WorldWideScience

Sample records for biaxially textured ni

  1. The fabrication and high temperature stability of biaxially textured Ni tape by ion beam structure modification method

    International Nuclear Information System (INIS)

    Wu, K.; Wang, S.S.; Meng, J.; Han, Z.

    2004-01-01

    For the conventional rolling assisted biaxially textured metallic substrate (RABiTS) process, a large degree of cold rolling deformation and a subsequent high temperature annealing procedure are required to obtain adequately biaxially textured Ni tape. Recently, we have reported a newly developed process, named as ion beam structure modification (ISM), for fabricating biaxially textured Ni tape by use of low energy argon ion beam bombardment. In this paper, the biaxial texture of ISM processed Ni tape and its thermal stability at high temperatures are investigated. Results show that Ni tape processed under optimum ISM conditions, the (2 0 0) rocking curve FWHM is less than 5.7 deg. , and the (1 1 1) phi-scan FWHM is less than 7.5 deg. . High temperature annealing does not impair the biaxial-texture already developed in ISM processed Ni foils, although ISMs should not be regarded as a complete equilibrium process

  2. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  3. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  4. Biaxially textured articles formed by power metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  5. Epitaxial YBa2Cu3O7 on biaxially textured (001) Ni: An approach to high critical current density superconducting tapes

    International Nuclear Information System (INIS)

    Norton, D.P.; Goyal, A.; Budai, J.D.

    1997-01-01

    In-plane aligned, c-axis oriented YBa 2 Cu 3 O 7 (YBCO) films with superconducting critical current densities, J c , as high as 700,000 amperes per square centimeter at 77 kelvin have been grown on thermo-mechanically, rolled-textured (001) Ni tapes using pulsed-laser deposition. Epitaxial growth of oxide buffer layers directly on biaxially textured Ni, formed by recrystallization of cold-rolled pure Ni, enables the growth of 1.5 micrometer-thick YBCO films with superconducting properties that are comparable to those observed for epitaxial films on single crystal oxide substrates. This result represents a viable approach for producing long-length superconducting tapes for high current, high field applications at 77 kelvin

  6. Development of advanced NI alloy substrates with high percentage of cube texture for biaxially oriented YBCO coated tapes

    International Nuclear Information System (INIS)

    HongLi Suo; Yue Zhao; MangMang Gao; Min Liu; YongHua Zhu; PeiKuo Gao; JianHong Wang; Lin Ma; RuiFen Fan; Yuan Ji; MeiLing Zhou

    2009-01-01

    The improvement of mechanical and magnetic properties of textured NiW alloy tapes is considered as a main challenge for RABiTS substrates in coated conductors. The present paper summaries the successful development of several textured NiW substrate tapes with high W contents as well as advanced NiW composite substrates with high strength and reduced magnetization in our previous works. The fabrication process of these tapes and their characterizations are presented in detail. The results on the texture quality and mechanical properties as well as on the magnetic behaviour of these tapes are promising in view of the future application in coated conductor and constitute an alternative to the well known Ni5W alloy substrates. (au)

  7. MOD approach for the growth of epitaxial CeO2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors

    International Nuclear Information System (INIS)

    Bhuiyan, M S; Paranthaman, M; Sathyamurthy, S; Aytug, T; Kang, S; Lee, D F; Goyal, A; Payzant, E A; Salama, K

    2003-01-01

    We have grown epitaxial CeO 2 buffer layers on biaxially textured Ni-W substrates for YBCO coated conductors using a newly developed metal organic decomposition (MOD) approach. Precursor solution of 0.25 M concentration was spin coated on short samples of Ni-3 at%W (Ni-W) substrates and heat-treated at 1100 C in a gas mixture of Ar-4%H 2 for 15 min. Detailed x-ray studies indicate that CeO 2 films have good out-of-plane and in-plane textures with full-width-half-maximum values of 5.8 deg. and 7.5 deg., respectively. High temperature in situ XRD studies show that the nucleation of CeO 2 films starts at 600 C and the growth completes within 5 min when heated at 1100 C. SEM and AFM investigations of CeO 2 films reveal a fairly dense microstructure without cracks and porosity. Highly textured YSZ barrier layers and CeO 2 cap layers were deposited on MOD CeO 2 -buffered Ni-W substrates using rf-magnetron sputtering. Pulsed laser deposition (PLD) was used to grow YBCO films on these substrates. A critical current, J c , of about 1.5 MA cm -2 at 77 K and self-field was obtained on YBCO (PLD)/CeO 2 (sputtered)/YSZ (sputtered)/CeO 2 (spin-coated)/Ni-W

  8. Method for forming biaxially textured articles by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  9. Development of biaxially textured buffer layers on rolled-Ni substrates for high current YBa2Cu3O7-y coated conductors

    International Nuclear Information System (INIS)

    Paranthaman, M.; Goyal, A.; Norton, D.P.

    1996-01-01

    This paper describes the development of 3 buffer layer architectures with good biaxial textures on rolled-Ni substrates using vacuum processing techniques. The techniques include pulsed laser ablation, e-beam evaporation, dc and rf magnetron sputtering. The first buffer layer architecture consists of an epitaxial laminate of Ag/Pd(Pt)/Ni. The second buffer layer consists of an epitaxial laminate of CeO 2 /Pd/Ni. The third alternative buffer layer architecture consists of an epitaxial laminate of YSZ/CeO 2 /Ni. The cube (100) texture in the Ni was produced by cold rolling followed by recrystallization. Crystallographic orientations of the Pd, Ag, CeO 2 , and YSZ films grown were all (100). We recently demonstrated a critical- current density of 0.73x10 6 A/cm 2 at 77 K and zero field on 1.4 μm thick YBa 2 Cu 3 O 7-y (YBCO) film. This film was deposited by pulsed laser ablation on a YBCO/YSZ/CeO 2 /Ni substrate

  10. Formation of biaxial texture in metal films by selective ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States); Norton, D.P. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States)]. E-mail: dnort@mse.ufl.edu; Selvamanickam, Venkat [IGC-SuperPower, LLC, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2006-05-15

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature.

  11. Formation of biaxial texture in metal films by selective ion beam etching

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2006-01-01

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature

  12. Ion-beam texturing of uniaxially textured Ni films

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2005-01-01

    The formation of biaxial texture in uniaxially textured Ni thin films via Ar-ion irradiation is reported. The ion-beam irradiation was not simultaneous with deposition. Instead, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux, which differs from conventional ion-beam-assisted deposition. The uniaxial texture is established via a nonion beam process, with the in-plane texture imposed on the uniaxial film via ion beam bombardment. Within this sequential ion beam texturing method, grain alignment is driven by selective etching and grain overgrowth

  13. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  14. Composite biaxially textured substrates using ultrasonic consolidation

    Science.gov (United States)

    Blue, Craig A; Goyal, Amit

    2013-04-23

    A method of forming a composite sheet includes disposing an untextured metal or alloy first sheet in contact with a second sheet in an aligned opposing position; bonding the first sheet to the second sheet by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form an untextured intermediate composite sheet; and annealing the untextured intermediate composite sheet at a temperature lower than a primary re-crystallization temperature of the second sheet and higher than a primary re-crystallization temperature of the first sheet to convert the untextured first sheet into a cube textured sheet, wherein the cube texture is characterized by a .phi.-scan having a FWHM of no more than 15.degree. in all directions, the second sheet remaining untextured, to form a composite sheet.

  15. Electrically conducting oxide buffer layers on biaxially textured nickel alloy tapes by reel-to-reel MOCVD process

    International Nuclear Information System (INIS)

    Stadel, O; Samoilenkov, S V; Muydinov, R Yu; Schmidt, J; Keune, H; Wahl, G; Gorbenko, O Yu; Korsakov, I E; Melnikov, O V; Kaul, A R

    2006-01-01

    Reel-to-reel MOCVD process for continuous growth of electrically conducting buffer layers on biaxially textured Ni5W tapes has been developed. The new buffer layer architechture is presented: 200 nm (La, Ba) 2 CuO 4 /40 nm (La, Ba)MnO 3 /Ni5W. Constituting layers with high structural quality have been grown on moving tapes (in plane FWHM ≤ 6 0 and out of plane FWHM ≤ 3 0 )

  16. Creep modeling of textured zircaloy under biaxial stressing

    International Nuclear Information System (INIS)

    Adams, B.L.; Murty, K.L.

    1984-01-01

    Anisotropic biaxial creep behavior of textured Zircaloy tubing was modeled using a crystal-plastic uniform strain-rate upper-bound and a uniform stress lower-bound approach. Power-law steady-state creep is considered to occur on each crystallite glide system by fixing the slip rate to be proportional to the resolved shear stress raised to a power. Prismatic, basal, and pyramidal slip modes were considered. The crystallographic texture is characterized using the orientation distribution function determined from a set of three pole-figures. This method is contrasted with a Von-Mises-Hill phenomenological model in comparison with experimental data obtained at 673 deg K. The resulting creep-dissipative loci show the importance of the basal slip mode on creep in heavily cold-worked cladding, whereas prismatic slip is more important for the recrystallized materials. (author)

  17. Development and evolution of biaxial texture of rolled nickel tapes by ion beam bombardment for high Tc coated conductors

    International Nuclear Information System (INIS)

    Wang, S.S.; Wu, K.; Shi, K.; Liu, Q.; Han, Z.

    2004-01-01

    High quality YBa 2 Cu 3 O 7-x films on metallic substrates with high critical current densities well over 10 6 A/cm 2 can be prepared by the rolling assisted biaxially textured substrates (RABiTS) method. Nickel or its alloys have been used as biaxially textured substrates formed through a specific rolling and high temperature annealing procedures. In this paper, we report a newly developed process for developing biaxial texture in rolled Ni tape by argon ion beam bombardment. It is named the ion-beam structure modification (ISM) process. In the ISM processed Ni foils, X-ray diffraction ω scans showed the full width-half maximum (FWHM) value of the (2 0 0) peak was 5.7 deg. . And the electron back scattering diffraction (EBSP) analysis based on scanning electron microscopy showed good {1 0 0} cubic orientation and the mean grain size was determined as about 25 μm. The texture evolution of rolled Ni foils during ISM process is reported also. For ISM process, local temperature elevation and distribution arises from the ion bombardment, coupled with anisotropic incident ion penetration and propagation as a result of channeling effects in the metal lattice, are expected to play the major roles in the development of grain reorientation in the Ni foil. Due to the simplicity and efficiency of the ISM process, the technique shows a great promise for application in the industrial scale production of long-lengths of superconductor tapes

  18. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality

    Science.gov (United States)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa M.; Grason, Gregory M.

    2017-06-01

    Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

  19. Sol-gel deposition of buffer layers on biaxially textured metal substances

    Science.gov (United States)

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  20. Fabrication of High Current YBa2Cu3O7-y Coated Conductors Using Rolling-Assisted Biaxially Textured Substrates

    International Nuclear Information System (INIS)

    Christen, D.K.; Feenstra, R.; Kroeger, D.M.; Lee, D.F.; List, F.A.; Martin, P.M.; Norton, D.P.; Paranthaman, M.; Park, C.; Royal, A.; Specht, E.D.; Verebelyi, D.T.

    1999-01-01

    High critical current YBa 2 Cu 3 O 7-y (referred to as YBCO) coated conductors were fabricated with a layer sequence of YBCO/YSZ/CeO 2 /Ni. The cube (100) texture in the starting Ni substrates was obtained by cold rolling followed by recrystallization. A thin CeO 2 (Cerium Oxide) layer with a thickness of 100-200 was grown epitaxially on the biaxially textured-Ni substrates using an e-beam evaporation technique. This was followed by the growth of a thick ( 2 film had a dense microstructure. The microstructure of the e-beam YSZ film was porous whereas the sputtered YSZ film was dense. The YBCO films were grown by pulsed laser deposition on both e-beam and sputtered YSZ layers. A transport critical current density of 1 x l0 6 A/cm 2 at 77 K was obtained for 0.8 m thick YBCO Rims on both YSZ surfaces in zero field. To demonstrate the quality and compatibility of the e-beam CeO 2 layers; YBCO films were also grown on CeO 2 -buffered YSZ (100) single crystal substrates using e-beam co-evaporated Y-BaF 2 -Cu precursors followed by a post-annealing process. A transport critical current density of over 1 x lO 6 A/cm 2 at 77 K was obtained on a 0.3 m thick YBCO film in zero field

  1. Fabrication of the cube textured NiO buffer layer by line-focused infrared heating for coated conductor application

    International Nuclear Information System (INIS)

    Chung, Jun-Ki; Kim, Won-Jeong; Tak, Jinsung; Kim, Cheol Jin

    2007-01-01

    Epitaxial growth of NiO on the bi-axially textured Ni-3 at.%W (Ni-3W) substrate as seed layer for coated conductor were studied. The bi-axially textured NiO was formed on the Ni-3W tapes using a line-focused infrared heater by oxidizing the surface of the substrate at 800-950 deg. C for 15-120 s in oxygen atmosphere. The thickness of the NiO layer could be controlled by changing heat-treatment, which was estimated as approximately 200-500 nm in the cross-sectional SEM micrographs of the NiO/Ni template. This thickness is enough to block the diffusion of the Ni in the substrate to the superconducting layer. The samples showed strong texture development of NiO layer. The sample oxidized at 900 deg. C with the tape transferring speed of 30 mm/h exhibited ω-scan full width at half maximum (FWHM) values for Ni-3W(2 0 0) and NiO(2 0 0) were 3.97 deg., and 3.67 deg., and φ-scan FWHM values for Ni-3W(1 1 1) and NiO(1 1 1) were 9.58 deg., and 8.79 deg., respectively. Also, the (1 1 1) pole-figure of the NiO buffer layer showed the good symmetry of the four peaks, securing the epitaxial growth of the buffer layers on the NiO layer. Also NiO layer exhibited root-mean-square roughness value of 39 nm by AFM (10 x 10 μm) investigation

  2. High temperature growth kinetics and texture of surface-oxidised NiO for coated superconductor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kursumovic, A; Tomov, R; Huehne, R; Glowacki, B A; Everts, J E; Tuissi, A; Villa, E; Holzapfel, B

    2003-03-15

    Thick NiO films were grown in air, on biaxially textured (0 0 1) Ni and as-rolled Ni tapes, at temperatures from 1050 to 1350 deg. C. Ni diffusion through the NiO film mainly contributes to the growth since is much faster than oxygen diffusion and occurs by a vacancy diffusion mechanism in the lattice at high temperatures. Parabolic growth kinetics were found for both NiO film thickness and grain growth, and compared with the literature data. Competitive growth of (1 1 1) and (0 0 1) oriented grains establishes the final NiO orientation at temperatures below 1250 deg. C, while at higher temperatures leakage diffusion at/towards grain boundaries, grain coarsening and (1 1 0) oriented grains disrupt the (1 0 0) texture. Hence, development of epitaxy of NiO on textured Ni tapes was found to be largely due to growth kinetics depending on both, time and temperature. We report here a systematic study of the microstructure and kinetics of formation of textured NiO substrate for application as a buffer layer in coated conductor technology.

  3. Effect of grain shape and texture on equi-biaxial creep of stress relieved and recrystallized Zircaloy-4

    International Nuclear Information System (INIS)

    Murty, K.L.; Tanikella, B.V.; Earthman, J.C.

    1994-01-01

    Zirconium alloys are extensively used in various types of fission reactors both light and heavy water types for different applications, examples being thin-walled tubing to clad radioactive fuel, grids, channels in boiling water reactors (BWRs) as well as pressure and calandria tubes in pressurized heavy water reactors (PHWRs). Biaxial creep behaviors of stress relieved and recrystallized thin-walled tubing of Zircaloy-4 are considered under equal hoop and axial stresses by internal pressurization superimposed with axial load. Both hoop and axial strains were monitored and the ratio of the strain rates along the hoop to axial directions is considered to represent the degree of anisotropy. The slightly stronger hoop direction of the recrystallized material became weaker compared to the axial direction following cold work and a stress-relief anneal. Crystallographic texture was considered in terms of x-ray pole figures from which the crystallite orientation distribution functions (CODF) were derived. A crystal plasticity model based on slip on representative systems was combined with the CODF to predict the creep anisotropy. It was found that the textural differences between the recrystallized and stress-relieved material is believed to invoke anisotropic grain boundary sliding leading to stress enhancement in the hoop direction. This stress enhancement is shown to account for the observed differences in creep behavior between the present equiaxed and columnar grain structures

  4. Texture memory and strain-texture mapping in a NiTi shape memory alloy

    International Nuclear Information System (INIS)

    Ye, B.; Majumdar, B. S.; Dutta, I.

    2007-01-01

    The authors report on the near-reversible strain hysteresis during thermal cycling of a polycrystalline NiTi shape memory alloy at a constant stress that is below the yield strength of the martensite. In situ neutron diffraction experiments are used to demonstrate that the strain hysteresis occurs due to a texture memory effect, where the martensite develops a texture when it is cooled under load from the austenite phase and is thereafter ''remembered.'' Further, the authors quantitatively relate the texture to the strain by developing a calculated strain-texture map or pole figure for the martensite phase, and indicate its applicability in other martensitic transformations

  5. Development of cube textured Ni-5 at.%W alloy substrates for coated conductor application using a melting process

    International Nuclear Information System (INIS)

    Zhao Yue; Suo Hongli; Liu Min; Liu Danmin; Zhang Yingxiao; Zhou Meiling

    2006-01-01

    Biaxially textured Ni-5 at.%W substrates have been prepared by cold rolling, followed by three different annealing routes. In this paper, the processes of melting Ni and W metals, flat rolling, various annealing methods are described in detail. The Ni-5 at.%W tapes annealed under either high vacuum or flowing Ar (7% H 2 ) gas were characterized by X-ray pole figures, ODF, EBSD as well as AFM analysis. The texture analysis indicated that as fabricated tapes have a sharp cube texture formed after annealing at a wide temperature range of 800-1100 o C. The high quality of cube orientation on tapes was obtained after a two-step annealing (TSA), where the percentage of the cube texture component was as high as 93.5% within a misorientation angle smaller than 8 o from EBSD analysis. Furthermore, it was also observed that the number of twin boundaries in this tape decreased with respect to that of tapes annealed both in vacuum and one-step gas annealing. From AFM on 1 μm 2 areas, it was concluded that the roughness (RMS) on the tape surface reached 0.98 nm

  6. Mechanical properties of highly textured Cu/Ni multilayers

    International Nuclear Information System (INIS)

    Liu, Y.; Bufford, D.; Wang, H.; Sun, C.; Zhang, X.

    2011-01-01

    We report on the synthesis of highly (1 1 1) and (1 0 0) textured Cu/Ni multilayers with individual layer thicknesses, h, varying from 1 to 200 nm. When, h, decreases to 5 nm or less, X-ray diffraction spectra show epitaxial growth of Cu/Ni multilayers. High resolution transmission electron microscopy studies show the coexistence of nanotwins and coherent layer interfaces in highly (1 1 1) textured Cu/Ni multilayers with smaller h. Hardnesses of multilayer films increase with decreasing h, approach a maximum at h of a few nanometers, and show softening thereafter at smaller h. The influence of layer interfaces as well as twin interfaces on strengthening mechanisms of multilayers and the formation of twins in Ni in multilayers are discussed.

  7. Ab initio study of Co and Ni under uniaxial and biaxial loading and in epitaxial overlayers

    Czech Academy of Sciences Publication Activity Database

    Zelený, Martin; Legut, Dominik; Šob, Mojmír

    2008-01-01

    Roč. 78, č. 22 (2008), 224105/1-224105/11 ISSN 1098-0121 R&D Projects: GA ČR GD106/05/H008; GA AV ČR IAA1041302; GA MŠk OC 147 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio calculations * epitaxial overlayers * uniaxial and biaxial loading Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  8. Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Lacroute, Y.; Markey, L.; Salazar, M.; Vignal, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2011-05-15

    Research highlights: > Surface strains measured using nanogauge were compared to the texture obtained by EBSD. > Statistics of the principal strain discern the grains according to the Schmid factor. > Strain hotspots were localized near a triple junction of alloy 600 under tensile loading. > Asymetrical profile of the GB strains is a criterion for surface cracking initiation. - Abstract: A key element for analyzing the crack initiation in strained polycrystalline alloys is the local quantification of the surface strain distribution according to the grain texture. Using electron backscattered diffraction, the local microstructure was determined to both localize a triple junction and deduce the local Schmid factors. Kernel average misorientation (KAM) was also used to map the areas of defect concentration. The maximum principal strain and the in-plane shear strain were quantified using the biaxial nanogauge. Distortions of the array of nanodots used as spot markers were analyzed near the triple junction. The crystallographic orientation and the surface strain were then investigated both statistically for each grain and locally at the grain boundaries. The superimposition of microstructure and strain maps allows the high strain gradient (reaching 3-fold the applied strain) to be localized at preferential grain boundaries near the triple junction. The Schmid factors and the KAM were compared to the maximum principal strain and the in-plane shear strain respectively. The polycrystalline deformation was attributable first to the rotation of some grains, followed by the elongation of all grains along their preferential activated slip systems.

  9. Biaxial magnetic grain alignment

    International Nuclear Information System (INIS)

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  10. Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom

    Science.gov (United States)

    Christen, David K.; He, Qing

    2001-01-01

    The present invention provides a biaxially textured laminate article having a polycrystalline biaxially textured metallic substrate with an electrically conductive oxide layer epitaxially deposited thereon and methods for producing same. In one embodiment a biaxially texture Ni substrate has a layer of LaNiO.sub.3 deposited thereon. An initial layer of electrically conductive oxide buffer is epitaxially deposited using a sputtering technique using a sputtering gas which is an inert or forming gas. A subsequent layer of an electrically conductive oxide layer is then epitaxially deposited onto the initial layer using a sputtering gas comprising oxygen. The present invention will enable the formation of biaxially textured devices which include HTS wires and interconnects, large area or long length ferromagnetic and/or ferroelectric memory devices, large area or long length, flexible light emitting semiconductors, ferroelectric tapes, and electrodes.

  11. Study on the formation of cubic texture in Ni-7 at.% W alloy substrates by powder metallurgy routes

    DEFF Research Database (Denmark)

    Zhao, Yue; Suo, HongLi; Zhu, YongHua

    2009-01-01

    One of the main challenges for coated conductor applications is to produce sharp cubic textured alloy substrates with high strength and low magnetism. In this work, the cubic textured Ni–7 at.% W substrates were prepared from different powder metallurgy ingots by rolling-assisted biaxially textured...... substrate processing. The fabrication processes of cubic texture in the Ni–7 at.% W tapes by two powder metallurgy routes are described in detail. Through the optimized process, full width at half maximum values of 6.7° and 5.0° were obtained, as estimated by X-ray (1 1 1) phi scan and (2 0 0) rocking curve...

  12. Texture and microstructure analysis of epitaxial oxide layers prepared on textured Ni-12wt%Cr tapes

    Energy Technology Data Exchange (ETDEWEB)

    Huehne, R; Kursumovic, A; Tomov, R I; Glowacki, B A [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Holzapfel, B [Institut fuer Festkoerper- und Werkstoffforschung, Helmholtzstrasse 20, 01069 Dresden (Germany); Evetts, J E [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom)

    2003-05-07

    Oxide layers for the preparation of YBa{sub 2}Cu{sub 3}O{sub 7-x} coated conductors were grown on highly textured Ni-12wt%Cr tapes in pure oxygen using surface oxidation epitaxy at temperatures between 1000 deg. C and 1300 deg. C. Microstructural investigations revealed a layered oxide structure. The upper layer consists mainly of dense cube textured NiO. This is followed by a porous layer containing NiO and NiCr{sub 2}O{sub 4} particles. A detailed texture analysis showed a cube-on-cube relationship of the NiCr{sub 2}O{sub 4} spinel to the metal substrate. Untextured Cr{sub 2}O{sub 3} particles in a nickel matrix were found in a third layer arising from internal oxidation of the alloy. A high surface roughness and mechanical instability of the oxide were observed, depending on oxidation temperature and film thickness. However, mechanically stable oxide layers have been prepared using an additional annealing step in a protective atmosphere. Additionally, mechanical polishing or a second buffer layer, which grows with a higher smoothness, may be applied to reduce the surface roughness for coated conductor applications.

  13. Fabrication of the Textured Ni-9.3at.%W Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Suo, H. L.; Grivel, Jean-Claude

    2011-01-01

    It is difficult to obtain a sharp cube texture in the Ni-9.3at.% W substrate used for coated conductors due to its low stacking fault energy. In this paper, the traditional cold rolling procedure was optimized by introducing an intermediate recovery annealing. The deformation texture has been imp...

  14. Fabrication of a Textured Non-Magnetic Ni-12at.%V Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Grivel, Jean-Claude; Suo, H. L.

    2011-01-01

    Ni-12at.%V alloy is a promising candidate for non-magnetic cube textured metallic substrates used for high temperature coated conductors. In this work, a textured Ni-12at.%V substrate has been fabricated by powder metallurgy route. After cold rolling and recrystallization annealing, a cube texture...

  15. Development of cube textured Ni-W alloy substrates used for coated conductors

    DEFF Research Database (Denmark)

    Suo, Hongli; Ma, Lin; Gao, Mangmang

    2014-01-01

    It is considered as a challenge for RABiTS route to get cube textured Ni-W alloy substrates with high mechanical and magnetic properties for coated conductors. The works of our group in recent years are summarized about different Ni-W substrates with high W content and composite tapes made by RABiTS...

  16. Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy

    Science.gov (United States)

    Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania

    2018-03-01

    In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.

  17. Microstructure and texture development during high-strain torsion of NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Kloeden, B.

    2006-07-01

    In this study polycrystalline NiAl has been subjected to torsion deformation. The deformation, microstructure and texture development subject to the shear strain are studied by different techniques (Electron Back-Scatter and High Energy Synchrotron Radiation). Beside the development of microstructure and texture with shear strain, the effect of an initial texture as well as the deformation temperature on the development of texture and microstructure constitute an important part of this study. Therefore, samples with three different initial textures were deformed in the temperature range T=700 K-1300 K. The shear stress-shear strain curves are characterized by a peak at low strains, which is followed by softening and a steady state at high strains. Grain refinement takes place for all samples and the average grain size decreases with temperature. For temperatures T>1000 K, discontinuous dynamic recrystallization occurs, by which new grains form by nucleation and subsequent growth. The texture is characterized by two components, {l_brace}100{r_brace}<100> (cube,C) and {l_brace}110{r_brace}<100> (Goss,G). Torsional creep of NiAl is characterized by a stress exponent, which depends on temperature and an activation energy, which is stress dependent. The Swift effect, due to which samples change their axial dimension during torsion without applied axial stress, is observed for NiAl. (orig.)

  18. Finite element simulation of texture evolution and Swift effect in NiAl under torsion

    Science.gov (United States)

    Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht

    2007-09-01

    The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.

  19. Microstructure, texture and magnetic properties of Ni-Cu-W substrates for coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Mishin, Oleg; Andersen, Niels Hessel

    2013-01-01

    concentrations of copper, increasing the Cu-content to 10 at% and 15 at% leads to increased frequencies of annealing twins in the cube-textured matrix. It is suggested that the (Ni 95W5)100-xCux alloy with x=5 at% Cu may be a good candidate material for using as a substrate for coated conductors. © 2012 Elsevier...

  20. Pulsed laser deposition of epitaxial YBa{sub 2}Cu{sub 3}O{sub 7-y}/oxide multilayers onto textured NiFe substrates for coated conductor applications

    Energy Technology Data Exchange (ETDEWEB)

    Tomov, R I [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Kursumovic, A; Kang, D -J; Glowacki, B A; Evetts, J E [Department of Materials Science and IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Majoros, M [IRC in Superconductivity, University of Cambridge, Cambridge (United Kingdom)

    2002-04-01

    Pulsed laser depositions of double-buffer and triple-buffer YBa{sub 2}Cu{sub 3}O{sub 7-y} (YBCO)/Y{sub 2}O{sub 3}(YSZ)/CeO{sub 2} heterostructures have been performed in situ onto commercially available biaxially textured NiFe 50%/50% tape. The deposition in the forming gas (4% H{sub 2}/Ar) from a CeO{sub 2} target and the deposition in vacuum from a CeO{sub 2}:Pd composite target have been explored as two possible routes for cube-on-cube growth of the first buffer layer. The influence of the critical processing parameters on the texture is investigated and some of the issues involved in the reduction of NiO (111) and the formation of cube-on-cube NiO (200) growth are discussed. X-ray diffraction has been used for texture evaluation of the substrate and subsequent deposited layers. The substrate-buffer interface region has been studied by focused ion beam cross section electron microscopy. Both the buffers and YBCO layers show biaxial alignment with {omega} and {phi} scans having optimum YBCO full width at half maximum (FWHM) values of 4.3 deg. and 8.8 deg., respectively. The morphology has been characterized using atomic force microscopy and scanning electron microscopy. The value of T{sub c} (onset) has been measured at 90 K ({delta}T{sub c}=10 K). The critical current density, J{sub c}, has been measured by transport measurements and magnetic measurements performed in a dc SQUID magnetometer. (author)

  1. Epitaxial YBa2Cu3O7 films on rolled-textured metals for high temperature superconducting applications

    International Nuclear Information System (INIS)

    Norton, D.P.; Park, C.; Prouteau, C.

    1998-04-01

    The epitaxial growth of high temperature superconducting (HTS) films on rolled-textured metal represents a viable approach for long-length superconducting tapes. Epitaxial, 0.5 microm thick YBa 2 Cu 3 O 7 (YBCO) films with critical current densities, J c , greater than 1 MA/cm 2 have been realized on rolled-textured (001) Ni tapes with yttria-stabilized zirconia (YSZ)/CeO 2 oxide buffer layers. This paper describes the synthesis using pulsed-laser deposition (PLD) of epitaxial oxide buffer layers on biaxially-textured metal that comprise the so-called rolling-assisted biaxially-textured substrates (RABiTs trademark). The properties of the buffer and YBa 2 Cu 3 O 7 films on rolled-textured Ni are discussed, with emphasis given to the crystallographic and microstructural properties that determine the superconducting properties of these multilayer structures

  2. Structural and electrical characteristics of highly textured oxidation-free Ru thin films by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Tian, H.-Y.; Wang Yu; Chan, H.-L-W.; Choy, C.-L.; No, K.-S.

    2005-01-01

    Textured Ru thin films (∼120 nm) were deposited on Si and rolling-assisted biaxially textured Ni substrates by a DC magnetron sputtering technique with a two-step process. The biaxially textured pure Ni substrates with a thickness of 80 μm were fabricated by rolling followed by recrystallization. The alignments and the crystallinity of Ru films were analyzed by pole figures, as well as X-ray diffraction (θ - 2θ) analysis. The highly (0 0 2) oriented Ru films were fabricated on Si substrates, and four-fold symmetric Ru films on Ni(2 0 0) substrates. The resistivities of pure metallic Ru films were 20-80 μΩ cm for Ru on Si and 16-40 μΩ cm on Ni, respectively, which is sufficiently low to be used as a buffer layer in superconductor tapes or electrode materials in capacitor dielectrics

  3. Fabrication of Ni-5 at. %W Long Tapes with CeO2 Buffer Layer by Reel-to-Reel Method

    DEFF Research Database (Denmark)

    Ma, Lin; Tian, Hui; Yue, Zhao

    2015-01-01

    A 10-m-long homemade textured Ni-5at.%W (Ni5W) long tape with a CeO2 buffer layer has been prepared successfully by means of rolling-assisted biaxially textured substrate (RABiTS) route followed by a chemical solution deposition method in a reel-to-reel manner. Globally, the Ni5W substrate and CeO2...

  4. Texture development and anisotropic behaviour of a TI-44.2NI4.9CU (AT.%) shape memory alloy

    NARCIS (Netherlands)

    Zhao, L.

    1997-01-01

    The objective of this work was to determine the relationship between texture development and anisotropy of shape memory properties. A commercial Ti-45Ni-5Cu (at.%) shape memory alloy was selected. Textures were developed by controlling rolling parameters, such as rolling temperature, intermediate

  5. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Directory of Open Access Journals (Sweden)

    Aparna Sankar

    2018-05-01

    Full Text Available Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62 similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2 Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ∼1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC respectively. Field dependent magnetization (M-H at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ∼27 Jkg-1K-1 and ∼24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ∼440 J/kg and ∼432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  6. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Science.gov (United States)

    Sankar, Aparna; Chelvane, J. Arout; Morozkin, A. V.; Nigam, A. K.; Quezado, S.; Malik, S. K.; Nirmala, R.

    2018-05-01

    Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62) similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD) experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2) Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ˜1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC) respectively. Field dependent magnetization (M-H) at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm) close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ˜27 Jkg-1K-1 and ˜24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ˜440 J/kg and ˜432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF) effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  7. Effect of surface shear on cube texture formation in heavy cold-rolled Cu-45 at%Ni alloy substrates

    DEFF Research Database (Denmark)

    Tian, Hui; Suo, Hongli; Liang, Yaru

    2015-01-01

    Two types of Cu-45 at%Ni alloy thin tapes with and without surface shear were obtained by different heavy cold rolling processes. The deformation and recrystallization textures of the two tapes were thoroughly investigated by electron back scattering diffraction technique. The results showed...... that a shear texture mainly covered the surface of the heavy deformed tapes because of the fraction between the surface of rolling mills and the thin tapes when the rolling force strongly reduced at high strain, which significantly reduced the fraction of rolling texture on the surface of the Cu-45at %Ni alloy...

  8. Buffer layers grown by replicating the texture of an original template tape

    International Nuclear Information System (INIS)

    Lim, Sunme; Yoo, Jaeun; Park, Chan; Youm, Dojun

    2007-01-01

    We propose a fabrication method of the buffer layers, whose biaxial textures are replicated from an original template tape. The purpose of this method is economical texturing process for coated conductors. At first we prepared a biaxially textured metal tape (TM-tape). Then a sacrifice layer (SA), a buffer layer (BU) and a thick metallic layer (SM) were sequentially deposited on the TM-tape. SA-layer and BU-layer were deposited epitaxially to copy the texture of the TM-tape. SA-layer was dissoluble in water. SM-layer with the textured BU-layer was separated and could be used for a supporting tape for the further growth of a superconducting layer. In this way, it is possible to reuse the original textured TM-tape many times. In this paper, we report the results of our experiments, in which we used a biaxially Ni tape, BaO film, STO film, and a thick Ag film for TM-tape, SA-layer, BU-layer, and SM-layer, respectively. The Ag/STO layers were successfully separated form the Ni tape by dissolving the BaO layer in water. The texture quality of the STO layer was well secured after the separation

  9. Experimental investigation on transformation, reorientation and plasticity of Ni47Ti44Nb9 SMA under biaxial thermal–mechanical loading

    International Nuclear Information System (INIS)

    Chen, Xiang; Peng, Xianghe; Chen, Bin; Han, Jia; Zeng, Zhongmin; Hu, Ning

    2015-01-01

    The constitutive behavior of shape memory alloy (SMA) Ni 47 Ti 44 Nb 9 specimens subjected to different thermal–mechanical loading histories was investigated experimentally. This involved the application of strain by different proportional or non-proportional paths in the biaxial ϵ−γ plane at −60 °C (M s + 30 °C), the interaction between stress-induced martensitic transformation, reorientation and plastic deformation, temperature-induced reverse martensitic transformation and strain recovery. The results show that the equivalent stress–strain curves, as well as the pure shear and pure tensile curves, depend strongly on the thermal–mechanical loading history. For specimens deformed previously to the same equivalent strains by different paths, the equivalent recovery strains after unloading are similar, as are the spans between the reverse transformation start and final temperatures. The activated martensite variants depend strongly on loading history. The recovery of the axial strain component and that of the shear strain component due to reverse transformation occur synchronously and develop along the shortest path in the ϵ−γ plane. The results may provide some new and useful information on the effects of transformation, plasticity and loading paths for further studies and applications of such materials. (paper)

  10. A Study of CO2 Methanation over Ni-Based Catalysts Supported by CNTs with Various Textural Characteristics

    OpenAIRE

    Yanyan Feng; Wen Yang; Wei Chu

    2015-01-01

    This work studied the influence of textural characteristics of CNTs on catalytic performance of Ni/CNTs for CO2 methanation. The CNTs supports were prepared by chemical vapor deposition method using Ni/MgO catalysts, and acetonitrile and ethanol were used as carbon sources, respectively. The Ni/CNTs catalysts were prepared via impregnation method and characterized by X-ray diffraction (XRD), N2 adsorption/desorption, and temperature-programmed reduction (H2-TPR) techniques. The results indica...

  11. Improvement of in-plane alignment for surface oxidized NiO layer on textured Ni substrate by two-step heat-treatment

    International Nuclear Information System (INIS)

    Hasegawa, Katsuya; Izumi, Toru; Izumi, Teruo; Shiohara, Yuh; Maeda, Toshihiko

    2004-01-01

    Epitaxial growth of NiO on a textured Ni substrate as a template for an REBa 2 Cu 3 O y coated conductor was investigated. Highly in-plane aligned NiO layers were successfully fabricated using a new process of a two-step heat-treatment for oxidation. In the first-step, a highly in-plane aligned thin NiO layer was formed on a textured Ni substrate under a low driving force of oxidation. Then, in the second-step, a thick NiO layer was grown at a higher rate with maintaining its high in-plane grain alignment, as if the first NiO layer acts as a seed crystal layer. Further, growth rates and microstructures of the NiO layers were studied comparatively in the cases with and without the first layer. It was found that the oxidation rate in the case with the first layer was lower than that without the first layer. The microstructure observation revealed that the NiO without the first layer was poly-crystalline with many grain-boundaries. On the other hand, in the case with the first layer, grain-boundaries of the NiO were hardly observed. Hence, the reason for this difference of the growth rate and the microstructure of the NiO layers were discussed in view of a diffusivity path

  12. Structural and textural study of Ni and/or Co in a common molybdate lattice as catalysts

    Directory of Open Access Journals (Sweden)

    Boukhlouf H.

    2013-09-01

    Full Text Available This work deals with the search for new molybdate catalyst formulations, which are known to be active in light alkane oxidative dehydrogenation, a process which could be replace in the near future the common steam cracking and pure dehydrogenation processes currently used for the production of alkenes. Co, Ni and mixed Ni-Co molybdates of various compositions are prepared by a modified coprecipitation procedure from metal nitrates and ammonium heptamolybdate. Their structural and textural properties were studied by XRD, Raman, B.E.T and XPS. Textural and structural properties of the materials are correlated to the composition.

  13. A Study of CO2 Methanation over Ni-Based Catalysts Supported by CNTs with Various Textural Characteristics

    Directory of Open Access Journals (Sweden)

    Yanyan Feng

    2015-01-01

    Full Text Available This work studied the influence of textural characteristics of CNTs on catalytic performance of Ni/CNTs for CO2 methanation. The CNTs supports were prepared by chemical vapor deposition method using Ni/MgO catalysts, and acetonitrile and ethanol were used as carbon sources, respectively. The Ni/CNTs catalysts were prepared via impregnation method and characterized by X-ray diffraction (XRD, N2 adsorption/desorption, and temperature-programmed reduction (H2-TPR techniques. The results indicated that the textural characteristics of CNTs supports significantly impacted on the catalytic performance of Ni/CNTs. The catalyst Ni/CNTs-E (CNTs using ethanol as carbon source had good reducibility, high specific surface area, and moderate defects, resulting in higher CO2 conversion and CH4 yield, followed by Ni/CNTs-C (commercial CNTs and Ni/CNTs-A (CNTs using acetonitrile as carbon source. Based on Arrhenius formula, activation energies of the catalysts were calculated and were found decreased for Ni/CNTs-A and Ni/CNTs-E.

  14. Cube Texture Formation of Cu-33at.%Ni Alloy Substrates and CeO2 Buffer Layer for YBCO Coated Conductors

    DEFF Research Database (Denmark)

    Tian, Hui; Li, Suo Hong; Ru, Liang Ya

    2014-01-01

    Cube texture formation of Cu-33 at.%Ni alloy substartes and CeO2 buffer layer prepared by chemical solution deposition on the textured substrate were investigated by electron back scattered diffraction (EBSD) and XRD technics systematically. The results shown that a strong cube textured Cu-33at...

  15. Microstructure, Texture, and Mechanical Behavior of As-cast Ni-Fe-W Matrix Alloy

    Science.gov (United States)

    Rao, A. Sambasiva; Manda, Premkumar; Mohan, M. K.; Nandy, T. K.; Singh, A. K.

    2018-04-01

    This article describes the tensile properties, flow, and work-hardening behavior of an experimental alloy 53Ni-29Fe-18W in as-cast condition. The microstructure of the alloy 53Ni-29Fe-18W displays single phase (fcc) in as-cast condition along with typical dendritic features. The bulk texture of the as-cast alloy reveals the triclinic sample symmetry and characteristic nature of coarse-grained materials. The alloy exhibits maximum strength ( σ YS and σ UTS) values along the transverse direction. The elongation values are maximum and minimum along the transverse and longitudinal directions, respectively. Tensile fracture surfaces of both the longitudinal and transverse samples display complete ductile fracture features. Two types of slip lines, namely, planar and intersecting, are observed in deformed specimens and the density of slip lines increases with increasing the amount of deformation. The alloy displays moderate in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values, respectively. The instantaneous or work-hardening rate curves portray three typical stages (I through III) along both the longitudinal and transverse directions. The alloy exhibits dislocation-controlled strain hardening during tensile testing, and slip is the predominant deformation mechanism.

  16. Ion-beam bombardment induced texture in nickel substrates for coated high-Tc superconductors

    International Nuclear Information System (INIS)

    Wang, S S; Wu, K; Zhou, Y; Godfrey, A; Meng, J; Liu, M L; Liu, Q; Liu, W; Han, Z

    2003-01-01

    Biaxially textured metal substrates are often used for making YBa 2 Cu 3 O 7-x coated conductors with high critical current density. Generally, specific rolling and high-temperature annealing procedures are required to obtain the biaxial texture for metal substrates. Here, we report on a new method for developing strongly biaxially textured grain structure in rolled nickel tape by argon ion-beam bombardment. X-ray diffraction (XRD) θ-2θ scans have shown that a (200) diffraction peak intensity of the Ni foil processed by ion-beam structure modification (ISM) is two orders of magnitude greater than that of cold-rolled foil, while the (111) and (220) intensities are very weak. In the ISM processed Ni foils, from the rocking curve, the full width at half maximum (FWHM) value of the (200) peak has been found to be less than 5.9 deg., whilst the in-plane FWHM obtained from a pole figure analysis is just 8 deg. We discuss the possible mechanisms leading to the texture changes during ISM. (rapid communication)

  17. Fatigue behavior of boxing welded joint under biaxial cyclic loads; 2juku kurikaeshi kajuka ni okeru kakumawashi yosetsu keishu no hiro kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, I.; Takada, A.; Akiyama, S.; Ushijima, M.; Maenaka, H. [Ministry of Transportation, Tokyo (Japan)

    1998-12-31

    Various forces such as gravity, wave induced force, inertial force etc. compositely act on a ship body from various directions. Therefore, while discussing strength or life of structural elements of ship body, it is necessary to understand the effects of the composite force condition. In this study, fatigue tests of boxing welded joint under rectangular biaxial cyclic loads are performed, the following results are obtained. Even under he biaxial cyclic loads, it is the same as the uniaxial test, the cracks occurred at the boxing weld toes propagate almost in the straight y-direction, but no oblique propagation of the cracks caused by the lad in the y-direction occurs. That the crack at initial stage of the crack progress is improved in y-direction can be illustrated by the facts that the residual stress in x-direction near the toes reaches to the yield stress, and the stress concentration in the welded toes is bigger in x-direction than that in y-direction. But as for prediction of the progress route, a further study including amplitude ratio of the biaxial loads, effects of width of test specimen is necessary. 4 refs., 12 figs., 4 tabs.

  18. Fabrication of 5 cm long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer on textured Ni-5%W substrate for YBCO coated conductors via dip-coating PACSD method

    Energy Technology Data Exchange (ETDEWEB)

    Lei, M.; Wang, W.T.; Pu, M.H.; Yang, X.S.; He, L.J. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia); Zhao, Y., E-mail: yzhao@home.swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [Science and Engineering, University of New South Wales, Sydney 2052, New South Wales (Australia)

    2011-11-15

    Epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} single buffer layer for YBCO coated conductors was deposited via fluorine-free dip-coating CSD. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by carefully controlling the processing. YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via CSD approach. Five centimeters long epitaxial Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9-x} (SCO) single buffer layer for YBCO coated conductors was deposited via dip-coating polymer-assisted chemical solution deposition (PACSD) approach on bi-axially textured Ni-5%W (2 0 0) alloy substrate. The film formation and texture evolution were investigated using X-ray diffraction and scanning electron microscopy. Flat, dense and crack-free SCO films with sharp (2 0 0) c-axis texture were obtained by way of carefully controlling the concentration of precursor solution, withdrawing speed, annealing temperature and dwelling time. On consideration of both microstructure and texture, epitaxial SCO single buffer layers were fabricated using precursor solution of 0.3 M cationic concentration, the withdrawing speed of 10 mm/min and heat treatment at 1100 deg. C in Ar-5%H{sub 2} mixture gas for 0.5 h. Epitaxial YBCO thin films with a homogeneous surface microstructure were deposited on the SCO-buffered NiW substrate via dip-coating PACSD approach. The PACSD approach was a promising way to fabricate long and low-cost YBCO coated conductors.

  19. Texture development and strain hysteresis in a NiTi shape-memory alloy during thermal cycling under load

    International Nuclear Information System (INIS)

    Ye, B.; Majumdar, B.S.; Dutta, I.

    2009-01-01

    Thermal cycling experiments were conducted on a NiTi shape-memory alloy at different constant applied stresses below the yield strength of the martensite. The mechanical strain response manifested as strain hysteresis loops, whose range was proportional to the applied stress. In situ neutron diffraction experiments show that the strain hysteresis occurs as a result of the establishment of a stress-dependent crystallographic texture of the martensite during the first cool-down from austenite, and thereafter repeated during thermal cycling under the same load. This texture is found to depend on the stress during the thermal cycling experiments. A strain-pole map is derived and shown to explain the observed texture during thermal cycling. The strain-pole methodology is shown to work with similar martensitic transformations in other material systems.

  20. Martensitic transformation in a high textured Cu-Al-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Sobrero, C; Roatta, A; Malarria, J; Bolmaro, R.

    2008-01-01

    The formation of the 18R1 martensite in copper based shape memory alloys occurs spontaneously during cooling by the localized formation of four self-accommodating variants in a plate group. Each of the six plate groups have four self-accommodating variants, resulting on twenty four transformation variants from de parent phase (β 1 ) to the martensitic one (β 1 '). In the current work experimental texture measurements for both phases and simulations have been carried out to establish the effect of the different activated variants in the transformation texture. The high temperature textures were measured with an on purpose designed stage and the samples were cycled a few times to evaluate texture degradation

  1. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    JL Bump; RF Luther

    2006-01-01

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  2. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  3. Uniform performance of continuously processed MOD-YBCO-coated conductors using a textured Ni-W substrate

    Energy Technology Data Exchange (ETDEWEB)

    Verebelyi, D T [American Superconductor Corporation, Westborough, MA 01581 (United States); Schoop, U [American Superconductor Corporation, Westborough, MA 01581 (United States); Thieme, C [American Superconductor Corporation, Westborough, MA 01581 (United States); Li, X [American Superconductor Corporation, Westborough, MA 01581 (United States); Zhang, W [American Superconductor Corporation, Westborough, MA 01581 (United States); Kodenkandath, T [American Superconductor Corporation, Westborough, MA 01581 (United States); Malozemoff, A P [American Superconductor Corporation, Westborough, MA 01581 (United States); Nguyen, N [American Superconductor Corporation, Westborough, MA 01581 (United States); Siegal, E [American Superconductor Corporation, Westborough, MA 01581 (United States); Buczek, D [American Superconductor Corporation, Westborough, MA 01581 (United States); Lynch, J [American Superconductor Corporation, Westborough, MA 01581 (United States); Scudiere, J [American Superconductor Corporation, Westborough, MA 01581 (United States); Rupich, M [American Superconductor Corporation, Westborough, MA 01581 (United States); Goyal, A [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States); Specht, E D [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States); Martin, P [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States); Paranthaman, M [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6100 (United States)

    2003-05-01

    Second-generation coated conductor composite HTS wires have been fabricated using a continuous reel-to-reel process with deformation-textured Ni-W substrates and a metal-organic deposition process for YBa{sub 2}Cu{sub 3}O{sub 7-x}. Earlier results on 1 m long and 1 cm wide wires with 77 K critical current performance greater than 100 A cm{sup -1} width have now been extended to 7.5 m in length and even higher performance, with one wire at 132 and another at 127 A cm{sup -1} width. Performance as a function of wire length is remarkably uniform, with only 2-4% standard deviation when measured on a 50 cm length scale. The length-scale dependence of the deviation is compared with a statistical calculation. (rapid communication)

  4. Uniform performance of continuously processed MOD-YBCO-coated conductors using a textured Ni-W substrate

    International Nuclear Information System (INIS)

    Verebelyi, D T; Schoop, U; Thieme, C; Li, X; Zhang, W; Kodenkandath, T; Malozemoff, A P; Nguyen, N; Siegal, E; Buczek, D; Lynch, J; Scudiere, J; Rupich, M; Goyal, A; Specht, E D; Martin, P; Paranthaman, M

    2003-01-01

    Second-generation coated conductor composite HTS wires have been fabricated using a continuous reel-to-reel process with deformation-textured Ni-W substrates and a metal-organic deposition process for YBa 2 Cu 3 O 7-x . Earlier results on 1 m long and 1 cm wide wires with 77 K critical current performance greater than 100 A cm -1 width have now been extended to 7.5 m in length and even higher performance, with one wire at 132 and another at 127 A cm -1 width. Performance as a function of wire length is remarkably uniform, with only 2-4% standard deviation when measured on a 50 cm length scale. The length-scale dependence of the deviation is compared with a statistical calculation. (rapid communication)

  5. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  6. Biaxial vent extruder

    International Nuclear Information System (INIS)

    Idemoto, A.; Maki, Y.; Oda, N.

    1981-01-01

    A biaxial vent extruder is described for processing of slurry-like waste fluids or radioactive waste fluids which have a hopper cylinger, a solidifying substance port and a solidified substance port. A plurality of vent cylinders each having a vent port are provided with a plunger type scraper. An extruding cylinder having a single opening for a main screw is connected to the assembled vent cylinders. The main screw extends to the upstream end of the extruding cylinder and a sub-screw extends to the extruding cylinder. The screws each having a full flight engaging the other and a set of rings are mounted on the screws near the respective vent port inlets. The screws are rotated in different directions and inwardly with respect to the vent ports. Rotors may be mounted on the screws to break down solid particles

  7. Biaxial mechanical tests in zircaloy-4

    International Nuclear Information System (INIS)

    Mintzer, S.R.; Bordoni, R.A.A.; Falcone, J.M.

    1980-01-01

    The texture of the zircaloy-4 tubes used as cladding in nuclear fuel elements determines anisotropy of the mechanical properties. As a consequence, the uniaxial tests to determine the mechanical behaviour of the tubes are incomplete. Furthermore, the cladding in use is subject to creep with a state of biaxial tensions. For this reason it is also important to determine the biaxial mechanical properties. The creep tests were performed by internal pressure for a state of axial to circumferential tensions of 0.5. Among the experimental procedures are described: preparation of the test specimens, pressurizing equipment, and the implementation of a device that permits a permanent register of the deformation. For the non-irradiated Atucha type zircaloy-4 sheaths, experimental curves of circumferential deformation versus time were obtained, in tests at constant pressure and for different values of temperature and pressure. An empirical function was determined to adjust the experimental values for the speed of the circumferential deformation in terms of the initial tension applied, temperature and deformation, and the change of the corresponding parameters in accordance to the range of the tensions. Also the activation energy for creep was determined. (M.E.L.) [es

  8. Biaxial stretching of film principles and applications

    CERN Document Server

    Demeuse, M T

    2011-01-01

    Biaxial (having two axes) stretching of film is used for a range of applications and is the primary manufacturing process by which products are produced for the food packaging industry. Biaxial stretching of film: principles and applications provides an overview of the manufacturing processes and range of applications for biaxially stretched films. Part one reviews the fundamental principles of biaxial stretching. After an introductory chapter which defines terms, chapters discuss equipment design and requirements, laboratory evaluations, biaxial film structures and typical industrial processes for the biaxial orientation of films. Additional topics include post production processing of biaxially stretched films, the stress-strain behaviour of poly(ethylene terephthalate) and academic investigations of biaxially stretched films. Part two investigates the applications of biaxial films including fresh cut produce, snack packaging and product labelling. A final chapter investigates potential future trends for bi...

  9. Ion beam texturing

    Science.gov (United States)

    Hudson, W. R.

    1977-01-01

    A microscopic surface texture was created by sputter-etching a surface while simultaneously sputter-depositing a lower sputter yield material onto the surface. A xenon ion-beam source was used to perform the texturing process on samples as large as 3-cm diameter. Textured surfaces have been characterized with SEM photomicrographs for a large number of materials including Cu, Al, Si, Ti, Ni, Fe, stainless steel, Au, and Ag. A number of texturing parameters are studied including the variation of texture with ion-beam powder, surface temperature, and the rate of texture growth with sputter etching time.

  10. Change of texture, microdeformation and hardness in surface layer of TiNi alloy depending on the number of pulses of electron beam effects

    International Nuclear Information System (INIS)

    Meisner, L. L.; Meisner, S. N.; Markov, A. B.; Yakovlev, E. V.; Ozur, G. E.; Rotshtein, V. P.; Mironov, Yu. P.

    2015-01-01

    This work comprises a study of the influence of the pulse number of low-energy high-current electron beam (LEHCEB) exposure on the value and character of distribution of residual elastic stresses, texturing effects and the relationship between structural-phase states and physical and mechanical properties of the modified surface layers of TiNi alloy. LEHCEB processing of the surface of TiNi samples was carried out using a RITM-SP [3] installation. Energy density of electron beam was constant at E s = 3.9 ± 0.5 J/cm 2 ; pulse duration was 2.8 ± 0.3 μs. The number of pulses in the series was changeable, (n = 2–128). It was shown that as the result of multiple LEHCEB processing of TiNi samples, hierarchically organized multilayer structure is formed in the surface layer. The residual stress field of planar type is formed in the modified surface layer as following: in the direction of the normal to the surface the strain component ε ⊥ < 0 (compressing strain), and in a direction parallel to the surface, the strain component ε || > 0 (tensile deformation). Texturing effects and the level of residual stresses after LEHCEB processing of TiNi samples with equal energy density of electron beam (∼3.8 J/cm 2 ) depend on the number of pulses and increase with the rise of n > 10

  11. Biaxial Stress Tests of Plain Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Cho, M.S.; Song, Y.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2001-07-01

    Containment concrete specimens(4000, 5000psi) were tested under biaxial stress and presented basic physical properties and biaxial failure envelops for the concrete specimens. Failure behaviors of concrete under biaxial stress were assessed with stress-strain responses and failure modes. Here provided real test data to develop nonlinear finite element concrete models. (author). 15 refs., 46 figs., 4 tabs.

  12. In-plane aligned YBCO film on textured YSZ buffer layer deposited on NiCr alloy tape by laser ablation with only O+ ion beam assistance

    International Nuclear Information System (INIS)

    Xin Tang Huang

    2000-01-01

    High critical current density and in-plane aligned YBa 2 Cu 3 O 7-x (YBCO) film on a textured yttria-stabilized zirconia (YSZ) buffer layer deposited on NiCr alloy (Hastelloy c-275) tape by laser ablation with only O + ion beam assistance was fabricated. The values of the x-ray phi-scan full width at half-maximum (FWHM) for YSZ(202) and YBCO(103) are 18 deg. and 11 deg., respectively. The critical current density of YBCO film is 7.9 x 105 A cm -2 at liquid nitrogen temperature and zero field, and its critical temperature is 90 K. (author)

  13. Dislocation density and Burgers vector population in fiber-textured Ni thin films determined by high-resolution X-ray line profile analysis

    DEFF Research Database (Denmark)

    Csiszár, Gábor; Pantleon, Karen; Alimadadi, Hossein

    2012-01-01

    distribution are determined by high-resolution X-ray diffraction line profile analysis. The substructure parameters are correlated with the strength of the films by using the combined Taylor and Hall-Petch relations. The convolutional multiple whole profile method is used to obtain the substructure parameters......Nanocrystalline Ni thin films have been produced by direct current electrodeposition with different additives and current density in order to obtain 〈100〉, 〈111〉 and 〈211〉 major fiber textures. The dislocation density, the Burgers vector population and the coherently scattering domain size...

  14. Damage-free laser patterning of silicon nitride on textured crystalline silicon using an amorphous silicon etch mask for Ni/Cu plated silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bailly, Mark S., E-mail: mbailly@asu.edu; Karas, Joseph; Jain, Harsh; Dauksher, William J.; Bowden, Stuart

    2016-08-01

    We investigate the optimization of laser ablation with a femtosecond laser for direct and indirect removal of SiN{sub x} on alkaline textured c-Si. Our proposed resist-free indirect removal process uses an a-Si:H etch mask and is demonstrated to have a drastically improved surface quality of the laser processed areas when compared to our direct removal process. Scanning electron microscope images of ablated sites show the existence of substantial surface defects for the standard direct removal process, and the reduction of those defects with our proposed process. Opening of SiN{sub x} and SiO{sub x} passivating layers with laser ablation is a promising alternative to the standard screen print and fire process for making contact to Si solar cells. The potential for small contacts from laser openings of dielectrics coupled with the selective deposition of metal from light induced plating allows for high-aspect-ratio metal contacts for front grid metallization. The minimization of defects generated in this process would serve to enhance the performance of the device and provides the motivation for our work. - Highlights: • Direct laser removal of silicon nitride (SiN{sub x}) damages textured silicon. • Direct laser removal of amorphous silicon (a-Si) does not damage textured silicon. • a-Si can be used as a laser patterned etch mask for SiN{sub x}. • Chemically patterned SiN{sub x} sites allow for Ni/Cu plating.

  15. Biaxiality of chiral liquid crystals

    International Nuclear Information System (INIS)

    Longa, L.; Trebin, H.R.; Fink, W.

    1993-10-01

    Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab

  16. Effect of wheel speed and annealing temperature on microstructure and texture evolution of Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yan, E-mail: yanfeng@nwpu.edu.cn [State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Chen, Hong [State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Gao, Li [College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306 (China); Wang, Haibo [College of Physics and Electronic Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Bian, Xiaohai; Gong, Mingjie [State Key Laboratory of Solidification Processing Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2016-12-15

    Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} magnetic shape memory alloy was successfully produced as preferentially textured ribbon by melting spinning with different wheel speed. X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) were used to study structure and texture evolution of these melt-spun ribbons. The thickness of melt-spun ribbon is 42 μm, 65 μm and 30 μm depending on wheel speed of 1 0 m/s, 15 m/s and 20 m/s, respectively. Density of α fiber texture (〈100〉//ND) vary with wheel speed changes, and is most intensive in the ribbon with wheel speed of 15 m/s. Grains of the ribbons grow after being annealed at 873 K, 973 K, 1073 K and 1173 K, recrystallization was not observed in ribbons after being annealed at 873 K but occurred in ribbons after being annealed at higher temperatures. The α fiber texture becomes weaker to some extent after annealing at different temperatures, due to new recrystallization texture formed at the process of annealing. - Highlights: •Sectional part of shape memory ribbon is firstly investigated by EBSD method. •Thickness and texture of ribbons vary with wheel speed. •Annealing temperature affect texture and microstructure evolution greatly. •Recrystallization textures were observed in ribbons after being annealed.

  17. Cube textured CeO2, BaZrO3 and LaAlO3 buffer layers on Ni based Substrates

    International Nuclear Information System (INIS)

    Deinhofer, C; Gritzner, G

    2006-01-01

    CeO 2 , BaZrO 3 as well as LaAlO 3 buffer layers were deposited on {100} Ni + 5 weight-% W substrates by a wet chemical technique. The solutions were prepared by dissolving the metal nitrates or acetates and zirconiumacetylacetonate, respectively, in mixtures of acetic acid, methanol and water. The solutions were applied by dip- or spincoating, dried at 135 deg. C and annealed at temperatures between 900 and 1 400 deg. C depending on the buffer layer for 15 min. under Ar-5% H 2 gas flow. Pole-figure measurements proved the exact texture of each buffer layer. Electron microscopy showed dense and smooth buffer layers

  18. Biaxial fatigue of metals the present understanding

    CERN Document Server

    Schijve, Jaap

    2016-01-01

    Problems of fatigue under multiaxial fatigue loads have been addressed in a very large number of research publications. The present publication is primarily a survey of biaxial fatigue under constant amplitude loading on metal specimens. It starts with the physical understanding of the fatigue phenomenon under biaxial fatigue loads. Various types of proportional and non-proportional biaxial fatigue loads and biaxial stress distributions in a material are specified. Attention is paid to the fatigue limit, crack nucleation, initial micro crack growth and subsequent macro-crack in different modes of crack growth. The interference between the upper and lower surfaces of a fatigue crack is discussed. Possibilities for predictions of biaxial fatigue properties are analysed with reference to the similarity concept. The significance of the present understanding for structural design problems is considered. The book is completed with a summary of major observations.

  19. Plastic deformation and fracture behavior of zircaloy-2 fuel cladding tubes under biaxial stress

    International Nuclear Information System (INIS)

    Maki, Hideo; Ooyama, Masatosi

    1975-01-01

    Various combinations of biaxial stress were applied on five batches of recrystallized zircaloy-2 fuel cladding tubes with different textures; elongation in both axial and circumferential directions of the specimen was measured continuously up to 5% plastic deformation. The anisotropic theory of plasticity proposed by Hill was applied to the resulting data, and anisotropy constants were obtained through the two media of plastic strain loci and plastic strain ratios. Comparison of the results obtained with the two methods proved that the plastic strain loci provide data that are more effective in predicting quantitatively the plastic deformation behavior of the zircaloy-2 tubes. The anisotropy constants change their value with progress of plastic deformation, and judicious application of the effective stress and effective strain obtained on anisotropic materials will permit the relationship between stress and strain under various biaxialities of stresses to be approximated by the work hardening law. The test specimens used in the plastic deformation experiments were then stressed to fracture under the same combination of biaxial stress as in the proceeding experiments, and the deformation in the fractured part was measured. The result proved that the tilt angle of the c-axis which serves as the index of texture is related to fracture ductility under biaxial stress. Based on this relationship, it was concluded that material with a tilt angle ranging from 10 0 to 15 0 is the most suitable for fuel cladding tubes, from the viewpoint of fracture ductility, at least in the case of unirradiated material. (auth.)

  20. Stabilisation problem in biaxial platform

    Directory of Open Access Journals (Sweden)

    Lindner Tymoteusz

    2016-12-01

    Full Text Available The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  1. Stabilisation problem in biaxial platform

    Science.gov (United States)

    Lindner, Tymoteusz; Rybarczyk, Dominik; Wyrwał, Daniel

    2016-12-01

    The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  2. Textured YBCO films grown on wires: application to superconducting cables

    International Nuclear Information System (INIS)

    Dechoux, N; Jiménez, C; Chaudouët, P; Rapenne, L; Sarigiannidou, E; Robaut, F; Petit, S; Garaudée, S; Porcar, L; Soubeyroux, J L; Odier, P; Bruzek, C E; Decroux, M

    2012-01-01

    Efforts to fabricate superconducting wires made of YBa 2 Cu 3 O 7 (YBCO) on La 2 Zr 2 O 7 (LZO) buffered and biaxially textured Ni-5 at.%W (NiW) are described. Wires were manually shaped from LZO buffered NiW tapes. Different diameters were produced: 1.5, 2 and 3 mm. The wires were further covered with YBCO grown by metal organic chemical vapor deposition (MOCVD). We developed an original device in which the round substrate undergoes an alternated rotation of 180° around its axis in addition to a reel-to-reel translation. This new approach allows covering the whole circumference of the wire with a YBCO layer. This was confirmed by energy dispersive x-ray spectroscopy (EDX) analysis coupled to a scanning electron microscope (SEM). For all wire diameters, the YBCO layer thickness varied from 300 to 450 nm, and the cationic composition was respected. Electron backscattering diffraction (EBSD) measurements were performed directly on an as-deposited wire without surface preparation allowing the investigation of the crystalline quality of the film surface. Combining EBSD with XRD results we show that YBCO grows epitaxially on the LZO buffered NiW wires. For the first time, superconductive behaviors have been detected on round substrates in both the rolling and circular direction. J c reached 0.3 MA cm −2 as measured at 77 K by transport and third-harmonic detection. Those preliminary results confirm the effectiveness of the MOCVD for complex geometries, especially for YBCO deposition on small diameter wires. This approach opens huge perspectives for the elaboration of a new generation of YBCO-based round conductors. (paper)

  3. Biaxial Loading Tests for steel containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, T. [Nuclear Power Engineering Corp., Tokyo (Japan); Wright, D.J.; Arai, S.

    1999-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  4. Biaxial Loading Tests for steel containment vessel

    International Nuclear Information System (INIS)

    Miyagawa, T.; Wright, D.J.; Arai, S.

    1999-01-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  5. Symmetric textures

    International Nuclear Information System (INIS)

    Ramond, P.

    1993-01-01

    The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures

  6. Ray-optics analysis of inhomogeneous biaxially anisotropic media

    NARCIS (Netherlands)

    Sluijter, M.; De Boer, D.K.G.; Urbach, H.P.

    2009-01-01

    Firm evidence of the biaxial nematic phase in liquid crystals, not induced by a magnetic or electric field, has been established only recently. The discovery of these biaxially anisotropic liquid crystals has opened up new areas of both fundamental and applied research. The advances in biaxial

  7. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer

    2012-01-01

    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper...

  8. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads

    2008-01-01

    of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  9. TEXTURAL FRACTOGRAPHY

    Directory of Open Access Journals (Sweden)

    Hynek Lauschmann

    2011-05-01

    Full Text Available The reconstitution of the history of a fatigue process is based on the knowledge of any correspondences between the morphology of the crack surface and the velocity of the crack growth (crack growth rate - CGR. The textural fractography is oriented to mezoscopic SEM magnifications (30 to 500x. Images contain complicated textures without distinct borders. The aim is to find any characteristics of this texture, which correlate with CGR. Pre-processing of images is necessary to obtain a homogeneous texture. Three methods of textural analysis have been developed and realized as computational programs: the method based on the spectral structure of the image, the method based on a Gibbs random field (GRF model, and the method based on the idealization of light objects into a fibre process. In order to extract and analyze the fibre process, special methods - tracing fibres and a database-oriented analysis of a fibre process - have been developed.

  10. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using...... a singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  11. Implantable biaxial piezoresistive accelerometer for sensorimotor control.

    Science.gov (United States)

    Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E

    2004-01-01

    This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.

  12. Biaxial testing for fabrics and foils optimizing devices and procedures

    CERN Document Server

    Beccarelli, Paolo

    2015-01-01

    This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.

  13. Effective X-ray elastic constant measurement for in situ stress measurement of biaxially strained AA5754-O

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Gnäupel-Herold, Thomas H.

    2012-01-01

    Accurate measurement of stresses by X-ray diffraction requires accurate X-ray elastic constants. Calibration experiments are one method to determine these for a specific material in a specific condition. In this paper, uniaxial tension experiments are used to investigate the variation of these constants after uniaxial and equal-biaxial plastic deformation for an aluminum alloy (AA5754-O) of interest to the automotive industry. These data are critical for accurate measurement of the biaxial mechanical properties of the material using a recent experimental method combining specialized sheet metal forming equipment with portable X-ray diffraction equipment. The measured effective X-ray elastic constants show some minor variation with increased plastic deformation, and this behavior was found to be consistent for both uniaxially and equal-biaxially strained samples. The use of two average values for effective X-ray elastic constants, one in the rolling direction and one transverse to the rolling direction of the sheet material, is shown to be of sufficient accuracy for the combined tests of interest. Comparison of uniaxial data measured using X-ray diffraction and standard methods show good agreement, and biaxial stress–strain results show good repeatability. Additionally, the calibration data show some non-linear behavior, which is analyzed in regards to crystallographic texture and intergranular stress effects. The non-linear behavior is found to be the result of intergranular stresses based on comparison with additional measurements using other X-ray diffraction equipment and neutron diffraction.

  14. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens

    Science.gov (United States)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)

    2002-01-01

    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  15. Characterization of a strongly textured non-ferromagnetic Cu-33 at%Ni substrate coated with a CeO2 buffer layer

    DEFF Research Database (Denmark)

    Tian, Hui; Suo, H.L.; Yue, Zhao

    2013-01-01

    the fraction of the cube {001}〈100〉 texture is 99.8% and the fraction of boundary misorientations with angles greater than 10 is only 5%. The material is shown to be non-ferromagnetic at typical operating temperatures for coated conductors. Furthermore, it is shown that a CeO2 buffer layer can be successfully...

  16. Biaxial behavior of plain concrete of nuclear containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Keun E-mail: sklee0806@bcline.com; Song, Young-Chul; Han, Sang-Hoon

    2004-01-01

    To provide biaxial failure behavior characteristics of concrete of a standard Korean nuclear containment building, the concrete specimens with the dimensions of 200 mmx200 mmx60 mm were tested under different biaxial load combinations. The specimens were subjected to biaxial load combinations covering the three regions of compression-compression, compression-tension, nd tension-tension. To avoid a confining effect due to friction in the boundary surface between the concrete specimen and the loading platen, the loading platens with Teflon pads were used. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the biaxial ultimate strength envelopes were developed and the biaxial stress-strain responses in three different biaxial loading regions were plotted. The test results indicated hat the concrete strength under equal biaxial compression, f{sub 1}=f{sub 2}, is higher by about 17% on the average than that under the uniaxial compression and the concrete strength under biaxial tension is almost independent of the stress ratio and is similar to that under the uniaxial tension.

  17. Biaxial behavior of plain concrete of nuclear containment building

    International Nuclear Information System (INIS)

    Lee, Sang-Keun; Song, Young-Chul; Han, Sang-Hoon

    2004-01-01

    To provide biaxial failure behavior characteristics of concrete of a standard Korean nuclear containment building, the concrete specimens with the dimensions of 200 mmx200 mmx60 mm were tested under different biaxial load combinations. The specimens were subjected to biaxial load combinations covering the three regions of compression-compression, compression-tension, nd tension-tension. To avoid a confining effect due to friction in the boundary surface between the concrete specimen and the loading platen, the loading platens with Teflon pads were used. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the biaxial ultimate strength envelopes were developed and the biaxial stress-strain responses in three different biaxial loading regions were plotted. The test results indicated hat the concrete strength under equal biaxial compression, f 1 =f 2 , is higher by about 17% on the average than that under the uniaxial compression and the concrete strength under biaxial tension is almost independent of the stress ratio and is similar to that under the uniaxial tension

  18. Effect of texture on grain boundary misorientation distributions in polycrystalline high temperature superconductors

    International Nuclear Information System (INIS)

    Goyal, A.; Specht, E.D.; Kroeger, D.M.; Mason, T.A.

    1996-01-01

    Computer simulations were performed to determine the most probable grain boundary misorientation distribution (GBMD) in model polycrystalline superconductors. GBMDs in polycrystalline superconductors can be expected to dictate the macroscopic transport critical current density, J c . Calculations were performed by simulating model polycrystals and then determining the GBMD. Such distributions were calculated for random materials having cubic, tetragonal, and orthorhombic crystal symmetry. In addition, since most high temperature superconductors are tetragonal or pseudotetragonal, the effect of macroscopic uniaxial and biaxial grain orientation texture on the GBMD was determined for tetragonal materials. It is found that macroscopic texture drastically alters the grain boundary misorientation distribution. The fraction of low angle boundaries increases significantly with uniaxial and biaxial texture. The results of this study are important in correlating the macroscopic transport J c with the measured grain orientation texture as determined by x-ray diffraction copyright 1996 American Institute of Physics

  19. Bi axially textured YBCO coated tape prepared using dynamic magnetic grain alignment

    International Nuclear Information System (INIS)

    Genoud, Jean-Yves; Quinton, William

    1999-01-01

    A new magnetic grain alignment technique has been applied to produce bi axially aligned YBCO coated tapes. A bi axially aligned dispersion of orthorhombic Y 2 Ba 4 Cu 7 O 15 (Y-247) powder was settled on un textured silver substrates. The Y-247 tapes were then melt processed to achieve high critical current YBa 2 Cu 3 O 7 (Y-123) tapes with CuO as a secondary phase. The biaxial alignment is preserved after the densification process and a clear enhancement of J c relative to identically prepared un textured or uniaxially textured samples is obtained. Critical current densities of up to 5000 A cm -2 at 77 K in self-field and 1500 A cm -2 in 0.5 T magnetic field at 65 K were obtained in films from 20 to 40 μm thick. Problems were experienced in achieving fully densified thick films while retaining biaxial texture. The initial grain size distribution was found to have a major influence on the final microstructure. Provided significant improvements in J c can be obtained this method offers an alternative to coated tape processes based on epitaxial growth which has the advantage that it does not require textured substrates. The biaxial alignment technique described here intrinsically acts on the bulk material rather than at surfaces. This offers the possibility of texturing without thickness limitations. (author)

  20. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  1. Behaviour of biaxially restrained concretes under high temperature

    International Nuclear Information System (INIS)

    Thienel, K.-Ch.; Rostasy, F.S.

    1993-01-01

    Under asymmetric biaxial loading the major restraining stresses of concrete made with expanded shale or quarzite aggregates change between both loading axis. Differences between uniaxial and biaxial restraint vanish, if the restraint is normalized with respect to the ultimate strength at ambient temperature of the same stress ratio K. The type of aggregate and the mix proportions do affect the restraining stresses irrespective of the initial stress ratio K 0 . (author)

  2. YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} coated conductor deposited onto non-magnetic ternary alloy NiCrW RABiTS tape by in situ pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tomov, R I; Kursumovic, A; Majoros, M; Glowacki, B A; Evetts, J E; Tuissi, A; Villa, E; Zamboni, M; Sun, Y; Toenies, S; Weber, H W

    2003-01-01

    Pulsed laser deposition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)/buffer (Y{sub 2}O{sub 3}, YSZ, CeO{sub 2}) heterostructures have been performed in situ onto recently developed non-magnetic oxygenation resistant NiCrW tape. The influence of the critical processing parameters on texture development are investigated and the issues involved in NiO formation and relation to the substrate surface quality are discussed. The roles of Ni poisoning YBCO as well as local cation disorder are considered as possible current limiting factors. X-ray diffraction has been used for macro-texture evaluation. Both buffers and YBCO layers show good biaxial alignment with {omega} and {phi} scans having best YBCO FWHM values of 4.0 deg. and 6.5 deg. respectively. A comparison is made with results achieved on industrial Ni{sub 50}Fe{sub 50} tape. The film morphology has been characterized using atomic force microscopy and scanning electron microscopy. The cation disorder has been studied by Raman spectroscopy. Critical temperatures of 90 K ({delta}T{sub c}=5 K) have been measured. Direct transport as well as magnetic measurements shows the critical current density J{sub c} is 0.2 MA/cm{sup 2} in self-field at liquid nitrogen temperatures.

  3. Biaxial seismic behaviour of reinforced concrete columns =

    Science.gov (United States)

    Rodrigues, Hugo Filipe Pinheiro

    A analise dos efeitos dos sismos mostra que a investigacao em engenharia sismica deve dar especial atencao a avaliacao da vulnerabilidade das construcoes existentes, frequentemente desprovidas de adequada resistencia sismica tal como acontece em edificios de betao armado (BA) de muitas cidades em paises do sul da Europa, entre os quais Portugal. Sendo os pilares elementos estruturais fundamentais na resistencia sismica dos edificios, deve ser dada especial atencao a sua resposta sob acoes ciclicas. Acresce que o sismo e um tipo de acao cujos efeitos nos edificios exige a consideracao de duas componentes horizontais, o que tem exigencias mais severas nos pilares comparativamente a acao unidirecional. Assim, esta tese centra-se na avaliacao da resposta estrutural de pilares de betao armado sujeitos a acoes ciclicas horizontais biaxiais, em tres linhas principais. Em primeiro lugar desenvolveu-se uma campanha de ensaios para o estudo do comportamento ciclico uniaxial e biaxial de pilares de betao armado com esforco axial constante. Para tal foram construidas quatro series de pilares retangulares de betao armado (24 no total) com diferentes caracteristicas geometricas e quantidades de armadura longitudinal, tendo os pilares sido ensaiados para diferentes historias de carga. Os resultados experimentais obtidos sao analisados e discutidos dando particular atencao a evolucao do dano, a degradacao de rigidez e resistencia com o aumento das exigencias de deformacao, a energia dissipada, ao amortecimento viscoso equivalente; por fim e proposto um indice de dano para pilares solicitados biaxialmente. De seguida foram aplicadas diferentes estrategias de modelacao nao-linear para a representacao do comportamento biaxial dos pilares ensaiados, considerando nao-linearidade distribuida ao longo dos elementos ou concentrada nas extremidades dos mesmos. Os resultados obtidos com as varias estrategias de modelacao demonstraram representar adequadamente a resposta em termos das curvas

  4. Surface defects on the Gd{sub 2}Zr{sub 2}O{sub 7} oxide films grown on textured NiW technical substrates by chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y., E-mail: yuezhao@sjtu.edu.cn [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240 Shanghai (China); Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Opata, Yuri A. [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark); Wu, W. [School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240 Shanghai (China); Grivel, J.C. [Department of Energy Conversion and Storage, Technical University of Denmark, 4000 Roskilde (Denmark)

    2017-02-15

    Epitaxial growth of oxide thin films has attracted much interest because of their broad applications in various fields. In this study, we investigated the microstructure of textured Gd{sub 2}Zr{sub 2}O{sub 7} films grown on (001)〈100〉 orientated NiW alloy substrates by a chemical solution deposition (CSD) method. The aging effect of precursor solution on defect formation was thoroughly investigated. A slight difference was observed between the as-obtained and aged precursor solutions with respect to the phase purity and global texture of films prepared using these solutions. However, the surface morphologies are different, i.e., some regular-shaped regions (mainly hexagonal or dodecagonal) were observed on the film prepared using the as-obtained precursor, whereas the film prepared using the aged precursor exhibits a homogeneous structure. Electron backscatter diffraction and scanning electron microscopy analyses showed that the Gd{sub 2}Zr{sub 2}O{sub 7} grains present within the regular-shaped regions are polycrystalline, whereas those present in the surrounding are epitaxial. Some polycrystalline regions ranging from several micrometers to several tens of micrometers grew across the NiW grain boundaries underneath. To understand this phenomenon, the properties of the precursors and corresponding xerogel were studied by Fourier transform infrared spectroscopy and coupled thermogravimetry/differential thermal analysis. The results showed that both the solutions mainly contain small Gd−Zr−O clusters obtained by the reaction of zirconium acetylacetonate with propionic acid during the precursor synthesis. The regular-shaped regions were probably formed by large Gd−Zr−O frameworks with a metastable structure in the solution with limited aging time. This study demonstrates the importance of the precise control of chemical reaction path to enhance the stability and homogeneity of the precursors of the CSD route. - Highlights: •We investigate microstructure

  5. Texture collapse

    International Nuclear Information System (INIS)

    Prokopec, T.; Sornborger, A.; Brandenberger, R.H.

    1992-01-01

    We study single-texture collapse using a leapfrog discretization method on a 30x30x30 spatial lattice. We investigate the influence of boundary conditions, physical size of the lattice, type of space-time background (flat, i.e., nonexpanding, vs radiation-dominated and matter-dominated universes), and spatial distribution of the initial texture configuration on collapse time and critical winding. For a spherically symmetric initial configuration of size equal to the horizon size on a lattice containing 12 (30) horizon volumes, the critical winding is found to be 0.621±0.001 (0.602±0.003) (flat case), 0.624±0.002 (0.604±0.005) (radiation era), 0.628±0.002 (0.612±0.003) (matter era). The larger the physical size of the lattice (in units of the horizon size), the smaller is the critical winding, and in the limit of an infinite lattice, we argue that the critical winding approaches 0.5. For radially asymmetric cases, contraction of one axis ( /Ipancake case) slightly reduces collapse time and critical winding, and contraction of two axes (d/Icigar case) reduces collapse time and critical winding significantly

  6. Epitaxial hexagonal materials on IBAD-textured substrates

    Science.gov (United States)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  7. Epitaxial hexagonal materials on IBAD-textured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  8. Biaxial failure criteria and stress-strain response for concrete of containment structure

    International Nuclear Information System (INIS)

    Lee, S. K.; Woo, S. K.; Song, Y. C.; Kweon, Y. K.; Cho, C. H.

    2001-01-01

    Biaxial failure criteria and stress-strain response for plain concrete of containment structure on nuclear power plants are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f 2 /f 1 =-1/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 5660 psi are provided, and the biaxial failure behaviors for three biaxial loading areas are plotted respectively. And, various analytical equations having the reliability are proposed for representations of the biaxial failure criteria and stress-strain response curves of concrete

  9. Depletion-induced biaxial nematic states of boardlike particles

    International Nuclear Information System (INIS)

    Belli, S; Van Roij, R; Dijkstra, M

    2012-01-01

    With the aim of investigating the stability conditions of biaxial nematic liquid crystals, we study the effect of adding a non-adsorbing ideal depletant on the phase behavior of colloidal hard boardlike particles. We take into account the presence of the depletant by introducing an effective depletion attraction between a pair of boardlike particles. At fixed depletant fugacity, the stable liquid-crystal phase is determined through a mean-field theory with restricted orientations. Interestingly, we predict that for slightly elongated boardlike particles a critical depletant density exists, where the system undergoes a direct transition from an isotropic liquid to a biaxial nematic phase. As a consequence, by tuning the depletant density, an easy experimental control parameter, one can stabilize states of high biaxial nematic order even when these states are unstable for pure systems of boardlike particles. (paper)

  10. Failure of composite plates under static biaxial planar loading

    Science.gov (United States)

    Waas, Anthony M.; Khamseh, Amir R.

    1992-01-01

    The project involved detailed investigations into the failure mechanisms in composite plates as a function of hole size (holes centrally located in the plates) under static loading. There were two phases to the project, the first dealing with uniaxial loads along the fiber direction, and the second dealing with coplanar biaxial loading. Results for the uniaxial tests have been reported and published previously, thus this report will place emphasis on the second phase of the project, namely the biaxial tests. The composite plates used in the biaxial loading experiments, as well as the uniaxial, were composed of a single ply unidirectional graphite/epoxy prepreg sandwiched between two layers of transparent thermoplastic. This setup enabled us to examine the failure initiation and propagation modes nondestructively, during the test. Currently, similar tests and analysis of results are in progress for graphite/epoxy cruciform shaped flat laminates. The results obtained from these tests will be available at a later time.

  11. Biaxial deformation behaviour of poly-ether-ether-ketone

    Science.gov (United States)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  12. Characterization Of Biaxial Strain Of Poly(L-Lactide) Tubes

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2016-01-01

    Poly(L-lactide) (PLLA) in its L-form has promising mechanical properties. Being a semi-crystalline polymer, it can be subjected to strain-induced crystallization at temperatures above Tg and can thereby become oriented. Following a simultaneous (SIM) biaxial strain process or a sequential (SEQ...

  13. Anomalously temperature-independent birefringence in biaxial optical crystals

    International Nuclear Information System (INIS)

    Grechin, Sergei G; Dmitriev, Valentin G; Dyakov, Vladimir A; Pryalkin, Vladimir I

    2000-01-01

    Temperature-independent birefringence in a biaxial crystal was predicted theoretically and observed experimentally for the first time. The width of the plot against temperature (the range corresponding to the temperature independence of the birefringence) at a fundamental radiation wavelength of 632.8 nm in a KTP crystal 5.9 mm long was more than 160 0 C. (letters to the editor)

  14. Biaxial charts for rectangular reinforced columns in accordance with ...

    African Journals Online (AJOL)

    linearity arising from the non-linear stress-strain relationships and the cracking of the cross-section. · As a result, the systematic production of biaxial design charts necessitates the application of numerical methods that are based on iterations.

  15. Methodology for dynamic biaxial tension testing of pregnant uterine tissue.

    Science.gov (United States)

    Manoogian, Sarah; Mcnally, Craig; Calloway, Britt; Duma, Stefan

    2007-01-01

    Placental abruption accounts for 50% to 70% of fetal losses in motor vehicle crashes. Since automobile crashes are the leading cause of traumatic fetal injury mortality in the United States, research of this injury mechanism is important. Before research can adequately evaluate current and future restraint designs, a detailed model of the pregnant uterine tissues is necessary. The purpose of this study is to develop a methodology for testing the pregnant uterus in biaxial tension at a rate normally seen in a motor vehicle crash. Since the majority of previous biaxial work has established methods for quasi-static testing, this paper combines previous research and new methods to develop a custom designed system to strain the tissue at a dynamic rate. Load cells and optical markers are used for calculating stress strain curves of the perpendicular loading axes. Results for this methodology show images of a tissue specimen loaded and a finite verification of the optical strain measurement. The biaxial test system dynamically pulls the tissue to failure with synchronous motion of four tissue grips that are rigidly coupled to the tissue specimen. The test device models in situ loading conditions of the pregnant uterus and overcomes previous limitations of biaxial testing. A non-contact method of measuring strains combined with data reduction to resolve the stresses in two directions provides the information necessary to develop a three dimensional constitutive model of the material. Moreover, future research can apply this method to other soft tissues with similar in situ loading conditions.

  16. Biaxial potential of surface-stabilized ferroelectric liquid crystals

    Science.gov (United States)

    Kaznacheev, Anatoly; Pozhidaev, Evgeny; Rudyak, Vladimir; Emelyanenko, Alexander V.; Khokhlov, Alexei

    2018-04-01

    A biaxial surface potential Φs of smectic-C* surface-stabilized ferroelectric liquid crystals (SSFLCs) is introduced in this paper to explain the experimentally observed electric-field dependence of polarization P˜cell(E ) , in particular the shape of the static hysteresis loops. Our potential consists of three independent parts. The first nonpolar part Φn describes the deviation of the prime director n (which is the most probable orientation of the long molecular axes) from the easy alignment axis R , which is located in the boundary surface plane. It is introduced in the same manner as the uniaxial Rapini potential. The second part Φp of the potential is a polar term associated with the presence of the polar axis in a FLC. The third part Φm relates to the inherent FLC biaxiality, which has not been taken into consideration previously. The Φm part takes into account the deviations of the secondary director m (which is the most probable orientation of the short molecular axes) from the normal to the boundary surface. The overall surface potential Φs, which is a sum of Φn,Φp , and Φm, allows one to model the conditions when either one, two, or three minima of the SSFLC cell free energy are realized depending on the biaxiality extent. A monodomain or polydomain structure, as well as the bistability or monostability of SSFLC cells, depends on the number of free-energy minima, as confirmed experimentally. In this paper, we analyze the biaxiality impact on the FLC alignment. We also answer the question of whether the bistable or monostable structure can be formed in an SSFLC cell. Our approach is essentially based on a consideration of the biaxial surface potential, while the uniaxial surface potential cannot adequately describe the experimental observations in the FLC.

  17. Transformations in destination texture

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia

    2018-01-01

    This article takes heterogeographical approaches to understand Bollywood-induced destination transformations in Switzerland. Positioned within the theoretical field of mediatized mobility, the study contextualizes Bollywood-induced tourism in Europe the concept of texture. Textural analysis (base...

  18. Evaluation of anisotropic effective stress-strain criteria for the biaxial yield and flow of 2024 aluminum tubes

    International Nuclear Information System (INIS)

    Stout, M.G.; Hecker, S.S.; Bourcier, R.

    1983-01-01

    2024 aluminum tubes, heat treated to a T6 and T8 temper, were tested in combinations of tension-internal pressure and tension-torsion loading. Yield loci and flow behavior were determined for both modes of loading and compared to theoretical predictions. Both tempers of 2024 aluminum exhibited crystallographic textures and anisotropic yield and flow. Hill's quadratic yield criterion and the associated flow rule under-estimate balanced biaxial yield and flow, which is consistent with hydraulic bulge data on other face-centered cubic metals. Hill's nonquadratic criterion, which adds one additional parameter, and Bassani's criterion, which adds two parameters, predict the anisotropic yield behavior much more accurately. Predictions of the complete flow behavior, including strain paths, with these anisotropic criteria could be improved markedly by including provisions for planar anisotropy

  19. Self-field ac losses in biaxially aligned Y endash Ba endash Cu endash O tape conductors

    International Nuclear Information System (INIS)

    Iijima, Y.; Hosaka, M.; Sadakata, N.; Saitoh, T.; Kohno, O.; Takeda, K.

    1997-01-01

    Self-field ac losses were measured by the conventional ac four-probe method in biaxially aligned Y endash Ba endash Cu endash O tapes using polycrystalline Hastelloy tapes with textured yttria-stabilized-zirconia buffer layers. The ac losses increased in proportion to the fourth power of transport current in the high J c sample, and agreed well with Norris close-quote equation for thin strip conductors. However, the low J c sample had rather higher losses than Norris close-quote prediction, suggesting excessive magnetic flux penetration caused by percolated current paths. The results confirmed Norris close-quote prediction of the low ac losses for thin strip conductors, and indicated the importance of removing percolated structures of current paths to avoid higher ac losses than the theoretical predictions based on uniform conductors. copyright 1997 American Institute of Physics

  20. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    Science.gov (United States)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  1. Limit load assessment of centre cracked plates under biaxial loading

    International Nuclear Information System (INIS)

    Meek, C.; Ainsworth, R.A.

    2015-01-01

    Fitness-for-service of equipment and components containing defects is generally assessed using procedures such as BS 7910, API 579 and R6. There is currently little detailed advice in these procedures on the effects of biaxial and triaxial loading on fracture. This poster shows some theoretical bounding solutions of the plastic limit load for centre cracked plates under a variety of biaxial loading ratios and compares the estimates with those found by numerical methods using finite element (FE) analysis using Abacus CAE modelling software. The limit load of a structure is the maximum load that it can carry before plastic collapse occurs; this is often when the plastic zone has become large enough to spread from the crack tip to a remote boundary. For an elastic-perfectly plastic material, the irreversible deformation will continue at stresses no higher than the yield stress. The model for these limit load solutions is a bi-axially loaded plate of width 2W and height 2H, a centre crack of width 2a, acted on by remotely applied uniform stresses σ 2 perpendicular to the crack and Bσ 2 parallel to the crack, where B is the biaxial loading ratio, it means the ratio of the parallel to the perpendicular stress. A quarter plate of an elastic-perfectly plastic material has been modelled. The results show that an exact solution has been found for negative and low positive values of B. For B > 1, the lower bound solution is conservative for all values of a/W and B

  2. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  3. Analysis and experimental validation of through-thickness cracked large-scale biaxial fracture tests

    International Nuclear Information System (INIS)

    Wiesner, C.S.; Goldthorpe, M.R.; Andrews, R.M.; Garwood, S.J.

    1999-01-01

    Since 1984 TWI has been involved in an extensive series of tests investigating the effects of biaxial loading on the fracture behaviour of A533B steel. Testing conditions have ranged from the lower to upper shelf regions of the transition curve and covered a range of biaxiality ratios. In an attempt to elucidate the trends underlying the experimental results, finite element-based mechanistic models were used to analyse the effects of biaxial loading. For ductile fracture, a modified Gunson model was used and important effects on tearing behaviour were found for through thickness cracked wide plates, as observed in upper shelf tests. For cleavage fracture, both simple T-stress methods and the Anderson-Dodds and Beremin models were used. Whilst the effect of biaxiality on surface cracked plates was small, a marked effect of biaxial loading was found for the through-thickness crack. To further validate the numerical predictions for cleavage fracture, TWI have performed an additional series of lower shelf through thickness cracked biaxial wide plate fracture tests. These tests were performed using various biaxiality loading conditions varying from simple uniaxial loading, through equibiaxial loading, to a biaxiality ratio equivalent to a circumferential crack in a pressure vessel. These tests confirmed the predictions that there is a significant effect of biaxial loading on cleavage fracture of through thickness cracked plate. (orig.)

  4. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.

    1993-01-01

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus

  5. Control of texture in Ag and Ag-alloy substrates for superconducting tapes

    International Nuclear Information System (INIS)

    Gladstone, T.A.

    2000-01-01

    The use of a biaxially textured silver tape as a substrate for high temperature superconductor (HTS) phases is one possible route towards the fabrication of high-J c superconducting tape. Using a cold-rolling and annealing process we have reproducibly fabricated {110} textured silver which is stable up to 900 deg. C. We have found that there are two critical process requirements for the formation of this texture; a low oxygen content in the material prior to deformation, and a cold-rolling thickness reduction of less than 97%. To overcome the problems associated with the poor mechanical strength of pure silver, texture development in Ag-Mg and Ag-Hf alloys with improved mechanical properties has been studied. Heat treatments in a reducing atmosphere allow the {110} annealing texture to be obtained in Ag-0.1 wt%Mg. The recrystallization behaviour of a Ag-Pd alloy with an increased stacking fault energy was also investigated and a partial cube texture was obtained in this material. Using orientation distribution function (ODF) analysis we have shown that minor variations in the deformation texture of both pure silver and Ag-based alloys can lead to significant differences in the recrystallization textures obtained. (author)

  6. Dilatometry study of textures

    International Nuclear Information System (INIS)

    Sofrenovic, R.; Lazarevic, Dj.

    1965-01-01

    Presence of textures in the metal uranium fuel is harmful because of anisotropy properties of uranium during thermal treatment, and especially during irradiation. Anisotropic radiation swelling of uranium can cause deformation of fuel element due to existence of textures. The objective of this work was studying of the influence of phase transformations on textures in uranium which has undergone plastic deformation due to rotational casting. Dilatometry method was adopted for testing the textures. This report describes the device for dilatometry testing and the measured preliminary results are shown

  7. Lightweight, Low-CTE Tubes Made From Biaxially Oriented LCPs

    Science.gov (United States)

    Rubin, Leslie; Federico, Frank; Formato, Richard; Larouco, John; Slager, William

    2004-01-01

    Tubes made from biaxially oriented liquid-crystal polymers (LCPs) have been developed for use as penetrations on cryogenic tanks. ( Penetrations in this context denotes feed lines, vent lines, and sensor tubes, all of which contribute to the undesired conduction of heat into the tanks.) In comparison with corresponding prior cryogenic-tank penetrations made from stainless steels and nickel alloys, the LCP penetrations offer advantages of less weight and less thermal conduction. An additional major advantage of LCP components is that one can tailor their coefficients of thermal expansion (CTEs). The estimated cost of continuous production of LCP tubes of typical sizes is about $1.27/ft ($4.17/m) [based on 1998 prices]. LCP tubes that are compatible with liquid oxygen and that feature tailored biaxial molecular orientation and quasi-isotropic properties (including quasi-isotropic CTE) have been fabricated by a combination of proprietary and patented techniques that involve the use of counterrotating dies (CRDs). Tailoring of the angle of molecular orientation is what makes it possible to tailor the CTE over a wide range to match the CTEs of adjacent penetrations of other tank components; this, in turn, makes it possible to minimize differential-thermal expansion stresses that arise during thermal cycling. The fabrication of biaxially oriented LCP tubes by use of CRDs is not new in itself. The novelty of the present development lies in tailoring the orientations and thus the CTEs and other mechanical properties of the LCPs for the intended cryogenic applications and in modifications of the CRDs for this purpose. The LCP tubes and the 304-stainless-steel tubes that the LCP tubes were intended to supplant were tested with respect to burst strength, permeability, thermal conductivity, and CTE.

  8. Field-Induced Rheology in Uniaxial and Biaxial Fields

    International Nuclear Information System (INIS)

    MARTIN, JAMES E.

    1999-01-01

    Steady and oscillatory shear 3-D simulations of electro- and magnetorheology in uniaxial and biaxial fields are presented, and compared to the predictions of the chain model. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the absence of thermal fluctuations, the expected shear thinning viscosity is observed in steady shear, and a striped phase is seen to rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase eventually disappears, even when the fluid stress is still high. In a biaxial field, an opposite trend is seen, where Brownian motion decreases the stress most significantly at higher Mason numbers. to account for the uniaxial steady shear data they propose a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical prediction for the thermal effect. In oscillatory shear, a striped phase again appears in uniaxial field, at strain amplitudes greater than(approx) 0.15, and the presence of a shear slip zone creates strong stress nonlinearities at low strain amplitudes. In a biaxial field, a shear slip zone is not created, and so the stress nonlinearities develop only at expected strain amplitudes. The nonlinear dynamics of these systems is shown to be in good agreement with the Kinetic Chain Model

  9. Comparison of growth texture in round Bi2212 and flat Bi2223 wires and its relation to high critical current density development

    OpenAIRE

    Kametani, F.; Jiang, J.; Matras, M.; Abraimov, D.; Hellstrom, E. E.; Larbalestier, D. C.

    2015-01-01

    Why Bi2Sr2CaCu2Ox (Bi2212) allows high critical current density Jc in round wires rather than only in the anisotropic tape form demanded by all other high temperature superconductors is important for future magnet applications. Here we compare the local texture of state-of-the-art Bi2212 and Bi2223 ((Bi,Pb)2Sr2Ca2Cu3O10), finding that round wire Bi2212 generates a dominant a-axis growth texture that also enforces a local biaxial texture (FWHM

  10. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  11. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-03-11

    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  12. Light propagation in a magneto-optical hyperbolic biaxial crystal

    Science.gov (United States)

    Kuznetsov, Evgeniy V.; Merzlikin, Alexander M.

    2017-12-01

    The light propagation through a magneto-optical hyperbolic biaxial crystal is investigated. Magnetization of the structure results in splitting and reconnection of an isofrequency near the self-intersection point and thus it leads to the disappearance of conical refraction in a crystal. In its turn the isofrequency splitting leads to band gap opening and makes it possible to steer the beam. These effects allow to control the light propagation by means of an external magnetostatic field. The Poynting's vector distribution in the crystal is calculated by means of a Fourier transform in order to demonstrate the aforementioned effects.

  13. Effects of various surface treatments on the biaxial flexural properties of yttria-stabilized zirconia ceramics

    Directory of Open Access Journals (Sweden)

    Teerthesh Jain

    2018-01-01

    Conclusions: Air particle abrasion with CoJet Sand, LTD, and CTs had no negative impact on biaxial flexural strength indeed it increased the biaxial flexural strength. Hence, these surface treatments can be done in routine clinical practice to improve the performance of ceramic restorations.

  14. Mimicking human texture classification

    NARCIS (Netherlands)

    Rogowitz, B.E.; van Rikxoort, Eva M.; van den Broek, Egon; Pappas, T.N.; Schouten, Theo E.; Daly, S.J.

    2005-01-01

    In an attempt to mimic human (colorful) texture classification by a clustering algorithm three lines of research have been encountered, in which as test set 180 texture images (both their color and gray-scale equivalent) were drawn from the OuTex and VisTex databases. First, a k-means algorithm was

  15. Textured perovskite cells

    NARCIS (Netherlands)

    Deelen, J. van; Tezsevin, Y.; Barink, M.

    2017-01-01

    Most research of texturization of solar cells has been devoted to Si based cells. For perovskites, it was assumed that texturization would not have much of an impact because of the relatively low refractive indexes lead to relatively low reflection as compared to the Si based cells. However, our

  16. FY 1997 report on the improvement of toughness of silicide system intermetallic compounds by complex texture; 1997 nendo chosa hokokusho (fukugo soshikika ni yoru silicide kei kinzokukan kagobutsu no kyojinsei kaizen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In order to develop new materials superior in both room- temperature ductility and high-temperature strength, the basic data on MoSi2 intermetallic compounds with complex texture were stored. Intermetallic compound is one of the promising candidates of new super heat-resistant materials superior to conventional super heat-resistant alloys, however, it is extremely poor in ductility at room temperature. Based on available information on isothermal sectional phase diagrams of ternary system (Mo-Si-X system) composed of Mo silicide and the third element (X), some alloy systems were selected in consideration of use of carbide and nitride stably existing as dispersed phase of deposits at high temperature. A knowledge on phase diagrams of ternary system specimens with various compositions was obtained through arc melting, X-ray diffraction and texture observation, and heat treatment conditions for obtaining target complex textures were also determined. Storage of the basic data suggested that improvement of the ductility is possible by forming fine texture through addition of the third element and teat treatment. 21 refs., 58 figs., 15 tabs.

  17. Acoustic emission under biaxial stresses in unflawed 21-6-9 and 304 stainless steel

    International Nuclear Information System (INIS)

    Hamstad, M.A.; Leon, E.M.; Mukherjee, A.K.

    1980-01-01

    Acoustic emission (AE) testing has been carried out with uniaxial and biaxial (2:1 stress ratio) stressing of smooth samples of 21-6-9 and 304 stainless steel (SS). Uniaxial testing was done with simple tensile and compression samples as well as with the special biaxial specimens. Biaxial tensile stressing was accomplished with a specially designed specimen, which had been used previously to characterize AE in 7075 aluminum under biaxial stressing. Results were obtained for air-melt and for vacuum-melt samples of 21-6-9 SS. The air-melt samples contain considerably more inclusion particles than the vacuum-melt samples. For the 304 SS, as received material was examined. To allow AE correlations with microstructure, extensive characterization of the 21-6-9 microstructure was carried out. Significant differences in AE occur in biaxially stressed specimens as compared to uniaxially stressed samples. 15 figures, 3 tables

  18. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  19. Biaxial experimental and analytical characterization of a dielectric elastomer

    Science.gov (United States)

    Helal, Alexander; Doumit, Marc; Shaheen, Robert

    2018-01-01

    Electroactive polymers (EAPs) have emerged as a strong contender for use in low-cost efficient actuators in multiple applications especially related to biomimetic and mobile-assistive devices. Dielectric elastomers (DE), a subcategory of these smart materials, have been of particular interest due to their large achievable deformation and favourable mechanical and electro-mechanical properties. Previous work has been completed to understand the behaviour of these materials; however, their properties require further investigation to properly integrate them into real-world applications. In this study, a biaxial tensile experimental evaluation of 3M™ VHB 4905 and VHB 4910 is presented with the purpose of illustrating the elastomers' transversely isotropic mechanical behaviours. These tests were applied to both tapes for equibiaxial stretch rates ranging between 0.025 and 0.300 s-1. Subsequently, a dynamic planar biaxial visco-hyperelastic constitutive relationship was derived from a Kelvin-Voigt rheological model and the general Hooke's law for transversely isotropic materials. The model was then fitted to the experimental data to obtain three general material parameters for either tapes. The model's ability to predict tensile stress response and internal energy dissipation, with respect to experimental data, is evaluated with good agreement. The model's ability to predict variations in mechanical behaviour due to changes in kinematic variables is then illustrated for different conditions.

  20. Biaxial loading effects on the growth of cracks

    International Nuclear Information System (INIS)

    Brown, M.W.; Miller, K.J.; Walker, T.J.

    1983-01-01

    Fatigue crack growth under different biaxial stress states is considered for both small scale yielding and high bulk stress conditions. Analytical and elastic finite element results are compared favourably alongside experimental results on a AISI 316 stainless steel at both room and elevated temperatures. Differences in crack growth rates are compared against different crack tip cyclic plastic zone sizes for various degrees of mixed mode loading, thereby overcoming the limitations of the Paris Law and LEFM. The usefulness of the approach is indicated for studies in the behaviour of materials subjected to thermal shock. Where steep temperature gradients are introduced due to rapid thermal transients, high strains are produced which propagate fatigue cracks under cyclic conditions. Since stress gradients are generally associated with thermal shock situations, the cracks grow through a plastically deformed region near the surface into an elastic region. A unified approach to fatigue behaviour, encompassing both linear elastic and elastic-plastic fracture mechanics, will enable analysis of thermal shock situations. The approach to crack propagation developed here shows that cyclic growth rates are a function of a severe strain zone size in which local stresses exceed the tensile strength, i.e. monotonic instability. The effects of stress biaxiality and mixed mode loading are included in the analysis, which may be extended to general yielding situations. (orig.)

  1. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  2. Anisotropic yield surfaces in bi-axial cyclic plasticity

    International Nuclear Information System (INIS)

    Rider, R.J.; Harvey, S.J.; Breckell, T.H.

    1985-01-01

    Some aspects of the behaviour of yield surfaces and work-hardening surfaces occurring in biaxial cyclic plasticity have been studied experimentally and theoretically. The experimental work consisted of subjecting thin-walled tubular steel specimens to cyclic plastic torsion in the presence of sustained axial loads of various magnitudes. The experimental results show that considerable anisotropy is induced when the cyclic shear strains are dominant. Although the true shapes of yield and work-hardening surfaces can be very complex, a mathematical model is presented which includes both anisotropy and Bauschinger effects. The model is able to qualitatively predict the deformation patterns during a cycle of applied plastic shear strain for a range of sustained axial stresses and also indicate the material response to changes in axial stress. (orig.)

  3. Elastic stability of biaxially loaded longitudinally stiffened composite structures.

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.

    1973-01-01

    A linear analysis method is presented for the elastic stability of structures of uniform cross section, that may be idealized as an assemblage of laminated plate-strips, flat and curved, and beams. Each plate-strip and beam covers the entire length of the structure and is simply supported on the edges normal to the longitudinal axis. Arbitrary boundary conditions may be specified on any external longitudinal side of plate-strips. The structure or selected plate-strips may be loaded in any desired combination of inplane biaxial loads. The analysis simultaneously considers all modes of instability and is applicable for the buckling of laminated composite structures. Some numerical results are presented to indicate possible applications.

  4. High temperature strength of Hastelloy XR under biaxial stress states

    International Nuclear Information System (INIS)

    Muto, Yasushi; Hada, Kazuhiko; Koikegami, Hajime; Ohno, Nobutada.

    1991-01-01

    Biaxial(tension/torsion) creep and creep-fatigue tests were conducted on Hastelloy XR at 950degC in air. Hastelloy XR is a nickel base solution-annealed heat resistant alloy. Thin-walled tubular test specimens were employed. As results of the creep tests, the von Mises' flow rule was revealed to be applicable very well. Under the torsion load, sufficient growth of voids was necessary to initiate the fracture and this resulted in longer life time compared with that under the tension load. Only a few number of small voids could be observed and very long life times were attained under the compression load. The creep-fatigue tests revealed that superposition of constant torsion load on a cyclic axial load reduced the cycles to failure significantly and the amount of reduction was consistent with the prediction by the linear life fraction rule. (author)

  5. Post-buckling capacity of bi-axially loaded rectangular steel plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, T. H.

    2012-01-01

    slenderness and edge displacement ratio are included in the investigations presented. Capacity interaction curves are established in the bi-axial stress domain. It turns out that for certain stress ratios the imperfections dominating the ultimate capacity are not affine to the lowest classical buckling mode...... for biaxial stress. It is of great interest that short wave imperfections of a lower magnitude compared to conventionally used imperfections are seen to lower the capacity of the bi-axially loaded plates. The topic is of major concern in the flange plates of long span bridges with multi box girder...

  6. Mastering the biaxial stress state in nanometric thin films on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Faurie, D., E-mail: faurie@univ-paris13.fr [LSPM-CNRS, UPR3407, Université Paris 13, Villetaneuse (France); Renault, P.-O.; Le Bourhis, E. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Geandier, G. [Institut Jean Lamour, CNRS UMR7198, Université de Lorraine, Nancy Cedex (France); Goudeau, P. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Thiaudière, D. [SOLEIL Synchrotron, Saint-Aubin, Gif-Sur-Yvette (France)

    2014-07-01

    Biaxial stress state of thin films deposited on flexible substrate can be mastered thanks to a new biaxial device. This tensile machine allows applying in-plane loads F{sub x} and F{sub y} in the two principal directions x and y of a cruciform-shaped polymer substrate. The transmission of the deformation at film/substrate interface allows controlling the stress and strain field in the thin films. We show in this paper a few illustrations dealing with strain measurements in polycrystalline thin films deposited on flexible substrate. The potentialities of the biaxial device located at Soleil synchrotron are also discussed.

  7. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  8. Textures and compositions of cobalt pentlandite and cobaltian ...

    Indian Academy of Sciences (India)

    6

    associated with pyrrhotite and shows similar textural relation with pyrrhotite as that of ... explain the high Co:Ni ratio of the studied ore minerals. ...... Das Gupta, S. P., 1974, Geological setting and origin of sulphide deposits in the Khetri copper.

  9. Computer Texture Mapping for Laser Texturing of Injection Mold

    Directory of Open Access Journals (Sweden)

    Yongquan Zhou

    2014-04-01

    Full Text Available Laser texturing is a relatively new multiprocess technique that has been used for machining 3D curved surfaces; it is more flexible and efficient to create decorative texture on 3D curved surfaces of injection molds so as to improve the surface quality and achieve cosmetic surface of molded plastic parts. In this paper, a novel method of laser texturing 3D curved surface based on 3-axis galvanometer scanning unit has been presented to prevent the texturing of injection mold surface from much distortion which is often caused by traditional texturing processes. The novel method has been based on the computer texture mapping technology which has been developed and presented. The developed texture mapping algorithm includes surface triangulation, notations, distortion measurement, control, and numerical method. An interface of computer texture mapping has been built to implement the algorithm of texture mapping approach to controlled distortion rate of 3D texture math model from 2D original texture applied to curvature surface. Through a case study of laser texturing of a high curvature surface of injection mold of a mice top case, it shows that the novel method of laser texturing meets the quality standard of laser texturing of injection mold.

  10. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...

  11. Single-source mechanical loading system produces biaxial stresses in cylinders

    Science.gov (United States)

    Flower, J. F.; Stafford, R. L.

    1967-01-01

    Single-source mechanical loading system proportions axial-to-hoop tension loads applied to cylindrical specimens. The system consists of hydraulic, pneumatic, and lever arrangements which produce biaxial loading ratios.

  12. Failure criterion for graphene in biaxial loading—a molecular dynamics study

    International Nuclear Information System (INIS)

    Yazdani, Hessam; Hatami, Kianoosh

    2015-01-01

    Molecular dynamics simulations are carried out in order to develop a failure criterion for infinite/bulk graphene in biaxial tension. Stresses along the principal edge configurations of graphene (i.e. armchair and zigzag directions) are normalized to the corresponding uniaxial ultimate strength values. The combinations of normalized stresses resulting in the failure of graphene are used to define failure envelopes (limiting stress ratio surfaces). Results indicate that a bilinear failure envelope can be used to represent the tensile strength of graphene in biaxial loading at different temperatures with reasonable accuracy. A circular failure envelope is also introduced for practical applications. Both failure envelopes define temperature-independent upper limits for the feasible combinations of normalized stresses for a graphene sheet in biaxial loading. Predicted failure modes of graphene under biaxial loading are also shown and discussed. (paper)

  13. Local behavior of an AISI 304 stainless steel submitted to in situ biaxial loading in SEM

    Energy Technology Data Exchange (ETDEWEB)

    Caër, C., E-mail: celia.caer@gmail.com; Pesci, R.

    2017-04-06

    The microstructural response of a coarse grained AISI 304 stainless steel submitted to biaxial tensile loading was investigated using SEM and X-ray diffraction. The specimen geometry was designed to allow for biaxial stress state and incipient crack in the center of the active part under biaxial tensile loading. This complex loading was performed step by step by a micromachine fitting into a SEM chamber. At each loading step FSD pictures and EBSD measurements were carried out to study the microstructural evolution of the alloy, namely grain rotations and misorientations, stress-induced martensite formation and crack propagation. According to their initial orientation, grains are found to behave differently under loading. Approximately 60% of grains are shown to reorient to the [110] Z orientation under biaxial tensile loading, whereas the 40% left undergo high plastic deformation. EBSD and XRD measurements respectively performed under loading and on the post mortem specimen highlighted the formation of about 4% of martensite.

  14. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  15. First steps towards cube textured nickel profile wires for YBCO-coated conductors

    International Nuclear Information System (INIS)

    Eickemeyer, J.; Gueth, A.; Freudenberger, J.; Holzapfel, B.; Schultz, L.

    2011-01-01

    The cube texture as a typical sheet texture can also be formed by cold drawing and recrystallization in profile wires. Cube textured Ni profile wires containing up to 96.2% cube oriented grains in the central region were obtained. Forthcoming investigations are promising to get a textured substrate wire for YBCO-coated conductors. Cube textured nickel alloy tapes prepared by cold rolling and annealing (RABiTS method) represent a standard metallic substrate for superconductor coatings of the YBa 2 Cu 3 O 7-δ (YBCO) type. These tapes have a width to thickness ratio of about 30-100. However, a value of close to one is optimal concerning low energetic losses under alternating current applications. First experiments on micro-alloyed nickel prove that the cube texture as a typical sheet texture can also be formed in profile wires with a rectangular cross-section after cold drawing and recrystallization treatment.

  16. Biaxial loading effects on fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    McAfee, W.J.; Bass, B.R.; Bryson, J.W. Jr.; Pennell, W.E.

    1995-03-01

    The preliminary phases of a program to develop and evaluate fracture methodologies for assessing crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels have been completed by the Heavy-Section Steel Technology (HSST) Program. Objectives were to investigate effect of biaxial loading on fracture toughness, quantify this effect through existing stress-based, dual-parameter, fracture-toughness correlations, or propose and verify alternate correlations. A cruciform beam specimen with 2-D, shallow, through-thickness flaw and a special loading fixture was designed and fabricated. Tests were performed using biaxial loading ratios of 0:1 (uniaxial), 0.6:1, and 1:1 (equi-biaxial). Critical fracture-toughness values were calculated for each test. Biaxial loading of 0.6:1 resulted in a reduction in the lower bound fracture toughness of ∼12% as compared to that from the uniaxial tests. The biaxial loading of 1:1 yielded two subsets of toughness values; one agreed well with the uniaxial data, while one was reduced by ∼43% when compared to the uniaxial data. Results were evaluated using J-Q theory and Dodds-Anderson (D-A) micromechanical scaling model. The D-A model predicted no biaxial effect, while the J-Q method gave inconclusive results. When applied to the 1:1 biaxial data, these constraint methodologies failed to predict the observed reduction in fracture toughness obtained in one experiment. A strain-based constraint methodology that considers the relationship between applied biaxial load, the plastic zone width in the crack plane, and fracture toughness was formulated and applied successfully to the data. Evaluation of this dual-parameter strain-based model led to the conclusion that it has the capability of representing fracture behavior of RPV steels in the transition region, including the effects of out-of-plane loading on fracture toughness. This report is designated as HSST Report No. 150

  17. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  18. Fracture assessment of shallow-flaw cruciform beams tested under uniaxial and biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1999-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate with the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states. (orig.)

  19. Quantitative texture analysis of electrodeposited line patterns

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A.J.

    2005-01-01

    Free-standing line patterns of Cu and Ni were manufactured by electrochemical deposition into lithographically prepared patterns. Electrodeposition was carried out on top of a highly oriented Au-layer physically vapor deposited on glass. Quantitative texture analysis carried out by means of x......-ray diffraction for both the substrate layer and the electrodeposits yielded experimental evidence for epitaxy between Cu and Au. An orientation relation between film and substrate was discussed with respect to various concepts of epitaxy. While the conventional mode of epitaxy fails for the Cu...

  20. Investigation of the Leak Response of a Carbon-Fiber Laminate Loaded in Biaxial Tension

    Science.gov (United States)

    Jackson, Wade C.; Ratcliffe, James G.

    2013-01-01

    Designers of pressurized structures have been reluctant to use composite materials because of concerns over leakage. Biaxial stress states are expected to be the worst-case loading condition for allowing leakage to occur through microcracks. To investigate the leakage behavior under in-plane biaxial loading, a cruciform composite specimen was designed that would have a relatively large test section with a uniform 1:1 biaxial loading ratio. A 7.6-cm-square test section was desired for future investigations of the leakage response as a result of impact damage. Many iterations of the cruciform specimen were evaluated using finite element analysis to reduce stress concentrations and maximize the size of the uniform biaxial strain field. The final design allowed the specimen to go to relatively high biaxial strain levels without incurring damage away from the test section. The specimen was designed and manufactured using carbon/epoxy fabric with a four-ply-thick, quasi-isotropic, central test section. Initial validation and testing were performed on a specimen without impact damage. The specimen was tested to maximum biaxial strains of approximately 4500micro epsilon without apparent damage. A leak measurement system containing a pressurized cavity was clamped to the test section and used to measure the flow rate through the specimen. The leakage behavior of the specimen was investigated for pressure differences up to 172 kPa

  1. Mechanical properties of ion-beam-textured surgical implant alloys

    Science.gov (United States)

    Weigand, A. J.

    1977-01-01

    An electron-bombardment Hg ion thruster was used as an ion source to texture surfaces of materials used to make orthopedic and/or dental prostheses or implants. The materials textured include 316 stainless steel, titanium-6% aluminum, 4% vanadium, and cobalt-20% chromium, 15% tungsten. To determine the effect of ion texturing on the ultimate strength and yield strength, stainless steel and Co-Cr-W alloy samples were tensile tested to failure. Three types of samples of both materials were tested. One type was ion-textured (the process also heats each sample to 300 C), another type was simply heated to 300 C in an oven, and the third type was untreated. Stress-strain diagrams, 0.2% offset yield strength data, total elongation data, and area reduction data are presented. Fatigue specimens of ion textured and untextured 316 stainless steel and Ti-6% Al-4% V were tested. Included as an ion textured sample is a Ti-6% Al-4% V sample which was ion machined by means of Ni screen mask so as to produce an array of 140 mu m x 140 mu m x 60 mu m deep pits. Scanning electron microscopy was used to characterize the ion textured surfaces.

  2. Effect of strontium tantalate surface texture on nickel nanoparticle dispersion by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Compean-González, C.L. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Arredondo-Torres, V.M. [Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan #173, Col. Matamoros, Morelia, Michoacán C.P. 58240 (Mexico); Zarazúa-Morin, M.E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Figueroa-Torres, M.Z., E-mail: m.zyzlila@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico)

    2015-09-15

    Highlights: • Efficient short-time procedure for nickel nanoparticles dispersion by electroless. • Nanoparticles are spherical in shape with an average size of 15 nm. • Influence of surface texture on deposition temperature and time was observed. • Nickel deposition can be done below 50 °C. - Abstract: The present work studies the effect of smooth and porous texture of Sr{sub 2}Ta{sub 2}O{sub 7} on its surface modification with nickel nanoparticles through electroless deposition technique. The influence of temperature to control Ni nanoparticles loading amount and dispersion were analyzed. Nitrogen adsorption isotherms were used to examine surface texture characteristics. The morphology was observed by scanning electron microscopy (MEB) equipped with an energy dispersive spectrometry system (EDS), which was used to determine the amount of deposited Ni. The material with smooth texture (SMT) consists of big agglomerates of semispherical shape particles of 400 nm. Whilst the porous texture (PRT) exhibit a pore-wall formed of needles shape particles of around 200 nm in size. Results indicated that texture characteristics strongly influence the deposition reaction rate; for PRT oxide, Ni deposition can be done from 20 °C while for SMT oxide deposition begins at 40 °C. Analysis of Sr{sub 2}Ta{sub 2}O{sub 7} surface indicated that in both textures, Ni nanoparticles with spherical shape in the range of 10–20 nm were obtained.

  3. Semantic attributes based texture generation

    Science.gov (United States)

    Chi, Huifang; Gan, Yanhai; Qi, Lin; Dong, Junyu; Madessa, Amanuel Hirpa

    2018-04-01

    Semantic attributes are commonly used for texture description. They can be used to describe the information of a texture, such as patterns, textons, distributions, brightness, and so on. Generally speaking, semantic attributes are more concrete descriptors than perceptual features. Therefore, it is practical to generate texture images from semantic attributes. In this paper, we propose to generate high-quality texture images from semantic attributes. Over the last two decades, several works have been done on texture synthesis and generation. Most of them focusing on example-based texture synthesis and procedural texture generation. Semantic attributes based texture generation still deserves more devotion. Gan et al. proposed a useful joint model for perception driven texture generation. However, perceptual features are nonobjective spatial statistics used by humans to distinguish different textures in pre-attentive situations. To give more describing information about texture appearance, semantic attributes which are more in line with human description habits are desired. In this paper, we use sigmoid cross entropy loss in an auxiliary model to provide enough information for a generator. Consequently, the discriminator is released from the relatively intractable mission of figuring out the joint distribution of condition vectors and samples. To demonstrate the validity of our method, we compare our method to Gan et al.'s method on generating textures by designing experiments on PTD and DTD. All experimental results show that our model can generate textures from semantic attributes.

  4. Chameleons: Reptilian Texture

    Science.gov (United States)

    Petersen, Hugh

    2009-01-01

    This article presents an art project inspired by a drawing of a chameleon the author saw in an art-supply catalog. Chameleons prove to be a good subject to highlight shape, color and texture with eigth-graders. In this project, middle- and high-school students draw a chameleon, learn how to use shapes to add to their chameleon drawing, learn how…

  5. Strings, texture, and inflation

    International Nuclear Information System (INIS)

    Hodges, H.M.; Primack, J.R.

    1991-01-01

    We examine mechanisms, several of which are proposed here, to generate structure formation, or to just add large-scale features, through either gauged or global cosmic strings or global texture, within the framework of inflation. We first explore the possibility that strings or texture form if there is no coupling between the topological theory and the inflaton or spacetime curvature, via (1) quantum creation, and (2) a sufficiently high reheat temperature. In addition, we examine the prospects for the inflaton field itself to generate strings or texture. Then, models with the string/texture field coupled to the curvature, and an equivalent model with coupling to the inflaton field, are considered in detail. The requirement that inflationary density fluctuations are not so large as to conflict with observations leads to a number of constraints on model parameters. We find that strings of relevance for structure formation can form in the absence of coupling to the inflaton or curvature through the process of quantum creation, but only if the strings are strongly type I, or if they are global strings. If formed after reheating, naturalness suggests that gauged cosmic strings correspond to a type-I superconductor. Similarly, gauged strings formed during inflation via conformal coupling ξ=1/6 to the spacetime curvature (in a model suggested by Yokoyama in order to evade the millisecond pulsar constraint on cosmic strings) are expected to be strongly type I

  6. Texture analysis of

    NARCIS (Netherlands)

    Lubsch, A.; Timmermans, K.

    2017-01-01

    Texture analysis is a method to test the physical properties of a material by tension and compression. The growing interest in commercialisation of seaweeds for human food has stimulated research into the physical properties of seaweed tissue. These are important parameters for the survival of

  7. Monitoring Poisson's ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay; Akalın, Çağdaş; Akalin, Cagdas; Kocaman, Esat Selim; Suleman, A.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    Damage accumulation in Glass Fiber Reinforced Polymer (GFRP) composites is monitored based on Poisson's ratio measurements for three different fiber stacking sequences subjected to both quasi-static and quasi-static cyclic tensile loadings. The sensor systems utilized include a dual-extensometer, a biaxial strain gage and a novel embedded-biaxial Fiber Bragg Grating (FBG) sensor. These sensors are used concurrently to measure biaxial strain whereby the evolution of Poisson's ratio as a functi...

  8. Shear flow simulations of biaxial nematic liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1997-08-01

    We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.

  9. Research on self-calibration biaxial autocollimator based on ZYNQ

    Science.gov (United States)

    Guo, Pan; Liu, Bingguo; Liu, Guodong; Zhong, Yao; Lu, Binghui

    2018-01-01

    Autocollimators are mainly based on computers or the electronic devices that can be connected to the internet, and its precision, measurement range and resolution are all defective, and external displays are needed to display images in real time. What's more, there is no real-time calibration for autocollimator in the market. In this paper, we propose a biaxial autocollimator based on the ZYNQ embedded platform to solve the above problems. Firstly, the traditional optical system is improved and a light path is added for real-time calibration. Then, in order to improve measurement speed, the embedded platform based on ZYNQ that combines Linux operating system with autocollimator is designed. In this part, image acquisition, image processing, image display and the man-machine interaction interface based on Qt are achieved. Finally, the system realizes two-dimensional small angle measurement. Experimental results showed that the proposed method can improve the angle measurement accuracy. The standard deviation of the close distance (1.5m) is 0.15" in horizontal direction of image and 0.24"in vertical direction, the repeatability of measurement of the long distance (10m) is improved by 0.12 in horizontal direction of image and 0.3 in vertical direction.

  10. Adaptive fuzzy trajectory control for biaxial motion stage system

    Directory of Open Access Journals (Sweden)

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  11. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  12. Experimental studies of yield phenomena in biaxially loaded metals

    International Nuclear Information System (INIS)

    Hecker, S.S.

    1976-01-01

    Realistic materials properties input represents one of the major limitations in computer stress analysis in the plastic range. Lack of data on the response of many structural materials to multiaxial loading requires modeling plastic behavior. Such models can at best predict the response of a limited class of materials for a limited range of loading. A summary of biaxial plasticity experiments on metals is presented to provide a testing ground for such models and to serve as a reference guide for materials that may be of practical interest. Most of the work has been done on materials assumed to exhibit time-and-pressure-independent plastic flow. Special attention is focused on initial and subsequent yield conditions and stress-strain relations. Some specific examples of material behavior that does not fall within the assumptions of classical plasticity theories are discussed. These include time-dependence as evidenced in creep, cyclic loading and strain-rate effects, pressure dependence, large strain behavior, microstructural changes and failure laws. 15 figures, 277 references

  13. Modeling of biaxial gimbal-less MEMS scanning mirrors

    Science.gov (United States)

    von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang

    2016-03-01

    One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.

  14. Stress-strain relationship and XRD line broadening in [0001] textured hexagonal polycrystalline materials

    International Nuclear Information System (INIS)

    Yokoyama, Ryouichi

    2011-01-01

    Stress analysis with X-ray diffraction (XRD) for hexagonal polycrystalline materials in the Laue classes 6/mmm and 6/m has been studied on the basis of the crystal symmetry of the constituent crystallites which was proposed by R. Yokoyama and J. Harada ['Re-evaluation of formulae for X-ray stress analysis in polycrystalline specimens with fibre texture', Journal of Applied Crystallography, Vol.42, pp.185-191 (2009)]. The relationship between the stress and strain observable by XRD in a hexagonal polycrystalline material with [0001] fibre texture was formulated in terms of the elastic compliance defined for its single crystal. As a result, it was shown that the average strains obtained in the crystallites for both symmetries of 6/mmm and 6/m are different from each other under the triaxial or biaxial stress field. Then, it turned out that the line width of XRD changes depending on the measurement direction. (author)

  15. Studies of deformation-induced texture development in sheet materials using diffraction techniques

    International Nuclear Information System (INIS)

    Banovic, S.W.; Vaudin, M.D.; Gnaeupel-Herold, T.H.; Saylor, D.M.; Rodbell, K.P

    2004-01-01

    Crystallographic texture measurements were made on a series of rolled aluminum sheet specimens deformed in equi-biaxial tension up to a strain level of 0.11. The measurement techniques used were neutron diffraction with a 4-circle goniometer, electron backscatter diffraction, conventional powder X-ray diffraction (XRD), and XRD using an area detector. Results indicated a complex texture orientation distribution function which altered in response to the applied plastic deformation. Increased deformation caused the {1 1 0} planes, to align parallel to the plane of the sheet. The different techniques produced results that were very consistent with each other. The advantages and disadvantages of the various methods are discussed, with particular consideration of the time taken for each method, the range of orientation space accessible, the density of data that can be obtained, and the statistical significance of each data set with respect to rolled sheet product

  16. Perceptual asymmetry in texture perception.

    OpenAIRE

    Williams, D; Julesz, B

    1992-01-01

    A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for...

  17. Measurement and modelling of textures in flow formed Cr-Mo-V steel tubes

    Energy Technology Data Exchange (ETDEWEB)

    Tsivoulas, D. [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Clean Energy/Nuclear Services, Amec Foster Wheeler, 601 Faraday Street, Birchwood Park, Warrington WA3 6GN (United Kingdom); Quinta da Fonseca, J. [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Tuffs, M. [Rolls-Royce plc, Derby DE24 8BJ (United Kingdom); Preuss, M. [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2017-02-08

    Flow formed components undergo a complex deformation mode under biaxial strain, which is expected to have significant impact on the crystallographic texture evolution. X-ray diffraction measurements and calculations of orientation distribution functions (ODFs) were employed to analyse flow formed tubes produced with different parameters such as preform hardness, feed rate, roller contact angle, and wall thickness reduction. Texture variations were observed both throughout the wall thickness and along the tube length. A crystal plasticity finite-element model was used to decipher the texture formation relative to the imposed axial and hoop strains. The shear strain on the axial-hoop plane was found to be responsible for the deviation from cold rolling textures and the formation of a fibre along Φ = 0° in the φ{sub 2} = 45° ODF section. Finally, annealing treatments at 700 °C were carried out to monitor texture changes due to potential recrystallisation effects during the forming process, upon which strengthening of the {113}<1–10> orientation was noted.

  18. Parallel-Sequential Texture Analysis

    NARCIS (Netherlands)

    van den Broek, Egon; Singh, Sameer; Singh, Maneesha; van Rikxoort, Eva M.; Apte, Chid; Perner, Petra

    2005-01-01

    Color induced texture analysis is explored, using two texture analysis techniques: the co-occurrence matrix and the color correlogram as well as color histograms. Several quantization schemes for six color spaces and the human-based 11 color quantization scheme have been applied. The VisTex texture

  19. Textural behavior of gels formed by rice starch and whey protein isolate: Concentration and crosshead velocities

    Directory of Open Access Journals (Sweden)

    Thiago Novaes Silva

    Full Text Available ABSTRACT Fabricated food gels involving the use of hydrocolloids are gaining polpularity as confectionery/convenience foods. Starch is commonly combined with a hydrocolloid (protein our polyssacharides, particularly in the food industry, since native starches generally do not have ideal properties for the preparation of food products. Therefore the texture studies of starch-protein mixtures could provide a new approach in producing starch-based food products, being thus acritical attribute that needs to be carefully adjusted to the consumer liking. This work investigated the texture and rheological properties of mixed gels of different concentrations of rice starch (15%, 17.5%, and 20% and whey protein isolate (0%, 3%, and 6% with different crosshead velocities (0.05, 5.0, and 10.0 mm/s using a Box-Behnken experimental design. The samples were submitted to uniaxial compression tests with 80% deformation in order to determinate the following rheological parameters: Young’s modulus, fracture stress, fracture deformation, recoverable energy, and apparent biaxial elongational viscosity. Gels with a higher rice starch concentration that were submitted to higher test velocities were more rigid and resistant, while the whey protein isolate concentration had little influence on these properties. The gels showed a higher recoverable energy when the crosshead velocity was higher, and the apparent biaxial elongational viscosity was also influenced by this factor. Therefore, mixed gels exhibit different properties depending on the rice starch concentration and crosshead velocity.

  20. Effect of Initial Surface Quality on Final Roughness and Texture of Annealed Ni-5at.%W Tapes Coated with a Gd2Zr2O7 Buffer Layer

    DEFF Research Database (Denmark)

    Wulff, Anders Christian; Yue, Zhao; Mishin, Oleg

    2012-01-01

    Surface roughness of Ni-5at.%W tapes in coldrolled and annealed conditions after subsequent deposition of a Gd2Zr2O7 buffer layer has been studied as a function of the polishing grade, taking grain boundary grooving into account. It is found that annealing decreases the initial mean surface...... roughness achieved by mechanical polishing of the cold-rolled material, except after very fine polishing. Furthermore, compared to the surface of the tape annealed after fine polishing, the mean roughness slightly increases after the deposition of the buffer layer. Grain boundary grooving was found...... to impose a lower limit for the mean surface roughness. In the annealed tapes, the fraction of orientations within 5◦ from the ideal cube orientation was observed to be very sensitive to the surface roughness before annealing....

  1. Experimental study on ultimate strength and strain behavior of concrete under biaxial compressive stresses

    International Nuclear Information System (INIS)

    Onuma, Hiroshi; Aoyagi, Yukio

    1976-01-01

    The purpose of this investigation was to study the ultimate strength failure mode and deformation behavior of concrete under short-term biaxial compressive stresses, as an aid to design and analyze the concrete structures subjected to multiaxial compression such as prestressed or reinforced concrete vessel structures. The experimental work on biaxial compression was carried out on the specimens of three mix proportions and different ages with 10cm x 10cm x 10cm cubic shape in a room controlled at 20 0 C. The results are summarized as follows. (1) To minimize the surface friction between specimens and loading platens, the pads of teflon sheets coated with silicone grease were used. The coefficient of friction was measured and was 3 percent on the average. (2) The test data showed that the strength of the concrete subjected to biaxial compression increased as compared to uniaxial compressive strength, and that the biaxial strength increase was mainly dependent on the ratio of principal stresses, and it was hardly affected by mix proportions and ages. (3) The maximum increase of strength, which occurred at the stress ratio of approximately sigma 2 /sigma 1 = 0.6, was about 27 percent higher than the uniaxial strength of concrete. (4) The ultimate strength in case of biaxial compression could be approximated by the parabolic equation. (Kako, I.)

  2. Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests

    International Nuclear Information System (INIS)

    Abbassi, Fethi; Mistou, Sebastien; Zghal, Ali

    2013-01-01

    Highlights: ► Cruciform specimen designed and biaxial tensile test carried out. ► Stereo Correlation Image technique is used for 3D full-filed measurements. ► SEM fractography analysis is used to explain the fracture mechanism. ► Constitutive modeling of the necking phenomenon was developed using GTN model. - Abstract: The aim of the presented investigations is to perform an analysis of fracture and instability during simple and complex load testing by addressing the influence of ductile damage evolution in necking processes. In this context, an improved experimental methodology was developed and successfully used to evaluate localization of deformation during uniaxial and biaxial tensile tests. The biaxial tensile tests are carried out using cruciform specimen loaded using a biaxial testing machine. In this experimental investigation, Stereo-Image Correlation technique has is used to produce the heterogeneous deformations map within the specimen surface. Scanning electron microscope is used to evaluate the fracture mechanism and the micro-voids growth. A finite element model of uniaxial and biaxial tensile tests are developed, where a ductile damage model Gurson–Tvergaard–Needleman (GTN) is used to describe material deformation involving damage evolution. Comparison between the experimental and the simulation results show the accuracy of the finite element model to predict the instability phenomenon. The advanced measurement techniques contribute to understand better the ductile fracture mechanism

  3. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

    Science.gov (United States)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias

    2015-03-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  4. Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T.

    2008-01-01

    Fe-Mn-Si-based shape memory alloy has already been used practically for steel pipe joints. In most of the applications including the steel pipe joints, it is possible to estimate the reduction of diameter from the experimental data of the shape recovery after uniaxial stretching of the alloy materials. However, studies on shape recovery effects after biaxial stretching are important for the extensive applications of the alloy. In this study, we investigated the shape recovery strain after uniaxial and biaxial stretching and the microstructures of the alloy in order to see the effects of uniaxial and biaxial prestrain on the stress-induced martensitic transformation. Amounts of shape recovery strain in the biaxially prestrained specimens are smaller than those in the uniaxially prestrained specimens. Transmission electron microscopy revealed that reverse transformations of stress-induced martensitic ε-phase are prevented by slip bands formed at the same time in the biaxially prestrained specimens, but not in the uniaxially prestrained specimens. The technological data and interpretations presented in this study should be useful in forming design guidelines for promoting the extensive applications of Fe-Mn-Si-based shape memory alloy

  5. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  6. Tuning magnetism by biaxial strain in native ZnO.

    Science.gov (United States)

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui

    2015-07-07

    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  7. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    Science.gov (United States)

    2015-11-01

    necessary anneal . Following this, a thin film of NiTi was blanket sputtered at 600 °C. This NiTi blanket layer was then wet -etch patterned using a...varying the sputter parameters during NiTi deposition, such as thickness, substrate temperature during deposition and anneal , and argon pressure during...6 Fig. 4 Surface texture comparison between NiTi sputtered at RT, then annealed at 600 °C, and NiTi

  8. Texture Formation of Electroplated Nickel and Nickel Alloy on Cu Substrate

    International Nuclear Information System (INIS)

    Lee, Hee Gyoun; Hong, Gye Won; Kim, Jae Geun; Lee, Sun Wang; Kim, Ho Jin

    2006-01-01

    Nickel and nickel-tungsten alloy were electroplated on a cold rolled and heat treated copper(Cu) substrate. 4 mm-thick high purity commercial grade Cu was rolled to various thicknesses of 50, 70, 100 and 150 micron. High reduction ratio of 30% was applied down to 150 micron. Rolled texture was converted into cube texture via high temperature heat treatment at 400-800 degrees C. Grain size of Cu was about 50 micron which is much smaller compared to >300 micron for the Cu prepared using smaller reduction pass of 5%. 1.5 km-long 150 micron Cu was fabricated with a rolling speed of 33 m/min and texture of Cu was uniform along length. Abnormal grain growth and non-cube texture appeared for the specimen anneal above 900 degrees C. 1-10 micron thick Ni and Ni-W film was electroplated onto an annealed cube-textured Cu or directly on a cold rolled Cu. Both specimens were annealed and the degree of texture was measured. For electroplating of Ni on annealed Cu, Ni layer duplicated the cube-texture of Cu substrate and the FWHM of in plane XRD measurement for annealed Cu layer and electroplated layer was 9.9 degree and 13.4 degree, respectively. But the FWHM of in plane XRD measurement of the specimen which electroplated Ni directly on cold rolled Cu was 8.6 degree, which is better texture than that of nickel electroplated on annealed Cu and it might be caused by the suppression of secondary recrystallization and abnormal grain growth of Cu at high temperature above 900 degrees C by electroplated nickel.

  9. Preparation of a Novel Ce0.9La0.1O2/Gd2Zr2O7 Buffer Layer Stack on NiW Alloy Substrates by the MOD Route

    DEFF Research Database (Denmark)

    Yue, Zhao; Grivel, Jean-Claude; Abrahamsen, Asger Bech

    2011-01-01

    An optimized buffer layer architecture prepared by a metal organic deposition method on biaxially textured metallic substrate is proposed and developed successfully. The major achievement of this work is to choose a ${\\rm Ce}_{0.9}{\\rm La}_{0.1}{\\rm O}_{2}$ layer as cap layer that possesses an ex...

  10. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics.

    Science.gov (United States)

    Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C

    2015-06-29

    Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

  11. Phonon deformation potentials of hexagonal GaN studied by biaxial stress modulation

    Directory of Open Access Journals (Sweden)

    Jun-Yong Lu

    2011-09-01

    Full Text Available In this work, a biaxial stress modulation method, combining the microfabrication technique, finite element analysis and a weighted averaging process, was developed to study piezospectroscopic behavior of hexagonal GaN films, epitaxially grown by metalorganic chemical vapor deposition on c-sapphire and Si (111 substrates. Adjusting the size of patterned islands, various biaxial stress states could be obtained at the island centers, leading to abundant stress-Raman shift data. With the proposed stress modulation method, the Raman biaxial stress coefficients of E2H and A1 (LO phonons of GaN were determined to be 3.43 cm-1/GPa and 2.34 cm-1/GPa, respectively.

  12. STRAIN-CONTROLLED BIAXIAL TENSION OF NATURAL RUBBER: NEW EXPERIMENTAL DATA

    KAUST Repository

    Pancheri, Francesco Q.

    2014-03-01

    We present a new experimental method and provide data showing the response of 40A natural rubber in uniaxial, pure shear, and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the preselected deformation rate within the gage area of the specimen. Wealso focus on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data.Weuse a threeterm Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction.

  13. A proposal of parameter to predict biaxial fatigue life for CF8M cast stainless steels

    International Nuclear Information System (INIS)

    Park, Joong Cheul; Kwon, Jae Do

    2005-01-01

    Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified

  14. Discrete Element Simulations and Experiments on the Deformation of Cohesive Powders in a Bi-Axial Box

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Kumar, Nishant; Magnanimo, Vanessa; Luding, Stefan

    2012-01-01

    We compare element test experiments and simulations on the deformation of frictional, cohesive particles in a bi-axial box. We show that computer simulations with the Discrete Element Method qualitatively reproduce a uniaxial compression element test in the true bi-axial tester. We highlight the

  15. Seismic texture classification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vinther, R.

    1997-12-31

    The seismic texture classification method, is a seismic attribute that can both recognize the general reflectivity styles and locate variations from these. The seismic texture classification performs a statistic analysis for the seismic section (or volume) aiming at describing the reflectivity. Based on a set of reference reflectivities the seismic textures are classified. The result of the seismic texture classification is a display of seismic texture categories showing both the styles of reflectivity from the reference set and interpolations and extrapolations from these. The display is interpreted as statistical variations in the seismic data. The seismic texture classification is applied to seismic sections and volumes from the Danish North Sea representing both horizontal stratifications and salt diapers. The attribute succeeded in recognizing both general structure of successions and variations from these. Also, the seismic texture classification is not only able to display variations in prospective areas (1-7 sec. TWT) but can also be applied to deep seismic sections. The seismic texture classification is tested on a deep reflection seismic section (13-18 sec. TWT) from the Baltic Sea. Applied to this section the seismic texture classification succeeded in locating the Moho, which could not be located using conventional interpretation tools. The seismic texture classification is a seismic attribute which can display general reflectivity styles and deviations from these and enhance variations not found by conventional interpretation tools. (LN)

  16. [Visual Texture Agnosia in Humans].

    Science.gov (United States)

    Suzuki, Kyoko

    2015-06-01

    Visual object recognition requires the processing of both geometric and surface properties. Patients with occipital lesions may have visual agnosia, which is impairment in the recognition and identification of visually presented objects primarily through their geometric features. An analogous condition involving the failure to recognize an object by its texture may exist, which can be called visual texture agnosia. Here we present two cases with visual texture agnosia. Case 1 had left homonymous hemianopia and right upper quadrantanopia, along with achromatopsia, prosopagnosia, and texture agnosia, because of damage to his left ventromedial occipitotemporal cortex and right lateral occipito-temporo-parietal cortex due to multiple cerebral embolisms. Although he showed difficulty matching and naming textures of real materials, he could readily name visually presented objects by their contours. Case 2 had right lower quadrantanopia, along with impairment in stereopsis and recognition of texture in 2D images, because of subcortical hemorrhage in the left occipitotemporal region. He failed to recognize shapes based on texture information, whereas shape recognition based on contours was well preserved. Our findings, along with those of three reported cases with texture agnosia, indicate that there are separate channels for processing texture, color, and geometric features, and that the regions around the left collateral sulcus are crucial for texture processing.

  17. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  18. Electrodeposited Ni-W magnetic thin films with columnar nanocrystallites

    International Nuclear Information System (INIS)

    Sulitanu, N.; Brinza, F.

    2002-01-01

    Nanocrystalline Ni-W thin films (140 nm) containing from zero to 18 wt % W were electrolytically prepared and structural and magnetic characterized. XRD, SEM and TEM investigations have revealed that all segregated Ni columns are fcc-type whose [111] axis is oriented perpendicular to the film plane and have 140 nm in height and 6-27 nm in diameter. Depending on film composition, two types of nanostructures were observed: (a) single-phase nanostructure ( i nterphases , namely W enriched particles boundaries, and (b) two-phase nanostructure (7-18 wt %) in which a second Ni-W amorphous phase or even amorphous-disordered mixture separates the magnetic columnar Ni nanocrystallites (d = 6-14 nm). The columnar crystallites have an easy magnetization direction along their long axis mainly due to the in-plane internal biaxial stresses. Magnetic characteristics of prepared thin films are presented. (Authors)

  19. Texturized dairy proteins.

    Science.gov (United States)

    Onwulata, Charles I; Phillips, John G; Tunick, Michael H; Qi, Phoebi X; Cooke, Peter H

    2010-03-01

    Dairy proteins are amenable to structural modifications induced by high temperature, shear, and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey protein concentrate (WPC), and whey protein isolate (WPI) were modified using a twin-screw extruder at melt temperatures of 50, 75, and 100 degrees C, and moistures ranging from 20 to 70 wt%. Viscoelasticity and solubility measurements showed that extrusion temperature was a more significant (P extruded dairy protein ranged from rigid (2500 N) to soft (2.7 N). Extruding at or above 75 degrees C resulted in increased peak force for WPC (138 to 2500 N) and WPI (2.7 to 147.1 N). NDM was marginally texturized; the presence of lactose interfered with its texturization. WPI products extruded at 50 degrees C were not texturized; their solubility values ranged from 71.8% to 92.6%. A wide possibility exists for creating new foods with texturized dairy proteins due to the extensive range of states achievable. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, WPI, or WPC, or NDM were modified by extrusion processing. Extrusion temperature conditions were adjusted to 50, 75, or 100 degrees C, sufficient to change the structure of the dairy proteins, but not destroy them. Extrusion modified the structures of these dairy proteins for ease of use in starchy foods to boost nutrient levels. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, whey protein isolate, whey protein concentrate, or nonfat dried milk were modified by extrusion processing. Extrusion

  20. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  1. Texture classification using autoregressive filtering

    Science.gov (United States)

    Lawton, W. M.; Lee, M.

    1984-01-01

    A general theory of image texture models is proposed and its applicability to the problem of scene segmentation using texture classification is discussed. An algorithm, based on half-plane autoregressive filtering, which optimally utilizes second order statistics to discriminate between texture classes represented by arbitrary wide sense stationary random fields is described. Empirical results of applying this algorithm to natural and sysnthesized scenes are presented and future research is outlined.

  2. Heat treatment effect on the texture and mechanical properties of the VT14 alloy cylinders

    International Nuclear Information System (INIS)

    Betsofen, S.Ya.; Khorev, A.I.; Babarehko, A.A.; Krasnozhon, A.I.; Kadobnova, N.V.

    1978-01-01

    The mechanical properties and the texture of cylinders made of VT14 alloy in the conditions after quenching from the temperature of 880 deg C, followed by ageing for 16 hours at the temperature of about 480 deg C, or after 20 minutes annealing at the temperature of 750 deg C, were stu--died, while taking into account the influence of intermediate preheats up to 800-1000 deg C prior to carrying into effect those kinds of heat treatment. It is shown that the texture of cylinders after heat treatment without the intermediate preheats prior to quenching is characterized by an increased density of poles in the axial and tangential directions. It is the preheating up to 1000 deg C prior to quenching that shifts the texture maxima in the axial direction and causes the appearance of component (0001). Under the effect of the intermediate preheating up to 1000 deg C, the biaxial and monoaxial strength of the cylinders decreases, whereas their tendency to brittle failure increases. The mechanical strength of all the thermally hardened cylinders, independently of the intermediate treatment, is in the tangential direction higher than in the axial direction. The proportions of the structure and texture factors have been assessed in the variation of the structural strength of the cylinders during the course of their heat treatment

  3. Gravitational effects of global textures

    International Nuclear Information System (INIS)

    Noetzold, D.

    1990-03-01

    A solution for the dynamics of global textures is obtained. Their gravitational field during the collapse and the subsequent evolution is found to be given solely by a space-time dependent ''deficit solid angle.'' The frequency shift of photons traversing this gravitational field is calculated. The space-time dependent texture metric locally contracts the volume of three-space and thereby induces overdensities in homogeneous matter distributions. There are no gravitational forces unless matter has a nonzero angular momentum with respect to the texture origin which would be the case for moving textures

  4. LOCAL TEXTURE DESCRIPTION FRAMEWORK FOR TEXTURE BASED FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    R. Reena Rose

    2014-02-01

    Full Text Available Texture descriptors have an important role in recognizing face images. However, almost all the existing local texture descriptors use nearest neighbors to encode a texture pattern around a pixel. But in face images, most of the pixels have similar characteristics with that of its nearest neighbors because the skin covers large area in a face and the skin tone at neighboring regions are same. Therefore this paper presents a general framework called Local Texture Description Framework that uses only eight pixels which are at certain distance apart either circular or elliptical from the referenced pixel. Local texture description can be done using the foundation of any existing local texture descriptors. In this paper, the performance of the proposed framework is verified with three existing local texture descriptors Local Binary Pattern (LBP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs for the five issues viz. facial expression, partial occlusion, illumination variation, pose variation and general recognition. Five benchmark databases JAFFE, Essex, Indian faces, AT&T and Georgia Tech are used for the experiments. Experimental results demonstrate that even with less number of patterns, the proposed framework could achieve higher recognition accuracy than that of their base models.

  5. Accessible switching of electronic defect type in SrTi O3 via biaxial strain

    Science.gov (United States)

    Chi, Yen-Ting; Youssef, Mostafa; Sun, Lixin; Van Vliet, Krystyn J.; Yildiz, Bilge

    2018-05-01

    Elastic strain is used widely to alter the mobility of free electronic carriers in semiconductors, but a predictive relationship between elastic lattice strain and the extent of charge localization of electronic defects is still underdeveloped. Here we considered SrTi O3 , a prototypical perovskite as a model functional oxide for thin film electronic devices and nonvolatile memories. We assessed the effects of biaxial strain on the stability of electronic defects at finite temperature by combining density functional theory (DFT) and quasiharmonic approximation (QHA) calculations. We constructed a predominance diagram for free electrons and small electron polarons in this material, as a function of biaxial strain and temperature. We found that biaxial tensile strain in SrTi O3 can stabilize the small polaron, leading to a thermally activated and slower electronic transport, consistent with prior experimental observations on SrTi O3 and distinct from our prior theoretical assessment of the response of SrTi O3 to hydrostatic stress. These findings also resolved apparent conflicts between prior atomistic simulations and conductivity experiments for biaxially strained SrTi O3 thin films. Our computational approach can be extended to other functional oxides, and for the case of SrTi O3 our findings provide concrete guidance for conditions under which strain engineering can shift the electronic defect type and concentration to modulate electronic transport in thin films.

  6. Research on Design and Simulation of Biaxial Tensile-Bending Complex Mechanical Performance Test Apparatus

    Directory of Open Access Journals (Sweden)

    Hailian Li

    2017-09-01

    Full Text Available In order to realize a micro-mechanic performance test of biaxial tensile-bending-combined loading and solve the problem of incompatibility of test apparatus and observation apparatus, novel biaxial-combined tensile-bending micro-mechanical performance test apparatus was designed. The working principle and major functions of key constituent parts of test apparatus, including the servo drive unit, clamping unit and test system, were introduced. Based on the finite element method, biaxial tensile and tension-bending-combined mechanical performances of the test-piece were studied as guidance to learn the distribution of elastic deformation and plastic deformation of all sites of the test-piece and to better plan test regions. Finally, this test apparatus was used to conduct a biaxial tensile test under different pre-bending loading and a tensile test at different rates; the image of the fracture of the test-piece was acquired by a scanning electron microscope and analyzed. It was indicated that as the pre-bending force rises, the elastic deformation phase would gradually shorten and the slope of the elastic deformation phase curve would slightly rise so that a yield limit would appear ahead of time. Bending speed could exert a positive and beneficial influence on tensile strength but weaken fracture elongation. If bending speed is appropriately raised, more ideal anti-tensile strength could be obtained, but fracture elongation would decline.

  7. Crack under biaxial loading: Two-parameter description and prediction of crack growth direction

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav

    2014-01-01

    Roč. 31, APR (2014), s. 44-49 ISSN 0213-3725 R&D Projects: GA MŠk(CZ) 7AMB14AT012 Institutional support: RVO:68081723 Keywords : Concrete * T-stress * cracks growth prediction * numerical calculation * biaxial loading Subject RIV: JL - Materials Fatigue, Friction Mechanics

  8. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture-toughness

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.; Theiss, T.J.; Rao, M.C.

    1993-01-01

    Uniaxial tests of single-edged notched bend (SENB) specimens with both deep- and shallow-flaws have shown elevated fracture-toughness for the shallow flaws. The elevation in fracture-toughness for shallow flaws has been shown to be the result of reduced constraint at the crack-tip. Biaxial loading has the potential to increase constraint at the crack-tip and thereby reduce some of the shallow-flaw, fracture-toughness elevation. Biaxial fracture-toughness tests have shown that the shallow-flaw, fracture-toughness elevation is reduced but not eliminated by biaxial loading. Dual-parameter, fracture-toughness correlations have been proposed to reflect the effect of crack-tip constraint on fracture-toughness. Test results from the uniaxial and biaxial tests were analyzed using the dual-parameter technology. Discrepancies between analysis results and cleavage initiation site data from fractographic examinations indicate that the analysis models are in need of further refinement. Addition of a precleavage, ductile-tearing element to the analysis model has the potential to resolve the noted discrepancies

  9. 2D nonlocal versus 3D bifurcation studies for biaxially loaded plates

    DEFF Research Database (Denmark)

    Benallal, A.; Tvergaard, Viggo

    1998-01-01

    The main objective of this work is to analyse how a two-dimensional second gradient plasticity model is able to reproduce the three-dimensional bifurcation behaviour for a biaxially loaded flat plate. While it is found that the simple model used here is able to capture them qualitatively for the ...

  10. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.

    Science.gov (United States)

    Shang, Xituan; Yen, Michael R T; Gaber, M Waleed

    2010-06-01

    The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.

  11. Mechanical properties of biaxially strained poly(L-lactide) tubes: Strain rate and temperature dependence

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2017-01-01

    Poly(l-lactide) (PLLA) is a bioabsorbable polymer with high stiffness and strength compared to the other commercially available bioabsorbable polymers. The properties of PLLA can be improved by straining, causing deformation-mediated molecular orientation. PLLA tubes were biaxially strained above...

  12. Dark texture in artworks

    Science.gov (United States)

    Parraman, Carinna

    2012-01-01

    This presentation highlights issues relating to the digital capture printing of 2D and 3D artefacts and accurate colour reproduction of 3D objects. There are a range of opportunities and technologies for the scanning and printing of two-dimensional and threedimensional artefacts [1]. A successful approach of Polynomial Texture Mapping (PTM) technique, to create a Reflectance Transformation Image (RTI) [2-4] is being used for the conservation and heritage of artworks as these methods are non invasive or non destructive of fragile artefacts. This approach captures surface detail of twodimensional artworks using a multidimensional approach that by using a hemispherical dome comprising 64 lamps to create an entire surface topography. The benefits of this approach are to provide a highly detailed visualization of the surface of materials and objects.

  13. Emotional effects of dynamic textures

    NARCIS (Netherlands)

    Toet, A.; Henselmans, M.; Lucassen, M.P.; Gevers, T.

    2011-01-01

    This study explores the effects of various spatiotemporal dynamic texture characteristics on human emotions. The emotional experience of auditory (eg, music) and haptic repetitive patterns has been studied extensively. In contrast, the emotional experience of visual dynamic textures is still largely

  14. Quantitative Characterisation of Surface Texture

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Lonardo, P.M.; Trumpold, H.

    2000-01-01

    This paper reviews the different methods used to give a quantitative characterisation of surface texture. The paper contains a review of conventional 2D as well as 3D roughness parameters, with particular emphasis on recent international standards and developments. It presents new texture...

  15. Human versus artificial texture perception

    NARCIS (Netherlands)

    Petiet, Peter J.; van Erp, J.; Drullman, R.; van den Broek, Egon; Beintema, J.; van Wijngaarden, S.

    2006-01-01

    The performances of current texture analysis algorithms are still poor, especially when applied to a large, diffuse texture domain. Most of these purely computationally driven techniques are created to function within a highly restricted domain. When applied as computer vision techniques, frequently

  16. Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems

    Directory of Open Access Journals (Sweden)

    Bandar Mohammed Abdullah Al-Makramani

    2010-12-01

    Full Text Available Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. OBJECTIVES: The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. MATERIAL AND METHODS: Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995 were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M Sdn Bhd, Puchong, Selangor, Malaysia], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany, which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. RESULTS: The mean biaxial flexural strength values were: Turkom-Cera: 506.8±87.01 MPa, In-Ceram: 347.4±28.83 MPa and Vitadur-N: 128.7±12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA at a preset significance level of 5% because of unequal group variances (P<0.001. There was statistically significant difference between the three core ceramics (P<0.05. Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. CONCLUSIONS: Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

  17. Experimental and analytical comparison of constraint effects due to biaxial loading and shallow-flaws

    International Nuclear Information System (INIS)

    Theiss, T.J.; Bass, B.R.; Bryson, J.W.

    1993-01-01

    A program to develop and evaluate fracture methodologies for the assessment of crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels has been initiated in the Heavy-Section Steel Technology (HSST) Program. The focus of studies described herein is on the evaluation of a micromechanical scaling model based on critical stressed volumes for quantifying crack-tip constraint through applications to experimental data. Data were utilized from single-edge notch bend (SENB) specimens and HSST-developed cruciform beam specimens that were tested in HSST shallow-crack and biaxial testing programs. Shallow-crack effects and far-field tensile out-of-plane biaxial loading have been identified as constraint issues that influence both fracture toughness and the extent of the toughness scatter band. Results from applications indicate that the micromechanical scaling model can be used successfully to interpret experimental data from the shallow- and deep-crack SENB specimen tests. When applied to the uniaxially and biaxially loaded cruciform specimens, the two methodologies showed some promising features, but also raised several questions concerning the interpretation of constraint conditions in the specimen based on near-tip stress fields. Crack-tip constraint analyses of the shallow-crack cruciform specimen based on near-tip stress fields. Crack-tip constraint analyses of the shallow-crack cruciform specimen subjected to uniaxial or biaxial loading conditions are shown to represent a significant challenge for these methodologies. Unresolved issued identified from these analyses require resolution as part of a validation process for biaxial loading applications

  18. Perceptual asymmetry in texture perception.

    Science.gov (United States)

    Williams, D; Julesz, B

    1992-07-15

    A fundamental property of human visual perception is our ability to distinguish between textures. A concerted effort has been made to account for texture segregation in terms of linear spatial filter models and their nonlinear extensions. However, for certain texture pairs the ease of discrimination changes when the role of figure and ground are reversed. This asymmetry poses a problem for both linear and nonlinear models. We have isolated a property of texture perception that can account for this asymmetry in discrimination: subjective closure. This property, which is also responsible for visual illusions, appears to be explainable by early visual processes alone. Our results force a reexamination of the process of human texture segregation and of some recent models that were introduced to explain it.

  19. Fabrication of textured Ni–9.3at.%W substrate by electropulsing intermediate annealing method

    International Nuclear Information System (INIS)

    Liu, Jianan; Liu, Wei; Tang, Guoyi; Zhu, Rufei

    2014-01-01

    Highlights: •It’s the first time that EIA is used on Ni9 W substrate production. •Compared with CIA, EIA trends to sharpen the rolling texture. •Improved cube recrystallization texture is obtained by EIA. •EIA provides a highly efficient approach for Ni9 W substrate manufacture. -- Abstract: Sharp cube texture is difficult to obtain in high W content Ni–W alloy substrates used for coated conductors. In this paper, a new method called electropulsing intermediate annealing (EIA) is adopted to optimize the rolling and recrystallization texture of Ni–9.3 at.%W substrate. It is found that, compared with conventional intermediate annealing (CIA) at the same temperature, EIA trends to increase the Copper, S and Brass components, suppress the Goss component in rolling texture. Higher cube recrystallization texture is obtained at relatively low temperature by EIA in a shorter time. The effect of EIA on texture is attributed to the enhancement of recovery process resulting from the athermal effects

  20. Effect of twins in Ni substrates on the microstructure of La{sub 2}Zr{sub 2}O{sub 7} films for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Petit, Sarah [CRETA-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Pairis, Sébastien [Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Mikolajczyk, Mélissa [CRETA-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Ortega, Luc [Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Soubeyroux, Jean-Louis [CRETA-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Odier, Philippe [CRETA-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France); Institut Néel-CNRS, 25 av. des Martyrs, BP166, 38042 Grenoble Cedex (France)

    2013-03-01

    La{sub 2}Zr{sub 2}O{sub 7} (LZO) films were deposited by chemical solution deposition on Ni{sub 95}Wi{sub 5}rolling assisted bi-axially textured substrates to be used in YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) coated conductors. These LZO films were proved of good qualities for YBCO deposition by metal organic chemical vapor deposition that is an economic process. The mosaic of LZO films is only slightly degraded by the process of grain-to-grain epitaxial transfer (16% with respect to that of the substrate). The film is composed of small crystallites (20–40 nm) and larger anomalous crystallites (100–400 nm) found in great number in transferred twins from the substrate. The anomalous crystallites are poorly crystallized or amorphous and contain more C than areas with normal crystallites. High temperature in-situ X-ray diffraction shows a sudden crystallization at 860 °C that does not seem to involve a solid state reaction. The anomalous crystallites are analyzed to result from a locally enhanced barrier to nucleation and might reveal poor characteristics of the crystallization. - Highlights: ► La{sub 2}Zr{sub 2}O{sub 7} film on Ni{sub 95}W{sub 5} RABiT. ► Anomalous crystallites (100-400 nm) are amorphous on transferred twins. ► La{sub 2}Zr{sub 2}O{sub 7} crystallization appears above 860 °C.

  1. Micro-Texture Synthesis by Phase Randomization

    Directory of Open Access Journals (Sweden)

    Bruno Galerne

    2011-09-01

    Full Text Available This contribution is concerned with texture synthesis by example, the process of generating new texture images from a given sample. The Random Phase Noise algorithm presented here synthesizes a texture from an original image by simply randomizing its Fourier phase. It is able to reproduce textures which are characterized by their Fourier modulus, namely the random phase textures (or micro-textures.

  2. Textures in Utopia Planitia

    Science.gov (United States)

    2002-01-01

    [figure removed for brevity, see original site] Bizarre textures cover the surface of eastern Utopia Planitia where there is a high probability that ground ice has played a role in the formation of this unusual landscape.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Nanocrystalline nickel films with lotus leaf texture for superhydrophobic and low friction surfaces

    Science.gov (United States)

    Shafiei, Mehdi; Alpas, Ahmet T.

    2009-11-01

    Nanostructured Ni films with high hardness, high hydrophobicity and low coefficient of friction (COF) were fabricated. The surface texture of lotus leaf was replicated using a cellulose acetate film, on which a nanocrystalline (NC) Ni coating with a grain size of 30 ± 4 nm was electrodeposited to obtain a self-sustaining film with a hardness of 4.42 GPa. The surface texture of the NC Ni obtained in this way featured a high density (4 × 10 3 mm -2) of conical protuberances with an average height of 10.0 ± 2.0 μm and a tip radius of 2.5 ± 0.5 μm. This structure increased the water repellency and reduced the COF, compared to smooth NC Ni surfaces. The application of a short-duration (120 s) electrodeposition process that deposited "Ni crowns" with a larger radius of 6.0 ± 0.5 μm on the protuberances, followed by a perfluoropolyether (PFPE) solution treatment succeeded in producing a surface texture consisting of nanotextured protuberances that resulted in a very high water contact angle of 156°, comparable to that of the superhydrophobic lotus leaf. Additionally, the microscale protuberances eliminated the initial high COF peaks observed when smooth NC Ni films were tested, and the PFPE treatment resulted in a 60% reduction in the steady-state COFs.

  4. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  5. Symmetry realization of texture zeros

    International Nuclear Information System (INIS)

    Grimus, W.; Joshipura, A.S.; Lavoura, L.; Tanimoto, M.

    2004-01-01

    We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow one to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in grand unified theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture. (orig.)

  6. CRUMB TEXTURE OF SPELT BREAD

    Directory of Open Access Journals (Sweden)

    Joanna Korczyk-Szabó

    2013-12-01

    Full Text Available Abstract The bread quality is considerably dependent on the texture characteristic of bread crumb. Crumb texture is an important quality indicator, as consumer prefer different bread taste. Texture analysis is primarily concerned with the evaluation of mechanical characteristics where a material is subjected to a controlled force from which a deformation curve of its response is generated. It is an objective physical examination of baked products and gives direct information on the product quality, oppositely to dough rheology tests what inform on the baking suitability of the flour, as raw material. This is why the texture analysis is one of the most helpful analytical methods of the product development. In the framework of our research during the years 2008 – 2009 were analyzed selected indicators for bread texture quality of five Triticum spelta L. varieties – Altgold, Oberkulmer Rotkorn, Ostro, Rubiota and Franckenkorn grown in an ecological system. The bread texture quality was evaluated on texture analyzer TA.XT Plus (Stable Micro Systems, Surrey, UK, following the AACC (74-09 standard method and expressed as crumb firmness (N, stiffness (N.mm-1 and relative elasticity (%. Our research proved that all selected indicators were significantly influenced by the year of growing and variety. The most soft bread was achieved in Rubiota, whereas bread crumb samples from Franckenkorn and Altgold were the most firm and stiff. Correlation analysis showed strong negative correlation between relative elasticity and bread crumb firmness as well as bread stiffness (-0.81++, -0.78++. The spelt grain can be a good source for making bread flour, but is closely dependent on choice of spelt variety. The spelt wheat bread crumb texture need further investigation as it can be a reliable quality parameter.

  7. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect

  8. Preliminary assessment of the effects of biaxial loading on reactor pressure vessel structural-integrity-assessment technology

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; Dickson, T.L.; McAfee, W.J.; Merkle, J.G.

    1996-01-01

    Effects of biaxial loading on shallow-flaw fracture toughness were studied to determine potential impact on structural integrity assessment of a reactor pressure vessel (RPV) under pressurized thermal shock (PTS) transient loading and pressure-temperature (PT) loading produced by reactor heatup and cooldown transients. Biaxial shallow-flaw fracture-toughness tests results were also used to determine the parameter controlling fracture in the transition temperature range, and to develop a related dual-parameter fracture-toughness correlation. Shallow-flaw and biaxial loading effects were found to reduce the conditional probability of crack initiation by a factor of nine when the shallow-flaw fracture-toughness K Jc data set, with biaxial-loading effects adjustments, was substituted in place of ASME Code K Ic data set in PTS analyses. Biaxial loading was found to reduce the shallow-flaw fracture toughness of RPV steel such that the lower-bound curve was located between ASME K Ic and K IR curves. This is relevant to future development of P-T curve analysis procedures. Fracture in shallow-flaw biaxial samples tested in the lower transition temperature range was shown to be strain controlled. A strain-based dual-parameter fracture-toughness correlation was developed and shown to be capable of predicting the effect of crack-tip constraint on fracture toughness for strain-controlled fracture

  9. Insertion Testing of Polyethylene Glycol Microneedle Array into Cultured Human Skin with Biaxial Tension

    Science.gov (United States)

    Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki

    Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.

  10. Effects of monoclinic symmetry on the properties of biaxial liquid crystals

    Science.gov (United States)

    Solodkov, Nikita V.; Nagaraj, Mamatha; Jones, J. Cliff

    2018-04-01

    Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.

  11. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  12. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)

    2017-01-11

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  13. Effects of repeated biaxial loads on the creep properties of cardinal ligaments.

    Science.gov (United States)

    Baah-Dwomoh, Adwoa; De Vita, Raffaella

    2017-10-01

    The cardinal ligament (CL) is one of the major pelvic ligaments providing structural support to the vagina/cervix/uterus complex. This ligament has been studied mainly with regards to its important function in the treatment of different diseases such as surgical repair for pelvic organ prolapse and radical hysterectomy for cervical cancer. However, the mechanical properties of the CL have not been fully determined, despite the important in vivo supportive role of this ligament within the pelvic floor. To advance our limited knowledge about the elastic and viscoelastic properties of the CL, we conducted three consecutive planar equi-biaxial tests on CL specimens isolated from swine. Specifically, the CL specimens were divided into three groups: specimens in group 1 (n = 7) were loaded equi-biaxially to 1 N, specimens in group 2 (n = 8) were loaded equi-biaxially to 2N, and specimens in group 3 (n = 7) were loaded equi-biaxially to 3N. In each group, the equi-biaxial loads of 1N, 2N, or 3N were applied and kept constant for 1200s three times. The two axial loading directions were selected to be the main in-vivo loading direction of the CL and the direction that is perpendicular to it. Using the digital image correlation (DIC) method, the in-plane Lagrangian strains in these two loading directions were measured throughout the tests. The results showed that CL was elastically anisotropic, as statistical differences were found between the mean strains along the two axial loading directions for specimens in group 1, 2, or 3 when the equi-biaxial load reached 1N, 2N, or 3N, respectively. For specimens in group 1 and 2, no statistical differences were detected in the mean normalized strains (or, equivalently, the increase in strain over time) between the two axial loading directions for each creep test. For specimens in group 3, some differences were noted but, by the end of the 3rd creep test, there were no statistical differences in the mean normalized strains between

  14. Chaos synchronization in bi-axial magnets modeled by Bloch equation

    International Nuclear Information System (INIS)

    Moukam Kakmeni, F.M.; Nguenang, J.P.; Kofane, T.C.

    2005-10-01

    In this paper, we show that the bi-axial magnetic material modelled by Bloch equation admits chaotic solutions for a certain set of numerical values assigned to the system of parameters and initial conditions. Using the unidirectional linear and nonlinear feedback schemes, we demonstrate that two such systems can be synchronized together. The chaotic synchronization is discussed in the context of complete synchronization which means that the difference of the states of two relevant systems converge to zero. (author)

  15. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.

    LENUS (Irish Health Repository)

    Lyons, Mathew

    2014-06-03

    Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace׳s law showed a circumferential stress in the abdominal wall of approx. 1.1MPa due to an IAP of 11kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress-stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress-stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.

  16. Food Texture Preferences in Infants Versus Toddlers.

    Science.gov (United States)

    Lundy, Brenda; And Others

    1998-01-01

    Compared food texture preferences during infancy and toddlerhood. Found that infants displayed more negative expressions and head and body movements in response to complex textures than to simple textures. Toddlers displayed more positive head and body movements and more eagerness in response to complex than to simple textures. Experience with…

  17. Investigation of in-plane biaxial low cycle fatigued austenitic stainless steel AISI 321. I. Mechanical testing on the planar biaxial load machine

    International Nuclear Information System (INIS)

    Taran, Yu.V.; Balagurov, A.M.; Kuznetsov, A.N.; Schreiber, J.; Bomas, H.; Stoeberl, Ch.; Rathjen, P.; Vorster, W.J.J.; Korsunsky, A.M.

    2007-01-01

    During fatigue loading of structural materials such as stainless steel, changes in the microstructure which affect the mechanical and physical properties occur. Experimental simulation of the loading conditions that induce the changes can be performed by mechanical loading, usually in the form of uniaxial tension-compression cycling. However, real machines and structures are subjected to more complex multiaxial stresses. Fatigue and fracture under multiaxial stresses are one of the most important current topics aimed at ensuring improved reliability of industrial components. The first step towards better understanding of this problem is to subject the materials to biaxial loading. The material examined was low austenitic stainless steel AISI 321 H. A set of the four samples of cruciform geometry was subjected to the biaxial tension-compression fatigue cycling with the frequency of 0.5 Hz at the applied load of 10-17 kN. The samples are intended for the neutron diffraction measurements of the residual stresses and the mechanical characterizations on a dedicated stress-diffractometer

  18. Effect of metal chloride solutions on coloration and biaxial flexural strength of yttria-stabilized zirconia

    Science.gov (United States)

    Oh, Gye-Jeong; Lee, Kwangmin; Lee, Doh-Jae; Lim, Hyun-Pil; Yun, Kwi-Dug; Ban, Jae-Sam; Lee, Kyung-Ku; Fisher, John G.; Park, Sang-Won

    2012-10-01

    The effect of three kinds of transition metal dopants on the color and biaxial flexural strength of zirconia ceramics for dental applications was evaluated. Presintered zirconia discs were colored through immersion in aqueous chromium, molybdenum and vanadium chloride solutions and then sintered at 1450 °C. The color of the doped specimens was measured using a digital spectrophotometer. For biaxial flexural strength measurements, specimens infiltrated with 0.3 wt% of each aqueous chloride solution were used. Uncolored discs were used as a control. Zirconia specimens infiltrated with chromium, molybdenum and vanadium chloride solutions were dark brown, light yellow and dark yellow, respectively. CIE L*, a*, and b* values of all the chromium-doped specimens and the specimens infiltrated with 0.1 wt% molybdenum chloride solution were in the range of values for natural teeth. The biaxial flexural strengths of the three kinds of metal chloride groups were similar to the uncolored group. These results suggest that chromium and molybdenum dopants can be used as colorants to fabricate tooth colored zirconia ceramic restorations.

  19. A novel constrained H2 optimization algorithm for mechatronics design in flexure-linked biaxial gantry.

    Science.gov (United States)

    Ma, Jun; Chen, Si-Lu; Kamaldin, Nazir; Teo, Chek Sing; Tay, Arthur; Mamun, Abdullah Al; Tan, Kok Kiong

    2017-11-01

    The biaxial gantry is widely used in many industrial processes that require high precision Cartesian motion. The conventional rigid-link version suffers from breaking down of joints if any de-synchronization between the two carriages occurs. To prevent above potential risk, a flexure-linked biaxial gantry is designed to allow a small rotation angle of the cross-arm. Nevertheless, the chattering of control signals and inappropriate design of the flexure joint will possibly induce resonant modes of the end-effector. Thus, in this work, the design requirements in terms of tracking accuracy, biaxial synchronization, and resonant mode suppression are achieved by integrated optimization of the stiffness of flexures and PID controller parameters for a class of point-to-point reference trajectories with same dynamics but different steps. From here, an H 2 optimization problem with defined constraints is formulated, and an efficient iterative solver is proposed by hybridizing direct computation of constrained projection gradient and line search of optimal step. Comparative experimental results obtained on the testbed are presented to verify the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Biaxial testing for nuclear grade graphite by ball on three balls assessment

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Yusof Abdullah

    2012-01-01

    Nuclear grade (high-purity) graphite for fuel element and moderator material in Advanced Gas Cooling Reactors (AGR) displays large scatter in strength and a non-linear stress-strain response from the damage accumulation. These responses can be characterized as quasi-brittle behaviour. Current assessments of fracture in core graphite components are based on the linear elastic approximation and thus represent a major assumption. The quasi-brittle behaviour gives challenge to assess the real nuclear graphite component. The selected test method would help to bridge the gap between microscale to macro-scale in real reactor component. The small scale tests presented here can contribute some statistical data to manifests the failure in real component. The evaluation and choice of different solution design of biaxial test will be discussed in this paper. The ball on-three ball test method was used for assessment test follows by numerous of analytical method. The results shown that biaxial strength of the EY9 grade graphite depends on the method used for evaluation. Some of the analytical methods use to calculate biaxial strength were found not to be valid and therefore should not be used to assess the mechanical properties of nuclear graphite. (author)

  1. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    International Nuclear Information System (INIS)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-01-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures

  2. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    Science.gov (United States)

    Lei, Ying; Masjedi, Shirin; Ferdous, Zannatul

    2017-11-01

    In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can be used for either native or engineered tissues, this study determined matrix remodeling and strain distribution of aortic cusps after culturing under biaxial stretch for 14 days. The contents of collagen and glycosaminoglycans were determined using standard biochemical assays and compared with fresh controls. Strain fields in static cusps were more uniform than those in stretched cusps, which indicated degradation of the ECM fibers. The glycosaminoglycan content was significantly elevated in the static control as compared to fresh or stretched cusps, but no difference was observed in collagen content among the groups. The strain profile of freshly isolated fibrosa vs. ventricularis and left, right, and noncoronary cusps were also determined by Digital Image Correlation technique. Distinct strain patterns were observed under stretch on fibrosa and ventricularis sides and among the three cusps. This work highlights the critical role of the anisotropic ECM structure for proper functions of native aortic valves and the beneficial effects of biaxial stretch for maintenance of the native ECM structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Uniaxial and biaxial tensioning effects on thin membrane materials. [large space structures

    Science.gov (United States)

    Hinson, W. F.; Goslee, J. W.

    1980-01-01

    Thin laminated membranes are being considered for various surface applications on future large space structural systems. Some of the thin membranes would be stretched across or between structural members with the requirement that the membrane be maintained within specified limits of smoothness which would be dictated by the particular applications such as antenna reflector requirements. The multiaxial tensile force required to maintain the smoothness in the membrane needs to be determined for use in the structure design. Therefore, several types of thicknesses of thin membrane materials have been subjected to varied levels of uniaxial and biaxial tensile loads. During the biaxial tests, deviations of the material surface smoothness were measured by a noncontacting capacitance probe. Basic materials consisted of composites of vacuum deposited aluminum on Mylar and Kapton ranging in thickness from 0.00025 in (0.000635 cm) to 0.002 in (0.00508 cm). Some of the material was reinforced with Kevlar and Nomex scrim. The uniaxial tests determined the material elongation and tensile forces up to ultimate conditions. Biaxial tests indicated that a relatively smooth material surface could be achieved with tensile force of approximately 1 to 15 Newtons per centimeter, depending upon the material thickness and/or reinforcement.

  4. BREAD CRUMBS TEXTURE OF SPELT

    Directory of Open Access Journals (Sweden)

    Joanna Korczyk – Szabó

    2014-02-01

    Full Text Available Texture analysis is an objective physical examination of baked products and gives direct information on the product quality, oppositely to dough rheology tests what inform on the baking suitability of the flour, as raw material. Evaluation of the mechanical properties of bread crumb is important not only for quality assurance in the bakeries, but also for assessing the effects of changes in dough ingredients and processing condition and also for describing the changes in bread crumb during storage. Crumb cellular structure is an important quality criterion used in commercial baking and research laboratories to judge bread quality alongside taste, crumb colour and crumb physical texture. In the framework of our research during the years 2010 – 2011 were analyzed selected indicators of bread crumb for texture quality of three Triticum spelta L. cultivars – Altgold, Rubiota and Ostro grown in an ecological system. The bread texture quality was evaluated on texture analyzer TA.XT Plus (Stable Micro Systems, Surrey, UK, following the AACC (74-09 standard and expressed as crumb firmness (N, stiffness (N.mm-1 and relative elasticity (%. Our research proved that all selected indicators were significantly influenced by the year of growing and variety. The most soft bread was achieved in Rubiota, whereas bread crumb samples from Altgold and Ostro were the most firm and stiff. Correlation analysis showed strong negative correlation between relative elasticity and bread crumb firmness as well as bread stiffness (-0.65++, -0.66++. The spelt wheat bread crumb texture need further investigation as it can be a reliable quality parameter.

  5. Laser surface texturing of tool steel: textured surfaces quality evaluation

    Science.gov (United States)

    Šugár, Peter; Šugárová, Jana; Frnčík, Martin

    2016-05-01

    In this experimental investigation the laser surface texturing of tool steel of type 90MnCrV8 has been conducted. The 5-axis highly dynamic laser precision machining centre Lasertec 80 Shape equipped with the nano-second pulsed ytterbium fibre laser and CNC system Siemens 840 D was used. The planar and spherical surfaces first prepared by turning have been textured. The regular array of spherical and ellipsoidal dimples with a different dimensions and different surface density has been created. Laser surface texturing has been realized under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of ablated surfaces has been performed using scanning electron microscopy (SEM) technique. The results show limited possibility of ns pulse fibre laser application to generate different surface structures for tribological modification of metallic materials. These structures were obtained by varying the processing conditions between surface ablation, to surface remelting. In all cases the areas of molten material and re-cast layers were observed on the bottom and walls of the dimples. Beside the influence of laser beam parameters on the machined surface quality during laser machining of regular hemispherical and elipsoidal dimple texture on parabolic and hemispherical surfaces has been studied.

  6. Texture in thin film silicides and germanides: A review

    Energy Technology Data Exchange (ETDEWEB)

    De Schutter, B., E-mail: bob.deschutter@ugent.be; De Keyser, K.; Detavernier, C. [Department of Solid State Sciences, Ghent University, Ghent (Belgium); Lavoie, C. [IBM Research Division, T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (United States)

    2016-09-15

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi{sub 2}, C54-TiSi{sub 2}, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si{sub 1−x}Ge{sub x} in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  7. Texture in thin film silicides and germanides: A review

    International Nuclear Information System (INIS)

    De Schutter, B.; De Keyser, K.; Detavernier, C.; Lavoie, C.

    2016-01-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi_2, C54-TiSi_2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si_1_−_xGe_x in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  8. Texture in thin film silicides and germanides: A review

    Science.gov (United States)

    De Schutter, B.; De Keyser, K.; Lavoie, C.; Detavernier, C.

    2016-09-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi2, C54-TiSi2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si1-xGex in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  9. Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Svalov, A.V., E-mail: andrey.svalov@ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Kurlyandskaya, G.V. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2014-10-15

    Highlights: • Fe{sub 19}Ni{sub 81} films and FeNi-based multilayers were prepared by magnetron sputtering. • The samples were deposited onto glass substrates at room temperature. • Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. • The thick Cu seed increases the coercive force of the magnetic layer. • The thin Ti spacer restores the magnetic softness of the Cu/Ti/FeNi multilayers. - Abstract: The microstructure and magnetic properties of sputtered permalloy films and FeNi-based multilayers prepared by magnetron sputtering have been studied. X-ray diffraction measurements indicate that Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. Ti/FeNi bilayers with high crystallographic quality have relatively low resistivity. The Ti seed layer does not influence the magnetic properties of FeNi film in Ti/FeNi bilayers, but the thick Cu seed layer leads to an increase of the coercive force of the magnetic layer. For the FeNi films deposited on thick Cu seed layer, the (0 1 0) and (0 0 2) diffraction peaks of hcp nickel were clearly observed. The thin Ti spacer between Cu and FeNi layers prevents the formation of the nickel phase and restores the magnetic softness of the FeNi layer in the Cu/Ti/FeNi sample. Obtained results can be important for the development of multilayer sensitive elements for giant magnetoimpedance or magnetoresistance detectors.

  10. Study of the effect of an equi-biaxial loading on the fatigue lifetime of austenitic stainless steel

    International Nuclear Information System (INIS)

    Bradai, Soumaya

    2014-01-01

    Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures.In some nuclear power plant components, the fatigue loading may be equi-biaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equi-biaxial tension. The aim of this study is to present the experimental and numerical results obtained with a device 'FABIME2' developed in the LISN in collaboration with EDF and AREVA. The association of the experimental results, obtained on the new experimental fatigue device FABIME2, with the numerical analyses obtained by FEM simulation with Cast3M code, has enabled to define the aggravating effect of the equi-biaxial fatigue loading. However, this effect is covered by the Design fatigue curve defined from the nuclear industry. For the crack propagation, a first simplified approach enables to study the kinetic behavior of crack propagation in equi-biaxial fatigue. (author) [fr

  11. Improvement of IBAD-MgO texturing for high throughput of buffered substrate

    International Nuclear Information System (INIS)

    Ito, T.; Takahashi, Y.; Matsuse, K.; Kuriki, R.; Tokumaru, M.; Yoshizumi, M.; Izumi, T.

    2011-01-01

    The requirements from the market on two important factors of performance and cost need to be satisfied for commercialization of the coated conductors. Highly biaxially grain texturing with high production rate should be realized from the perspective of buffer layers processing. IBAD-MgO process is one of the major techniques which are possible to satisfy those requirements. The structure of our buffered substrate is IBS-GZO/IBAD-MgO/RFsputter-LaMnO 3 /PLD-CeO 2 . The PLD-CeO 2 process is the rate limiting and cost dominant one in this architecture. It is proposed that the self-texturing CeO 2 layer thickness could be reduced by optimization of the MgO processing due to higher MgO texturing and/or effective growth of self-texturing CeO 2 . Influence of the IBAD beam conditions and deposition time has been studied to optimize the IBAD conditions. Optimized IBAD conditions were decided from the viewpoints of in-plane grain texturing and the stability to obtain high texturing on fabrication. The Δφ value of CeO 2 layer was improved from 4-5 o to 3-3.5 o by the optimization. This buffered substrate gave high and uniform I c values of 524-565 A/cm-width for 50 m long GdBCO (1.5 μm) tape, indicating uniform distribution of Δφ(CeO 2 ). This improvement of Δφ(CeO 2 ) enables to reduce the CeO 2 thickness down to 300 nm without making Δφ(CeO 2 ) > 5 o , which improves CeO 2 throughput from 10 m/h to 30 m/h. A 50 m long patch sample showed more uniform Δφ distribution around 4 o even by high speed of 30 m/h as CeO 2 through-put. Highly and uniformly textured CeO 2 buffered substrate was obtained in 100 m long cost-effectively by optimization of IBAD-MgO processing.

  12. Improvement of IBAD-MgO texturing for high throughput of buffered substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T., E-mail: t-ito@istec.or.jp [Superconductivity Research Laboratory, ISTEC, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Takahashi, Y.; Matsuse, K.; Kuriki, R.; Tokumaru, M.; Yoshizumi, M.; Izumi, T. [Superconductivity Research Laboratory, ISTEC, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan)

    2011-11-15

    The requirements from the market on two important factors of performance and cost need to be satisfied for commercialization of the coated conductors. Highly biaxially grain texturing with high production rate should be realized from the perspective of buffer layers processing. IBAD-MgO process is one of the major techniques which are possible to satisfy those requirements. The structure of our buffered substrate is IBS-GZO/IBAD-MgO/RFsputter-LaMnO{sub 3}/PLD-CeO{sub 2}. The PLD-CeO{sub 2} process is the rate limiting and cost dominant one in this architecture. It is proposed that the self-texturing CeO{sub 2} layer thickness could be reduced by optimization of the MgO processing due to higher MgO texturing and/or effective growth of self-texturing CeO{sub 2}. Influence of the IBAD beam conditions and deposition time has been studied to optimize the IBAD conditions. Optimized IBAD conditions were decided from the viewpoints of in-plane grain texturing and the stability to obtain high texturing on fabrication. The {Delta}{phi} value of CeO{sub 2} layer was improved from 4-5{sup o} to 3-3.5{sup o} by the optimization. This buffered substrate gave high and uniform I{sub c} values of 524-565 A/cm-width for 50 m long GdBCO (1.5 {mu}m) tape, indicating uniform distribution of {Delta}{phi}(CeO{sub 2}). This improvement of {Delta}{phi}(CeO{sub 2}) enables to reduce the CeO{sub 2} thickness down to 300 nm without making {Delta}{phi}(CeO{sub 2}) > 5{sup o}, which improves CeO{sub 2} throughput from 10 m/h to 30 m/h. A 50 m long patch sample showed more uniform {Delta}{phi} distribution around 4{sup o} even by high speed of 30 m/h as CeO{sub 2} through-put. Highly and uniformly textured CeO{sub 2} buffered substrate was obtained in 100 m long cost-effectively by optimization of IBAD-MgO processing.

  13. Height and Tilt Geometric Texture

    DEFF Research Database (Denmark)

    Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas

    2009-01-01

    compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...

  14. Texture analysis using Gabor wavelets

    Science.gov (United States)

    Naghdy, Golshah A.; Wang, Jian; Ogunbona, Philip O.

    1996-04-01

    Receptive field profiles of simple cells in the visual cortex have been shown to resemble even- symmetric or odd-symmetric Gabor filters. Computational models employed in the analysis of textures have been motivated by two-dimensional Gabor functions arranged in a multi-channel architecture. More recently wavelets have emerged as a powerful tool for non-stationary signal analysis capable of encoding scale-space information efficiently. A multi-resolution implementation in the form of a dyadic decomposition of the signal of interest has been popularized by many researchers. In this paper, Gabor wavelet configured in a 'rosette' fashion is used as a multi-channel filter-bank feature extractor for texture classification. The 'rosette' spans 360 degrees of orientation and covers frequencies from dc. In the proposed algorithm, the texture images are decomposed by the Gabor wavelet configuration and the feature vectors corresponding to the mean of the outputs of the multi-channel filters extracted. A minimum distance classifier is used in the classification procedure. As a comparison the Gabor filter has been used to classify the same texture images from the Brodatz album and the results indicate the superior discriminatory characteristics of the Gabor wavelet. With the test images used it can be concluded that the Gabor wavelet model is a better approximation of the cortical cell receptive field profiles.

  15. EUROMET SUPPLEMENTARY COMPARISON - SURFACE TEXTURE

    DEFF Research Database (Denmark)

    Koenders, L.; Andreasen, Jan Lasson; De Chiffre, Leonardo

    At the length meeting in Prague in Oct. 1999 a new comparison was suggested on surface texture. The last comparison on this field was finished in 1989. In the meantime the instrumentation, the standards and the written standards have been improved including some software filters. The pilot labora...

  16. Color Textons for Texture Recognition

    NARCIS (Netherlands)

    Burghouts, G.J.; Geusebroek, J.M.

    2006-01-01

    Texton models have proven to be very discriminative for the recognition of grayvalue images taken from rough textures. To further improve the discriminative power of the distinctive texton models of Varma and Zisserman (VZ model) (IJCV, vol. 62(1), pp. 61-81, 2005), we propose two schemes to exploit

  17. Sensory memory and food texture

    NARCIS (Netherlands)

    Mojet, J.; Köster, E.P.

    2005-01-01

    Memory for texture plays an important role in food expectations. After fasting overnight, subjects (41 women, 35 men, age 19-60 years) received a breakfast including breakfast drink, biscuits and yoghurt. Subsequently, they rated their hunger feelings every hour, and returned for a taste experiment

  18. Sensory memory and food texture

    NARCIS (Netherlands)

    Mojet, J.; Koster, E.P.

    2005-01-01

    Memory for texture plays an important role in food expectations. After fasting overnight, subjects (41 women, 35 men, age 19¿60 years) received a breakfast including breakfast drink, biscuits and yoghurt. Subsequently, they rated their hunger feelings every hour, and returned for a taste experiment

  19. Colloidal aspects of texture perception

    NARCIS (Netherlands)

    Vliet, T. van; Aken, G.A. van; Jongh, H.H.J. de; Hamer, R.J.

    2009-01-01

    Recently, considerable attention has been given to the understanding of texture attributes that cannot directly be related to physical properties of food, such as creamy, crumbly and watery. The perception of these attributes is strongly related to the way the food is processed during food intake,

  20. Biaxially mechanical tuning of 2-D reversible and irreversible surface topologies through simultaneous and sequential wrinkling.

    Science.gov (United States)

    Yin, Jie; Yagüe, Jose Luis; Boyce, Mary C; Gleason, Karen K

    2014-02-26

    Controlled buckling is a facile means of structuring surfaces. The resulting ordered wrinkling topologies provide surface properties and features desired for multifunctional applications. Here, we study the biaxially dynamic tuning of two-dimensional wrinkled micropatterns under cyclic mechanical stretching/releasing/restretching simultaneously or sequentially. A biaxially prestretched PDMS substrate is coated with a stiff polymer deposited by initiated chemical vapor deposition (iCVD). Applying a mechanical release/restretch cycle in two directions loaded simultaneously or sequentially to the wrinkled system results in a variety of dynamic and tunable wrinkled geometries, the evolution of which is investigated using in situ optical profilometry, numerical simulations, and theoretical modeling. Results show that restretching ordered herringbone micropatterns, created through sequential release of biaxial prestrain, leads to reversible and repeatable surface topography. The initial flat surface and the same wrinkled herringbone pattern are obtained alternatively after cyclic release/restretch processes, owing to the highly ordered structure leaving no avenue for trapping irregular topological regions during cycling as further evidenced by the uniformity of strains distributions and negligible residual strain. Conversely, restretching disordered labyrinth micropatterns created through simultaneous release shows an irreversible surface topology whether after sequential or simultaneous restretching due to creation of irregular surface topologies with regions of highly concentrated strain upon formation of the labyrinth which then lead to residual strains and trapped topologies upon cycling; furthermore, these trapped topologies depend upon the subsequent strain histories as well as the cycle. The disordered labyrinth pattern varies after each cyclic release/restretch process, presenting residual shallow patterns instead of achieving a flat state. The ability to

  1. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture toughness

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Theiss, T.J.; Rao, M.C.

    1994-01-01

    A program to develop and evaluate fracture methodologies for the assessment of crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels has been initiated in the Heavy-Section Steel Technology (HSST) Program. Crack-tip constraint is an issue that significantly impacts fracture mechanics technologies employed in safety assessment procedures for commercially licensed nuclear RPVs. The focus of studies described herein is on the evaluation of two stressed-based methodologies for quantifying crack-tip constraint (i.e., J-Q theory and a micromechanical scaling model based on critical stressed volumes) through applications to experimental and fractographic data. Data were utilized from single-edge notch bend (SENB) specimens and HSST-developed cruciform beam specimens that were tested in HSST shallow-crack and biaxial testing programs. Results from applications indicate that both the J-Q methodology and the micromechanical scaling model can be used successfully to interpret experimental data from the shallow- and deep-crack SENB specimen tests. When applied to the uniaxially and biaxially loaded cruciform specimens, the two methodologies showed some promising features, but also raised several questions concerning the interpretation of constraint conditions in the specimen based on near-tip stress fields. Fractographic data taken from the fracture surfaces of the SENB and cruciform specimens are used to assess the relevance of stress-based fracture characterizations to conditions at cleavage initiation sites. Unresolved issues identified from these analyses require resolution as part of a validation process for biaxial loading applications. This report is designated as HSST Report No. 142

  2. Regional and depth variability of porcine meniscal mechanical properties through biaxial testing.

    Science.gov (United States)

    Kahlon, A; Hurtig, M B; Gordon, K D

    2015-01-01

    The menisci in the knee joint undergo complex loading in-vivo resulting in a multidirectional stress distribution. Extensive mechanical testing has been conducted to investigate the tissue properties of the knee meniscus, but the testing conditions do not replicate this complex loading regime. Biaxial testing involves loading tissue along two different directions simultaneously, which more accurately simulates physiologic loading conditions. The purpose of this study was to report mechanical properties of meniscal tissue resulting from biaxial testing, while simultaneously investigating regional variations in properties. Ten left, fresh porcine joints were obtained, and the medial and lateral menisci were harvested from each joint (twenty menisci total). Each menisci was divided into an anterior, middle and posterior region; and three slices (femoral, deep and tibial layers) were obtained from each region. Biaxial and constrained uniaxial testing was performed on each specimen, and Young's moduli were calculated from the resulting stress strain curves. Results illustrated significant differences in regional mechanical properties, with the medial anterior (Young's modulus (E)=11.14 ± 1.10 MPa), lateral anterior (E=11.54 ± 1.10 MPa) and lateral posterior (E=9.0 ± 1.2 MPa) regions exhibiting the highest properties compared to the medial central (E=5.0 ± 1.22 MPa), medial posterior (E=4.16 ± 1.13 MPa) and lateral central (E=5.6 ± 1.20 MPa) regions. Differences with depth were also significant on the lateral meniscus, with the femoral (E=12.7 ± 1.22 MPa) and tibial (E=8.6 ± 1.22 MPa) layers exhibiting the highest Young's moduli. This data may form the basis for future modeling of meniscal tissue, or may aid in the design of synthetic replacement alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Cold Forming of Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, Kaung-Jau; Su, Jhe-Yung

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its further application, this study attempts to investigate the feasibility of cold forming its sheet blank especially under a bi-axial tensile stress state. Not only experiments but also a Finite Element Analysis (FEA) with DEFORM 2D was conducted in this study. The material data for FEA was accomplished by the tensile test. An Erichsen-like cupping test was performed as well to determine the process parameter for experiment setup. As a result of the study, the Ni-Ti shape memory alloy sheet has a low formability for cold forming and shows a relative large springback after releasing the forming load.

  4. Feature-aware natural texture synthesis

    KAUST Repository

    Wu, Fuzhang

    2014-12-04

    This article presents a framework for natural texture synthesis and processing. This framework is motivated by the observation that given examples captured in natural scene, texture synthesis addresses a critical problem, namely, that synthesis quality can be affected adversely if the texture elements in an example display spatially varied patterns, such as perspective distortion, the composition of different sub-textures, and variations in global color pattern as a result of complex illumination. This issue is common in natural textures and is a fundamental challenge for previously developed methods. Thus, we address it from a feature point of view and propose a feature-aware approach to synthesize natural textures. The synthesis process is guided by a feature map that represents the visual characteristics of the input texture. Moreover, we present a novel adaptive initialization algorithm that can effectively avoid the repeat and verbatim copying artifacts. Our approach improves texture synthesis in many images that cannot be handled effectively with traditional technologies.

  5. Feature-aware natural texture synthesis

    KAUST Repository

    Wu, Fuzhang; Dong, Weiming; Kong, Yan; Mei, Xing; Yan, Dongming; Zhang, Xiaopeng; Paul, Jean Claude

    2014-01-01

    This article presents a framework for natural texture synthesis and processing. This framework is motivated by the observation that given examples captured in natural scene, texture synthesis addresses a critical problem, namely, that synthesis

  6. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    Science.gov (United States)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the

  7. In-situ neutron diffraction study of Zircaloy 4 subjected to biaxial tension

    Energy Technology Data Exchange (ETDEWEB)

    Gharghouri, M.A. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, ON (Canada); McDonald, D.; Xiao, L. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Zircaloy-4 is widely used as fuel element cladding in nuclear reactors. Pellet-clad interaction (PCI) failure is a concern for many water reactor fuel designs. Extensive work on the mechanism of PCI failure has led to the conclusion that stress corrosion cracking (SCC) induced by iodine vapour in the temperature range relevant to fuel operation is the most probable cause of PCI failure in zirconium alloy fuel element cladding. In-situ neutron diffraction measurements performed on tubular Zircaloy-4 specimens simultaneously pulled in tension and pressurized internally will provide information on the effects of stress biaxiality on the distribution of stresses at the crystal level during loading. (author)

  8. Numerical modelling of fracture initiation and propagation in biaxial tests on rock samples

    CSIR Research Space (South Africa)

    Van de Steen, B

    2001-03-01

    Full Text Available and Peirce, 1995). Additional edges can be obtained in the Voronoi tessellation, by connecting the geometric centre of the Voronoi polygons with the vertices of the polygons. These last elements are further referred to as the internal fracture paths, while... samples without flaws therefore display a very brittle behaviour (Napier and Peirce, 1995). To obtain a more plastic behaviour, it may be necessary to adjust the flaw density as well (D0 to D0b, Table 2). The brittleness of the simulated biaxial tests...

  9. SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, Amit; Sangwan, S. [UIET, Panjab University, Chandigarh (India); Roy, J. N., E-mail: amit_chaudhry01@yahoo.com [Solar Semiconductro Pvt. Ltd, Hyderabad (India)

    2011-05-15

    This paper describes an analytical model for bulk electron mobility in strained-Si layers as a function of strain. Phonon scattering, columbic scattering and surface roughness scattering are included to analyze the full mobility model. Analytical explicit calculations of all of the parameters to accurately estimate the electron mobility have been made. The results predict an increase in the electron mobility with the application of biaxial strain as also predicted from the basic theory of strain physics of metal oxide semiconductor (MOS) devices. The results have also been compared with numerically reported results and show good agreement. (semiconductor devices)

  10. Magnetic response of FeNbCuBSi RQ ribbons to bi-axial strain

    Energy Technology Data Exchange (ETDEWEB)

    Butvin, P. E-mail: fyzipbut@nic.savba.sk; Butvinova, B.; Frait, Z.; Sitek, J.; Svec, P

    2000-06-02

    Nanocrystalline strip samples of the FeNbCuBSi class that are macroscopically heterogeneous due to surface /volume differences have been investigated. This heterogeneity is found to be a general property of the class. It represents a base for mutual force influence between the surface and the majority volume beneath. The bi-axial in-plane stress exerted by the ribbon surfaces on the volume is demonstrated first of all by a magnetoelastic anisotropy. The contribution of the creep-induced anisotropy, which can build up under the surface stress at post-treatment temperature, is also found possible.

  11. Magnetic response of FeNbCuBSi RQ ribbons to bi-axial strain

    International Nuclear Information System (INIS)

    Butvin, P.; Butvinova, B.; Frait, Z.; Sitek, J.; Svec, P.

    2000-01-01

    Nanocrystalline strip samples of the FeNbCuBSi class that are macroscopically heterogeneous due to surface /volume differences have been investigated. This heterogeneity is found to be a general property of the class. It represents a base for mutual force influence between the surface and the majority volume beneath. The bi-axial in-plane stress exerted by the ribbon surfaces on the volume is demonstrated first of all by a magnetoelastic anisotropy. The contribution of the creep-induced anisotropy, which can build up under the surface stress at post-treatment temperature, is also found possible

  12. Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals

    International Nuclear Information System (INIS)

    Chen Zhide; Liang, J.-Q.; Pu, F.-C.

    2003-01-01

    Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved

  13. SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

    International Nuclear Information System (INIS)

    Chaudhry, Amit; Sangwan, S.; Roy, J. N.

    2011-01-01

    This paper describes an analytical model for bulk electron mobility in strained-Si layers as a function of strain. Phonon scattering, columbic scattering and surface roughness scattering are included to analyze the full mobility model. Analytical explicit calculations of all of the parameters to accurately estimate the electron mobility have been made. The results predict an increase in the electron mobility with the application of biaxial strain as also predicted from the basic theory of strain physics of metal oxide semiconductor (MOS) devices. The results have also been compared with numerically reported results and show good agreement. (semiconductor devices)

  14. A novel biaxial specimen for inducing residual stresses in thermoset polymers and fibre composite material

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik; Jensen, Martin

    2015-01-01

    engineers when they challenge the material limits in present and future thermoset and composite component. In addition to the new specimen configuration, this paper presents an analytical solution for the residual stress state in the specimen. The analytical solution assumes linear elastic and isotropic......A new type of specimen configuration with the purpose of introducing a well-defined biaxial residual (axisymmetric) stress field in a neat thermoset or a fibre composite material is presented. The ability to experimentally validate residual stress predictions is an increasing need for design...

  15. Biaxial creep deformation of Zircaloy-4 in the high alpha phase temperature range

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The ballooning response of Zircaloy-4 fuel tubes during a postulated loss-of-coolant accident may be calculated from a knowledge of the thermal environment of the rods and the creep deformation characteristics of the cladding. In support of such calculations biaxial creep studies have been performed on fuel tubes supplied by Westinghouse, Wolverine and Sandvik of temperatures in the alpha phase range. This paper presents the results of an investigation of their respective creep behaviour which has resulted in the formulation of equations for use in LOCA fuel ballooning codes. (author)

  16. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)

  17. Evaluation of Anisotropic Biaxial Stress Induced Around Trench Gate of Si Power Transistor Using Water-Immersion Raman Spectroscopy

    Science.gov (United States)

    Suzuki, Takahiro; Yokogawa, Ryo; Oasa, Kohei; Nishiwaki, Tatsuya; Hamamoto, Takeshi; Ogura, Atsushi

    2018-05-01

    The trench gate structure is one of the promising techniques to reduce on-state resistance (R on) for silicon power devices, such as insulated gate bipolar transistors and power metal-oxide-semiconductor field-effect transistors. In addition, it has been reported that stress is induced around the trench gate area, modifying the carrier mobilities. We evaluated the one-dimensional distribution and anisotropic biaxial stress by quasi-line excitation and water-immersion Raman spectroscopy, respectively. The results clearly confirmed anisotropic biaxial stress in state-of-the-art silicon power devices. It is theoretically possible to estimate carrier mobility using piezoresistance coefficients and anisotropic biaxial stress. The electron mobility was increased while the hole mobility was decreased or remained almost unchanged in the silicon (Si) power device. The stress significantly modifies the R on of silicon power transistors. Therefore, their performance can be improved using the stress around the trench gate.

  18. Biaxial direct tensile tests in a large range of strain rates. Results on a ferritic nuclear steel

    Energy Technology Data Exchange (ETDEWEB)

    Albertini, C.; Labibes, K.; Montagnani, M.; Pizzinato, E.V.; Solomos, G.; Viaccoz, B. [Commission of the European Communities, Ispra (Italy). Joint Research Centre

    2000-09-01

    Constitutive equations are usually calibrated only trough the experimental results obtained by means of unixial tests because of the lack of adequate biaxial experimental data especially at high strain rate conditions. These data are however important for the validation of analytical models and also for the predictions of mechanical behaviour of real structures subjected to multiaxial loading by numerical simulations. In this paper some developments are shown concerning biaxial cruciform specimens and different experimental machines allowing biaxial tests in a large range of strain rates. This experimental campaign has also allowed study of the influence of changing the strain paths. Diagrams of equivalent stress versus straining direction and also equivalent plastic fracture strain versus straining direction are shown. (orig.)

  19. A Review Paper on Camouflage Texture Evaluation

    OpenAIRE

    Amol Patil; Girraj Prasad Rathode

    2013-01-01

    Traditional evaluation method of camouflage texture effect is subjective evaluation. It’s very tedious and inconvenient to direct the texture designing. In this project, a systemic and rational method for direction and evaluation of camouflage texture designing is proposed. Camouflage consists of things such as leaves, branches, or brown and green paint, which are used to make it difficult for an enemy to see military forces and equipment. A camouflage texture evaluation method based on WSSIM...

  20. Texture analysis using Renyi's generalized entropies

    NARCIS (Netherlands)

    Grigorescu, SE; Petkov, N

    2003-01-01

    We propose a texture analysis method based on Renyi's generalized entropies. The method aims at identifying texels in regular textures by searching for the smallest window through which the minimum number of different visual patterns is observed when moving the window over a given texture. The

  1. Evaluation of color representation for texture analysis

    NARCIS (Netherlands)

    Verbrugge, R.; van den Broek, Egon; van Rikxoort, E.M.; Taatgen, N.; Schomaker, L.

    2004-01-01

    Since more than 50 years texture in image material is a topic of research. Hereby, color was ignored mostly. This study compares 70 different configurations for texture analysis, using four features. For the configurations we used: (i) a gray value texture descriptor: the co-occurrence matrix and a

  2. Modeling Human Aesthetic Perception of Visual Textures

    NARCIS (Netherlands)

    Thumfart, Stefan; Jacobs, Richard H. A. H.; Lughofer, Edwin; Eitzinger, Christian; Cornelissen, Frans W.; Groissboeck, Werner; Richter, Roland

    Texture is extensively used in areas such as product design and architecture to convey specific aesthetic information. Using the results of a psychological experiment, we model the relationship between computational texture features and aesthetic properties of visual textures. Contrary to previous

  3. Experiment to measure the effects of biaxial strain on the critical current of NbTi superconductor

    International Nuclear Information System (INIS)

    Froelich, K.J.

    1975-01-01

    Twisted multifilament, copper-clad NbTi superconductors have been axially and biaxially strained at 4.2K with a 7.5T background field. A simply-constructed cryogenic loading frame was built and used to strain the conductor. Results on 1.27 mm x 3.13 mm conductor have shown that degradation of less than .3 percent of critical current occurred when the wire was biaxially strained to +3260 μepsilon in the axial direction and -1875 μepsilon in the transverse direction. Degradation approaches 3 percent of critical current at approximately 6000 μepsilon in the axial direction only

  4. Evaluation of the effect of initial texture on the development of deformation texture

    DEFF Research Database (Denmark)

    Leffers, Torben; Juul Jensen, Dorte

    1986-01-01

    The authors describe a computer procedure which allows them to introduce experimental initial textures as starting conditions for texture simulation (instead of a theoretical random texture). They apply the procedure on two batches of copper with weak initial textures and on fine-grained and coarse......-grained aluminium with moderately strong initial textures. In copper the initial texture turns out to be too weak to have any significant effect. In aluminium the initial texture has a very significant effect on the simulated textures-similar to the effect it has on the experimental textures. However......, there are differences between the simulated and the experimental aluminium textures that can only be explained as a grain-size effect. Possible future applications of the procedure are discussed...

  5. Study on Fabrication of Ni-5 at.%W Tapes for Coated Conductors from Cylinder Ingots

    DEFF Research Database (Denmark)

    Ma, L.; Suo, H. L.; Yue, Zhao

    2015-01-01

    Ni-5 at.%W (Ni5W) tapes with a strong cube texture were fabricated using the RABiTS technique and by starting from cylindrical shaped ingots. In contrast to a conventional cuboid-shaped ingot, a cylinder shaped ingot has no anisotropy along the axial direction and the resulting tape will therefore...

  6. Bi-axially crumpled silver thin-film electrodes for dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Low, Sze-Hsien; Lau, Gih-Keong

    2014-01-01

    Metal thin films, which have high conductivity, are much stiffer and may fracture at a much lower strain than dielectric elastomers. In order to fabricate compliant electrodes for use in dielectric elastomer actuators (DEAs), metal thin films have been formed into either zigzag patterns or corrugations, which favour bending and only allow uniaxial DEA deformations. However, biaxially compliant electrodes are desired in order to maximize generated forces of DEA. In this paper, we present crumpled metal thin-film electrodes that are biaxially compliant and have full area coverage over the dielectric elastomer. These crumpled metal thin-film electrodes are more stretchable than flat metal thin films; they remain conductive beyond 110% radial strain. Also, crumpling reduced the stiffening effect of metal thin films on the soft elastomer. As such, DEAs using crumpled metal thin-film electrodes managed to attain relatively high actuated area strains of up to 128% at 1.8 kV (102 Vμm −1 ). (paper)

  7. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  8. Laser damage metrology in biaxial nonlinear crystals using different test beams

    Science.gov (United States)

    Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille

    2008-01-01

    Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.

  9. Equi-biaxial loading effect on austenitic stainless steel fatigue life

    Directory of Open Access Journals (Sweden)

    C. Gourdin

    2016-10-01

    Full Text Available Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures. In some nuclear power plant components, the fatigue loading may be equibiaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equibiaxial tension. Two calibration tests (with strain gauges and image correlation were used to obtain the relationship between the imposed deflection and the radial strain on the FABIME2 specimen. A numerical study has confirmed this relationship. Biaxial fatigue tests are carried out on two austenitic stainless steels for different values of the maximum deflection, and with a load ratio equal to -1. The interpretation of the experimental results requires the use of an appropriate definition of strain equivalent. In nuclear industry, two kinds of definition are used: von Mises and TRESCA strain equivalent. These results have permitted to estimate the impact of the equibiaxiality on the fatigue life of components

  10. Biaxial fatigue tests and crack paths for AISI 304L stainless steel

    Directory of Open Access Journals (Sweden)

    V. Chaves

    2014-10-01

    Full Text Available AISI 304L stainless steel specimens have been tested in fatigue. The tests were axial, torsional and in-phase biaxial, all of them under load control and R=-1. The S-N curves were built following the ASTM E739 standard and the method of maximum likelihood proposed by Bettinelli. The fatigue limits of the biaxial tests were represented in axes σ-τ. The elliptical quadrant, appropriate for ductile materials, and the elliptical arc, appropriate for fragile materials, were included in the graph. The experimental values were better fitted with an elliptical quadrant, despite the ratio between the pure torsion and tension fatigue limits, τFL/σFL, is 0.91, close to 1, which is a typical value for fragile materials. The crack direction along the surface has been analyzed by using a microscope, with especial attention to the crack initiation zones. The crack direction during the Stage I has been compared with theoretical models.

  11. Experimental study of internal conical refraction in a biaxial crystal with Laguerre–Gauss light beams

    International Nuclear Information System (INIS)

    Peet, V

    2014-01-01

    The effect of internal conical refraction (CR) in a biaxial crystal was studied using Laguerre–Gauss light beams LG 0 ℓ with ℓ=1 and 2, while the lowest-order LG 0 0 beam was used as a reference. The transition from ordinary double refraction to CR was examined. It has been shown that double refraction of an LG 0 ℓ beam forms two focal spots containing ℓ dark stripes. These stripes evolve into ℓ+1 dark rings over an annular focal image when CR is established, and it results in a fine-structure of ℓ+2 bright focal rings with different intensities. In a sharp contrast to the lowest-order reference, the multiring focal structure has a distinct asymmetry with respect to the focal image plane. It has been shown that bright off-axis ‘hot spot’ can be formed on the far-field profiles of outgoing light beams when the biaxial crystal is slightly tilted, and a small angle between the propagation axis of the beam and the optic axis of the crystal arises. These off-axis light structures emerge as either a charge-one optical vortex or a zero-charge spot with annihilated vorticity. Polarization selection reveals J 1 or J 0 Bessel-like profiles of the corresponding ‘hot spots’, and a complex pattern of forked fringes in the dark region near the beam core. (paper)

  12. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    Science.gov (United States)

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  13. Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation.

    Science.gov (United States)

    Murdock, Kyle; Martin, Caitlin; Sun, Wei

    2018-01-01

    Flexure is an important mode of deformation for native and bioprosthetic heart valves. However, mechanical characterization of bioprosthetic leaflet materials has been done primarily through planar tensile testing. In this study, an integrated experimental and computational cantilever beam bending test was performed to characterize the flexural properties of glutaraldehyde-treated bovine and porcine pericardium of different thicknesses. A strain-invariant based structural constitutive model was used to model the pericardial mechanical behavior quantified through the bending tests of this study and the planar biaxial tests previously performed. The model parameters were optimized through an inverse finite element (FE) procedure in order to describe both sets of experimental data. The optimized material properties were implemented in FE simulations of transcatheter aortic valve (TAV) deformation. It was observed that porcine pericardium TAV leaflets experienced significantly more flexure than bovine when subjected to opening pressurization, and that the flexure may be overestimated using a constitutive model derived from purely planar tensile experimental data. Thus, modeling of a combination of flexural and biaxial tensile testing data may be necessary to more accurately describe the mechanical properties of pericardium, and to computationally investigate bioprosthetic leaflet function and design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dependence of the optical conductivity on the uniaxial and biaxial strains in black phosphorene

    Science.gov (United States)

    Yang, C. H.; Zhang, J. Y.; Wang, G. X.; Zhang, C.

    2018-06-01

    By using the Kubo formula, the optical conductivity of strained black phosphorene was studied. The anisotropic band dispersion gives rise to an orientation dependent optical conductivity. The energy gap can be tuned by the uniaxial and biaxial strains which can be observed from the interband optical conductivity polarized along the armchair (x ) direction. The preferential conducting direction is along the x direction. The dependence of the intraband optical conductivity along the zigzag (y ) direction on the Fermi energy and strain exhibits increasing or decreasing monotonously. However, along the x direction this dependence is complicated which originates from the carriers' inverse-direction movements obtained by two types of the nearest phosphorus atom interactions. The modification of the biaxial strain on the energy structure and optical-absorption property is more effective. The imaginary part of the total optical conductivity (Im σ ) can be negative around the threshold of the interband optical transition by modifying the chemical potential. Away from this frequency region, Im σ exhibits positive value. It can be used in the application of the surface plasmon propagations in multilayer dielectric structures.

  15. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  16. Watermarking textures in video games

    Science.gov (United States)

    Liu, Huajian; Berchtold, Waldemar; Schäfer, Marcel; Lieb, Patrick; Steinebach, Martin

    2014-02-01

    Digital watermarking is a promising solution to video game piracy. In this paper, based on the analysis of special challenges and requirements in terms of watermarking textures in video games, a novel watermarking scheme for DDS textures in video games is proposed. To meet the performance requirements in video game applications, the proposed algorithm embeds the watermark message directly in the compressed stream in DDS files and can be straightforwardly applied in watermark container technique for real-time embedding. Furthermore, the embedding approach achieves high watermark payload to handle collusion secure fingerprinting codes with extreme length. Hence, the scheme is resistant to collusion attacks, which is indispensable in video game applications. The proposed scheme is evaluated in aspects of transparency, robustness, security and performance. Especially, in addition to classical objective evaluation, the visual quality and playing experience of watermarked games is assessed subjectively in game playing.

  17. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov

    2009-01-01

    We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...... chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that gel domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method...

  18. Textural features for image classification

    Science.gov (United States)

    Haralick, R. M.; Dinstein, I.; Shanmugam, K.

    1973-01-01

    Description of some easily computable textural features based on gray-tone spatial dependances, and illustration of their application in category-identification tasks of three different kinds of image data - namely, photomicrographs of five kinds of sandstones, 1:20,000 panchromatic aerial photographs of eight land-use categories, and ERTS multispectral imagery containing several land-use categories. Two kinds of decision rules are used - one for which the decision regions are convex polyhedra (a piecewise-linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89% for the photomicrographs, 82% for the aerial photographic imagery, and 83% for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

  19. Texture studies of Zr-2

    International Nuclear Information System (INIS)

    Madden, P.K.

    1976-09-01

    Basal pole figures of seven Zr-2 pressure tubes have been determined. The pole figures give texture factors but these do not correlate with the irradiation growth strains observed in SGHWR. Precautions taken in specimen preparation and in pole figure determination are described in detail. It is shown that any point on a pole figure may be unambiguously related to a defined set of coordinate axes in the pressure tube. (author)

  20. Height perception influenced by texture gradient.

    Science.gov (United States)

    Tozawa, Junko

    2012-01-01

    Three experiments were carried out to examine whether a texture gradient influences perception of relative object height. Previous research implicated texture cues in judgments of object width, but similar influences have not been demonstrated for relative height. In this study, I evaluate a hypothesis that the projective ratio of the number of texture elements covered by the objects combined with the ratio of the retinal object heights determines percepts of relative object height. Density of texture background was varied: four density conditions ranged from no-texture to very dense texture. In experiments 1 and 2, participants judged the height of comparison bar compared to the standard bar positioned on no-texture or textured backgrounds. Results showed relative height judgments differed with texture manipulations, consistent with predictions from a hypothesised combination of the number of texture elements with retinal height (experiment 1), or partially consistent with this hypothesis (experiment 2). In experiment 2, variations in the position of a comparison object showed that comparisons located far from the horizon were judged more poorly than in other positions. In experiment 3 I examined distance perception; relative distance judgments were found to be also affected by textured backgrounds. Results are discussed in terms of Gibson's relational theory and distance calibration theory.

  1. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    Science.gov (United States)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-09-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  2. Characterization and properties of an advanced composite substrate for YBCO-coated conductors

    DEFF Research Database (Denmark)

    Gao, M.; Suo, H.; Zhao, Y.

    2010-01-01

    Thin, biaxially textured Ni5W/Ni12W/Ni5W composite substrates for coated conductor applications have been fabricated. The particularity of this three-layer composite configuration resides in the elemental diffusion between the outer layer and the core layer. Due to the migration of elemental W...

  3. The brass-type texture and its deviation from the copper-type texture

    DEFF Research Database (Denmark)

    Leffers, Torben; Ray, R.K.

    2009-01-01

    Our basic aim with the present review is to address the classical problem of the “fcc rolling texture transition” – the fact that fcc materials may, depending on material parameters and rolling conditions, develop two different types of rolling textures, the copper-type texture and the brass...... the subject and sketch our approach for dealing with it. We then recapitulate the decisive progress made during the nineteen sixties in the empirical description of the fcc rolling texture transition and in lining up a number of possible explanations. Then follows a section about experimental investigations...... of the brass-type texture after the nineteen sixties covering texture measurements and microstructural investigations. The main observations are: (1) The brass-type texture deviates from the copper-type texture from an early stage of texture development. (2) Deformation twinning has a decisive effect...

  4. Biaxial creep deformation of Zircaloy-4 PWR fuel cladding in the alpha,(alpha + beta) and beta phase temperature ranges

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Healey, T.; Horwood, R.A.L.

    1985-01-01

    The biaxial creep behaviour of Zircaloy-4 fuel cladding has been determined at temperatures between 973 - 1073 K in the alpha phase range, in the duplex (alpha + beta) region between 1098 - 1223 K and in the beta phase range between 1323 - 1473 K. This paper presents the creep data together with empirical equations which describe the creep deformation response within each phase region. (author)

  5. Active-flux based motion sensorless vector control of biaxial excitation generator/motor for automobiles (BEGA)

    DEFF Research Database (Denmark)

    Coroban-Schramel, Vasile; Boldea, Ion; Andreescu, Gheorghe-Daniel

    2009-01-01

    This paper proposes a novel, active-flux based, motion-sensorless vector control structure for biaxial excitation generator for automobiles (BEGA) for wide speed range operation. BEGA is a hybrid excited synchronous machine having permanent magnets on q-axis and a dc excitation on daxis. Using th...... electrical degrees in less than 2 ms test time....

  6. Mechanical response of cross-ply Si3N4/BN fibrous monoliths under uniaxial and biaxial loading

    International Nuclear Information System (INIS)

    Singh, D.; Cruse, T. A.; Hermanson, D. J.; Goretta, K. C.; Zok, F. W.; McNulty, J. C.

    2000-01-01

    Mechanical properties of hot-pressed Si 3 N 4 /BN fibrous monoliths (FMs) were evaluated under ambient conditions in four-point and biaxial flexure modes. Effects of cell orientation, 0degree/90degree and ±45degree, on elastic modulus and fracture strength of the FMs were investigated. Fracture surfaces were examined by scanning electron microscopy

  7. Meso-Scale Finite Element Analysis of Mechanical Behavior of 3D Braided Composites Subjected to Biaxial Tension Loadings

    Science.gov (United States)

    Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc

    2018-04-01

    In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.

  8. Aesthetic Perception of Visual Textures: A Holistic Exploration using Texture Analysis, Psychological Experiment and Perception Modeling

    Directory of Open Access Journals (Sweden)

    Jianli eLiu

    2015-11-01

    Full Text Available Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and nonlinear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.

  9. Comparative characterization of Cu–Ni substrates for coated conductors

    DEFF Research Database (Denmark)

    Tian, H.; Suo, H.L.; Wulff, Anders Christian

    2014-01-01

    Three Cu100xNix alloys, with x = 23, 33 and 45 at.%Ni, have been evaluated for use as substrates for coated conductors on the basis of measurements of their microstructure, crystallographic texture and hardness. It is found that high-temperature annealing after heavy rolling generates strong cube...

  10. Texturing of continuous LOD meshes with the hierarchical texture atlas

    Science.gov (United States)

    Birkholz, Hermann

    2006-02-01

    For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.

  11. Comparison of germination and seed vigor of sunflower in two contaminated soils of different texture

    Science.gov (United States)

    Zhao, Xin; Han, Jaemaro; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Phytoremediation as an emerging low-cost and ecologically friendly alternative to the conventional soil remediation technologies has gained a great deal of attention and into lots of research. As a kind of the methods that use of green plants to remediate heavy metals contaminated soils, the early growth status of plant seeds in the contaminated environmental directly affects the effect of phytoremediation. Germination test in the water (aqueous solution of heavy metal) is generally used for assessing heavy metal phytotoxicity and possibility of plant growth, but there is a limit. Because soil is commonly main target of phytoremediation, not the water. The bioavailability of heavy metals in the soil also depends on the texture. So soil texture is an important factor of phytoremediation effect. Sunflower is the representative species which have good tolerance to various heavy metals; furthermore, the seeds of sunflower can be used as the raw-material for producing bio-diesel. The objectives of this research were to investigate germination rate of sunflowers in various heavy metal contaminated soils and to compare the seedling vigor index (SVI) of sunflower in two contaminated soils of different texture. Sunflower (Helianthusannuus L.) seeds were obtained from a commercial market. In order to prove the soil texture effect on heavy metal contaminated soil, germination tests in soil were conducted with two different types of soil texture (i.e., loam soil and sandy loam soil) classified by soil textural triangle (defined by USDA) including representative soil texture of Korea. Germination tests in soil were conducted using KS I ISO 11260-1 (2005) for reference that sunflower seeds were incubated for 7 days in dark at 25 ± 1 Celsius degree. The target heavy metals are Nickel (Ni) and Zinc (Zn). The Ni and Zn concentrations were 0, 10, 50, 100, 200, 300, 500 mg-Ni/kg-dry soil, and 0, 10, 50, 100, 300, 500, 900 mg-Zn/kg-dry soil, respectively. After germination test for 7

  12. Cube-textured metal substrates for reel-to-reel processing of coated conductors

    DEFF Research Database (Denmark)

    Wulff, Anders Christian

    This thesis presents the results of a study aimed at investigating important fabrication aspects of reel-to-reel processing of metal substrates for coated conductors and identifying a new substrate candidate material with improved magnetic properties. The eect of mechanical polishing on surface...... texture and the fraction of low angle grain boundaries. Finally, a Ni-5Cu-5W substrate may be a good candidate material as a substrate in future coated conductors....

  13. Tungsten heavy metal alloys relations between the crystallographic texture and the internal stress distribution

    International Nuclear Information System (INIS)

    Nicolas, G.; Voltz, M.

    2001-01-01

    Quite often the W-Ni-Fe-Co heavy alloys are subjected to a thermomechanical processing of swaging and aging in order to obtain the highest possible level of resistance. Within the framework of this plastic deformation on cylindrical parts, the swaging leads to the distribution of morphological and crystallographic texture as well as specific internal stresses. The resulting mechanical characteristics are correlated to structural and sub-structural variations. (author)

  14. Cascaded Amplitude Modulations in Sound Texture Perception

    DEFF Research Database (Denmark)

    McWalter, Richard Ian; Dau, Torsten

    2017-01-01

    . In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as "beating" in the envelope-frequency domain. We developed an auditory texture...... model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures-stimuli generated using time-averaged statistics measured from real-world textures....... In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model...

  15. TEXTURAL DESCRIPTORS FOR MULTIPHASIC ORE PARTICLES

    Directory of Open Access Journals (Sweden)

    Laura Pérez-Barnuevo

    2012-11-01

    Full Text Available Monitoring of mineral processing circuits by means of particle liberation analysis through quantitative image analysis has become a routine technique within the last decades. Usually, liberation indices are computed as weight proportions, which is not informative enough when complex texture ores are treated by flotation. In these cases, liberation has to be computed as phase surface exposed to reactants, and textural relationships between minerals have to be characterized to determine the possibility of increasing exposure. In this paper, some indices to achieve a complete texture characterization have been developed in terms of 2D phase contact and mineral surfaces exposure. Indices suggested by other authors are also compared. The response of this set of parameters against textural changes has been explored on simple synthetic textures ranging from single to multiple inclusions and single to multiple veins and their ability to discriminate between different textural features is analyzed over real mineral particles with known internal structure.

  16. Description of textures by a structural analysis.

    Science.gov (United States)

    Tomita, F; Shirai, Y; Tsuji, S

    1982-02-01

    A structural analysis system for describing natural textures is introduced. The analyzer automatically extracts the texture elements in an input image, measures their properties, classifies them into some distinctive classes (one ``ground'' class and some ``figure'' classes), and computes the distributions of the gray level, the shape, and the placement of the texture elements in each class. These descriptions are used for classification of texture images. An analysis-by-synthesis method for evaluating texture analyzers is also presented. We propose a synthesizer which generates a texture image based on the descriptions. By comparing the reconstructed image with the original one, we can see what information is preserved and what is lost in the descriptions.

  17. Annealing texture of rolled nickel alloys

    International Nuclear Information System (INIS)

    Meshchaninov, I.V.; Khayutin, S.G.

    1976-01-01

    A texture of pure nickel and binary alloys after the 95% rolling and annealing has been studied. Insoluble additives (Mg, Zr) slacken the cubic texture in nickel and neral slackening of the texture (Zr). In the case of alloying with silicium (up to 2%) the texture practically coinsides with that of a technical-grade nickel. The remaining soluble additives either do not change the texture of pure nickel (C, Nb) or enhance the sharpness and intensity of the cubic compontnt (Al, Cu, Mn, Cr, Mo, W, Co -at their content 0.5 to 2.0%). A model is proposed by which variation of the annealing texture upon alloying is caused by dissimilar effect of the alloying elements on the mobility of high- and low-angle grain boundaries

  18. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    International Nuclear Information System (INIS)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M

    2009-01-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K 1 values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  19. Fatigue and creep-fatigue strength of 304 steel under biaxial strain conditions

    International Nuclear Information System (INIS)

    Asayama, Tai; Aoto, Kazumi; Wada, Yusaku

    1990-01-01

    A series of fatigue and creep-fatigue tests were conducted with 304 stainless steel at 550degC under a variety of biaxial strain conditions. Fatigue life under nonproportional loading conditions showed a significant life reduction compared with that of proportional loading, and this life reduction was reasonably estimated by taking into account the strain paths along which the strain history is imposed. Furthermore, a marked life reduction was shown to occur under nonproportional loading by imposing a strain hold period at a peak tensile strain. This life reduction was evaluated by the linear damage rule. It was shown to be possible to estimate the fatigue damage and the creep damage under nonproportional loading by a linear damage rule by estimating a stress relaxation behavior by Mises-type equivalent stress or Huddleston-type equivalent stress. (author)

  20. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico); Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M, E-mail: rrodriguezm@ipn.m, E-mail: urrio332@hotmail.co, E-mail: guiurri@hotmail.co, E-mail: luishector56@hotmail.co, E-mail: eamerchan@gmail.co, E-mail: ricname@hotmail.co, E-mail: jsandovalp@ipn.m [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Unidad profesional, AZCAPOTZALCO, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. (Mexico)

    2009-08-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K{sub 1} values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  1. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

    KAUST Repository

    Majumdar, Apala

    2011-12-01

    We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the threedimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the C 1,α-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some 0 < a < 1, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.

  2. Method for measuring biaxial stress in a body subjected to stress inducing loads

    Science.gov (United States)

    Clotfelter, W. N. (Inventor)

    1977-01-01

    A method is described for measuring stress in test articles including the steps of obtaining for a calibrating specimen a series of transit time differentials between the second wave echo for a longitudinal wave and the first wave echo for each of a pair of shear waves propagated through the specimen as it is subjected to known stress load of a series of stress loads for thus establishing a series of indications of the magnitudes for stress loads induced in the specimen, and thereafter obtaining a transit time differential between the second wave echo for a longitudinal wave and the first wave echo for each of a pair of shear waves propagated in the planes of the stress axes of a test article and comparing the transit time differential thus obtained to the series of transit time differentials obtained for the specimen to determine the magnitude of biaxial stress in the test article.

  3. Potential drop crack growth monitoring in high temperature biaxial fatigue tests

    International Nuclear Information System (INIS)

    Fitzgerald, B.P.; Krempl, E.

    1993-01-01

    The present work describes a procedure for monitoring crack growth in high temperature, biaxial, low cycle fatigue tests. The reversing DC potential drop equipment monitors smooth, tubular type 304 stainless steel specimens during fatigue testing. Electrical interference from an induction heater is filtered out by an analog filter and by using a long integration time. A Fourier smoothing algorithm and two spline interpolations process the large data set. The experimentally determined electrical potential drop is compared with the theoretical electrostatic potential that is found by solving Laplace's equation for an elliptical crack in a semi-infinite conducting medium. Since agreement between theory and experiment is good, the method can be used to measure crack growth to failure from the threshold of detectability

  4. Les minéralisations Cu_(Ni_Bi_U_Au_Ag) d'Ifri (district du Haut Seksaoua, Maroc) : apport de l'étude texturale au débat syngenèse versus épigenèseThe Cu_(Ni_Bi_U_Au_Ag) mineralization of Ifri ('Haut Seksaoua' district, Morocco): contribution of a textural study to the discussion syngenetic versus epigenetic

    Science.gov (United States)

    Barbanson, Luc; Chauvet, Alain; Gaouzi, Aziz; Badra, Lakhifi; Mechiche, Mohamed; Touray, Jean Claude; Oukarou, Saı̈d

    2003-11-01

    The Cu ore of Ifri is a chalcopyrite stockwork hosted by Cambrian formations and was until now interpreted as a syngenetic massive sulphide deposit. Textural studies highlight two generations of pyrite early (Py I) and late (Py II) with respect to the regional deformation. The chalcopyrite stockwork overprinted Py II, outlining the epigenetic nature of the Cu mineralization. Regarding the origin of Cu-depositing fluids, the presence in the stockwork paragenesis of an U, W, Sn association and preliminary Pb/Pb dating of a brannerite belonging to this association suggest a contribution of the Tichka granite. To cite this article: L. Barbanson et al., C. R. Geoscience 335 (2003).

  5. The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials.

    Science.gov (United States)

    Johnson, A; Shareef, M Y; Walsh, J M; Hatton, P V; van Noort, R; Hill, R G

    1998-11-01

    To assess the effect of mould and glass casting temperatures on the biaxial flexural strength (BFS) of two different types of castable glass-ceramic, using existing laboratory equipment and techniques. Two castable glass-ceramic materials were evaluated. One glass (LG3) is based on SiO2-Al2O3-P2O5-CaO-CaF2, and is similar in composition to glasses used in the manufacture of glass-ionomer cements. The other glass (SG3) is based on SiO2-K2O-Na2O-CaO-CaF2, and is a canasite-based material. Both materials were used to produce discs of 12 mm diameter and 2 mm thickness using the same lost-wax casting process as used for metal castings. Mould temperatures of between 500 degrees C and 1000 degrees C and glass casting temperatures of between 1100 degrees C and 1450 degrees C were evaluated. The cast discs were cerammed and the biaxial flexural strength determined with a Lloyd 2000 R tester. A significant difference was found for the BFS in the range of mould temperatures evaluated, with the optimum investment mould temperature being 590 degrees C for LG3 and 610 degrees C for SG3 (p = 0.0002 and p = 0.019, respectively). No significant differences were seen between any of the glass casting temperatures evaluated. The mould temperature for castable glass-ceramic materials produced using the lost-wax casting process can have a significant effect on BFS. The optimum mould temperature may differ slightly depending on the type of material being used. The glass casting temperature of these materials does not appear to have a significant effect on BFS.

  6. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  7. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  8. Effects of biaxial oscillatory shear stress on endothelial cell proliferation and morphology.

    Science.gov (United States)

    Chakraborty, Amlan; Chakraborty, Sutirtha; Jala, Venkatakrishna R; Haribabu, Bodduluri; Sharp, M Keith; Berson, R Eric

    2012-03-01

    Wall shear stress (WSS) on anchored cells affects their responses, including cell proliferation and morphology. In this study, the effects of the directionality of pulsatile WSS on endothelial cell proliferation and morphology were investigated for cells grown in a Petri dish orbiting on a shaker platform. Time and location dependent WSS was determined by computational fluid dynamics (CFD). At low orbital speed (50 rpm), WSS was shown to be uniform (0-1 dyne/cm(2)) across the bottom of the dish, while at higher orbital speed (100 and 150 rpm), WSS remained fairly uniform near the center and fluctuated significantly (0-9 dyne/cm(2)) near the side walls of the dish. Since WSS on the bottom of the dish is two-dimensional, a new directional oscillatory shear index (DOSI) was developed to quantify the directionality of oscillating shear. DOSI approached zero for biaxial oscillatory shear of equal magnitudes near the center and approached one for uniaxial pulsatile shear near the wall, where large tangential WSS dominated a much smaller radial component. Near the center (low DOSI), more, smaller and less elongated cells grew, whereas larger cells with greater elongation were observed in the more uniaxial oscillatory shear (high DOSI) near the periphery of the dish. Further, cells aligned with the direction of the largest component of shear but were randomly oriented in low magnitude biaxial shear. Statistical analyses of the individual and interacting effects of multiple factors (DOSI, shear magnitudes and orbital speeds) showed that DOSI significantly affected all the responses, indicating that directionality is an important determinant of cellular responses. Copyright © 2011 Wiley Periodicals, Inc.

  9. Fast Synthesis of Dynamic Colour Textures

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Haindl, Michal; Chetverikov, D.

    -, č. 66 (2006), s. 53-54 ISSN 0926-4981 R&D Projects: GA AV ČR IAA2075302; GA AV ČR 1ET400750407; GA MŠk 1M0572 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : dynamic colour texture * texture synthesis * texture modelling Subject RIV: BD - Theory of Information http://www.ercim.org/publication/Ercim_News/enw66/haindl.html

  10. Texture and anisotropy in ferroelectric lead metaniobate

    Science.gov (United States)

    Iverson, Benjamin John

    Ferroelectric lead metaniobate, PbNb2O6, is a piezoelectric ceramic typically used because of its elevated Curie temperature and anisotropic properties. However, the piezoelectric constant, d33, is relatively low in randomly oriented ceramics when compared to other ferroelectrics. Crystallographic texturing is often employed to increase the piezoelectric constant because the spontaneous polarization axes of grains are better aligned. In this research, crystallographic textures induced through tape casting are distinguished from textures induced through electrical poling. Texture is described using multiple quantitative approaches utilizing X-ray and neutron time-of-flight diffraction. Tape casting lead metaniobate with an inclusion of acicular template particles induces an orthotropic texture distribution. Templated grain growth from seed particles oriented during casting results in anisotropic grain structures. The degree of preferred orientation is directly linked to the shear behavior of the tape cast slurry. Increases in template concentration, slurry viscosity, and casting velocity lead to larger textures by inducing more particle orientation in the tape casting plane. The maximum 010 texture distributions were two and a half multiples of a random distribution. Ferroelectric texture was induced by electrical poling. Electric poling increases the volume of material oriented with the spontaneous polarization direction in the material. Samples with an initial paraelectric texture exhibit a greater change in the domain volume fraction during electrical poling than randomly oriented ceramics. In tape cast samples, the resulting piezoelectric response is proportional to the 010 texture present prior to poling. This results in property anisotropy dependent on initial texture. Piezoelectric properties measured on the most textured ceramics were similar to those obtained with a commercial standard.

  11. Neutrino mass textures with maximal CP violation

    International Nuclear Information System (INIS)

    Aizawa, Ichiro; Kitabayashi, Teruyuki; Yasue, Masaki

    2005-01-01

    We show three types of neutrino mass textures, which give maximal CP violation as well as maximal atmospheric neutrino mixing. These textures are described by six real mass parameters: one specified by two complex flavor neutrino masses and two constrained ones and the others specified by three complex flavor neutrino masses. In each texture, we calculate mixing angles and masses, which are consistent with observed data, as well as Majorana CP phases

  12. Textural features for radar image analysis

    Science.gov (United States)

    Shanmugan, K. S.; Narayanan, V.; Frost, V. S.; Stiles, J. A.; Holtzman, J. C.

    1981-01-01

    Texture is seen as an important spatial feature useful for identifying objects or regions of interest in an image. While textural features have been widely used in analyzing a variety of photographic images, they have not been used in processing radar images. A procedure for extracting a set of textural features for characterizing small areas in radar images is presented, and it is shown that these features can be used in classifying segments of radar images corresponding to different geological formations.

  13. Dry texturing of solar cells

    Science.gov (United States)

    Sopori, Bhushan L.

    1994-01-01

    A textured backside of a semiconductor device for increasing light scattering and absorption in a semiconductor substrate is accomplished by applying infrared radiation to the front side of a semiconductor substrate that has a metal layer deposited on its backside in a time-energy profile that first produces pits in the backside surface and then produces a thin, highly reflective, low resistivity, epitaxial alloy layer over the entire area of the interface between the semiconductor substrate and a metal contact layer. The time-energy profile includes ramping up to a first energy level and holding for a period of time to create the desired pit size and density and then rapidly increasing the energy to a second level in which the entire interface area is melted and alloyed quickly. After holding the second energy level for a sufficient time to develop the thin alloy layer over the entire interface area, the energy is ramped down to allow epitaxial crystal growth in the alloy layer. The result is a textured backside an optically reflective, low resistivity alloy interface between the semiconductor substrate and the metal electrical contact layer.

  14. Geometric Total Variation for Texture Deformation

    DEFF Research Database (Denmark)

    Bespalov, Dmitriy; Dahl, Anders Lindbjerg; Shokoufandeh, Ali

    2010-01-01

    In this work we propose a novel variational method that we intend to use for estimating non-rigid texture deformation. The method is able to capture variation in grayscale images with respect to the geometry of its features. Our experimental evaluations demonstrate that accounting for geometry...... of features in texture images leads to significant improvements in localization of these features, when textures undergo geometrical transformations. Accurate localization of features in the presense of unkown deformations is a crucial property for texture characterization methods, and we intend to expoit...

  15. Cascaded Amplitude Modulations in Sound Texture Perception

    Directory of Open Access Journals (Sweden)

    Richard McWalter

    2017-09-01

    Full Text Available Sound textures, such as crackling fire or chirping crickets, represent a broad class of sounds defined by their homogeneous temporal structure. It has been suggested that the perception of texture is mediated by time-averaged summary statistics measured from early auditory representations. In this study, we investigated the perception of sound textures that contain rhythmic structure, specifically second-order amplitude modulations that arise from the interaction of different modulation rates, previously described as “beating” in the envelope-frequency domain. We developed an auditory texture model that utilizes a cascade of modulation filterbanks that capture the structure of simple rhythmic patterns. The model was examined in a series of psychophysical listening experiments using synthetic sound textures—stimuli generated using time-averaged statistics measured from real-world textures. In a texture identification task, our results indicated that second-order amplitude modulation sensitivity enhanced recognition. Next, we examined the contribution of the second-order modulation analysis in a preference task, where the proposed auditory texture model was preferred over a range of model deviants that lacked second-order modulation rate sensitivity. Lastly, the discriminability of textures that included second-order amplitude modulations appeared to be perceived using a time-averaging process. Overall, our results demonstrate that the inclusion of second-order modulation analysis generates improvements in the perceived quality of synthetic textures compared to the first-order modulation analysis considered in previous approaches.

  16. FCC Rolling Textures Reviewed in the Light of Quantitative Comparisons between Simulated and Experimental Textures

    DEFF Research Database (Denmark)

    Wierzbanowski, Krzysztof; Wroński, Marcin; Leffers, Torben

    2014-01-01

    The crystallographic texture of metallic materials has a very strong effect on the properties of the materials. In the present article, we look at the rolling textures of fcc metals and alloys, where the classical problem is the existence of two different types of texture, the "copper-type texture......" and the "brass-type texture." The type of texture developed is determined by the stacking fault energy of the material, the rolling temperature and the strain rate of the rolling process. Recent texture simulations by the present authors provide the basis for a renewed discussion of the whole field of fcc......} slip without or with deformation twinning, but we also consider slip on other slip planes and slip by partial dislocations. We consistently make quantitative comparison of the simulation results and the experimental textures by means of a scalar correlation factor. We find that the development...

  17. Fe-Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations

    Science.gov (United States)

    Villanova-de-Benavent, Cristina; Domènech, Cristina; Tauler, Esperança; Galí, Salvador; Tassara, Santiago; Proenza, Joaquín A.

    2017-10-01

    Fe-Ni-bearing serpentine from the saprolite horizon is the main Ni ores in hydrous silicate-type Ni laterites and formed by chemical weathering of partially serpentinized ultramafic rocks under tropical conditions. During lateritization, Mg, Si, and Ni are leached from the surface and transported downwards. Fe2+ is oxidized to Fe3+ and fixed as insoluble Fe-oxyhydroxides (mostly goethite) that incorporate Ni. This Ni is later leached from goethite and incorporated in secondary serpentine and garnierite. As a result, a serpentine-dominated saprolite horizon forms over the ultramafic protolith, overlapped by a Fe-oxyhydroxide-dominated limonite horizon. The serpentine from the protolith (serpentine I) is of hydrothermal origin and yields similar Ni (0.10-0.62 wt.% NiO) and lower Fe (mostly 1.37-5.81 wt.% FeO) concentrations than the primary olivine. In contrast, Fe-Ni-bearing serpentine from the saprolite (serpentine II) shows significantly higher and variable Fe and Ni contents, typically ranging from 2.23 to 15.59 wt.% Fe2O3 and from 1.30 to 7.67 wt.% NiO, suggesting that serpentine get enriched in Fe and Ni under supergene conditions. This study presents detailed mineralogical, textural, and chemical data on this serpentine II, as well as new insights by thermodynamic calculations assuming ideal solution between Fe-, Ni- and Mg-pure serpentines. The aim is to assess if at atmospheric pressure and temperature Fe-Ni-bearing serpentine can be formed by precipitation. Results indicate that the formation of serpentine II under atmospheric pressure and temperature is thermodynamically supported, and pH, Eh, and the equilibrium constant of the reaction are the parameters that affect the results more significantly.

  18. Effect of Molecular Flexibility on the Nematic-to-Isotropic Phase Transition for Highly Biaxial Molecular Non-Symmetric Liquid Crystal Dimers

    Science.gov (United States)

    Sebastián, Nerea; López, David Orencio; Diez-Berart, Sergio; de la Fuente, María Rosario; Salud, Josep; Pérez-Jubindo, Miguel Angel; Ros, María Blanca

    2011-01-01

    In this work, a study of the nematic (N)–isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy)-ω-(1-pyrenimine-benzylidene-4’-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU)–isotropic (I) phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition. PMID:28824100

  19. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    International Nuclear Information System (INIS)

    Yan Ying; Cai Kaiyong; Yang Weihu; Liu Peng

    2013-01-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osteointegration and reduce Ni ion release in vitro

  20. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    Science.gov (United States)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  1. Mechanical seal with textured sidewall

    Energy Technology Data Exchange (ETDEWEB)

    Khonsari, Michael M.; Xiao, Nian

    2017-02-14

    The present invention discloses a mating ring, a primary ring, and associated mechanical seal having superior heat transfer and wear characteristics. According to an exemplary embodiment of the present invention, one or more dimples are formed onto the cylindrical outer surface of a mating ring sidewall and/or a primary ring sidewall. A stationary mating ring for a mechanical seal assembly is disclosed. Such a mating ring comprises an annular body having a central axis and a sealing face, wherein a plurality of dimples are formed into the outer circumferential surface of the annular body such that the exposed circumferential surface area of the annular body is increased. The texture added to the sidewall of the mating ring yields superior heat transfer and wear characteristics.

  2. D-branes and textures

    International Nuclear Information System (INIS)

    Everett, L.; Kane, G.L.; King, S.F.

    2000-01-01

    We examine the flavor structure of the trilinear superpotential couplings which can result from embedding the Standard Model within D-brane sectors in Type IIB orientifold models, which are examples within the Type I string framework. We find in general that the allowed flavor structures of the Yukawa coupling matrices to leading order are given by basic variations on the d emocratic'' texture ansatz. In certain interesting cases, the Yukawa couplings have a novel structure in which a single right-handed fermion couples democratically at leading order to three left-handed fermions. We discuss the viability of such a s ingle right-handed democracy'' in detail; remarkably, even though there are large mixing angles in the u,d sectors separately, the CKM mixing angles are small. The analysis demonstrates the ways in which the Type I superstring framework can provide a rich setting for investigating novel resolutions to the flavor puzzle. (author)

  3. Subjective figures and texture perception.

    Science.gov (United States)

    Zucker, S W; Cavanagh, P

    1985-01-01

    A texture discrimination task using the Ehrenstein illusion demonstrates that subjective brightness effects can play an essential role in early vision. The subjectively bright regions of the Ehrenstein can be organized either as discs or as stripes, depending on orientation. The accuracy of discrimination between variants of the Ehrenstein and control patterns was a direct function of the presence of the illusory brightness stripes, being high when they were present and low otherwise. It is argued that neither receptive field structure nor spatial-frequency content can adequately account for these results. We suggest that the subjective brightness illusions, rather than being a high-level, cognitive aspect of vision, are in fact the result of an early visual process.

  4. Cool Polar Bears: Dabbing on the Texture

    Science.gov (United States)

    O'Connell, Jean

    2011-01-01

    In this article, the author describes how her second-graders created their cool polar bears. The students used the elements of shape and texture to create the bears. They used Monet's technique of dabbing paint so as to give the bear some texture on his fur.

  5. Texture Repairing by Unified Low Rank Optimization

    Institute of Scientific and Technical Information of China (English)

    Xiao Liang; Xiang Ren; Zhengdong Zhang; Yi Ma

    2016-01-01

    In this paper, we show how to harness both low-rank and sparse structures in regular or near-regular textures for image completion. Our method is based on a unified formulation for both random and contiguous corruption. In addition to the low rank property of texture, the algorithm also uses the sparse assumption of the natural image: because the natural image is piecewise smooth, it is sparse in certain transformed domain (such as Fourier or wavelet transform). We combine low-rank and sparsity properties of the texture image together in the proposed algorithm. Our algorithm based on convex optimization can automatically and correctly repair the global structure of a corrupted texture, even without precise information about the regions to be completed. This algorithm integrates texture rectification and repairing into one optimization problem. Through extensive simulations, we show our method can complete and repair textures corrupted by errors with both random and contiguous supports better than existing low-rank matrix recovery methods. Our method demonstrates significant advantage over local patch based texture synthesis techniques in dealing with large corruption, non-uniform texture, and large perspective deformation.

  6. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been...

  7. On the origin of recrystallization textures

    Indian Academy of Sciences (India)

    Unknown

    rival theories of evolution of recrystallization textures i.e. oriented nucleation (ON) and oriented growth (OG) has been under dispute. In the ON model, it has been argued that a higher frequency of the special orientation. (grains) than random occur, thus accounting for the texture. In the OG model, it has been argued that the.

  8. Texture design for light touch perception

    NARCIS (Netherlands)

    Zhang, S.; Zeng, X.; Matthews, D.T.A.; Igartua, A.; Rodriguez Vidal, E.; Fortes, J. Contreras; Van Der Heide, E.

    This study focused on active light touch with predefined textures specially-designed for tactile perception. The counter-body material is stainless steel sheet. Three geometric structures (grid, crater and groove) were fabricated by pulsed laser surface texturing. A total number of twenty volunteers

  9. Recrystallization texture in nickel heavily deformed by accumulative roll bonding

    Science.gov (United States)

    Mishin, O. V.; Zhang, Y. B.; Godfrey, A.

    2017-07-01

    The recrystallization behavior of Ni processed by accumulative roll bonding to a total accumulated von Mises strain of 4.8 has been examined, and analyzed with respect to heterogeneity in the deformation microstructure. The regions near the bonding interface are found to be more refined and contain particle deformation zones around fragments of the steel wire brush used to prepare the surface for bonding. Sample-scale gradients are also observed, manifested as differences between the subsurface, intermediate and central layers, where the distributions of texture components are different. These heterogeneities affect the progress of recrystallization. While the subsurface and near-interface regions typically contain lower frequencies of cube-oriented grains than anywhere else in the sample, a strong cube texture forms in the sample during recrystallization, attributed to both a high nucleation rate and fast growth rate of cube-oriented grains. The observations highlight the sensitivity of recrystallization to heterogeneity in the deformation microstructure and demonstrate the importance of characterizing this heterogeneity over several length scales.

  10. Phase formation and texture of thin nickel germanides on Ge(001) and Ge(111)

    Energy Technology Data Exchange (ETDEWEB)

    De Schutter, B., E-mail: deschutter.bob@ugent.be; Detavernier, C. [Department of Solid-State Sciences, Ghent University, Krijgslaan 281/S1, 9000 Ghent (Belgium); Van Stiphout, K.; Santos, N. M.; Vantomme, A. [Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Bladt, E.; Bals, S. [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Jordan-Sweet, J.; Lavoie, C. [IBM T.J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Comrie, C. M. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa)

    2016-04-07

    We studied the solid-phase reaction between a thin Ni film and a single crystal Ge(001) or Ge(111) substrate during a ramp anneal. The phase formation sequence was determined using in situ X-ray diffraction and in situ Rutherford backscattering spectrometry (RBS), while the nature and the texture of the phases were studied using X-ray pole figures and transmission electron microscopy. The phase sequence is characterized by the formation of a single transient phase before NiGe forms as the final and stable phase. X-ray pole figures were used to unambiguously identify the transient phase as the ϵ-phase, a non-stoichiometric Ni-rich germanide with a hexagonal crystal structure that can exist for Ge concentrations between 34% and 48% and which forms with a different epitaxial texture on both substrate orientations. The complementary information gained from both RBS and X-ray pole figure measurements revealed a simultaneous growth of both the ϵ-phase and NiGe over a small temperature window on both substrate orientations.

  11. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, M; Diaz, J; Xuriguera, H; Chimenos, J M; Espiell, F [Dept. of Chemical Engineering and Metallurgy, Univ. of Barcelona, Barcelona (Spain); Miralles, L [Lab. d' Investigacio en Formacions Geologiques. Dept. of Petrology, Geochemistry and Geological Prospecting, Univ. of Barcelona, Barcelona (Spain); Pinol, S [Inst. de Ciencia de Materials de Barcelona, Bellaterra (Spain)

    2003-07-01

    Copper is an interesting substrate for HTS coated conductors for its low cost compared to other metallic substrates, and for its low resistivity. Nevertheless, mechanical properties and resistance to oxidation should be improved in order to use it as substrate for YBCO deposition by non-vacuum techniques. Therefore, different cube textured CuNi tapes were prepared by RABIT as possible substrates for deposition of high critical current density YBCO films. Under the optimised conditions of deformation and annealing, all the studied CuNi alloys (2%, 5%, and 10% Ni) presented (100) left angle 001 right angle cube texture which is compatible for YBCO deposition. Textured CuNi alloys present higher tensile strength than pure copper. Oxidation resistance of CuNi tapes under different oxygen atmospheres was also studied by thermogravimetric analysis and compared to pure copper tapes. Although the presence of nickel improves mechanical properties of annealed copper, it does not improve its oxidation resistance. However, when a chromium buffer layer is electrodeposited on the tape, oxygen diffusion is slowed down. Chromium is, therefore, useful for protecting copper and CuNi alloys from oxidation although its recrystallisation texture, (110), is not suitable for coated conductors. (orig.)

  12. Bayesian exploration for intelligent identification of textures

    Directory of Open Access Journals (Sweden)

    Jeremy A. Fishel

    2012-06-01

    Full Text Available In order to endow robots with humanlike abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac® we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness. Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of prior experience to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median=5 and yielded a 95.4% success rate. The method of Bayesian exploration developed and tested in this paper may generalize well to other

  13. Active control of residual tool marks for freeform optics functionalization by novel biaxial servo assisted fly cutting.

    Science.gov (United States)

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-09-01

    The inherent residual tool marks (RTM) with particular patterns highly affect optical functions of the generated freeform optics in fast tool servo or slow tool servo (FTS/STS) diamond turning. In the present study, a novel biaxial servo assisted fly cutting (BSFC) method is developed for flexible control of the RTM to be a functional micro/nanotexture in freeform optics generation, which is generally hard to achieve in FTS/STS diamond turning. In the BSFC system, biaxial servo motions along the z-axis and side-feeding directions are mainly adopted for primary surface generation and RTM control, respectively. Active control of the RTM from the two aspects, namely, undesired effect elimination or effective functionalization, are experimentally demonstrated by fabricating a typical F-theta freeform surface with scattering homogenization and two functional microstructures with imposition of secondary phase gratings integrating both reflective and diffractive functions.

  14. Shape-Tailored Features and their Application to Texture Segmentation

    KAUST Repository

    Khan, Naeemullah

    2014-01-01

    Texture Segmentation is one of the most challenging areas of computer vision. One reason for this difficulty is the huge variety and variability of textures occurring in real world, making it very difficult to quantitatively study textures. One

  15. Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations

    Directory of Open Access Journals (Sweden)

    Jacques M. Huyghe

    2010-03-01

    Full Text Available The in vivo mechanics of the annulus fibrosus of the intervertebral disc is one of biaxial rather than uniaxial loading. The material properties of the annulus are intimately linked to the osmolarity in the tissue. This paper presents biaxial relaxation experiments of canine annulus fibrosus tissue under stepwise changes of external salt concentration. The force tracings show that stresses are strongly dependent on time, salt concentration and orientation. The force tracing signature of are sponse to a change instrain, is one of a jumpin stress that relaxes partly as the new strain is maintained. The force tracing signature of a stepwise change in salt concentration is a progressive monotonous change in stress towards a new equilibrium value. Although the number of samples does not allow any definitive quantitative conclusions, the trends may shed light on the complex interaction among the directionality of forces, strains and fiber orientation on one hand, and on the other hand, the osmolarity of the tissue. The dual response to a change in strain is understood as an immediate response before fluid flows in or out of the tissue, followed by a progressive readjustment of the fluid content in time because of the gradient in fluid chemical potential between the tissue and the surrounding solution.A mecânica in vivo do anel fibroso do disco intervertebral é baseada em carregamento biaxial ao invés de uniaxial. As propriedades materiais do anel estão intimamente ligadas à osmolaridade no tecido. O artigo apresenta experimentos de relaxação biaxiais do anel fibroso de um tecido canino sob mudanças abruptas na concentração externa de sal. A assinatura da força devido à mudança brusca de salinidade resulta em uma progressiva e monótona mudança na tensão em direção a um novo valor de equilíbrio. Embora o número de amostras não permita nenhuma conclusão quantitativa, as tendências podem abrir uma luz no entendimento das intera

  16. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075 T6 Under Different Biaxial Stress Ratios

    Science.gov (United States)

    2016-08-18

    Subjected to Biaxial Cyclic Loads.” Engineering Fracture Mechanics , 78:1516- 1528, 2011. [37] Sih, G.C.. “A Special Theory of Crack Propagation...of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...environments from pre- cracked notched circular hole in a 7075-T6 cruciform specimen using a fracture mechanics approach. With stress ratio of R

  17. Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics.

    Science.gov (United States)

    Hooshmand, Tabassom; Parvizi, Shaghayegh; Keshvad, Alireza

    2008-07-01

    The purpose of this study was to assess the effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics reinforced by leucite or lithium disilicate crystals. Forty glass ceramic disks (14-mm diameter, 2-mm thick) consisting of 20 leucite-based ceramic disks (IPS Empress) and 20 lithia disilicate-based ceramic (IPS Empress 2) were produced by hot-pressing technique. All specimens were polished and then cleaned ultrasonically in distilled water. Ten specimens of each ceramic group were then etched with 9% hydrofluoric (HF) acid gel for 2 minutes and cleaned ultrasonically again. The biaxial flexural strength was measured by the piston-on-three-ball test in a universal testing machine. Data based on ten specimens in each group were analyzed by two-way ANOVA (alpha= 0.05). Microstructure of ceramic surfaces before and after acid etching was also examined by a scanning electron microscope. The mean biaxial flexural strength values for each group tested were (in MPa): nonetched IPS Empress = 118.6 +/- 25.5; etched IPS Empress = 102.9 +/- 15.4; nonetched IPS Empress 2 = 283.0 +/- 48.5; and etched IPS Empress 2 = 250.6 +/- 34.6. The results showed that the etching process reduced the biaxial flexural strengths significantly for both ceramic types (p= 0.025). No significant interaction between the ceramic type and etching process was found (p= 0.407). From the results, it was concluded that surface HF acid etching could have a weakening effect on hot-pressed leucite or lithia disilicate-based glass ceramic systems.

  18. Ni hombres ni mujeres providenciales

    OpenAIRE

    Montaño Virreira, Sonia

    2000-01-01

    Debo advertir a la y el lector de este texto que lo que a continuación se presenta no es, ni de lejos, una propuesta realista, si por ella entendemos la traducción, enclave mujer, de las actuales tendencias de liderazgo político vigentes en la región. Por el contrario, intento argumentaren favor de un liderazgo que supere el caudillismo como estilo y se aproxime al máximo hacia el respeto de las formas, entendiendo que sin ellas no es posible construir la democracia. Para hacerlo reviso rápid...

  19. Non-monotonic probability of thermal reversal in thin-film biaxial nanomagnets with small energy barriers

    Directory of Open Access Journals (Sweden)

    N. Kani

    2017-05-01

    Full Text Available The goal of this paper is to investigate the short time-scale, thermally-induced probability of magnetization reversal for an biaxial nanomagnet that is characterized with a biaxial magnetic anisotropy. For the first time, we clearly show that for a given energy barrier of the nanomagnet, the magnetization reversal probability of an biaxial nanomagnet exhibits a non-monotonic dependence on its saturation magnetization. Specifically, there are two reasons for this non-monotonic behavior in rectangular thin-film nanomagnets that have a large perpendicular magnetic anisotropy. First, a large perpendicular anisotropy lowers the precessional period of the magnetization making it more likely to precess across the x^=0 plane if the magnetization energy exceeds the energy barrier. Second, the thermal-field torque at a particular energy increases as the magnitude of the perpendicular anisotropy increases during the magnetization precession. This non-monotonic behavior is most noticeable when analyzing the magnetization reversals on time-scales up to several tens of ns. In light of the several proposals of spintronic devices that require data retention on time-scales up to 10’s of ns, understanding the probability of magnetization reversal on the short time-scales is important. As such, the results presented in this paper will be helpful in quantifying the reliability and noise sensitivity of spintronic devices in which thermal noise is inevitably present.

  20. Biaxial stress driven tetragonal symmetry breaking and high-temperature ferromagnetic semiconductor from half-metallic CrO2

    Science.gov (United States)

    Xiao, Xiang-Bo; Liu, Bang-Gui

    2018-03-01

    It is highly desirable to combine the full spin polarization of carriers with modern semiconductor technology for spintronic applications. For this purpose, one needs good crystalline ferromagnetic (or ferrimagnetic) semiconductors with high Curie temperatures. Rutile CrO2 is a half-metallic spintronic material with Curie temperature 394 K and can have nearly full spin polarization at room temperature. Here, we find through first-principles investigation that when a biaxial compressive stress is applied on rutile CrO2, the density of states at the Fermi level decreases with the in-plane compressive strain, there is a structural phase transition to an orthorhombic phase at the strain of -5.6 % , and then appears an electronic phase transition to a semiconductor phase at -6.1 % . Further analysis shows that this structural transition, accompanying the tetragonal symmetry breaking, is induced by the stress-driven distortion and rotation of the oxygen octahedron of Cr, and the half-metal-semiconductor transition originates from the enhancement of the crystal field splitting due to the structural change. Importantly, our systematic total-energy comparison indicates the ferromagnetic Curie temperature remains almost independent of the strain, near 400 K. This biaxial stress can be realized by applying biaxial pressure or growing the CrO2 epitaxially on appropriate substrates. These results should be useful for realizing full (100%) spin polarization of controllable carriers as one uses in modern semiconductor technology.

  1. On the field-induced switching of molecular organization in a biaxial nematic cell and its relaxation

    Science.gov (United States)

    Ricci, Matteo; Berardi, Roberto; Zannoni, Claudio

    2015-08-01

    We investigate the switching of a biaxial nematic filling a flat cell with planar homogeneous anchoring using a coarse-grained molecular dynamics simulation. We have found that an aligning field applied across the film, and acting on specific molecular axes, can drive the reorientation of the secondary biaxial director up to one order of magnitude faster than that for the principal director. While the π/2 switching of the secondary director does not affect the alignment of the long molecular axes, the field-driven reorientation of the principal director proceeds via a concerted rotation of the long and transversal molecular axes. More importantly, while upon switching off a (relatively) weak or intermediate field, the biaxial nematic liquid crystal is always able to relax to the initial surface aligned director state; this is not the case when using fields above a certain threshold. In that case, while the secondary director always recovers the initial state, the principal one remains, occasionally, trapped in a nonuniform director state due to the formation of domain walls.

  2. Texture and wettability of metallic lotus leaves

    Science.gov (United States)

    Frankiewicz, C.; Attinger, D.

    2016-02-01

    Superhydrophobic surfaces with the self-cleaning behavior of lotus leaves are sought for drag reduction and phase change heat transfer applications. These superrepellent surfaces have traditionally been fabricated by random or deterministic texturing of a hydrophobic material. Recently, superrepellent surfaces have also been made from hydrophilic materials, by deterministic texturing using photolithography, without low-surface energy coating. Here, we show that hydrophilic materials can also be made superrepellent to water by chemical texturing, a stochastic rather than deterministic process. These metallic surfaces are the first analog of lotus leaves, in terms of wettability, texture and repellency. A mechanistic model is also proposed to describe the influence of multiple tiers of roughness on wettability and repellency. This demonstrated ability to make hydrophilic materials superrepellent without deterministic structuring or additional coatings opens the way to large scale and robust manufacturing of superrepellent surfaces.Superhydrophobic surfaces with the self-cleaning behavior of lotus leaves are sought for drag reduction and phase change heat transfer applications. These superrepellent surfaces have traditionally been fabricated by random or deterministic texturing of a hydrophobic material. Recently, superrepellent surfaces have also been made from hydrophilic materials, by deterministic texturing using photolithography, without low-surface energy coating. Here, we show that hydrophilic materials can also be made superrepellent to water by chemical texturing, a stochastic rather than deterministic process. These metallic surfaces are the first analog of lotus leaves, in terms of wettability, texture and repellency. A mechanistic model is also proposed to describe the influence of multiple tiers of roughness on wettability and repellency. This demonstrated ability to make hydrophilic materials superrepellent without deterministic structuring or additional

  3. On Texture and Geometry in Image Analysis

    DEFF Research Database (Denmark)

    Gustafsson, David Karl John

    2009-01-01

    fields and Maximum Entropy (FRAME) model [213, 214] is used for inpaining texture. We argue that many ’textures’ contain details that must be inpainted exactly. Simultaneous reconstruction of geometric structure and texture is a difficult problem, therefore, a two-phase reconstruction procedure...... is proposed. An inverse temperature is added to the FRAME model. In the first phase, the geometric structure is reconstructed by cooling the distribution, and in the second phase, the texture is added by heating the distribution. Empirically, we show that the long range geometric structure is inpainted...

  4. Doping profile measurement on textured silicon surface

    Science.gov (United States)

    Essa, Zahi; Taleb, Nadjib; Sermage, Bernard; Broussillou, Cédric; Bazer-Bachi, Barbara; Quillec, Maurice

    2018-04-01

    In crystalline silicon solar cells, the front surface is textured in order to lower the reflection of the incident light and increase the efficiency of the cell. This texturing whose dimensions are a few micrometers wide and high, often makes it difficult to determine the doping profile measurement. We have measured by secondary ion mass spectrometry (SIMS) and electrochemical capacitance voltage profiling the doping profile of implanted phosphorus in alkaline textured and in polished monocrystalline silicon wafers. The paper shows that SIMS gives accurate results provided the primary ion impact angle is small enough. Moreover, the comparison between these two techniques gives an estimation of the concentration of electrically inactive phosphorus atoms.

  5. Numerical development of a new correlation between biaxial fracture strain and material fracture toughness for small punch test

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Dutta, B.K., E-mail: bijon.dutta@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Chattopadhyay, J. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-01

    The miniaturized specimens are used to determine mechanical properties of the materials, such as yield stress, ultimate stress, fracture toughness etc. Use of such specimens is essential whenever limited quantity of material is available for testing, such as aged/irradiated materials. The miniaturized small punch test (SPT) is a technique which is widely used to determine change in mechanical properties of the materials. Various empirical correlations are proposed in the literature to determine the value of fracture toughness (J{sub IC}) using this technique. bi-axial fracture strain is determined using SPT tests. This parameter is then used to determine J{sub IC} using available empirical correlations. The correlations between J{sub IC} and biaxial fracture strain quoted in the literature are based on experimental data acquired for large number of materials. There are number of such correlations available in the literature, which are generally not in agreement with each other. In the present work, an attempt has been made to determine the correlation between biaxial fracture strain (ε{sub qf}) and crack initiation toughness (J{sub i}) numerically. About one hundred materials are digitally generated by varying yield stress, ultimate stress, hardening coefficient and Gurson parameters. Such set of each material is then used to analyze a SPT specimen and a standard TPB specimen. Analysis of SPT specimen generated biaxial fracture strain (ε{sub qf}) and analysis of TPB specimen generated value of J{sub i}. A graph is then plotted between these two parameters for all the digitally generated materials. The best fit straight line determines the correlation. It has been also observed that it is possible to have variation in J{sub i} for the same value of biaxial fracture strain (ε{sub qf}) within a limit. Such variation in the value of J{sub i} has been also ascertained using the graph. Experimental SPT data acquired earlier for three materials were then used to get J

  6. On the Landau-de Gennes Elastic Energy of a Q-Tensor Model for Soft Biaxial Nematics

    Science.gov (United States)

    Mucci, Domenico; Nicolodi, Lorenzo

    2017-12-01

    In the Landau-de Gennes theory of liquid crystals, the propensities for alignments of molecules are represented at each point of the fluid by an element Q of the vector space S_0 of 3× 3 real symmetric traceless matrices, or Q-tensors. According to Longa and Trebin (1989), a biaxial nematic system is called soft biaxial if the tensor order parameter Q satisfies the constraint tr(Q^2) = {const}. After the introduction of a Q-tensor model for soft biaxial nematic systems and the description of its geometric structure, we address the question of coercivity for the most common four-elastic-constant form of the Landau-de Gennes elastic free-energy (Iyer et al. 2015) in this model. For a soft biaxial nematic system, the tensor field Q takes values in a four-dimensional sphere S^4_ρ of radius ρ ≤ √{2/3} in the five-dimensional space S_0 with inner product = tr(QP). The rotation group it{SO}(3) acts orthogonally on S_0 by conjugation and hence induces an action on S^4_ρ \\subset {S}_0. This action has generic orbits of codimension one that are diffeomorphic to an eightfold quotient S^3/H of the unit three-sphere S^3, where H={± 1, ± i, ± j, ± k} is the quaternion group, and has two degenerate orbits of codimension two that are diffeomorphic to the projective plane RP^2. Each generic orbit can be interpreted as the order parameter space of a constrained biaxial nematic system and each singular orbit as the order parameter space of a constrained uniaxial nematic system. It turns out that S^4_ρ is a cohomogeneity one manifold, i.e., a manifold with a group action whose orbit space is one-dimensional. Another important geometric feature of the model is that the set Σ _ρ of diagonal Q-tensors of fixed norm ρ is a (geodesic) great circle in S^4_ρ which meets every orbit of S^4_ρ orthogonally and is then a section for S^4_ρ in the sense of the general theory of canonical forms. We compute necessary and sufficient coercivity conditions for the elastic energy by

  7. Multi-cracking in uniaxial and biaxial fatigue of 304L stainless steel

    International Nuclear Information System (INIS)

    Rupil, J.

    2012-01-01

    When a mechanical part is subjected to a repeated mechanical stress, it may be damaged after a number of cycles by several cracks initiation and propagation of a main crack. This is the phenomenon of fatigue damage. The thesis deals specifically with possible damage to some components of nuclear plants due to thermal fatigue. Unlike conventional mechanical fatigue damage where a main crack breaks the part, the thermal fatigue damage usually results in the appearance of a surface crack network. Two aspects are discussed in the thesis. The first is the experimental study of fatigue multiple cracking stage also called multi-cracking. Two mechanical test campaigns with multi-cracking detection by digital image correlation were conducted. These campaigns involve uniaxial and equi-biaxial mechanical loads in tension/compression without mean stress. This work allows to monitor and to observe the evolution of different networks of cracks through mechanical solicitations. The second is the numerical simulation of the phenomenon of fatigue damage. Several types of model are used (stochastic, probabilistic, cohesive finite elements). The experimental results have led to identify a multiple crack initiation law in fatigue which is faced with the numerical results. This comparison shows the relevance of the use of an analytical probabilistic model to find statistical results on the density of cracks that can be initiated with thermal and mechanical fatigue loadings. (author) [fr

  8. Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing

    Science.gov (United States)

    Scheidegger, Noemy; Ferris, Mark; Phillips, Nigel

    2014-01-01

    The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL's unique space manufacturing approach that enables performing rapid development cycles for cost-effective products that meet ever-challenging mission requirements: The BSADM is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The tight development schedule, with manufacture of 7 Flight Models within 1.5 year after kick-off, is offset by the risk-reduction of using qualified key component-families from other proven SSTL mechanisms. This allowed focusing the BSADM design activities on the mechanism features that are unique to the BSADM, and having an Engineering Qualification Model (EQM) built 8 months after kick-off. The EQM is currently undergoing a full environmental qualification test campaign. This paper presents the BSADM design approach that enabled meeting such a challenging schedule, its design particularities, and the ongoing verification activities.

  9. DEM Simulation of Biaxial Compression Experiments of Inherently Anisotropic Granular Materials and the Boundary Effects

    Directory of Open Access Journals (Sweden)

    Zhao-Xia Tong

    2013-01-01

    Full Text Available The reliability of discrete element method (DEM numerical simulations is significantly dependent on the particle-scale parameters and boundary conditions. To verify the DEM models, two series of biaxial compression tests on ellipse-shaped steel rods are used. The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary. The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions. The peak friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.

  10. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    Science.gov (United States)

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  11. Electron beam induced modifications in flexible biaxially oriented polyethylene terephthalate sheets: Improved mechanical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, N. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Koiry, S.P. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Singh, A., E-mail: asb_barc@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Tillu, A.R. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Jha, P.; Samanta, S.; Debnath, A.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Aswal, D.K., E-mail: dkaswal@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Mondal, R.K. [Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Acharya, S.; Mittal, K.C. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India)

    2017-03-01

    In the present work, we have studied the effects of electron beam irradiation (with dose ranging from 2 to 32 kGy) on mechanical and electrical properties of biaxially oriented polyethylene terephthalate (BOPET) sheets. The sol-gel analysis, Fourier transformation infra-red (FTIR), X-ray photoelectron spectroscopy (XPS) characterizations of the irradiated BOPET sheets suggest partial cross-linking of PET chains through the diethylene glycol (DEG). The mechanical properties of BOPET, such as, tensile strength, Young's modulus and electrical resistivity shows improvement with increasing dose and saturate for doses >10 kGy. The improved mechanical properties and high electrical resistivity of electron beam modified BOPET sheets may have additional advantages in applications, such as, packaging materials for food irradiation, medical product sterilization and electronic industries. - Graphical abstract: Irradiation of BOPET by electron beam leads to the formation of diethylene glycol that crosslink's the PET chains, resulting in improved mechanical properties and enhanced electrical resistivity. - Highlights: • BOPET exhibit improved tensile strength/Young's modulus after e-beam exposure. • Electrical resistivity of BOPET increases after e-beam exposure. • Cross-linking of PET chains through diethylene glycol was observed after e-beam exposure.

  12. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  13. Strain distribution and failure mode of polymer separators for Li-ion batteries under biaxial loading

    Science.gov (United States)

    Kalnaus, Sergiy; Kumar, Abhishek; Wang, Yanli; Li, Jianlin; Simunovic, Srdjan; Turner, John A.; Gorney, Phillip

    2018-02-01

    Deformation of polymer separators for Li-ion batteries has been studied under biaxial tension by using a dome test setup. This deformation mode provides characterization of separator strength under more complex loading conditions, closer representing deformation of an electric vehicle battery during crash event, compared to uniaxial tension or compression. Two polymer separators, Celgard 2325 and Celgard 2075 were investigated by deformation with spheres of three different diameters. Strains in separators were measured in situ by using Digital Image Correlation (DIC) technique. The results show consistent rupture of separators along the machine direction coinciding with areas of high strain accumulation. The critical first principal strain for failure was independent of the sphere diameter and was determined to be approximately 34% and 43% for Celgard 2325 and Celgard 2075 respectively. These values can be taken as a criterion for internal short circuit in a battery following an out-of-plane impact. A Finite Element (FE) model was built with the anisotropic description of separator behavior, derived from tensile tests in orthogonal directions. The results of simulations predicted the response of separator rather well when compared to experimental results for various sizes of rigid sphere.

  14. Evaluation of Biaxial Mechanical Properties of Aortic Media Based on the Lamellar Microstructure

    Directory of Open Access Journals (Sweden)

    Hadi Taghizadeh

    2015-01-01

    Full Text Available Evaluation of the mechanical properties of arterial wall components is necessary for establishing a precise mechanical model applicable in various physiological and pathological conditions, such as remodeling. In this contribution, a new approach for the evaluation of the mechanical properties of aortic media accounting for the lamellar structure is proposed. We assumed aortic media to be composed of two sets of concentric layers, namely sheets of elastin (Layer I and interstitial layers composed of mostly collagen bundles, fine elastic fibers and smooth muscle cells (Layer II. Biaxial mechanical tests were carried out on human thoracic aortic samples, and histological staining was performed to distinguish wall lamellae for determining the dimensions of the layers. A neo-Hookean strain energy function (SEF for Layer I and a four-parameter exponential SEF for Layer II were allocated. Nonlinear regression was used to find the material parameters of the proposed microstructural model based on experimental data. The non-linear behavior of media layers confirmed the higher contribution of elastic tissue in lower strains and the gradual engagement of collagen fibers. The resulting model determines the nonlinear anisotropic behavior of aortic media through the lamellar microstructure and can be assistive in the study of wall remodeling due to alterations in lamellar structure during pathological conditions and aging.

  15. Behavior of annealed type 316 stainless steel under monotonic and cyclic biaxial loading at room temperature

    International Nuclear Information System (INIS)

    Ellis, J.R.; Robinson, D.N.; Pugh, C.E.

    1978-01-01

    This paper addresses the elastic-plastic behavior of type 316 stainless steel, one of the major structural alloys used in liquid-metal fast breeder reactor components. The study was part of a continuing program to develop a structural design technology applicable to advanced reactor systems. Here, behaviour of solution annealed material was examined through biaxial stress experiments conducted at room temperature under radial loadings (√3tau=sigma) in tension-torsion stress space. The effects of both stress limited monotonic loading and strain limited cyclic loading were determined on the size, shape and position of yield loci corresponding to small offset strain (10 microstrain) definition of yield. In the present work, the aim was to determine the extent to which the constitutive laws previously recommended for type 304 stainless steel are applicable to type 316 stainless steel. It was concluded that for the conditions investigated, the inelastic behavior of the two materials are qualitatively similar. Specifically, the von Mises yield criterion provides a reasonable approximation of initial yield behavior and the subsequent hardening behavior, at least under small offset definitions of yield, is to the first order kinematic in nature. (Auth.)

  16. Biodegradable multilayer barrier films based on alginate/polyethyleneimine and biaxially oriented poly(lactic acid).

    Science.gov (United States)

    Gu, Chun-Hong; Wang, Jia-Jun; Yu, Yang; Sun, Hui; Shuai, Ning; Wei, Bing

    2013-02-15

    A layer-by-layer (LBL) approach was used to assemble alternating layers of sodium alginate (ALG)/polyethyleneimine (PEI) on biaxially oriented poly(lactic acid) (BOPLA) films in order to produce bio-based all-polymer thin films with low gas permeability. Increasing the depositing of ALG and PEI from 0 to 30 layers results in large thickness variations (from 0 to 3.92 μm). After 30 ALG/PEI layers are deposited, the resulting assembly has an OTR of 1.22 cm(3)/(m(2) day atm). When multiplied by thickness, the resulting oxygen permeability (OP) is found to be less than 3.8×10(-17) cm(3) cm/cm(2) s Pa, which is almost 3 orders of magnitude lower than that of uncoated BOPLA film (1.8×10(-14) cm(3)cm/cm(2) s Pa). At the same time, the resulting multilayer-coated BOPLA films maintain high optical clarity and tensile properties. This unique barrier thin film has become a promising alternative to non-biodegradable synthetic food packaging materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Development of partial safety factors for the design of partially prestressed rectangular sections in biaxial flexure

    International Nuclear Information System (INIS)

    Chatterjee, Aritra; Bhattacharya, Baidurya; Agrawal, Gunjan; Mondal, Apurba

    2011-01-01

    Partial safety factors (PSFs) used in reliability-based design are intended to account for uncertainties in load, material and mathematical modeling while ensuring that the target reliability is satisfied for the relevant class of structural components in the given load combination and limit state. This paper describes the methodology in detail for developing a set of optimal reliability-based PSFs for the design of rectangular partially prestressed concrete sections subjected to biaxial flexure. The mechanical formulation of the flexural limit state is based on the principle behind prestressed concrete design recommended by IS 1343 and SP16 and failure is defined as tensile cracking of concrete extending beyond the depth of cover. The applied moments are combined according to Wood's criteria. The optimization of the PSFs is based on reliability indices obtained from first order reliability analysis of the structural components; Monte Carlo simulations are performed in each run to determine the capacity statistics and dependence between capacity and applied loads (effected through the axial loads influencing moment capacity corresponding to cracking). Numerical examples involving flexural design of partially prestressed concrete shell elements in nuclear power plant containments under accidental pressure load combination are provided. (author)

  18. Biaxial Solar Tracking System Based on the MPPT Approach Integrating ICTs for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Raúl Gregor

    2015-01-01

    Full Text Available The smart grid and distributed generation based on renewable energy applications often involve the use of information and communication technology (ICT coupled with advanced control and monitoring algorithms to improve the efficiency and reliability of the electrical grid and renewable generation systems. Photovoltaic (PV systems have been recently applied with success in the fields of distributed generation due to their lower environmental impact where the electrical energy generation is related to the amount of solar irradiation and thus the angle of incident ray of the sun on the surface of the modules. This paper introduces an integration of ICTs in order to achieve the maximum power point tracking (MPPT using a biaxial solar tracking system for PV power applications. To generate the references for the digital control of azimuth and elevation angles a Global Positioning System (GPS by satellites is used which enables acquiring the geographic coordinates of the sun in real-time. As a total integration of the system a communication platform based on the 802.15.4 protocol for the wireless sensor networks (WSNs is adopted for supervising and monitoring the PV plant. A 2.4 kW prototype system is implemented to validate the proposed control scheme performance.

  19. Monitoring Local Changes in Granite Rock Under Biaxial Test: A Spatiotemporal Imaging Application With Diffuse Waves

    Science.gov (United States)

    Xie, Fan; Ren, Yaqiong; Zhou, Yongsheng; Larose, Eric; Baillet, Laurent

    2018-03-01

    Diffuse acoustic or seismic waves are highly sensitive to detect changes of mechanical properties in heterogeneous geological materials. In particular, thanks to acoustoelasticity, we can quantify stress changes by tracking acoustic or seismic relative velocity changes in the material at test. In this paper, we report on a small-scale laboratory application of an innovative time-lapse tomography technique named Locadiff to image spatiotemporal mechanical changes on a granite sample under biaxial loading, using diffuse waves at ultrasonic frequencies (300 kHz to 900 kHz). We demonstrate the ability of the method to image reversible stress evolution and deformation process, together with the development of reversible and irreversible localized microdamage in the specimen at an early stage. Using full-field infrared thermography, we visualize stress-induced temperature changes and validate stress images obtained from diffuse ultrasound. We demonstrate that the inversion with a good resolution can be achieved with only a limited number of receivers distributed around a single source, all located at the free surface of the specimen. This small-scale experiment is a proof of concept for frictional earthquake-like failure (e.g., stick-slip) research at laboratory scale as well as large-scale seismic applications, potentially including active fault monitoring.

  20. Analysis of biaxial strain in InN(0001) epilayers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Dimakis, E.; Domagala, J.; Iliopoulos, E.; Adikimenakis, A.; Georgakilas, A.

    2007-01-01

    The in-plane lattice parameters of InN, GaN and Al 2 O 3 in a InN/GaN/Al 2 O 3 (0001) heterostructure have been measured as a function of temperature in the range of 25-350 C, using high resolution X-ray diffraction. The results reveal that both the GaN and InN crystals follow the in-plane thermal expansion of the Al 2 O 3 substrate's lattice and there is no rearrangement of misfit dislocations at the InN/GaN and GaN/Al 2 O 3 interfaces. It was also found that either compressive or tensile character of residual biaxial strain is possible for the InN films, depending on the two-dimensional (2D) or three-dimensional (3D) growth mode of InN on the GaN(0001) buffer layer. The tensile strain is inherent to the nucleation and coalescence of 3D islands. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  2. Evolution of solidification texture during additive manufacturing

    Science.gov (United States)

    Wei, H. L.; Mazumder, J.; DebRoy, T.

    2015-01-01

    Striking differences in the solidification textures of a nickel based alloy owing to changes in laser scanning pattern during additive manufacturing are examined based on theory and experimental data. Understanding and controlling texture are important because it affects mechanical and chemical properties. Solidification texture depends on the local heat flow directions and competitive grain growth in one of the six preferred growth directions in face centered cubic alloys. Therefore, the heat flow directions are examined for various laser beam scanning patterns based on numerical modeling of heat transfer and fluid flow in three dimensions. Here we show that numerical modeling can not only provide a deeper understanding of the solidification growth patterns during the additive manufacturing, it also serves as a basis for customizing solidification textures which are important for properties and performance of components. PMID:26553246

  3. Decameter-Scale Regolith Textures on Mercury

    Science.gov (United States)

    Kreslavsky, M. A.; Zharkova, A. Yu.; Head, J. W.

    2018-05-01

    Like on the Moon, regolith gardening smooths the surface. Small craters are in equilibrium. “Elephant hide“ typical on the lunar slopes is infrequent on Mercury. Finely Textured Slope Patches have no analog on the Moon.

  4. Tailoring the texture of IN738LC processed by selective laser melting (SLM) by specific scanning strategies

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, Fabian [General Electric Switzerland GmbH – GE Power, CH-5401 Baden (Switzerland); Kunze, Karsten, E-mail: karsten.kunze@scopem.ethz.ch [ETH Zurich, Scientific Center of Optical and Electron Microscopy (ScopeM), CH-8093 Zürich (Switzerland); Etter, Thomas [General Electric Switzerland GmbH – GE Power, CH-5401 Baden (Switzerland)

    2016-04-20

    Selective laser melting (SLM) is an emerging technology of additive manufacturing, which is used to directly produce metallic parts from thin powder layers. This study aims at correlating laser scanning strategies with the resulting textures and corresponding anisotropy of the elastic behavior of bulk materials. Tensile test specimens made of the γ’-containing Ni-base superalloy IN738LC were built with the loading direction oriented either parallel (z-specimens) or perpendicular to the build-up direction (xy-specimens). Their bulk mechanical properties were determined at room temperature and at 850 °C. Specimens were investigated in the ‘as-built’ condition and after recrystallization heat treatment. SEM-based electron backscatter diffraction (EBSD) was applied to measure their crystallographic preferred orientations (texture) and to correlate the anisotropy of Young's modulus with the texture of the material. It is shown that the applied laser scanning strategies allow to tailor the crystallographic texture locally. The possibility to switch from transverse anisotropic to transverse isotropic properties and reverse is demonstrated for triple layered tensile samples. A recrystallization heat treatment reduces the degree of crystallographic texture and thus the elastic anisotropy by abundant annealing twinning. Predictions of Young's modulus calculated from the measured textures compare well with the data from tensile tests.

  5. Extrusion Cooking Systems and Textured Vegetable Proteins

    Directory of Open Access Journals (Sweden)

    2015-02-01

    Full Text Available Many fabricated foods are cooked industrially and are given desired textures, shapes, density and rehydration characteristics by an extrusion cooking process. This relatively new process is used in the preparation of “engineered” convenience foods: textured vegetable proteins, breakfast cereals, snacks, infant foods, dry soup mixes, breading, poultry stuffing, croutons, pasta products, beverage powders, hot breakfast gruels, and in the gelatinization of starch or the starchy component of foods.

  6. Determination of textures by neutron diffraction

    International Nuclear Information System (INIS)

    Dervin, P.; Penelle, R.

    1989-01-01

    In virtue of the low absorption coefficient of most materials in regard to neutrons, neutron diffraction is particularly well adapted for high-precision characterizing of the gross texture of massive fine-grained or coarse-grained specimens of the order of the cubic centimeter. The firt part of this paper is devoted to a description of the distribution of crystalline orientations, and the second part to experimental identification of textures [fr

  7. Texture and inflation in a closed universe

    International Nuclear Information System (INIS)

    Hacyan, S.; Sarmiento, A.

    1993-01-01

    We present a cosmological model with a global homogeneous texture and inflation, but without an initial singularity. The Universe starts from an equilibrium configuration in a symmetric vacuum; the dynamic stability of this configuration is studied. We obtain numerical solutions which show that the Universe expands exponentially and the texture field decays in a finite time; this corresponds to a period of inflation followed naturally by a Friedmann expansion

  8. Filtering Color Mapped Textures and Surfaces

    OpenAIRE

    Heitz , Eric; Nowrouzezahrai , Derek; Poulin , Pierre; Neyret , Fabrice

    2013-01-01

    International audience; Color map textures applied directly to surfaces, to geometric microsurface details, or to procedural functions (such as noise), are commonly used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient color map filt...

  9. Combining fine texture and coarse color features for color texture classification

    Science.gov (United States)

    Wang, Junmin; Fan, Yangyu; Li, Ning

    2017-11-01

    Color texture classification plays an important role in computer vision applications because texture and color are two fundamental visual features. To classify the color texture via extracting discriminative color texture features in real time, we present an approach of combining the fine texture and coarse color features for color texture classification. First, the input image is transformed from RGB to HSV color space to separate texture and color information. Second, the scale-selective completed local binary count (CLBC) algorithm is introduced to extract the fine texture feature from the V component in HSV color space. Third, both H and S components are quantized at an optimal coarse level. Furthermore, the joint histogram of H and S components is calculated, which is considered as the coarse color feature. Finally, the fine texture and coarse color features are combined as the final descriptor and the nearest subspace classifier is used for classification. Experimental results on CUReT, KTH-TIPS, and New-BarkTex databases demonstrate that the proposed method achieves state-of-the-art classification performance. Moreover, the proposed method is fast enough for real-time applications.

  10. Texture and Elastic Anisotropy of Mantle Olivine

    Science.gov (United States)

    Nikitin, A. N.; Ivankina, T. I.; Bourilitchev, D. E.; Klima, K.; Locajicek, T.; Pros, Z.

    Eight olivine rock samples from different European regions were collected for neu- tron texture analyses and for P-wave velocity measurements by means of ultrasonic sounding at various confining pressures. The orientation distribution functions (ODFs) of olivine were determined and pole figures of the main crystallographic planes were calculated. The spatial P-wave velocity distributions were determined at confining pressures from 0.1 to 400 MPa and modelled from the olivine textures. In dependence upon the type of rock (xenolith or dunite) different behavior of both the P-wave veloc- ity distributions and the anisotropy coefficients with various confining pressures was observed. In order to explain the interdependence of elastic anisotropy and hydrostatic pressure, a model for polycrystalline olivine rocks was suggested, which considers the influence of the crystallographic and the mechanical textures on the elastic behaviour of the polycrystal. Since the olivine texture depends upon the active slip systems and the deformation temperature, neutron texture analyses enable us to estimate depth and thermodynamical conditions during texture formation.

  11. TEXTURE ANALYSIS OF SPELT WHEAT BREAD

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2013-02-01

    Full Text Available The bread quality is considerably dependent on the texture characteristic of bread crumb. Texture analysis is primarily concerned with the evaluation of mechanical characteristics where a material is subjected to a controlled force from which a deformation curve of its response is generated. It is an objective physical examination of baked products and gives direct information on the product quality, oppositely to dough rheology tests what are inform on the baking suitability of the flour, as raw material. This is why the texture analysis is one of the most helpful analytical methods of the product development. In the framework of our research during the years 2008 – 2009 were analyzed selected indicators of bread crumb for texture quality of three Triticum spelta L. cultivars – Oberkulmer Rotkorn, Rubiota and Franckenkorn grown in an ecological system at the locality of Dolna Malanta near Nitra. The bread texture quality was evaluated on texture analyzer TA.XT Plus and expressed as crumb firmness (N, stiffness (N.mm-1 and relative elasticity (%.Our research proved that all selected indicators were significantly influenced by the year of growing and variety. The most soft bread was measured in Rubiota, whereas bread crumb samples from Franckenkorn were the most firm and stiff. Relative elasticity confirmed that the lowest firmness and stiffness was found in Rubiota bread. The spelt grain can be a good source for making bread flour, but is closely dependent on choice of spelt variety.

  12. Neutronographic Texture Analysis of Zirconium Based Alloys

    International Nuclear Information System (INIS)

    Kruz'elová, M; Vratislav, S; Kalvoda, L; Dlouhá, M

    2012-01-01

    Neutron diffraction is a very powerful tool in texture analysis of zirconium based alloys used in nuclear technique. Textures of five samples (two rolled sheets and three tubes) were investigated by using basal pole figures, inversion pole figures, and ODF distribution function. The texture measurement was performed at diffractometer KSN2 on the Laboratory of Neutron Diffraction, Department of Solid State Engineering, Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague. Procedures for studying textures with thermal neutrons and procedures for obtaining texture parameters (direct and inverse pole figures, three dimensional orientation distribution function) are also described. Observed data were processed by software packages HEXAL and GSAS. Our results can be summarized as follows: i) All samples of zirconium alloys show the distribution of middle area into two maxima in basal pole figures. This is caused by alloying elements. A characteristic split of the basal pole maxima tilted from the normal direction toward the transverse direction can be observed for all samples, ii) Sheet samples prefer orientation of planes (100) and (110) perpendicular to rolling direction and orientation of planes (002) perpendicular to normal direction, iii) Basal planes of tubes are oriented parallel to tube axis, meanwhile (100) planes are oriented perpendicular to tube axis. Level of resulting texture and maxima position is different for tubes and for sheets. The obtained results are characteristic for zirconium based alloys.

  13. Fast Image Texture Classification Using Decision Trees

    Science.gov (United States)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  14. Magnetic properties and crystal texture of Co alloy thin films prepared on double bias Cr

    Science.gov (United States)

    Deng, Y.; Lambeth, D. N.; Lee, L.-L.; Laughlin, D. E.

    1993-05-01

    A double layer Cr film structure has been prepared by sputter depositing Cr on single crystal Si substrates first without substrate bias and then with various substrate bias voltages. Without substrate bias, Cr{200} texture grows on Si at room temperature; thus the first Cr layer acts like a seed Cr layer with the {200} texture, and the second Cr layer, prepared with substrate bias, tends to replicate the {200} texture epitaxially. CoCrTa and CoNiCr films prepared on these double Cr underlayers, therefore, tend to have a {112¯0} texture with their c-axes oriented in the plane of the film. At the same time, the bias sputtering of the second Cr layer increases the coercivity of the subsequently deposited magnetic films significantly. Comparison studies of δM curves show that the use of the double Cr underlayers reduces the intergranular exchange interactions. The films prepared on the Si substrates have been compared with the films prepared on canasite and glass substrates. It has also been found that the magnetic properties are similar for films on canasite and on glass.

  15. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    Science.gov (United States)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  16. Some distinguishing characteristics of contour and texture phenomena in images

    Science.gov (United States)

    Jobson, Daniel J.

    1992-01-01

    The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.

  17. Green-Kubo relations for the viscosity of biaxial nematic liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1996-09-01

    We derive Green-Kubo relations for the viscosities of a biaxial nematic liquid crystal. In this system there are seven shear viscosities, three twist viscosities, and three cross coupling coefficients between the antisymmetric strain rate and the symmetric traceless pressure tensor. According to the Onsager reciprocity relations these couplings are equal to the cross couplings between the symmetric traceless strain rate and the antisymmetric pressure. Our method is based on a comparison of the microscopic linear response generated by the SLLOD equations of motion for planar Couette flow (so named because of their close connection to the Doll's tensor Hamiltonian) and the macroscopic linear phenomenological relations between the pressure tensor and the strain rate. In order to obtain simple Green-Kubo relations we employ an equilibrium ensemble where the angular velocities of the directors are identically zero. This is achieved by adding constraint torques to the equations for the molecular angular accelerations. One finds that all the viscosity coefficients can be expressed as linear combinations of time correlation function integrals (TCFIs). This is much simpler compared to the expressions in the conventional canonical ensemble, where the viscosities are complicated rational functions of the TCFIs. The reason for this is, that in the constrained angular velocity ensemble, the thermodynamic forces are given external parameters whereas the thermodynamic fluxes are ensemble averages of phase functions. This is not the case in the canonical ensemble. The simplest way of obtaining numerical estimates of viscosity coefficients of a particular molecular model system is to evaluate these fluctuation relations by equilibrium molecular dynamics simulations.

  18. Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines.

    Science.gov (United States)

    Montalvão, Diogo; Wren, Andrew

    2017-11-01

    The necessity to increase performances in terms of lifetime and security in mechanical components or structures is the motivation for intense research in fatigue. Applications range from aeronautics to medical devices. With the development of new materials, there is no longer a fatigue limit in the classical sense, where it was accepted that the fatigue limit is the stress level such that there is no fracture up to 1E7 cycles. The recent development of ultrasonic testing machines where frequencies can go as high as 20 kHz or over enabled tests to be extended to ranges larger than 1E9 in just a few days. This area of studies is now known as Very High Cycle Fatigue (VHCF). On the other hand, most of the existing test equipment in the market for both classical and VHCF are uniaxial test machines. However, critical components used in Engineering applications are usually subjected to complex multi-axial loading conditions. In this paper, it is presented the methodology to redesigning existing cruciform test specimens that can be used to create an in-plane biaxial state of stress when used in 'uniaxial' VHCF ultrasonic testing machines (in this case, the term 'uniaxial' is used not because of the state of stress created at the centre of the specimen, but because of the direction at which the load is applied). The methodology is explained in such a way that it can be expanded to other existing designs, namely cruciform designs, that are not yet used in VHCF. Also, although the approach is presented in simple and logical terms, it may not be that obvious for those who have a more focused approach on fatigue rather than on modal analysis. It is expected that by contributing to bridging the gap between the sciences of modal analysis and fatigue, this research will help and encourage others exploiting new capabilities in VHCF.

  19. Dependence of electronic properties of germanium on the in-plane biaxial tensile strains

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Yu, Z.Y., E-mail: yuzhongyuan30@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Liu, Y.M.; Lu, P.F. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Gao, T. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Li, M.; Manzoor, S. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China)

    2013-10-15

    The hybrid HSE06 functional with the spin–orbit coupling effects is used to calculate the habituation of the electronic properties of Ge on the (0 0 1), (1 1 1), (1 0 1) in-plane biaxial tensile strains (IPBTSs). Our motivation is to explore the nature of electronic properties of tensile-strained Ge on different substrate orientations. The calculated results demonstrate that one of the most effective and practical approaches for transforming Ge into a direct transition semiconductor is to introduce (0 0 1) IPBTS to Ge. At 2.3% (0 0 1) IPBTS, Ge becomes a direct bandgap semiconductor with 0.53 eV band gap, in good agreement with the previous theoretical and experimental results. We find that the (1 1 1) and (1 0 1) IPBTSs are not efficient since the shear strain and inner displacement of atoms introduced by them quickly decrease the indirect gap of Ge. By investigating the dependence of valence band spin–orbit splitting on strain, we prove that the dependency relationship and the coupled ways between the valence-band states of tensile-strained Ge are closely related to the symmetry of strain tensor, i.e., the symmetry of the substrate orientation. The first- and second-order coefficients describing the dependence of indirect gap, direct gap, the valence band spin–orbit coupling splitting, and heavy-hole–light-hole splitting of Ge on IPBTSs have been obtained by the least squares polynomial fitting. These coefficients are significant to quantitatively modulate the electronic properties of Ge by tensile strain and design tensile-strained Ge devices by semiconductor epitaxial technique.

  20. Cyclic plasticity of an austenitic-ferritic stainless steel under biaxial non proportional loading

    International Nuclear Information System (INIS)

    Aubin, V.

    2001-11-01

    Austenitic-ferritic stainless steels are supplied since about 30 years only, so they are yet not well-known. Their behaviour in cyclic plasticity was studied under uniaxial loading but not under multiaxial loading, whereas only a thorough knowledge of the phenomena influencing the mechanical behaviour of a material enables to simulate and predict accurately its behaviour in a structure. This work aims to study and model the behaviour of a duplex stainless steel under cyclic biaxial loading. A three step method was adopted. A set of tension-torsion tests on tubular specimen was first defined. We studied the equivalence between loading directions, and then the influence of loading path and loading history on the stress response of the material. Results showed that duplex stainless steel shows an extra-hardening under non proportional loading and that its behaviour depends on previous loading. Then, in order to analyse the results obtained during this first experimental stage, the yield surface was measured at different times during cyclic loading of the same kind. A very small plastic strain offset (2*10 -5 ) was used in order not to disturb the yield surface measured. The alteration of isotropic and kinematic hardening variables were deduced from these measures. Finally, three phenomenological constitutive laws were identified with the experimental set. We focused our interest on the simulation of stabilized stress levels and on the simulation of the cyclic hardening/softening behaviour. The comparison between experimental and numerical results enabled the testing of the relevance of these models. (authors)

  1. Cloud field classification based on textural features

    Science.gov (United States)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes

  2. Structural, electrical and magnetic properties of evaporated Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: A_Layadi@yahoo.fr; Guittoum, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger 16000 (Algeria); Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Chauveau, T. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Billet, D. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Youssef, J. Ben [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Bourzami, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Bourahli, M.-H. [Departement d' O. M. P., Universite Ferhat Abbas, Setif 19000 (Algeria)

    2007-01-25

    The structural, electrical and magnetic properties of Ni thin films evaporated onto glass and polycrystalline Cu substrates have been investigated. The Ni thickness ranges from 31 to 165 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to study the structure and morphology of these systems. The Ni/Cu and Ni/glass thin films are found to be polycrystalline with a (1 1 1) texture. There is an overall increase of the grain size with increasing thickness. A negative strain was noted indicating that all the samples are under a compressive stress. Diffusion at the grain boundaries seems to be a major contribution to the electrical resistivity in this thickness range. Study of the hysteresis curves, obtained by vibrating sample magnetometer (VSM), indicates that all samples are characterized by an in-plane magnetization easy axis. Higher in-plane coercive fields seem to be associated with higher grain size, indicating that coercivity may be due to nucleation of reverse domains rather than pinning of domain walls. The saturation field and the squareness have been studied as a function of the Ni thickness.

  3. A structural study of effects of NiP seed layer on the magnetic properties of CoCrPt/Ti/NiP perpendicular magnetic films

    CERN Document Server

    Sun, C J; Wang, J P; Soo, E W; Noh, D Y; Je, J H; Hwu, Y K

    2003-01-01

    The CoCrPt/Ti/NiP films for perpendicular magnetic recording were studied using X-ray scattering and anomalous X-ray scattering. When the NiP seed layer was used, the long range order of the texture peak of the magnetic film decreased and less Co was associated with this Bragg order. The structural results were consistent with the observed increased coercivity and decreased magnetization due to the increased magnetic grain isolation caused by the presence of NiP seed layer.

  4. High-temperature deformation of B2 NiAl-base alloys

    International Nuclear Information System (INIS)

    Lee, I.G.; Ghosh, A.K.

    1994-01-01

    The high-temperature deformation behavior of three rapidly solidified and processed NiAl-base alloys--NiAl, NiAl containing 2 pct TiB 2 , and NiAl containing 4 pct HfC--have been studied and their microstructural and textural changes during deformation characterized. Compressions tests were conducted at 1,300 and 1,447 K at strain rates ranging from 10 -6 to 10 -2 s -1 . HfC-containing material showed dispersion strengthening as well as some degree of grain refinement over NiAl, while TiB 2 dispersoid-containing material showed grain refinement as well as secondary recrystallization and did not improve high-temperature strength. Hot-pack rolling was also performed to develop thin sheet materials (1.27-mm thick) and from these alloys. Without dispersoids, NiAl rolled easily at 1,223 K and showed low flow stress and good ductility during the hot-rolling operation. Rolling of dispersoid-containing alloys was difficult due to strain localization and edge-cracking effects, resulting partly from the high flow stress at the higher strain rate during the rolling operation. Sheet rolling initially produced a {111} texture, which eventually broke into multiple-texture components with severe deformation

  5. TEXTURE OF COOKED SPELT WHEAT NOODLES

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2013-02-01

    Full Text Available At present, there are limited and incomplete data on the ability of spelt to produce alimentary pasta of suitable quality. Noodles are traditional cereal-based food that is becoming increasingly popular worldwide because of its convenience, nutritional qualities, and palatability. It is generally accepted that texture is the main criterion for assessing overall quality of cooked noodles. We present selected indicators of noodle texture of three spelt cultivars – Oberkulmer Rotkorn, Rubiota and Franckenkorn grown in an ecological system at the locality of Dolna Malanta near Nitra. A texture analyzer TA.XT PLUS was used to determine cooked spelt wheat noodle firmness (N (AACC 66-50. The texture of cooked spelt wheat noodles was expressed also as elasticity (N and extensibility (mm. Statistical analysis showed significant influence of the variety and year of growing on the firmness, elasticity and extensibility of cooked noodles. The wholemeal spelt wheat noodles were characterized with lower cutting firmness than the flour noodles. Flour noodles were more tensile than wholemeal noodles. The best elasticity and extensibility of flour noodles was found in noodles prepared from Rubiota however from wholemeal noodles it was Oberkulmer Rotkorn. Spelt wheat is suitable for noodle production, however also here it is necessary to differentiate between varieties. According to achieved results, wholemeal noodles prepared from Oberkulmer Rotkorn can be recommended for noodle industry due to their consistent structure and better texture quality after cooking.

  6. Valence band structure and density of states effective mass model of biaxial tensile strained silicon based on k · p theory

    International Nuclear Information System (INIS)

    Kuang Qian-Wei; Liu Hong-Xia; Wang Shu-Long; Qin Shan-Shan; Wang Zhi-Lin

    2011-01-01

    After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k · p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal—oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Design of a cruciform bend specimen for determination of out-of- plane biaxial tensile stress effects on fracture toughness for shallow cracks

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Mcafee, W.J.; Pennell, W.E.; Theiss, T.J.

    1993-01-01

    Pressurized-thermal-shock loading in a reactor pressure vessel produces significant positive out-of-plane stresses along the crack front for both circumferential and axial cracks. Experimental evidence, while very limited, seems to indicate that a reduction in toughness is associated with out-of-plane biaxial loading when compared with toughness values obtained under uniaxial conditions. A testing program is described that seeks to determine the effects of out-of-plane biaxial tensile loading on fracture toughness of RPV steels. A cruciform bend specimen that meets specified criteria for the testing pregam is analyzed using three-dimensional elastic-plastic finite-element techniques. These analysis results provide the basis for proposed test conditions that are judged likely to produce a biaxial loading effect in the cruciform bend specimen

  8. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    Energy Technology Data Exchange (ETDEWEB)

    Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.; Theska, F.; Wang, D., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Schaaf, P. [Department of Materials for Electronics and Electrical Engineering, Institute of Materials Science and Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, D-98693 Ilmenau (Germany); Friák, M. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, v.v.i., Žižkova 22, CZ-616 62 Brno (Czech Republic); Central European Institute of Technology, CEITEC MU, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Holec, D. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, A-8700 Leoben (Austria); Šob, M. [Central European Institute of Technology, CEITEC MU, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, v.v.i., Žižkova 22, CZ-616 62 Brno (Czech Republic); Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, CZ-611 37 Brno (Czech Republic); Schneeweiss, O. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, v.v.i., Žižkova 22, CZ-616 62 Brno (Czech Republic)

    2015-08-17

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observed phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.

  9. Fluoride influences nickel-titanium orthodontic wires′ surface texture and friction resistance

    Directory of Open Access Journals (Sweden)

    Mona Aly Abbassy

    2016-01-01

    Full Text Available Objectives: The aim of this study was to investigate the effects exerted by the acidulated fluoride gel on stainless steel and nickel-titanium (Ni-Ti orthodontic wires. Materials and Methods: Sixty stainless steel and Ni-Ti orthodontic archwires were distributed into forty archwires used for in vitro study and twenty for in situ study. Fluoride was applied for 1 h in the in vitro experiment while it was applied for 5 min in the in situ experiment. The friction resistance of all wires with ceramic brackets before/after topical fluoride application was measured using a universal testing machine at 1 min intervals of moving wire. Moreover, surface properties of the tested wires before/after fluoride application and before/after friction test were examined by a scanning electron microscope (SEM. Dunnett′s t-test was used to compare frictional resistance of as-received stainless steel wires and Ni-Ti wires to the wires treated by fluoride in vitro and in situ (P < 0.05. Two-way ANOVA was used to compare the effect of fluoride application and type of wire on friction resistance in vitro and in situ (P < 0.05. Results: Ni-Ti wires recorded significantly high friction resistance after fluoride application when compared to stainless steel wires in vitro, P < 0.05. Fluoride application did not significantly affect the friction resistance of the tested wires in situ, P < 0.05. SEM observation revealed deterioration of the surface texture of the Ni-Ti wires after fluoride application in vitro and in situ. Conclusions: The in vitro fluoride application caused an increase in friction resistance of Ni-Ti wires when compared to stainless steel wires. In vitro and in situ fluoride application caused deterioration in surface properties of Ni-Ti wires.

  10. Electrochemically grown rough-textured nanowires

    International Nuclear Information System (INIS)

    Tyagi, Pawan; Postetter, David; Saragnese, Daniel; Papadakis, Stergios J.; Gracias, David H.

    2010-01-01

    Nanowires with a rough surface texture show unusual electronic, optical, and chemical properties; however, there are only a few existing methods for producing these nanowires. Here, we describe two methods for growing both free standing and lithographically patterned gold (Au) nanowires with a rough surface texture. The first strategy is based on the deposition of nanowires from a silver (Ag)-Au plating solution mixture that precipitates an Ag-Au cyanide complex during electrodeposition at low current densities. This complex disperses in the plating solution, thereby altering the nanowire growth to yield a rough surface texture. These nanowires are mass produced in alumina membranes. The second strategy produces long and rough Au nanowires on lithographically patternable nickel edge templates with corrugations formed by partial etching. These rough nanowires can be easily arrayed and integrated with microscale devices.

  11. Texture and deformation mechanism of yttrium

    International Nuclear Information System (INIS)

    Adamesku, R.A.; Grebenkin, S.V.; Stepanenko, A.V.

    1992-01-01

    X-ray pole figure analysis was applied to study texture and deformation mechanism in pure and commercial polycrystalline yttrium on cold working. It was found that in cast yttrium the texture manifected itself weakly enough both for pure and commercial metal. Analysis of the data obtained made it possible to assert that cold deformation of pure yttrium in the initial stage occurred mainly by slip the role of which decreased at strains higher than 36%. The texture of heavily deformed commercial yttrium contained two components, these were an 'ideal' basic orientation and an axial one with the angle of inclination about 20 deg. Twinning mechanism was revealed to be also possible in commercial yttrium

  12. Deformation texture and microtexture development in zircaloy-2

    International Nuclear Information System (INIS)

    Vanitha, C.; Kiran Kumar, M.; Samajdar, I.; Vishvanathan, N.N.; Dey, G.K.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2002-01-01

    In the present study, two starting materials used were as-cast Zircaloy-2 with random texture and the finished tube with relatively stronger starting texture. Specimens of the alloys were hot rolled to various strains at different temperature. The texture measurement was carried out and was represented in the form of Orientation Distribution Function which showed a sluggish texture development on high temperature deformation. In the case of as cast alloy with increase in strain at a constant deformation temperature, development in the texture was significant. Upon increasing the working temperature, rate of the overall texture development has been found to reduce. This could be due to reduced slip-twin activities, recovery or due to recrystallization. Microstructural and relative hardening studies were carried out for understanding the mechanisms of deformation texture developments at warm and hot working stages. In the case of finished tube having initially strong texture exhibited slower development in texture on warm and hot rolling. (author)

  13. Effect of saliva and blood contamination on the bi-axial flexural strength and setting time of two calcium-silicate based cements: Portland cement and biodentine.

    Science.gov (United States)

    Alhodiry, W; Lyons, M F; Chadwick, R G

    2014-03-01

    This study evaluated the effect of contamination with saliva and blood on the bi-axial flexural strength and setting time of pure gray Portland cement and Biodentine (Septodont, Allington, UK). A one-way ANOVA showed that contamination caused no significant difference between the cements in bi-axial flexural strength (P> 0.05). However there was a significant difference in setting time (PPortland cement taking longer than Biodentine, regardless of the contaminant, and contamination with blood increased the setting time of both materials. Biodentine was similar in strength to Portland cement, but had a shorter setting time for both contaminated and non-contaminated samples.

  14. A Noise Robust Statistical Texture Model

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Stegmann, Mikkel Bille; Larsen, Rasmus

    2002-01-01

    Appearance Models segmentation framework. This is accomplished by augmenting the model with an estimate of the covariance of the noise present in the training data. This results in a more compact model maximising the signal-to-noise ratio, thus favouring subspaces rich on signal, but low on noise......This paper presents a novel approach to the problem of obtaining a low dimensional representation of texture (pixel intensity) variation present in a training set after alignment using a Generalised Procrustes analysis.We extend the conventional analysis of training textures in the Active...

  15. The structure of surface texture knowledge

    International Nuclear Information System (INIS)

    Yan Wang; Scott, Paul J; Jiang Xiangqian

    2005-01-01

    This research aims to create an intelligent knowledge-based system for engineering and bio-medical engineering surface texture, which will provide expert knowledge of surface texture to link surface function, specification of micro- and nano-geometry through manufacture, and verification. The intelligent knowledge base should be capable of incorporating knowledge from multiple sources (standards, books, experts, etc), adding new knowledge from these sources and still remain a coherent reliable system. A new data model based on category theory will be adopted to construct this system

  16. Martensitic textures: Multiscale consequences of elastic compatibility

    International Nuclear Information System (INIS)

    Shenoy, S.R.; Lookman, T.; Saxena, A.; Bishop, A.R.

    2001-03-01

    We show that a free energy entirely in the order-parameter strain variable(s), rather than the displacement field, provides a unified understanding of martensitic textures. We use compatibility equations, linking the strain tensor components in the bulk and at interfaces, that induce anisotropic order-parameter strain interactions. These two long-range bulk/interface potentials, together with local compositional fluctuations, drive the formation of global elastic textures. Relaxational simulations show the spontaneous formation (and evolution under stress/temperature quenches) of equal width parallel twins, branched twins, and tweed, including characteristic scaling of twin width with twin length. (author)

  17. Effect of shallow angles on compressive strength of biaxial and triaxial laminates.

    Science.gov (United States)

    Jia, Hongli; Yang, Hyun-Ik

    2016-01-01

    Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle shallow-angled BX and TX laminates are critical considering their locations in a wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.

  18. Biaxially oriented CdTe films on glass substrate through nanostructured Ge/CaF2 buffer layers

    Science.gov (United States)

    Lord, R. J.; Su, P.-Y.; Bhat, I.; Zhang, S. B.; Lu, T.-M.; Wang, G.-C.

    2015-09-01

    Heteroepitaxial CdTe films were grown by metal organic chemical vapor deposition on glass substrates through nanostructured Ge/CaF2 buffer layers which were biaxially oriented. It allows us to explore the structural properties of multilayer biaxial semiconductor films which possess small angle grain boundaries and to test the principle of a solar cell made of such low-cost, low-growth-temperature semiconductor films. Through the x-ray diffraction and x-ray pole figure analysis, the heteroepitaxial relationships of the mutilayered films are determined as [111] in the out-of-plane direction and CdTe//Ge//{ }{{{CaF}}2} in the in-plane direction. The I-V curves measured from an ITO/CdS/CdTe/Ge/CaF2/glass solar cell test structure shows a power conversion efficiency of ˜η = 1.26%, illustrating the initial success of such an approach. The observed non-ideal efficiency is believed to be due to a low shunt resistance and high series resistance as well as some residual large-angle grain boundary effects, leaving room for significant further improvement.

  19. Development of a hysteresis model for R/C columns subjected to bi-axial lateral loading

    International Nuclear Information System (INIS)

    Dutta, Sekhar Chandra; Chowdhury, Rajib; Roy, Raghupati; Reddy, G. Rami

    2003-01-01

    Recent investigations on dynamic response of reinforced concrete (R/C) structures have confirmed that the R/C structural members undergo much more inelastic deformation in each of the two mutually perpendicular directions under bi-directional seismic loading, than that observed only under unidirectional ground motion. To predict the seismic response of R/C structure with fair accuracy demands, a faithful model that can incorporate the effect of biaxial bending interaction in column. This model should not have high computational demand but should adequately reflect the stiffness degrading and strength deterioration characteristics of R/C structural members. Present study is an effort to develop such a bi-directional hysteresis model accounting the effect of interaction between lateral loadings in two orthogonal directions. The development of the present model is based on the yield surface approach and it can incorporate both strength and stiffness degradation characteristics, which is unavoidable in R/C structures during cyclic loading. The performance of the proposed model/ is demonstrated through the prediction of available experimental results of a reinforced concrete column, subjected to biaxial loading. (author)

  20. Pattern zoology in biaxially pre-stretched elastic bilayers: from wrinkles and creases to fracture-like ridges

    Science.gov (United States)

    Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro

    The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.

  1. Global crystallographic textures obtained by neutron and synchrotron radiation

    International Nuclear Information System (INIS)

    Brokmeier, Heinz-Guenter

    2006-01-01

    Global crystallographic textures belong to the main characteristic parameters of engineering materials. The global crystallographic texture is always the average texture of a well-defined sample volume which is representative to solve practical engineering problems. Thus a beam having a high penetration power is needed available as neutron or high energetic X-ray radiation. Texture type and texture sharpness are of great importance for materials properties such as the deep drawing behaviour, one of the basic techniques in many industries. Advantages and disadvantages of both radiations make them complementary for measuring crystallographic textures in a wide range of materials

  2. Preparation and characterization of LaNiO3 films grown by metal ...

    Indian Academy of Sciences (India)

    Administrator

    Keywords. Conductive films; LaNiO3; metal–organic deposition; texture. 1. Introduction ... films on Si (111) and quartz substrates were first prepared with the 2-ethyl hexanotes of ..... Li A, Ge C, Lü P and Ming N 1996a Appl. Phys. Lett. 68. 1347.

  3. Doped LZO buffer layers for laminated conductors

    Science.gov (United States)

    Paranthaman, Mariappan Parans [Knoxville, TN; Schoop, Urs [Westborough, MA; Goyal, Amit [Knoxville, TN; Thieme, Cornelis Leo Hans [Westborough, MA; Verebelyi, Darren T [Oxford, MA; Rupich, Martin W [Framingham, MA

    2010-03-23

    A laminated conductor includes a metallic substrate having a surface, a biaxially textured buffer layer supported by the surface of the substrate, the biaxially textured buffer layer comprising LZO and a dopant for mitigating metal diffusion through the LZO, and a biaxially textured conductor layer supported by the biaxially textured buffer layer.

  4. Radiative stability of neutrino-mass textures

    Indian Academy of Sciences (India)

    physics pp. 647-650. Radiative stability of neutrino-mass textures. M K PARIDA ... A major challenge to particle physics at present is the theoretical understanding of ... A possible origin of two large neutrino mixings for /e -/μ and /μ -/г but small.

  5. Texture mapping in a distributed environment

    NARCIS (Netherlands)

    Nicolae, Goga; Racovita, Zoea; Telea, Alexandru

    2003-01-01

    This paper presents a tool for texture mapping in a distributed environment. A parallelization method based on the master-slave model is described. The purpose of this work is to lower the image generation time in the complex 3D scenes synthesis process. The experimental results concerning the

  6. Functionality of extrusion--texturized whey proteins.

    Science.gov (United States)

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  7. AN ILLUMINATION INVARIANT TEXTURE BASED FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    K. Meena

    2013-11-01

    Full Text Available Automatic face recognition remains an interesting but challenging computer vision open problem. Poor illumination is considered as one of the major issue, since illumination changes cause large variation in the facial features. To resolve this, illumination normalization preprocessing techniques are employed in this paper to enhance the face recognition rate. The methods such as Histogram Equalization (HE, Gamma Intensity Correction (GIC, Normalization chain and Modified Homomorphic Filtering (MHF are used for preprocessing. Owing to great success, the texture features are commonly used for face recognition. But these features are severely affected by lighting changes. Hence texture based models Local Binary Pattern (LBP, Local Derivative Pattern (LDP, Local Texture Pattern (LTP and Local Tetra Patterns (LTrPs are experimented under different lighting conditions. In this paper, illumination invariant face recognition technique is developed based on the fusion of illumination preprocessing with local texture descriptors. The performance has been evaluated using YALE B and CMU-PIE databases containing more than 1500 images. The results demonstrate that MHF based normalization gives significant improvement in recognition rate for the face images with large illumination conditions.

  8. Spin Transport in Ferromagnetic and Antiferromagnetic Textures

    KAUST Repository

    Akosa, Collins Ashu

    2016-01-01

    in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems

  9. Adaptive Matrices for Color Texture Classification

    NARCIS (Netherlands)

    Bunte, Kerstin; Giotis, Ioannis; Petkov, Nicolai; Biehl, Michael; Real, P; DiazPernil, D; MolinaAbril, H; Berciano, A; Kropatsch, W

    2011-01-01

    In this paper we introduce an integrative approach towards color texture classification learned by a supervised framework. Our approach is based on the Generalized Learning Vector Quantization (GLVQ), extended by an adaptive distance measure which is defined in the Fourier domain and 2D Gabor

  10. Some Numerical Characteristics of Image Texture

    Directory of Open Access Journals (Sweden)

    O. Samarina

    2012-05-01

    Full Text Available Texture classification is one of the basic images processing tasks. In this paper we present some numerical characteristics to the images analysis and processing. It can be used at the solving of images classification problems, their recognition, problems of remote sounding, biomedical images analysis, geological researches.

  11. Factors Affecting the Textural Properties of Pork

    Science.gov (United States)

    Holmer, Sean Frederick

    2009-01-01

    Research concerning rate and extent of tenderization has focused on beef or lamb. However, it is critical to understand these processes in pork, especially as retailers move towards minimally processed or non-enhanced product. The objectives of this experiment were to evaluate the textural properties of pork (firmness and tenderness) by examining…

  12. Prague texture segmentation data generator and benchmark

    Czech Academy of Sciences Publication Activity Database

    Mikeš, Stanislav; Haindl, Michal

    2006-01-01

    Roč. 2006, č. 64 (2006), s. 67-68 ISSN 0926-4981 R&D Projects: GA MŠk(CZ) 1M0572; GA AV ČR(CZ) 1ET400750407; GA AV ČR IAA2075302 Institutional research plan: CEZ:AV0Z10750506 Keywords : image segmentation * texture * benchmark * web Subject RIV: BD - Theory of Information

  13. Phosphorus leaching in a soil textural gradient

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton

    2009-01-01

    Texture is a major factor influencing mobilization and transport of P in soil owing partly to differences in adsorptive properties, and partly to differences in pore-size distribution and pore organization. Slurry application strategies may be important mitigation measures for reducing agricultur...

  14. On the origin of recrystallization textures

    Indian Academy of Sciences (India)

    In the ON model, it has been argued that a higher frequency of the special ... In FCC metals and alloys like aluminium, cube orientation [(001) ⟨ 100 ⟩ ] is the ... in deformation textures of aluminium and hence the classic OG model remains ...

  15. Frictional Performance Assessment of Cemented Carbide Surfaces Textured by Laser

    Science.gov (United States)

    Fang, S.; Llanes, L.; Klein, S.; Gachot, C.; Rosenkranz, A.; Bähre, D.; Mücklich, F.

    2017-10-01

    Cemented carbides are advanced engineering materials often used in industry for manufacturing cutting tools or supporting parts in tribological system. In order to improve service life, special attention has been paid to change surface conditions by means of different methods, since surface modification can be beneficial to reduce the friction between the contact surfaces as well as to avoid unintended damage. Laser surface texturing is one of the newly developed surface modification methods. It has been successfully introduced to fabricate some basic patterns on cemented carbide surfaces. In this work, Direct Laser Interference Patterning Technique (DLIP) is implemented to produce special line-like patterns on a cobalt (Co) and nickel (Ni) based cemented tungsten carbide grade. It is proven that the laser-produced patterns have high geometrical precision and quality stability. Furthermore, tribology testing using a nano-tribometer unit shows that friction is reduced by the line-like patterns, as compared to the polished one, under both lubricated and dry testing regimes, and the reduction is more pronounced in the latter case.

  16. Spin Transport in Ferromagnetic and Antiferromagnetic Textures

    KAUST Repository

    Akosa, Collins A.

    2016-12-07

    In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.

  17. Texture of semi-solids : sensory flavor-texture interactions for custard desserts

    NARCIS (Netherlands)

    Wijk, de R.A.; Rasing, F.; Wilkinson, C.L.

    2003-01-01

    Possible interactions between flavor and oral texture sensations were investigated for four flavorants, diacetyl, benzaldehyde, vanillin, and caffeine, added in two concentrations to model vanilla custard desserts. The flavorants affected viscosities and resulted in corresponding changes in

  18. Rapidly 3D Texture Reconstruction Based on Oblique Photography

    Directory of Open Access Journals (Sweden)

    ZHANG Chunsen

    2015-07-01

    Full Text Available This paper proposes a city texture fast reconstruction method based on aerial tilt image for reconstruction of three-dimensional city model. Based on the photogrammetry and computer vision theory and using the city building digital surface model obtained by prior treatment, through collinear equation calculation geometric projection of object and image space, to obtain the three-dimensional information and texture information of the structure and through certain the optimal algorithm selecting the optimal texture on the surface of the object, realize automatic extraction of the building side texture and occlusion handling of the dense building texture. The real image texture reconstruction results show that: the method to the 3D city model texture reconstruction has the characteristics of high degree of automation, vivid effect and low cost and provides a means of effective implementation for rapid and widespread real texture rapid reconstruction of city 3D model.

  19. Comparison of features response in texture-based iris segmentation

    CSIR Research Space (South Africa)

    Bachoo, A

    2009-03-01

    Full Text Available the Fisher linear discriminant and the iris region of interest is extracted. Four texture description methods are compared for segmenting iris texture using a region based pattern classification approach: Grey Level Co-occurrence Matrix (GLCM), Discrete...

  20. Biaxial and antiferroelectric structure of the orthogonal smectic phase of a bent-shaped molecule and helical structure in a chiral mixture system

    Science.gov (United States)

    Kang, Sungmin; Nguyen, Ha; Nakajima, Shunpei; Tokita, Masatoshi; Watanabe, Junji

    2013-05-01

    We examined the biaxial and antiferroelectric properties in the Smectic-APA (Sm-APA) phase of bent-shaped DC-S-8. The biaxiality, which results from the existence of a secondary director, was well established from birefringence observations in the homeotropically aligned Sm-APA. By entering into Sm-APA phase, the birefringence (Δn, difference between two refractive indices of short axes) continuously increased from 0 to 0.02 with decreasing temperature. The antiferroelectric switching and second harmonic generation (SHG) activity on the field-on state were also observed in the Sm-APA phase, and the evaluated spontaneous polarization (PS) value strongly depended on temperature. The temperature dependence of Δn and PS resembles each other and follows Haller's approximation, showing that the biaxiality is due to polar packing in which the molecules are preferentially packed with their bent direction arranged in the same direction, and that the phase transition of Sm-APA to Sm-A is second order. The biaxiality was further examined in chiral Sm-APA*. Doping with chiral components induced the helical twisting of the secondary director in the Sm-APA* phase, which was confirmed by observing the reflection of the circular dichroism (CD) bands in the homeotropically aligned cell. The helical pitch of Sm-APA* is tunable in the range of 300-700 nm wavelength with a variation in the chiral content of 5 to 10 weight (wt)%.

  1. Anisotropic 3D texture synthesis with application to volume rendering

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Ersbøll, Bjarne Kjær; Bærentzen, Jakob Andreas

    2011-01-01

    images using a 12.1 megapixel camera. Next, we extend the volume rendering pipeline by creating a transfer function which yields not only color and opacity from the input intensity, but also texture coordinates for our synthesized 3D texture. Thus, we add texture to the volume rendered images....... This method is applied to a high quality visualization of a pig carcass, where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures....

  2. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field.

    Science.gov (United States)

    Tang, Chunmei; Zhang, Xue; Zhou, Xiaofeng

    2017-02-15

    Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field. The Na atom generally has the weakest binding strength to a given substrate compared with the other elements in the periodic table [PANS, 2016, 113, 3735]. Consequently, it is understudied in comparison to other elements and there are few reports about the hydrogen storage abilities of Na-decorated nanomaterials. We calculated that the average binding energy (E b ) of Na atoms to the pure BN sheet is 1.08 eV, which is smaller than the cohesive energy of bulk Na (1.11 eV). However, the E b can be increased to 1.15 eV under 15% biaxial strain, and further up to 1.53 eV with the control of both 15% biaxial strain and a 5.14 V nm -1 electric field (E-field). Therefore, the application of biaxial strain and an external upward E-field can prevent clustering of the Na atoms on the surface of a BN sheet, which is crucial for the hydrogen storage. Each Na atom on the surface of a BN sheet can adsorb only one H 2 molecule when no strain or E-field is applied; however, the absorption increases to five H 2 molecules under 15% biaxial strain and six H 2 molecules under both 15% biaxial strain combined with a 5.14 V nm -1 E-field. The average adsorption energies for H 2 of BN-(Na-mH 2 ) (m = 1-6) are within the range of practical applications (0.2-0.6 eV). The hydrogen gravimetric density of the periodic BN-(Na-6H 2 ) 4 structure is 9 wt%, which exceeds the 5.5 wt% value that should be met by 2017 as specified by the US Department of Energy. On the other side, removal of the biaxial strain and E-field can help to desorb the H 2 molecule. These findings suggest a new route to design hydrogen storage materials under near-ambient conditions.

  3. Effect of Ta buffer and NiFe seed layers on pulsed-DC magnetron sputtered Ir{sub 20}Mn{sub 80}/Co{sub 90}Fe{sub 10} exchange bias

    Energy Technology Data Exchange (ETDEWEB)

    Oksuezoglu, Ramis Mustafa, E-mail: rmoksuzoglu@anadolu.edu.t [University of Anadolu, Faculty of Engineering and Architecture, Department of Materials Sciences and Engineering, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Yildirim, Mustafa; Cinar, Hakan [University of Anadolu, Faculty of Engineering and Architecture, Department of Materials Sciences and Engineering, Iki Eyluel Campus, 26555 Eskisehir (Turkey); Hildebrandt, Erwin; Alff, Lambert [Department of Materials Sciences, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt (Germany)

    2011-07-15

    A systematic investigation has been done on the correlation between texture, grain size evolution and magnetic properties in Ta/Ni{sub 81}Fe{sub 19}/Ir{sub 20}Mn{sub 80}/Co{sub 90}Fe{sub 10}/Ta exchange bias in dependence of Ta buffer and NiFe seed layer thickness in the range of 2-10 nm, deposited by pulsed DC magnetron sputtering technique. A strong dependence of <1 1 1> texture on the Ta/NiFe thicknesses was found, where the reducing and increasing texture was correlated with exchange bias field and unidirectional anisotropy energy constant at both NiFe/IrMn and IrMn/CoFe interfaces. However, a direct correlation between average grain size in IrMn and H{sub ex} and H{sub c} was not observed. L1{sub 2} phase IrMn{sub 3} could be formed by thickness optimization of Ta/NiFe layers by deposition at room temperature, for which the maximum exchange coupling parameters were achieved. We conclude finally that the coercivity is mainly influenced by texture induced interfacial effects at NiFe/IrMn/CoFe interfaces developing with Ta/NiFe thicknesses. - Research highlights: We discussed the influence of Ta/NiFe thicknesses on structure and grain size in AF layer and texture. A direct correlation between the <1 1 1> texture and exchange coupling was found. A direct relation between average grain size and H{sub ex} and H{sub c} was not observed. L1{sub 2} phase IrMn{sub 3} was formed by deposition at room temperature for Ta (5-6 nm)/NiFe (6-8 nm). We conclude that the coercivity is influenced by order/disorder at NiFe/IrMn/CoFe interfaces.

  4. Influence of heat treatment on the microstructure, texture and formability of 2024 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S., E-mail: cloo8000@uni.sydney.edu.au [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, NSW 2006 (Australia); School of Civil Engineering, University of Sydney, NSW 2006 (Australia); Weiss, Matthias [Centre for Materials and Fibre Innovation, Deakin University, VIC 3217 (Australia); Xia, Junhai [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); Sha, Gang; Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, NSW 2006 (Australia); Ranzi, Gianluca [Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, University of Sydney, NSW 2006 (Australia); School of Civil Engineering, University of Sydney, NSW 2006 (Australia)

    2012-08-30

    We have investigated the effect of heat treatment on the microstructure, texture and formability of high-strength aluminium Al2024 sheets of gauge thicknesses 1.27 mm and 2.03 mm. Both optical and electron microscopy were employed to characterise the microstructure. Tensile tests performed at 0 Degree-Sign , 45 Degree-Sign and 90 Degree-Sign to the rolling direction were used as an indication of the anisotropic behaviour of the sheets. The formability of the sheets was assessed by performing stretch forming tests over a hemispherical punch. Comparison of microstructure and material properties indicated an effect of precipitation hardening on the overall anisotropy of the investigated materials. We report an improvement in the total elongation under uniaxial tension with a loss in strength for 2.5 h and 2 days ageing while the ageing treatment for 1 week (peak hardness) resulted in increased strength with a decline in total elongation. The 1.27 mm thick sheet showed better drawability and least tendency to earing than the thicker sheet. The drawability was the highest at 45 Degree-Sign to the rolling direction for the as-received material and those that had been aged for 2.5 h and 2 days. Forming limit diagrams derived from the stretch forming tests showed that the 2 days aged sample had the highest plane strain limit making it the most appropriate condition considering that the plane strain is usually the most critical forming strain in stamping applications. In addition, the 2 days aged sample had its plane strain shifted towards the biaxial stretching area which is likely to have a positive effect on some sheet forming applications. Finally, a formability index was calculated and compared against the hardness plot.

  5. A dynamical system approach to texel identification in regular textures

    NARCIS (Netherlands)

    Grigorescu, S.E.; Petkov, N.; Loncaric, S; Neri, A; Babic, H

    2003-01-01

    We propose a texture analysis method based on Rényi’s entropies. The method aims at identifying texels in regular textures by searching for the smallest window through which the minimum number of different visual patterns is observed when moving the window over a given texture. The experimental

  6. Texture Analysis Using Rényi’s Generalized Entropies

    NARCIS (Netherlands)

    Grigorescu, S.E.; Petkov, N.

    2003-01-01

    We propose a texture analysis method based on Rényi’s generalized entropies. The method aims at identifying texels in regular textures by searching for the smallest window through which the minimum number of different visual patterns is observed when moving the window over a given texture. The

  7. TEXTURE ANALYSIS OF EXTRUDED APPLE POMACE - WHEAT SEMOLINA BLENDS

    Directory of Open Access Journals (Sweden)

    Ivan Bakalov

    2016-03-01

    Full Text Available Apple pomace - wheat semolina blends were extruded in a laboratory single screw extruder (Brabender 20 DN, Germany. Effects apple pomace content, moisture content, screw speed, and temperature of final cooking zone on texture of extrudates were studied applying response surface methodology. The texture characteristics of the extrudates were measured using a TA.XT Plus Texture Analyser, Stable Micro Systems.

  8. Texture Control During the Manufacturing of Nonoriented Electrical Steels

    NARCIS (Netherlands)

    Kestens, L.; Jacobs, S.

    2008-01-01

    Methods of modern quantitative texture analysis are applied in order to characterize the crystallographic texture of various non-oriented electrical steel grades in view of their relation with the magnetic properties of the steel sheet. A texture parameter is defined which quantifies the density of

  9. Evaluation of texture differences among varieties of cooked quinoa

    Science.gov (United States)

    Texture is one of the most significant factors for consumers’ experience of foods. Texture difference of cooked quinoa among thirteen different varieties was studied. Correlations between the texture and seed composition, seed characteristics, cooking qualities, flour pasting properties and flour th...

  10. Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis.

    Science.gov (United States)

    Deeken, Corey R; Thompson, Dominic M; Castile, Ryan M; Lake, Spencer P

    2014-10-01

    Over the past 60 years, the soft tissue repair market has grown to include over 50 types of hernia repair materials. Surgeons typically implant these materials in the orientation that provides maximum overlap of the mesh over the defect, with little regard for mechanical properties of the mesh material. If the characteristics of the meshes were better understood, an appropriate material could be identified for each patient, and meshes could be placed to optimize integration with neighboring tissue and avoid the mechanical mis-match that can lead to impaired graft fixation. The purpose of this study was to fully characterize and compare the mechanical properties of thirteen types of hernia repair materials via planar biaxial tensile testing. Equibiaxial (i.e., equal simultaneous loading in both directions) and strip biaxial (i.e., loading in one direction with the other direction held fixed) tests were utilized as physiologically relevant loading regimes. After applying a 0.1N pre-load on each arm, samples were subjected to equibiaxial cyclic loading using a triangular waveform to 2.5mm displacement on each arm at 0.1Hz for 10 cycles. Samples were then subjected to two strip biaxial tests (using the same cyclic loading protocol), where extension was applied along a single axis with the other axis held fixed. The thirteen evaluated mesh types exhibited a wide range of mechanical properties. Some were nearly isotropic (C-QUR™, DUALMESH(®), PHYSIOMESH™, and PROCEED(®)), while others were highly anisotropic (Ventralight™ ST, Bard™ Mesh, and Bard™ Soft Mesh). Some displayed nearly linear behavior (Bard™ Mesh), while others were non-linear with a long toe region followed by a sharp rise in tension (INFINIT(®)). These materials are currently utilized in clinical settings as if they are uniform and interchangeable, and clearly this is not the case. The mechanical properties most advantageous for successful hernia repairs are currently only vaguely described

  11. A flexible, high-performance magnetoelectric heterostructure of (001) oriented Pb(Zr0.52Ti0.48)O3 film grown on Ni foil

    Science.gov (United States)

    Palneedi, Haribabu; Yeo, Hong Goo; Hwang, Geon-Tae; Annapureddy, Venkateswarlu; Kim, Jong-Woo; Choi, Jong-Jin; Trolier-McKinstry, Susan; Ryu, Jungho

    2017-09-01

    In this study, a flexible magnetoelectric (ME) heterostructure of PZT/Ni was fabricated by depositing a (001) oriented Pb(Zr0.52Ti0.48)O3 (PZT) film on a thin, flexible Ni foil buffered with LaNiO3/HfO2. Excellent ferroelectric properties and large ME voltage coefficient of 3.2 V/cmṡOe were realized from the PZT/Ni heterostructure. The PZT/Ni composite's high performance was attributed to strong texturing of the PZT film, coupled with the compressive stress in the piezoelectric film. Besides, reduced substrate clamping in the PZT film due to the film on the foil structure and strong interfacial bonding in the PZT/LaNiO3/HfO2/Ni heterostructure could also have contributed to the high ME performance of PZT/Ni.

  12. Effect of Ca, Ce or K oxide addition on the activity of Ni/SiO{sub 2} catalysts for the methane decomposition reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zapata, Beatriz; Torres-Garcia, Enelio [Instituto Mexicano del Petroleo, Programa de Procesos y Reactores, Eje C. 152, Mexico, D.F., C.P. 07730 (Mexico); Valenzuela, Miguel A.; Palacios, Jorge [Instituto Politecnico Nacional-ESIQIE, Lab. Catalisis y Materiales, Zacatenco, Mexico, D.F., C.P. 07738 (Mexico)

    2010-11-15

    To increase the activity and stability of Ni/SiO{sub 2} catalysts, a series of Ni-Ca, Ni-K and Ni-Ce promoted catalysts were prepared by successive impregnations. The textural properties, reducibility and catalytic performance in the methane decomposition reaction were investigated. The catalyst containing 30 wt.% Ni and 30 wt.% cerium oxide greatly increased the conversion of methane (90% of equilibrium value) and improved the stability, whereas the Ni-K and Ni-Ca were less active and stable than the Ni/SiO{sub 2} catalyst. The results suggest that Ce addition prevents the sintering of nickel particles during reduction process maintaining a random distribution between the silica and cerium oxide improving the distribution and migration of deposited carbon. (author)

  13. Line Laser and Triple Laser Quantification of the Difference in International Roughness Index between Textured and Non-Textured Strips

    Science.gov (United States)

    2017-07-01

    Practitioners have often wondered whether, during ride measurement with inertial devices, the motion of the laser through pavement texture introduces non representative values of international roughness index (IRI), particularly in certain textures. ...

  14. Effects of Interphase Modification and Biaxial Orientation on Dielectric Properties of Poly(ethylene terephthalate)/Poly(vinylidene fluoride-co-hexafluoropropylene) Multilayer Films.

    Science.gov (United States)

    Yin, Kezhen; Zhou, Zheng; Schuele, Donald E; Wolak, Mason; Zhu, Lei; Baer, Eric

    2016-06-01

    Recently, poly(vinylidene fluoride) (PVDF)-based multilayer films have demonstrated enhanced dielectric properties, combining high energy density and high dielectric breakdown strength from the component polymers. In this work, further enhanced dielectric properties were achieved through interface/interphase modulation and biaxial orientation for the poly(ethylene terephthalate)/poly(methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) [PET/PMMA/P(VDF-HFP)] three-component multilayer films. Because PMMA is miscible with P(VDF-HFP) and compatible with PET, the interfacial adhesion between PET and P(VDF-HFP) layers should be improved. Biaxial stretching of the as-extruded multilayer films induced formation of highly oriented fibrillar crystals in both P(VDF-HFP) and PET, resulting in improved dielectric properties with respect to the unstretched films. First, the parallel orientation of PVDF crystals reduced the dielectric loss from the αc relaxation in α crystals. Second, biaxial stretching constrained the amorphous phase in P(VDF-HFP) and thus the migrational loss from impurity ions was reduced. Third, biaxial stretching induced a significant amount of rigid amorphous phase in PET, further enhancing the breakdown strength of multilayer films. Due to the synergistic effects of improved interfacial adhesion and biaxial orientation, the PET/PMMA/P(VDF-HFP) 65-layer films with 8 vol % PMMA exhibited optimal dielectric properties with an energy density of 17.4 J/cm(3) at breakdown and the lowest dielectric loss. These three-component multilayer films are promising for future high-energy-density film capacitor applications.

  15. Microstructure and Properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densities

    Directory of Open Access Journals (Sweden)

    Góral A.

    2016-03-01

    Full Text Available The study presents investigations of an influence of various direct current densities on microstructure, residual stresses, texture, microhardness and corrosion resistance of the nickel coatings electrodeposited from modified Watt’s baths. The properties of obtained coatings were compared to the nano-crystalline composite Ni/Al2O3 coatings prepared under the same plating conditions. The similarities and differences of the obtained coatings microstructures visible on both their surfaces and cross sections and determined properties were presented. The differences in the growth character of the Ni matrix and in the microstructural properties were observed. All electrodeposited Ni and Ni/Al2O3 coatings were compact and well adhering to the steel substrates. The thickness and the microhardness of the Ni and Ni/Al2O3 deposits increased significantly with the current density in the range 2 - 6 A/dm2. Residual stresses are tensile and they reduced as the current density increased. The composite coatings revealed better protection from the corrosion of steel substrate than pure nickel in solution 1 M NaCl.

  16. Magnetic studies of spin wave excitations in Ni/Au multilayers

    International Nuclear Information System (INIS)

    Salhi, H.; Chafai, K.; Benkirane, K.; Lassri, H.; Abid, M.; Hlil, E.K.

    2010-01-01

    Ni/Au multilayers were prepared by the electron beam evaporation method under ultra high vacuum conditions. The multilayer films have a coherent structure with (1 1 1) texture. The magnetic properties of Ni/Au multilayers are examined as a function of Ni layer thickness t Ni . The temperature dependence of the spontaneous magnetization M(T) is well described by a T 3/2 law in all multilayers. A spin wave theory has been used to explain the magnetization versus temperature. Based on this theory, the approximate values for the bulk exchange interaction J b , surface exchange interaction J S and the interlayer coupling strength J I have been obtained for various Ni layer thicknesses.

  17. Core structure and dynamics of non-Abelian vortices in a biaxial nematic spinor Bose-Einstein condensate

    Science.gov (United States)

    Borgh, Magnus O.; Ruostekoski, Janne

    2016-05-01

    We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.

  18. Efficient rolling texture predictions and texture-sensitive thermomechanical properties of α-uranium foils

    Science.gov (United States)

    Steiner, Matthew A.; Klein, Robert W.; Calhoun, Christopher A.; Knezevic, Marko; Garlea, Elena; Agnew, Sean R.

    2017-11-01

    Finite element (FE) analysis was used to simulate the strain history of an α-uranium foil during cold straight-rolling, with the sheet modeled as an isotropic elastoplastic continuum. The resulting strain history was then used as input for a viscoplastic self-consistent (VPSC) polycrystal plasticity model to simulate crystallographic texture evolution. Mid-plane textures predicted via the combined FE→VPSC approach show alignment of the (010) poles along the rolling direction (RD), and the (001) poles along the normal direction (ND) with a symmetric splitting along RD. The surface texture is similar to that of the mid-plane, but with a shear-induced asymmetry that favors one of the RD split features of the (001) pole figure. Both the mid-plane and surface textures predicted by the FE→VPSC approach agree with published experimental results for cold straight-rolled α-uranium plates, as well as predictions made by a more computationally intensive full-field crystal plasticity based finite element model. α-uranium foils produced by cold-rolling must typically undergo a recrystallization anneal to restore ductility prior to their final application, resulting in significant texture evolution from the cold-rolled plate deformation texture. Using the texture measured from a foil in the final recrystallized state, coefficients of thermal expansion and the elastic stiffness tensors were calculated using a thermo-elastic self-consistent model, and the anisotropic yield loci and flow curves along the RD, TD, and ND were predicted using the VPSC code.

  19. SURFACE TEXTURE ANALYSIS FOR FUNCTIONALITY CONTROL

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido

    This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...

  20. Dropwise condensation on inclined textured surfaces

    CERN Document Server

    Khandekar, Sameer

    2014-01-01

    Dropwise Condensation on Textured Surfaces presents a holistic framework for understanding dropwise condensation through mathematical modeling and meaningful experiments. The book presents a review of the subject required to build up models as well as to design experiments. Emphasis is placed on the effect of physical and chemical texturing and their effect on the bulk transport phenomena. Application of the model to metal vapor condensation is of special interest. The unique behavior of liquid metals, with their low Prandtl number and high surface tension, is also discussed. The model predicts instantaneous drop size distribution for a given level of substrate subcooling and derives local as well as spatio-temporally averaged heat transfer rates and wall shear stress.

  1. Texture-based analysis of COPD

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Nielsen, Mads; Lo, Pechin Chien Pau

    2012-01-01

    This study presents a fully automatic, data-driven approach for texture-based quantitative analysis of chronic obstructive pulmonary disease (COPD) in pulmonary computed tomography (CT) images. The approach uses supervised learning where the class labels are, in contrast to previous work, based...... on measured lung function instead of on manually annotated regions of interest (ROIs). A quantitative measure of COPD is obtained by fusing COPD probabilities computed in ROIs within the lung fields where the individual ROI probabilities are computed using a k nearest neighbor (kNN ) classifier. The distance...... and subsequently applied to classify 200 independent images from the same screening trial. The texture-based measure was significantly better at discriminating between subjects with and without COPD than were the two most common quantitative measures of COPD in the literature, which are based on density...

  2. Texture of fermion mass matrices in partially unified theories

    International Nuclear Information System (INIS)

    Dutta, B.; Texas Univ., Austin, TX; Nandi, S.; Texas Univ., Austin, TX

    1996-01-01

    We investigate the texture of fermion mass matrices in theories with partial unification (for example, SU(2) L x SU(2) R x SU(4) c ) at a scale of ∼ 10 12 GeV. Starting with the low energy values of the masses and the mixing angles, we find only two viable textures with at most four texture zeros. One of these corresponds to a somewhat modified Fritzsch textures. A theoretical derivation of these textures leads to new interesting relations among the masses and the mixing angles. 13 refs

  3. Texture analyses of Sauropod dinosaur bones from Tendaguru

    International Nuclear Information System (INIS)

    Pyzalla, A.R.; Sander, P.M.; Hansen, A.; Ferreyro, R.; Yi, S.-B.; Stempniewicz, M.; Brokmeier, H.-G.

    2006-01-01

    The apatite texture of fossil Brachiosaurus brancai and Barosaurus africanus sauropod bones from the excavation site at Tendaguru, Tanzania, was characterized by neutron diffraction pole figures. The results obtained reveal predominantly -fibre textures of the apatite; the fibre direction coincides with the longitudinal direction of the long bones of the skeletons. Neutron pole figures further indicate that other texture types may also be present. Texture strength is similar to dinosaur tendons and contemporary turkey tendon studied by others. Variations of texture strength across the bone wall cross-sections are not significantly large

  4. Texture analyses of Sauropod dinosaur bones from Tendaguru

    Energy Technology Data Exchange (ETDEWEB)

    Pyzalla, A.R. [TU Wien, Institute of Material Science and Technology, Karlsplatz 13-308, A-1040 Vienna (Austria) and MPI fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany)]. E-mail: pyzalla@mpie.de; Sander, P.M. [University of Bonn, Institute of Palaeontology, Nusseallee, D-53115 Bonn (Germany); Hansen, A. [TU Clausthal, Institute of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd GKSS Research Centre Geesthacht GmbH, Geesthacht, Max-Planck-Str.1, D-21502 Geesthacht (Germany); Ferreyro, R. [TU Wien, Institute of Material Science and Technology, Karlsplatz 13-308, A-1040 Vienna (Austria); Yi, S.-B. [TU Clausthal, Institute of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd GKSS Research Centre Geesthacht GmbH, Geesthacht, Max-Planck-Str.1, D-21502 Geesthacht (Germany); MPI fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany); Stempniewicz, M. [TU Wien, Institute of Material Science and Technology, Karlsplatz 13-308, A-1040 Vienna (Austria); Brokmeier, H.-G. [TU Clausthal, Institute of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd GKSS Research Centre Geesthacht GmbH, Geesthacht, Max-Planck-Str.1, D-21502 Geesthacht (Germany)

    2006-11-10

    The apatite texture of fossil Brachiosaurus brancai and Barosaurus africanus sauropod bones from the excavation site at Tendaguru, Tanzania, was characterized by neutron diffraction pole figures. The results obtained reveal predominantly <0 0 0 1>-fibre textures of the apatite; the fibre direction coincides with the longitudinal direction of the long bones of the skeletons. Neutron pole figures further indicate that other texture types may also be present. Texture strength is similar to dinosaur tendons and contemporary turkey tendon studied by others. Variations of texture strength across the bone wall cross-sections are not significantly large.

  5. Biaxial Mechanical Evaluation of Absorbable and Nonabsorbable Synthetic Surgical Meshes Used for Hernia Repair: Physiological Loads Modify Anisotropy Response.

    Science.gov (United States)

    Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E

    2016-07-01

    The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292.

  6. An analytical model for the ductile failure of biaxially loaded type 316 stainless steel subjected to thermal transients

    International Nuclear Information System (INIS)

    Dimelfi, R.J.

    1987-01-01

    Failure properties are calculated for the case of biaxially loaded type 316 stainless steel tubes that are heated from 300 K to near melting at various constant rates. The procedure involves combining a steady state plastic-deformation rate law with a strain hardening equation. Integrating under the condition of plastic instability gives the time and plastic strain at which ductile failure occurs for a given load. The result is presented as an analytical expression for equivalent plastic strain as a function of equivalent stress, temperature, heating rate and material constants. At large initial load, ductile fracture is calculated to occur early, at low temperatures, after very little deformation. At very small loads deformation continues for a long time to high temperatures where creep rupture mechanisms limit ductility. In the case of intermediate loads, the plastic strain accumulated before the occurrence of unstable ductile fracture is calculated. Comparison of calculated results is made with existing experimental data from pressurized tubes heated at 5.6 K/s and 111 K/s. When the effect of grain growth on creep ductility is taken into account from recrystallization data, agreement between measured and calculated uniform ductility is excellent. The general reduction in ductility and failure time that is observed at higher heating rate is explained via the model. The model provides an analytical expression for the ductility and failure time during transients for biaxially loaded type 316 stainless steel as a function of the initial temperature and load, as well as the material creep and strain hardening parameters. (orig.)

  7. The impact of hydrofluoric acid etching followed by unfilled resin on the biaxial strength of a glass-ceramic.

    Science.gov (United States)

    Posritong, Sumana; Borges, Alexandre Luiz Souto; Chu, Tien-Min Gabriel; Eckert, George J; Bottino, Marco A; Bottino, Marco C

    2013-11-01

    To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s+60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α=0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. The interaction (etching time vs. surface treatment) was significant for Ra (p=0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60s group (pceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p=0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (pceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Texture Mapped Paper Pop-Ups

    OpenAIRE

    Darmadji, Armandarius; --, Liliana

    2013-01-01

    Origamic architecture (OA) merupakan papercraft yang dapat mereplika struktur arsitektural, pola geometri, dan objek tiga dimensi (3D) lainnya dalam bentuk pop-up hanya dengan melipat dan menggunting satu buah kertas. Rancangan image 2-dimensi yang dapat direalisasikan menjadi OA disebut OA plan. Pemberian texture pada OA plan dapat digunakan untuk menampilkan detail visual pada OA yang dihasilkan. Akan tetapi, desain OA plan cenderung memiliki bentuk geometri yang berbeda dengan objek asliny...

  9. Dynamic texture as foreground and background

    Czech Academy of Sciences Publication Activity Database

    Chetverikov, D.; Fazekas, S.; Haindl, Michal

    2011-01-01

    Roč. 22, č. 5 (2011), s. 741-750 ISSN 0932-8092 R&D Projects: GA ČR GA102/08/0593 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : Dynamic texture * Optical flow * SVD Subject RIV: BD - Theory of Information Impact factor: 1.009, year: 2011 http://library.utia.cas.cz/separaty/2011/RO/haindl-0345450.pdf

  10. Texture zeros in neutrino mass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Dziewit, B., E-mail: bartosz.dziewit@us.edu.pl; Holeczek, J., E-mail: jacek.holeczek@us.edu.pl; Richter, M., E-mail: monikarichter18@gmail.com [University of Silesia, Institute of Physics (Poland); Zajac, S., E-mail: s.zajac@uksw.edu.pl [Cardinal Stefan Wyszyński University in Warsaw, Faculty of Mathematics and Natural Studies (Poland); Zralek, M., E-mail: marek.zralek@us.edu.pl [University of Silesia, Institute of Physics (Poland)

    2017-03-15

    The Standard Model does not explain the hierarchy problem. Before the discovery of nonzero lepton mixing angle θ{sub 13} high hopes in explanation of the shape of the lepton mixing matrix were combined with non-Abelian symmetries. Nowadays, assuming one Higgs doublet, it is unlikely that this is still valid. Texture zeroes, that are combined with abelian symmetries, are intensively studied. The neutrino mass matrix is a natural way to study such symmetries.

  11. Wavelet and Blend maps for texture synthesis

    OpenAIRE

    Du Jin-Lian; Wang Song; Meng Xianhai

    2011-01-01

    blending is now a popular technology for large realtime texture synthesis .Nevertheless, creating blend map during rendering is time and computation consuming work. In this paper, we exploited a method to create a kind of blend tile which can be tile together seamlessly. Note that blend map is in fact a kind of image, which is Markov Random Field, contains multiresolution signals, while wavelet is a powerful way to process multiresolution signals, we use wavelet to process the traditional ble...

  12. Structure, surface morphology and electrical properties of evaporated Ni thin films: Effect of substrates, thickness and Cu underlayer

    International Nuclear Information System (INIS)

    Hemmous, M.; Layadi, A.; Guittoum, A.; Souami, N.; Mebarki, M.; Menni, N.

    2014-01-01

    Series of Ni thin films have been deposited by thermal evaporation onto glass, Si(111), Cu, mica and Al 2 O 3 substrates with and without a Cu underlayer. The Ni thicknesses, t, are in the 4 to 163 nm range. The Cu underlayer has also been evaporated with a Cu thickness equal to 27, 52 and 90 nm. The effects of substrate, the Ni thickness and the Cu underlayer on the structural and electrical properties of Ni are investigated. Rutherford Backscattering Spectroscopy was used to probe the Ni/Substrate and Ni–Cu underlayer interfaces and to measure both Ni and Cu thicknesses. The texture, the strain and the grain size values were derived from X-ray diffraction experiments. The surface morphology is studied by means of a Scanning Electron Microscope. The electrical resistivity is measured by the four point probe. The Ni films grow with the <111> texture on all substrates. The Ni grain sizes D increase with increasing thickness for the glass, Si and mica substrates and decrease for the Cu one. The strain ε is positive for low thickness, decreases in magnitude and becomes negative as t increases. With the Cu underlayer, the growth mode goes through two phases: first, the stress (grain size) increases (decreases) up to a critical thickness t Cr , then stress is relieved and grain size increases. All these results will be discussed and correlated. - Highlights: • The structural and electrical properties of evaporated Ni thin films are studied. • The effect of thickness, substrates and Cu underlayer is investigated. • Texture, grain size, strain and surface morphology are discussed. • Growth modes are described as a function of Ni thickness

  13. Topological patterns of mesh textures in serpentinites

    Science.gov (United States)

    Miyazawa, M.; Suzuki, A.; Shimizu, H.; Okamoto, A.; Hiraoka, Y.; Obayashi, I.; Tsuji, T.; Ito, T.

    2017-12-01

    Serpentinization is a hydration process that forms serpentine minerals and magnetite within the oceanic lithosphere. Microfractures crosscut these minerals during the reactions, and the structures look like mesh textures. It has been known that the patterns of microfractures and the system evolutions are affected by the hydration reaction and fluid transport in fractures and within matrices. This study aims at quantifying the topological patterns of the mesh textures and understanding possible conditions of fluid transport and reaction during serpentinization in the oceanic lithosphere. Two-dimensional simulation by the distinct element method (DEM) generates fracture patterns due to serpentinization. The microfracture patterns are evaluated by persistent homology, which measures features of connected components of a topological space and encodes multi-scale topological features in the persistence diagrams. The persistence diagrams of the different mesh textures are evaluated by principal component analysis to bring out the strong patterns of persistence diagrams. This approach help extract feature values of fracture patterns from high-dimensional and complex datasets.

  14. Inline inspection of textured plastics surfaces

    Science.gov (United States)

    Michaeli, Walter; Berdel, Klaus

    2011-02-01

    This article focuses on the inspection of plastics web materials exhibiting irregular textures such as imitation wood or leather. They are produced in a continuous process at high speed. In this process, various defects occur sporadically. However, current inspection systems for plastics surfaces are able to inspect unstructured products or products with regular, i.e., highly periodic, textures, only. The proposed inspection algorithm uses the local binary pattern operator for texture feature extraction. For classification, semisupervised as well as supervised approaches are used. A simple concept for semisupervised classification is presented and applied for defect detection. The resulting defect-maps are presented to the operator. He assigns class labels that are used to train the supervised classifier in order to distinguish between different defect types. A concept for parallelization is presented allowing the efficient use of standard multicore processor PC hardware. Experiments with images of a typical product acquired in an industrial setting show a detection rate of 97% while achieving a false alarm rate below 1%. Real-time tests show that defects can be reliably detected even at haul-off speeds of 30 m/min. Further applications of the presented concept can be found in the inspection of other materials.

  15. Depth image enhancement using perceptual texture priors

    Science.gov (United States)

    Bang, Duhyeon; Shim, Hyunjung

    2015-03-01

    A depth camera is widely used in various applications because it provides a depth image of the scene in real time. However, due to the limited power consumption, the depth camera presents severe noises, incapable of providing the high quality 3D data. Although the smoothness prior is often employed to subside the depth noise, it discards the geometric details so to degrade the distance resolution and hinder achieving the realism in 3D contents. In this paper, we propose a perceptual-based depth image enhancement technique that automatically recovers the depth details of various textures, using a statistical framework inspired by human mechanism of perceiving surface details by texture priors. We construct the database composed of the high quality normals. Based on the recent studies in human visual perception (HVP), we select the pattern density as a primary feature to classify textures. Upon the classification results, we match and substitute the noisy input normals with high quality normals in the database. As a result, our method provides the high quality depth image preserving the surface details. We expect that our work is effective to enhance the details of depth image from 3D sensors and to provide a high-fidelity virtual reality experience.

  16. Calculation of skid resistance from texture measurements

    Directory of Open Access Journals (Sweden)

    Andreas Ueckermann

    2015-02-01

    Full Text Available There is a wide range of routine skid resistance measurement devices on the market. All of them are measuring the friction force between a rubber wheel and the wetted road surface. Common to all of them is that they are relatively complex and costly because generally a truck carrying a large water tank is needed to wet the surface with a defined water layer. Because of the limited amount of water they can carry they are limited in range. Besides that the measurement is depending on factors like water film thickness, temperature, measurement speed, rubber aging, rubber wear and even road evenness and curviness. All of these factors will affect the skid resistance and are difficult to control. We present a concept of contactless skid resistance measurement which is based on optical texture measurement and consists of two components: measurement of the pavement texture by means of an optical measuring system and calculation of the skid resistance based on the measured texture by means of a rubber friction model. The basic assumptions underlying the theoretical approach and the model itself based on the theory of Persson are presented. The concept is applied to a laboratory device called Wehner/Schulze (W/S machine to prove the theoretical approach. The results are very promising. A strong indication could be provided that skid resistance could be measured without contact in the future.

  17. Model for understanding consumer textural food choice.

    Science.gov (United States)

    Jeltema, Melissa; Beckley, Jacqueline; Vahalik, Jennifer

    2015-05-01

    The current paradigm for developing products that will match the marketing messaging is flawed because the drivers of product choice and satisfaction based on texture are misunderstood. Qualitative research across 10 years has led to the thesis explored in this research that individuals have a preferred way to manipulate food in their mouths (i.e., mouth behavior) and that this behavior is a major driver of food choice, satisfaction, and the desire to repurchase. Texture, which is currently thought to be a major driver of product choice, is a secondary factor, and is important only in that it supports the primary driver-mouth behavior. A model for mouth behavior is proposed and the qualitative research supporting the identification of different mouth behaviors is presented. The development of a trademarked typing tool for characterizing mouth behavior is described along with quantitative substantiation of the tool's ability to group individuals by mouth behavior. The use of these four groups to understand textural preferences and the implications for a variety of areas including product design and weight management are explored.

  18. Automatic Texture Optimization for 3D Urban Reconstruction

    Directory of Open Access Journals (Sweden)

    LI Ming

    2017-03-01

    Full Text Available In order to solve the problem of texture optimization in 3D city reconstruction by using multi-lens oblique images, the paper presents a method of seamless texture model reconstruction. At first, it corrects the radiation information of images by camera response functions and image dark channel. Then, according to the corresponding relevance between terrain triangular mesh surface model to image, implements occlusion detection by sparse triangulation method, and establishes the triangles' texture list of visible. Finally, combines with triangles' topology relationship in 3D triangular mesh surface model and means and variances of image, constructs a graph-cuts-based texture optimization algorithm under the framework of MRF(Markov random filed, to solve the discrete label problem of texture optimization selection and clustering, ensures the consistency of the adjacent triangles in texture mapping, achieves the seamless texture reconstruction of city. The experimental results verify the validity and superiority of our proposed method.

  19. Natural texture retrieval based on perceptual similarity measurement

    Science.gov (United States)

    Gao, Ying; Dong, Junyu; Lou, Jianwen; Qi, Lin; Liu, Jun

    2018-04-01

    A typical texture retrieval system performs feature comparison and might not be able to make human-like judgments of image similarity. Meanwhile, it is commonly known that perceptual texture similarity is difficult to be described by traditional image features. In this paper, we propose a new texture retrieval scheme based on texture perceptual similarity. The key of the proposed scheme is that prediction of perceptual similarity is performed by learning a non-linear mapping from image features space to perceptual texture space by using Random Forest. We test the method on natural texture dataset and apply it on a new wallpapers dataset. Experimental results demonstrate that the proposed texture retrieval scheme with perceptual similarity improves the retrieval performance over traditional image features.

  20. Advecting Procedural Textures for 2D Flow Animation

    Science.gov (United States)

    Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.

  1. A Novel Texture Classification Procedure by using Association Rules

    Directory of Open Access Journals (Sweden)

    L. Jaba Sheela

    2008-11-01

    Full Text Available Texture can be defined as a local statistical pattern of texture primitives in observer’s domain of interest. Texture classification aims to assign texture labels to unknown textures, according to training samples and classification rules. Association rules have been used in various applications during the past decades. Association rules capture both structural and statistical information, and automatically identify the structures that occur most frequently and relationships that have significant discriminative power. So, association rules can be adapted to capture frequently occurring local structures in textures. This paper describes the usage of association rules for texture classification problem. The performed experimental studies show the effectiveness of the association rules. The overall success rate is about 98%.

  2. Fiscal 1998 intellectual infrastructure project utilizing civil sector functions. Research and development project on prompt-effect type intellectual infrastructure creation (Research and development concerning relations between sintered body textural structure and material characteristics in fine ceramics); 1998 nendo minkan no kino wo katsuyoshita chiteki kiban jigyo seika hokokusho. Sokkogata chiteki kiban sosei kenkyu kaihatsu jigyo (fine ceramics no shoketsutai soshiki kozo to zairyo tokusei tono kankei ni kansuru kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development was carried out involving fine ceramic sintered body textural structure evaluation methods for the development of process technologies for achieving higher quality and lower cost. Studies centered about a method for evaluating coarse pores and coarse grains in sintered bodies, relations between sintered body fracture strength and textural structure, and the standardization of evaluation methods. As the result, an evaluation method for observing pore structures in a sintered body flake specimen under an optical microscope and another for observing coarse grains under a polarization microscope were proposed. As for the effect of coarse defects on the fracture strength of ceramics, it was demonstrated experimentally and theoretically that coarse defects several tens of micrometers in size greatly affected the fracture strength. In the study of methods for sintered body grain size evaluation, findings were obtained about the processing of the specimen surface. (NEDO)

  3. High-resolution electron microscopy study of Ni81Fe19 film with Co33Cr67 buffer layer

    International Nuclear Information System (INIS)

    Xu, Q.Y.; Wang, Z.M.; Shen, F.; Du, Y.W.; Zhang, Z.

    2003-01-01

    The anisotropic magnetoresistance (AMR) in permalloy Ni 81 Fe 19 film deposited on a 1.2 nm Co 33 Cr 67 buffer layer was significantly enhanced. The high-resolution electron microscopy was used to study the microstructure of Ni 81 Fe 19 film with and without Co 33 Cr 67 buffer layer. It was found that Co 33 Cr 67 buffer layer can induce good (1 1 1) texture, while without Co 33 Cr 67 buffer layer, Ni 81 Fe 19 film show randomly oriented grain structure. The Δρ/ρ enhancement is attributed to the decrease in the resistivity ρ of the Ni 81 Fe 19 film due to the formation of the large (1 1 1) textured grains in Ni 81 Fe 19 film with Co 33 Cr 67 buffer layer. However, the surface roughness of substrate may limit the (1 1 1) textured grain size and induce additional grain boundaries in Ni 81 Fe 19 film with Co 33 Cr 67 buffer layer, limit the enhancement of the AMR effect

  4. Interface stress in Au/Ni multilayers

    DEFF Research Database (Denmark)

    Schweitz, K.O.; Böttiger, J.; Chevallier, J.

    2000-01-01

    The effect of intermixing on the apparent interface stress is studied in -textured dc-magnetron sputtered Au/Ni multilayers by use of two methods commonly used for determining interface stress. The method using profilometry and in-plane x-ray diffraction does not take intermixing...... into account and yields an apparent interface stress of -8.46 +/- 0.99 J m(-2). However, observed discrepancies between model calculations and measured high-angle x-ray diffractograms indicate intermixing, and by use of the profilometry and sin(2) psi method the real interface stress value of -2.69 +/- 0.43 J...... m(-2) is found. This method also reveals a significant and systematic change of the stress-free lattice parameter of both constituents as a function of modulation period which is shown to account for the difference between the two findings. The method using in-plane diffraction is thus shown...

  5. Effects of alkali on protein polymerization and textural characteristics of textured wheat protein.

    Science.gov (United States)

    Li, Ting; Guo, Xiao-Na; Zhu, Ke-Xue; Zhou, Hui-Ming

    2018-01-15

    The impact of alkali addition on the degree of gluten polymerization and textural characteristics of textured wheat protein was investigated. Results showed that the extrusion process increased the average molecular weight of gluten as evidenced by SDS-PAGE and SDS extractable protein. The addition of alkali not only promoted the degree of gluten polymerization, but also induced dehydroalanine-derived cross-linking. Alkali addition decreased the content of cystine and increased the contents of dehydroalanine and lanthionine. The obvious decrease of free SH showed that dehydroalanine-derived cross-linking was quantitatively less crucial than disulfide cross-linking. Furthermore, the protein cross-linking induced by alkali improved the texture properties of gluten extrudates. SEM analysis showed extrusion under alkaline condition conferred a more fibrous microstructure as a consequence of a compact gluten network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Decay of 57Ni

    International Nuclear Information System (INIS)

    Santos Scardino, A.M. dos.

    1987-01-01

    The decay of 57 Ni to 57 Co was studied by gamma ray spectroscopy using both singles and coincidence spectra. The sources were obtained with the 58 Ni (Y,n) 57 Ni reaction. Natural metallic nickel was irradiated in the bremsstrahluhng beam of the linear accelerator of the Instituto de Fisica da Universidade de Sao Paulo with 30 MeV electrons. The singles espectra were taken with 104 cc HPGe detector and the coincidences espectra with 27 and 53cc Ge(Li) and 104 cc. HPGe detectors. The energies of transitions that follow the 57 Ni decay were measured using 56 Co as standard (which was obtained by (Y,np) reaction in 58 Ni) and taking into account the cascade cross-over relations. (author) [pt

  7. Forest Classification Based on Forest texture in Northwest Yunnan Province

    Science.gov (United States)

    Wang, Jinliang; Gao, Yan; Wang, Xiaohua; Fu, Lei

    2014-03-01

    Forest texture is an intrinsic characteristic and an important visual feature of a forest ecological system. Full utilization of forest texture will be a great help in increasing the accuracy of forest classification based on remote sensed data. Taking Shangri-La as a study area, forest classification has been based on the texture. The results show that: (1) From the texture abundance, texture boundary, entropy as well as visual interpretation, the combination of Grayscale-gradient co-occurrence matrix and wavelet transformation is much better than either one of both ways of forest texture information extraction; (2) During the forest texture information extraction, the size of the texture-suitable window determined by the semi-variogram method depends on the forest type (evergreen broadleaf forest is 3×3, deciduous broadleaf forest is 5×5, etc.). (3)While classifying forest based on forest texture information, the texture factor assembly differs among forests: Variance Heterogeneity and Correlation should be selected when the window is between 3×3 and 5×5 Mean, Correlation, and Entropy should be used when the window in the range of 7×7 to 19×19 and Correlation, Second Moment, and Variance should be used when the range is larger than 21×21.

  8. Forest Classification Based on Forest texture in Northwest Yunnan Province

    International Nuclear Information System (INIS)

    Wang, Jinliang; Gao, Yan; Fu, Lei; Wang, Xiaohua

    2014-01-01

    Forest texture is an intrinsic characteristic and an important visual feature of a forest ecological system. Full utilization of forest texture will be a great help in increasing the accuracy of forest classification based on remote sensed data. Taking Shangri-La as a study area, forest classification has been based on the texture. The results show that: (1) From the texture abundance, texture boundary, entropy as well as visual interpretation, the combination of Grayscale-gradient co-occurrence matrix and wavelet transformation is much better than either one of both ways of forest texture information extraction; (2) During the forest texture information extraction, the size of the texture-suitable window determined by the semi-variogram method depends on the forest type (evergreen broadleaf forest is 3×3, deciduous broadleaf forest is 5×5, etc.). (3)While classifying forest based on forest texture information, the texture factor assembly differs among forests: Variance Heterogeneity and Correlation should be selected when the window is between 3×3 and 5×5; Mean, Correlation, and Entropy should be used when the window in the range of 7×7 to 19×19; and Correlation, Second Moment, and Variance should be used when the range is larger than 21×21

  9. Origin of perpendicular magnetic anisotropy in Co/Ni multilayers

    Science.gov (United States)

    Arora, M.; Hübner, R.; Suess, D.; Heinrich, B.; Girt, E.

    2017-07-01

    We studied the variation in perpendicular magnetic anisotropy of (111) textured Au /N ×[Co /Ni ]/Au films as a function of the number of bilayer repeats N . The ferromagnetic resonance and superconducting quantum interference device magnetometer measurements show that the perpendicular magnetic anisotropy of Co/Ni multilayers first increases with N for N ≤10 and then moderately decreases for N >10 . The model we propose reveals that the decrease of the anisotropy for N reduction in the magnetoelastic and magnetocrystalline anisotropies. A moderate decrease in the perpendicular magnetic anisotropy for N >10 is due to the reduction in the magnetocrystalline and the surface anisotropies. To calculate the contribution of magnetoelastic anisotropy in the Co/Ni multilayers, in-plane and out-of-plane x-ray diffraction measurements are performed to determine the spacing between Co/Ni (111) and (220) planes. The magnetocrystalline bulk anisotropy is estimated from the difference in the perpendicular and parallel g factors of Co/Ni multilayers that are measured using the in-plane and out-of-plane ferromagnetic resonance measurements. Transmission electron microscopy has been used to estimate the multilayer film roughness. These values are used to calculate the roughness-induced surface and magnetocrystalline anisotropy coefficients as a function of N .

  10. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al2O3 catalysts

    International Nuclear Information System (INIS)

    Dominguez-Crespo, M.A.; Diaz-Garcia, L.; Arce-Estrada, E.M.; Torres-Huerta, A.M.; Cortez de la Paz, M.T.

    2006-01-01

    Four NiMo catalyst supported on Al 2 O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 A for HDS and HDN

  11. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al 2O 3 catalysts

    Science.gov (United States)

    Domínguez-Crespo, M. A.; Díaz-García, L.; Arce-Estrada, E. M.; Torres-Huerta, A. M.; Cortéz-De la Paz, M. T.

    2006-11-01

    Four NiMo catalyst supported on Al 2O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 Å for HDS and HDN.

  12. Texturing and modeling a procedural approach

    CERN Document Server

    Ebert, David S

    1994-01-01

    Congratulations to Ken Perlin for his 1997 Technical Achievement Award from the Academy of Motion Picture Arts and Science Board of Governors, given in recognition of the development of ""Turbulence"", Perlin Noise, a technique discussed in this book which is used to produce natural appearing textures on computer-generated surfaces for motion picture visual effects. Dr. Perlin joins Darwyn Peachey (co-developer of RenderMan(R), also discussed in the book) in being honored with this prestigious award.* * Written at a usable level by the developers of the techniques* Serves as a source book for

  13. Maya Studio Projects Texturing and Lighting

    CERN Document Server

    Lanier, Lee

    2011-01-01

    Learn to create realistic digital assets for film and games with this project-based guide Focused entirely on practical projects, this hands-on guide shows you how to use Maya's texturing and lighting tools in real-world situations. Whether you need to sharpen your skills or you're looking to break into the field for the first time, you'll learn top industry techniques for this important skill as you follow the instructions for several specific projects. You can even create your own version, using final Maya scene files to validate results. The companion DVD includes supplemental videos, proje

  14. Texture of low temperature isotropic pyrocarbons

    International Nuclear Information System (INIS)

    Pelissier, Joseph; Lombard, Louis.

    1976-01-01

    Isotropic pyrocarbon deposited on fuel particles was studied by transmission electron microscopy in order to determine its texture. The material consists of an agglomerate of spherical growth features similar to those of carbon black. The spherical growth features are formed from the cristallites of turbostratic carbon and the distribution gives an isotropic structure. Neutron irradiation modifies the morphology of the pyrocarbon. The spherical growth features are deformed and the coating becomes strongly anisotropic. The transformation leads to the rupture of the coating caused by strong irradiation doses [fr

  15. O(4) texture with a cosmological constant

    International Nuclear Information System (INIS)

    Cho, Inyong

    2002-01-01

    We investigate O(4) textures in a background with a positive cosmological constant. We find static solutions which comove with the expanding background. There exists a solution in which the scalar field is regular at the horizon. This solution has a noninteger winding number smaller than 1. There also exist solutions in which scalar-field derivatives are singular at the horizon. Such solutions can complete one winding within the horizon. If the winding number is larger than some critical value, static solutions including the regular one are unstable under perturbations

  16. The effect of substrate texture and oxidation temperature on oxide texture development in zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Garner, A., E-mail: alistair.garner@manchester.ac.uk [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom); Frankel, P. [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom); Partezana, J. [Westinghouse Electric Company, 1332 Beulah Road, Pittsburgh, PA 15235 (United States); Preuss, M. [Materials Performance Centre, University of Manchester, Grosvenor Street, Manchester, M17HS (United Kingdom)

    2017-02-15

    During corrosion of zirconium alloys a highly textured oxide is formed, the degree of this preferred orientation has previously been shown to be an important factor in determining the corrosion behaviour of these alloys. Two distinct experiments were designed in order to investigate the origin of this oxide texture development on two commercial alloys. Firstly, sheet samples of Zircaloy-4 were oxidised between 500 and 800 °C in air. The resulting monoclinic oxide texture strength was observed to decrease with increasing oxidation temperature. In a second experiment, orthogonal faces of Low Tin ZIRLO{sub ™} were oxidised in 360 °C water, providing different substrate textures but identical microstructures. The substrate texture was observed to have a negligible effect on the corrosion performance whilst the major orientation of both oxide phases was found to be independent of substrate orientation. It is concluded that the main driving force for oxide texture development in single-phase zirconium alloys is the compressive stress caused by the Zr−ZrO{sub 2} transformation. - Highlights: • Substrate orientation does not significantly affect oxide texture development. • Corrosion performance is independent of substrate texture. • Monoclinic oxide texture strength decreases with increasing oxidation temperature. • The main driving force for texture development is the oxidation-induced stress.

  17. Bridging exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi-Montes, Natalia, E-mail: nataliarin@gmail.com [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain); Gorria, Pedro [Departamento de Física & IUTA, EPI, Universidad de Oviedo, E-33203 Gijón (Spain); Martínez-Blanco, David [Servicios Científico-Técnicos, Universidad de Oviedo, E-33006 Oviedo (Spain); Fuertes, Antonio B. [Instituto Nacional del Carbón, CSIC, E-33080 Oviedo (Spain); Fernández Barquín, Luis [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, E-39005 Santander (Spain); Puente-Orench, Inés [Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-02-15

    Among all bi-magnetic core(transition metal)@shell(transition metal oxide) nanoparticles (NPs), Ni@NiO ones show an onset temperature for the exchange bias (EB) effect far below the Néel temperature of bulk antiferromagnetic NiO. In this framework, the role played by the magnetism of NiO at the nanoscale is investigated by comparing the microstructure and magnetic properties of NiO and Ni@NiO NPs. With the aim of bridging the two systems, the diameter of the NiO NPs (~4 nm) is chosen to be comparable to the shell thickness of Ni@NiO ones (~2 nm). The EB effect in Ni@NiO NPs is attributed to the exchange coupling between the core and the shell, with an interfacial exchange energy of ΔE~0.06 erg cm{sup −2}, thus comparable to previous reports on Ni/NiO interfaces both in thin film and NP morphologies. In contrast, the EB detected in NiO NPs is explained in a picture where uncompensated spins located on a magnetically disordered surface shell are exchange coupled to the antiferromagnetic core. In all the studied NPs, the variation of the EB field as a function of temperature is described according to a negative exponential law with a similar decay constant, yielding a vanishing EB effect around T~40–50 K. In addition, the onset temperature for the EB effect in both NiO and Ni@NiO NPs seems to follow a universal dependence with the NiO crystallite size. - Highlights: • Comparison of the exchange bias effect in NiO and Ni(core)@NiO(shell) nanoparticles. • Universal temperature dependence of the exchange bias effect. • Suggested similar physical origin of the effect in both systems. • Size and crystallinity of the NiO shell hold the key for exchange bias properties.

  18. Effect of biaxial strain and external electric field on electronic properties of MoS{sub 2} monolayer: A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Chuong V., E-mail: chuongnguyen11@gmail.com [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam); School of Mechanical Engineering, Le Quy Don Technical University, Ha Noi (Viet Nam); Hieu, Nguyen N. [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam)

    2016-04-01

    In this work, making use of density functional theory (DFT) computations, we systematically investigate the effect of biaxial strain engineering and external electric field applied perpendicular to the layers on the band gaps and electronic properties of monolayer MoS{sub 2}. The direct-to-indirect band gaps and semiconductor-to-metal transition are observed in monolayer MoS{sub 2} when strain and electric field are applied in our calculation. We show that when the biaxial strain and external electric field are introduced, the electronic properties including band gaps of monolayer MoS{sub 2} can be reduced to zero. Our results provide many useful insights for the wide applications of monolayer MoS{sub 2} in electronics and optoelectronics.

  19. Texture analysis using angle dispersive neutron nuclear scattering

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    1995-01-01

    This paper describes in detail the method of texture determination using neutron diffraction. The main advantages of neutron diffraction arise from the high penetration depth for most materials which is a factor of 10 2 -10 4 higher than for X-ray diffraction. Consequently neutron diffraction is an efficient tool for the investigation of global textures and coarse grained materials. Moreover, the measurement of large sample volumes gives excellent grain statistics, allows the influence of texture inhomogeneities to be neglected and allows the measurement of complete pole figures even of minority phases. A number of examples show the application of neutron diffraction to measure textures of metals, alloys, composites, intermetallic compounds and rocks. A detailed description of TEX-2 the neutron texture diffractometer at GKSS Research Centre is given which is completed by a comparison to other neutron texture diffractometers. (orig.) [de

  20. Cloud and surface textural features in polar regions

    Science.gov (United States)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.