sub A} receptor antagonist bicuculline (5 pmol). Previous electrical (5, 15, 30 min, or 24 h before testing) or chemical stimulation of this midbrain area did not affect escape performance in the elevated T-maze or locomotion in an open-field. No change in the two behavioral tasks measured by the elevated T-maze was observed after repetitive (3 trials) electrical stimulation of the DPAG. The results indicate that activation of the DPAG caused a short-lived, but selective, increase in defensive behaviors associated with generalized anxiety.

  19. Involvement of AMPA/kainate and GABAA receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh

    2016-08-01

    Abuses of methylphenidate (MPH) as psychostimulant cause neural damage of brain cells. Neuroprotective properties of topiramate (TPM) have been indicated in several studies but its exact mechanism of action remains unclear. The current study evaluates protective role of various doses of TPM and its mechanism of action in MPH induced oxidative stress and inflammation. The neuroprotective effects of various doses of TPM against MPH induced oxidative stress and inflammation were evaluated and then the action of TPM was studied in presence of domoic acid (DOM), as AMPA/kainate receptor agonist and bicuculline (BIC) as GABAA receptor antagonist, in isolated rat hippocampus. Open Field Test (OFT) was used to investigate motor activity changes. Oxidative, antioxidant and inflammatory factors were measured in isolated hippocampus. TPM (70 and 100mg/kg) decreased MPH induced motor activity disturbances and inhibit MPH induced oxidative stress and inflammation. On the other hand pretreatment of animals with DOM or BIC, inhibit this effect of TPM and potentiate MPH induced motor activity disturbances and increased lipid peroxidation, mitochondrial oxidized form of glutathione (GSSG) level, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in isolated hippocampal cells and decreased reduced form of glutathione (GSH) level, superoxide dismutase, glutathione peroxidase and glutathione reductase activity. It seems that TPM can protect cells of hippocampus from oxidative stress and neuroinflammation and it could be partly by activation of GABAA receptor and inhibition of AMPA/kainite receptor.

  20. Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model

    Science.gov (United States)

    Zhang, She-Qing; Obregon, Demian; Ehrhart, Jared; Deng, Juan; Tian, Jun; Hou, Huayan; Giunta, Brian; Sawmiller, Darrell; Tan, Jun

    2013-01-01

    Baicalein, a flavonoid isolated from the roots of Scutellaria baicalensis, is known to modulate γ-aminobutyric acid (GABA) type A receptors. Given prior reports demonstrating benefits of GABAA modulation for Alzheimer’s disease (AD) treatment, we wished to determine whether this agent might be beneficial for AD. CHO cells engineered to overexpress wild-type amyloid precursor protein (APP), primary culture neuronal cells from AD mice (Tg2576) and AD mice were treated with baicalein. In the cell cultures, baicalein significantly reduced the production of β-amyloid (Aβ) by increasing APP α-processing. These effects were blocked by the GABAA antagonist bicuculline. Likewise, AD mice treated daily with i.p. baicalein for 8 weeks showed enhanced APP α-secretase processing, reduced Aβ production, and reduced AD-like pathology together with improved cognitive performance. Our findings suggest that baicalein promotes nonamyloidogenic processing of APP, thereby reducing Aβ production and improving cognitive performance, by activating GABAA receptors. © 2013 Wiley Periodicals, Inc. PMID:23686791

  1. ucb L059, a novel anti-convulsant drug: pharmacological profile in animals.

    Science.gov (United States)

    Gower, A J; Noyer, M; Verloes, R; Gobert, J; Wülfert, E

    1992-11-10

    The anticonvulsant activity of ucb L059 ((S)-alpha-ethyl-2-oxo-pyrrolidine acetamide) was evaluated in a range of animal models. ucb L059 was active after oral and intraperitoneal administration in both rats and mice, with a unique profile of action incorporating features in common with several different types of antiepileptic drugs. The compound was active, with ED50 values generally within the range of 5.0-30.0 mg/kg, in inhibiting audiogenic seizures, electrically induced convulsions and convulsions induced chemically by pentylenetetrazole (PTZ), bicuculline, picrotoxin and N-methyl-D-aspartate (NMDA). ucb L059 retarded the development of PTZ-induced kindling in mice and reduced PTZ-induced EEG spike wave discharge in rats. The R enantiomer, ucb L060, had low intrinsic anticonvulsant activity, showing the stereospecificity of action of the molecule although the actual mechanism of action remains unknown. Neurotoxicity, evaluated with an Irwin-type observation test, the rotarod test and open-field exploration, was minimal, with only mild sedation being observed, even at doses 50-100 times higher than the anticonvulsant doses; at pharmacologically active doses, the animals appeared calm but slightly more active. ucb L059 thus presents as an orally active, safe, broad-spectrum anticonvulsant agent, with potential antiepileptogenic and anti-absence actions.

  2. Intracerebroventricular administration of neuronostatin induces depression-like effect in forced swim test of mice.

    Science.gov (United States)

    Yang, Ai-min; Ji, Yue-ke; Su, Shu-fang; Yang, Shao-bin; Lu, Song-song; Mi, Ze-yun; Yang, Qing-zhen; Chen, Qiang

    2011-09-01

    Neuronostatin is a recently discovered endogenous bioactive peptide that is encoded by pro-mRNA of somatostatin. In the present study, we investigated the effect of neuronostatin on mood regulation in the forced swim test of mice. Our results showed intracerebroventricular (i.c.v.) administration of neuronostatin produced an increase in the immobility time, suggesting that neuronostatin induced depression-like effect. In order to rule out the possibility that neuronostatin had increased immobility time by a non-specific reduction in general activity, the effect of neuronostatin on locomotor activity was examined. Neuronostatin had no influence on locomotor activity in mice. In addition, the depression-like effect of neuronostatin was completely reversed by melanocortin 3/4 receptor antagonist SHU9119 or GABAA receptor antagonist bicuculline, but not by opioid receptor antagonist naloxone. These data suggested that the depression-like effect induced by i.c.v. administered neuronostatin was dependent upon the central melanocortin system and GABAA receptor. In conclusion, the results of this study report that neuronostatin induces depression-like effect. These findings reveal that neuronostatin is a new neuropeptide with an important role in regulating depressive behavior.

  3. [Role of central histamine in amygdaloid kindled seizures].

    Science.gov (United States)

    Kamei, C; Okuma, C

    2001-05-01

    The role of central histamine in amygdaloid kindled seizures in rats was studied. Histamine content in the amygdala was significantly decreased after development of amygdaloid kindling. Intracerebroventricular (i.c.v.) injection of histamine resulted in inhibition of amygdaloid kindled seizures. The H1-agonists 2-methylhistamine and 2-thiazolylethylamine also inhibited amygdaloid kindled seizures. In addition, intraperitoneal (i.p.) injection of histidine and metoprine inhibited amygdaloid kindled seizures at doses that caused increases in histamine contents of the brain. H1-antagonists (diphenhydramine and chlorpheniramine) attenuated histamine- or histidine-induced inhibition of amygdaloid kindled seizures. Both i.c.v. and i.p. injections of H3-antagonists (thioperamide, AQ0145 and clobenpropit) resulted in a dose-related inhibition of amygdaloid kindled seizures. The effects of thioperamide and AQ0145 were inhibited by an H3-agonist (R)-alpha-methylhistamine and H1-antagonists. On the other hand, H2-antagonists showed no antagonistic effect. GABAmimetic drugs, diazepam, sodium valproate and muscimol potentiated the effect of clobenpropit. Bicuculline caused significant antagonism of the inhibition of amygdaloid kindled seizures induced by clobenpropit. These findings suggested that a histaminergic mechanism plays an important role in suppressing amygdaloid kindled seizures through histamine H1-receptors. In addition, an inhibition of amygdaloid kindled seizures induced by histamine is closely related with the action of GABA.

  4. Vasoactive intestinal polypeptide provokes acetylcholine release from the myenteric plexus

    Energy Technology Data Exchange (ETDEWEB)

    Kusunoki, M.; Tsai, L.H.; Taniyama, K.; Tanaka, C.

    1986-07-01

    Effects of vasoactive intestinal polypeptide (VIP) on the release of acetylcholine (ACh) from longitudinal muscle strips with myenteric plexus (LM) preparations were examined in the guinea pig small intestine. VIP (10 to 10 W M) induced a concentration-dependent contraction of LM preparation. The VIP-induced contractions seem to be related to three components, the scopolamine-sensitive, the scopolamine-insensitive, the tetrodotoxin-sensitive, and the tetrodotoxin-insensitive contractions. VIP (10 to 10 W M) induced a concentration-dependent increase in the release of (TH)ACh from LM preparations preloaded with (TH)choline. The VIP-evoked (TH)ACh release was inhibited by removal of CaS from the perfusion medium and by treatment with tetrodotoxin but not by scopolamine and hexamethonium. The spontaneous and VIP-evoked (TH)ACh release was not affected by phentolamine, propranolol, methysergide, diphenhydramine, cimetidine, bicuculline, or (D-ProS, D-Trp/sup 7,9/)substance P. The result demonstrates that VIP induces contractions of longitudinal smooth muscle directly and indirectly by the stimulation of both cholinergic neurons and noncholinergic excitatory neurons.

  5. GABAergic responses of mammalian ependymal cells in the central canal neurogenic niche of the postnatal spinal cord.

    Science.gov (United States)

    Corns, Laura F; Deuchars, Jim; Deuchars, Susan A

    2013-10-11

    The area surrounding the central canal of the postnatal mammalian spinal cord is a highly plastic region that exhibits many similarities to other postnatal neurogenic niches, such as the subventricular zone. Within this region, ependymal cells have been identified as neural stem cells however very little is known about their properties and how the local environment, including neurotransmitters, is capable of affecting them. The neurotransmitter GABA is present around the central canal and is known to affect cells within other postnatal neurogenic niches. This study used whole cell patch clamp electrophysiology and intracellular dye-loading in in vitro Wistar rat spinal cord slices to characterise ependymal cells and their ability to respond to GABA. Ependymal cells were defined by their passive response properties and low input resistances. Extensive dye-coupling was observed between ependymal cells; this was confirmed as gap junction coupling using the gap junction blocker, 18β-glycyrrhetinic acid, which significantly increased the input resistance of ependymal cells. GABA depolarised all ependymal cells tested; the partial antagonism of this response by bicuculline and gabazine indicates that GABA(A) receptors contribute to this response. A lack of effect by baclofen suggests that GABA(B) receptors do not contribute to the GABAergic response. The ability of ependymal cells to respond to GABA suggests that GABA could be capable of influencing the proliferation and differentiation of cells within the neurogenic niche of the postnatal spinal cord.

  6. Effects of the alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampal slices.

    Science.gov (United States)

    Ameri, A

    1997-08-01

    Alkaloids of different Aconitum species are employed as analgesics in traditional Chinese folk medicine. The present study was designed in order to investigate the effects of the structurally related alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampus. Experiments were performed as extracellular recordings of stimulus evoked population spikes in rat hippocampal slices. 6-Benzoylheteratisine (0.01-10 microM) inhibited the ortho- and antidromic population spike as well as the field EPSP in a concentration- and frequency-dependent manner. Heteratisine (1-100 microM) was a less potent inhibitor. It exerted a depression of the orthodromic spike, but failed to affect the antidromic population spike. 6-Benzoylheteratisine (10 microM) diminished epileptiform activity induced by bicuculline. In hippocampal neurons, this compound reduced the peak amplitude of the sodium current. There was no effect of heteratisine on the sodium current in concentrations up to 100 microM. It is concluded that the frequency-dependent action of 6-benzoylheteratisine suggests an inhibition of neuronal activity which underlies epileptiform burst discharges. The predominant effect is a suppression of neuronal activity due to a blockade of sodium channels.

  7. Simultaneous quantification of 11 isoquinoline alkaloids in Corydalis impatiens (Pall.) Fisch by HPLC.

    Science.gov (United States)

    Niu, Xiaofeng; Li, Weifeng; Xu, Hongbo; Liu, Xia; Qi, Lin

    2013-07-01

    Isoquinoline alkaloids are the primary active ingredients of Corydalis, but an analytical method for quality assessment of the active ingredients in Corydalis impatiens (Pall). Fisch has not been reported. A new, simple, and multiple-component quantification method was developed for the simultaneous quantification of 11 isoquinoline alkaloids including capnoidine, chelianthifoline, bicuculline, protopine, isoapocavidine, apocavidine, cavidine, tetrahydroepiberberine, ochotensimine, tetrahydrocoptisine, and tetrahydrocorysamine in C. impatiens. Separation of the isoquinoline alkaloids was performed on a RP C18 column (150 × 4.6 mm, 5 μm) with potassium dihydrogen phosphate buffer (pH 2.5, adjusted by phosphoric acid)/acetonitrile (53:47, v/v) containing 0.3% sodium dodecyl sulfonate. The flow rate and detection wavelength were set at 1 mL/min and 295 nm, respectively. Full validation of the assay was carried out including linearity, precision, accuracy, stability, LOD, and limit of quantitation. All calibration curves showed a good linear relationship (r > 0.999) in test range. The results demonstrated that the developed method was reliable, rapid, and specific. Six batches of C. impatiens samples from different sources were determined using the established method. The contents of alkaloids ranged from 11.68 to 351.83 μg/g. This method can be applied for quality evaluation and control of C. impatiens. Eleven isoquinoline alkaloids were first reported on simultaneous determination with HPLC.

  8. Apigenin, a natural flavonoid, inhibits glutamate release in the rat hippocampus.

    Science.gov (United States)

    Chang, Chia Ying; Lin, Tzu Yu; Lu, Cheng Wei; Wang, Chia Chuan; Wang, Ying Chou; Chou, Shang Shing Peter; Wang, Su Jane

    2015-09-05

    The purpose of this study was to examine the effect and mechanism of apigenin, a natural flavonoid, on glutamate release in the rat hippocampus. In rat hippocampal nerve terminals (synaptosomes), apigenin inhibited glutamate release and the elevation of the cytosolic free Ca(2+) concentration evoked by 4-aminopyridine, whereas it had no effect on 4-aminopyridine-mediated depolarization and Na(+) influx. The apigenin-mediated inhibition of evoked glutamate release was prevented by chelating the extracellular Ca(2+) ions and blocking Cav2.2 (N-type) and Cav2.1 (P/Q-type) channel activity. Furthermore, we determined that gamma-aminobutyric acid type A (GABAA) receptors are present in the hippocampal nerve terminals because they are colocalized with the presynaptic marker synaptophysin. However, the effect of apigenin on 4-aminopyridine-evoked glutamate release from synaptosomes was unaffected by the GABAA receptor antagonists SR95531 and bicuculline. Furthermore, in slice preparations, whole-cell patch-clamp experiments showed that apigenin reduced the frequency of spontaneous excitatory postsynaptic currents without affecting their amplitude, suggesting a presynaptic mechanism. On the basis of these results, we suggested that apigenin exerts its presynaptic inhibition probably by reducing Ca(2+) entry mediated by the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, thereby inhibiting glutamate release from the rat hippocampal nerve terminals.

  9. Effect of brain-derived neurotropic factor released from hypoxic astrocytes on gamma-aminobutyric acid type A receptor function in normal hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai

    2011-01-01

    Astrocytes can release increased levels of brain-derived neurotrophic factor during cerebral ischemia, but it is unclear whether brain-derived neurotrophic factor affects γ-aminobutyric acid type A receptor function in normal neurons. Results from this study demonstrated that γ-aminobutyric acid at 100 μmol/L concentration raised the intracellular calcium level in neurons treated with medium from cultured hypoxic astrocytes, and the rise in calcium level could be inhibited by γ-aminobutyric acid type A receptor antagonist bicuculline or brain-derived neurotrophic factor receptor antagonist k252a. Γ-aminobutyric acid type A-gated current induced by 100 μmol/L γ-aminobutyric acid was in an inward direction in physiological conditions, but shifted to the outward direction in neurons when treated with the medium from cultured hypoxic astrocytes, and this effect could be inhibited by k252a. The reverse potential was shifted leftward to -93 Mv, which could be inhibited by k252a and Na+-K+-Cl- cotransporter inhibitor bumetanide. Brain-derived neurotrophic factor was released from hypoxic astrocytes at a high level. It shifted the reverse potential of γ-aminobutyric acid type A-gated currents leftward in normal neurons by enhancing the function of Na+-K+-Cl- cotransporter, and caused γ-aminobutyric acid to exert an excitatory effect by activating γ-aminobutyric acid type A receptor.

  10. Kindling induces transient fast inhibition in the dentate gyrus--CA3 projection.

    Science.gov (United States)

    Gutiérrez, R; Heinemann, U

    2001-04-01

    The granule cells of the dentate gyrus (DG) send a strong glutamatergic projection, the mossy fibre tract, toward the hippocampal CA3 field, where it excites pyramidal cells and neighbouring inhibitory interneurons. Despite their excitatory nature, granule cells contain small amounts of GAD (glutamate decarboxylase), the main synthetic enzyme for the inhibitory transmitter GABA. Chronic temporal lobe epilepsy results in transient upregulation of GAD and GABA in granule cells, giving rise to the speculation that following overexcitation, mossy fibres exert an inhibitory effect by release of GABA. We therefore stimulated the DG and recorded synaptic potentials from CA3 pyramidal cells in brain slices from kindled and control rats. In both preparations, DG stimulation caused excitatory postsynaptic potential (EPSP)/inhibitory postsynaptic potential (IPSP) sequences. These potentials could be completely blocked by glutamate receptor antagonists in control rats, while in the kindled rats, a bicuculline-sensitive fast IPSP remained, with an onset latency similar to that of the control EPSP. Interestingly, this IPSP disappeared 1 month after the last seizure. When synaptic responses were evoked by high-frequency stimulation, EPSPs in normal rats readily summate to evoke action potentials. In slices from kindled rats, a summation of IPSPs overrides that of the EPSPs and reduces the probability of evoking action potentials. Our data show for the first time that kindling induces functionally relevant activity-dependent expression of fast inhibition onto pyramidal cells, coming from the DG, that can limit CA3 excitation in a frequency-dependent manner.

  11. A Recombinant Human Pluripotent Stem Cell Line Stably Expressing Halide-Sensitive YFP-I152L for GABAAR and GlyR-Targeted High-Throughput Drug Screening and Toxicity Testing

    Science.gov (United States)

    Kuenzel, Katharina; Friedrich, Oliver; Gilbert, Daniel F.

    2016-01-01

    GABAARs and GlyRs are considered attractive drug targets for therapeutic intervention and are also increasingly recognized in the context of in vitro neurotoxicity (NT) and developmental neurotoxicity (DNT) testing. However, systematic human-specific GABAAR and GlyR-targeted drug screening and toxicity testing is hampered due to lack of appropriate in vitro models that express native GABAARs and GlyRs. We have established a human pluripotent stem cell line (NT2) stably expressing YFP-I152L, a halide-sensitive variant of yellow fluorescent protein (YFP), allowing for fluorescence-based functional analysis of chloride channels. Upon stimulation with retinoic acid, NT2 cells undergo neuronal differentiation and allow pharmacological and toxicological evaluation of native GABAARs and GlyRs at different stages of brain maturation. We applied the cell line in concentration-response experiments with the neurotransmitters GABA and glycine as well as with the drugs strychnine, picrotoxin, fipronil, lindane, bicuculline, and zinc and demonstrate that the established in vitro model is applicable to GABAAR and GlyR-targeted pharmacological and toxicological profiling. We quantified the proportion of GABAAR and GlyR-sensitive cells, respectively, and identified percentages of approximately 20% each within the overall populations, rendering the cells a suitable model for systematic in vitro GABAAR and GlyR-targeted screening in the context of drug development and NT/DNT testing. PMID:27445687

  12. Panic-like defensive behavior but not fear-induced antinociception is differently organized by dorsomedial and posterior hypothalamic nuclei of Rattus norvegicus (Rodentia, Muridae

    Directory of Open Access Journals (Sweden)

    A.F. Biagioni

    2012-04-01

    Full Text Available The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABAergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL or saline (0.9% NaCl was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.

  13. Panic-like defensive behavior but not fear-induced antinociception is differently organized by dorsomedial and posterior hypothalamic nuclei of Rattus norvegicus (Rodentia, Muridae)

    Science.gov (United States)

    Biagioni, A.F.; Silva, J.A.; Coimbra, N.C.

    2012-01-01

    The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABAA antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABAA receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABAA receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions. PMID:22437484

  14. Blockade of GABA, type A, receptors in the rat pontine reticular formation induces rapid eye movement sleep that is dependent upon the cholinergic system.

    Science.gov (United States)

    Marks, G A; Sachs, O W; Birabil, C G

    2008-09-22

    The brainstem reticular formation is an area important to the control of rapid eye movement (REM) sleep. The antagonist of GABA-type A (GABA(A)) receptors, bicuculline methiodide (BMI), injected into the rat nucleus pontis oralis (PnO) of the reticular formation resulted in a long-lasting increase in REM sleep. Thus, one factor controlling REM sleep appears to be the number of functional GABA(A) receptors in the PnO. The long-lasting effect produced by BMI may result from secondary influences on other neurotransmitter systems known to have long-lasting effects. To study this question, rats were surgically prepared for chronic sleep recording and additionally implanted with guide cannulas aimed at sites in the PnO. Multiple, 60 nl, unilateral injections were made either singly or in combination. GABA(A) receptor antagonists, BMI and gabazine (GBZ), produced dose-dependent increases in REM sleep with GBZ being approximately 35 times more potent than BMI. GBZ and the cholinergic agonist, carbachol, produced very similar results, both increasing REM sleep for about 8 h, mainly through increased period frequency, with little reduction in REM latency. Pre-injection of the muscarinic antagonist, atropine, completely blocked the REM sleep-increase by GBZ. GABAergic control of REM sleep in the PnO requires the cholinergic system and may be acting through presynaptic modulation of acetylcholine release.

  15. GABA inhibition of luminescence from lantern shark (Etmopterus spinax) photophores.

    Science.gov (United States)

    Claes, Julien M; Krönström, Jenny; Holmgren, Susanne; Mallefet, Jérôme

    2011-03-01

    Photogenic organs (photophores) of the velvet belly lantern shark (Etmopterus spinax) are under hormonal control, since melatonin (MT) and prolactin (PRL) trigger luminescence while α-melanocyte-stimulating hormone (α-MSH) prevents this light to be emitted. A recent study supported, however, the presence of numerous nerve fibres in the photogenic tissue of this shark. Immunohistochemical and pharmacological results collected in this work support these nerve fibres to be inhibitory GABAergic nerves since (i) GABA immunoreactivity was detected inside the photogenic tissue, where previous labelling detected the nerve fibre structures and (ii) GABA was able to inhibit MT and PRL-induced luminescence, which was on the other hand increased by the GABA(A) antagonist bicuculline (BICU). In addition, we also demonstrated that BICU can induce light per se by provoking pigment retraction in the pigmented cells composing the iris-like structure of the photophore, attaining, however, only about 10% of hormonally induced luminescence intensity at 10(-3)mol L(-1). This strongly supports that a GABA inhibitory tonus controls photophore "aperture" in the photogenic tissue of E. spinax but also that MT and PRL have more than one target cell type in the photophores.

  16. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle.

    Science.gov (United States)

    Patel, Anant B; Lai, James C K; Chowdhury, Golam M I; Hyder, Fahmeed; Rothman, Douglas L; Shulman, Robert G; Behar, Kevin L

    2014-04-01

    Previous (13)C magnetic resonance spectroscopy experiments have shown that over a wide range of neuronal activity, approximately one molecule of glucose is oxidized for every molecule of glutamate released by neurons and recycled through astrocytic glutamine. The measured kinetics were shown to agree with the stoichiometry of a hypothetical astrocyte-to-neuron lactate shuttle model, which predicted negligible functional neuronal uptake of glucose. To test this model, we measured the uptake and phosphorylation of glucose in nerve terminals isolated from rats infused with the glucose analog, 2-fluoro-2-deoxy-D-glucose (FDG) in vivo. The concentrations of phosphorylated FDG (FDG6P), normalized with respect to known neuronal metabolites, were compared in nerve terminals, homogenate, and cortex of anesthetized rats with and without bicuculline-induced seizures. The increase in FDG6P in nerve terminals agreed well with the increase in cortical neuronal glucose oxidation measured previously under the same conditions in vivo, indicating that direct uptake and oxidation of glucose in nerve terminals is substantial under resting and activated conditions. These results suggest that neuronal glucose-derived pyruvate is the major oxidative fuel for activated neurons, not lactate-derived from astrocytes, contradicting predictions of the original astrocyte-to-neuron lactate shuttle model under the range of study conditions.

  17. Neuroprotection of GluK1 kainate receptor agonist ATPA against ischemic neuronal injury through inhibiting GluK2 kainate receptor-JNK3 pathway via GABA(A) receptors.

    Science.gov (United States)

    Lv, Qian; Liu, Yong; Han, Dong; Xu, Jing; Zong, Yan-Yan; Wang, Yao; Zhang, Guang-Yi

    2012-05-25

    It is well known that GluK2-containing kainate receptors play essential roles in seizure and cerebral ischemia-induced neuronal death, while GluK1-containing kainate receptors could increase tonic inhibition of post-synaptic pyramidal neurons. This research investigated whether GluK1 could inhibit activation of c-Jun N-terminal kinase 3 (JNK3) signaling pathway mediated by the GluK2 in cerebral ischemia-reperfusion. The results show that GluK1 activation by (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) at 1nmol per rat could inhibit the assembly of GluK2·Postsynaptic density 95·mixed lineage kinase 3 signaling module, activation of JNK3 and its downstream signal molecules. However, the inhibition of ATPA could be prevented by GluK1 antagonist NS3763, GluK1 antisense, and GABA(A) receptor antagonist bicuculline. In addition, ATPA played a neuroprotective role against cerebral ischemia. In sum, the findings indicate that activation of GluK1 by ATPA at specific dosages may promote GABA release, which then suppresses post-synaptic GluK2-JNK3 signaling-mediated cerebral ischemic injury via GABA(A)R.

  18. Anticonvulsive and convulsive effects of lidocaine: comparison with those of phenytoin, and implications for mechanism of action concepts.

    Science.gov (United States)

    Stone, W E; Javid, M J

    1988-09-01

    The anticonvulsive action of lidocaine was tested in mice against a series of convulsants, and its profile of action compared with that of phenytoin. Both agents antagonized seizures induced by ouabain or glutamate (injected i.c.b.), effects attributable to reduction of the sodium conductance of neuronal membranes. Lidocaine and phenytoin were relatively ineffective against convulsants that act on synaptic chloride channels via the GABA-ionophore receptor complex. At higher dose levels, both lidocaine and phenytoin are excitatory within limited ranges. Lidocaine-induced seizures were potentiated by phenytoin, and antagonized by chlordiazepoxide, phenobarbital, valproate, trimethadione and muscimol, but not by ethosuximide. This profile of action is similar to that of bicuculline, suggesting that lidocaine may bind to the GABA recognition site and to another site in the GABA-ionophore receptor complex. Phenytoin-induced excitation was antagonized by chlordiazepoxide, less effectively by phenobarbital or trimethadione, only minimally by valproate, and not by trimethadione or muscimol. Phenytoin is known to bind to picrotoxin and benzodiazepine receptor sites; these findings suggest that it may be excitatory at one or both of these sites.

  19. Actions of insecticides on the insect GABA receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, I.; Hawkins, C.A.; Taylor, A.M.; Beadle, D.J. (School of Biological and Molecular Sciences, Oxford Polytechnic, Headington, Oxford (England))

    1991-01-01

    The actions of insecticides on the insect gamma-aminobutyric acid (GABA) receptor were investigated using (35S)t-butylbicyclophosphorothionate (( 35S)TBPS) binding and voltage-clamp techniques. Specific binding of (35S)TBPS to a membrane homogenate derived from the brain of Locusta migratoria locusts is characterised by a Kd value of 79.3 {plus minus} 2.9 nM and a Bmax value of 1770 {plus minus} 40 fmol/mg protein. (35S)TBPS binding is inhibited by mM concentrations of barbiturates and benzodiazepines. In contrast dieldrin, ivermectin, lindane, picrotoxin and TBPS are inhibitors of (35S)TBPS binding at the nanomolar range. Bicuculline, baclofen and pyrethroid insecticides have no effect on (35S)TBPS binding. These results are similar to those obtained in electrophysiological studies of the current elicited by GABA in both Locusta and Periplaneta americana central neurones. Noise analysis of the effects of lindane, TBPS, dieldrin and picrotoxin on the cockroach GABA responses reveals that these compounds decrease the variance of the GABA-induced current but have no effect on its mean open time. All these compounds, with the exception of dieldrin, significantly decrease the conductance of GABA-evoked single current.

  20. Propagation of cortical spreading depression into the hippocampus: The role of the entorhinal cortex.

    Science.gov (United States)

    Martens-Mantai, Tanja; Speckmann, Erwin-Josef; Gorji, Ali

    2014-07-22

    Propagation of cortical spreading depression (CSD) to the subcortical structures could be the underlying mechanism of some neurological deficits in migraine with aura. The entorhinal cortex (EC) as a gray matter bridge between the neocortex and subcortical regions plays an important role in this propagation. In vitro combined neocortex-hippocampus brain slices were used to study the propagation pattern of CSD between the neocortex and the hippocampus. The effects of different compounds as well as tetanic electrical stimulations in the EC on propagation of CSD to the hippocampus were investigated. Repetitive induction of CSD by KCl injection in the somatosensory cortex enhanced the probability of CSD entrance to the hippocampus via EC. Local application of AMPA receptor blocker CNQX and cannabinoid receptor agonist WIN 55212-2 in EC facilitated the propagation of CSD to the hippocampus, whereas application of NMDA receptor blocker APV and GABAA receptor blocker bicuculline in this region reduced the probability of CSD penetration to the hippocampus. Application of tetanic stimulation in EC also facilitated the propagation of CSD entrance to the hippocampus. Our data suggest the importance of synaptic plasticity of EC in filtering the propagation of CSD into subcortical structures and possibly the occurrence of concomitant neurological deficits. Synapse, 2014. © 2014 Wiley Periodicals, Inc.

  1. Medial prefrontal depressor response: involvement of the rostral and caudal ventrolateral medulla in the rat.

    Science.gov (United States)

    Owens, N C; Verberne, A J

    2000-01-14

    The importance of neurones of the caudal and rostral ventrolateral medulla (CVLM and RVLM, respectively) in mediation of the medial prefrontal cortex depressor response was studied in halothane-anaesthetised rats. Blockade of GABA(A) receptors in the RVLM produced by microinjection of bicuculline (50 nl, 2 mM, n = 6) resulted in reversal of the depressor (-9.5 +/- 1.2 mm Hg) and lumbar sympathetic (-6.5 +/- 5.7 units) responses to pressor (+7.8 +/- 3.5 mm Hg) and sympathoexcitatory (+19.3 +/- 12.5 units) responses and simultaneous blockade of baroreceptor reflex-mediated sympathoinhibition. Baroreflex blockade was reflected by a significant reduction in the gain (slope of the blood pressure vs. lumbar sympathetic nerve discharge regression line) of the reflex. Microinjection of the excitatory amino acid antagonist kynurenic acid (100 nl, 50 mM, n = 6) into the CVLM blocked the baroreflex and significantly reduced the depressor (-9.6 +/- 0.4 to -6.9 +/- 0.6 mm Hg) and lumbar sympathetic (-4.0 +/- 2.1 to 2.9 +/- 1.9 units) responses to medial prefrontal cortex stimulation. These results support the hypothesis that the medial prefrontal cortex depressor response is mediated by a pathway which converges at the level of the RVLM and which is only partly dependent on an excitatory input to caudal ventrolateral medullary neurones.

  2. Calcium-mediated paired pulse depression in juvenile rat dorsal striatum

    Institute of Scientific and Technical Information of China (English)

    Yufeng Xie; Michael F. Jackson; John F. MacDonald

    2012-01-01

    As the major division of the basal ganglia, neostriatum forms mutual connections with multiple brain areas and is critically involved in motor control and learning/memory. Long-term synaptic plasticity has been widely studied in different species recently. However, there are rare reports about the short-term synaptic plasticity in neostratium. In the present study, using field excitatory postsynaptic potentials recording, we reported one form of short-term synaptic plasticity that is paired pulse de-pression in juvenile rat dorsal striatum slices induced by stimuli of the white matter. The field exci-tatory postsynaptic potentials could be abolished by α-amino-3-hydroxy-5-methylizoxazole-4- propionic acid receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not by gamma-aminobutyric acid type A receptor antagonist bicuculline or dopamine D1 receptor antago-nist SKF-81297. The paired pulse depression in the corticostratial pathway was different from paired pulse facilitation in the hippocampal CA1 synapse. In addition, the paired pulse depression was not affected by bath application of gamma-aminobutyric acid type A receptor antagonist or dopamine D1 receptor antagonist. However, low calcium and high magnesium could attenuate the paired pulse depression. These findings suggest a more complicated plasticity form in the dorsal striatum of juvenile rats that is different from that in the hippocampus, which is related with extracellular calcium.

  3. Acute phenobarbital administration induces hyperalgesia: pharmacological evidence for the involvement of supraspinal GABA-A receptors

    Directory of Open Access Journals (Sweden)

    C.M. Yokoro

    2001-03-01

    Full Text Available The aim of the present study was to determine if phenobarbital affects the nociception threshold. Systemic (1-20 mg/kg phenobarbital administration dose dependently induced hyperalgesia in the tail-flick, hot-plate and formalin tests in rats and in the abdominal constriction test in mice. Formalin and abdominal constriction tests were the most sensitive procedures for the detection of hyperalgesia in response to phenobarbital compared with the tail-flick and hot-plate tests. The hyperalgesia induced by systemic phenobarbital was blocked by previous administration of 1 mg/kg ip picrotoxin or either 1-2 mg/kg sc or 10 ng icv bicuculline. Intracerebroventricular phenobarbital administration (5 µg induced hyperalgesia in the tail-flick test. In contrast, intrathecal phenobarbital administration (5 µg induced antinociception and blocked systemic-induced hyperalgesia in this test. We suggest that phenobarbital may mediate hyperalgesia through GABA-A receptors at supraspinal levels and antinociception through the same kind of receptors at spinal levels.

  4. Transient inactivation of the infralimbic cortex induces antidepressant-like effects in the rat.

    Science.gov (United States)

    Slattery, David A; Neumann, Inga D; Cryan, John F

    2011-10-01

    Affective disorders are among the main causes of disability worldwide, yet the underlying pathophysiology remains poorly understood. Recently, landmark neuroimaging studies have shown increased metabolic activity in Brodmann Area 25 (BA25) in depressed patients. Moreover, functional inactivation of this region using deep brain stimulation alleviated depressive symptoms in severely depressed patients. Thus, we examined the effect of a similar manipulation, pharmacological inactivation of the infralimbic cortex, the rodent correlate of BA25, in an animal model of antidepressant activity: the modified rat forced swim test. Transient inactivation of the infralimbic cortex using muscimol reduced immobility, an antidepressant-like effect in the test. Importantly, this activity was not the result of a general increase in locomotor activity. Activation of the infralimbic cortex using bicuculline did not alter behaviour. Finally, we examined the effect of muscimol in animals bred for high anxiety-related behaviour, which also display elevated depression-related behaviour. Transient inactivation of the infralimbic cortex decreased the high inborn depression-like behaviour of these rats. These results show that it is possible to replicate findings from a clinical trial in a rodent model. Further, they support the use of the forced swim test to gain greater understanding of the neurocircuitry involved in depression and antidepressant-action.

  5. Expression of functional receptors by the human γ-aminobutyric acid A γ2 subunit

    Science.gov (United States)

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-01-01

    γ-Aminobutyric acid A (GABAA) receptors are heteromeric membrane proteins formed mainly by various combinations of α, β, and γ subunits; and it is commonly thought that the γ2 subunit alone does not form functional receptors. In contrast, we found that cDNA encoding the γ2L subunit of the human GABAA receptor, injected alone into Xenopus oocytes, expressed functional GABA receptors whose properties were investigated by using the two-microelectrode voltage-clamp technique. GABA elicited desensitizing membrane currents that recovered after a few minutes' wash. Repetitive applications of GABA induced a “run-up” of GABA currents that nearly doubled the amplitude of the first response. The GABA currents inverted direction at about -30 mV, indicating that they are carried mainly by Cl- ions. The homomeric γ2L receptors were also activated by β-alanine > taurine > glycine, and, like some types of heteromeric GABAA receptors, the γ2L receptors were blocked by bicuculline and were potentiated by pentobarbital and flunitrazepam. These results indicate that the human γ2L subunit is capable of forming fully functional GABA receptors by itself in Xenopus oocytes and suggest that the roles proposed for the various subunits that make up the heteromeric GABAA receptors in situ require further clarification. PMID:14981251

  6. Functional expression in frog oocytes of human ρ1 receptors produced in Saccharomyces cerevisiae

    Science.gov (United States)

    Martínez-Martínez, Alejandro; Reyes-Ruiz, Jorge Mauricio; Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2004-01-01

    The yeast Saccharomyces cerevisiae was engineered to express the ρ1 subunit of the human γ-aminobutyric acid ρ1 (GABAρ1) receptor. RNA that was isolated from several transformed yeast strains produced fully functional GABA receptors in Xenopus oocytes. The GABA currents elicited in the oocytes were fast, nondesensitizing chloride currents; and the order of agonist potency was GABA > β-alanine > glycine. Moreover, the receptors were resistant to bicuculline, strongly antagonized by (1,2,5,6 tetrahydropyridine-4-yl)methylphosphinic acid, and modulated by zinc and lanthanum. Thus, the GABA receptors expressed by the yeast mRNA retained all of the principal characteristics of receptors expressed by cRNA or native retina mRNAs. Western blot assays showed immunoreactivity in yeast plasma membrane preparations, and a ρ1-GFP fusion gene showed mostly intracellular distribution with a faint fluorescence toward the plasma membrane. In situ immunodetection of ρ1 in yeast demonstrated that some receptors reach the plasma membrane. Furthermore, microtransplantation of yeast plasma membranes to frog oocytes resulted in the incorporation of a small number of functional yeast ρ1 receptors into the oocyte plasma membrane. These results show that yeast may be useful to produce complete functional ionotropic receptors suitable for structural analysis. PMID:14704273

  7. Cardiovascular effects of lateral intracerebroventricular injection of L-securinine%侧脑室注射一叶萩碱的心血管效应及作用机制

    Institute of Scientific and Technical Information of China (English)

    赵晓燕; 蒋正尧; 彭建中

    2000-01-01

    在麻醉大鼠侧脑室注射左旋一叶萩碱(L-Sec), 记录动脉血压(AP)、心率(HR)及肾交感神经放电(RSND), 观察前脑室周系统GABA能紧张性活动改变引起的心血管效应.结果如下: (1) L-Sec可引起RSND增加、AP升高和HR加快, 并呈一定剂量-效应关系; 但L-Sec作用明显弱于bicuculline (Bic).(2) L-Sec 既能拮抗muscimol (Mus), 又能拮抗baclofen (Bac)引起的交感抑制和降压反应.上述结果提示: (1) 前脑室周部位存在GABA能抑制机制, 对交感心血管系统具有紧张性抑制作用, L-Sec解除了这种抑制, 使交感神经系统传出活动增强, 因而产生升压作用.(2) L-Sec可能是一种非选择性的GABA受体拮抗剂.

  8. Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A

    Directory of Open Access Journals (Sweden)

    Mathew Jobin

    2012-02-01

    Full Text Available Abstact Background Gamma amino butyric acid (GABA, the principal inhibitory neurotransmitter in the cerebral cortex, maintains the inhibitory tones that counter balances neuronal excitation. When this balance is perturbed, seizures may ensue. Methods In the present study, alterations of the general GABA, GABAA and GABAB receptors in the cerebral cortex of the epileptic rat and the therapeutic application of Bacopa monnieri were investigated. Results Scatchard analysis of [3H]GABA, [3H]bicuculline and [3H]baclofen in the cerebral cortex of the epileptic rat showed significant decrease in Bmax (P Aά1, GABAAγ, GABAAδ, GABAB and GAD where down regulated (P Aά5 subunit and Cyclic AMP responsible element binding protein were up regulated. Confocal imaging study confirmed the decreased GABA receptors in epileptic rats. Epileptic rats have deficit in radial arm and Y maze performance. Conclusions Bacopa monnieri and Bacoside-A treatment reverses epilepsy associated changes to near control suggesting that decreased GABA receptors in the cerebral cortex have an important role in epileptic occurrence; Bacopa monnieri and Bacoside-A have therapeutic application in epilepsy management.

  9. Modulation of acetylcholine release from rat striatal slices by the GABA/benzodiazepine receptor complex

    Energy Technology Data Exchange (ETDEWEB)

    Supavilai, P.; Karobath, M.

    1985-02-04

    GABA, THIP and muscimol enhance spontaneous and inhibit electrically induced release of tritium labelled compounds from rat striatal slices which have been pre-labelled with /sup 3/H-choline. Baclofen is inactive in this model. Muscimol can inhibit electrically induced release of tritiated material by approximately 75% with half maximal effects at 2 ..mu..M. The response to muscimol can be blocked by the GABA antagonists bicuculline methobromide, picrotoxin, anisatin, R 5135 and CPTBO (cyclopentylbicyclophosphate). Drugs which act on the benzodiazepine receptor (BR) require the presence of muscimol to be effective and they modulate the effects of muscimol in a bidirectional manner. Thus BR agonists enhance and inverse BR agonists attenuate the inhibitory effects of muscimol on electrically induced release. Ro15-1788, a BR antagonist, does not modulate the inhibitory effects of muscimol but antagonizes the actions of clonazepam, a BR agonist, and of DMCM, an inverse BR agonist. These results demonstrate that a GABA/benzodiazepine receptor complex can modulate acetylcholine release from rat striatal slices in vitro. 24 references, 3 figures, 5 table.

  10. GABA/sub B/ receptor activation inhibits Ca/sup 2 +/-activated potassium channels in synaptosomes: involvement of G-proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ticku, M.K.; Delgado, A.

    1989-01-01

    /sup 86/Rb-efflux assay from preloaded synaptosomes of rat cerebral cortex was developed to study the effect of GABA/sub B/ receptor agonist baclofen on Ca/sup 2 +/-activated K/sup +/-channels. Depolarization of /sup 86/Rb-loaded synaptosomes in physiological buffer increased Ca/sup 2 +/-activated /sup 86/Rb-efflux by 400%. The /sup 86/Rb-efflux was blocked by quinine sulfate, tetraethylammonium, and La/sup 3 +/ indicating the involvement of Ca/sup 2 +/-activated K/sup +/-channels. (-)Baclofen inhibited Ca/sup 2 +/-activated /sup 86/Rb-efflux in a stereospecific manner. The inhibitory effect of (-)baclofen was mediated by GABA/sub B/ receptor activation, since it was blocked by GABA/sub B/ antagonist phaclofen, but not by bicuculline. Further, pertussis toxin also blocked the ability of baclofen or depolarizing action to affect Ca/sup 2 +/-activated K/sup +/-channels. These results suggest that baclofen inhibits Ca/sup 2 +/-activated K/sup +/-channels in synaptosomes and these channels are regulated by G-proteins. This assay may provide an ideal in vitro model to study GABA/sub B/ receptor pharmacology.

  11. Regional selectivity of a gamma-aminobutyric acid-induced (/sup 3/H)acetylcholine release sensitive to inhibitors of gamma-aminobutyric acid uptake

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, G.; Raiteri, M.

    1987-05-01

    The effects of gamma-aminobutyric acid (GABA) on the release of (/sup 3/H)acetylcholine ((/sup 3/H)ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with (/sup 3/H)choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized (/sup 3/H)ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of (/sup 3/H)ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of (/sup 3/H)ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of (/sup 3/H)ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of (/sup 3/H)ACh following penetration into cholinergic nerve terminals through a GABA transport system.

  12. Local cerebral glucose utilization during status epilepticus in newborn primates

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, D.G.; Dwyer, B.E.; Lake, R.R.; Wasterlain, C.G.

    1989-06-01

    The effect of bicuculline-induced status epilepticus (SE) on local cerebral metabolic rates for glucose (LCMRglc) was studied in 2-wk-old ketamine-anesthetized marmoset monkeys, using the 2-(/sup 14/C)-deoxy-D-glucose autoradiographical technique. To estimate LCMRglc in cerebral cortex and thalamus during SE, the lumped constant (LC) for 2-deoxy-D-glucose (2-DG) and the rate constants for 2-DG and glucose were calculated for these regions. The control LC was 0.43 in frontoparietal cortex, 0.51 in temporal cortex, and 0.50 in thalamus; it increased to 1.07 in frontoparietal cortex, 1.13 in temporal cortex, and 1.25 in thalamus after 30 min of seizures. With control LC values, LCMRglc in frontoparietal cortex, temporal cortex, and dorsomedial thalamus appeared to increase four to sixfold. With seizure LC values, LCMRglc increased 1.5- to 2-fold and only in cortex. During 45-min seizures, LCMRglc in cortex and thalamus probably increases 4- to 6-fold initially and later falls to the 1.5- to 2-fold level as tissue glucose concentrations decrease. Together with our previous results demonstrating depletion of high-energy phosphates and glucose in these regions, the data suggest that energy demands exceed glucose supply. The long-term effects of these metabolic changes on the developing brain remain to be determined.

  13. GABA mechanisms of the nucleus of the solitary tract regulates the cardiovascular and sympathetic effects of moxonidine.

    Science.gov (United States)

    Alves, Thales B; Totola, Leonardo T; Takakura, Ana C; Colombari, Eduardo; Moreira, Thiago S

    2016-01-01

    The antihypertensive drugs moxonidine and clonidine are α2-adrenoceptor and imidazoline (I1) agonists. Previous results from our laboratory have shown that moxonidine can act in the commissural nucleus of the solitary tract (commNTS). In addition, some studies have shown that GABA or glutamate receptor blockade in the RVLM blunted the hypotension produced by these antihypertensive agents in spontaneously hypertensive rats. Therefore, in the present study we verify whether the cardiovascular and sympathetic effects produced by moxonidine in the commNTS are dependent on GABAergic or glutamatergic mechanisms. Mean arterial pressure (MAP) and splanchnic sympathetic nerve activity (sSNA) were recorded in urethane-anesthetized, and artificially-ventilated male Wistar rats (250-350 g). Injection of the GABAA antagonist bicuculline (25 pmol/50 nL) into the commNTS reduced the hypotension as well as the sympathoinhibition elicited by moxonidine. Prior injection of the glutamate receptor antagonist kynurenic acid (2.5 nmol/50 nL) into the commNTS was not effective in reducing the hypotension and sympathoinhibition elicited by moxonidine. Therefore, we conclude that the hypotensive and sympathoinhibitory effects elicited by microinjection of moxonidine into the commNTS are dependent on GABA receptors, but not ionotropic glutamate receptors.

  14. Bufo toxin: A new testing prospect for the screening of anti-convulsant agents. A review

    Directory of Open Access Journals (Sweden)

    David Arome

    2014-07-01

    Full Text Available Epilepsy is a common neurological disorder with diverse aetiology, affecting approximately 1 % of the entire population. Epilepsy present wide range of clinical manifestations, that affect the way a person feels and acts for a short time. Previous scientific investigations have indicated bufo toxin as a potential convulsant candidate that produced similar effects as other known convulsant agents. Bufo toxin has been shown to mimic or exhibit similar action as other known convulsant agent. Its biochemical components are formed as a result of the binding of bufo-fagin and a molecule arginina. There exist wide array of convulsant agents used in the screening of anti-convulsant agents. The commonly used one are: bicuculline, picrotoxin, pentylene tetrazole, isonizid etc. However, these agents are expensive, not easily available and affordable. This challenge prompted the search of other alternative convulsant agents that is easily accessible for use in the screening of anti-convulsant agents. The principal objective of this review paper is to suggest the possible use of bufo toxin which mimics the action of existing convulsant agents. This new testing convulsant agent (bufo toxin is inexpensive, affordable and easy to use when compared to other known convulsant agents. The experimental procedure is easy and it gives a broad spectrum in comparing the action of bufo toxin to other chemical convulsant agents. It also offers researchers broader view or options in exploring the anti-convulsant activity of test agents and the understanding of their possible mechanism of action.

  15. GABAergic agents prevent alpha-melanocyte stimulating hormone induced anxiety and anorexia in rats.

    Science.gov (United States)

    Rao, T Lakshmi; Kokare, Dadasaheb M; Sarkar, Sumit; Khisti, Rahul T; Chopde, Chandrabhan T; Subhedar, Nishikant

    2003-12-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) is a hypothalamic peptide believed to play a tonic inhibitory role in feeding and energy homeostasis. Systemic administration of alpha-MSH is known to produce anorexia and anxiety. Since synaptic contacts between gamma-aminobutyric acid (GABA)ergic terminals and alpha-MSH neurons in the hypothalamus have been reported, the present work was undertaken to refine our knowledge on the role of GABAergic systems in anxiety and anorexia induced by intracerebroventricular (icv) administration of alpha-MSH in rats. The anxiety was assessed by elevated plus maze, and spontaneous food consumption was monitored during dark cycle. Prior administration of diazepam and muscimol that promote the function of GABA(A) receptors reversed the anxiogenic response and decreased food intake elicited by alpha-MSH. In contrast, bicuculline, the GABA(A) receptor antagonist, not only enhanced the effects of alpha-MSH but also prevented the influence of GABAergic drugs on alpha-MSH-induced anorexia and anxiety. These findings suggest that alpha-MSH-induced anxiety and anorexia are due to its negative influence on GABAergic system.

  16. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury.

    Science.gov (United States)

    Cao, Lei; Bie, Xiaohua; Huo, Su; Du, Jubao; Liu, Lin; Song, Weiqun

    2014-11-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after fluid percussion injury. Diazepam can inhibit the hyperexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment significantly increased the slope of input-output curves in rat neurons after fluid percussion injury. Diazepam significantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the fluid percussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  17. GABA(A) receptor-mediated presynaptic inhibition on glutamatergic transmission.

    Science.gov (United States)

    Yamamoto, Sokatsu; Yoshimura, Megumu; Shin, Min-Chul; Wakita, Masahito; Nonaka, Kiku; Akaike, Norio

    2011-01-15

    We investigated the functional roles of presynaptic GABA(A) receptors on excitatory nerve terminals in contributing to spontaneous and action potential-evoked glutamatergic transmission to rat hippocampal CA3 pyramidal neurons. Single CA3 neurons were mechanically isolated with adherent nerve terminals, namely the 'synaptic bouton preparation', and spontaneous glutamatergic excitatory synaptic potentials (sEPSCs) and EPSCs evoked by focal electrical stimuli of a single presynaptic glutamatergic boutons (eEPSCs) were recorded using conventional whole-cell patch recordings. Selective activation of presynaptic GABA(A) receptors on these excitatory nerve terminals by muscimol, markedly facilitated sEPSCs frequency but inhibited eEPSC amplitude. The facilitation of sEPSC frequency was completely occluded by GABA(A) receptor-Cl⁻ channel blockers bicuculline or penicillin (PN). PN itself concentration-dependently inhibited the GABA(A) receptor response induced by bath application of muscimol, but had no effect on the glutamate receptor response. In addition, pretreatment with a blocker of the Na(+), K(+), 2Cl⁻ co-transporter type 1 (NKCC-1), bumetanide, prevented the muscimol-induced inhibition of eEPSCs. The results indicate that activation of presynaptic GABA(A) receptors directly depolarizes glutamatergic excitatory nerve terminals and thereby differentially modulates sEPSCs and eEPSCs.

  18. Effects of diazepam on glutamatergic synaptic transmission in the hippocampal CA1 area of rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Lei Cao; Xiaohua Bie; Su Huo; Jubao Du; Lin Liu; Weiqun Song

    2014-01-01

    The activity of the Schaffer collaterals of hippocampal CA3 neurons and hippocampal CA1 neurons has been shown to increase after lfuid percussion injury. Diazepam can inhibit the hy-perexcitability of rat hippocampal neurons after injury, but the mechanism by which it affects excitatory synaptic transmission remains poorly understood. Our results showed that diazepam treatment signiifcantly increased the slope of input-output curves in rat neurons after lfuid per-cussion injury. Diazepam signiifcantly decreased the numbers of spikes evoked by super stimuli in the presence of 15 μmol/L bicuculline, indicating the existence of inhibitory pathways in the injured rat hippocampus. Diazepam effectively increased the paired-pulse facilitation ratio in the hippocampal CA1 region following fluid percussion injury, reduced miniature excitatory postsynaptic potentials, decreased action-potential-dependent glutamine release, and reversed spontaneous glutamine release. These data suggest that diazepam could decrease the lfuid per-cussion injury-induced enhancement of excitatory synaptic transmission in the rat hippocampal CA1 area.

  19. Neonatal caffeine exposure alters seizure susceptibility in rats in an age-related manner.

    Science.gov (United States)

    Guillet, R

    1995-10-27

    Early developmental exposure to caffeine in rats results in decreased susceptibility to certain chemically-induced seizures in the adult. To determine whether this effect first appears in adulthood or is present during preceding developmental stages, we exposed neonatal rats to caffeine and determined seizure thresholds in animals 28, 42 and 70-90 days of age. Rats were unhandled or received either vehicle (water) or caffeine (15-20 mg/kg/day) by gavage (0.05 ml/10 g) over postnatal days 2-6. At 28, 42, or 70-90 days of age, rats were infused intravenously with picrotoxin (PIC), bicuculline (BIC), pentylenetetrazol (PTZ), caffeine (CAFF), strychnine (STR), or kainic acid (KA). Seizure thresholds for each compound were analyzed as a function of neonatal treatment, sex, and age. At 28 days, neonatally caffeine-exposed rats had a higher seizure threshold only for PTZ (P PIC (P < 0.0007) and PTZ (P < 0.0001) than did controls. These results at 28 and 42 days are compared with previously reported data that demonstrated that in adulthood, rats neonatally exposed to caffeine have higher thresholds for seizure induction with CAFF, PTZ, and KA. Thus, early developmental exposure to caffeine results in decreases in seizure susceptibility that are agent specific and may result in a delay in the decrease in seizure threshold that occurs for many agents between late juvenile ages and adulthood.

  20. The pharmacology of spontaneously open alpha 1 beta 3 epsilon GABA A receptor-ionophores.

    Science.gov (United States)

    Maksay, Gábor; Thompson, Sally A; Wafford, Keith A

    2003-06-01

    Human alpha(1)beta(3) epsilon GABA(A) receptors were expressed in Xenopus oocytes and examined using the conventional two-electrode voltage-clamp technique and compared to alpha(1)beta(3)gamma(2) receptors. The effects of several GABA(A) agonists were studied, and the allosteric modulation of the channel by a number of GABAergic modulators investigated. The presence of the epsilon subunit increased the potency and efficacy of direct activation by partial GABA(A) agonists (piperidine-4-sulphonic acid and thio-4-PIOL), pentobarbital and neuro-steroids. Direct activation by 3-hydroxylated neurosteroids was restricted to 3alpha epimers, while chirality at C5 was indifferent. The 3beta-sulfate esters of pregnenolone and dehydroepiandrosterone inhibited the spontaneous currents with efficacies higher, while bicuculline methiodide and SR 95531 did so lower than picrotoxin and TBPS. Furosemide, fipronil, triphenylcyanoborate and Zn(2+) blocked the spontaneous currents of alpha(1)beta(3) epsilon receptors with different efficacies. Flunitrazepam and 4'-chlorodiazepam inhibited the spontaneous currents with micromolar potencies. In conclusion, spontaneously active alpha(1)beta(3) epsilon GABA(A) receptors can be potentiated and blocked by GABAergic agents within a broad range of efficacy.

  1. Role of spinal GABAA receptor reduction induced by stress in rat thermal hyperalgesia.

    Science.gov (United States)

    Ma, Xuelian; Bao, Weiying; Wang, Xiujun; Wang, Zhilong; Liu, Qiaoran; Yao, Zhenyu; Zhang, Di; Jiang, Hong; Cui, Shuang

    2014-11-01

    The mechanisms underlying stress-induced hyperalgesia (SIH) remain poorly understood. Recent findings have provided strong evidence indicating that SIH could be related, at least in part, to alterations in spinal cord GABA activity. In the present study, we first investigated how acute restraint stress impacted pain responses as assessed using the tail flick immersion test. These results showed that rats developed hyperalgesia at 6 h after being subjected to 1-h acute restraint stress. Second, we measured the activation of spinal neurons and alterations in expression of GABAA receptor β2 and β3 subunits as related to stress-induced hyperalgesia. Results from Western blot and immunofluorescence assays showed that c-fos protein increased in the dorsal horn of the lumbar spinal cord and GABAA receptor β2 and β3 subunit proteins decreased significantly at 6 h after exposure to 1 h of acute restraint stress. Finally, the effects of spinal GABAA receptor alteration on SIH were evaluated. These results showed that intrathecal administration of muscimol inhibited hyperalgesia induced by stress while bicuculline enhanced hyperalgesia in the control groups. Taken together, the present data reveal that GABAA receptor β2 and β3 decrease following 1 h of acute restraint stress and may play a critical role in SIH.

  2. Early development of neuronal activity in the primate hippocampus in utero.

    Science.gov (United States)

    Khazipov, R; Esclapez, M; Caillard, O; Bernard, C; Khalilov, I; Tyzio, R; Hirsch, J; Dzhala, V; Berger, B; Ben-Ari, Y

    2001-12-15

    Morphological studies suggest that the primate hippocampus develops extensively before birth, but little is known about its functional development. Patch-clamp recordings of hippocampal neurons and reconstruction of biocytin-filled pyramidal cells were performed in slices of macaque cynomolgus fetuses delivered by cesarean section. We found that during the second half of gestation, axons and dendrites of pyramidal cells grow intensively by hundreds of micrometers per day to attain a high level of maturity near term. Synaptic currents appear around midgestation and are correlated with the level of morphological differentiation of pyramidal cells: the first synapses are GABAergic, and their emergence correlates with the growth of apical dendrite into stratum radiatum. A later occurrence of glutamatergic synaptic currents correlates with a further differentiation of the axodendritic tree and the appearance of spines. Relying on the number of dendritic spines, we estimated that hundreds of new glutamatergic synapses are established every day on a pyramidal neuron during the last third of gestation. Most of the synaptic activity is synchronized in spontaneous slow ( approximately 0.1 Hz) network oscillations reminiscent of the giant depolarizing potentials in neonatal rodents. Epileptiform discharges can be evoked by the GABA(A) receptor antagonist bicuculline by the last third of gestation, and postsynaptic GABA(B) receptors contribute to the termination of epileptiform discharges. Comparing the results obtained in primates and rodents, we conclude that the template of early hippocampal network development is conserved across the mammalian evolution but that it is shifted toward fetal life in primate.

  3. Cardiovascular and behavioral effects produced by administration of liposome-entrapped GABA into the rat central nervous system.

    Science.gov (United States)

    Vaz, G C; Bahia, A P C O; de Figueiredo Müller-Ribeiro, F C; Xavier, C H; Patel, K P; Santos, R A S; Moreira, F A; Frézard, F; Fontes, M A P

    2015-01-29

    Liposomes are nanosystems that allow a sustained release of entrapped substances. Gamma-aminobutyric acid (GABA) is the most prevalent inhibitory neurotransmitter of the central nervous system (CNS). We developed a liposomal formulation of GABA for application in long-term CNS functional studies. Two days after liposome-entrapped GABA was injected intracerebroventricularly (ICV), Wistar rats were submitted to the following evaluations: (1) changes in mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) to ICV injection of bicuculline methiodide (BMI) in anesthetized rats; (2) changes in cardiovascular reactivity to air jet stress in conscious rats; and (3) anxiety-like behavior in conscious rats. GABA and saline-containing pegylated liposomes were prepared with a mean diameter of 200 nm. Rats with implanted cannulas targeted to lateral cerebral ventricle (n = 5-8/group) received either GABA solution (GS), empty liposomes (EL) or GABA-containing liposomes (GL). Following (48 h) central microinjection (2 μL, 0.09 M and 99 g/L) of liposomes, animals were submitted to the different protocols. Animals that received GL demonstrated attenuated response of RSNA to BMI microinjection (GS 48 ± 9, EL 43 ± 9, GL 11 ± 8%; P nervous system.

  4. Inhibition of diazepam and gamma-aminobutyric acid of depolarization-induced release of (/sup 14/C)cysteine sulfinate and (/sup 3/H)glutamate in rat hippocampal slices

    Energy Technology Data Exchange (ETDEWEB)

    Baba, A.; Okumura, S.; Mizuo, H.; Iwata, H.

    1983-01-01

    Effects of diazepam and gamma-aminobutyric acid-related compounds on the release of (/sup 14/C)cysteine sulfinate and (/sup 3/H)glutamate from preloaded hippocampal slices of rat brain were examined by a superfusion method. Diazepam markedly inhibited the release of cysteine sulfinate and glutamate evoked either by high K/sup +/ or veratridine without affecting that of other neurotransmitter candidates, e.g., gamma-aminobutyric acid, acetylcholine, noradrenaline, and dopamine; IC50 values for the release of cysteine sulfinate and glutamate were about 20 and 7 microM, respectively. gamma-Aminobutyric acid (1 to 10 microM) and muscimol (100 microM) significantly reduced high K+-stimulated release of glutamate. Bicuculline, which had no effect on the release at a concentration of 50 microM by itself, antagonized the inhibitor effects of diazepam and gamma-aminobutyric acid on glutamate release. Similar results were obtained with the release of cysteine sulfinate except that a high concentration (100 microM) of gamma-aminobutyric acid was required for the inhibition. These results indicate the modulation by gamma-aminobutyric acid innervation of the release of excitatory amino acids in rat hippocampal formation, and also suggest that some of the pharmacological effects of diazepam may be a consequence of inhibition of excitatory amino acid transmission.

  5. 阿片样肽类的微离子透入对猫小脑浦肯野氏细胞的作用%Effects of microiontophoretically-applied opioid peptides on Purkinje cells in the cat cerebellum

    Institute of Scientific and Technical Information of China (English)

    Kyoji TAGUCHI; Kenji ABE; Touichiro CHYUMA; Masatoshi KATO; Toshiro SHIGENAGA; Kazuki KUSHIDA; Toshiyuki CHIKUMA

    2000-01-01

    AIM: The purpose of the present study was to examine the effects of microiontophoretically-applied opioid peptides on Purkinje cell of the cerebellum. METHODS:The effects of microiontophoretically-applied morphine,leucine-enkephalin ( Leu-Enk ), methionine-enkephalin (Met-Enk), and dynorphin 1- 13 (Dyn) on the spontaneous discharge of Purkinje cells in the cerebellum of the anesthetized cat were examined. RESULTS: Microiontophoretic applications of Leu-Enk and morphine produced inhibitory and excitatory responses, respectively in Purkinje cells. Application of both morphine and Leu-Enk induced dose-dependent responses. The excitatory responses were antagonized by naloxone, whereas the inhibitory responses were not. Bicuculline, a GABA-Aantagonist, completely abolished both the Leu-Enk-and morphine-induced-inhibitory responses. Iontophoretic application of Met-Enk and dyn produced inhibitory responses only. Met-enk- and dyn-induced inhibition was antagonized by naloxone. CONCLUSION: In Purkinje cell activity, microiontophoretically applied Leu-Enk-and morphine-induced excitation is connected with opiate receptors, whereas inhibition is related to the GABA receptor. However, Met-Enk and dyn produced only inhibitory effects via an opiate receptor in the cerebellum of cats.

  6. Effect of GABA, a Bacterial Metabolite, on Pseudomonas fluorescens Surface Properties and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Marc G. J. Feuilloley

    2013-06-01

    Full Text Available Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37 to GABA (10−5 M increased its necrotic-like activity on eukaryotic (glial cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains.

  7. Deterministic chaos and noise in three in vitro hippocampal models of epilepsy.

    Science.gov (United States)

    Slutzky, M W; Cvitanović, P; Mogul, D J

    2001-01-01

    Recent reports have suggested that chaos control techniques may be useful for electrically manipulating epileptiform bursting behavior in neuronal ensembles. Because the dynamics of spontaneous in vitro bursting had not been well determined previously, analysis of this behavior in the rat hippocampus was performed. Epileptiform bursting was induced in transverse rat hippocampal slices using three experimental methods. Slices were bathed in artificial cerebrospinal fluid containing: (1) elevated potassium ([K+]o= 10.5 mM), (2) zero magnesium, or (3) the GABAA-receptor antagonists bicuculline (20 microM) and picrotoxin (250 microM). The existence of chaos and determinism was assessed using two different analytical techniques: unstable periodic orbit (UPO) analysis and a new technique for estimating Lyapunov exponents. Significance of these results was assessed by comparing the calculations for each experiment with corresponding randomized surrogate data. UPOs of multiple periods were highly prevalent in experiments from all three epilepsy models: 73% of all experiments contained at least one statistically significant period-1 or period-2 orbit. However, the expansion rate analysis did not provide any evidence of determinism in the data. This suggests that the system may be globally stochastic but contains local pockets of determinism. Thus, manipulation of bursting behavior using chaos control algorithms may yet hold promise for reverting or preventing epileptic seizures.

  8. Mathematical Identification of a Neuronal Network Consisting of GABA and DA in Striatal Slices of the Rat Brain

    Directory of Open Access Journals (Sweden)

    L. Ramrath

    2009-01-01

    Full Text Available High frequency stimulation (HFS has been used to treat various neurological and psychiatric diseases. Although further disorders are under investigation to extend the clinical application of HFS, the complex effect of HFS within a neuronal network is still unknown. Thus, it would be desirable to find a theoretical model that allows an estimation of the expected effect of applied HFS. Based on the neurochemical analysis of effects of the γ-aminobutyric acid (GABAA receptor antagonist bicuculline, the D2-like receptor antagonist sulpiride and the D1-like receptor antagonist SCH-23390 on HFS evoked GABA and dopamine (DA release from striatal slices of the rat brain, a mathematical network model is proposed including the neurotransmitters GABA, DA and glutamate (GLU. The model reflects inhibitory and excitatory interactions of the neurotransmitters outflow in the presence of HFS. Under the assumption of linear interactions and static measurements, the model is expressed analytically. Numerical identification of inhibition and excitation is performed on a basis of real outflow levels of GABA and DA in the rat striatum. Results validate the nature of the proposed model. Therefore, this leads to an analytical model of the interactions within distinct neural network components of the rat striatum.

  9. Age- and Sex-Related Characteristics of Tonic Gaba Currents in the Rat Substantia Nigra Pars Reticulata

    Science.gov (United States)

    Hasson, H.; Bojar, M.; Moshé, S. L.; Galanopoulou, A. S.

    2015-01-01

    Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age-and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved. PMID:25645446

  10. Modulation by Divalent Cations of GABAρ1 Receptor From Human Retina Expressed in Xenopus Oocytes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To investigate functional homooligomeric GABAρ1 receptors expressed in Xenopus oocytes and the modulation of divalent cations. Methods GABAρ1 cDNA from human retina was transcribed in vitro to obtain sense ρ1 mRNA, which was microinjected into Xenopus oocytes. Two-electrodes voltage clamp technique was performed to record GABA-induced currents. Results  Expressed receptors were found to have similar properties to GABAC receptors characterized in the retina. Cl-currents induced by GABA were blocked by picrotoxin instead of bicuculline. GABA-induced currents reversed at -19±2.5 mV, and EC50 was 3.3 μmol/L. Zn+ + modulated GABA-induced currents with an IC50=9.6 μ mol/L. Ni+ +, Cu+ + and Cd+ + inhibited GABA ρ1 obviously, too. Their rank order of potency was Zn+ +>Ni+ +>Cu+ +>Cd+ +. Conclusion Zinc(10 μmol/L) inhibited GABA-induced currents in a competitive manner, and its action was sensitive to extracellular pH. Site-directed mutagenesis revealed that substitution of a single histidine residue (H44 and H48) failed to affect zinc sensitivity.

  11. GabaB receptors activation in the NTS blocks the glycemic responses induced by carotid body receptor stimulation.

    Science.gov (United States)

    Lemus, Mónica; Montero, Sergio; Cadenas, José Luis; Lara, José Jesús; Tejeda-Chávez, Héctor Rafael; Alvarez-Buylla, Ramón; de Alvarez-Buylla, Elena Roces

    2008-08-18

    The carotid body receptors participate in glucose regulation sensing glucose levels in blood entering the cephalic circulation. The carotid body receptors information, is initially processed within the nucleus tractus solitarius (NTS) and elicits changes in circulating glucose and brain glucose uptake. Previous work has shown that gamma-aminobutyric acid (GABA) in NTS modulates respiratory reflexes, but the role of GABA within NTS in glucose regulation remains unknown. Here we show that GABA(B) receptor agonist (baclofen) or antagonists (phaclofen and CGP55845A) locally injected into NTS modified arterial glucose levels and brain glucose retention. Control injections outside NTS did not elicit these responses. In contrast, GABA(A) agonist and antagonist (muscimol or bicuculline) produced no significant changes in blood glucose levels. When these GABAergic drugs were applied before carotid body receptors stimulation, again, only GABA(B) agonist or antagonist significantly affected glycemic responses; baclofen microinjection significantly reduced the hyperglycemic response and brain glucose retention observed after carotid body receptors stimulation, while phaclofen produced the opposite effect, increasing significantly hyperglycemia and brain glucose retention. These results indicate that activation of GABA(B), but not GABA(A), receptors in the NTS modulates the glycemic responses after anoxic stimulation of the carotid body receptors, and suggest the presence of a tonic inhibitory mechanism in the NTS to avoid hyperglycemia.

  12. NTS adenosine A2a receptors inhibit the cardiopulmonary chemoreflex control of regional sympathetic outputs via a GABAergic mechanism.

    Science.gov (United States)

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2015-07-01

    Adenosine is a powerful central neuromodulator acting via opposing A1 (inhibitor) and A2a (activator) receptors. However, in the nucleus of the solitary tract (NTS), both adenosine receptor subtypes attenuate cardiopulmonary chemoreflex (CCR) sympathoinhibition of renal, adrenal, and lumbar sympathetic nerve activity and attenuate reflex decreases in arterial pressure and heart rate. Adenosine A1 receptors inhibit glutamatergic transmission in the CCR pathway, whereas adenosine A2a receptors most likely facilitate release of an unknown inhibitory neurotransmitter, which, in turn, inhibits the CCR. We hypothesized that adenosine A2a receptors inhibit the CCR via facilitation of GABA release in the NTS. In urethane-chloralose-anesthetized rats (n = 51), we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of the 5-HT3 receptor agonist phenylbiguanide (1-8 μg/kg) before and after selective stimulation of NTS adenosine A2a receptors [microinjections into the NTS of CGS-21680 (20 pmol/50 nl)] preceded by blockade of GABAA or GABAB receptors in the NTS [bicuculline (10 pmol/100 nl) or SCH-50911 (1 nmol/100 nl)]. Blockade of GABAA receptors virtually abolished adenosine A2a receptor-mediated inhibition of the CCR. GABAB receptors had much weaker but significant effects. These effects were similar for the different sympathetic outputs. We conclude that stimulation of NTS adenosine A2a receptors inhibits CCR-evoked hemodynamic and regional sympathetic reflex responses via a GABA-ergic mechanism.

  13. Important GABAergic mechanism within the NTS and the control of sympathetic baroreflex in SHR.

    Science.gov (United States)

    Moreira, Thiago S; Takakura, Ana C; Colombari, Eduardo

    2011-01-20

    Inhibitory neurotransmission has an important role in the processing of sensory afferent signals in the nucleus of the solitary tract (NTS), particularly in spontaneously hypertensive rats (SHR). In the present study, we tested the hypothesis that γ-aminobutyric acid (GABA) mediated neurotransmission within the NTS produces an inhibition of the baroreflex response of splanchnic sympathetic nerve discharge (sSND). In urethane-anesthetized, artificially ventilated and vagotomized male SHR and Wistar Kyoto (WKY) rats we compared baroreflex-response curves evoked after bilateral injections into the NTS of the GABA-A antagonist bicuculline (25pmol/50nl) or the GABA-B antagonist CGP 35348 (5nmol/50nl). Baseline MAP in SHR was higher than the WKY rats (SHR: 153±5, vs. WKY: 112±6mm Hg, pNTS induced a transient (5min) reduction in MAP (∆=-26±4 and -41±6mm Hg, respectively vs. saline ∆=+4±3mmHg, pNTS in WKY rats did not change MAP, sSND and sympathetic baroreflex gain. These data indicate that GABAergic mechanisms within the NTS act tonically reducing sympathetic baroreflex gain in SHR.

  14. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/-S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and trazolate, and a diaryl-triazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin

  15. GABA/benzodiazepine receptor complex in long-sleep and short-sleep mice

    Energy Technology Data Exchange (ETDEWEB)

    Marley, R.J.

    1987-01-01

    LS mice are more sensitive to benzodiazepine-induced anesthesia; however, the two lines do not differ in their hypothermic response to flurazepam. SS mice are more resistant to 3-mercaptopropionic acid-induced seizures and more sensitive to the anticonvulsant effects of benzodiazepines. The various correlates of GABA and benzodiazepine actions probably are the results of different mechanisms of action and/or differential regional control. Bicuculline competition for /sup 3/H-GABA binding sites is greater in SS cerebellar tissue and /sup 3/H-flunitrazepam binding is greater in the mid-brain region of LS mice. GABA enhancement of /sup 3/H-flunitrazepma binding is greater in SS mice. Ethanol also enhances /sup 3/H-flunitrazepam binding and increases the levels of /sup 3/H-flunitrazepam binding above those observed for GABA. Using correlational techniques on data from LS and SS mice and several inbred mouse strains, it was demonstrated that a positive relationship exists between the degree of receptor coupling within the GABA receptor complex and the degree of resistance to seizures.

  16. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    Science.gov (United States)

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  17. Serotonin excites arcuate neurons directly but inhibits them through intercalate d GABAergic neurons%5-HT对弓状核神经元的直接兴奋作用和通过GABA能局部神经元实现的抑制作用

    Institute of Scientific and Technical Information of China (English)

    康玉明; 陈健勇; 欧阳玮; 乔健天

    2002-01-01

    Effects of serotonin (5-HT) on spontaneous discharges of single hypothalam ic arcuate neurons were observed in rat brain slices by extracellular recordin gs. The results showed that (1) of 149 neurons selected randomly and tested for 5-HT application, 33 (22.2%) were excited, 82 ( 55.0%) were inhibited, and 34 (22.8%) showed biphasic responses or failed to respond; (2) substitution of low Ca2+-high Mg2+ artificial cerebrospinal fluid (aCSF) for normal aCS F abolished the 5-HT-induced inhibitory effect but failed to affect the 5-HT-induced excitatory effect; (3) cyproheptadine, a non-selective 5-HT receptor antagonist, could block either the 5-HT-induced excitatory or inhibitory effects in all neurons tested; and (4) bicuculline, a GABAA -rece ptor antagonist, blocked the 5-HT-induced inhibitory effect. These result s imply (1) 5-HT excites arcuate neurons through a mechanism that is insen sitive to the decreased extracellular Ca2+, suggesting a direct postsynapt ic action of 5-HT on the 5-HT-receptors located in the membrane of th e neurons recorded; and (2) 5-HT might elicit the inhibitory effect through a Ca2+-sensitive release of GABA from intercalated GABAergic local neuro ns that are excited first by 5-HT.%用大鼠离体灌流脑片的细胞外单一神经元电生理记录技术, 观察了5-HT对弓状核神经元自发放电的影响.结果表明: (1) 在随机选取的149个神经元中, 有33个(22.2%)可被5 -HT兴奋, 82个(55.0%)被抑制,其余34个(22.8%)出现双相反应或不出现反应; (2) 用低 Ca2+-高Mg2+人工脑脊液替换正常人工脑脊液后, 5-HT引起的兴奋效应仍可出现, 但5-HT引起的抑制效应不再出现; 3)5-HT受体的非选择性拮抗剂cypr oheptadine对5-HT引起的兴奋或抑制都有阻断作用; (4)用GABA受体拮抗剂bicuculline (Bic)可以阻断5-HT引起的抑制作用.据此推测: (1) 5-HT的兴奋效应对低Ca 2+环境不敏感,因而是5-HT直接作用于所记录细胞的结果; (2) 5-HT

  18. Nicotine-stimulated release of [3H]norepinephrine is reduced in the hippocampus of an animal model of attention-deficit/hyperactivity disorder, the spontaneously hypertensive rat.

    Science.gov (United States)

    Sterley, Toni-Lee; Howells, Fleur M; Russell, Vivienne A

    2014-07-14

    Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous, developmental disorder, and is one of the most common child-psychiatric disorders. It is also a risk factor for early smoking and adult nicotine dependence. Nicotine has been shown to improve symptoms associated with ADHD, including problems with attention, working memory and response inhibition. Norepinephrine, a neurotransmitter involved in attention, is highly implicated in ADHD, and often targeted in the treatment thereof. In the present study we investigated nicotine׳s effect on release of norepinephrine in the hippocampus of a validated rat model of ADHD, the spontaneously hypertensive rat (SHR), as well as in two control strains: Wistar-Kyoto rats (WKY) and Sprague-Dawley rats (SD). Hippocampal slices obtained from male SHR, WKY and SD (postnatal day 31-33) were pre-incubated with radioactively labelled norepinephrine ([3H]NE) and perfused with buffer. The slices were stimulated by exposure to different concentrations of nicotine (1, 10, 100 or 1000 µM) for 1 min at 2 intervals (S1 and S2, separated by 20 min). Following a 10 min wash, slices were stimulated with 25 mM potassium. Since glutamate and GABA receptor function differ in SHR and WKY, we investigated the possible involvement of AMPA and GABA(A) receptors in nicotine (100 µM)-stimulated release of hippocampal [3H]NE in each of the strains by blocking these receptors with CNQX (AMPA receptor antagonist, 10 µM) or bicuculline (GABAA receptor antagonist, 30 µM) respectively. Nicotine-stimulated release (S1) of [3H]NE from SHR hippocampal slices was less than that of WKY and SD, at 100 µM and 1000 µM nicotine, suggesting reduced density and/or function of nicotinic receptors in SHR hippocampus. Nicotine-stimulated release of [3H]NE in response to S2 was reduced compared to S1 in all strains, indicating desensitization of receptors involved in stimulation of [3H]NE by nicotine. Potassium-stimulated release of [3H]NE following the

  19. Control of luminescence from pygmy shark (Squaliolus aliae) photophores.

    Science.gov (United States)

    Claes, Julien M; Ho, Hsuan-Ching; Mallefet, Jérôme

    2012-05-15

    The smalleye pygmy shark (Squaliolus aliae) is a dwarf pelagic shark from the Dalatiidae family that harbours thousands of tiny photophores. In this work, we studied the organisation and physiological control of these photogenic organs. Results show that they are mainly situated on the ventral side of the shark, forming a homogeneous ventral photogenic area that appears well suited for counterillumination, a well-known camouflage technique of pelagic organisms. Isolated ventral skin patches containing photophores did not respond to classical neurotransmitters and nitric oxide but produced light after melatonin (MT) application. Prolactin and α-melanocyte-stimulating hormone inhibited this hormonally induced luminescence as well as the spontaneous luminescence from the photogenic tissue. The action of MT seems to be mediated by binding to the MT(2) receptor subtype, as the MT(2) receptor agonist 4P-PDOT inhibited the luminescence induced by this hormone. Binding to this receptor probably decreases the intracellular cAMP concentration because forskolin inhibited spontaneous and MT-induced luminescence. In addition, a GABA inhibitory tonus seems to be present in the photogenic tissue as well, as GABA inhibited MT-induced luminescence and the application of bicuculline provoked luminescence from S. aliae photophores. Similarly to what has been found in Etmopteridae, the other luminous shark family, the main target of the luminescence control appears to be the melanophores covering the photocytes. Results suggest that bioluminescence first appeared in Dalatiidae when they adopted a pelagic style at the Cretaceous/Tertiary boundary, and was modified by Etmopteridae when they started to colonize deep-water niches and rely on this light for intraspecific behaviours.

  20. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Directory of Open Access Journals (Sweden)

    Víctor Rovira

    Full Text Available Disinhibition of the cortex (e.g., by GABA -receptor blockade generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days, the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7 than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05, which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s. We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere, and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  1. Molecular cloning and expression of a GABA receptor subunit from the crayfish Procambarus clarkii.

    Science.gov (United States)

    Jiménez-Vázquez, Eric N; Díaz-Velásquez, Clara E; Uribe, R M; Arias, Juan M; García, Ubaldo

    2016-02-01

    Molecular cloning has introduced an unexpected, large diversity of neurotransmitter hetero- oligomeric receptors. Extensive research on the molecular structure of the γ-aminobutyric acid receptor (GABAR) has been of great significance for understanding how the nervous system works in both vertebrates and invertebrates. However, only two examples of functional homo-oligomeric GABA-activated Cl(-) channels have been reported. In the vertebrate retina, the GABAρ1 subunit of various species forms homo-oligomeric receptors; in invertebrates, a cDNA encoding a functional GABA-activated Cl(-) channel has been isolated from a Drosophila melanogaster head cDNA library. When expressed in Xenopus laevis oocytes, these subunits function efficiently as a homo-oligomeric complex. To investigate the structure-function of GABA channels from the crayfish Procambarus clarkii, we cloned a subunit and expressed it in human embryonic kidney cells. Electrophysiological recordings show that this subunit forms a homo-oligomeric ionotropic GABAR that gates a bicuculline-insensitive Cl(-) current. The order of potency of the agonists was GABA > trans-4-amino-crotonic acid = cis-4-aminocrotonic acid > muscimol. These data support the notion that X-organ sinus gland neurons express at least two GABA subunits responsible for the formation of hetero-oligomeric and homo-oligomeric receptors. In addition, by in situ hybridization studies we demonstrate that most X-organ neurons from crayfish eyestalk express the isolated pcGABAA β subunit. This study increases the knowledge of the genetics of the crayfish, furthers the understanding of this important neurotransmitter receptor family, and provides insight into the evolution of these genes among vertebrates and invertebrates.

  2. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.

    Science.gov (United States)

    Babot, Zoila; Cristòfol, Rosa; Suñol, Cristina

    2005-01-01

    Excitotoxic neuronal death has been linked to neurological and neurodegenerative diseases. Several studies have sought to clarify the involvement of Cl(-) channels in neuronal excitotoxicity using either N-methyl-D-aspartic acid (NMDA) or alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainic acid agonists. In this work we induced excitotoxic death in primary cultures of cerebellar granule cells by means of endogenously released glutamate. Excitotoxicity was provoked by exposure to high extracellular K(+) concentrations ([K(+)](o)) for 5 min. Under these conditions, a Ca(2+)-dependent release of glutamate was evoked. When extracellular glutamate concentration rose to between 2 and 4 microM, cell viability was significantly reduced by 30-40%. The NMDA receptor antagonists (MK-801 and D-2-amino-5-phosphonopentanoic acid) prevented cell death. Exposure to high [K(+)](o) produced a (36)Cl(-) influx which was significantly reduced by picrotoxinin. In addition, the GABA(A) receptor antagonists (bicuculline, picrotoxinin and SR 95531) protected cells from high [K(+)](o)-triggered excitotoxicity and reduced extracellular glutamate concentration. The Cl(-) channel blockers niflumic acid and 5-nitro-2-(3-phenylpropylamino)benzoic acid also exerted a neuroprotective effect and reduced extracellular glutamate concentration, even though they did not reduce high [K(+)](o)-induced (36)Cl(-) influx. Primary cultures of cerebellar granule cells also contain a population of GABAergic neurons that released GABA in response to high [K(+)](o). Chronic treatment of primary cultures with kainic acid abolished GABA release and rendered granule cells insensitive to high [K(+)](o) exposure, even though NMDA receptors were functional. Altogether, these results demonstrate that, under conditions of membrane depolarization, low micromolar concentrations of extracellular glutamate might induce an excitotoxic process through both NMDA and GABA(A) receptors and niflumic acid-sensitive Cl

  3. Block of GABA(A) receptor ion channel by penicillin: electrophysiological and modeling insights toward the mechanism.

    Science.gov (United States)

    Rossokhin, Alexey V; Sharonova, Irina N; Bukanova, Julia V; Kolbaev, Sergey N; Skrebitsky, Vladimir G

    2014-11-01

    GABA(A) receptors (GABA(A)R) mainly mediate fast inhibitory neurotransmission in the central nervous system. Different classes of modulators target GABA(A)R properties. Penicillin G (PNG) belongs to the class of noncompetitive antagonists blocking the open GABA(A)R and is a prototype of β-lactam antibiotics. In this study, we combined electrophysiological and modeling approaches to investigate the peculiarities of PNG blockade of GABA-activated currents recorded from isolated rat Purkinje cells and to predict the PNG binding site. Whole-cell patch-сlamp recording and fast application system was used in the electrophysiological experiments. PNG block developed after channel activation and increased with membrane depolarization suggesting that the ligand binds within the open channel pore. PNG blocked stationary component of GABA-activated currents in a concentration-dependent manner with IC50 value of 1.12mM at -70mV. The termination of GABA and PNG co-application was followed by a transient tail current. Protection of the tail current from bicuculline block and dependence of its kinetic parameters on agonist affinity suggest that PNG acts as a sequential open channel blocker that prevents agonist dissociation while the channel remains blocked. We built the GABA(A)R models based on nAChR and GLIC structures and performed an unbiased systematic search of the PNG binding site. Monte-Carlo energy minimization was used to find the lowest energy binding modes. We have shown that PNG binds close to the intracellular vestibule. In both models the maximum contribution to the energy of ligand-receptor interactions revealed residues located on the level of 2', 6' and 9' rings formed by a bundle of M2 transmembrane segments, indicating that these residues most likely participate in PNG binding. The predicted structural models support the described mechanism of PNG block.

  4. Pharmacological research on natural substances in Latvia: Focus on lunasin, betulin, polyprenol and phlorizin.

    Science.gov (United States)

    Muceniece, Ruta; Namniece, Jana; Nakurte, Ilva; Jekabsons, Kaspars; Riekstina, Una; Jansone, Baiba

    2016-11-01

    In this concise review the current research in plant bioactive compound studies in Latvia is described. The paper summarizes recent studies on substances from edible plants (e.g., cereals and apples) or their synthetic analogues, such as peptide lunasin, as well as substances isolated from inedible plants (e.g., birch and conifer), such as pentacyclic triterpenes (e.g., betulin, betulinic acid, and lupeol) and polyprenols. Latvian researchers have been first to demonstrate the presence of lunasin in triticale and oats. Additionally, the impact of genotype on the levels of lunasin in cereals was shown. Pharmacological studies have revealed effects of lunasin and synthetic triterpenes on the central nervous system in rodents. We were first to show that synthetic lunasin causes a marked neuroleptic/cataleptic effect and that betulin antagonizes bicuculline-induced seizures (a GABA A receptor antagonist). Studies on the mechanisms of action showed that lunasin binds to dopamine D1 receptors and betulin binds to melanocortin and gamma-aminobutyric acid A receptors therefore we suggest that these receptors play an essential role in lunasin's and betulin's central effects. Recent studies on conifer polyprenols demonstrated the ability of polyprenols to prevent statin-induced muscle weakness in a rat model. Another study on plant compounds has demonstrated the anti-hyperglycemic activity of phlorizin-containing unripe apple pomace in healthy volunteers. In summary, research into plant-derived compounds in Latvia has been focused on fractionating, isolating and characterizing of lunasin, triterpenes, polyprenols and phlorizin using in vitro, and in vivo assays, and human observational studies.

  5. Role of dopamine and GABA in the control of motor activity elicited from the rat nucleus accumbens.

    Science.gov (United States)

    Wong, L S; Eshel, G; Dreher, J; Ong, J; Jackson, D M

    1991-04-01

    The application of 1.2 and 12.0 micrograms/side of the GABAA receptor agonist 3-aminopropane sulphonic acid bilaterally into the nucleus accumbens (Acb) of rats nonsignificantly depressed locomotor activity as assessed in automated Animex activity cages, while the highest dose (60 micrograms/side) significantly stimulated activity. The GABAA receptor antagonists picrotoxinin (0.0625 and 0.125 micrograms/saide) and bicuculline (0.895 micrograms/side) produced forward locomotion around the cage accompanied by a number of other behaviours. The GABAB agonist baclofen (0.023 and 0.092 micrograms/side) induced a short-lasting (18 min) locomotor depression. None of the GABAB antagonists tested (2-hydroxysaclofen 2.6 micrograms/side, two novel beta-(benzo[b]furan) analogues of baclofen 9G or 9H each 6.8 micrograms/side, 4-aminobutylphosphonic acid 1.32 micrograms/side and phaclofen 0.535 and 2 micrograms/side) significantly affected locomotor activity. In rats pretreated with reserpine and alpha-methyl-p-tyrosine, picrotoxinin (0.0625 and 0.125 micrograms/side) did not significantly alter locomotor activity. Furthermore, when picrotoxinin (0.0625 micrograms/side) was combined with either the selective dopamine (DA) D1 agonist SKF38393 or the selective D2 agonist quinpirole, no significant alteration in locomotor function occurred. When SKF38393 and quinpirole were coadministered, significant stimulation occurred which was further enhanced by the addition of picrotoxinin. It is concluded that GABAA receptors, together with D1 and D2 receptors, play a major role in modulating the control of motor function by the Acb of rats.

  6. Analysis of gamma-aminobutyric acidB receptor function in the in vitro and in vivo regulation of alpha-melanotropin-stimulating hormone secretion from melanotrope cells of Xenopus laevis.

    Science.gov (United States)

    De Koning, H P; Jenks, B G; Roubos, E W

    1993-02-01

    The activity of many endocrine cells is regulated by gamma-aminobutyric acid (GABA). The effects of GABA are mediated by GABAA and/or GABAB receptors. While GABAB receptors in the central nervous system have now been extensively characterized, little is known of the function and pharmacology of GABAB receptors on endocrine cells. In the amphibian Xenopus laevis, GABA inhibits the release of alpha MSH from the endocrine melanotrope cells through both GABAA and GABAB receptors. We have investigated the following aspects of the GABAB receptor of the melanotrope cells of X. laevis: 1) the pharmacology of this receptor, using antagonists previously established to demonstrate GABAB receptors in the mammalian central nervous system; 2) the relative contribution to the regulation of hormone secretion by the GABAA and GABAB receptors on melanotrope cells in vitro; and 3) the role of the GABAB receptor with respect to the physiological function of the melanotrope cell in vivo, i.e. regulation of pigment dispersion in skin melanophores in relation to background color. Our results demonstrate that phaclofen, 2-hydroxysaclofen, and 4-aminobutylphosphonic acid dose-dependently blocked the inhibition of alpha MSH release by GABAB receptor activation, but not by GABAA receptor activation. The GABAB receptor antagonist delta-aminovaleric acid appeared to be a selective agonist on the GABAB receptor of melanotrope cells. The inhibitory secretory response to a low dose of GABA (10(-5) M) was not affected by bicuculline, but was significantly reduced by phaclofen, indicating that at a low GABA concentration, the GABAB receptor mechanism would dominate in inhibiting the melanotrope cells. Different thresholds of activation may form the basis for differential action of GABA through both GABA receptor types. The tonic inhibition of alpha MSH release in animals adapted to a white background was not affected by 4-aminobutylphosphonic acid, indicating that the GABAB receptor is not (solely

  7. The effect of Schisandra chinensis extracts on depression by noradrenergic, dopaminergic, GABAergic and glutamatergic systems in the forced swim test in mice.

    Science.gov (United States)

    Yan, Tingxu; Xu, Mengjie; Wu, Bo; Liao, Zhengzheng; Liu, Zhi; Zhao, Xu; Bi, Kaishun; Jia, Ying

    2016-06-15

    Schisandra chinensis (Turcz.) Baill., as a Chinese functional food, has been widely used in neurological disorders including insomnia and Alzheimer's disease. The treatment of classical neuropsychiatric disorder depression is to be developed from Schisandra chinensis. The antidepressant-like effects of the Schisandra chinensis extracts (SCE), and their probable involvement in the serotonergic, noradrenergic, dopaminergic, GABAergic and glutamatergic systems were investigated by the forced swim test (FST). Acute administration of SCE (600 mg kg(-1), i.g.), a combination of SCE (300 mg kg(-1), i.g.) and reboxetine (a noradrenalin reuptake inhibitor, 2.5 mg kg(-1), i.p.) or imipramine (a TCA, 2 mg kg(-1), i.p.) reduced the immobility time in the FST. Pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4, a selective noradrenergic neurotoxin, 50 mg kg(-1), i.p., 4 days), haloperidol (a non-selective D2 receptor antagonist, 0.2 mg kg(-1), i.p.), SCH 23390 (a selective D1 receptor antagonist, 0.03 mg kg(-1), i.p.), bicuculline (a competitive GABA antagonist, 4 mg kg(-1), i.p.) and N-methyl-d-aspartic acid (NMDA, an agonist at the glutamate site, 75 mg kg(-1), i.p.) effectively reversed the antidepressant-like effect of SCE (600 mg kg(-1), i.g.). However, p-chlorophenylalanine (pCPA, an inhibitor of 5-HT synthesis, 100 mg kg(-1), i.p., 4 days,) did not eliminate the reduced immobility time induced by SCE (600 mg kg(-1), i.g.). Moreover, the treatments did not change the locomotor activity. Altogether, these results indicated that SCE produced antidepressant-like activity, which might be mediated by the modification of noradrenergic, dopaminergic, GABAergic and glutamatergic systems.

  8. γ-Hydroxybutyrate (GHB)-induced respiratory depression: combined receptor-transporter inhibition therapy for treatment in GHB overdose.

    Science.gov (United States)

    Morse, Bridget L; Vijay, Nisha; Morris, Marilyn E

    2012-08-01

    Overdose of γ-hydroxybutyrate (GHB) frequently causes respiratory depression, occasionally resulting in death; however, little is known about the dose-response relationship or effects of potential overdose treatment strategies on GHB-induced respiratory depression. In these studies, the parameters of respiratory rate, tidal volume, and minute volume were measured using whole-body plethysmography in rats administered GHB. Intravenous doses of 200, 600, and 1500 mg/kg were administered to assess the dose-dependent effects of GHB on respiration. To determine the receptors involved in GHB-induced respiratory depression, a specific GABA(B) receptor antagonist, (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid (SCH50911), and a specific GABA(A) receptor antagonist, bicuculline, were administered before GHB. The potential therapeutic strategies of receptor inhibition and monocarboxylate transporter (MCT) inhibition were assessed by inhibitor administration 5 min after GHB. The primary effect of GHB on respiration was a dose-dependent decrease in respiratory rate, accompanied by an increase in tidal volume, resulting in little change in minute volume. Pretreatment with 150 mg/kg SCH50911 completely prevented the decrease in respiratory rate, indicating agonism at GABA(B) receptors to be primarily responsible for GHB-induced respiratory depression. Administration of 50 mg/kg SCH50911 after GHB completely reversed the decrease in respiratory rate; lower doses had partial effects. Administration of the MCT inhibitor l-lactate increased GHB renal and total clearance, also improving respiratory rate. Administration of 5 mg/kg SCH50911 plus l-lactate further improved respiratory rate compared with the same dose of either agent alone, indicating that GABA(B) and MCT inhibitors, alone and in combination, represent potential treatment options for GHB-induced respiratory depression.

  9. Reduced striatal acetylcholine efflux in the R6/2 mouse model of Huntington's disease: an examination of the role of altered inhibitory and excitatory mechanisms.

    Science.gov (United States)

    Farrar, Andrew M; Callahan, Joshua W; Abercrombie, Elizabeth D

    2011-12-01

    Huntington's disease (HD) is a genetic neurodegenerative disorder that is characterized by the progressive onset of cognitive, psychiatric, and motor symptoms. In parallel, the neuropathology of HD is characterized by progressive loss of projection neurons in cortex and striatum; striatal cholinergic interneurons are relatively spared. Nonetheless, there is evidence that striatal acetylcholine (ACh) function is altered in HD. The present study is the first to examine striatal ACh function in awake, behaving animals, using the R6/2 mouse model of HD, which is transgenic for exon 1 of the mutant huntingtin gene. Physiological levels of extracellular striatal ACh were monitored in R6/2 mice and wild type controls using in vivo microdialysis. Results indicate that spontaneous ACh release is reduced in R6/2 mice relative to controls. Intrastriatal application of the GABA(A) antagonist bicuculline methiodide (10.0 μM) significantly elevated ACh levels in both R6/2 mice and wild type controls, while overall ACh levels were reduced in the R6/2 mice compared to the wild type group. In contrast, systemic administration of the D(1) dopamine receptor partial agonist, SKF-38393 (10.0mg/kg, IP), elevated ACh levels in control animals, but not R6/2 mice. Taken together, the present results suggest that GABA-mediated inhibition of striatal ACh release is intact in R6/2 mice, further demonstrating that cholinergic interneurons are capable of increased ACh release, whereas D(1) receptor-dependent activation of excitatory inputs to striatal cholinergic interneurons is dysfunctional in R6/2 mice. Reduced levels of extracellular striatal ACh in HD may reflect abnormalities in the excitatory innervation of cholinergic interneurons, which may have implications ACh-dependent processes that are altered in HD, including corticostriatal plasticity.

  10. Effects of intrathecal and intracerebroventricular administration of luteolin in a rat neuropathic pain model.

    Science.gov (United States)

    Hara, Koji; Haranishi, Yasunori; Terada, Tadanori; Takahashi, Yoshihiro; Nakamura, Motohiro; Sata, Takeyoshi

    2014-10-01

    Luteolin, a major component of flavones, is known to have various physiological properties. Although luteolin reportedly has an antinociceptive effect on acute and inflammatory pain, little is known about its effect on neuropathic pain. The aim of the present study was to determine whether luteolin could ameliorate hyperalgesia in the central nervous system using a neuropathic pain model. Chronic constriction injury to the sciatic nerve was induced in male Sprague-Dawley rats. Luteolin (0.1-1.5 mg) was administered intrathecally or intracerebroventricularly to examine the central effects on mechanical, thermal, and cold hyperalgesia using the electronic von Frey test, plantar test, and cold plate test, respectively. A rotarod test was also performed to assess motor function in normal rats. Spinally applied luteolin dose-dependently attenuated mechanical and cold hyperalgesia, but it had no effect on thermal hyperalgesia. At the highest dose, luteolin affected motor performance. The spinal action of luteolin on mechanical hyperalgesia was inhibited by intrathecal pretreatment with the γ-aminobutyric acidA (GABAA) receptor antagonist bicuculline and μ-opioid receptor antagonist naloxone, but not by intrathecal pretreatment with either the benzodiazepine receptor antagonist flumazenil or glycine receptor antagonist strychnine. Supraspinal application of luteolin had no antihyperalgesic effects in any test. These findings suggest that luteolin ameliorates mechanical and cold hyperalgesia at least in part by activating GABAA receptors in a flumazenil-insensitive manner and μ-opioid receptors in the spinal cord, but that the supraspinal regions are unlikely to contribute to the antihyperalgesic action of luteolin. Luteolin could be a candidate therapeutic agent for neuropathic pain.

  11. The Pronociceptive Effect of Paradoxical Sleep Deprivation in Rats: Evidence for a Role of Descending Pain Modulation Mechanisms.

    Science.gov (United States)

    Tomim, Dabna H; Pontarolla, Felipe M; Bertolini, Jessica F; Arase, Mauricio; Tobaldini, Glaucia; Lima, Marcelo M S; Fischer, Luana

    2016-04-01

    The mechanisms underlying the pronociceptive effect of paradoxical sleep deprivation (PSD) are not known. In this study, we asked whether PSD increases tonic nociception in the formalin test, decreases the antinociceptive effect of morphine administered into the periaqueductal gray matter (PAG), and disrupts endogenous descending pain modulation. PSD for either 24 or 48 h significantly increased formalin-induced nociception and decreased mechanical nociceptive paw withdrawal threshold. The maximal antinociceptive effect induced by morphine (0.9-9 nmol, intra-PAG) was significantly decreased by PSD. The administration of a low dose of the GABAA receptor antagonist, bicuculline (30-300 pmol, intra-PAG), decreased nociception in control rats, but not in paradoxical-sleep-deprived ones. Furthermore, the administration of the cholecystokinin (CCK) 2 receptor antagonist, YM022 (0.5-2 pmol) in the rostral ventral medulla (RVM), decreased nociception in paradoxical-sleep-deprived rats but not in control ones. While a dose of the CCK 2 receptor agonist, CCK-8 (8-24 pmol intra-RVM), increased nociception in control rats, but not in paradoxical-sleep-deprived ones. In addition, the injection of lidocaine (QX-314, 2%, intra-RVM) decreased nociception in sleep-deprived rats, but not in control rats, while the lesion of the dorsolateral funiculus prevented the pronociceptive effect of PSD. Finally, PSD significantly increased c-Fos expression in the RVM. Therefore, PSD increases pain independently of its duration or of the characteristic of the nociceptive stimulus and decreases morphine analgesia at the PAG. PSD appears to increase pain by decreasing descending pain inhibitory activity and by increasing descending pain facilitatory activity.

  12. Glycine activates myenteric neurones in adult guinea-pigs.

    Science.gov (United States)

    Neunlist, M; Michel, K; Reiche, D; Dobreva, G; Huber, K; Schemann, M

    2001-11-01

    1. We studied the effects of glycine on myenteric neurones and muscle activity in the colon and stomach of adult guinea-pigs. 2. Intracellular recordings revealed that myenteric neurones responded to local microejection of glycine (1 mM) with a fast, transient membrane potential depolarisation (57 % of 191 colonic neurones and 26 % of 50 gastric neurones). Most glycine-sensitive neurones had ascending projections and were choline acetyltransferase immunoreactive. Glycine preferentially activated neurones with a late afterhyperpolarisation (AH-neurones) and tonic spiking neurones with fast synaptic inputs (tonic S-neurones) but less frequently phasic S-neurones and inexcitable (non-spiking) neurones. The depolarisation had a reversal potential at -19 +/- 13 mV, which was increased by 18 +/- 10 % upon lowering extracellular chloride concentration and decreased by 38 +/- 14 % in furosemide (frusemide, 2 mM). 3. Strychnine (300 nM) reversibly abolished the glycine-induced depolarisation and the Cl(-) channel blocker picrotoxin (100 microM) reduced the amplitude of the depolarisation by 55 +/- 5 %. The glycine effect was a postsynaptic response because it was not changed after nerve blockade with tetrodotoxin (1 microM) or blockade of synaptic transmission in reduced extracellular [Ca(2+)]. The effect was specific since the response was not changed by the nicotinic antagonists hexamethonium (200 microM) and mecamylamine (100 microM), the GABA(A) receptor antagonist bicuculline (10 microM), the NMDA antagonist MK-801 (20 microM) or the 5-HT(3) antagonist ICS 205930 (1 microM). 4. Glycine (1 mM) induced a tetrodotoxin- and strychnine-sensitive contractile response in the colon; the contractile response in the stomach was tetrodotoxin insensitive. 5. Glycine activated myenteric neurones in the adult enteric nervous system through strychnine-sensitive mechanisms. The glycine-evoked depolarisation was caused by Cl(-) efflux and the maintenance of relatively high

  13. β-pompilidotoxin modulates spontaneous activity and persistent sodium currents in spinal networks.

    Science.gov (United States)

    Magloire, V; Czarnecki, A; Anwander, H; Streit, J

    2011-01-13

    The origin of rhythm generation in mammalian spinal cord networks is still poorly understood. In a previous study, we showed that spontaneous activity in spinal networks takes its origin in the properties of certain intrinsically spiking interneurons based on the persistent sodium current (INaP). We also showed that depolarization block caused by a fast inactivation of the transient sodium current (INaT) contributes to the generation of oscillatory activity in spinal cord cultures. Recently, a toxin called beta-pompilidotoxin (β-PMTX) that slows the inactivation process of tetrodotoxin (TTX)-sensitive sodium channels has been extracted from the solitary wasp venom. In the present study, we therefore investigated the effect of β-PMTX on rhythm generation and on sodium currents in spinal networks. Using intracellular recordings and multielectrode array (MEA) recordings in dissociated spinal cord cultures from embryonic (E14) rats, we found that β-PMTX reduces the number of population bursts and increases the background asynchronous activity. We then uncoupled the network by blocking all synaptic transmission (APV, CNQX, bicuculline and strychnine) and observed that β-PMTX increases both the intrinsic activity at individual channels and the number of intrinsically activated channels. At the cellular level, we found that β-PMTX has two effects: it switches 58% of the silent interneurons into spontaneously active interneurons and increases the firing rate of intrinsically spiking cells. Finally, we investigated the effect of β-PMTX on sodium currents. We found that this toxin not only affects the inactivation of INaT but also increases the peak amplitude of the persistent sodium current (INaP). Altogether, theses findings suggest that β-PMTX acting on INaP and INaT enhances intrinsic activity leading to a profound modulation of spontaneous rhythmic activity in spinal networks.

  14. Nonspecific effects of the gap junction blocker mefloquine on fast hippocampal network oscillations in the adult rat in vitro.

    Science.gov (United States)

    Behrens, C J; Ul Haq, R; Liotta, A; Anderson, M L; Heinemann, U

    2011-09-29

    It has been suggested that gap junctions are involved in the synchronization during high frequency oscillations as observed during sharp wave-ripple complexes (SPW-Rs) and during recurrent epileptiform discharges (REDs). Ripple oscillations during SPW-Rs, possibly involved in memory replay and memory consolidation, reach frequencies of up to 200 Hz while ripple oscillations during REDs display frequencies up to 500 Hz. These fast oscillations may be synchronized by intercellular interactions through gap junctions. In area CA3, connexin 36 (Cx36) proteins are present and potentially sensitive to mefloquine. Here, we used hippocampal slices of adult rats to investigate the effects of mefloquine, which blocks Cx36, Cx43 and Cx50 gap junctions on both SPW-Rs and REDs. SPW-Rs were induced by high frequency stimulation in the CA3 region while REDs were recorded in the presence of the GABA(A) receptor blocker bicuculline (5 μM). Both, SPW-Rs and REDs were blocked by the gap junction blocker carbenoxolone. Mefloquine (50 μM), which did not affect stimulus-induced responses in area CA3, neither changed SPW-Rs nor superimposed ripple oscillations. During REDs, 25 and 50 μM mefloquine exerted only minor effects on the expression of REDs but significantly reduced the amplitude of superimposed ripples by ∼17 and ∼54%, respectively. Intracellular recordings of CA3 pyramidal cells revealed that mefloquine did not change their resting membrane potential and input resistance but significantly increased the afterhyperpolarization following evoked action potentials (APs) resulting in reduced probability of AP firing during depolarizing current injection. Similarly, mefloquine caused a reduction in AP generation during REDs. Together, our data suggest that mefloquine depressed RED-related ripple oscillations by reducing high frequency discharges and not necessarily by blocking electrical coupling.

  15. Lesion of the Ventral Periaqueductal Gray Reduces Conditioned Fear but Does Not Change Freezing Induced by Stimulation of the Dorsal Periaqueductal Gray

    Science.gov (United States)

    Vianna, Daniel M.L.; Graeff, Frederico G.; Landeira-Fernandez, Jesus; Brandão, Marcus L.

    2001-01-01

    Previously-reported evidence showed that freezing to a context previously associated with footshock is impaired by lesion of the ventral periaqueductal gray (vPAG). It has also been shown that stepwise increase in the intensity of the electrical stimulation of the dorsal periaqueductal gray (dPAG) produces alertness, then freezing, and finally escape. These aversive responses are mimicked by microinjections of GABA receptor antagonists, such as bicuculline, or blockers of the glutamic acid decarboxylase (GAD), such as semicarbazide, into the dPAG. In this work, we examined whether the expression of these defensive responses could be the result of activation of ventral portion of the periaqueductal gray. Sham- or vPAG electrolytic–lesioned rats were implanted with an electrode in the dPAG for the determination of the thresholds of freezing and escape responses. The vPAG electrolytic lesions were behaviorally verified through a context-conditioned fear paradigm. Results indicated that lesion of the vPAG disrupted conditioned freezing response to contextual cues associated with footshocks but did not change the dPAG electrical stimulation for freezing and escape responses. In a second experiment, lesion of the vPAG also did not change the amount of freezing and escape behavior produced by microinjections of semicarbazide into the dPAG. These findings indicate that freezing and escape defensive responses induced by dPAG stimulation do not depend on the integrity of the vPAG. A discussion on different neural circuitries that might underlie different inhibitory and active defensive behavioral patterns that animals display during threatening situations is presented. PMID:11390636

  16. A computational study of how orientation bias in the lateral geniculate nucleus can give rise to orientation selectivity in primary visual cortex

    Directory of Open Access Journals (Sweden)

    Levin eKuhlmann

    2011-10-01

    Full Text Available Controversy remains about how orientation selectivity emerges in simple cells of the mammalian primary visual cortex. In this paper, we present a computational model of how the orientation-biased responses of cells in lateral geniculate nucleus can contribute to the orientation selectivity in simple cells in cats. We propose that simple cells are excited by lateral geniculate fields with an orientation-bias and disynaptically inhibited by unoriented lateral geniculate fields (or biased fields pooled across orientations, both at approximately the same retinotopic co-ordinates. This interaction, combined with recurrent cortical excitation and inhibition, helps to create the sharp orientation tuning seen in simple cell responses. Along with describing orientation selectivity, the model also accounts for the spatial frequency and length response functions in simple cells, in normal conditions as well as under the influence of the GABAA antagonist, bicuculline. In addition, the model captures the response properties of LGN and simple cells to simultaneous visual stimulation and electrical stimulation of the LGN. We show that the sharp selectivity for stimulus orientation seen in primary visual cortical cells can be achieved without the excitatory convergence of the lateral geniculate nucleus input cells with receptive fields along a line in visual space, which has been a core assumption in classical models of visual cortex. We have also simulated how the full range of orientations seen in the cortex can emerge from the activity among broadly tuned channels tuned to a limited number of optimum orientations, just as in the classical case of coding for colour in trichromatic primates.

  17. Role of opioidergic and GABAergic neurotransmission of the nucleus raphe magnus in the modulation of tonic immobility in guinea pigs.

    Science.gov (United States)

    da Silva, Luis Felipe Souza; Menescal-de-Oliveira, Leda

    2007-04-02

    Tonic immobility (TI) is an inborn defensive behavior characterized by a temporary state of profound and reversible motor inhibition elicited by some forms of physical restraint. Previous results from our laboratory have demonstrated that nucleus raphe magnus (NRM) is also a structure involved in the modulation of TI behavior, as chemical stimulation through carbachol decreases the duration of TI in guinea pigs. In view of the fact that GABAergic and opioidergic circuits participate in the regulation of neuronal activity in the NRM and since these neurotransmitters are also involved in the modulation of TI, the objective of the present study was to evaluate the role of these circuits of the NRM in the modulation of the behavioral TI response. Microinjection of morphine (4.4 nmol/0.2 microl) or bicuculline (0.4 nmol/0.2 microl) into the NRM increased the duration of TI episodes while muscimol (0.5 nmol/0.2 microl) decreased it. The effect of morphine injection into the NRM was blocked by previous microinjection of naloxone (2.7 nmol/0.2 microl). Muscimol at 0.25 nmol did not produce any change in TI duration; however, it blocked the increased response induced by morphine. Our results indicate a facilitatory role of opioidergic neurotransmission in the modulation of the TI response within the NRM, whereas GABAergic activity plays an inhibitory role. In addition, in the present study the modulation of TI in the NRM possibly occurred via an interaction between opioidergic and GABAergic systems, where the opioidergic effect might be due to inhibition of tonically active GABAergic interneurons.

  18. Current understanding of the mechanism of action of the antiepileptic drug lacosamide.

    Science.gov (United States)

    Rogawski, Michael A; Tofighy, Azita; White, H Steve; Matagne, Alain; Wolff, Christian

    2015-02-01

    The antiepileptic drug lacosamide [(R)-2-acetamido-N-benzyl-3-methoxypropanamide], a chiral functionalized amino acid, was originally identified by virtue of activity in the mouse and rat maximal electroshock (MES) test. Attention was drawn to lacosamide because of its high oral potency and stereoselectivity. Lacosamide is also active in the 6 Hz seizure model but inactive against clonic seizures in rodents induced by subcutaneous pentylenetetrazol, bicuculline and picrotoxin. It is also ineffective in genetic models of absence epilepsy. At doses greater than those required to confer protection in the MES test, lacosamide inhibits behavioral and electrographic seizures in hippocampal kindled rats. It also effectively terminates seizures in the rat perforant path stimulation status epilepticus model when administered early after the onset of seizures. Lacosamide does not exhibit antiepileptogenic effects in kindling or post-status epilepticus models. The profile of lacosamide in animal seizure and epilepsy models is similar to that of sodium channel blocking antiepileptic drugs, such as phenytoin and carbamazepine. However, unlike these agents, lacosamide does not affect sustained repetitive firing (SRF) on a time scale of hundreds of milliseconds or affect fast inactivation of voltage-gated sodium channels; however, it terminates SRF on a time scale of seconds by an apparent effect on sodium channel slow inactivation. Lacosamide shifts the slow inactivation curve to more hyperpolarized potentials and enhances the maximal fraction of channels that are in the slow inactivated state. Currently, lacosamide is the only known antiepileptic drug in clinical practice that exerts its anticonvulsant activity predominantly by selectively enhancing slow sodium channel inactivation.

  19. Motor alterations induced by chronic 4-aminopyridine infusion in the spinal cord in vivo: role of glutamate and GABA receptors

    Directory of Open Access Journals (Sweden)

    Rafael eLazo-Gómez

    2016-05-01

    Full Text Available Motor neuron degeneration is the pathological hallmark of motor neuron diseases, a group of neurodegenerative disorders clinically manifested as muscle fasciculations and hyperreflexia, followed by paralysis, respiratory failure and death. Ample evidence supports a role of glutamate-mediated excitotoxicity in motor death. In previous work we showed that stimulation of glutamate release from nerve endings by perfusion of the K+-channel blocker 4-aminopyridine (4-AP in the rat hippocampus induces seizures and neurodegeneration, and that AMPA insusion in the spinal cord produces paralysis and motor neuron death. On these bases, in this work we have tested the effect of the chronic infusion of 4-AP in the spinal cord, using implanted osmotic minipumps, on motor activity and on motor neuron survival, and the mechanisms underlying this effect. 4-AP produced muscle fasciculations and motor deficits assessed in two motor tests, which start 2-3 h after the implant, which ameliorated spontaneously within 6-7 days, but no neurodegeneration. These effects were prevented by both AMPA and NMDA receptors blockers. The role of GABAA receptors was also explored, and we found that chronic infusion of bicuculline induced moderate motor neuron degeneration and enhanced the hyperexcitation produced by 4-AP. Unexpectedly, the GABAAR agonist muscimol also induced motor deficits and failed to prevent the MN death induced by AMPA. We conclude that motor alterations induced by chronic 4-AP infusion in the spinal cord in vivo is due to ionotropic glutamate receptor overactivation and that blockade of GABAergic neurotransmission induces motor neuron death under chronic conditions. These results shed light on the role of glutamatergic and GABAergic neurotransmission in the regulation of motor neuron excitability in the spinal cord.

  20. In Vivo Voltage-Sensitive Dye Study of Lateral Spreading of Cortical Activity in Mouse Primary Visual Cortex Induced by a Current Impulse.

    Directory of Open Access Journals (Sweden)

    Tamás Dávid Fehérvári

    Full Text Available In the mammalian primary visual cortex (V1, lateral spreading of excitatory potentials is believed to be involved in spatial integrative functions, but the underlying cortical mechanism is not well understood. Visually-evoked population-level responses have been shown to propagate beyond the V1 initial activation site in mouse, similar to higher mammals. Visually-evoked responses are, however, affected by neuronal circuits prior to V1 (retina, LGN, making the separate analysis of V1 difficult. Intracortical stimulation eliminates these initial processing steps. We used in vivo RH1691 voltage-sensitive dye (VSD imaging and intracortical microstimulation in adult C57BL/6 mice to elucidate the spatiotemporal properties of population-level signal spreading in V1 cortical circuits. The evoked response was qualitatively similar to that measured in single-cell electrophysiological experiments in rodents: a fast transient fluorescence peak followed by a fast and a slow decrease or hyperpolarization, similar to EPSP and fast and slow IPSPs in single cells. The early cortical response expanded at speeds commensurate with long horizontal projections (at 5% of the peak maximum, 0.08-0.15 m/s however, the bulk of the VSD signal propagated slowly (at half-peak maximum, 0.05-0.08 m/s suggesting an important role of regenerative multisynaptic transmission through short horizontal connections in V1 spatial integrative functions. We also found a tendency for a widespread and fast cortical response suppression in V1, which was eliminated by GABAA-antagonists gabazine and bicuculline methiodide. Our results help understand the neuronal circuitry involved in lateral spreading in V1.

  1. Effects and wavelet spectral entropy analysis of rhubarb extracts rhein on synaptic transmission in rat hippocampal ca1 area in vitro

    Institute of Scientific and Technical Information of China (English)

    GU Jian-wen; ZHENG Chong-xun; ZHANG Ai-hua; Hiroshi Hasuo; Takashi Akasu; YANG Wen-tao; YANG li-bin; XIA Xun; MA Yuan

    2005-01-01

    Background 5-dihydroxyanthraquinone-2-carboxylic acid (rhein) inhibits oxidoreduction induced by reducing nicotingamide adenine dinucleotide in the mitochondria and reducing reactive oxygen species, it also suppresses lipid peroxidation in rat brain homogenates. This study was to assess the effects of anthraquinone derivatives, rhein on synaptic transmission in the rat hippocampal CA1 pyramidal cell layer by intracellular recording.Methods The excitatory postsynaptic potential (EPSP) evoked by stimulation of the Schaffer collaterals in the presence of bicuculline (15 μmol/L) was depressed by application of rhein (0.3-30 μmol/L). The amplitude of the EPSP was restored within 20 minutes after removal of rhein from the supernatant. At a concentration of 30 μmol/L, rhein reduced the amplitude of the EPSP to 42%±3.7% (n=24) of the control. Subsequently, wavelet spectral entropy was used to analyze the EPSP. Results A strong positive correlation was observed between the wavelet spectral entropy and other parameters such as amplitude, slope of rising phase and slope of descending phase of the EPSP. The paired-pulse facilitation (PPF) of the EPSP was significantly increased by rhein (30 μmol/L). The inhibitory postsynaptic potential (IPSP) recorded in the presence of CNQX (20 μmol/L) and APV (40 μmol/L) is not altered by rhein (30 μmol/L). Conclusions Rhein (30 μmol/L) can decrease the frequency but not the amplitude of the miniature EPSP (mEPSP). It is suggested that rhein inhibits excitatory synaptic transmission by decreasing the release of glutamate in rat hippocampal CA1 pyramidal neurons.

  2. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice

    Science.gov (United States)

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14–20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; p<0.05), which is equivalent to a lower propagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges. PMID:26930051

  3. Neuroethological validation of an experimental apparatus to evaluate oriented and non-oriented escape behaviours: Comparison between the polygonal arena with a burrow and the circular enclosure of an open-field test.

    Science.gov (United States)

    Biagioni, Audrey Francisco; dos Anjos-Garcia, Tayllon; Ullah, Farhad; Fisher, Isaac René; Falconi-Sobrinho, Luiz Luciano; de Freitas, Renato Leonardo; Felippotti, Tatiana Tocchini; Coimbra, Norberto Cysne

    2016-02-01

    Inhibition of GABAergic neural inputs to dorsal columns of the periaqueductal grey matter (dPAG), posterior (PH) and dorsomedial (DMH) hypothalamic nuclei elicits distinct types of escape behavioural reactions. To differentiate between the variety and intensity of panic-related behaviours, the pattern of defensive behaviours evoked by blockade of GABAA receptors in the DMH, PH and dPAG were compared in a circular open-field test and in a recently designed polygonal arena. In the circular open-field, the defensive behaviours induced by microinjection of bicuculline into DMH and PH were characterised by defensive alertness behaviour and vertical jumps preceded by rearing exploratory behaviour. On the other hand, explosive escape responses interspersed with horizontal jumps and freezing were observed after the blockade of GABAA receptors on dPAG neurons. In the polygonal arena apparatus, the escape response produced by GABAergic inhibition of DMH and PH neurons was directed towards the burrow. In contrast, the blockade of GABAA receptors in dPAG evoked non-oriented escape behaviour characterised by vigorous running and horizontal jumps in the arena. Our findings support the hypothesis that the hypothalamic nuclei organise oriented escape behavioural responses whereas non-oriented escape is elaborated by dPAG neurons. Additionally, the polygonal arena with a burrow made it easy to discriminate and characterise these two different patterns of escape behavioural responses. In this sense, the polygonal arena with a burrow can be considered a good methodological tool to discriminate between these two different patterns of escape behavioural responses and is very useful as a new experimental animal model of panic attacks.

  4. NMDA and AMPA/kainate glutamatergic receptors in the prelimbic medial prefrontal cortex modulate the elaborated defensive behavior and innate fear-induced antinociception elicited by GABAA receptor blockade in the medial hypothalamus.

    Science.gov (United States)

    de Freitas, Renato Leonardo; Salgado-Rohner, Carlos José; Biagioni, Audrey Francisco; Medeiros, Priscila; Hallak, Jaime Eduardo Cecílio; Crippa, José Alexandre S; Coimbra, Norberto Cysne

    2014-06-01

    The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) and amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainate receptors of the prelimbic (PL) division of the medial prefrontal cortex (MPFC) on the panic attack-like reactions evoked by γ-aminobutyric acid-A receptor blockade in the medial hypothalamus (MH). Rats were pretreated with NaCl 0.9%, LY235959 (NMDA receptor antagonist), and NBQX (AMPA/kainate receptor antagonist) in the PL at 3 different concentrations. Ten minutes later, the MH was treated with bicuculline, and the defensive responses were recorded for 10 min. The antagonism of NMDA receptors in the PL decreased the frequency and duration of all defensive behaviors evoked by the stimulation of the MH and reduced the innate fear-induced antinociception. However, the pretreatment of the PL cortex with NBQX was able to decrease only part of defensive responses and innate fear-induced antinociception. The present findings suggest that the NMDA-glutamatergic system of the PL is critically involved in panic-like responses and innate fear-induced antinociception and those AMPA/kainate receptors are also recruited during the elaboration of fear-induced antinociception and in panic attack-related response. The activation of the glutamatergic neurotransmission of PL division of the MPFC during the elaboration of oriented behavioral reactions elicited by the chemical stimulation of the MH recruits mainly NMDA receptors in comparison with AMPA/kainate receptors.

  5. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle.

    Science.gov (United States)

    Tortorella, Silvia; Rodrigo-Angulo, Margarita L; Núñez, Angel; Garzón, Miguel

    2013-01-01

    The perifornical area in the posterior lateral hypothalamus (PeFLH) has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins), mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx neurons located in the PeFLH area and different brainstem neurons involved in the generation of wakefulness and sleep stages such as the locus coeruleus (LC) nucleus (contributing to wakefulness) and the oral pontine reticular nucleus (PnO) nucleus (contributing to REM sleep). Anatomical data demonstrated the existence of a neuronal network involving the PeFLH area, LC, and the PnO nuclei that would control the sleep-wake cycle. Electrophysiological experiments indicated that PeFLH area had an excitatory effect on LC neurons. PeFLH stimulation increased the firing rate of LC neurons and induced an activation of the EEG. The excitatory effect evoked by PeFLH stimulation in LC neurons was blocked by the injection of the Orx-1 receptor antagonist SB-334867 into the LC. Similar electrical stimulation of the PeFLH area evoked an inhibition of PnO neurons by activation of GABAergic receptors because the effect was blocked by bicuculline application into the PnO. Our data also revealed that the LC and PnO nuclei exerted a feedback control on neuronal activity of PeFLH area. Electrical stimulation of LC facilitated firing activity of PeFLH neurons by activation of catecholaminergic receptors whereas PnO stimulation inhibited PeFLH neurons by activation of GABAergic receptors. In conclusion, Orx neurons of the PeFLH area seem to be an important organizer of the wakefulness and sleep stages in order to maintain a normal succession of stages during the sleep-wakefulness cycle.

  6. Innervation by a GABAergic neuron depresses spontaneous release in glutamatergic neurons and unveils the clamping phenotype of synaptotagmin-1.

    Science.gov (United States)

    Wierda, Keimpe D B; Sørensen, Jakob B

    2014-02-01

    The role of spontaneously occurring release events in glutamatergic and GABAergic neurons and their regulation is intensely debated. To study the interdependence of glutamatergic and GABAergic spontaneous release, we compared reciprocally connected "mixed" glutamatergic/GABAergic neuronal pairs from mice cultured on astrocyte islands with "homotypic" glutamatergic or GABAergic pairs and autaptic neurons. We measured mEPSC and mIPSC frequencies simultaneously from both neurons. Neuronal pairs formed both interneuronal synaptic and autaptic connections indiscriminately. We find that whereas mEPSC and mIPSC frequencies did not deviate between autaptic and synaptic connections, the frequency of mEPSCs in mixed pairs was strongly depressed compared with either autaptic neurons or glutamatergic pairs. Simultaneous imaging of synapses, or comparison to evoked release amplitudes, showed that this decrease was not caused by fewer active synapses. The mEPSC frequency was negatively correlated with the mIPSC frequency, indicating interdependence. Moreover, the reduction in mEPSC frequency was abolished when established pairs were exposed to bicuculline for 3 d, but not by long-term incubation with tetrodotoxin, indicating that spontaneous GABA release downregulates mEPSC frequency. Further investigations showed that knockout of synaptotagmin-1 did not affect mEPSC frequencies in either glutamatergic autaptic neurons or in glutamatergic pairs. However, in mixed glutamatergic/GABAergic pairs, mEPSC frequencies were increased by a factor of four in the synaptotagmin-1-null neurons, which is in line with data obtained from mixed cultures. The effect persisted after incubation with BAPTA-AM. We conclude that spontaneous GABA release exerts control over mEPSC release, and GABAergic innervation of glutamatergic neurons unveils the unclamping phenotype of the synaptotagmin-1-null neurons.

  7. Honeybee Kenyon cells are regulated by a tonic GABA receptor conductance.

    Science.gov (United States)

    Palmer, Mary J; Harvey, Jenni

    2014-10-15

    The higher cognitive functions of insects are dependent on their mushroom bodies (MBs), which are particularly large in social insects such as honeybees. MB Kenyon cells (KCs) receive multisensory input and are involved in associative learning and memory. In addition to receiving sensory input via excitatory nicotinic synapses, KCs receive inhibitory GABAergic input from MB feedback neurons. Cultured honeybee KCs exhibit ionotropic GABA receptor currents, but the properties of GABA-mediated inhibition in intact MBs are currently unknown. Here, using whole cell recordings from KCs in acutely isolated honeybee brain, we show that KCs exhibit a tonic current that is inhibited by picrotoxin but not by bicuculline. Bath application of GABA (5 μM) and taurine (1 mM) activate a tonic current in KCs, but l-glutamate (0.1-0.5 mM) has no effect. The tonic current is strongly potentiated by the allosteric GABAA receptor modulator pentobarbital and is reduced by inhibition of Ca(2+) channels with Cd(2+) or nifedipine. Noise analysis of the GABA-evoked current gives a single-channel conductance value for the underlying receptors of 27 ± 3 pS, similar to that of resistant to dieldrin (RDL) receptors. The amount of injected current required to evoke action potential firing in KCs is significantly lower in the presence of picrotoxin. KCs recorded in an intact honeybee head preparation similarly exhibit a tonic GABA receptor conductance that reduces neuronal excitability, a property that is likely to contribute to the sparse coding of sensory information in insect MBs.

  8. A hippocampal interneuron associated with the mossy fiber system.

    Science.gov (United States)

    Vida, I; Frotscher, M

    2000-02-01

    Network properties of the hippocampus emerge from the interaction of principal cells and a heterogeneous population of interneurons expressing gamma-aminobutyric acid (GABA). To understand these interactions, the synaptic connections of different types of interneurons need to be elucidated. Here we describe a type of inhibitory interneuron of the hippocampal CA3 region that has an axon coaligned with the mossy fibers. Whole-cell patch-clamp recordings, in combination with intracellular biocytin filling, were made from nonpyramidal cells of the stratum lucidum under visual control. Mossy fiber-associated (MFA) interneurons generated brief action potentials followed by a prominent after-hyperpolarization. Subsequent visualization revealed an extensive axonal arbor which was preferentially located in the stratum lucidum of CA3 and often invaded the hilus. The dendrites of MFA interneurons were mainly located in the strata radiatum and oriens, suggesting that these cells are primarily activated by associational and commissural fibers. Electron microscopic analysis showed that axon terminals of MFA interneurons established symmetric synaptic contacts predominantly on proximal apical dendritic shafts, and to a lesser degree, on somata of pyramidal cells. Synaptic contacts were also found on GABAergic interneurons of the CA3 region and putative mossy cells of the hilus. Inhibitory postsynaptic currents (IPSCs) elicited by MFA interneurons in simultaneously recorded pyramidal cells had fast kinetics (half duration, 3.6 ms) and were blocked by the GABA(A) receptor antagonist bicuculline. Thus, MFA interneurons are GABAergic cells in a position to selectively suppress the mossy fiber input, an important requirement for the recall of memory traces from the CA3 network.

  9. Neuroprotection of GluR5-containing kainate receptor activation against ischemic brain injury through decreasing tyrosine phosphorylation of N-methyl-D-aspartate receptors mediated by Src kinase.

    Science.gov (United States)

    Xu, Jie; Liu, Yong; Zhang, Guang-Yi

    2008-10-24

    Previous studies indicate that cerebral ischemia breaks the dynamic balance between excitatory and inhibitory inputs. The neural excitotoxicity induced by ionotropic glutamate receptors gain the upper hand during ischemia-reperfusion. In this paper, we investigate whether GluR5 (glutamate receptor 5)-containing kainate receptor activation could lead to a neuroprotective effect against ischemic brain injury and the related mechanism. The results showed that (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a selective GluR5 agonist, could suppress Src tyrosine phosphorylation and interactions among N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A), postsynaptic density protein 95 (PSD-95), and Src and then decrease NMDA receptor activation through attenuating tyrosine phosphorylation of NR2A and NR2B. More importantly, ATPA had a neuroprotective effect against ischemia-reperfusion-induced neuronal cell death in vivo. However, four separate drugs were found to abolish the effects of ATPA. These were selective GluR5 antagonist NS3763; GluR5 antisense oligodeoxynucleotides; CdCl(2), a broad spectrum blocker of voltage-gated calcium channels; and bicuculline, an antagonist of gamma-aminobutyric acid A (GABA(A)) receptor. GABA(A) receptor agonist muscimol could attenuate Src activation and interactions among NR2A, PSD-95 and Src, resulting the suppression of NMDA receptor tyrosine phosphorylation. Moreover, patch clamp recording proved that the activated GABA(A) receptor could inhibit NMDA receptor-mediated whole-cell currents. Taken together, the results suggest that during ischemia-reperfusion, activated GluR5 may facilitate Ca(2+)-dependent GABA release from interneurons. The released GABA can activate postsynaptic GABA(A) receptors, which then attenuates NMDA receptor tyrosine phosphorylation through inhibiting Src activation and disassembling the signaling module NR2A-PSD-95-Src. The final result of this process is that the pyramidal

  10. Excitatory action of gamma-aminobutyric acid (GABA) on crustacean neurosecretory cells.

    Science.gov (United States)

    García, U; Onetti, C; Valdiosera, R; Aréchiga, H

    1994-02-01

    1. Intracellular and voltage-clamp recordings were obtained from a selected population of neurosecretory (ns) cells in the X organ of the crayfish isolated eyestalk. Pulses of gamma-aminobutyric acid (GABA) elicited depolarizing responses and bursts of action potentials in a dose-dependent manner. These effects were blocked by picrotoxin (50 microM) but not by bicuculline. Picrotoxin also suppressed spontaneous synaptic activity. 2. The responses to GABA were abolished by severing the neurite of X organ cells, at about 150 microns from the cell body. Responses were larger when the application was made at the neuropil level. 3. Topical application of Cd2+ (2 mM), while suppressing synaptic activity, was incapable of affecting the responses to GABA. 4. Under whole-cell voltage-clamp, GABA elicited an inward current with a reversal potential dependent on the chloride equilibrium potential. The GABA effect was accompanied by an input resistance reduction up to 33% at a -50 mV holding potential. No effect of GABA was detected on potassium, calcium, and sodium currents present in X organ cells. 5. The effect of GABA on steady-state currents was dependent on the intracellular calcium concentration. At 10(-6) M [Ca2+]i, GABA (50 microM) increased the membrane conductance more than threefold and shifted the zero-current potential from -25 to -10 mV. At 10(-9) M [Ca2+]i, GABA induced only a 1.3-fold increase in membrane conductance, without shifting the zero-current potential. 6. These results support the notion that in the population of X organ cells sampled in this study, GABA acts as an excitatory neurotransmitter, opening chloride channels.

  11. Background synaptic activity in rat entorhinal cortex shows a progressively greater dominance of inhibition over excitation from deep to superficial layers.

    Directory of Open Access Journals (Sweden)

    Stuart David Greenhill

    Full Text Available The entorhinal cortex (EC controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2 and V (L5. Here, we add comparative studies in layer III (L3. Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles.

  12. Intra- and Interhemispheric Propagation of Electrophysiological Synchronous Activity and Its Modulation by Serotonin in the Cingulate Cortex of Juvenile Mice.

    Science.gov (United States)

    Rovira, Víctor; Geijo-Barrientos, Emilio

    2016-01-01

    Disinhibition of the cortex (e.g., by GABA -receptor blockade) generates synchronous and oscillatory electrophysiological activity that propagates along the cortex. We have studied, in brain slices of the cingulate cortex of mice (postnatal age 14-20 days), the propagation along layer 2/3 as well as the interhemispheric propagation through the corpus callosum of synchronous discharges recorded extracellularly and evoked in the presence of 10 μM bicuculline by electrical stimulation of layer 1. The latency of the responses obtained at the same distance from the stimulus electrode was longer in anterior cingulate cortex (ACC: 39.53 ± 2.83 ms, n = 7) than in retrosplenial cortex slices (RSC: 21.99 ± 2.75 ms, n = 5; ppropagation velocity in the dorso-ventral direction in ACC than in RSC slices (43.0 mm/s vs 72.9 mm/s). We studied the modulation of this propagation by serotonin. Serotonin significantly increased the latency of the intracortical synchronous discharges (18.9% in the ipsilateral hemisphere and 40.2% in the contralateral hemisphere), and also increased the interhemispheric propagation time by 86.4%. These actions of serotonin were mimicked by the activation of either 5-HT1B or 5-HT2A receptors, but not by the activation of the 5-HT1A subtype. These findings provide further knowledge about the propagation of synchronic electrical activity in the cerebral cortex, including its modulation by serotonin, and suggest the presence of deep differences between the ACC and RSC in the structure of the local cortical microcircuits underlying the propagation of synchronous discharges.

  13. Attention deficit associated with early life interictal spikes in a rat model is improved with ACTH.

    Directory of Open Access Journals (Sweden)

    Amanda E Hernan

    Full Text Available Children with epilepsy often present with pervasive cognitive and behavioral comorbidities including working memory impairments, attention deficit hyperactivity disorder (ADHD and autism spectrum disorder. These non-seizure characteristics are severely detrimental to overall quality of life. Some of these children, particularly those with epilepsies classified as Landau-Kleffner Syndrome or continuous spike and wave during sleep, have infrequent seizure activity but frequent focal epileptiform activity. This frequent epileptiform activity is thought to be detrimental to cognitive development; however, it is also possible that these IIS events initiate pathophysiological pathways in the developing brain that may be independently associated with cognitive deficits. These hypotheses are difficult to address due to the previous lack of an appropriate animal model. To this end, we have recently developed a rat model to test the role of frequent focal epileptiform activity in the prefrontal cortex. Using microinjections of a GABA(A antagonist (bicuculline methiodine delivered multiple times per day from postnatal day (p 21 to p25, we showed that rat pups experiencing frequent, focal, recurrent epileptiform activity in the form of interictal spikes during neurodevelopment have significant long-term deficits in attention and sociability that persist into adulthood. To determine if treatment with ACTH, a drug widely used to treat early-life seizures, altered outcome we administered ACTH once per day subcutaneously during the time of the induced interictal spike activity. We show a modest amelioration of the attention deficit seen in animals with a history of early life interictal spikes with ACTH, in the absence of alteration of interictal spike activity. These results suggest that pharmacological intervention that is not targeted to the interictal spike activity is worthy of future study as it may be beneficial for preventing or ameliorating adverse

  14. Cellular mechanisms underlying spontaneous interictal spikes in an acute model of focal cortical epileptogenesis.

    Science.gov (United States)

    de Curtis, M; Radici, C; Forti, M

    1999-01-01

    The cellular mechanisms involved in the generation of spontaneous epileptiform potentials were investigated in the pirifom cortex of the in vitro isolated guinea-pig brain. A single, unilateral injection of bicuculline (150-200 nmol) in the anterior piriform cortex induced locally spontaneous interictal spikes that recurred with a period of 8.81+/-4.47 s and propagated caudally to the ipsi- and contralateral hemispheres. Simultaneous extra- and intracellular recordings from layer II and III principal cells showed that the spontaneous interictal spike correlates to a burst of action potentials followed by a large afterdepolarization. Intracellular application of the sodium conductance blocker, QX-314 (80 mM), abolished bursting activity and unmasked a high-threshold slow spike enhanced by the calcium chelator EGTA (50 mM). The slow spike was abolished by membrane hyperpolarization and by local perfusion with 2 mM cadmium. The depolarizing potential that followed the primary burst was reduced by arterial perfusion with the N-methyl-D-aspartate receptor antagonist, DL-2-amino-5-phosphonopentanoic acid (100-200 microM). The non-N-methyl-D-aspartate glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM), completely and reversibly blocked the spontaneous spikes. The interictal spikes were terminated by a large afterpotential blocked either by intracellular QX-314 (80 mM) or by extracellular application of phaclofen and 2-hydroxysaclofen (10 and 4 mM, respectively). The present study demonstrates that, in an acute model of epileptogenesis, spontaneous interictal spikes are fostered by a primary burst of fast action potentials that ride on a regenerative high-threshold, possibly calcium-mediated spike, which activates a recurrent, glutamate-mediated potential responsible for the entrainment of adjacent and remote cortical regions. The bursting activity is controlled by a GABA(B) receptor-mediated inhibitory synaptic potential.

  15. Antinociceptive effects of fisetin against diabetic neuropathic pain in mice: Engagement of antioxidant mechanisms and spinal GABAA receptors.

    Science.gov (United States)

    Zhao, Xin; Li, Xin-Lin; Liu, Xin; Wang, Chuang; Zhou, Dong-Sheng; Ma, Qing; Zhou, Wen-Hua; Hu, Zhen-Yu

    2015-12-01

    Peripheral painful neuropathy is one of the most common complications in diabetes and necessitates improved treatment. Fisetin, a naturally occurring flavonoid, has been reported to exert antidepressant-like effect in previous studies. As antidepressant drugs are employed clinically to treat neuropathic pain, this work aimed to investigate whether fisetin possess beneficial effect on diabetic neuropathic pain and explore the mechanism(s). We subjected mice to diabetes by a single intraperitoneal (i.p.) injection of streptozotocin (200mg/kg), and von Frey test or Hargreaves test was used to assess mechanical allodynia or thermal hyperalgesia, respectively. Chronic treatment of diabetic mice with fisetin not only ameliorated the established symptoms of thermal hyperalgesia and mechanical allodynia, but also arrested the development of neuropathic pain when given at low doses. Although chronic fisetin administration did not impact on the symptom of hyperglycemia in diabetic mice, it reduced exacerbated oxidative stress in tissues of spinal cord, dorsal root ganglion (DRG) and sciatic verve. Furthermore, the analgesic actions of fisetin were abolished by repetitive co-treatment with the reactive oxygen species (ROS) donor tert-butyl hydroperoxide (t-BOOH), but potentiated by the ROS scavenger phenyl-N-tert-butylnitrone (PBN). Finally, acute blockade of spinal GABAA receptors by bicuculline totally counteracted such fisetin analgesia. These findings indicate that chronic fisetin treatment can delay or correct neuropathic hyperalgesia and allodynia in mice with type 1 diabetes. Mechanistically, the present fisetin analgesia may be associated with its antioxidant activity, and spinal GABAA receptors are likely rendered as downstream targets.

  16. The antidepressant-like effect of Hedyosmum brasiliense and its sesquiterpene lactone, podoandin in mice: evidence for the involvement of adrenergic, dopaminergic and serotonergic systems.

    Science.gov (United States)

    Gonçalves, Ana Elisa; Bürger, Cristiani; Amoah, Solomon K S; Tolardo, Rogério; Biavatti, Maique W; de Souza, Márcia M

    2012-01-15

    We have recently shown that the ethanol extract of the leaves of Hedyosmum brasiliense exhibits an antidepressant-like effect in the tail suspension and forced swimming tests in mice. The present study investigates the mechanisms involved in the antidepressant-like effect of H. brasiliense extract, together with the antidepressant potential of podoandin, an isolated sesquiterpenoid. H. brasiliense (50mg/kg, i.p.) and podoandin (10mg/kg, i.p.) decreased the immobility time in the forced swimming test, without any accompanying changes in ambulation in the open-field test. The anti-immobility effect of the H. brasiliense extract was prevented by pre-treating the mice with ondansetron, NAN 190, pindolol, prazosin, yohimbine, haloperidol, SCH23390, and sulpiride. On the other hand, pre-treating the mice with: p-chlorophenylalanine (4 consecutive days), ketanserin, naloxone, naltrindole, bicuculline, phaclofen, or l-arginine did not block the antidepressant-like effect of H. brasiliense. In addition, pre-treatment of the animals with methylene blue, NG-nitro-l-arginine or 7-nitroindazole, at subeffective doses, did not cause a synergistic effect with H. brasiliense extract at an effective dose in the forced swimming test. The anti-immobility effect of podoandin was also prevented by pre-treating the mice with NAN-190, ondansetron, prazosin, yohimbine, sulpiride and haloperidol. The results indicate that the antidepressant-like effect of H. brasiliense (and podoandin) is dependent on the serotonergic, noradrenergic and dopaminergic systems, but not on the GABAergic, opioid and oxidonitrergic systems.

  17. Effects of Ketamine on Neuronal Spontaneous Excitatory Postsynaptic Currents and Miniature Excitatory Postsynaptic Currents in the Somatosensory Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Chengdong Yuan

    2016-07-01

    Full Text Available Background: Ketamine is a commonly used intravenous anesthetic which produces dissociation anesthesia, analgesia, and amnesia. The mechanism of ketamine-induced synaptic inhibition in high-level cortical areas is still unknown. We aimed to elucidate the effects of different concentrations of ketamine on the glutamatergic synaptic transmission of the neurons in the primary somatosensory cortex by using the whole-cell patch-clamp method. Methods: Sprague-Dawley rats (11–19 postnatal days, n=36 were used to obtain brain slices (300 μM. Spontaneous excitatory postsynaptic currents (data from 40 neurons were recorded at a command potential of -70 mV in the presence of bicuculline (a competitive antagonist of GABAA receptors, 30 μM and strychnine (glycine receptor antagonist, 30 μM. Miniature excitatory postsynaptic currents (data from 40 neurons were also recorded when 1 μM of tetrodotoxin was added into the artificial cerebrospinal fluid. We used GraphPad Prism5for statistical analysis. Significant differences in the mean amplitude and frequency were tested using the Student paired 2-tailed t test. Values of P<0.05 were considered significant. Results: Different concentrations of ketamine inhibited the frequency and amplitude of the spontaneous excitatory postsynaptic currents as well as the amplitude of the miniature excitatory postsynaptic currents in a concentration-dependent manner, but they exerted no significant effect on the frequency of the miniature excitatory postsynaptic currents. Conclusion: Ketamine inhibited the excitatory synaptic transmission of the neurons in the primary somatosensory cortex. The inhibition may have been mediated by a reduction in the sensitivity of the postsynaptic glutamatergic receptors.

  18. Histamine in the locus coeruleus promotes descending noradrenergic inhibition of neuropathic hypersensitivity.

    Science.gov (United States)

    Wei, Hong; Jin, Cong-Yu; Viisanen, Hanna; You, Hao-Jun; Pertovaara, Antti

    2014-12-01

    Among brain structures receiving efferent projections from the histaminergic tuberomammillary nucleus is the pontine locus coeruleus (LC) involved in descending noradrenergic control of pain. Here we studied whether histamine in the LC is involved in descending regulation of neuropathic hypersensitivity. Peripheral neuropathy was induced by unilateral spinal nerve ligation in the rat with a chronic intracerebral and intrathecal catheter for drug administrations. Mechanical hypersensitivity in the injured limb was assessed by monofilaments. Heat nociception was assessed by determining radiant heat-induced paw flick. Histamine in the LC produced a dose-related (1-10μg) mechanical antihypersensitivity effect (maximum effect at 15min and duration of effect 30min), without influence on heat nociception. Pretreatment of LC with zolantidine (histamine H2 receptor antagonist), but not with pyrilamine (histamine H1 receptor antagonist), and spinal administration of atipamezole (an α2-adrenoceptor antagonist), prazosine (an α1-adrenoceptor antagonist) or bicuculline (a GABAA receptor antagonist) attenuated the antihypersensitivity effect of histamine. The histamine-induced antihypersensitivity effect was also reduced by pretreatment of LC with fadolmidine, an α2-adrenoceptor agonist inducing autoinhibition of noradrenergic cell bodies. Zolantidine or pyrilamine alone in the LC failed to influence pain behavior, while A-960656 (histamine H3 receptor antagonist) suppressed hypersensitivity. A plausible explanation for these findings is that histamine, due to excitatory action mediated by the histamine H2 receptor on noradrenergic cell bodies, promotes descending spinal α1/2-adrenoceptor-mediated inhibition of neuropathic hypersensitivity. Blocking the autoinhibitory histamine H3 receptor on histaminergic nerve terminals in the LC facilitates release of histamine and thereby, increases descending noradrenergic pain inhibition.

  19. Spinal histamine in attenuation of mechanical hypersensitivity in the spinal nerve ligation-induced model of experimental neuropathy.

    Science.gov (United States)

    Wei, Hong; Viisanen, Hanna; You, Hao-Jun; Pertovaara, Antti

    2016-02-05

    Here we studied whether and through which mechanisms spinal administration of histamine dihydrochloride (histamine) attenuates pain behavior in neuropathic animals. Experiments were performed in rats with spinal nerve ligation-induced neuropathy and a chronic intrathecal catheter for spinal drug delivery. Mechanical hypersensitivity was assessed with monofilaments while radiant heat was used for assessing nociception. Ongoing neuropathic pain and its attenuation by histamine was assessed using conditioned place-preference test. Following spinal administration, histamine at doses 0.1-10µg produced a dose-related mechanical antihypersensitivity effect. With prolonged treatment (twice daily 10µg for five days), the antihypersensitivity effect of spinal histamine was reduced. In place-preference test, neuropathic animals preferred the chamber paired with histamine (10µg). Histamine (10µg) failed to influence heat nociception in neuropathic animals or mechanically induced pain behavior in a group of healthy control rats. Histamine-induced mechanical antihypersensitivity effect was prevented by spinal pretreatment with zolantidine (histamine H2 receptor antagonist), prazosine (α1-adrenoceptor antagonist) and bicuculline (γ-aminobutyric acid subtype A, GABA(A), receptor antagonist), but not by pyrilamine (histamine H1 receptor antagonist), atipamezole (α2-adrenoceptor antagonist), or raclopride (dopamine D2 receptor antagonist). A-960656, a histamine H3 receptor antagonist alone that presumably increased endogenous histamine levels reduced hypersensitivity. Additionally, histamine prevented central (presumably postsynaptically-induced) facilitation of hypersensitivity induced by N-methyl-d-aspartate. The results indicate that spinal histamine at the dose range of 0.1-10µg selectively attenuates mechanical hypersensitivity and ongoing pain in neuropathy. The spinal histamine-induced antihypersensitivity effect involves histamine H2 and GABA(A) receptors and

  20. Motor tics evoked by striatal disinhibition in the rat

    Directory of Open Access Journals (Sweden)

    Maya eBronfeld

    2013-09-01

    Full Text Available Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS. Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure – the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1-4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders.

  1. Erratum to "Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices".

    Science.gov (United States)

    Basta, Dietmar; Ernst, Arne

    2005-02-01

    The inferior colliculus (IC) in vivo is reportedly subject to a noise-induced decrease of GABA-related inhibitory synaptic transmission accompanied by an amplitude increase of auditory evoked responses, a widening of tuning curves and a higher neuronal discharge rate at suprathreshold levels. However, other in vivo experiments which demonstrated constant neuronal auditory thresholds or unchanged spontaneous activity in the IC after noise exposure did not confirm those findings. Perhaps this can be the result of complex noise-induced interactions between different central auditory structures. It was, therefore, the aim of the present study to investigate the effects of noise exposure on the spontaneous electrical activity of single neurons in a slice preparation of the isolated mouse IC. Normal hearing mice were exposed to noise (10 kHz center frequency at 115 dB SPL for 3 h) at the age of 21 days under anesthesia (Ketamin/Rompun 10:1). After one week, auditory brainstem response (ABR) recordings and extracellular single-unit recordings from spontaneously active neurons within the IC slice were performed in noise-exposed and in normal hearing control mice. Noise-exposed animals showed a significant ABR threshold shift in the whole tested frequency range and a significant lower neuronal spontaneous activity in all investigated isofrequency laminae compared to controls. In both groups, the firing rate of 80% of IC neurons (approximately) increased significantly during the application of the GABA(A) receptor antagonist Bicucullin (10 microM). The present findings demonstrate a noise-related modulation of spontaneous activity in the IC, which possibly contribute to the generation of noise-induced tinnitus and hearing loss.

  2. Noise-induced changes of neuronal spontaneous activity in mice inferior colliculus brain slices.

    Science.gov (United States)

    Basta, Dietmar; Ernest, Arne

    2004-09-30

    The inferior colliculus (IC) in vivo is reportedly subject to a noise-induced decrease of GABA-related inhibitory synaptic transmission accompanied by an amplitude increase of auditory evoked responses, a widening of tuning curves and a higher neuronal discharge rate at suprathreshold levels. However, other in vivo experiments which demonstrated constant neuronal auditory thresholds or unchanged spontaneous activity in the IC after noise exposure did not confirm those findings. Perhaps this can be the result of complex noise-induced interactions between different central auditory structures. It was, therefore, the aim of the present study to investigate the effects of noise exposure on the spontaneous electrical activity of single neurons in a slice preparation of the isolated mouse IC. Normal hearing mice were exposed to noise (10 kHz center frequency at 115 dB SPL for 3 h) at the age of 21 days under anesthesia (Ketamin/Rompun 10:1). After one week, auditory brainstem response (ABR) recordings and extracellular single-unit recordings from spontaneously active neurons within the IC slice were performed in noise-exposed and in normal hearing control mice. Noise-exposed animals showed a significant ABR threshold shift in the whole tested frequency range and a significant lower neuronal spontaneous activity in all investigated isofrequency laminae compared to controls. In both groups, the firing rate of 80% of IC neurons (approximately) increased significantly during the application of the GABA(A) receptor antagonist Bicucullin (10 microM). The present findings demonstrate a noise-related modulation of spontaneous activity in the IC, which possibly contribute to the generation of noise-induced tinnitus and hearing loss.

  3. N-methyl-D-aspartate antagonist activity of alpha- and beta-sulfallorphans.

    Science.gov (United States)

    Shukla, V K; Lemaire, S

    1997-01-01

    Resolved equatorial (alpha) and axial (beta) forms of S-allylmorphinans, alpha-sulfallorphan and beta-sulfallorphan, were tested for their ability to compete with the binding of phencyclidine and sigma receptor ligands to mouse brain membranes and to antagonize N-methyl-D-aspartate (NMDA)-induced convulsions in mice. alpha- and beta-sulfallorphans displayed distinct binding affinities for phencyclidine and sigma sites, inhibiting the binding of [3H]-(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten++ +-5, 10-imine ([3H]MK-801) with Ki values of 2.32 and 0.13 microM and that of [3H](+)-pentazocine with Ki values of 1.97 and 1.61 microM, respectively. Intracerebroventricular administration of these compounds in mice caused dose-dependent inhibitions of NMDA-induced convulsions, but did not affect convulsions induced by (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), kainic acid and bicuculline. alpha- and beta-sulfallorphans blocked the convulsive activity of NMDA (1 nmol/mouse; intracerebroventricular) with ED50 values of 0.48 and 0.015 nmol/mouse, as compared with 0.55, 0.039 and 0.013 nmol/mouse for dextrorphan, MK-801 and (+/-)3-(2-carboxypiperazine-4yl)propyl-1-proprionic acid, respectively. The structurally related compound, dextrallorphan, significantly but less potently blocked NMDA-induced convulsions (ED60, 2.68 nmol/mouse). At the protective doses, alpha- and beta-sulfallorphans markedly reduced NMDA- and AMPA-induced mortality without inducing locomotion and falling behavior. These results indicate that alpha- and beta-sulfallorphans are potent and selective NMDA antagonists devoid of motor side effects at protective doses.

  4. Potassium accumulation as dynamic modulator of neurohypophysial excitability.

    Science.gov (United States)

    Foley, J; Nguyen, H; Bennett, C B; Muschol, M

    2010-08-11

    Activity-dependent modulation of excitable responses from neurohypophysial axons and their secretory swellings has long been recognized as an important regulator of arginine vasopressin and oxytocin release during patterned stimulation. Various activity-dependent mechanisms, including action potential broadening, potassium accumulation, and autocrine or paracrine feedback, have been proposed as underlying mechanisms. However, the relevance of any specific mechanism on net excitability in the intact preparation, during different levels of overall activation, and during realistic stimulation with trains of action potentials has remained largely undetermined. Using high-speed optical recordings and potentiometric dyes, we have quantified the dynamics of global excitability under physiologically more realistic conditions, that is in the intact neurohypophysis during trains of stimuli at varying frequencies and levels of overall activity. Net excitability facilitated during stimulation at low frequencies or at low activity. During persistent high-intensity or high-frequency stimulation, net excitability became severely depressed. Depression of excitable responses was strongly affected by manipulations of extracellular potassium levels, including changes to resting [K(+)](out), increases of interstitial spaces with hypertonic solutions and inhibition of Na(+)/K(+) ATPase activity. Application of the GABA(A) receptor blocker bicuculline or manipulations of Ca(2+) influx showed little effect. Numerical simulation of K(+) accumulation on action potentials of individual axons reproduced optically recorded population responses, including the overall depression of action potential (AP) amplitudes, modest AP broadening and the prominent loss of hyperpolarizing undershoots. Hence, extracellular potassium accumulation dominates activity-dependent depression of neurohypophysial excitability under elevated stimulation conditions. The intricate dependence on the short

  5. P2Y receptor mediated inhibitory modulation of noradrenaline release in response to electrical field stimulation and ischemic conditions in superfused rat hippocampus slices.

    Science.gov (United States)

    Csölle, Cecília; Heinrich, Attila; Kittel, Agnes; Sperlágh, Beáta

    2008-07-01

    In this study, the inhibitory regulation of the release of noradrenaline (NA) by P2 receptors was investigated in hippocampus slices pre-incubated with [(3)H]NA. Electrical field stimulation (EFS; 2 Hz, 240 shocks, and 1 ms) released NA in an outside [Ca(2+)]-dependent manner, and agonists of P2Y receptors inhibited the EFS-evoked [(3)H]NA release with pharmacological profile similar to that of the P2Y(1) and P2Y(13) receptor subtypes. This inhibitory modulation was counteracted by bicuculline and 6-cyano-2,3-dihydroxy-7-nitro-quinoxaline + 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate. In contrast, the excess release in response to 30 min combined oxygen and glucose deprivation was outside [Ca(2+)] independent, but still sensitive to the inhibition of both facilitatory P2X(1) and inhibitory P2Y(1) receptors. Whereas mRNA encoding P2Y(12) and P2Y(13) receptor subunits were expressed in the brainstem, P2Y(1) receptor immunoreactivity was localized to neuronal somata and dendrites innervated by the mossy fiber terminals in the CA3 region of the hippocampus, as well as somata of granule cells and interneurons in the dentate gyrus. In summary, in addition to the known facilitatory modulation via P2X receptors, EFS-evoked [(3)H]NA outflow in the hippocampus is subject to inhibitory modulation by P2Y(1)/P2Y(13) receptors. Furthermore, endogenous activation of both facilitatory and inhibitory P2 receptors may participate in the modulation of pathological NA release under ischemic-like conditions.

  6. Different subtypes of GABA-A receptors are expressed in human, mouse and rat T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Suresh K Mendu

    Full Text Available γ-Aminobutyric acid (GABA is the most prominent neuroinhibitory transmitter in the brain, where it activates neuronal GABA-A receptors (GABA-A channels located at synapses and outside of synapses. The GABA-A receptors are primary targets of many clinically useful drugs. In recent years, GABA has been shown to act as an immunomodulatory molecule. We have examined in human, mouse and rat CD4(+ and CD8(+ T cells which subunit isoforms of the GABA-A channels are expressed. The channel physiology and drug specificity is dictated by the GABA-A receptor subtype, which in turn is determined by the subunit isoforms that make the channel. There were 5, 8 and 13 different GABA-A subunit isoforms identified in human, mouse and rat CD4(+ and CD8(+ T cells, respectively. Importantly, the γ2 subunit that imposes benzodiazepine sensitivity on the GABA-A receptors, was only detected in the mouse T cells. Immunoblots and immunocytochemistry showed abundant GABA-A channel proteins in the T cells from all three species. GABA-activated whole-cell transient and tonic currents were recorded. The currents were inhibited by picrotoxin, SR95531 and bicuculline, antagonists of GABA-A channels. Clearly, in both humans and rodents T cells, functional GABA-A channels are expressed but the subtypes vary. It is important to bear in mind the interspecies difference when selecting the appropriate animal models to study the physiological role and pharmacological properties of GABA-A channels in CD4(+ and CD8(+ T cells and when selecting drugs aimed at modulating the human T cells function.

  7. A New Computational Model for Neuro-Glio-Vascular Coupling: Astrocyte Activation Can Explain Cerebral Blood Flow Nonlinear Response to Interictal Events.

    Directory of Open Access Journals (Sweden)

    Solenna Blanchard

    Full Text Available Developing a clear understanding of the relationship between cerebral blood flow (CBF response and neuronal activity is of significant importance because CBF increase is essential to the health of neurons, for instance through oxygen supply. This relationship can be investigated by analyzing multimodal (fMRI, PET, laser Doppler… recordings. However, the important number of intermediate (non-observable variables involved in the underlying neurovascular coupling makes the discovery of mechanisms all the more difficult from the sole multimodal data. We present a new computational model developed at the population scale (voxel with physiologically relevant but simple equations to facilitate the interpretation of regional multimodal recordings. This model links neuronal activity to regional CBF dynamics through neuro-glio-vascular coupling. This coupling involves a population of glial cells called astrocytes via their role in neurotransmitter (glutamate and GABA recycling and their impact on neighboring vessels. In epilepsy, neuronal networks generate epileptiform discharges, leading to variations in astrocytic and CBF dynamics. In this study, we took advantage of these large variations in neuronal activity magnitude to test the capacity of our model to reproduce experimental data. We compared simulations from our model with isolated epileptiform events, which were obtained in vivo by simultaneous local field potential and laser Doppler recordings in rats after local bicuculline injection. We showed a predominant neuronal contribution for low level discharges and a significant astrocytic contribution for higher level discharges. Besides, neuronal contribution to CBF was linear while astrocytic contribution was nonlinear. Results thus indicate that the relationship between neuronal activity and CBF magnitudes can be nonlinear for isolated events and that this nonlinearity is due to astrocytic activity, highlighting the importance of astrocytes in

  8. Effect of midazolam on the proliferation of neural stem cells isolated from rat hippocampus

    Institute of Scientific and Technical Information of China (English)

    Sanjun Zhao; Yajing Zhu; Rui Xue; Yunfeng Li; Hui Lu; Weidong Mi

    2012-01-01

    In many recent studies,the inhibitory transmitter gamma-aminobutyric acid has been shown to modulate the proliferation,differentiation and survival of neural stem cells.Most general anesthetics are partial or allosteric gamma-aminobutyric acid A receptor agonists,suggesting that general anesthetics could alter the behavior of neural stem cells.The neuroprotective efficacy of general anesthetics has been recognized for decades,but their effects on the proliferation of neural stem cells have received little attention.This study investigated the potential effect of midazolam,an extensively used general anesthetic and allosteric gamma-aminobutyric acid A receptor agonist,on the proliferation of neural stem cells in vitro and preliminarily explored the underlying mechanism.The proliferation of neural stem cells was tested using both Cell Counting Kit 8 and bromodeoxyuridine incorporation experiments.Cell distribution analysis was performed to describe changes in the cell cycle distribution in response to midazolam.Calcium imaging was employed to explore the molecular signaling pathways activated by midazolam.Midazolam (30-90 μM) decreased the proliferation of neural stem cells in vitro.Pretreatment with the gamma-aminobutyric acid A receptor antagonist bicuculline or Na-K-2Cl cotransport inhibitor furosemide partially rescued this inhibition.In addition,midazolam triggered a calcium influx into neural stem cells.The suppressive effect of midazolam on the proliferation of neural stem cells can be partly attributed to the activation of gamma-aminobutyric acid A receptor.The calcium influx triggered by midazolam may be a trigger factor leading to further downstream events.

  9. Characterization of GABA/sub A/ receptor-mediated /sup 36/chloride uptake in rat brain synaptoneurosomes

    Energy Technology Data Exchange (ETDEWEB)

    Luu, M.D.; Morrow, A.L.; Paul, S.M.; Schwartz, R.D.

    1987-09-07

    ..gamma..-Aminobutyric acid (GABA) receptor-mediated /sup 36/chloride (/sup 36/Cl/sup -/) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated /sup 36/Cl/sup -/ uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated /sup 36/Cl/sup -/ uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated /sup 36/Cl/sup -/ uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br/sup -/>Cl/sup -/greater than or equal toNO/sub 3//sup -/>I/sup -/greater than or equal toSCN/sup -/>>C/sub 3/H/sub 5/OO/sup -/greater than or equal toClO/sub 4//sup -/>F/sup -/, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl/sup -/ channel. 43 references, 4 figures, 3 tables.

  10. GABAergic signaling in the rat pineal gland.

    Science.gov (United States)

    Yu, Haijie; Benitez, Sergio G; Jung, Seung-Ryoung; Farias Altamirano, Luz E; Kruse, Martin; Seo, Jong Bae; Koh, Duk-Su; Muñoz, Estela M; Hille, Bertil

    2016-08-01

    Pinealocytes secrete melatonin at night in response to norepinephrine released from sympathetic nerve terminals in the pineal gland. The gland also contains many other neurotransmitters whose cellular disposition, activity, and relevance to pineal function are not understood. Here, we clarify sources and demonstrate cellular actions of the neurotransmitter γ-aminobutyric acid (GABA) using Western blotting and immunohistochemistry of the gland and electrical recording from pinealocytes. GABAergic cells and nerve fibers, defined as containing GABA and the synthetic GAD67, were identified. The cells represent a subset of interstitial cells while the nerve fibers were distinct from the sympathetic innervation. The GABAA receptor subunit α1 was visualized in close proximity of both GABAergic and sympathetic nerve fibers as well as fine extensions among pinealocytes and blood vessels. The GABAB 1 receptor subunit was localized in the interstitial compartment but not in pinealocytes. Electrophysiology of isolated pinealocytes revealed that GABA and muscimol elicit strong inward chloride currents sensitive to bicuculline and picrotoxin, clear evidence for functional GABAA receptors on the surface membrane. Applications of elevated potassium solution or the neurotransmitter acetylcholine depolarized the pinealocyte membrane potential enough to open voltage-gated Ca(2+) channels leading to intracellular calcium elevations. GABA repolarized the membrane and shut off such calcium rises. In 48-72-h cultured intact glands, GABA application neither triggered melatonin secretion by itself nor affected norepinephrine-induced secretion. Thus, strong elements of GABA signaling are present in pineal glands that make large electrical responses in pinealocytes, but physiological roles need to be found.

  11. Enhanced group II mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala

    Directory of Open Access Journals (Sweden)

    Bird Gary C

    2006-05-01

    Full Text Available Abstract Background The latero-capsular part of the central nucleus of the amygdala (CeLC is the target of the spino-parabrachio-amygdaloid pain pathway. Our previous studies showed that CeLC neurons develop synaptic plasticity and increased neuronal excitability in the kaolin/carrageenan model of arthritic pain. These pain-related changes involve presynaptic group I metabotropic glutamate receptors (mGluRs and postsynaptic NMDA and calcitonin gene-related peptide (CGRP1 receptors. Here we address the role of group II mGluRs. Results Whole-cell current- and voltage-clamp recordings were made from CeLC neurons in brain slices from control rats and arthritic rats (>6 h postinjection of kaolin/carrageenan into the knee. Monosynaptic excitatory postsynaptic currents (EPSCs were evoked by electrical stimulation of afferents from the pontine parabrachial (PB area. A selective group II mGluR agonist (LY354740 decreased the amplitude of EPSCs more potently in CeLC neurons from arthritic rats (IC50 = 0.59 nM than in control animals (IC50 = 15.0 nM. The inhibitory effect of LY354740 was reversed by a group II mGluR antagonist (EGLU but not a GABAA receptor antagonist (bicuculline. LY354740 decreased frequency, but not amplitude, of miniature EPSCs in the presence of TTX. No significant changes of neuronal excitability measures (membrane slope conductance and action potential firing rate were detected. Conclusion Our data suggest that group II mGluRs act presynaptically to modulate synaptic plasticity in the amygdala in a model of arthritic pain.

  12. Perturbations in reward-related decision-making induced by reduced prefrontal cortical GABA transmission: Relevance for psychiatric disorders.

    Science.gov (United States)

    Piantadosi, Patrick T; Khayambashi, Shahin; Schluter, Magdalen G; Kutarna, Agnes; Floresco, Stan B

    2016-02-01

    The prefrontal cortex (PFC) is critical for higher-order cognitive functions, including decision-making. In psychiatric conditions such as schizophrenia, prefrontal dysfunction co-occurs with pronounced alterations in decision-making ability. These alterations include a diminished ability to utilize probabilistic reinforcement in guiding future choice, and a reduced willingness to expend effort to receive reward. Among the neurochemical abnormalities observed in the PFC of individuals with schizophrenia are alterations in the production and function of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). To probe how PFC GABA hypofunction may contribute to alterations in cost/benefit decision-making, we assessed the effects GABAA-receptor antagonist bicuculline (BIC; 50 ng in 0.5 μl saline/hemisphere) infusion in the medial PFC of rats during performance on a series of well-validated cost/benefit decision-making tasks. Intra-PFC BIC reduced risky choice and reward sensitivity during probabilistic discounting and decreased the preference for larger rewards associated with a greater effort cost, similar to the behavioral sequelae observed in schizophrenia. Additional experiments revealed that these treatments did not alter instrumental responding on a progressive ratio schedule, nor did they impair the ability to discriminate between reward and no reward. However, BIC induced a subtle but consistent impairment in preference for larger vs. smaller rewards of equal cost. BIC infusion also increased decision latencies and impaired the ability to "stay on task" as indexed by reduced rates of instrumental responding. Collectively, these results implicate prefrontal GABAergic dysfunction as a key contributing factor to abnormal decision-making observed in schizophrenia and other neuropsychiatric conditions with similar neurobiological and behavioral alterations.

  13. Serotonergic neural links from the dorsal raphe nucleus modulate defensive behaviours organised by the dorsomedial hypothalamus and the elaboration of fear-induced antinociception via locus coeruleus pathways.

    Science.gov (United States)

    Biagioni, Audrey Francisco; de Freitas, Renato Leonardo; da Silva, Juliana Almeida; de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Alves, Vani Maria; Coimbra, Norberto Cysne

    2013-04-01

    Decrease of γ-aminobutyric acid (GABA)-mediated neurotransmission in the dorsomedial hypothalamus (DMH) evokes instinctive fear-like responses. The aim of the present study was to investigate the involvement of the serotonin (5-HT)- and norepinephrine-mediated pathways of the endogenous pain inhibitory system, including the dorsal raphe nucleus (DRN) and the locus coeruleus (LC), in the defensive responses and antinociceptive processes triggered by the blockade of GABAergic receptors in the DMH. The intra-hypothalamic microinjection of the GABA(A) receptor antagonist bicuculline (40 ng/200 nL) elicited elaborate defensive behaviours interspersed with exploratory responses. This escape behaviour was followed by significantly increased pain thresholds, a phenomenon known as fear-induced antinociception. Furthermore, at 5 and 14 days after DRN serotonin-containing neurons were damaged using the selective neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), the frequency and duration of alertness and escape behaviour evoked by the GABA(A) receptor blockade in the DMH decreased, as well as fear-induced antinociception. Pre-treatment with the non-selective 5-HT receptor antagonist methysergide, the 5-HT(2A/2C) receptor antagonist ketanserin and the 5-HT(2A) receptor selective antagonist R-96544 in the LC also decreased fear-induced antinociception, without significant changes in the expression of defensive behaviours. These data suggest that the serotonergic neurons of the DRN are directly involved in the organisation of defensive responses as well as in the elaboration of the innate fear-induced antinociception. However, serotonin-mediated inputs from the NDR to the LC modulate only fear-induced antinociception and not the defensive behaviours evoked by GABA(A) receptor blockade in the DMH.

  14. Expression of human epileptic temporal lobe neurotransmitter receptors in Xenopus oocytes: An innovative approach to study epilepsy

    Science.gov (United States)

    Palma, Eleonora; Esposito, Vincenzo; Mileo, Anna Maria; Di Gennaro, Giancarlo; Quarato, Pierpaolo; Giangaspero, Felice; Scoppetta, Ciriaco; Onorati, Paolo; Trettel, Flavia; Miledi, Ricardo; Eusebi, Fabrizio

    2002-01-01

    Poly(A+) RNA was extracted from the temporal lobe (TL) of medically intractable epileptic patients which underwent surgical TL resection. Injection of this mRNA into Xenopus oocytes led to the expression of ionotropic receptors for γ-aminobutyric acid (GABA), kainate (KAI) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Membrane currents elicited by GABA inverted polarity at −15 mV, close to the oocyte's chloride equilibrium potential, were inhibited by bicuculline, and were potentiated by pentobarbital and flunitrazepam. These basic characteristics were also displayed by GABA currents elicited in oocytes injected with mRNAs isolated from human TL glioma (TLG) or from mouse TL. However, the GABA receptors expressed by the epileptic TL mRNA exhibited some unusual properties, consisting in a rapid current run-down after repetitive GABA applications and a large EC50 (125 μM). AMPA alone evoked very small or nil currents, whereas KAI induced larger currents. Nevertheless, upon cyclothiazide treatment, AMPA elicited substantial currents that, like the KAI currents, were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Furthermore, the glutamate receptor 5 (GluR5) agonist, ATPA, failed to evoke an obvious current although both RT-PCR and Western blot analyses showed GluR5 expression in the epileptic TL. Oocytes injected with mouse TL or human TLG mRNAs generated KAI and AMPA currents similar to those evoked in oocytes injected with epileptic TL mRNA but, in contrast to these, the mouse TL and human TLG oocytes were also responsive to ATPA. Our findings are in accord with the concept that both a depression of GABA inhibition and a dysfunction of the KAI-receptor system maintain a high neuronal excitability that results in epileptic seizures. PMID:12409614

  15. GABA increases electrical excitability in a subset of human unmyelinated peripheral axons.

    Directory of Open Access Journals (Sweden)

    Richard W Carr

    Full Text Available BACKGROUND: A proportion of small diameter primary sensory neurones innervating human skin are chemosensitive. They respond in a receptor dependent manner to chemical mediators of inflammation as well as naturally occurring algogens, thermogens and pruritogens. The neurotransmitter GABA is interesting in this respect because in animal models of neuropathic pain GABA pre-synaptically regulates nociceptive input to the spinal cord. However, the effect of GABA on human peripheral unmyelinated axons has not been established. METHODOLOGY/PRINCIPAL FINDINGS: Electrical stimulation was used to assess the effect of GABA on the electrical excitability of unmyelinated axons in isolated fascicles of human sural nerve. GABA (0.1-100 microM increased electrical excitability in a subset (ca. 40% of C-fibres in human sural nerve fascicles suggesting that axonal GABA sensitivity is selectively restricted to a sub-population of human unmyelinated axons. The effects of GABA were mediated by GABA(A receptors, being mimicked by bath application of the GABA(A agonist muscimol (0.1-30 microM while the GABA(B agonist baclofen (10-30 microM was without effect. Increases in excitability produced by GABA (10-30 microM were blocked by the GABA(A antagonists gabazine (10-20 microM, bicuculline (10-20 microM and picrotoxin (10-20 microM. CONCLUSIONS/SIGNIFICANCE: Functional GABA(A receptors are present on a subset of unmyelinated primary afferents in humans and their activation depolarizes these axons, an effect likely due to an elevated intra-axonal chloride concentration. GABA(A receptor modulation may therefore regulate segmental and peripheral components of nociception.

  16. Evaluation of GABA Receptors of Ventral Tegmental Area in Cardiovascular Responses in Rat

    Directory of Open Access Journals (Sweden)

    Minoo Rasoulpanah

    2015-07-01

    Full Text Available Background: The ventral tegmental area (VTA is well known for its role in cardiovascular control. It is demonstrated that about 20-30% of the VTA neurons are GABAergic though their role in cardiovascular control is not yet understood. This study is carried out to find the effects of GABA A and GABA B receptors on cardiovascular response of the VTA. Methods: Experiments were performed on urethane anesthetized male Wistar rats. Drugs were microinjected unilaterally into the VTA. The average changes in mean arterial pressure (MAP and heart rate (HR were compared between the case and the control groups using t test and with the pre-injection values using paired t test. Results: Microinjection of muscimol, a GABAA agonist (500, 1500 and 2500 pmol/100nl into the VTA had no significant effect on MAP and HR compared with the saline group and pre-injection values. Injection of bicuculline methiodide (BMI, 100 and 200 pmol/100 nl, a GABAA antagonist, caused a significant increase in the MAP (11.1±1.95mmHg, P<0.5 and a decrease in HR (-32.07±10.2, P<0.01. Microinjection of baclofen a GABAB receptor agonist (500 or 1000 pmole/100 nl and phaclofen a GABAB receptor antagonist (500 or 1000 pmole/100 nl had no significant effects on MAP and HR. Conclusion: For the first time it was demonstrated that GABA system of the VTA inhibits the cardiovascular system through the activation of GABAA but not the GABAB receptors.

  17. 乙醇对小鼠不同脑区3H-GABA与GABAA受体结合的影响

    Institute of Scientific and Technical Information of China (English)

    周雪瑞; 李晓煜; 秦晓东; 朱剑琴

    1999-01-01

    采用放射配体受体结合分析法,研究急性注射乙醇对小鼠不同脑区GABAA受体饱和曲线以及与3H-GABA结合的影响.结果表明,急性注射乙醇30min后,GABAA受体饱和曲线出现大幅度上移,乙醇能明显提高3H-GABA与GABAA受体的结合,对小脑、下丘脑、海马及大脑皮层分别提高20%、16%、30%、和28%.乙醇能逆转GGABAA受体拮抗剂如印防己毒素(Picrotoxin)、荷包牡丹碱(Bicuculline)等对受体结合的抑制作用,其中对Pic作用最为显著.戊巴比妥钠(Barbitufal[e)、蝇蕈醇(Muscimol)、氨氧乙酸(Amincoxyacetic acid)在乙醇作用下均不同程度地提高受体的结合量.巴氯芬(Baclofen)对GABAA受体的结合有一定程度的降低作用.说明乙醇能通过提高GABA与GABAA受体的结合,实现对中枢的抑制作用。

  18. Effects of propofol on GABAergic and glutamatergic transmission in isolated hippocampal single nerve-synapse preparations.

    Science.gov (United States)

    Wakita, Masahito; Kotani, Naoki; Nonaka, Kiku; Shin, Min-Chul; Akaike, Norio

    2013-10-15

    We evaluated the effects of propofol on synaptic transmission using a mechanically dissociated preparation of rat hippocampal CA3 neurons to allow assays of single bouton responses evoked from retained functional native nerve endings. We studied synaptic and extrasynaptic GABAA and glutamate receptor responses in a preparation in which experimental solutions rapidly accessed synaptic terminals. Whole-cell responses were evoked by bath application of GABA and glutamate. Synaptic inhibitory and excitatory postsynaptic currents (IPSC and EPSC) were measured as spontaneous and evoked postsynaptic responses. Evoked currents were elicited by focal electrical stimulation. Propofol (1-100 μM) enhanced extrasynaptic GABAA-receptor mediated responses but the increase at clinically relevant concentrations (1 μM) were minor. In contrast, 1 μM propofol significantly increased both the amplitude and frequency of spontaneous IPSCs (sIPSCs) and increased the amplitudes of evoked IPSCs (eIPSCs) while decreasing failure rates (Rf) and paired-pulse ratios (PPR). Decay times of sIPSCs and eIPSCs were significantly prolonged. Although propofol had no effect on extrasynaptic glutamate responses, only supra-clinical propofol concentrations (≥ 10 µM) increased the spontaneous EPSCs (sEPSCs, amplitudes and frequencies) but suppressed evoked EPSCs (eEPSCs decreased amplitudes with increased Rf and PPR). The decay phases of sEPSCs and eEPSCs were not changed. The propofol-induced changes in sEPSCs and eEPSCs resulted from presynaptic GABAA receptor-mediated depolarization, because these actions were blocked by bicuculline. These results suggest that propofol acts at presynaptic and postsynaptic GABAA receptors within GABAergic synapses, but also increases extrasynaptic GABA responses. Our results expand the locus of propofol actions to GABAergic and glutamatergic synapses.

  19. Neonatal caffeine exposure and seizure susceptibility in adult rats.

    Science.gov (United States)

    Guillet, R; Dunham, L

    1995-08-01

    Early developmental exposure to caffeine in rats results in changes in brain excitability that persist to adulthood. The mechanism of these alterations is unknown. To identify potential neurotransmitter systems involved, we exposed neonatal rats to caffeine and determined seizure thresholds for chemoconvulsants active at different CNS receptors in the adult animal. Rats were unhandled (NH) or received by gavage (0.05 ml/10 g) either vehicle (water) or caffeine (15-20 mg/kg/day) for postnatal days 2-6. At age 70-90 days, each rat was infused intravenously (i.v.) with picrotoxin (PIC), bicuculline (BIC) [convulsants acting at the gamma-aminobutyric acid/benzodiazepine (GABA/BDZ) receptor], pentylenetetrazol [PTZ, possibly acting at both GABA/BDZ and N-methyl-D-aspartate (NMDA) receptors], caffeine (acting at adenosine receptors), strychnine (STR, acting at glycine receptors), or kainic acid (KA, acting at the NMDA receptor). Seizure thresholds were analyzed as a function of neonatal treatment and sex. Thresholds for caffeine, PTZ, PIC, and KA were increased as a function of neonatal caffeine exposure (p = 0.01, 0.02, 0.02, and 0.005, respectively). The thresholds for BIC and STR were not altered. There were also gender differences in seizure susceptibility. Thresholds for seizures produced by BIC, caffeine, PIC, and STR were higher in females (p = 0.005, 0.005, 0.001, and 0.0001, respectively), but were not different for seizures caused by PTZ. These results suggest that early developmental exposure to caffeine affects later seizure susceptibility. Moreover, some of these effects are gender specific.

  20. Rabbit cerebellar slice analysis of long-term depression and its role in classical conditioning.

    Science.gov (United States)

    Schreurs, B G; Alkon, D L

    1993-12-24

    Cerebellar long-term depression (LTD) has been proposed as a mechanism underlying classical conditioning of the rabbit nictitating membrane/eyelid response (NMR). However, LTD has only been obtained reliably when (1) cerebellar slices are bathed in GABA antagonists which abolish disynaptic inhibitory post synaptic potentials, and (2) the temporal sequence of stimulation used in slice or intact preparations is the opposite of that used in classical conditioning. Based on intradendritic Purkinje cell recordings obtained from rabbit cerebellar slices, we report that stimulation of climbing fibers and then parallel fibers in the presence of the GABA antagonist, bicuculline, produced significant depression of parallel fiber excitatory post synaptic potential (epsp) amplitude that continued to increase for at least 20 min after stimulation. However, application of the same stimulation protocol without GABA antagonists produced a brief depression of parallel fiber epsps that disappeared within minutes. Activation of parallel fibers and then climbing fibers in an order opposite to the LTD-producing sequence (i.e. a classical conditioning-like order) produced a brief depression that dissipated quickly. Stimulation of parallel fibers alone produced a small, slowly developing potentiation, but stimulation of parallel fibers during depolarization-induced local dendritic calcium spikes produced significant depression almost immediately which then declined slowly to more modest levels. Finally, stimulation of parallel fibers at frequencies used in in vivo parallel fiber-climbing fiber stimulation experiments (e.g. 100 Hz) produced an immediate and profound long-lasting epsp depression. The depression occurred, however, whether parallel and climbing fibers were stimulated separately (unpaired) or in a classical conditioning-like protocol (paired) where parallel fiber stimulation coterminated with climbing fiber stimulation (10 Hz).(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Temporal coding at the immature depolarizing GABAergic synapse

    Directory of Open Access Journals (Sweden)

    Guzel Valeeva

    2010-07-01

    Full Text Available In the developing hippocampus, GABA exerts depolarizing and excitatory actions and contributes to the generation of neuronal network driven Giant Depolarizing Potentials (GDPs. Here, we studied spike time coding at immature GABAergic synapses and its impact on synchronization of the neuronal network during GDPs in the neonatal (postnatal days P2-6 rat hippocampal slices. Using extracellular recordings, we found that the delays of action potentials (APs evoked by synaptic activation of GABA(A receptors are long (mean, 65 ms and variable (within a time window of 10-200 ms. During patch-clamp recordings, depolarizing GABAergic responses were mainly subthreshold and their amplification by persistent sodium conductance was required to trigger APs. AP delays at GABAergic synapses shortened and their variability reduced with an increase in intracellular chloride concentration during whole-cell recordings. Negative shift of the GABA reversal potential (EGABA with low concentrations of bumetanide, or potentiation of GABA(A receptors with diazepam reduced GDPs amplitude, desynchronized neuronal firing during GDPs and slowed down GDPs propagation. Partial blockade of GABA(A receptors with bicuculline increased neuronal synchronization and accelerated GDPs propagation. We propose that spike-timing at depolarizing GABA synapses is determined by intracellular chloride concentration. At physiological levels of intracellular chloride GABAergic depolarization does not reach the action potential threshold and amplification of GABAergic responses by non-inactivating sodium conductance is required for postsynaptic AP initiation. Slow and variable excitation at GABAergic synapse determines the level of neuronal synchrony and the rate of GDPs propagation in the developing hippocampus.

  2. Temporal coding at the immature depolarizing GABAergic synapse.

    Science.gov (United States)

    Valeeva, Guzel; Abdullin, Azat; Tyzio, Roman; Skorinkin, Andrei; Nikolski, Evgeny; Ben-Ari, Yehezkiel; Khazipov, Rustem

    2010-01-01

    In the developing hippocampus, GABA exerts depolarizing and excitatory actions and contributes to the generation of neuronal network driven giant depolarizing potentials (GDPs). Here, we studied spike time coding at immature GABAergic synapses and its impact on synchronization of the neuronal network during GDPs in the neonatal (postnatal days P2-6) rat hippocampal slices. Using extracellular recordings, we found that the delays of action potentials (APs) evoked by synaptic activation of GABA(A) receptors are long (mean, 65 ms) and variable (within a time window of 10-200 ms). During patch-clamp recordings, depolarizing GABAergic responses were mainly subthreshold and their amplification by persistent sodium conductance was required to trigger APs. AP delays at GABAergic synapses shortened and their variability reduced with an increase in intracellular chloride concentration during whole-cell recordings. Negative shift of the GABA reversal potential (E(GABA)) with low concentrations of bumetanide, or potentiation of GABA(A) receptors with diazepam reduced GDPs amplitude, desynchronized neuronal firing during GDPs and slowed down GDPs propagation. Partial blockade of GABA(A) receptors with bicuculline increased neuronal synchronization and accelerated GDPs propagation. We propose that spike timing at depolarizing GABA synapses is determined by intracellular chloride concentration. At physiological levels of intracellular chloride GABAergic depolarization does not reach the action potential threshold and amplification of GABAergic responses by non-inactivating sodium conductance is required for postsynaptic AP initiation. Slow and variable excitation at GABAergic synapse determines the level of neuronal synchrony and the rate of GDPs propagation in the developing hippocampus.

  3. Antinociceptive Activity of Trichilia catigua Hydroalcoholic Extract: New Evidence on Its Dopaminergic Effects

    Directory of Open Access Journals (Sweden)

    Alice F. Viana

    2011-01-01

    Full Text Available Trichilia catigua is a native plant of Brazil; its barks are used by some local pharmaceutical companies to prepare tonic drinks, such as Catuama. The present study was addressed to evaluate the effects of T. catigua hydroalcoholic extract in mouse nociception behavioral models, and to evaluate the possible mechanisms involved in its actions. Male Swiss mice were submitted to hot-plate, writhing and von Frey tests, after oral treatment with T. catigua extract (200 mg kg−1, p.o.. The extract displayed antinociceptive effect in all three models. For characterization of the mechanisms involved in the antinociceptive action of the extract, the following pharmacological treatments were done: naloxone (2.5 mg kg−1, s.c., SR141716A (10 mg kg−1, i.p., SCH23390 (15 μg kg−1, i.p., sulpiride (50 mg kg−1, i.p., prazosin (1 mg kg−1, i.p., bicuculline (1 mg kg−1, i.p. or dl-p-chlorophenylalanine methyl ester (PCPA, 100 mg kg−1, i.p.. In these experiments, the action of T. catigua extract was evaluated in the hot-plate test. The treatment with SCH23390 completely prevented the antinociceptive effect, while naloxone partially prevented it. The possible involvement of the dopaminergic system in the actions of T. catigua extract was substantiated by data showing the potentiation of apomorphine-induced hypothermia and by the prevention of haloperidol-induced catalepsy. In conclusion, the antinociceptive effects of T. catigua extract seem to be mainly associated with the activation of dopaminergic system and, to a lesser extent, through interaction with opioid pathway.

  4. Anticonvulsant mechanisms of piperine, a piperidine alkaloid.

    Science.gov (United States)

    Mishra, Awanish; Punia, Jasmine Kaur; Bladen, Chris; Zamponi, Gerald W; Goel, Rajesh Kumar

    2015-01-01

    Piperine, a natural compound isolated from the fruits of Piper, is known to modulate several neurotransmitter systems such as serotonin, norepinephrine, and GABA, all of which have been linked to the development of convulsions. Fruits of Piper species have been suggested as means for managing seizure disorders. The present study was designed to elucidate the anticonvulsant effect of piperine and its mechanisms of action using in-silico, in-vivo and in-vitro techniques.PASS software was used to determine its possible activity and mechanisms. Furthermore the latency for development of convulsions and mortality rate was recorded in different experimental mouse models of epilepsy (pentylenetetrazole, maximal electroshock, NMDA, picrotoxin, bicuculline, BAYK-8644, strychnine-induced convulsions) after administration of various doses of piperine (5, 10 and 20 mg/kg, i.p.). Finally, the effect of piperine on Na(+) and Ca(2+) channels were evaluated using the whole cell patch clamp techniqueOur results revealed that piperine decreased mortality in the MES-induced seizure model. Moreover, piperine (10 mg/kg) delayed the onset of tonic clonic convulsions in the pentylenetetrazole test and reduced associated mortality. Furthermore, an anticonvulsant dose of piperine also delayed the onset of tonic clonic seizures in strychnine, picrotoxin and BAY K-8644. Complete protection against mortality was observed in BAYK-8644 induced convulsions. Finally, whole cell patch clamp analysis suggested an inhibitory effect of piperine on Na(+) channels. Together, our data suggest Na(+) channel antagonist activity as a contributor to the complex anticonvulsant mechanisms of piperine.

  5. Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Directory of Open Access Journals (Sweden)

    Brinton Roberta

    2008-12-01

    Full Text Available Abstract Background Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one promotes neural progenitor proliferation in vitro in cultures of rodent hippocampal and human cortical neural progenitors, and in vivo in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation. Methods In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging. Results Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC50 of 110 ± 15 nM and a maximal response occurring at three days in vitro. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La3+, or the L-type calcium channel blocker nifedipine. Furthermore, the GABAA receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise. Conclusion Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABAA receptor and L-type calcium channel. These data suggest that AP

  6. Characterization of neurons of the nucleus tractus solitarius pars centralis.

    Science.gov (United States)

    Baptista, V; Zheng, Z L; Coleman, F H; Rogers, R C; Travagli, R A

    2005-08-09

    Esophageal sensory afferent inputs terminate principally in the central subnucleus of the tractus solitarius (cNTS). Neurons of the cNTS comprise two major neurochemical subpopulations. One contains neurons that are nitric oxide synthase (NOS) immunoreactive (-IR) while the other comprises neurons that are tyrosine hydroxylase (TH)-IR. We have shown recently that TH-IR neurons are involved in esophageal-distention induced gastric relaxation. We used whole cell patch clamp techniques in rat brainstem slices combined with immunohistochemical and morphological reconstructions to characterize cNTS neurons. Postrecording reconstruction of cNTS neurons revealed two morphological neuronal subtypes; one group of cells (41 out of 131 neurons, i.e., 31%) had a multipolar soma, while the other group (87 out of 131 neurons, i.e., 66%) had a bipolar soma. Of the 43 cells in which we conducted a neurochemical examination, 15 displayed TH-IR (9 with bipolar morphology, 6 with multipolar morphology) while the remaining 28 neurons did not display TH-IR (18 with bipolar morphology, 10 with multipolar morphology). Even though the range of electrophysiological properties varied significantly, morphological or neurochemical distinctions did not reveal characteristics peculiar to the subgroups. Spontaneous excitatory postsynaptic currents (sEPSC) recorded in cNTS neurons had a frequency of 1.5 +/- 0.15 events s(-1) and an amplitude of 27 +/- 1.2 pA (Vh = -50 mV) and were abolished by pretreatment with 30 muM AP-5 and 10 muM CNQX, indicating the involvement of both NMDA and non-NMDA receptors. Some cNTS neurons also received a GABAergic input that was abolished by perfusion with 30-50 muM bicuculline. In conclusion, our data show that despite the heterogeneity of morphological and neurochemical membrane properties, the electrophysiological characteristics of cNTS neurons are not a distinguishing feature.

  7. Potentiation of the glutamatergic synaptic input to rat locus coeruleus neurons by P2X7 receptors.

    Science.gov (United States)

    Khakpay, Roghayeh; Polster, Daniel; Köles, Laszlo; Skorinkin, Andrey; Szabo, Bela; Wirkner, Kerstin; Illes, Peter

    2010-09-01

    Locus coeruleus (LC) neurons in a rat brain slice preparation were superfused with a Mg(2+)-free and bicuculline-containing external medium. Under these conditions, glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) were recorded by means of the whole-cell patch-clamp method. ATP, as well as its structural analogue 2-methylthio ATP (2-MeSATP), both caused transient inward currents, which were outlasted by an increase in the frequency but not the amplitude of the sEPSCs. PPADS, but not suramin or reactive blue 2 counteracted both effects of 2-MeSATP. By contrast, α,β-methylene ATP (α,β-meATP), UTP and BzATP did not cause an inward current response. Of these latter agonists, only BzATP slightly facilitated the sEPSC amplitude and strongly potentiated its frequency. PPADS and Brilliant Blue G, as well as fluorocitric acid and aminoadipic acid prevented the activity of BzATP. Furthermore, BzATP caused a similar facilitation of the miniature (m)EPSC (recorded in the presence of tetrodotoxin) and sEPSC frequencies (recorded in its absence). Eventually, capsaicin augmented the frequency of the sEPSCs in a capsazepine-, but not PPADS-antagonizable, manner. In conclusion, the stimulation of astrocytic P2X7 receptors appears to lead to the outflow of a signalling molecule, which presynaptically increases the spontaneous release of glutamate onto LC neurons from their afferent fibre tracts. It is suggested, that the two algogenic compounds ATP and capsaicin utilise separate receptor systems to potentiate the release of glutamate and in consequence to increase the excitability of LC neurons.

  8. Cortico-striatal spike-timing dependent plasticity after activation of subcortical pathways

    Directory of Open Access Journals (Sweden)

    Jan M Schulz

    2010-07-01

    Full Text Available Cortico-striatal spike-timing dependent plasticity (STDP is modulated by dopamine in vitro. The present study investigated STDP in vivo using alternative procedures for modulating dopaminergic inputs. Postsynaptic potentials (PSP were evoked in intracellularly recorded spiny neurons by electrical stimulation of the contralateral motor cortex. PSPs often consisted of up to three distinct components, likely representing distinct cortico-striatal pathways. After baseline recording, bicuculline (BIC was ejected into the superior colliculus (SC to disinhibit visual pathways to the dopamine cells and striatum. Repetitive cortical stimulation (~60; 0.2 Hz was then paired with postsynaptic spike discharge induced by an intracellular current pulse, with each pairing followed 250 ms later by a light flash to the contralateral eye (n=13. Changes in PSPs, measured as the maximal slope normalised to 5 min pre, ranged from potentiation (~120% to depression (~80%. The determining factor was the relative timing between PSP components and spike: PSP components coinciding or closely following the spike tended towards potentiation, whereas PSP components preceding the spike were depressed. Importantly, STDP was only seen in experiments with successful BIC-mediated disinhibition (n=10. Cortico-striatal high-frequency stimulation (50 pulses at 100 Hz followed 100 ms later by a light flash did not induce more robust synaptic plasticity (n=9. However, an elevated post-light spike rate correlated with depression across plasticity protocols (R2=0.55, p=0.009, n=11 active neurons. These results confirm that the direction of cortico-striatal plasticity is determined by the timing of pre- and postsynaptic activity and that synaptic modification is dependent on the activation of additional subcortical inputs.

  9. Fluorescent indication that nitric oxide formation in NTS neurons is modulated by glutamate and GABA.

    Science.gov (United States)

    Pajolla, Gisela P; Accorsi-Mendonça, Daniela; Rodrigues, Gerson J; Bendhack, Lusiane M; Machado, Benedito H; Lunardi, Claure N

    2009-05-01

    Nitric oxide (NO) in NTS plays an important role in regulating autonomic function to the cardiovascular system. Using the fluorescent dye DAF-2 DA, we evaluated the NO concentration in NTS. Brainstem slices of rats were loaded with DAF-2 DA, washed, fixed in paraformaldehyde and examined under fluorescent light. In different experimental groups, NTS slices were pre-incubated with 1 mM l-NAME (a non-selective NOS inhibitor), 1 mM d-NAME (an inactive enantiomere of l-NAME), 1 mM kynurenic acid (a non-selective ionotropic receptors antagonist) or 20 microM bicuculline (a selective GABAA receptors antagonist) before and during DAF-2 DA loading. Images were acquired using a confocal microscope and the intensity of fluorescence was quantified in three antero-posterior NTS regions. In addition, slices previously loaded with DAF-2 DA were incubated with NeuN or GFAP antibody. A semi-quantitative analysis of the fluorescence intensity showed that the basal NO concentration was similar in all antero-posterior aspects of the NTS (rostral intermediate, 15.5 +/- 0.8 AU; caudal intermediate, 13.2 +/- 1.4 AU; caudal commissural, 13.8 +/- 1.4 AU, n = 10). In addition, the inhibition of NOS and the antagonism of glutamatergic receptors decreased the NO fluorescence in the NTS. On the other hand, d-NAME did not affect the NO fluorescence and the antagonism of GABAA receptors increased the NO fluorescence in the NTS. It is important to note that the fluorescence for NO was detected mainly in neurons. These data show that the fluorescence observed after NTS loading with DAF-2 DA is a result of NO present in the NTS and support the concept that NTS neurons have basal NO production which is modulated by l-glutamate and GABA.

  10. GABAB receptors in the NTS mediate the inhibitory effect of trigeminal nociceptive inputs on parasympathetic reflex vasodilation in the rat masseter muscle.

    Science.gov (United States)

    Ishii, Hisayoshi; Izumi, Hiroshi

    2012-03-15

    The present study was designed to examine whether trigeminal nociceptive inputs are involved in the modulation of parasympathetic reflex vasodilation in the jaw muscles. This was accomplished by investigating the effects of noxious stimulation to the orofacial area with capsaicin, and by microinjecting GABA(A) and GABA(B) receptor agonists or antagonists into the nucleus of the solitary tract (NTS), on masseter hemodynamics in urethane-anesthetized rats. Electrical stimulation of the central cut end of the cervical vagus nerve (cVN) in sympathectomized animals bilaterally increased blood flow in the masseter muscle (MBF). Increases in MBF evoked by cVN stimulation were markedly reduced following injection of capsaicin into the anterior tongue in the distribution of the lingual nerve or lower lip, but not when injected into the skin of the dorsum of the foot. Intravenous administration of either phentolamine or propranolol had no effect on the inhibitory effects of capsaicin injection on the increases of MBF evoked by cVN stimulation, which were largely abolished by microinjecting the GABA(B) receptor agonist baclofen into the NTS. Microinjection of the GABA(B) receptor antagonist CGP-35348 into the NTS markedly attenuated the capsaicin-induced inhibition of MBF increase evoked by cVN stimulation, while microinjection of the GABA(A) receptor antagonist bicuculline did not. Our results indicate that trigeminal nociceptive inputs inhibit vagal-parasympathetic reflex vasodilation in the masseter muscle and suggest that the activation of GABA(B) rather than GABA(A) receptors underlies the observed inhibition in the NTS.

  11. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    Science.gov (United States)

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  12. Differential modulatory actions of GABAA agonists on susceptibility to GABAA antagonists-induced seizures in morphine dependent rats: possible mechanisms in seizure propensity.

    Science.gov (United States)

    Joukar, Siyavash; Atapour, Nafiseh; Kalantaripour, Tajpari; Bashiri, Hamideh; Shahidi, Alireza

    2011-07-01

    In order to clarify the mechanisms involved in the susceptibility to GABA(A) antagonists-induced seizures in morphine dependent rats, we investigated how GABA(A) agonists modulate this vulnerability. Seizures were induced to animals by infusion of GABA(A) antagonists: pentylenetetrazole (PTZ), picrotoxin (PIC) and bicuculline (BIC). GABA(A) agonists, muscimol (MUS) and 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridin-3-ol (THIP), were administered intravenous (i.v.) before antagonists. Morphine-dependence significantly decreased the PTZ threshold dose (19.16±1.89 versus 25.74±1.25mg/kg) while, it had no effect on PIC induced seizures. BIC doses for both threshold and tonic-clonic seizures induction were significantly lower in morphine dependent rats (0.10±0.01 and 0.12±0.02 versus 0.25±0.02 and 0.39±0.07mg/kg respectively). In morphine-dependence, although pre-treatment with MUS significantly increased the required dose of PTZ for seizures threshold, THIP significantly decreased the required dose of PTZ for tonic-clonic convulsion. Moreover, MUS pretreatment completely recovered the effect of morphine dependency on BIC seizure activity. The results suggest that the capability of GABA(A) agonists on modulation of propensity to seizures induced by different antagonists in morphine-dependence is dissimilar. Therefore, it seems that long-term morphine alters some properties of GABA system so that the responsive rate of GABA(A) receptors not only to its antagonists, but also to its agonists will change differently.

  13. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and tracazolate, and a diaryltriazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin and LY81067 on the saturable binding of /sup 35/S-TBPS in cortical membranes are compared. The present findings are consistent with the interpretation that /sup 35/S-TBPS bind at or near the picrotoxin-sensitive anion recognition sites of the GABA/benzodiazepine/picrotoxin receptor complex.

  14. Phasic and tonic type A γ-Aminobutryic acid receptor mediated effect of Withania somnifera on mice hippocampal CA1 pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Janardhan Prasad Bhattarai

    2014-01-01

    Full Text Available Background: In Nepali and Indian system of traditional medicine, Withania somnifera (WS is considered as a rejuvenative medicine to maintain physical and mental health and has also been shown to improve memory consolidation. Objective: In this study, a methanolic extract of WS (mWS was applied on mice hippocampal CA1 neurons to identify the receptors activated by the WS. Materials and Methods: The whole cell patch clamp recordings were performed on CA1 pyramidal neurons from immature mice (7-20 postnatal days. The cells were voltage clamped at -60 mV. Extract of WS root were applied to identify the effect of mWS. Results: The application of mWS (400 ng/μl induced remarkable inward currents (-158.1 ± 28.08 pA, n = 26 on the CA1 pyramidal neurons. These inward currents were not only reproducible but also concentration dependent. mWS-induced inward currents remained persistent in the presence of amino acid receptor blocking cocktail (AARBC containing blockers for the ionotropic glutamate receptors, glycine receptors and voltage-gated Na + channel (Control: -200.3 ± 55.42 pA, AARBC: -151.5 ± 40.58 pA, P > 0.05 suggesting that most of the responses by mWS are postsynaptic events. Interestingly, these inward currents were almost completely blocked by broad GABA A receptor antagonist, bicuculline- 20 μM (BIC (BIC: -1.46 ± 1.4 pA, P < 0.001, but only partially by synaptic GABA A receptor blocker gabazine (1 μM (GBZ: -18.26 ± 4.70 pA, P < 0.01. Conclusion: These results suggest that WS acts on synaptic/extrasynaptic GABA A receptors and may play an important role in the process of memory and neuroprotection via activation of synaptic and extrasynaptic GABA A receptors.

  15. Synaptic interactions between perifornical lateral hypothalamic area, locus coeruleus nucleus and the oral pontine reticular nucleus are implicated in the stage succession during sleep-wakefulness cycle

    Directory of Open Access Journals (Sweden)

    Angel eNunez

    2013-11-01

    Full Text Available The perifornical area in the posterior lateral hypothalamus (PeFLH has been implicated in several physiological functions including the sleep-wakefulness regulation. The PeFLH area contains several cell types including those expressing orexins (Orx; also known as hypocretins, mainly located in the PeF nucleus. The aim of the present study was to elucidate the synaptic interactions between Orx neurons located in the PeFLH area and different brainstem neurons involved in the generation of wakefulness and sleep stages such as the locus coeruleus (LC nucleus (contributing to wakefulness and the oral pontine reticular nucleus (PnO nucleus (contributing to REM sleepAnatomical data demonstrated the existence of a neuronal network involving the PeFLH area, LC and the PnO nuclei that would control the sleep-wake cycle. Electrophysiological experiments indicated that PeFLH area had an excitatory effect on LC neurons. PeFLH stimulation increased the firing rate of LC neurons and induced an activation of the EEG. The excitatory effect evoked by PeFLH stimulation in LC neurons was blocked by the injection of the Orx-1 receptor antagonist SB-334867 into the LC. Similar electrical stimulation of the PeFLH area evoked an inhibition of PnO neurons by activation of GABAergic receptors because the effect was blocked by bicuculline application into the PnO. Our data also revealed that the LC and PnO nuclei exerted a feedback control on neuronal activity of PeFLH area. Electrical stimulation of LC facilitated firing activity of PeFLH neurons by activation of catecholaminergic receptors whereas PnO stimulation inhibited PeFLH neurons by activation of GABAergic receptors. In conclusion, Orx neurons of the PeFLH area seem to be an important organizer of the wakefulness and sleep stages in order to maintain a normal succession of stages during the sleep-wakefulness cycle.

  16. The novel antiepileptic drug levetiracetam (ucb L059) appears to act via a specific binding site in CNS membranes.

    Science.gov (United States)

    Noyer, M; Gillard, M; Matagne, A; Hénichart, J P; Wülfert, E

    1995-11-14

    Levetiracetam ((S)-alpha-ethyl-2-oxo-pyrrolidine acetamide, ucb L059) is a novel potential antiepileptic agent presently in clinical development with unknown mechanism of action. The finding that its anticonvulsant activity is highly stereoselective (Gower et al., 1992) led us to investigate the presence of specific binding sites for [3H]levetiracetam in rat central nervous system (CNS). Binding assays, performed on crude membranes, revealed the existence of a reversible, saturable and stereoselective specific binding site. Results obtained in hippocampal membranes suggest that [3H]levetiracetam labels a single class of binding sites (nH = 0.92 +/- 0.06) with modest affinity (Kd = 780 +/- 115 nM) and with a high binding capacity (Bmax = 9.1 +/- 1.2 pmol/mg protein). Similar Kd and Bmax values were obtained in other brain regions (cortex, cerebellum and striatum). ucb L060, the (R) enantiomer of levetiracetam, displayed about 1000 times less affinity for these sites. The binding of [3H]levetiracetam is confined to the synaptic plasma membranes in the central nervous system since no specific binding was observed in a range of peripheral tissues including heart, kidneys, spleen, pancreas, adrenals, lungs and liver. The commonly used antiepileptic drugs carbamazepine, phenytoin, valproate, phenobarbital and clonazepam, as well as the convulsant agent t-butylbicyclophosphorothionate (TBPS), picrotoxin and bicuculline did not displace [3H]levetiracetam binding. However, ethosuximide (pKi = 3.5 +/- 0.1), pentobarbital (pKi = 3.8 +/- 0.1), pentylenetetrazole (pKi = 4.1 +/- 0.1) and bemegride (pKi = 5.0 +/- 0.1) competed with [3H]levetiracetam with pKi values comparable to active drug concentrations observed in vivo. Structurally related compounds, including piracetam and aniracetam, also displaced [3H]levetiracetam binding. (S) Stereoisomer homologues of levetiracetam demonstrated a rank order of affinity for [3H]levetiracetam binding in correlation with their

  17. Normalization of voltage-sensitive dye signal with functional activity measures.

    Directory of Open Access Journals (Sweden)

    Kentaroh Takagaki

    Full Text Available In general, signal amplitude in optical imaging is normalized using the well-established DeltaF/F method, where functional activity is divided by the total fluorescent light flux. This measure is used both directly, as a measure of population activity, and indirectly, to quantify spatial and spatiotemporal activity patterns. Despite its ubiquitous use, the stability and accuracy of this measure has not been validated for voltage-sensitive dye imaging of mammalian neocortex in vivo. In this report, we find that this normalization can introduce dynamic biases. In particular, the DeltaF/F is influenced by dye staining quality, and the ratio is also unstable over the course of experiments. As methods to record and analyze optical imaging signals become more precise, such biases can have an increasingly pernicious impact on the accuracy of findings, especially in the comparison of cytoarchitechtonic areas, in area-of-activation measurements, and in plasticity or developmental experiments. These dynamic biases of the DeltaF/F method may, to an extent, be mitigated by a novel method of normalization, DeltaF/DeltaF(epileptiform. This normalization uses as a reference the measured activity of epileptiform spikes elicited by global disinhibition with bicuculline methiodide. Since this normalization is based on a functional measure, i.e. the signal amplitude of "hypersynchronized" bursts of activity in the cortical network, it is less influenced by staining of non-functional elements. We demonstrate that such a functional measure can better represent the amplitude of population mass action, and discuss alternative functional normalizations based on the amplitude of synchronized spontaneous sleep-like activity. These findings demonstrate that the traditional DeltaF/F normalization of voltage-sensitive dye signals can introduce pernicious inaccuracies in the quantification of neural population activity. They further suggest that normalization

  18. A transcription-dependent increase in miniature EPSC frequency accompanies late-phase plasticity in cultured hippocampal neurons

    Directory of Open Access Journals (Sweden)

    Hofmann Frank

    2009-09-01

    Full Text Available Abstract Background The magnitude and longevity of synaptic activity-induced changes in synaptic efficacy is quantified by measuring evoked responses whose potentiation requires gene transcription to persist for more than 2-3 hours. While miniature EPSCs (mEPSCs are also increased in amplitude and/or frequency during long-term potentiation (LTP, it is not known how long such changes persist or whether gene transcription is required. Results We use whole-cell patch clamp recordings from dissociated hippocampal cultures to characterise for the first time the persistence and transcription dependency of mEPSC upregulation during synaptic potentiation. The persistence of recurrent action potential bursting in these cultures is transcription-, translation- and NMDA receptor-dependent thus providing an accessible model for long-lasting plasticity. Blockade of GABAA-receptors with bicuculline for 15 minutes induced action potential bursting in all neurons and was maintained in 50-60% of neurons for more than 6 hours. Throughout this period, the frequency but neither the amplitude of mEPSCs nor whole-cell AMPA currents was markedly increased. The transcription blocker actinomycin D abrogated, within 2 hours of burst induction, both action potential bursting and the increase in mEPSCs. Reversible blockade of action potentials during, but not after this 2 hour transcription period suppressed the increase in mEPSC frequency and the recovery of burst activity at a time point 6 hours after induction. Conclusion These results indicate that increased mEPSC frequency persists well beyond the 2 hour transcription-independent phase of plasticity in this model. This long-lasting mEPSC upregulation is transcription-dependent and requires ongoing action potential activity during the initial 2 hour period but not thereafter. Thus mEPSC upregulation may underlie the long term, transcription-dependent persistence of action potential bursting. This provides mechanistic

  19. Anticonvulsant Effects of Fractions Isolated from Dinoponera quadriceps (Kempt Ant Venom (Formicidae: Ponerinae

    Directory of Open Access Journals (Sweden)

    Diana Aline Morais Ferreira Nôga

    2016-12-01

    Full Text Available Natural products, sources of new pharmacological substances, have large chemical diversity and architectural complexity. In this context, some toxins obtained from invertebrate venoms have anticonvulsant effects. Epilepsy is a neurological disorder that affects about 65 million people worldwide, and approximately 30% of cases are resistant to pharmacological treatment. Previous studies from our group show that the denatured venom of the ant Dinoponera quadriceps (Kempt protects mice against bicuculline (BIC-induced seizures and death. The aim of this study was to investigate the anticonvulsant activity of compounds isolated from D. quadriceps venom against seizures induced by BIC in mice. Crude venom was fractionated by high-performance liquid chromatography (HPLC resulting in six fractions referred to as DqTx1–DqTx6. A liquid chromatography-mass spectrometry (LC/MS analysis revealed a major 431 Da compound in fractions DqTx1 and DqTx2. Fractions DqTx3 and DqTx4 showed a compound of 2451 Da and DqTx5 revealed a 2436 Da compound. Furthermore, the DqTx6 fraction exhibited a major component with a molecular weight of 13,196 Da. Each fraction (1 mg/mL was microinjected into the lateral ventricle of mice, and the animals were observed in an open field. We did not observe behavioral alterations when the fractions were given alone. Conversely, when the fractions were microinjected 20 min prior to the administration of BIC (21.6 nM, DqTx1, DqTx4, and DqTx6 fractions increased the latency for onset of tonic-clonic seizures. Moreover, all fractions, except DqTx5, increased latency to death. The more relevant result was obtained with the DqTx6 fraction, which protected 62.5% of the animals against tonic-clonic seizures. Furthermore, this fraction protected 100% of the animals from seizure episodes followed by death. Taken together, these findings indicate that compounds from ant venom might be a potential source of new anticonvulsants molecules.

  20. Neuropharmacological properties of neurons derived from human stem cells.

    Science.gov (United States)

    Coyne, Leanne; Shan, Mu; Przyborski, Stefan A; Hirakawa, Ryoko; Halliwell, Robert F

    2011-09-01

    Human pluripotent stem cells have enormous potential value in neuropharmacology and drug discovery yet there is little data on the major classes and properties of receptors and ion channels expressed by neurons derived from these stem cells. Recent studies in this lab have therefore used conventional patch-clamp electrophysiology to investigate the pharmacological properties of the ligand and voltage-gated ion channels in neurons derived and maintained in vitro from the human stem cell (hSC) line, TERA2.cl.SP12. TERA2.cl.SP12 stem cells were differentiated with retinoic acid and used in electrophysiological experiments 28-50 days after beginning differentiation. HSC-derived neurons generated large whole cell currents with depolarizing voltage steps (-80 to 30 mV) comprised of an inward, rapidly inactivating component and a delayed, slowly deactivating outward component. The fast inward current was blocked by the sodium channel blocker tetrodotoxin (0.1 μM) and the outward currents were significantly reduced by tetraethylammonium ions (TEA, 5 mM) consistent with the presence of functional Na and K ion channels. Application of the inhibitory neurotransmitters, GABA (0.1-1000 μM) or glycine (0.1-1000 μM) evoked concentration dependent currents. The GABA currents were inhibited by the convulsants, picrotoxin (10 μM) and bicuculline (3 μM), potentiated by the NSAID mefenamic acid (10-100 μM), the general anaesthetic pentobarbital (100 μM), the neurosteroid allopregnanolone and the anxiolytics chlordiazepoxide (10 μM) and diazepam (10 μM) all consistent with the expression of GABA(A) receptors. Responses to glycine were reversibly blocked by strychnine (10 μM) consistent with glycine-gated chloride channels. The excitatory agonists, glutamate (1-1000 μM) and NMDA (1-1000 μM) activated concentration-dependent responses from hSC-derived neurons. Glutamate currents were inhibited by kynurenic acid (1 mM) and NMDA responses were blocked by MgCl(2) (2 mM) in a

  1. Effect of deep brain stimulation on substantia nigra neurons in a rat model of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    WU Sheng-tian; MA Yu; ZHANG Kai; ZHANG Jian-guo

    2012-01-01

    Background Parkinson's disease(PD)is a common neurodegenerative disease,which occurs mainly in the elderly.Recent studies have demonstrated that apoptosis plays an important role in the occurrence and development of PD.Subthalamic nucleus deep brain stimulation(STN-DBS)has been recognized as an effective treatment for PD.Recent clinical observations have shown that STN-DBS was able to delay early PD progression,and experiments in animal models have also demonstrated a protective effect of STN-DBS on neurons.However,the correlation between the neuron-protective effect of STN-DBS and the progression of substantia nigra pars compacta(SNc)neuronal apoptosis is still unknown.The aim of this study was to investigate the protective effect and potential mechanism of STN-DBS on SNc neurons in PD rats.Methods After the establishment of a PD rat model by unilateral/2-point injection of 6-hydroxydopamine in the medial forebrain bundle of the brain,DBS by implanting electrodes in the STN was administered.Behavioral changes were observed,and morphological changes of SNc neurons were analyzed by Nissl staining and DNA in situ end-labeling.Through extracellular recording of single neuron discharges and microelectrophoresis,the causes of and changes in SNc excitability during STN-DBS were analyzed,and the protective effect and potential mechanism of action of STN-DBS on SNc neurons in PD rats was investigated.Results SNc neuron apoptosis was significantly decreased(P<0.05)in the stimulation group,compared with the sham stimulation PD group.Spontaneous discharges of SNc neurons were observed in normal rats and PD model rats,and the mean frequency of spontaneous discharges of SNc neurons in normal rats((40.65±11.08)Hz)was higher than that of residual SNc neurons in PD rats((36.71±9.23)Hz).Electrical stimulation of the STN in rats was associated with elevated excitation in unilateral SNc neurons.However,administering the gamma-aminobutyric acid receptor blocker,bicuculline

  2. Diazepam neuroprotection in excitotoxic and oxidative stress involves a mitochondrial mechanism additional to the GABAAR and hypothermic effects.

    Science.gov (United States)

    Sarnowska, Anna; Beresewicz, Małgorzata; Zabłocka, Barbara; Domańska-Janik, Krystyna

    2009-01-01

    The aim of the present investigation was to analyze the molecular mechanism(s) of diazepam neuroprotection in two models of selective neuronal death in CA1 sector of hippocampus: in vivo following transient gerbil brain ischemia and in vitro in rat hippocampal brain slices subjected to glutamatergic (100 microM NMDA) or oxidative (30 microM tertbutyl-hydroksyperoxide (TBH)) stress. In the in vivo model the diazepam treatment (two doses of 10mg/kg i.p. 30 and 90 min after the insult) resulted in more than 60% of CA1 hippocampal neurons surviving the insult comparing with 15% in untreated animals. To test whether the protective effect of diazepam was due to the postulated drug-induced hypothermia we followed the fluxes of body temperature during postischemic reperfusion: diazepam reduced temperature from 36.6+/-1 degrees C to 33.4+/-2 degrees C. Equivalent hypothermia induced and maintained in animals after ischemia did not prevent neuronal cell loss to the same extent as diazepam did (42.8+/-9.2% and 72.4+/-14.5% of live neurons, respectively). In vitro, under constant temperature conditions, diazepam exerted neuroprotective effects following a "U-shaped" dose-response curve, with concentration efficacy window of 0.5-10 microM. Five micro-molar diazepam showed significant protection by reducing over 50% the number of (dead) propidium iodide labeled cells even in the presence of GABA(A) receptor antagonist bicuculline. Next, we have shown that diazepam reduced the efflux of cytochrome c out of mitochondria both in compromised CA1 neurons in vitro and in isolated mitochondria treated with 30 microM THB. Our results suggest that the neuroprotective action of diazepam relies on additional mechanism(s) and not solely on its hypothermic effect. We suggest that diazepam evokes neuroprotection through its central receptors located on the GABA(A) receptor complex and, possibly, through its peripheral receptor, the translocator protein TSPO (previously called the peripheral

  3. Imidazenil, a non-sedating anticonvulsant benzodiazepine, is more potent than diazepam in protecting against DFP-induced seizures and neuronal damage.

    Science.gov (United States)

    Kadriu, Bashkim; Guidotti, Alessandro; Costa, Erminio; Auta, James

    2009-02-27

    Organophosphate (OP)-nerve agent poisoning may lead to prolonged epileptiform seizure activity, which can result in irreversible neuronal brain damage. A timely and effective control of seizures with pharmacological agents can minimize the secondary and long-term neuropathology that may result from this damage. Diazepam, the current anticonvulsant of choice in the management of OP poisoning, is associated with unwanted effects such as sedation, amnesia, cardio-respiratory depression, anticonvulsant tolerance, and dependence liabilities. In search for an efficacious and safer anticonvulsant benzodiazepine, we studied imidazenil, a potent anticonvulsant that is devoid of sedative action and has a low intrinsic efficacy at alpha1- but is a high efficacy positive allosteric modulator at alpha5-containing GABA(A) receptors. We compared the potency of a combination of 2 mg/kg, i.p. atropine with: (a) imidazenil 0.05-0.5 mg/kg i.p. or (b) equipotent anti-bicuculline doses of diazepam (0.5-5 mg/kg, i.p.), against diisopropyl fluorophosphate (DFP; 1.5 mg/kg, s.c.)-induced status epilepticus and its associated neuronal damage. The severity and frequency of seizure activities were determined by continuous radio telemetry recordings while the extent of neuronal damage and neuronal degeneration were assessed using the TUNEL-based cleaved DNA end-labeling technique or neuron-specific nuclear protein (NeuN)-immunolabeling and Fluoro-Jade B (FJB) staining, respectively. We report here that the combination of atropine and imidazenil is at least 10-fold more potent and longer lasting than the combination with diazepam at protecting rats from DFP-induced seizures and the associated neuronal damage or ongoing degeneration in the anterior cingulate cortex, CA1 hippocampus, and dentate gyrus. While 0.5 mg/kg imidazenil effectively attenuated DFP-induced neuronal damage and the ongoing neuronal degeneration in the anterior cingulate cortex, dentate gyrus, and CA1 hippocampus, 5 mg/kg or

  4. GABA, but not opioids, mediates the anti-hyperalgesic effects of 5-HT7 receptor activation in rats suffering from neuropathic pain.

    Science.gov (United States)

    Viguier, Florent; Michot, Benoît; Kayser, Valérie; Bernard, Jean-François; Vela, José-Miguel; Hamon, Michel; Bourgoin, Sylvie

    2012-11-01

    Among receptors mediating serotonin actions in pain control, the 5-HT(7)R is of special interest because it is expressed by primary afferent fibers and intrinsic GABAergic and opioidergic interneurons within the spinal dorsal horn. Herein, we investigated whether GABA and/or opioids contribute to 5-HT(7)R-mediated control of neuropathic pain caused by nerve ligation. Acute administration of 5-HT(7)R agonists (AS-19, MSD-5a, E-55888) was found to markedly reduce mechanical and thermal hyperalgesia in rats with unilateral constriction injury to the sciatic nerve (CCI-SN). In contrast, mechanical hypersensitivity caused by unilateral constriction injury to the infraorbital nerve was essentially unaffected by these ligands. Further characterization of the anti-hyperalgesic effect of 5-HT(7)R activation by the selective agonist E-55888 showed that it was associated with a decrease in IL-1ß mRNA overexpression in ipsilateral L4-L6 dorsal root ganglia and lumbar dorsal horn in CCI-SN rats. In addition, E-55888 diminished CCI-SN-associated increase in c-Fos immunolabeling in superficial laminae of the lumbar dorsal horn and the locus coeruleus, but increased c-Fos immunolabeling in the nucleus tractus solitarius and the parabrachial area in both control and CCI-SN rats. When injected intrathecally (i.t.), bicuculline (3 μg i.t.), but neither phaclofen (5 μg i.t.) nor naloxone (10 μg i.t.), significantly reduced the anti-hyperalgesic effects of 5-HT(7)R activation (E-55888, 10 mg/kg s.c.) in CCI-SN rats. These data support the idea that 5-HT(7)R-mediated inhibitory control of neuropathic pain is underlain by excitation of GABAergic interneurons within the dorsal horn. In addition, 5-HT(7)R activation-induced c-Fos increase in the nucleus tractus solitarius and the parabrachial area suggests that supraspinal mechanisms might also be involved.

  5. To Break or to Brake Neuronal Network Accelerated by Ammonium Ions?

    Directory of Open Access Journals (Sweden)

    Vladimir V Dynnik

    Full Text Available The aim of present study was to investigate the effects of ammonium ions on in vitro neuronal network activity and to search alternative methods of acute ammonia neurotoxicity prevention.Rat hippocampal neuronal and astrocytes co-cultures in vitro, fluorescent microscopy and perforated patch clamp were used to monitor the changes in intracellular Ca2+- and membrane potential produced by ammonium ions and various modulators in the cells implicated in neural networks.Low concentrations of NH4Cl (0.1-4 mM produce short temporal effects on network activity. Application of 5-8 mM NH4Cl: invariably transforms diverse network firing regimen to identical burst patterns, characterized by substantial neuronal membrane depolarization at plateau phase of potential and high-amplitude Ca2+-oscillations; raises frequency and average for period of oscillations Ca2+-level in all cells implicated in network; results in the appearance of group of «run out» cells with high intracellular Ca2+ and steadily diminished amplitudes of oscillations; increases astrocyte Ca2+-signalling, characterized by the appearance of groups of cells with increased intracellular Ca2+-level and/or chaotic Ca2+-oscillations. Accelerated network activity may be suppressed by the blockade of NMDA or AMPA/kainate-receptors or by overactivation of AMPA/kainite-receptors. Ammonia still activate neuronal firing in the presence of GABA(A receptors antagonist bicuculline, indicating that «disinhibition phenomenon» is not implicated in the mechanisms of networks acceleration. Network activity may also be slowed down by glycine, agonists of metabotropic inhibitory receptors, betaine, L-carnitine, L-arginine, etc.Obtained results demonstrate that ammonium ions accelerate neuronal networks firing, implicating ionotropic glutamate receptors, having preserved the activities of group of inhibitory ionotropic and metabotropic receptors. This may mean, that ammonia neurotoxicity might be prevented by

  6. Activation of γ-aminobutyric Acid (A) Receptor Protects Hippocampus from Intense Exercise-induced Synapses Damage and Apoptosis in Rats

    Institute of Scientific and Technical Information of China (English)

    Yi Ding; Lan Xie; Cun-Qing Chang; Zhi-Min Chen; Hua Ai

    2015-01-01

    Background:Our previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage,excessive apoptosis,and dysfunction.Its initial reason is intracellular calcium overload in hippocampus triggered by N-methyl-D-aspartic acid receptor (NMDAR) over-activation.NMDAR activation can be suppressed by γ-aminobutyric acid (A) receptor (GABAAR).Whether GABAAR can prevent intense exercise-induced hippocampus apoptosis,damage,or dysfunction will be studied in this study.Methods:According to dose test,rats were randomly divided into control (Con),Ex,muscimol (MUS,0.l mg/kg) and bicuculline (BIC,0.5 mg/kg) groups,then all rats underwent once swimming Ex except ones in Con group only underwent training.Intracellular free calcium concentration ([Ca2+]i) was measured by Fura-2-acetoxymethyl ester;glial fibrillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were also performed;apoptosis were displayed by dUTP nick end labeling (TUNEL) stain;endoplasmic reticulum stress-induced apoptosis pathway was detected by Western blotting analysis;Morris water maze was used to detect learning ability and spatial memory.Results:The appropriate dose was 0.1 mg/kg for MUS and 0.5 mg/kg for BIC.Ex group showed significantly increased [Ca2+]i and astrogliosis;TUNEL positive cells and levels of GFAP,B cell lymphoma-2 (Bcl-2) associated X protein (Bax),caspase-3,caspase-12 cleavage,CCAAT/enhancer binding protein homologous protein (CHOP),and p-Jun amino-terminal kinase (p-JNK) in Ex group also raised significantly compared to Con group,while SYP,synapse plasticity,and Bcl-2 levels in Ex group were significantly lower than those in Con group.These indexes were back to normal in MUS group.BIC group had the highest levels of [Ca2+]i,astrogliosis,TUNEL positive cell,GFAP,Bax,caspase-3,caspase-12 cleavage,CHOP,and p-JNK,it also gained the lowest SYP,synapse plasticity,and Bcl-2 levels among all groups.Water maze test showed that Ex group had longer

  7. Disruption of 5-HT2A receptor-PDZ protein interactions alleviates mechanical hypersensitivity in carrageenan-induced inflammation in rats.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Wattiez

    Full Text Available Despite common pathophysiological mechanisms, inflammatory and neuropathic pain do not respond equally to the analgesic effect of antidepressants, except for selective serotonin reuptake inhibitors (SSRIs, which show a limited efficacy in both conditions. We previously demonstrated that an interfering peptide (TAT-2ASCV disrupting the interaction between 5-HT2A receptors and its associated PDZ proteins (e.g. PSD-95 reveals a 5-HT2A receptor-mediated anti-hyperalgesic effect and enhances the efficacy of fluoxetine (a SSRI in diabetic neuropathic pain conditions in rats. Here, we have examined whether the same strategy would be useful to treat inflammatory pain. Sub-chronic inflammatory pain was induced by injecting λ-carrageenan (100 µl, 2% into the left hind paw of the rat. Mechanical hyperalgesia was assessed after acute treatment with TAT-2ASCV or/and fluoxetine (SSRI 2.5 h after λ-carrageenan injection. Possible changes in the level of 5-HT2A receptors and its associated PDZ protein PSD-95 upon inflammation induction were quantified by Western blotting in dorsal horn spinal cord. Administration of TAT-2ASCV peptide (100 ng/rat, intrathecally but not fluoxetine (10 mg/kg, intraperitoneally relieves mechanical hyperalgesia (paw pressure test in inflamed rats. This anti-hyperalgesic effect involves spinal 5-HT2A receptors and GABAergic interneurons as it is abolished by a 5-HT2A antagonist (M100907, 150 ng/rat, intrathecally and a GABAA antagonist, (bicuculline, 3 µg/rat, intrathecally. We also found a decreased expression of 5-HT2A receptors in the dorsal spinal cord of inflamed animals which could not be rescued by TAT-2ASCV injection, while the amount of PSD-95 was not affected by inflammatory pain. Finally, the coadministration of fluoxetine does not further enhance the anti-hyperalgesic effect of TAT-2ASCV peptide. This study reveals a role of the interactions between 5-HT2A receptors and PDZ proteins in the pathophysiological pathways

  8. Modulatory effects of gonadorelin on GABA-induced depolarization and GABA-activated current in rat spinal ganglion neurons%戈那瑞林对大鼠脊神经节细胞GABA引起的去极化及GABA激活电流的调制作用

    Institute of Scientific and Technical Information of China (English)

    周小萍; 吴晓平; 关兵才; 李之望

    1996-01-01

    目的:探索戈那瑞林对大鼠初级感觉神经元膜GABA引起的去极化和GABA激活电流的调制作用.方法:应用细胞内记录和全细胞膜片钳技术分别在大鼠脊神经节(SG)标本和新鲜分离神经元进行实验.结果:GABA(10μmol·L-1-1mmol·L-1)在大多数神经元引起可为荷包牡丹碱(100 μmol·L-1)所阻断的膜去极化.预加戈那瑞林(50 μmol·L-1)可减少GABA引起的去极化,抑制率为79±22%(n=29),而戈那瑞林本身不产生膜反应或只引起轻微去极化.在11个细胞中有6个细胞GABA激活电流也为戈那瑞林的预处理所抑制,另5个细胞无改变或反应稍有增加.结论:戈那瑞林对初级感觉神经元GABA介导的去极化和GABA激活电流具有抑制作用.%AIM: To explore the modulatory effects of gonadorelin on GABA-induced depolarization and GABA-activated current in membrane of rat primary sensory neurons. METHODS: Intracellular recordings and whole-cell patch clamp techniques were performed on neurons in rat spinal ganglia (SG) preparation and neurons freshly isolated from rat SG, respectively. Drugs were applied by superfusion and/or by bath application.RESULTS: In the majority of neurons GABA (10tion, which was blocked by bicucullin (100 μmol tion by 79±22 % (n=29), while gonadorelin elicited no effect or slight depolarization alone.In 6 of 11 cells, GABA-activated currents were also inhibited by pretreatment with gonadorelin no change or a slight potentiation. CONCLUSION: Gonadorelin exerts an inhibitory effect on GABA-induced depolarization and GABA-activated current in the primary sensory neurons.

  9. GABA(A) receptors on calbindin-immunoreactive myenteric neurons of guinea pig intestine.

    Science.gov (United States)

    Zhou, X; Galligan, J J

    2000-01-14

    These studies were carried out to characterize the properties of gamma-aminobutyric acidA (GABA(A)) receptors on guinea pig intestinal myenteric neurons maintained in primary culture. In addition, the type of neuron expressing GABA(A) receptors was identified using immunohistochemical methods. Whole-cell patch clamp recordings of currents elicited by GABA and acetylcholine (ACh) were obtained using pipettes containing Neurobiotin. After electrophysiological studies, neurons were processed for localization of calbindin-D28K-immunoreactivity (calbindin-ir). GABA (1 mM) and ACh (3 mM) caused inward currents in most cells tested. GABA currents were mimicked by muscimol (1-300 microM) and were blocked by bicuculline (10 microM) indicating that GABA was acting at GABA(A) receptors. GABA currents were associated with a conductance increase and a linear current/voltage relationship with a reversal potential of 1 +/- 1 mV (n = 5). Pentobarbital (PB, 3-1000 microM) and diazepam (DZP, 0.01-10 microM) potentiated GABA-induced currents. A maximum concentration of DZP (1 microM) increased GABA-induced currents 3.1 +/- 0.3 times while PB (1000 microM) increased GABA currents by 11 +/- 2 times. In outside-out patches, the amplitude of GABA-activated single-channel currents was linearly related to membrane potential with a single-channel conductance of 28.5 + 0.5 pS (n = 10). PB and DZP increased the open probability of GABA-induced single-channel currents. Neurons containing calbindin-ir were large, were isolated from other neurons and had GABA current amplitudes of -3.4 +/- 0.3 nA (n = 48). Neurons with weak or absent calbindin-ir were smaller, were localized in clusters of cells and had GABA-induced current amplitudes of -0.6 +/- 0.1 nA (n = 20). ACh-induced currents were smaller in calbindin-ir neurons (-0.7 +/- 0.1 nA) compared to weakly calbindin-ir neurons (-1.4 +/- 0.1 nA). These results indicate that myenteric calbindin-ir neurons express a high density of GABA

  10. Propofol enhances the field excitatory postsynaptic potentials in CA1 hippocampal slices of young and aged mice

    Institute of Scientific and Technical Information of China (English)

    Yin Yiqing; William J Middleton; Carlos M.Florez; Peter L.Carlen; Hossam EI-Beheiry

    2014-01-01

    Background Increasing age was shown to decrease the requirements for propfol.However,the mechanisms of ageing-induced potentiation of anesthetic actions have not been clearly explored.The aim of this study is to compare the effects of propofol on the field excitatory postsynaptic potentials (fEPSPs) in hippocampal slices of young and aging mice.Methods Brain slices were prepared from C57BL6 male young (2 months) and aging (>12 months) mice.The dendritic field excitatory postsynaptic potential was recorded from the CA1 stratum radiatum using patch clamp electrophysiological methods.A bipolar concentric stimulating electrode was placed along the Schaffer collateral for othodromic stimulation.The effects of clinically-relevant concentrations of propofol were studied in the young and ageing mouse tissues.Results Propofol application increased the orthodromically evoked fEPSP produced in slices taken from young and older animals.A striking feature in the I/O relationship was the decreased enhancement of the fEPSPs by propofol in slices from older mice.A clinically relevant concentration of propofol,10 μmol/L,showed more significant enhancement in amplitude and area under the curve (AUC) of fEPSP in young compared to tissues from older mice (amplitude:young (24.9±3.4)%,old (4.6±1.6)%; AUC young (30.6±5.4)%,old (2.1±1.7)%).There was no statistically significant difference between the paired-pulse facilitation (PPF) ratios calculated for the responses obtained in tissues from young mice.In slices from older mice,in the presence of 10 μmol/L propofol,PPF was decreased and returned to baseline after washout (baseline 1.21±0.01,propofol:1.16±0.01).Bicuculline (15 μmol/L) blocked the enhancement of propofol on fEPSP in tissues from young and old mice.Conclusion The fEPSP of slices from aging mice demonstrates diminished sensitivity to the enhancing actions of propofol.

  11. GABA maintains the proliferation of progenitors in the developing chick ciliary marginal zone and non-pigmented ciliary epithelium.

    Directory of Open Access Journals (Sweden)

    Henrik Ring

    Full Text Available GABA is more than the main inhibitory neurotransmitter found in the adult CNS. Several studies have shown that GABA regulates the proliferation of progenitor and stem cells. This work examined the effects of the GABA(A receptor system on the proliferation of retinal progenitors and non-pigmented ciliary epithelial (NPE cells. qRT-PCR and whole-cell patch-clamp electrophysiology were used to characterize the GABA(A receptor system. To quantify the effects on proliferation by GABA(A receptor agonists and antagonists, incorporation of thymidine analogues was used. The results showed that the NPE cells express functional extrasynaptic GABA(A receptors with tonic properties and that low concentration of GABA is required for a baseline level of proliferation. Antagonists of the GABA(A receptors decreased the proliferation of dissociated E12 NPE cells. Bicuculline also had effects on progenitor cell proliferation in intact E8 and E12 developing retina. The NPE cells had low levels of the Cl-transporter KCC2 compared to the mature retina, suggesting a depolarising role for the GABA(A receptors. Treatment with KCl, which is known to depolarise membranes, prevented some of the decreased proliferation caused by inhibition of the GABA(A receptors. This supported the depolarising role for the GABA(A receptors. Inhibition of L-type voltage-gated Ca(2+ channels (VGCCs reduced the proliferation in the same way as inhibition of the GABA(A receptors. Inhibition of the channels increased the expression of the cyclin-dependent kinase inhibitor p27(KIP1, along with the reduced proliferation. These results are consistent with that when the membrane potential indirectly regulates cell proliferation with hyperpolarisation of the membrane potential resulting in decreased cell division. The increased expression of p27(KIP1 after inhibition of either the GABA(A receptors or the L-type VGCCs suggests a link between the GABA(A receptors, membrane potential, and

  12. Surviving mossy cells enlarge and receive more excitatory synaptic input in a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Zhang, Wei; Thamattoor, Ajoy K; LeRoy, Christopher; Buckmaster, Paul S

    2015-05-01

    Numerous hypotheses of temporal lobe epileptogenesis have been proposed, and several involve hippocampal mossy cells. Building on previous hypotheses we sought to test the possibility that after epileptogenic injuries surviving mossy cells develop into super-connected seizure-generating hub cells. If so, they might require more cellular machinery and consequently have larger somata, elongate their dendrites to receive more synaptic input, and display higher frequencies of miniature excitatory synaptic currents (mEPSCs). To test these possibilities pilocarpine-treated mice were evaluated using GluR2-immunocytochemistry, whole-cell recording, and biocytin-labeling. Epileptic pilocarpine-treated mice displayed substantial loss of GluR2-positive hilar neurons. Somata of surviving neurons were 1.4-times larger than in controls. Biocytin-labeled mossy cells also were larger in epileptic mice, but dendritic length per cell was not significantly different. The average frequency of mEPSCs of mossy cells recorded in the presence of tetrodotoxin and bicuculline was 3.2-times higher in epileptic pilocarpine-treated mice as compared to controls. Other parameters of mEPSCs were similar in both groups. Average input resistance of mossy cells in epileptic mice was reduced to 63% of controls, which is consistent with larger somata and would tend to make surviving mossy cells less excitable. Other intrinsic physiological characteristics examined were similar in both groups. Increased excitatory synaptic input is consistent with the hypothesis that surviving mossy cells develop into aberrantly super-connected seizure-generating hub cells, and soma hypertrophy is indirectly consistent with the possibility of axon sprouting. However, no obvious evidence of hyperexcitable intrinsic physiology was found. Furthermore, similar hypertrophy and hyper-connectivity has been reported for other neuron types in the dentate gyrus, suggesting mossy cells are not unique in this regard. Thus

  13. Role of the ventromedial nucleus of the thalamus in motor behaviour--I. Effects of focal injections of drugs.

    Science.gov (United States)

    Starr, M S; Summerhayes, M

    1983-12-01

    An assortment of drugs was injected into one or both ventromedial nuclei of the thalamus, to see how these influenced stereotypy, locomotion and posture in spontaneously behaving and actively rotating rats. Unilateral intrathalamic muscimol promoted weak ipsiversive circling, while bilateral treatment gave catalepsy. Similar injections of 4-amino-hex-5-enoic acid, which inhibits gamma-aminobutyrate metabolism, raised gamma-aminobutyrate levels in the ventromedial nuclei more than three-fold yet had none of these behavioural effects. The indirectly acting gamma-aminobutyrate agonists flurazepam and cis-1,3-aminocyclohexane carboxylic acid had little effect on posture and locomotion and, like muscimol and 4-amino-hex-5-enoic acid, elicited only very weak stereotypies. Procaine behaved like the gamma-aminobutyrate antagonist bicuculline, provoking vigorous locomotor hyperactivity and teeth chattering if given uni- or bilaterally. Pretreatment of one ventromedial nucleus with muscimol or 4-amino-hex-5-enoic acid, and to a lesser extent flurazepam or cis- 1,3-aminocyclohexane carboxylic acid, gave rise to pronounced ipsilateral asymmetries when combined with a large systemic dose of apomorphine. Contraversive rotations were initiated by unilateral stereotaxic injection of muscimol into the substantia nigra pars reticulata, or with apomorphine from the supersensitive striatum in unilaterally 6-hydroxydopamine lesioned rats. Drug treatments in the ipsilateral ventromedial nucleus showed a similar rank order of potency at inhibiting these circling behaviours, seemingly by reducing apomorphine-induced posture and muscimol-induced hypermotility. The suppression of circling by muscimol in these tests was highlighted by introducing the compound into the ventromedial nucleus at the height of circling activity. Both types of circling stimulus lost the capacity to increase locomotion, but still caused head turning and stereotypy in rats made cataleptic with bilateral ventromedial

  14. Inhibition of GABA-activated Currents by Cannabinoids in Rat Trigeminal Neurons%大麻素对大鼠三叉神经节神经元γ-氨基丁酸激活电流的抑制作用

    Institute of Scientific and Technical Information of China (English)

    周莹; 刘长金; 李爱; 胡新武; 陈蕾; 刘烈炬

    2007-01-01

    目的 探讨人工合成大麻素WIN55,212-2对大鼠三叉神经节神经元γ-氨基丁酸(GABA)激活电流(IGABA)的调制作用.方法 采用全细胞膜片钳技术.结果 ①实验中大部分受检细胞(91.84%,99/108)对胞外给予GABA(10~1 000 μmol/L)敏感,可记录到具有浓度依赖性的内向电流,该电流可被GABAA受体特异性拮抗剂荷包牡丹碱(Bicuculline)阻断.②预加WIN55,212-2(0.03~10μmol/L)对IGABA产生抑制作用,该抑制作用呈可逆性、浓度依赖性和非电压依赖性.WIN55,212-2使IGABA的量效曲线明显下移,而两者的阈值基本不变;最大反应浓度时IGABA幅值减少了(48.83±4.78)%;两条曲线的半数有效浓度(EC50)值比较接近(36.85 μmol/L vs 25.76μmol/L).③WIN55,212-2对IGABA的抑制作用可被大麻素CB1受体选择性拮抗剂AM281阻断,不能被大麻素CB2受体选择性拮抗剂AM630阻断.细胞外灌流蛋白激酶C(PKC)的抑制剂BIM可部分逆转WIN55,212-2对IGABA的抑制作用.结论 大麻素WIN55,212-2作用于CB1受体,部分通过激活PKC途径来减少GABAA受体介导的电流,加强突触前抑制作用,这可能是大麻素的外周镇痛机制之一.

  15. Current responses mediated by endogenous GABAB and GABAC receptors in Xenopus oocytes%非洲爪蟾卵母细胞GABAB和GABAC受体介导的电流反应

    Institute of Scientific and Technical Information of China (English)

    杨青; 李之望; 魏劲波

    2001-01-01

    实验应用双电极电压箝技术,在具有滤泡膜的非洲爪蟾(Xenopuslaevis)卵母细胞上记录到γ-氨基丁酸(γ-aminobutyricacid,GABA)-激活电流。此GABA-激活电流的特点及有关GABA受体类型的研究和分析如下:(1)在35.5%(55/155)的受检细胞外加GABA可引起一慢的浓度依赖性的外向电流。(2)GABAA受体的选择性拮抗剂bicuculline(10-5mol/L)对GABA(10-5mol/L)引起的外向电流无阻断作用(n=6)。(3)GABAB受体的选择性拮抗剂2-hydroxysaclofen(10-4mol/L)能将GABA(10-5mol/L)引起的外向电流可逆性地转变为内向电流,后者又可被GABAC受体的选择性拮抗剂I4AA(10-5mol/L)所消除(n=6)。(4)GABAB受体的特异性激动剂baclofen可引起部分(20%,12/60)受检细胞产生一慢的浓度依赖性的外向电流。3×10-6、3×10-5及3×10-4mol/L2-hydroxysaclofen分别阻断baclofen(10-5mol/L)-激活电流(6.3±3.2)%,(44.1±2.2)%及(86.0±1.6)%(n=6)。(5)baclofen激活电流的I-V曲线显示逆转电位在-96.8±7.2mV左右,此电流可分别被TEA(5mmol/L)和BaCl2(2mmol/L)所阻断。以上结果提示:在非洲爪蟾的卵母细胞上存在内源性GABAB和GABAC受体,GABAB受体介导的为外向电流,而GABAC受体介导的为内向电流。

  16. Neuronal mechanisms of the anoxia-induced network oscillations in the rat hippocampus in vitro.

    Science.gov (United States)

    Dzhala, V; Khalilov, I; Ben-Ari, Y; Khazipov, R

    2001-10-15

    1. A spindle of fast network oscillations precedes the ischaemia-induced rapid depolarisation in the rat hippocampus in vivo. However, this oscillatory pattern could not be reproduced in slices and the underlying mechanisms remain poorly understood. We have found that anoxia-induced network oscillations (ANOs, 20-40 Hz, lasting for 1-2 min) can be reproduced in the intact hippocampi of postnatal day P7-10 rats in vitro, and we have examined the underlying mechanisms using whole-cell and extracellular field potential recordings in a CA3 pyramidal layer. 2. ANOs were generated at the beginning of the anoxic depolarisation, when pyramidal cells depolarised to subthreshold values. Maximal power of the ANOs was attained when pyramidal cells depolarised to -56 mV; depolarisation above -47 mV resulted in a depolarisation block of pyramidal cells and a waning of ANOs. 3. A multiple unit activity in extracellular field recordings was phase locked to the negative and ascending phases of ANOs. Pyramidal cells recorded in current-clamp mode generated action potentials with an average probability of about 0.05 per cycle. The AMPA receptor-mediated EPSCs and the GABA receptor-mediated IPSCs in CA3 pyramidal cells were also phase locked with ANOs. 4. ANOs were prevented by tetrodotoxin and glutamate receptor antagonists CNQX and APV, and were slowed down by the allosteric GABA(A) receptor modulator diazepam. In the presence of the GABA(A) receptor antagonist bicuculline, ANOs were transformed to epileptiform discharges. 5. In the presence of the A1 adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), the anoxia induced an epileptiform activity and no ANOs were observed. 6. In normoxic conditions, a rise of extracellular potassium to 10 mM induced an epileptiform activity. Increasing extracellular potassium in conjunction with a bath application of the adenosine A1 receptor agonist cyclopentyladenosine induced oscillations similar to ANOs. 7. Multisite

  17. Anticonvulsant Effects of Fractions Isolated from Dinoponera quadriceps (Kempt) Ant Venom (Formicidae: Ponerinae).

    Science.gov (United States)

    Nôga, Diana Aline Morais Ferreira; Brandão, Luiz Eduardo Mateus; Cagni, Fernanda Carvalho; Silva, Delano; de Azevedo, Dina Lilia Oliveira; Araújo, Arrilton; Dos Santos, Wagner Ferreira; Miranda, Antonio; da Silva, Regina Helena; Ribeiro, Alessandra Mussi

    2016-12-23

    Natural products, sources of new pharmacological substances, have large chemical diversity and architectural complexity. In this context, some toxins obtained from invertebrate venoms have anticonvulsant effects. Epilepsy is a neurological disorder that affects about 65 million people worldwide, and approximately 30% of cases are resistant to pharmacological treatment. Previous studies from our group show that the denatured venom of the ant Dinoponera quadriceps (Kempt) protects mice against bicuculline (BIC)-induced seizures and death. The aim of this study was to investigate the anticonvulsant activity of compounds isolated from D. quadriceps venom against seizures induced by BIC in mice. Crude venom was fractionated by high-performance liquid chromatography (HPLC) resulting in six fractions referred to as DqTx1-DqTx6. A liquid chromatography-mass spectrometry (LC/MS) analysis revealed a major 431 Da compound in fractions DqTx1 and DqTx2. Fractions DqTx3 and DqTx4 showed a compound of 2451 Da and DqTx5 revealed a 2436 Da compound. Furthermore, the DqTx6 fraction exhibited a major component with a molecular weight of 13,196 Da. Each fraction (1 mg/mL) was microinjected into the lateral ventricle of mice, and the animals were observed in an open field. We did not observe behavioral alterations when the fractions were given alone. Conversely, when the fractions were microinjected 20 min prior to the administration of BIC (21.6 nM), DqTx1, DqTx4, and DqTx6 fractions increased the latency for onset of tonic-clonic seizures. Moreover, all fractions, except DqTx5, increased latency to death. The more relevant result was obtained with the DqTx6 fraction, which protected 62.5% of the animals against tonic-clonic seizures. Furthermore, this fraction protected 100% of the animals from seizure episodes followed by death. Taken together, these findings indicate that compounds from ant venom might be a potential source of new anticonvulsants molecules.

  18. Putative role of the NTS in alterations in neural control of the circulation following exercise training in rats.

    Science.gov (United States)

    Mueller, Patrick J; Hasser, Eileen M

    2006-02-01

    Exercise training (ExTr) has been associated with alterations in neural control of the circulation, including effects on arterial baroreflex function. The nucleus tractus solitarius (NTS) is the primary termination site of cardiovascular afferents and critical in the regulation of baroreflex-mediated changes in heart rate (HR) and sympathetic nervous system outflow. The purpose of the present study was to determine whether ExTr is associated with alterations in neurotransmitter regulation of neurons involved in control of cardiovascular function at the level of the NTS. We hypothesized that ExTr would increase glutamatergic and reduce GABAergic transmission in the NTS and that, collectively, these changes would result in a greater overall sympathoinhibitory drive from the NTS in ExTr animals. To test these hypotheses, male Sprague-Dawley rats were treadmill trained or maintained under sedentary conditions for 8-10 wk. NTS microinjections were performed in Inactin-anesthetized animals instrumented to record mean arterial pressure (MAP), HR, and lumbar sympathetic nerve activity (LSNA). Generalized activation of the NTS with unilateral microinjections of glutamate (1-10 mM, 30 nl) produced dose-dependent decreases in MAP, HR, and LSNA that were unaffected by ExTr. Bilateral inhibition of NTS with the GABAA agonist muscimol (1 mM, 90 nl) produced increases in MAP and LSNA that were blunted by ExTr. In contrast, pressor and sympathoexcitatory responses to bilateral microinjections of the ionotropic glutamate receptor antagonist, kynurenate (40 mM, 90 nl), were similar between groups. Bradycardic responses to bilateral microinjections of the GABAA antagonist bicuculline (0.1 mM, 90 nl) were attenuated by ExTr. These data indicate that alterations in neurotransmission at the level of the NTS contribute importantly to regulation of HR and LSNA in ExTr animals. In addition to alterations at NTS, these experiments suggest indirectly that changes in other cardiovascular

  19. GABA and glutamate receptors in the horizontal limb of diagonal band of Broca (hDB): effects on cardiovascular regulation.

    Science.gov (United States)

    Nasimi, Ali; Hatam, Masoumeh

    2005-11-01

    The horizontal limb of diagonal band of Broca (hDB) is a part of the limbic system. It has been shown that microinjection of L-glutamate into the hDB elicited cardiovascular depressive responses in anesthetized rats and pressor effect in unanesthetized rats. But the role of glutamate receptor subtypes has not yet been investigated. In addition the role of the GABAergic system of the hDB in cardiovascular responses is not known. Therefore, we examined the cardiovascular responses elicited by glutamate and GABA receptors in the hDB by using their agonists and antagonists. Drugs (50 nl) were microinjected into the hDB of anaesthetized rats. Blood pressure and heart rate were recorded before and throughout each experiment. The average changes in the mean arterial pressure and heart rate at different intervals were compared both within each case group and between the case and control groups using repeated measures of ANOVA. Microinjection of GABA(A) receptor antagonist, bicuculline methiodide (BMI, 1 mM) increased both the mean arterial pressure and heart rate, and muscimole, a GABA(A) agonist (500 pmol) caused a significant decrease in the mean arterial pressure and heart rate. Microinjection of L-glutamate (0.25 M) into the hDB resulted in a maximum decrease of the mean arterial pressure of 24.4 +/- 3.7 mmHg and heart rate of 25.2 +/- 3.08 beats/min. Injection of AP5, an antagonist of glutamate NMDA receptor (1 and 2.5 mM), and CNQX, an antagonist of glutamate AMPA receptor (0.5 and 1 mM) caused small, nonsignificant changes of the heart rate and the blood pressure. Either AP5 or CNQX when coinjected with glutamate abolished the depressor effect of glutamate, suggesting that simultaneous activation of both glutamate receptors is necessary for the effect of glutamate to emerge. The depressor effect of the glutaminergic system of the hDB on the cardiovascular system was similar to the previous studies. For the first time, the effects of CNQX, AP5, BMI, and muscimole

  20. Electrical stimulation therapies for CNS disorders and pain are mediated by competition between different neuronal networks in the brain.

    Science.gov (United States)

    Faingold, Carl L

    2008-11-01

    treatment of unanesthetized animals with antagonists (bicuculline or strychnine) of inhibitory neurotransmitter (GABA or glycine) receptors can cause CMR neurons to become consistently responsive to external inputs (e.g., peripheral nerve, sensory, or electrical stimuli in the brain) to which these neurons did not previously respond. Conversely, agents that enhance GABA-mediated inhibition (e.g., barbiturates and benzodiazepines) or antagonize glutamate-mediated excitation (e.g., ketamine) can cause CMR neurons to become unresponsive to inputs to which they responded previously. The responses of CMR neurons exhibit extensive short-term and long-term plasticity, which permits them to participate to a variable degree in many networks. Short-term plasticity subserves termination of disease symptoms, while long-term plasticity in CMR regions subserves symptom prevention. This network interaction hypothesis has value for future research in CNS disease mechanisms and also for identifying therapeutic targets in specific brain networks for more selective stimulation and pharmacological therapies.

  1. 电鱼小脑浦肯野细胞对急性缺氧的功能反应%Functional responses of mormyrid cerebellar Purkinje cells to acute hypoxia insult

    Institute of Scientific and Technical Information of China (English)

    李晶; 师长宏; 成胜权; 李果; 谭小丽; 杜永平; 张月萍

    2013-01-01

    hypoxia insult. Results: (1) PCs show a rapid and significant hyperpolarization with a decreased spontaneous firing rate following the onset of hypoxia episode and last persistently for more than 30 minutes. AMPA receptor antagonist CNQX did not affect the initiating of the hyperpolarization, but prevented the hypoxia hyperpolarization from long lasting. GABAA receptor antagonist Bicuculline completely block the hypoxia hyperpolarization, and induced a brief hypopolarization immediately following hypoxia episode. ( 2 ) An increased threshold of active potential and a decreased frequency of active potential induced by the injection of depolarized current into PCs body were shown following hypoxia episode. The amplitude of active potential of PCs was also decreased by hypoxia. (3) Acute hypoxia induced mormyrid cerebellar PF-PC excitatory postsynaptic current(EPSC) long-term potentiation (LTP) with a decreased pair-pulse facilitation ( PPF). CNQX reversed PF EPSC LTP induced by hypoxia episode to long term depression(LTD). Bicuculline enhanced hypoxia LTP of PF EPSC. Conclusion: The functional responses of mormyrid cerebellar PCs to hypoxia insult were quite different from that of mammalian. Both of AMPA receptor and GABAA receptor contribute to the hypoxia hyperpolar-ization and PF EPSC LTP, suggesting that a balance between GABAergic and Glutamatergic synaptic activities is required for the protective responses of mormyrid neuron under hypoxia condition and probably also for the other anoxia tolerant animals as well .

  2. 大麻素CB1受体对大鼠视网膜神经节细胞诱发动作电位的作用%Activation of cannabinoid CB1 receptors modulates evoked action potentials in rat retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    蒋淑霞; 李倩; 王霄汉; 李芳; 王中峰

    2013-01-01

    Activation of cannabinoid CB1 receptors (CB 1Rs) regulates a variety of physiological functions in the vertebrate retina through modulating various types of ion channels.The aim of the present study was to investigate the effects of this receptor on cell excitability of rat retinal ganglion cells (RGCs) in retinal slices using whole-cell patch-clamp techniques.The results showed that under current-clamped condition perfusing WIN55212-2 (WIN,5 μmol/L),a CB1R agonist,did not significantly change the spontaneous firing frequency and resting membrane potential of RGCs.In the presence of cocktail synaptic blockers,including excitatory postsynaptic receptor blockers CNQX and D-APV,and inhibitory receptor blockers bicuculline and strychnine,perfusion of WIN (5 μmol/L)hardly changed the frequencies of evoked action potentials by a series of positive current injection (from +10 to +100 pA).Phaseplane plot analysis showed that both average threshold voltage for triggering action potential and delay time to reach threshold voltage were not affected by WIN.However,WIN significantly decreased +dV/dtmax and-dV/dtmax of action potentials,suggestive of reduced rising and descending velocities of action potentials.The effects of WIN were reversed by co-application of SR141716,a CB1R selective antagonist.Moreover,WIN did not influence resting membrane potential of RGCs with synaptic inputs being blocked.These results suggest that activation of CB1Rs may regulate intrinsic excitability of rat RGCs through modulating evoked action potentials.%激活大麻素CB1受体(CB1Rs)通过调控多种离子通道,从而调节脊椎动物视网膜的功能.本文旨在利用膜片钳全细胞记录技术,在大鼠视网膜薄片上研究CB1Rs对神经节细胞兴奋性的作用.结果显示,在电流钳制状态下,灌流CB1R激动剂WIN55212-2 (WIN,5μmol/L)对神经节细胞的自发动作电位发放频率和静息膜电位均没有显著影响.在灌流液中加入CNQX,D-APV,bicuculline

  3. Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro.

    Science.gov (United States)

    Maccaferri, G; Roberts, J D; Szucs, P; Cottingham, C A; Somogyi, P

    2000-04-01

    1. Inhibitory postsynaptic currents (IPSCs) evoked in CA1 pyramidal cells (n = 46) by identified interneurones (n = 43) located in str. oriens were recorded in order to compare their functional properties and to determine the effect of synapse location on the apparent IPSC kinetics as recorded using somatic voltage clamp at -70 mV and nearly symmetrical [Cl-]. 2. Five types of visualised presynaptic interneurone, oriens-lacunosum moleculare (O-LMC), basket (BC), axo-axonic (AAC), bistratified (BiC) and oriens-bistratified (O-BiC) cells, were distinguished by immunocytochemistry and/or synapse location using light and electron microscopy. 3. Somatostatin immunoreactive O-LMCs, innervating the most distal dendritic shafts and spines, evoked the smallest amplitude (26 +/- 10 pA, s.e.m., n = 8) and slowest IPSCs (10-90 % rise time, 6.2 +/- 0.6 ms; decay, 20.8 +/- 1.7 ms, n = 8), with no paired-pulse modulation of the second IPSC (93 +/- 4 %) at 100 ms interspike interval. In contrast, parvalbumin-positive AACs evoked larger amplitude (308 +/- 103 pA, n = 7) and kinetically faster (rise time, 0.8 +/- 0.1 ms; decay 11.2 +/- 0.9 ms, n = 7) IPSCs showing paired-pulse depression (to 68 +/- 5 %, n = 6). Parvalbumin- or CCK-positive BCs (n = 9) terminating on soma/dendrites, BiCs (n = 4) and O-BiCs (n = 7) innervating dendrites evoked IPSCs with intermediate kinetic parameters. The properties of IPSCs and sensitivity to bicuculline indicated that they were mediated by GABAA receptors. 4. In three cases, kinetically complex, multiphasic IPSCs, evoked by an action potential in the recorded basket cells, suggested that coupled interneurones, possibly through electrotonic junctions, converged on the same postsynaptic neurone. 5. The population of O-BiCs (4 of 4 somatostatin positive) characterised in this study had horizontal dendrites restricted to str. oriens/alveus and innervated stratum radiatum and oriens. Other BiCs had radial dendrites as described earlier. The parameters

  4. 离体脊髓同侧中央管周围区电刺激诱发运动神经元突触反应%Synaptic responses of motoneurons evok ed by ipsilateral pericentral canal zone stimula-t ion in spinal cord in vitro

    Institute of Scientific and Technical Information of China (English)

    秦雯; 郑超; 王邦安; 汪萌芽

    2013-01-01

    目的:探讨新生大鼠脊髓切片同侧中央管周围区(iPCC)向运动神经元(MN)兴奋性突触传递的细胞电生理特性。方法:应用新生大鼠(8~14 d)脊髓切片MN细胞内记录技术,观察iPCC局部电刺激在MN所诱发的突触反应。结果:在14个测试的MN,观察到iPCC电刺激可在11个MN上诱发兴奋性突触后电位(iPCC-EPSP),在1个MN上诱发抑制性突触后电位( iPCC-IPSP ),在2个 MN上诱发iPCC-EPSP后复合有iPCC-IPSP的反应。 iPCC-EPSP不仅具有刺激强度依赖性和膜电位依赖性,而且可以被低钙高镁溶液或TTX(0.1μmol/L)可逆性取消。荷包牡丹碱和士的宁能增大iPCC-EPSP,但谷氨酸受体拮抗剂 APV(30μmol/L)和DNQX(1μmol/L)仅部分抑制iPCC-EPSP。结论:iPCC的激活可通过兴奋性突触传递调制MN的活动,其介导递质除谷氨酸外,可能还有其他递质的参与。%Objective:To explore the cellular electrophysiological proper-ties of the excitatory synaptic transmissions from the ipsilateral pericentral canal(iPCC)zone to motoneurons(MN)in neonatal rat spinal cord slices. Methods: The intracellular recording techniques were performed in MN of spinal cord slices isolated from neonatal rats(8-14 days old),and focal e-lectrical stimulation of the iPCC zone was applied to evoke the synaptic responses.Results: In 14 MNs tested, excitatory postsynaptic potentials ( EPSPs) ,inhibitory postsynaptic potentials ( IPSPs) and EPSP followed by IPSP were elicited by iPCC stimulation ( iPCC-EPSPs or iPCC-IPSPs) in 11,1 and 2 MNs, respectively.The iPCC-EPSPs were sensitive to low Ca2+/high Mg2+solution or tetrodotoxin and presented with stimulus in-tensity-dependent and membrane potential-dependent properties.The iPCC-EPSPs were increased by bicuculline and strychnine,but only par-tially eliminated by the perfusion of APV(30 mol/L),and DNQX(1 mol/L) ,the antagonists of glutamate receptors

  5. Postsynaptic potentials mediated by excitatory and inhibitory amino acids in interneurons of stratum pyramidale of the CA1 region of rat hippocampal slices in vitro.

    Science.gov (United States)

    Lacaille, J C

    1991-11-01

    1. Because interneurons of stratum pyramidale partly mediate the feed-forward inhibition of pyramidal cells, intracellular postsynaptic potentials (PSPs) evoked by activation of afferent fibers were examined in 32 nonpyramidal cells of stratum pyramidale of the CA1 region of rat hippocampal slices. 2. Electrical stimulation of stratum radiatum at the CA1-CA3 border elicited, in interneurons, PSPs that were composed of four components: a fast excitatory postsynaptic potential (EPSP), an early inhibitory postsynaptic potential (IPSPA), a late IPSPB, and in some cells a delayed, slower EPSP. These synaptic potentials summated and elicited single action potentials in 57% of cells (17/30) and burst of action potentials (2-10) in the remaining 43%. 3. The fast EPSP was observed in all cells, and the mean stimulation intensity at its threshold was 53.4 microA. Its amplitude increased with membrane hyperpolarization, and it was associated with a 45.4% decrease in cellular input resistance. The fast EPSP always elicited an action potential at short latencies (3.6-6.4 ms poststimulation). It was reversibly reduced by 6-cyano-7-nitroquinoxaline-2,3- dione (CNQX), a blocker of non-N-methyl-D-aspartate (non-NMDA) excitatory amino acid receptors. 4. The IPSPA was observed in 28/32 cells, and the mean intensity of stimulation was 57.6 microA at its threshold. The mean latency of its peak amplitude was 17.4 ms. The mean equilibrium potential (Erev) was -72.8 mV, and it was associated with a 38.9% decrease in cellular input resistance. IPSPA was blocked by the GABAA antagonist bicuculline. 5. The IPSPB was seen in 29/32 cells, and the mean intensity of stimulation at its threshold was 80.3 microA. Its latency to peak was 130.6 ms, its Erev was -107.6 mV, and it was associated with a small (7.6%) decrease in cellular input resistance. IPSPB was blocked by the GABAB antagonist phaclofen. 6. In 11/32 cells a slower EPSP was also observed. Its mean latency to peak was 53.3 ms, and the

  6. Effect of Cooling on Survival Rate of Hippocampal Neurons from Refractory Epilepsy Models%冷却对大鼠难治性癫(癎)模型海马神经细胞存活率的影响

    Institute of Scientific and Technical Information of China (English)

    韩春锡; 文善姬; 路新国; 胡雁; 曹娟; 李志川; 廖建湘

    2011-01-01

    Aim: To investigate the effect of different cooling-temperature and cooling-duration on survival rate of hippocampal neurons from the refractory epilepsy models. Methods: A final concentration of 6 jomol·L-1 of bicuculline (Bic) and 4-aminopyridine (4-AP) was applied to culturing organotypic hippocampal slice (OHS) to develop the refractory epilepsy model. The viability marker propidium iodide (PI) was used to monitor the neuronal cell death in the culture on the condition of 36°C and 25°C for 24 h, and 36°C, 30°C, 25°C, 20°C and 15°C for 6 h. The digital images were analyzed by using a densitometry analysis program. Results: After stimulating by Bic combined with 4-AP for 3 h on rat OHS cultures, the PI uptake appeared in the CA2 sector at the first time. With the time of stimulation increasing, the distribution of damaged neuronal cells was extended to large area, predominantly distributed in the CA3 sector. The damaged neuronal cells' PI uptake were significantly inhibited by cooling treatment at 25°C for 3 h to 12 h, however, the PI uptake could be promoted by the deep hypo thermic cooling treatment at 20 °C and 15°C. Conclusion: ?The neuronal cells%目的:探讨不同冷却温度和冷却时间对大鼠难治性癫(癎)模型海马神经细胞存活率的影响.方法:①6 μmol-L-1荷包牡丹碱(Bic)+4-氨基吡啶(4-AP)联合刺激培养的大鼠海马组织切片(OHS)诱发(癎)样放电,制作难治性癫(癎)OHS模型;②在36℃和25℃培养1~24 h;③在36℃、30℃、25℃、20℃和15℃培养6h;④分别测定OHS神经细胞的碘化丙啶(PI)摄取量.结果:Bic+4-AP联合刺激3h后,摄取PI的神经细胞首先出现在海马的CA2区.随着刺激时间的延长,摄取PI神经细胞的分布范围扩散到其他区域,以CA3区最为明显.25℃冷却处理可以显著抑制神经细胞的PI摄取,然而,20℃、15℃深低温冷却处理可进使神经细胞的PI摄取.结论:①培养的大鼠海马组织CA2

  7. Role of GABAA-Mediated Inhibition and Functional Assortment of Synapses onto Individual Layer 4 Neurons in Regulating Plasticity Expression in Visual Cortex.

    Science.gov (United States)

    Saez, Ignacio; Friedlander, Michael J

    2016-01-01

    Layer 4 (L4) of primary visual cortex (V1) is the main recipient of thalamocortical fibers from the dorsal lateral geniculate nucleus (LGNd). Thus, it is considered the main entry point of visual information into the neocortex and the first anatomical opportunity for intracortical visual processing before information leaves L4 and reaches supra- and infragranular cortical layers. The strength of monosynaptic connections from individual L4 excitatory cells onto adjacent L4 cells (unitary connections) is highly malleable, demonstrating that the initial stage of intracortical synaptic transmission of thalamocortical information can be altered by previous activity. However, the inhibitory network within L4 of V1 may act as an internal gate for induction of excitatory synaptic plasticity, thus providing either high fidelity throughput to supragranular layers or transmittal of a modified signal subject to recent activity-dependent plasticity. To evaluate this possibility, we compared the induction of synaptic plasticity using classical extracellular stimulation protocols that recruit a combination of excitatory and inhibitory synapses with stimulation of a single excitatory neuron onto a L4 cell. In order to induce plasticity, we paired pre- and postsynaptic activity (with the onset of postsynaptic spiking leading the presynaptic activation by 10ms) using extracellular stimulation (ECS) in acute slices of primary visual cortex and comparing the outcomes with our previously published results in which an identical protocol was used to induce synaptic plasticity between individual pre- and postsynaptic L4 excitatory neurons. Our results indicate that pairing of ECS with spiking in a L4 neuron fails to induce plasticity in L4-L4 connections if synaptic inhibition is intact. However, application of a similar pairing protocol under GABAARs inhibition by bath application of 2μM bicuculline does induce robust synaptic plasticity, long term potentiation (LTP) or long term

  8. γ-氨基丁酸及B受体在胃癌SGC-7901细胞中表达及对细胞迁移能力的影响%Influence of the expressions of GABA and GABABR1 in gastric cancer SGC-7901 cells on cell migration ability

    Institute of Scientific and Technical Information of China (English)

    史良会; 张才全

    2011-01-01

    目的 观察GABA,GAD65,GABABR1在胃癌SGC-7901细胞中的表达及对细胞迁移能力的影响.方法 RT-PCR、IF及Western印迹检测胃癌细胞SGC-7901中GABA、GAD65及GABABRI mRNA及蛋白表达;不同浓度GABA,Baclofen及CGP35348作用于胃癌细胞SGC-7901细胞24h,transwell细胞迁移小室检测细胞迁移能力的变化.结果 GAD65,GABABR1 mRNA及蛋白表达于SGC-7901细胞中;GABA,GABABR1及GAD65蛋白定位于SGC-7901细胞胞膜、胞质;与空白组比较,随着GABA浓度的增加,细胞迁移能力增强;5μmol/L及50 μmol/L baelofen作用后,亦可促进细胞迁移;而随着CGP35348浓度的增加,细胞穿膜数量减少(P<0.01).5μmol/L baclofen对细胞的迁移促进作用可被100 μmol/L的CGP35348逆转.结论 GABA及其B受体在SGC-7901细胞中的高表达可促进细胞迁移.%Objective To investigate the expressions of GABA, GAD65 and GABABR1 in SGC-7901 cells and the effects of cell migration. Methods RT-PCR, IF and Western blot were used to detect the expressions of GABA, GAD65 and GABABR1 in gastric cancer cells SGC-7901. SGC-7901 cells were cultured in transwell chamer for 24 h with different concentrations of GABA, baclofen and CGP35348. The number of cells which migrated through micropores and stayed on the outer bottom side of insert systems were observed and counted. Results The mRNA and protein expressions of GABA, GAD65 and GABRP in SGC-7901 cells were significantly higher than those in normal gastric mucosa (P<0. 01). GABA, GAD65 and GABRP protein levels were predominantly localized on the cell membrane and cell cytoplasm of SGC-7901. Compared with that of blank group, the migration capability of SGC-7901 was obviously increased by the higher concentration of GABA and 5, 50 μmol/L Baclofen, but significantly inhibited by 5, 50 (μmol/L Bicuculline (P <0. 01). The effect of 5 μmol/L Baclofen was blocked by pretreatment with 100 μmol/L CGP35348. Conclusions Higher expressions of GABA and GABRP in

  9. LTP of GABAergic synaptic transmission induced by hypoxia in mormy-rid cerebellum%缺氧使非洲电鱼小脑浦肯野细胞之间的GABA能突触传递长时程增强∗

    Institute of Scientific and Technical Information of China (English)

    张月萍; 何海燕; 李凌; 晋芙丽; 成胜权

    2016-01-01

    目的::研究急性缺氧对非洲电鱼小脑浦肯野细胞( Pc)之间γ-氨基丁酸( GABA)能突触传递的影响。方法:采用配对全细胞膜片钳记录法,记录电鱼小脑Pc-Pc之间的抑制性突触后电流( IPSC),观察急性缺氧对Pc-Pc IPSC的影响,以及GABAA 受体拮抗剂和谷氨酸α-氨基-3-羟基-5-甲基-4-异噁唑丙酸( AMPA)受体拮抗剂对Pc-Pc IPSC缺氧反应的调节作用。结果:短暂缺氧使 Pc-Pc IPSC 的幅值显著增大,表现为长时程增强( LTP );GABAA 受体拮抗剂荷包牡丹碱逆转了Pc-Pc IPSC的 LTP,表现为长时程抑制;AMPA受体拮抗剂6-氰基-7-硝基喹喔啉-2,3-二酮(CNQX)阻断了Pc-Pc IPSC的 LTP,表现为短时程增强。结论:急性缺氧引起电鱼小脑Pc之间的GABA能突触活动持续增强,GABAA 受体和AMPA受体共同介导这种反应,提示GABA能和谷氨酸能突触活动的平衡可能是电鱼以及其他缺氧耐受动物缺氧保护反应的关键机制。%AIM:To study the effects of acute hypoxia on GABAergic synaptic transmission between Purkinje cell ( Pc) and Pc of mormyrid cerebellum. METHODS:The technique of dual whole-cell patch clamp was used to record the inhibitory postsynaptic current ( IPSC) between two Pcs. The responses of Pc-Pc IPSC to acute hypoxic episode were observed. The effects of GABAA receptor antagonist and glutamate AMPA receptor antagonist on the hypoxic responses of Pc-Pc IPSC were also investigated. RESULTS:Brief exposure to hypoxia led to long-term potentiation ( LTP) of Pc-Pc IP-SC. The GABAA receptor antagonist bicuculline completely abolished this LTP, reversed to long-term depression, whereas an AMPA receptor inhibitor CNQX partially prevented the formation of the LTP induced by hypoxia, only displaying a short-term potentiation. CONCLUSION:Acute hypoxia induced LTP of Pc-Pc IPSC, which requires the contribution of both GABAA receptors and AMPA receptors, indicating that a balance between the GABAergic and

  10. Hippocampal CA1 lacunosum-moleculare interneurons: modulation of monosynaptic GABAergic IPSCs by presynaptic GABAB receptors.

    Science.gov (United States)

    Khazipov, R; Congar, P; Ben-Ari, Y

    1995-11-01

    1. Whole cell patch-clamp recordings were employed to characterize monosynaptic inhibitory postsynaptic currents (IPSCs) in morphologically and electrophysiologically identified interneurons located in the stratum lacunosum moleculare, or near the border of the stratum radiatum (LM interneurons), in the CA1 region of hippocampal slices taken from 3- to 4-wk-old rats. Monosynaptic IPSCs, evoked in the presence of glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM) and D-2-amino-5-phosphopentanoate (APV; 50 microM) were biphasic. The gamma-aminobutyric acid-A (GABAA) receptor antagonist, bicuculline (20 microM), blocked the fast IPSC, and the slow IPSC was blocked by the GABAB receptor antagonist CGP35348 (500 microM). 2. Monosynaptic IPSCs were evoked by electrical stimulation in several distant regions including the stratum radiatum, the stratum oriens, the stratum lacunosum-moleculare, and the molecular layer of dentate gyrus, suggesting an extensive network of inhibitory interneurons in the hippocampus. In paired recordings of CA1 interneurons and pyramidal cells, IPSCs were evoked by electrical stimulation of most of these distal regions with the exception of the molecular layer of dentate gyrus, which evoked an IPSC only in LM interneurons. 3. Frequent (> 0.1 Hz) stimulation depressed the evoked IPSCs. With a paired-pulse protocol, the second IPSC was depressed and the maximal depression (40-50%) was observed with an interstimulus interval of 100-200 ms. 4. The GABAB receptor agonist baclofen (1 microM) reduced the amplitude of evoked IPSCs and the paired-pulse depression of the second IPSC. The GABAB receptor antagonist CGP35348 (0.5-1 mM) had no significant effect on the amplitude of isolated IPSCs. However, CGP35348 reduced but did not fully block paired-pulse depression, suggesting that this depression is partly due to the activation of presynaptic GABAB receptors. 5. The paired-pulse depression depended on the level of

  11. 电刺激听神经诱发小鼠脑干神经元活动的光信号特征%Optical mapping of brainstem neuronal activity evoked by auditory electro-stimulation in rats

    Institute of Scientific and Technical Information of China (English)

    蔡竖平; 沈静; 土井直

    2005-01-01

    antagonist-bicuculline (BMI) on auditory evoked potential.DESIGN: Randomized controlled study.SETTING: Aging Medicine Research Institute of Military General Hospital and E.T.N Department of Japanese Kansai Medical University.MATERIALS:This study was conducted at E.T.N Department of Japanese Kansai Medical University from May to November 2002. Totally 100 ddy/ddy rats, with age of 0-5 days, clear grade, either gender were selected.METHODS: All rats were put to death after cryo-anaesthetized, and brainstem was cut into slices under frozen state so as to remain activity.One side of brainstem slice was connected with the residual end of untraumatic auditory nerve, and slices were put on organic glass plate with the bottom covered with siliac gel and fixed by tungsten filament of 30 μm wide. The residual end of untraumatic auditory nerve was stimulated by tungsten electrode, meanwhile the evoke potentials were recorded at cochlea nuclei and vestibule nuclei. In control group slices were incubated in artificial CSF for 20 minutes, which added with 50 μmol/L γ-GABA in experimental group for observing the influence of γ-GABA on brainstem auditory evoked signals; or alternatively incubated with 50 μmol/L g-GABA and 200 μmol/L for 20 minutes for observing the influence of BMI on brainstem auditory evoked signals. Stimulation was positive rectangle-shape impulse with electric current of 5 mA and frequency of 0.1 Hz, lasting period of 5 ms, the onset time of electric stimulation was set at 89.9 ms.Brain stem slices were stained with electric-sensitivity dye of NK3041 and 16×16 pixel silicon photoelectrical diode device was used to record the auditory nerve stimulation evoked optical signals.fluence of γ-GABA and BMI on optical signals.RESULTS: Totally 100 ddy/ddy rats enrolled in this study and 56 died Character of brainstem auditory electrical-stimulation evoked optical signals: Spatial-temporal changes of auditory evoked optical signals were recorded. The latency of optical