WorldWideScience

Sample records for biaxial stress states

  1. Mastering the biaxial stress state in nanometric thin films on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Faurie, D., E-mail: faurie@univ-paris13.fr [LSPM-CNRS, UPR3407, Université Paris 13, Villetaneuse (France); Renault, P.-O.; Le Bourhis, E. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Geandier, G. [Institut Jean Lamour, CNRS UMR7198, Université de Lorraine, Nancy Cedex (France); Goudeau, P. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Thiaudière, D. [SOLEIL Synchrotron, Saint-Aubin, Gif-Sur-Yvette (France)

    2014-07-01

    Biaxial stress state of thin films deposited on flexible substrate can be mastered thanks to a new biaxial device. This tensile machine allows applying in-plane loads F{sub x} and F{sub y} in the two principal directions x and y of a cruciform-shaped polymer substrate. The transmission of the deformation at film/substrate interface allows controlling the stress and strain field in the thin films. We show in this paper a few illustrations dealing with strain measurements in polycrystalline thin films deposited on flexible substrate. The potentialities of the biaxial device located at Soleil synchrotron are also discussed.

  2. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  3. Biaxial Stress Tests of Plain Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Cho, M.S.; Song, Y.C. [Korea Electric Power Research Institute, Taejon (Korea)

    2001-07-01

    Containment concrete specimens(4000, 5000psi) were tested under biaxial stress and presented basic physical properties and biaxial failure envelops for the concrete specimens. Failure behaviors of concrete under biaxial stress were assessed with stress-strain responses and failure modes. Here provided real test data to develop nonlinear finite element concrete models. (author). 15 refs., 46 figs., 4 tabs.

  4. Phonon deformation potentials of hexagonal GaN studied by biaxial stress modulation

    Directory of Open Access Journals (Sweden)

    Jun-Yong Lu

    2011-09-01

    Full Text Available In this work, a biaxial stress modulation method, combining the microfabrication technique, finite element analysis and a weighted averaging process, was developed to study piezospectroscopic behavior of hexagonal GaN films, epitaxially grown by metalorganic chemical vapor deposition on c-sapphire and Si (111 substrates. Adjusting the size of patterned islands, various biaxial stress states could be obtained at the island centers, leading to abundant stress-Raman shift data. With the proposed stress modulation method, the Raman biaxial stress coefficients of E2H and A1 (LO phonons of GaN were determined to be 3.43 cm-1/GPa and 2.34 cm-1/GPa, respectively.

  5. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer

    2012-01-01

    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper...

  6. Biaxial failure criteria and stress-strain response for concrete of containment structure

    International Nuclear Information System (INIS)

    Lee, S. K.; Woo, S. K.; Song, Y. C.; Kweon, Y. K.; Cho, C. H.

    2001-01-01

    Biaxial failure criteria and stress-strain response for plain concrete of containment structure on nuclear power plants are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f 2 /f 1 =-1/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 5660 psi are provided, and the biaxial failure behaviors for three biaxial loading areas are plotted respectively. And, various analytical equations having the reliability are proposed for representations of the biaxial failure criteria and stress-strain response curves of concrete

  7. Evaluation of Anisotropic Biaxial Stress Induced Around Trench Gate of Si Power Transistor Using Water-Immersion Raman Spectroscopy

    Science.gov (United States)

    Suzuki, Takahiro; Yokogawa, Ryo; Oasa, Kohei; Nishiwaki, Tatsuya; Hamamoto, Takeshi; Ogura, Atsushi

    2018-05-01

    The trench gate structure is one of the promising techniques to reduce on-state resistance (R on) for silicon power devices, such as insulated gate bipolar transistors and power metal-oxide-semiconductor field-effect transistors. In addition, it has been reported that stress is induced around the trench gate area, modifying the carrier mobilities. We evaluated the one-dimensional distribution and anisotropic biaxial stress by quasi-line excitation and water-immersion Raman spectroscopy, respectively. The results clearly confirmed anisotropic biaxial stress in state-of-the-art silicon power devices. It is theoretically possible to estimate carrier mobility using piezoresistance coefficients and anisotropic biaxial stress. The electron mobility was increased while the hole mobility was decreased or remained almost unchanged in the silicon (Si) power device. The stress significantly modifies the R on of silicon power transistors. Therefore, their performance can be improved using the stress around the trench gate.

  8. Acoustic emission under biaxial stresses in unflawed 21-6-9 and 304 stainless steel

    International Nuclear Information System (INIS)

    Hamstad, M.A.; Leon, E.M.; Mukherjee, A.K.

    1980-01-01

    Acoustic emission (AE) testing has been carried out with uniaxial and biaxial (2:1 stress ratio) stressing of smooth samples of 21-6-9 and 304 stainless steel (SS). Uniaxial testing was done with simple tensile and compression samples as well as with the special biaxial specimens. Biaxial tensile stressing was accomplished with a specially designed specimen, which had been used previously to characterize AE in 7075 aluminum under biaxial stressing. Results were obtained for air-melt and for vacuum-melt samples of 21-6-9 SS. The air-melt samples contain considerably more inclusion particles than the vacuum-melt samples. For the 304 SS, as received material was examined. To allow AE correlations with microstructure, extensive characterization of the 21-6-9 microstructure was carried out. Significant differences in AE occur in biaxially stressed specimens as compared to uniaxially stressed samples. 15 figures, 3 tables

  9. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Burkhardt, G.L.

    1993-01-01

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus

  10. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    Iida, Satoshi; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki

    2014-01-01

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  11. Creep modeling of textured zircaloy under biaxial stressing

    International Nuclear Information System (INIS)

    Adams, B.L.; Murty, K.L.

    1984-01-01

    Anisotropic biaxial creep behavior of textured Zircaloy tubing was modeled using a crystal-plastic uniform strain-rate upper-bound and a uniform stress lower-bound approach. Power-law steady-state creep is considered to occur on each crystallite glide system by fixing the slip rate to be proportional to the resolved shear stress raised to a power. Prismatic, basal, and pyramidal slip modes were considered. The crystallographic texture is characterized using the orientation distribution function determined from a set of three pole-figures. This method is contrasted with a Von-Mises-Hill phenomenological model in comparison with experimental data obtained at 673 deg K. The resulting creep-dissipative loci show the importance of the basal slip mode on creep in heavily cold-worked cladding, whereas prismatic slip is more important for the recrystallized materials. (author)

  12. Depletion-induced biaxial nematic states of boardlike particles

    International Nuclear Information System (INIS)

    Belli, S; Van Roij, R; Dijkstra, M

    2012-01-01

    With the aim of investigating the stability conditions of biaxial nematic liquid crystals, we study the effect of adding a non-adsorbing ideal depletant on the phase behavior of colloidal hard boardlike particles. We take into account the presence of the depletant by introducing an effective depletion attraction between a pair of boardlike particles. At fixed depletant fugacity, the stable liquid-crystal phase is determined through a mean-field theory with restricted orientations. Interestingly, we predict that for slightly elongated boardlike particles a critical depletant density exists, where the system undergoes a direct transition from an isotropic liquid to a biaxial nematic phase. As a consequence, by tuning the depletant density, an easy experimental control parameter, one can stabilize states of high biaxial nematic order even when these states are unstable for pure systems of boardlike particles. (paper)

  13. Experimental study on ultimate strength and strain behavior of concrete under biaxial compressive stresses

    International Nuclear Information System (INIS)

    Onuma, Hiroshi; Aoyagi, Yukio

    1976-01-01

    The purpose of this investigation was to study the ultimate strength failure mode and deformation behavior of concrete under short-term biaxial compressive stresses, as an aid to design and analyze the concrete structures subjected to multiaxial compression such as prestressed or reinforced concrete vessel structures. The experimental work on biaxial compression was carried out on the specimens of three mix proportions and different ages with 10cm x 10cm x 10cm cubic shape in a room controlled at 20 0 C. The results are summarized as follows. (1) To minimize the surface friction between specimens and loading platens, the pads of teflon sheets coated with silicone grease were used. The coefficient of friction was measured and was 3 percent on the average. (2) The test data showed that the strength of the concrete subjected to biaxial compression increased as compared to uniaxial compressive strength, and that the biaxial strength increase was mainly dependent on the ratio of principal stresses, and it was hardly affected by mix proportions and ages. (3) The maximum increase of strength, which occurred at the stress ratio of approximately sigma 2 /sigma 1 = 0.6, was about 27 percent higher than the uniaxial strength of concrete. (4) The ultimate strength in case of biaxial compression could be approximated by the parabolic equation. (Kako, I.)

  14. Plastic deformation and fracture behavior of zircaloy-2 fuel cladding tubes under biaxial stress

    International Nuclear Information System (INIS)

    Maki, Hideo; Ooyama, Masatosi

    1975-01-01

    Various combinations of biaxial stress were applied on five batches of recrystallized zircaloy-2 fuel cladding tubes with different textures; elongation in both axial and circumferential directions of the specimen was measured continuously up to 5% plastic deformation. The anisotropic theory of plasticity proposed by Hill was applied to the resulting data, and anisotropy constants were obtained through the two media of plastic strain loci and plastic strain ratios. Comparison of the results obtained with the two methods proved that the plastic strain loci provide data that are more effective in predicting quantitatively the plastic deformation behavior of the zircaloy-2 tubes. The anisotropy constants change their value with progress of plastic deformation, and judicious application of the effective stress and effective strain obtained on anisotropic materials will permit the relationship between stress and strain under various biaxialities of stresses to be approximated by the work hardening law. The test specimens used in the plastic deformation experiments were then stressed to fracture under the same combination of biaxial stress as in the proceeding experiments, and the deformation in the fractured part was measured. The result proved that the tilt angle of the c-axis which serves as the index of texture is related to fracture ductility under biaxial stress. Based on this relationship, it was concluded that material with a tilt angle ranging from 10 0 to 15 0 is the most suitable for fuel cladding tubes, from the viewpoint of fracture ductility, at least in the case of unirradiated material. (auth.)

  15. A novel biaxial specimen for inducing residual stresses in thermoset polymers and fibre composite material

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik; Jensen, Martin

    2015-01-01

    engineers when they challenge the material limits in present and future thermoset and composite component. In addition to the new specimen configuration, this paper presents an analytical solution for the residual stress state in the specimen. The analytical solution assumes linear elastic and isotropic......A new type of specimen configuration with the purpose of introducing a well-defined biaxial residual (axisymmetric) stress field in a neat thermoset or a fibre composite material is presented. The ability to experimentally validate residual stress predictions is an increasing need for design...

  16. The influence of the stress state on Ksub(Ic)

    International Nuclear Information System (INIS)

    Aurich, D.; Helms, R.; Schmidt, P.; Veith, H.; Ziebs, J.

    1977-01-01

    To get a first impression of the influence of stress states of higher multi-axiality than plane strain on Ksub(c) a specimen has been created, in which a bi-axial nominal stress state arises by uniaxial tension. This is attained by tension superimposed by transverse bending stress. The stress distribution without crack was analysed by photoelasticity as well as by finite element method. The results were identical. The stress distribution in the fracture (crack) plane was somewhat inhomogeneous, of course. But the ratio of the stress parallel to the tension axis to that perpendicular to it was max. 1:0.3 with a mean value 1:0.15. Specimens of this type were machined from a rolled sheet of the steel 22 NiMoCr 37, with specimen thickness of about 50 mm. For comparison single-edge notched specimens of the same cross section were prepared from the same material. Fatigue cracks were made following ASTM Recommendations. The fracture mechanics tests were carried out at a temperature of -100 0 C. Although valid Ksub(Ic)-values following the rigorous intention of the linear elastic fracture mechanics (ASTM Recommendations) were not obtained, the differences between the results of the two types of specimens and stress states were significant. The Ksub(Q)-values of the bi-axial stressed specimen were about 25% lower than that of the single-edge notched specimen. The deviation of the load-displacement trace from the linear elastic behavior was greater for the single-edge notched specimens than for the bi-axial stressed specimens. The consequences of these results for the assessment of flaws in pressure vessels are evident considering that bi-axial nominal stress states occur in pressure vessels

  17. Stress state dependence of transient irradiation creep in 20% cold worked 316 stainless steel

    International Nuclear Information System (INIS)

    Foster, J.P.; Gilbert, E.R.

    1998-01-01

    Irradiation creep tests were performed in fast reactors using the stress states of uniaxial tension, biaxial tension, bending and torsion. In order to compare the saturated transient strain irradiation creep component, the test data were converted to equivalent strain and equivalent stress. The saturated transient irradiation creep component was observed to depend on the stress state. The highest value was exhibited by the uniaxial tension stress state, and the lowest by the torsion stress state. The biaxial tension and bending stress state transient component values were intermediate. This behavior appears to be related to the dislocation or microscopic substructure resulting from fabrication processing and the applied stress direction. (orig.)

  18. Fracture assessment of shallow-flaw cruciform beams tested under uniaxial and biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1999-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate with the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states. (orig.)

  19. Biaxial stress driven tetragonal symmetry breaking and high-temperature ferromagnetic semiconductor from half-metallic CrO2

    Science.gov (United States)

    Xiao, Xiang-Bo; Liu, Bang-Gui

    2018-03-01

    It is highly desirable to combine the full spin polarization of carriers with modern semiconductor technology for spintronic applications. For this purpose, one needs good crystalline ferromagnetic (or ferrimagnetic) semiconductors with high Curie temperatures. Rutile CrO2 is a half-metallic spintronic material with Curie temperature 394 K and can have nearly full spin polarization at room temperature. Here, we find through first-principles investigation that when a biaxial compressive stress is applied on rutile CrO2, the density of states at the Fermi level decreases with the in-plane compressive strain, there is a structural phase transition to an orthorhombic phase at the strain of -5.6 % , and then appears an electronic phase transition to a semiconductor phase at -6.1 % . Further analysis shows that this structural transition, accompanying the tetragonal symmetry breaking, is induced by the stress-driven distortion and rotation of the oxygen octahedron of Cr, and the half-metal-semiconductor transition originates from the enhancement of the crystal field splitting due to the structural change. Importantly, our systematic total-energy comparison indicates the ferromagnetic Curie temperature remains almost independent of the strain, near 400 K. This biaxial stress can be realized by applying biaxial pressure or growing the CrO2 epitaxially on appropriate substrates. These results should be useful for realizing full (100%) spin polarization of controllable carriers as one uses in modern semiconductor technology.

  20. Biaxial nominal state of stress at the crack front

    International Nuclear Information System (INIS)

    Dietmann, H.; Kussmaul, K.

    1979-01-01

    In fracture toughness testing with CT-specimens there is an unaxial nominal stress state caused by the nominal stress psub(y) perpendicular to the crack surface. This paper investigates the question whether the fracture toughness, or generally speaking, the fracture load, is influenced by additional nominal stresses psub(x) and psub(z) in the crack surface, i.e. by a multiaxial stress state. (orig.)

  1. Biaxial behavior of plain concrete of nuclear containment building

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Keun E-mail: sklee0806@bcline.com; Song, Young-Chul; Han, Sang-Hoon

    2004-01-01

    To provide biaxial failure behavior characteristics of concrete of a standard Korean nuclear containment building, the concrete specimens with the dimensions of 200 mmx200 mmx60 mm were tested under different biaxial load combinations. The specimens were subjected to biaxial load combinations covering the three regions of compression-compression, compression-tension, nd tension-tension. To avoid a confining effect due to friction in the boundary surface between the concrete specimen and the loading platen, the loading platens with Teflon pads were used. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the biaxial ultimate strength envelopes were developed and the biaxial stress-strain responses in three different biaxial loading regions were plotted. The test results indicated hat the concrete strength under equal biaxial compression, f{sub 1}=f{sub 2}, is higher by about 17% on the average than that under the uniaxial compression and the concrete strength under biaxial tension is almost independent of the stress ratio and is similar to that under the uniaxial tension.

  2. Biaxial behavior of plain concrete of nuclear containment building

    International Nuclear Information System (INIS)

    Lee, Sang-Keun; Song, Young-Chul; Han, Sang-Hoon

    2004-01-01

    To provide biaxial failure behavior characteristics of concrete of a standard Korean nuclear containment building, the concrete specimens with the dimensions of 200 mmx200 mmx60 mm were tested under different biaxial load combinations. The specimens were subjected to biaxial load combinations covering the three regions of compression-compression, compression-tension, nd tension-tension. To avoid a confining effect due to friction in the boundary surface between the concrete specimen and the loading platen, the loading platens with Teflon pads were used. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the biaxial ultimate strength envelopes were developed and the biaxial stress-strain responses in three different biaxial loading regions were plotted. The test results indicated hat the concrete strength under equal biaxial compression, f 1 =f 2 , is higher by about 17% on the average than that under the uniaxial compression and the concrete strength under biaxial tension is almost independent of the stress ratio and is similar to that under the uniaxial tension

  3. Investigation of the Residual Stress State in an Epoxy Based Specimen

    DEFF Research Database (Denmark)

    Baran, Ismet; Jakobsen, Johnny; Andreasen, Jens Henrik

    2015-01-01

    Abstract. Process induced residual stresses may play an important role under service loading conditions for fiber reinforced composite. They may initiate premature cracks and alter the internal stress level. Therefore, the developed numerical models have to be validated with the experimental...... observations. In the present work, the formation of the residual stresses/strains are captured from experimental measurements and numerical models. An epoxy/steel based sample configuration is considered which creates an in-plane biaxial stress state during curing of the resin. A hole drilling process...... material models, i.e. cure kinetics, elastic modulus, CTE, chemical shrinkage, etc. together with the drilling process using the finite element method. The measured and predicted in-plane residual strain states are compared for the epoxy/metal biaxial stress specimen....

  4. The influence of stress state on the reorientation of hydrides in a zirconium alloy

    International Nuclear Information System (INIS)

    Cinbiz, Mahmut N.; Koss, Donald A.; Motta, Arthur T.

    2016-01-01

    Hydride reorientation can occur in spent nuclear fuel cladding when subjected to a tensile hoop stress above a threshold value during cooling. Because in these circumstances the cladding is under a multiaxial stress state, the effect of stress biaxiality on the threshold stress for hydride reorientation is investigated using hydrided CWSR Zircaloy-4 sheet specimens containing ∼180 wt ppm of hydrogen and subjected to a two-cycle thermo-mechanical treatment. The study is based on especially designed specimens within which the stress biaxiality ratios range from uniaxial (σ_2/σ_1 = 0) to “near-equibiaxial” tension (σ_2/σ_1 = 0.8). The threshold stress is determined by mapping finite element calculations of the principal stresses and of the stress biaxiality ratio onto the hydride microstructure obtained after the thermo-mechanical treatment. The results show that the threshold stress (maximum principal stress) decreases from 155 to 75 MPa as the stress biaxiality increases from uniaxial to “near-equibiaxial” tension.

  5. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  6. Sequential Indentation Tests to Investigate the Influence of Confining Stress on Rock Breakage by Tunnel Boring Machine Cutter in a Biaxial State

    Science.gov (United States)

    Liu, Jie; Cao, Ping; Han, Dongya

    2016-04-01

    The influence of confining stress on rock breakage by a tunnel boring machine cutter was investigated by conducting sequential indentation tests in a biaxial state. Combined with morphology measurements of breaking grooves and an analysis of surface and internal crack propagation between nicks, the effects of maximum confining stress and minimum stress on indentation efficiency, crack propagation and chip formation were investigated. Indentation tests and morphology measurements show that increasing a maximum confining stress will result in increased consumed energy in indentations, enlarged groove volumes and promoted indentation efficiency when the corresponding minimum confining stress is fixed. The energy consumed in indentations will increase with increase in minimum confining stress, however, because of the decreased groove volumes as the minimum confining stress increases, the efficiency will decrease. Observations of surface crack propagation show that more intensive fractures will be induced as the maximum confining stress increases, whereas the opposite occurs for an increase of minimum confining stress. An observation of the middle section, cracks and chips shows that as the maximum confining stress increases, chips tend to form in deeper parts when the minimum confining stress is fixed, whereas they tend to formed in shallower parts as the minimum confining stress increases when the maximum confining stress is fixed.

  7. Biaxial stretching of film principles and applications

    CERN Document Server

    Demeuse, M T

    2011-01-01

    Biaxial (having two axes) stretching of film is used for a range of applications and is the primary manufacturing process by which products are produced for the food packaging industry. Biaxial stretching of film: principles and applications provides an overview of the manufacturing processes and range of applications for biaxially stretched films. Part one reviews the fundamental principles of biaxial stretching. After an introductory chapter which defines terms, chapters discuss equipment design and requirements, laboratory evaluations, biaxial film structures and typical industrial processes for the biaxial orientation of films. Additional topics include post production processing of biaxially stretched films, the stress-strain behaviour of poly(ethylene terephthalate) and academic investigations of biaxially stretched films. Part two investigates the applications of biaxial films including fresh cut produce, snack packaging and product labelling. A final chapter investigates potential future trends for bi...

  8. Biaxial deformation behaviour of poly-ether-ether-ketone

    Science.gov (United States)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  9. Method for measuring biaxial stress in a body subjected to stress inducing loads

    Science.gov (United States)

    Clotfelter, W. N. (Inventor)

    1977-01-01

    A method is described for measuring stress in test articles including the steps of obtaining for a calibrating specimen a series of transit time differentials between the second wave echo for a longitudinal wave and the first wave echo for each of a pair of shear waves propagated through the specimen as it is subjected to known stress load of a series of stress loads for thus establishing a series of indications of the magnitudes for stress loads induced in the specimen, and thereafter obtaining a transit time differential between the second wave echo for a longitudinal wave and the first wave echo for each of a pair of shear waves propagated in the planes of the stress axes of a test article and comparing the transit time differential thus obtained to the series of transit time differentials obtained for the specimen to determine the magnitude of biaxial stress in the test article.

  10. Behaviour of biaxially restrained concretes under high temperature

    International Nuclear Information System (INIS)

    Thienel, K.-Ch.; Rostasy, F.S.

    1993-01-01

    Under asymmetric biaxial loading the major restraining stresses of concrete made with expanded shale or quarzite aggregates change between both loading axis. Differences between uniaxial and biaxial restraint vanish, if the restraint is normalized with respect to the ultimate strength at ambient temperature of the same stress ratio K. The type of aggregate and the mix proportions do affect the restraining stresses irrespective of the initial stress ratio K 0 . (author)

  11. Valence band structure and density of states effective mass model of biaxial tensile strained silicon based on k · p theory

    International Nuclear Information System (INIS)

    Kuang Qian-Wei; Liu Hong-Xia; Wang Shu-Long; Qin Shan-Shan; Wang Zhi-Lin

    2011-01-01

    After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k · p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal—oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Effective X-ray elastic constant measurement for in situ stress measurement of biaxially strained AA5754-O

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Gnäupel-Herold, Thomas H.

    2012-01-01

    Accurate measurement of stresses by X-ray diffraction requires accurate X-ray elastic constants. Calibration experiments are one method to determine these for a specific material in a specific condition. In this paper, uniaxial tension experiments are used to investigate the variation of these constants after uniaxial and equal-biaxial plastic deformation for an aluminum alloy (AA5754-O) of interest to the automotive industry. These data are critical for accurate measurement of the biaxial mechanical properties of the material using a recent experimental method combining specialized sheet metal forming equipment with portable X-ray diffraction equipment. The measured effective X-ray elastic constants show some minor variation with increased plastic deformation, and this behavior was found to be consistent for both uniaxially and equal-biaxially strained samples. The use of two average values for effective X-ray elastic constants, one in the rolling direction and one transverse to the rolling direction of the sheet material, is shown to be of sufficient accuracy for the combined tests of interest. Comparison of uniaxial data measured using X-ray diffraction and standard methods show good agreement, and biaxial stress–strain results show good repeatability. Additionally, the calibration data show some non-linear behavior, which is analyzed in regards to crystallographic texture and intergranular stress effects. The non-linear behavior is found to be the result of intergranular stresses based on comparison with additional measurements using other X-ray diffraction equipment and neutron diffraction.

  13. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.

    Science.gov (United States)

    Shang, Xituan; Yen, Michael R T; Gaber, M Waleed

    2010-06-01

    The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.

  14. Post-buckling capacity of bi-axially loaded rectangular steel plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, T. H.

    2012-01-01

    slenderness and edge displacement ratio are included in the investigations presented. Capacity interaction curves are established in the bi-axial stress domain. It turns out that for certain stress ratios the imperfections dominating the ultimate capacity are not affine to the lowest classical buckling mode...... for biaxial stress. It is of great interest that short wave imperfections of a lower magnitude compared to conventionally used imperfections are seen to lower the capacity of the bi-axially loaded plates. The topic is of major concern in the flange plates of long span bridges with multi box girder...

  15. Failure criterion for graphene in biaxial loading—a molecular dynamics study

    International Nuclear Information System (INIS)

    Yazdani, Hessam; Hatami, Kianoosh

    2015-01-01

    Molecular dynamics simulations are carried out in order to develop a failure criterion for infinite/bulk graphene in biaxial tension. Stresses along the principal edge configurations of graphene (i.e. armchair and zigzag directions) are normalized to the corresponding uniaxial ultimate strength values. The combinations of normalized stresses resulting in the failure of graphene are used to define failure envelopes (limiting stress ratio surfaces). Results indicate that a bilinear failure envelope can be used to represent the tensile strength of graphene in biaxial loading at different temperatures with reasonable accuracy. A circular failure envelope is also introduced for practical applications. Both failure envelopes define temperature-independent upper limits for the feasible combinations of normalized stresses for a graphene sheet in biaxial loading. Predicted failure modes of graphene under biaxial loading are also shown and discussed. (paper)

  16. Biaxial fatigue of metals the present understanding

    CERN Document Server

    Schijve, Jaap

    2016-01-01

    Problems of fatigue under multiaxial fatigue loads have been addressed in a very large number of research publications. The present publication is primarily a survey of biaxial fatigue under constant amplitude loading on metal specimens. It starts with the physical understanding of the fatigue phenomenon under biaxial fatigue loads. Various types of proportional and non-proportional biaxial fatigue loads and biaxial stress distributions in a material are specified. Attention is paid to the fatigue limit, crack nucleation, initial micro crack growth and subsequent macro-crack in different modes of crack growth. The interference between the upper and lower surfaces of a fatigue crack is discussed. Possibilities for predictions of biaxial fatigue properties are analysed with reference to the similarity concept. The significance of the present understanding for structural design problems is considered. The book is completed with a summary of major observations.

  17. Investigation of the Leak Response of a Carbon-Fiber Laminate Loaded in Biaxial Tension

    Science.gov (United States)

    Jackson, Wade C.; Ratcliffe, James G.

    2013-01-01

    Designers of pressurized structures have been reluctant to use composite materials because of concerns over leakage. Biaxial stress states are expected to be the worst-case loading condition for allowing leakage to occur through microcracks. To investigate the leakage behavior under in-plane biaxial loading, a cruciform composite specimen was designed that would have a relatively large test section with a uniform 1:1 biaxial loading ratio. A 7.6-cm-square test section was desired for future investigations of the leakage response as a result of impact damage. Many iterations of the cruciform specimen were evaluated using finite element analysis to reduce stress concentrations and maximize the size of the uniform biaxial strain field. The final design allowed the specimen to go to relatively high biaxial strain levels without incurring damage away from the test section. The specimen was designed and manufactured using carbon/epoxy fabric with a four-ply-thick, quasi-isotropic, central test section. Initial validation and testing were performed on a specimen without impact damage. The specimen was tested to maximum biaxial strains of approximately 4500micro epsilon without apparent damage. A leak measurement system containing a pressurized cavity was clamped to the test section and used to measure the flow rate through the specimen. The leakage behavior of the specimen was investigated for pressure differences up to 172 kPa

  18. Local behavior of an AISI 304 stainless steel submitted to in situ biaxial loading in SEM

    Energy Technology Data Exchange (ETDEWEB)

    Caër, C., E-mail: celia.caer@gmail.com; Pesci, R.

    2017-04-06

    The microstructural response of a coarse grained AISI 304 stainless steel submitted to biaxial tensile loading was investigated using SEM and X-ray diffraction. The specimen geometry was designed to allow for biaxial stress state and incipient crack in the center of the active part under biaxial tensile loading. This complex loading was performed step by step by a micromachine fitting into a SEM chamber. At each loading step FSD pictures and EBSD measurements were carried out to study the microstructural evolution of the alloy, namely grain rotations and misorientations, stress-induced martensite formation and crack propagation. According to their initial orientation, grains are found to behave differently under loading. Approximately 60% of grains are shown to reorient to the [110] Z orientation under biaxial tensile loading, whereas the 40% left undergo high plastic deformation. EBSD and XRD measurements respectively performed under loading and on the post mortem specimen highlighted the formation of about 4% of martensite.

  19. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Sablik, M.J.; Kwun, H.; Rollwitz, W.L.; Cadena, D.

    1992-01-01

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  20. Biaxial loading effects on the growth of cracks

    International Nuclear Information System (INIS)

    Brown, M.W.; Miller, K.J.; Walker, T.J.

    1983-01-01

    Fatigue crack growth under different biaxial stress states is considered for both small scale yielding and high bulk stress conditions. Analytical and elastic finite element results are compared favourably alongside experimental results on a AISI 316 stainless steel at both room and elevated temperatures. Differences in crack growth rates are compared against different crack tip cyclic plastic zone sizes for various degrees of mixed mode loading, thereby overcoming the limitations of the Paris Law and LEFM. The usefulness of the approach is indicated for studies in the behaviour of materials subjected to thermal shock. Where steep temperature gradients are introduced due to rapid thermal transients, high strains are produced which propagate fatigue cracks under cyclic conditions. Since stress gradients are generally associated with thermal shock situations, the cracks grow through a plastically deformed region near the surface into an elastic region. A unified approach to fatigue behaviour, encompassing both linear elastic and elastic-plastic fracture mechanics, will enable analysis of thermal shock situations. The approach to crack propagation developed here shows that cyclic growth rates are a function of a severe strain zone size in which local stresses exceed the tensile strength, i.e. monotonic instability. The effects of stress biaxiality and mixed mode loading are included in the analysis, which may be extended to general yielding situations. (orig.)

  1. High temperature strength of Hastelloy XR under biaxial stress states

    International Nuclear Information System (INIS)

    Muto, Yasushi; Hada, Kazuhiko; Koikegami, Hajime; Ohno, Nobutada.

    1991-01-01

    Biaxial(tension/torsion) creep and creep-fatigue tests were conducted on Hastelloy XR at 950degC in air. Hastelloy XR is a nickel base solution-annealed heat resistant alloy. Thin-walled tubular test specimens were employed. As results of the creep tests, the von Mises' flow rule was revealed to be applicable very well. Under the torsion load, sufficient growth of voids was necessary to initiate the fracture and this resulted in longer life time compared with that under the tension load. Only a few number of small voids could be observed and very long life times were attained under the compression load. The creep-fatigue tests revealed that superposition of constant torsion load on a cyclic axial load reduced the cycles to failure significantly and the amount of reduction was consistent with the prediction by the linear life fraction rule. (author)

  2. Methodology for dynamic biaxial tension testing of pregnant uterine tissue.

    Science.gov (United States)

    Manoogian, Sarah; Mcnally, Craig; Calloway, Britt; Duma, Stefan

    2007-01-01

    Placental abruption accounts for 50% to 70% of fetal losses in motor vehicle crashes. Since automobile crashes are the leading cause of traumatic fetal injury mortality in the United States, research of this injury mechanism is important. Before research can adequately evaluate current and future restraint designs, a detailed model of the pregnant uterine tissues is necessary. The purpose of this study is to develop a methodology for testing the pregnant uterus in biaxial tension at a rate normally seen in a motor vehicle crash. Since the majority of previous biaxial work has established methods for quasi-static testing, this paper combines previous research and new methods to develop a custom designed system to strain the tissue at a dynamic rate. Load cells and optical markers are used for calculating stress strain curves of the perpendicular loading axes. Results for this methodology show images of a tissue specimen loaded and a finite verification of the optical strain measurement. The biaxial test system dynamically pulls the tissue to failure with synchronous motion of four tissue grips that are rigidly coupled to the tissue specimen. The test device models in situ loading conditions of the pregnant uterus and overcomes previous limitations of biaxial testing. A non-contact method of measuring strains combined with data reduction to resolve the stresses in two directions provides the information necessary to develop a three dimensional constitutive model of the material. Moreover, future research can apply this method to other soft tissues with similar in situ loading conditions.

  3. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND CLYDE...

  4. Stress state in perforated plates

    International Nuclear Information System (INIS)

    Visner, J.

    1977-01-01

    The method is described of photoelastic measurement of stress concentration factors (s.c.f) in plates perforated by a square, triangular and diagonal grid of circular holes and loaded by uniaxial or biaxial tensile stress. A loading equipment which was developed and its modifications are described. Stress concentration factors found are compared with theoretical and experimental results given in references. (author)

  5. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    International Nuclear Information System (INIS)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-01-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures

  6. Design of a cruciform bend specimen for determination of out-of- plane biaxial tensile stress effects on fracture toughness for shallow cracks

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Mcafee, W.J.; Pennell, W.E.; Theiss, T.J.

    1993-01-01

    Pressurized-thermal-shock loading in a reactor pressure vessel produces significant positive out-of-plane stresses along the crack front for both circumferential and axial cracks. Experimental evidence, while very limited, seems to indicate that a reduction in toughness is associated with out-of-plane biaxial loading when compared with toughness values obtained under uniaxial conditions. A testing program is described that seeks to determine the effects of out-of-plane biaxial tensile loading on fracture toughness of RPV steels. A cruciform bend specimen that meets specified criteria for the testing pregam is analyzed using three-dimensional elastic-plastic finite-element techniques. These analysis results provide the basis for proposed test conditions that are judged likely to produce a biaxial loading effect in the cruciform bend specimen

  7. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect

  8. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-03-11

    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  9. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  10. Limit load assessment of centre cracked plates under biaxial loading

    International Nuclear Information System (INIS)

    Meek, C.; Ainsworth, R.A.

    2015-01-01

    Fitness-for-service of equipment and components containing defects is generally assessed using procedures such as BS 7910, API 579 and R6. There is currently little detailed advice in these procedures on the effects of biaxial and triaxial loading on fracture. This poster shows some theoretical bounding solutions of the plastic limit load for centre cracked plates under a variety of biaxial loading ratios and compares the estimates with those found by numerical methods using finite element (FE) analysis using Abacus CAE modelling software. The limit load of a structure is the maximum load that it can carry before plastic collapse occurs; this is often when the plastic zone has become large enough to spread from the crack tip to a remote boundary. For an elastic-perfectly plastic material, the irreversible deformation will continue at stresses no higher than the yield stress. The model for these limit load solutions is a bi-axially loaded plate of width 2W and height 2H, a centre crack of width 2a, acted on by remotely applied uniform stresses σ 2 perpendicular to the crack and Bσ 2 parallel to the crack, where B is the biaxial loading ratio, it means the ratio of the parallel to the perpendicular stress. A quarter plate of an elastic-perfectly plastic material has been modelled. The results show that an exact solution has been found for negative and low positive values of B. For B > 1, the lower bound solution is conservative for all values of a/W and B

  11. Field-Induced Rheology in Uniaxial and Biaxial Fields

    International Nuclear Information System (INIS)

    MARTIN, JAMES E.

    1999-01-01

    Steady and oscillatory shear 3-D simulations of electro- and magnetorheology in uniaxial and biaxial fields are presented, and compared to the predictions of the chain model. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the absence of thermal fluctuations, the expected shear thinning viscosity is observed in steady shear, and a striped phase is seen to rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase eventually disappears, even when the fluid stress is still high. In a biaxial field, an opposite trend is seen, where Brownian motion decreases the stress most significantly at higher Mason numbers. to account for the uniaxial steady shear data they propose a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical prediction for the thermal effect. In oscillatory shear, a striped phase again appears in uniaxial field, at strain amplitudes greater than(approx) 0.15, and the presence of a shear slip zone creates strong stress nonlinearities at low strain amplitudes. In a biaxial field, a shear slip zone is not created, and so the stress nonlinearities develop only at expected strain amplitudes. The nonlinear dynamics of these systems is shown to be in good agreement with the Kinetic Chain Model

  12. Material law for concrete under multiaxial stress

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    In this paper a general triaxial set of finite strain-stress relations is derived, which can include a step-by-step way nearly all known factors and curves of material response. The finite constitutive equations representing the behaviour of concrete are related to the main strain-directions. The elastic part, the functions for uniaxial behaviour, those for biaxial response and finally the relation-parts, nonzero only in triaxial stress-state, can be reset separately by suitable functions which have been adjusted to the material response of actual concrete known from special tests. With a new and very short biaxial failure criterion for concrete, which has been stated and compared with test results, the analytic description of the biaxial behaviour of Kupfer's concrete is completed. With some additional assumptions the proposed failure criteria and the strain-stress equations for concrete are extended to the biaxial response of uncracked orthogonally reinforced concrete response. (Auth.)

  13. Investigation of in-plane biaxial low cycle fatigued austenitic stainless steel AISI 321. I. Mechanical testing on the planar biaxial load machine

    International Nuclear Information System (INIS)

    Taran, Yu.V.; Balagurov, A.M.; Kuznetsov, A.N.; Schreiber, J.; Bomas, H.; Stoeberl, Ch.; Rathjen, P.; Vorster, W.J.J.; Korsunsky, A.M.

    2007-01-01

    During fatigue loading of structural materials such as stainless steel, changes in the microstructure which affect the mechanical and physical properties occur. Experimental simulation of the loading conditions that induce the changes can be performed by mechanical loading, usually in the form of uniaxial tension-compression cycling. However, real machines and structures are subjected to more complex multiaxial stresses. Fatigue and fracture under multiaxial stresses are one of the most important current topics aimed at ensuring improved reliability of industrial components. The first step towards better understanding of this problem is to subject the materials to biaxial loading. The material examined was low austenitic stainless steel AISI 321 H. A set of the four samples of cruciform geometry was subjected to the biaxial tension-compression fatigue cycling with the frequency of 0.5 Hz at the applied load of 10-17 kN. The samples are intended for the neutron diffraction measurements of the residual stresses and the mechanical characterizations on a dedicated stress-diffractometer

  14. Shape recovery characteristics of biaxially prestrained Fe-Mn-Si-based shape memory alloy

    International Nuclear Information System (INIS)

    Wada, M.; Naoi, H.; Yasuda, H.; Maruyama, T.

    2008-01-01

    Fe-Mn-Si-based shape memory alloy has already been used practically for steel pipe joints. In most of the applications including the steel pipe joints, it is possible to estimate the reduction of diameter from the experimental data of the shape recovery after uniaxial stretching of the alloy materials. However, studies on shape recovery effects after biaxial stretching are important for the extensive applications of the alloy. In this study, we investigated the shape recovery strain after uniaxial and biaxial stretching and the microstructures of the alloy in order to see the effects of uniaxial and biaxial prestrain on the stress-induced martensitic transformation. Amounts of shape recovery strain in the biaxially prestrained specimens are smaller than those in the uniaxially prestrained specimens. Transmission electron microscopy revealed that reverse transformations of stress-induced martensitic ε-phase are prevented by slip bands formed at the same time in the biaxially prestrained specimens, but not in the uniaxially prestrained specimens. The technological data and interpretations presented in this study should be useful in forming design guidelines for promoting the extensive applications of Fe-Mn-Si-based shape memory alloy

  15. Corrosion Fatigue Crack Growth Behavior at Notched Hole in 7075 T6 Under Different Biaxial Stress Ratios

    Science.gov (United States)

    2016-08-18

    Subjected to Biaxial Cyclic Loads.” Engineering Fracture Mechanics , 78:1516- 1528, 2011. [37] Sih, G.C.. “A Special Theory of Crack Propagation...of Aeronautics and Astronautics Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and...environments from pre- cracked notched circular hole in a 7075-T6 cruciform specimen using a fracture mechanics approach. With stress ratio of R

  16. Single-source mechanical loading system produces biaxial stresses in cylinders

    Science.gov (United States)

    Flower, J. F.; Stafford, R. L.

    1967-01-01

    Single-source mechanical loading system proportions axial-to-hoop tension loads applied to cylindrical specimens. The system consists of hydraulic, pneumatic, and lever arrangements which produce biaxial loading ratios.

  17. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.

    LENUS (Irish Health Repository)

    Lyons, Mathew

    2014-06-03

    Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace׳s law showed a circumferential stress in the abdominal wall of approx. 1.1MPa due to an IAP of 11kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress-stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress-stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.

  18. Analysis and experimental validation of through-thickness cracked large-scale biaxial fracture tests

    International Nuclear Information System (INIS)

    Wiesner, C.S.; Goldthorpe, M.R.; Andrews, R.M.; Garwood, S.J.

    1999-01-01

    Since 1984 TWI has been involved in an extensive series of tests investigating the effects of biaxial loading on the fracture behaviour of A533B steel. Testing conditions have ranged from the lower to upper shelf regions of the transition curve and covered a range of biaxiality ratios. In an attempt to elucidate the trends underlying the experimental results, finite element-based mechanistic models were used to analyse the effects of biaxial loading. For ductile fracture, a modified Gunson model was used and important effects on tearing behaviour were found for through thickness cracked wide plates, as observed in upper shelf tests. For cleavage fracture, both simple T-stress methods and the Anderson-Dodds and Beremin models were used. Whilst the effect of biaxiality on surface cracked plates was small, a marked effect of biaxial loading was found for the through-thickness crack. To further validate the numerical predictions for cleavage fracture, TWI have performed an additional series of lower shelf through thickness cracked biaxial wide plate fracture tests. These tests were performed using various biaxiality loading conditions varying from simple uniaxial loading, through equibiaxial loading, to a biaxiality ratio equivalent to a circumferential crack in a pressure vessel. These tests confirmed the predictions that there is a significant effect of biaxial loading on cleavage fracture of through thickness cracked plate. (orig.)

  19. ANALYSIS OF STRESS-STRAIN STATE OF REINFORCED CONCRETE PLATE AROUND SUPPORT ZONES

    Directory of Open Access Journals (Sweden)

    Oleg V. Kabantsev

    2017-03-01

    Full Text Available Structural analysis of the formation and evolution processes of structural microdestruction with the tran-sition to macrorestriction occurring during plastic deformation of masonry under biaxial stresses. The dependencies that determine the amount of the plastic phase of the deformation of masonry. Identified processes and their corre-sponding strength criteria, which play a key role in the implementation phase of plastic deformation. It is shown that plastic deformation of masonry under biaxial stresses occurs when the physical line operation of the basic ma-terials of masonry (brick and mortar. Found that the plastic properties of masonry under biaxial stresses are deter-mined by the processes occurring at the nodes of contact interaction of brick and mortar in horizontal and vertical joints. According to the results of numerical studies the values of the coefficients of ductility of masonry at different variants of mechanical characteristics of brick, mortar and adhesive strength of their interaction.

  20. Biaxial charts for rectangular reinforced columns in accordance with ...

    African Journals Online (AJOL)

    linearity arising from the non-linear stress-strain relationships and the cracking of the cross-section. · As a result, the systematic production of biaxial design charts necessitates the application of numerical methods that are based on iterations.

  1. Experimental and analytical comparison of constraint effects due to biaxial loading and shallow-flaws

    International Nuclear Information System (INIS)

    Theiss, T.J.; Bass, B.R.; Bryson, J.W.

    1993-01-01

    A program to develop and evaluate fracture methodologies for the assessment of crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels has been initiated in the Heavy-Section Steel Technology (HSST) Program. The focus of studies described herein is on the evaluation of a micromechanical scaling model based on critical stressed volumes for quantifying crack-tip constraint through applications to experimental data. Data were utilized from single-edge notch bend (SENB) specimens and HSST-developed cruciform beam specimens that were tested in HSST shallow-crack and biaxial testing programs. Shallow-crack effects and far-field tensile out-of-plane biaxial loading have been identified as constraint issues that influence both fracture toughness and the extent of the toughness scatter band. Results from applications indicate that the micromechanical scaling model can be used successfully to interpret experimental data from the shallow- and deep-crack SENB specimen tests. When applied to the uniaxially and biaxially loaded cruciform specimens, the two methodologies showed some promising features, but also raised several questions concerning the interpretation of constraint conditions in the specimen based on near-tip stress fields. Crack-tip constraint analyses of the shallow-crack cruciform specimen based on near-tip stress fields. Crack-tip constraint analyses of the shallow-crack cruciform specimen subjected to uniaxial or biaxial loading conditions are shown to represent a significant challenge for these methodologies. Unresolved issued identified from these analyses require resolution as part of a validation process for biaxial loading applications

  2. Biaxial loading effects on fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    McAfee, W.J.; Bass, B.R.; Bryson, J.W. Jr.; Pennell, W.E.

    1995-03-01

    The preliminary phases of a program to develop and evaluate fracture methodologies for assessing crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels have been completed by the Heavy-Section Steel Technology (HSST) Program. Objectives were to investigate effect of biaxial loading on fracture toughness, quantify this effect through existing stress-based, dual-parameter, fracture-toughness correlations, or propose and verify alternate correlations. A cruciform beam specimen with 2-D, shallow, through-thickness flaw and a special loading fixture was designed and fabricated. Tests were performed using biaxial loading ratios of 0:1 (uniaxial), 0.6:1, and 1:1 (equi-biaxial). Critical fracture-toughness values were calculated for each test. Biaxial loading of 0.6:1 resulted in a reduction in the lower bound fracture toughness of ∼12% as compared to that from the uniaxial tests. The biaxial loading of 1:1 yielded two subsets of toughness values; one agreed well with the uniaxial data, while one was reduced by ∼43% when compared to the uniaxial data. Results were evaluated using J-Q theory and Dodds-Anderson (D-A) micromechanical scaling model. The D-A model predicted no biaxial effect, while the J-Q method gave inconclusive results. When applied to the 1:1 biaxial data, these constraint methodologies failed to predict the observed reduction in fracture toughness obtained in one experiment. A strain-based constraint methodology that considers the relationship between applied biaxial load, the plastic zone width in the crack plane, and fracture toughness was formulated and applied successfully to the data. Evaluation of this dual-parameter strain-based model led to the conclusion that it has the capability of representing fracture behavior of RPV steels in the transition region, including the effects of out-of-plane loading on fracture toughness. This report is designated as HSST Report No. 150

  3. Effects of biaxial oscillatory shear stress on endothelial cell proliferation and morphology.

    Science.gov (United States)

    Chakraborty, Amlan; Chakraborty, Sutirtha; Jala, Venkatakrishna R; Haribabu, Bodduluri; Sharp, M Keith; Berson, R Eric

    2012-03-01

    Wall shear stress (WSS) on anchored cells affects their responses, including cell proliferation and morphology. In this study, the effects of the directionality of pulsatile WSS on endothelial cell proliferation and morphology were investigated for cells grown in a Petri dish orbiting on a shaker platform. Time and location dependent WSS was determined by computational fluid dynamics (CFD). At low orbital speed (50 rpm), WSS was shown to be uniform (0-1 dyne/cm(2)) across the bottom of the dish, while at higher orbital speed (100 and 150 rpm), WSS remained fairly uniform near the center and fluctuated significantly (0-9 dyne/cm(2)) near the side walls of the dish. Since WSS on the bottom of the dish is two-dimensional, a new directional oscillatory shear index (DOSI) was developed to quantify the directionality of oscillating shear. DOSI approached zero for biaxial oscillatory shear of equal magnitudes near the center and approached one for uniaxial pulsatile shear near the wall, where large tangential WSS dominated a much smaller radial component. Near the center (low DOSI), more, smaller and less elongated cells grew, whereas larger cells with greater elongation were observed in the more uniaxial oscillatory shear (high DOSI) near the periphery of the dish. Further, cells aligned with the direction of the largest component of shear but were randomly oriented in low magnitude biaxial shear. Statistical analyses of the individual and interacting effects of multiple factors (DOSI, shear magnitudes and orbital speeds) showed that DOSI significantly affected all the responses, indicating that directionality is an important determinant of cellular responses. Copyright © 2011 Wiley Periodicals, Inc.

  4. STRAIN-CONTROLLED BIAXIAL TENSION OF NATURAL RUBBER: NEW EXPERIMENTAL DATA

    KAUST Repository

    Pancheri, Francesco Q.

    2014-03-01

    We present a new experimental method and provide data showing the response of 40A natural rubber in uniaxial, pure shear, and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the preselected deformation rate within the gage area of the specimen. Wealso focus on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data.Weuse a threeterm Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction.

  5. Tunnel splitting in biaxial spin models investigated with spin-coherent-state path integrals

    International Nuclear Information System (INIS)

    Chen Zhide; Liang, J.-Q.; Pu, F.-C.

    2003-01-01

    Tunnel splitting in biaxial spin models is investigated with a full evaluation of the fluctuation functional integrals of the Euclidean kernel in the framework of spin-coherent-state path integrals which leads to a magnitude of tunnel splitting quantitatively comparable with the numerical results in terms of diagonalization of the Hamilton operator. An additional factor resulted from a global time transformation converting the position-dependent mass to a constant one seems to be equivalent to the semiclassical correction of the Lagrangian proposed by Enz and Schilling. A long standing question whether the spin-coherent-state representation of path integrals can result in an accurate tunnel splitting is therefore resolved

  6. A proposal of parameter to predict biaxial fatigue life for CF8M cast stainless steels

    International Nuclear Information System (INIS)

    Park, Joong Cheul; Kwon, Jae Do

    2005-01-01

    Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified

  7. Meso-Scale Finite Element Analysis of Mechanical Behavior of 3D Braided Composites Subjected to Biaxial Tension Loadings

    Science.gov (United States)

    Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc

    2018-04-01

    In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.

  8. Interference of wedge-shaped protrusions on the faces of a Griffith crack in biaxial stress. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, J.A.M. [Tennessee Univ., Knoxville, TN (United States)

    1992-04-01

    An initial investigation of the influence of protrusion interference on the fracture toughness required to prevent unstable propagation of a Griffith crack in a brittle material is described. The interference is caused by relative shear displacement of the crack faces when subjected to remote biaxial stress with neither principal stress parallel to the crack. It is shown that for room temperature cracks smaller than about one centimeter in silicon carbide, or about one millimeter in silicon nitride, the presence of interference changes the fracture stress. A mathematical model based on linear elasticity solutions and including multiple interference sites at arbitrarily specified positions on the crack is presented. Computations of the change in required fracture toughness and its dependence on wedge geometry (size and vertex angle), applied stresses (orientation and magnitude), and location of the interference site are discussed. Results indicate that a single interference site has only a slight effect on required toughness. However, the influence of interference increases monotonically with the number of interference sites. The two-dimensional model described herein is not accurate when the interference sites are closely spaced.

  9. Life estimation of low-cycle fatigue of pipe elbows. Proposed criteria of low-cycle fatigue life under the multi-axial stress field

    International Nuclear Information System (INIS)

    Ando, Kotoji; Takahashi, Koji; Matsuo, Kazuya; Urabe, Yoshio

    2013-01-01

    Pipe elbows were important parts frequently used in the pipelines of nuclear power, thermal power and chemical plants, and their integrity needed to be assured under seismic loads and thermal stresses considering local wall thinning or complex stress distribution due to special configuration different from straight pipe. This article investigated in details elastic-plastic stress-strain state of pipe elbow using finite element analysis and clarified there existed high bi-axial stress field at side inner surface of pipe elbow axial cracks initiated. Bi-axial stress factor was around 0.6 for sound elbow and up to 0.95 for local wall thinning at crown. Fracture strain of 1.15 was reduced to around 0.15 for bi-axial stress factor from 0.6 to 0.9. Normalized fatigue life for bi-axial stress field (0.6 - 0.8) was largely reduced to around 15, 19 and 10% of fatigue life of uni-axial state dependent on material strength level. Proposed revised universal slopes taking account of multi-axial stress factor could explain qualitatively effects of strain range, internal pressure and ratchet strain (pre-strain) on low-cycle fatigue life of pipe elbow. (T. Tanaka)

  10. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    correlating the finite element stress-state results with the spatial distribution of hydride microstructures observed within the optical micrographs for each sample. Experiments showed that the hydride reorientation was enhanced as the stress biaxiality increased. The threshold stress decreased from 150 MPa to 80 MPa when stress biaxiality ratio increased from uniaxial tension to near-equibiaxial tension. This behavior was also predicted by classical nucleation theory based on the Gibbs free energy of transformation being assisted by the far-field stress. An analysis of in situ X-ray diffraction data obtained during a thermo-mechanical cycle typical of vacuum drying showed a complex lattice-spacing behavior of the hydride phase during the dissolution and precipitation. The in-plane hydrides showed bilinear lattice expansion during heating with the intrinsic thermal expansion rate of the hydrides being observed only at elevated temperatures as they dissolve. For radial hydrides that precipitate during cooling under stress, the spacing of the close-packed {111} planes oriented normal to the maximum applied stress was permanently higher than the corresponding {111} plane spacing in the other directions. This behavior is believed to be a result of a complex stress state within the precipitating plate-like hydrides that induces a strain component within the hydrides normal to its "plate" face (i.e., the applied stress direction) that exceeds the lattice spacing strains in the other directions. During heat-up, the lattice spacing of these same "plate" planes actually contract due to the reversion of the stress state within the plate-like hydrides as they dissolve. The presence of radial hydrides and their connectivity with in-plane hydrides was shown to increase the ductile-to-brittle transition temperature during tensile testing. This behavior can be understood in terms of the role of radial hydrides in promoting the initiation of a long crack that subsequently propagates under

  11. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    International Nuclear Information System (INIS)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch

    2011-01-01

    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E(σ 2 x + σ 2 y ) - ν/E(σ x σy)]dV (1). From equation (1) a mathematical deduction to solve in terms of θ of this case was developed employing Genetic Algorithms, where θ is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  12. Material law for concrete under multiaxial stress

    International Nuclear Information System (INIS)

    Geistefeldt, H.

    1977-01-01

    In this paper a general triaxial set of finite strain-stress relations is derived, which can include in a step-by-step way nearly all known factors and curves of material response. The finite constitutive equations representing the behavior of concrete are related to the main strain-directions. The elastic part, the functions for uniaxial behavior, those for biaxial response and finally the relation-parts, nonzero only in triaxial stress-state, can be reset separately by suitable functions which have been adjusted to the material response of actual concrete known from special tests. In nonlinear incremental analysis a potential is usually assumed in incremental material behavior to keep incremental stiffness matrices symmetric. If the proposed generalized set of constitutive equations is restricted to special types of functions, the resulting tangent stiffness is symmetric. Special functions for the various parts are presented, the tangent stiffness of which can easily be derived explicitly by partial differentiation of the related strain-stress relations. Thus the application of the proposed constitutive equations in incremental nonlinear analysis is very effective. The free coefficients of one general set of equations are adjusted step by step to the results of Kupfer's biaxial tests under shorttime loading. With a new and very short bixial failure criterion for concrete, which has been stated and compared with test results, the analytic description of the biaxial behavior of Kupfer's concrete is completed. With some additional assumptions the proposed failure criteria and the strain-stress equations for concrete are extended to the biaxial response of uncracked othogonally reinforced concrete response

  13. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture toughness

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Theiss, T.J.; Rao, M.C.

    1994-01-01

    A program to develop and evaluate fracture methodologies for the assessment of crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels has been initiated in the Heavy-Section Steel Technology (HSST) Program. Crack-tip constraint is an issue that significantly impacts fracture mechanics technologies employed in safety assessment procedures for commercially licensed nuclear RPVs. The focus of studies described herein is on the evaluation of two stressed-based methodologies for quantifying crack-tip constraint (i.e., J-Q theory and a micromechanical scaling model based on critical stressed volumes) through applications to experimental and fractographic data. Data were utilized from single-edge notch bend (SENB) specimens and HSST-developed cruciform beam specimens that were tested in HSST shallow-crack and biaxial testing programs. Results from applications indicate that both the J-Q methodology and the micromechanical scaling model can be used successfully to interpret experimental data from the shallow- and deep-crack SENB specimen tests. When applied to the uniaxially and biaxially loaded cruciform specimens, the two methodologies showed some promising features, but also raised several questions concerning the interpretation of constraint conditions in the specimen based on near-tip stress fields. Fractographic data taken from the fracture surfaces of the SENB and cruciform specimens are used to assess the relevance of stress-based fracture characterizations to conditions at cleavage initiation sites. Unresolved issues identified from these analyses require resolution as part of a validation process for biaxial loading applications. This report is designated as HSST Report No. 142

  14. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    Science.gov (United States)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  15. Topology Optimization of Stressed Capacitive RF MEMS Switches

    DEFF Research Database (Denmark)

    Philippine, Mandy A.; Sigmund, Ole; Rebeiz, Gabriel M.

    2013-01-01

    Geometry design can improve a capacitive radio-frequency microelectromechanical system switch's reliability by reducing the impacts of intrinsic biaxial stresses and stress gradients on the switch's membrane. Intrinsic biaxial stresses cause stress stiffening, whereas stress gradients cause out-o...

  16. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch, E-mail: rrodriguezm@ipn.mx, E-mail: urrio332@hotmail.com, E-mail: guiurri@hotmail.com, E-mail: luishector56@hotmail.com, E-mail: romerobeatriz98@hotmail.com, E-mail: napor@hotmail.com [INSTITUTO POLITECNICO NACIONAL Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de Ingenieria Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico)

    2011-07-19

    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E({sigma}{sup 2}{sub x} + {sigma}{sup 2}{sub y}) - {nu}/E({sigma}{sub x}{sigma}{sub y})]dV (1). From equation (1) a mathematical deduction to solve in terms of {theta} of this case was developed employing Genetic Algorithms, where {theta} is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  17. Effect of grain shape and texture on equi-biaxial creep of stress relieved and recrystallized Zircaloy-4

    International Nuclear Information System (INIS)

    Murty, K.L.; Tanikella, B.V.; Earthman, J.C.

    1994-01-01

    Zirconium alloys are extensively used in various types of fission reactors both light and heavy water types for different applications, examples being thin-walled tubing to clad radioactive fuel, grids, channels in boiling water reactors (BWRs) as well as pressure and calandria tubes in pressurized heavy water reactors (PHWRs). Biaxial creep behaviors of stress relieved and recrystallized thin-walled tubing of Zircaloy-4 are considered under equal hoop and axial stresses by internal pressurization superimposed with axial load. Both hoop and axial strains were monitored and the ratio of the strain rates along the hoop to axial directions is considered to represent the degree of anisotropy. The slightly stronger hoop direction of the recrystallized material became weaker compared to the axial direction following cold work and a stress-relief anneal. Crystallographic texture was considered in terms of x-ray pole figures from which the crystallite orientation distribution functions (CODF) were derived. A crystal plasticity model based on slip on representative systems was combined with the CODF to predict the creep anisotropy. It was found that the textural differences between the recrystallized and stress-relieved material is believed to invoke anisotropic grain boundary sliding leading to stress enhancement in the hoop direction. This stress enhancement is shown to account for the observed differences in creep behavior between the present equiaxed and columnar grain structures

  18. Biaxial mechanical tests in zircaloy-4

    International Nuclear Information System (INIS)

    Mintzer, S.R.; Bordoni, R.A.A.; Falcone, J.M.

    1980-01-01

    The texture of the zircaloy-4 tubes used as cladding in nuclear fuel elements determines anisotropy of the mechanical properties. As a consequence, the uniaxial tests to determine the mechanical behaviour of the tubes are incomplete. Furthermore, the cladding in use is subject to creep with a state of biaxial tensions. For this reason it is also important to determine the biaxial mechanical properties. The creep tests were performed by internal pressure for a state of axial to circumferential tensions of 0.5. Among the experimental procedures are described: preparation of the test specimens, pressurizing equipment, and the implementation of a device that permits a permanent register of the deformation. For the non-irradiated Atucha type zircaloy-4 sheaths, experimental curves of circumferential deformation versus time were obtained, in tests at constant pressure and for different values of temperature and pressure. An empirical function was determined to adjust the experimental values for the speed of the circumferential deformation in terms of the initial tension applied, temperature and deformation, and the change of the corresponding parameters in accordance to the range of the tensions. Also the activation energy for creep was determined. (M.E.L.) [es

  19. Ray-optics analysis of inhomogeneous biaxially anisotropic media

    NARCIS (Netherlands)

    Sluijter, M.; De Boer, D.K.G.; Urbach, H.P.

    2009-01-01

    Firm evidence of the biaxial nematic phase in liquid crystals, not induced by a magnetic or electric field, has been established only recently. The discovery of these biaxially anisotropic liquid crystals has opened up new areas of both fundamental and applied research. The advances in biaxial

  20. Slow strain rate stress corrosion cracking under multiaxial deformation conditions: technique and application to admiralty brass

    International Nuclear Information System (INIS)

    Blanchard, W.K.; Heldt, L.A.; Koss, D.

    1984-01-01

    A set of straightforward experimental techniques are described for the examination of slow strain rate stress corrosion cracking (SCC) of sheet deforming under nearly all multiaxial deformation conditions which result in sheet thinning. Based on local fracture strain as a failure criterion, the results contrast stress corrosion susceptibility in uniaxial tension with those in both plane strain and balanced biaxial tension. These results indicate that the loss of ductility of the brass increases as the stress state changes from uniaxial toward balanced biaxial tension

  1. Biaxial direct tensile tests in a large range of strain rates. Results on a ferritic nuclear steel

    Energy Technology Data Exchange (ETDEWEB)

    Albertini, C.; Labibes, K.; Montagnani, M.; Pizzinato, E.V.; Solomos, G.; Viaccoz, B. [Commission of the European Communities, Ispra (Italy). Joint Research Centre

    2000-09-01

    Constitutive equations are usually calibrated only trough the experimental results obtained by means of unixial tests because of the lack of adequate biaxial experimental data especially at high strain rate conditions. These data are however important for the validation of analytical models and also for the predictions of mechanical behaviour of real structures subjected to multiaxial loading by numerical simulations. In this paper some developments are shown concerning biaxial cruciform specimens and different experimental machines allowing biaxial tests in a large range of strain rates. This experimental campaign has also allowed study of the influence of changing the strain paths. Diagrams of equivalent stress versus straining direction and also equivalent plastic fracture strain versus straining direction are shown. (orig.)

  2. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    International Nuclear Information System (INIS)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H; Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M

    2009-01-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K 1 values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  3. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico); Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M, E-mail: rrodriguezm@ipn.m, E-mail: urrio332@hotmail.co, E-mail: guiurri@hotmail.co, E-mail: luishector56@hotmail.co, E-mail: eamerchan@gmail.co, E-mail: ricname@hotmail.co, E-mail: jsandovalp@ipn.m [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Unidad profesional, AZCAPOTZALCO, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. (Mexico)

    2009-08-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K{sub 1} values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  4. Applicability of a particularly simple model to nonlinear elasticity of slide-ring gels with movable cross-links as revealed by unequal biaxial deformation.

    Science.gov (United States)

    Kondo, Yuuki; Urayama, Kenji; Kidowaki, Masatoshi; Mayumi, Koichi; Takigawa, Toshikazu; Ito, Kohzo

    2014-10-07

    The strain energy density function (F) of the polyrotaxane-based slide-ring (SR) gels with movable cross-links along the network strands is characterized by unequal biaxial stretching which can achieve various types of deformation. The SR gels as prepared without any post-preparation complication exhibit considerably smaller values of the ratio of the stresses (σy/σx) in the stretched (x) and constrained (y) directions in planar extension than classical chemical gels with heterogeneous and nearly homogeneous network structures do. This feature of the SR gels leads to the peculiar characteristic that the strain energy density function (F) has no explicit cross term of strains in different directions, which is in contrast to F with explicit strain cross terms for most chemical gels and elastomers. The biaxial stress-strain data of the SR gels are successfully described by F of the Gent model with only two parameters (small-strain shear modulus and a parameter representing ultimate elongation), which introduces the finite extensibility effect into the neo-Hookean model with no explicit cross term of strain. The biaxial data of the deswollen SR gels examined in previous study, which underwent a considerable reduction in volume from the preparation state, are also well described by the Gent model, which is in contrast to the case of the classical chemical gels that the stress-strain relations before and after large deswelling are not described by a common type of F due to a significant degree of collapse of the network strands in the deswollen state. These intriguing features of nonlinear elasticity of the SR gels originate from a novel function of the slidable cross-links that can maximize the arrangement entropy of cross-linked and non-cross-linked cyclic molecules in the deformed networks.

  5. Crack under biaxial loading: Two-parameter description and prediction of crack growth direction

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav

    2014-01-01

    Roč. 31, APR (2014), s. 44-49 ISSN 0213-3725 R&D Projects: GA MŠk(CZ) 7AMB14AT012 Institutional support: RVO:68081723 Keywords : Concrete * T-stress * cracks growth prediction * numerical calculation * biaxial loading Subject RIV: JL - Materials Fatigue, Friction Mechanics

  6. Numerical development of a new correlation between biaxial fracture strain and material fracture toughness for small punch test

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pradeep [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Dutta, B.K., E-mail: bijon.dutta@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Chattopadhyay, J. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2017-04-01

    The miniaturized specimens are used to determine mechanical properties of the materials, such as yield stress, ultimate stress, fracture toughness etc. Use of such specimens is essential whenever limited quantity of material is available for testing, such as aged/irradiated materials. The miniaturized small punch test (SPT) is a technique which is widely used to determine change in mechanical properties of the materials. Various empirical correlations are proposed in the literature to determine the value of fracture toughness (J{sub IC}) using this technique. bi-axial fracture strain is determined using SPT tests. This parameter is then used to determine J{sub IC} using available empirical correlations. The correlations between J{sub IC} and biaxial fracture strain quoted in the literature are based on experimental data acquired for large number of materials. There are number of such correlations available in the literature, which are generally not in agreement with each other. In the present work, an attempt has been made to determine the correlation between biaxial fracture strain (ε{sub qf}) and crack initiation toughness (J{sub i}) numerically. About one hundred materials are digitally generated by varying yield stress, ultimate stress, hardening coefficient and Gurson parameters. Such set of each material is then used to analyze a SPT specimen and a standard TPB specimen. Analysis of SPT specimen generated biaxial fracture strain (ε{sub qf}) and analysis of TPB specimen generated value of J{sub i}. A graph is then plotted between these two parameters for all the digitally generated materials. The best fit straight line determines the correlation. It has been also observed that it is possible to have variation in J{sub i} for the same value of biaxial fracture strain (ε{sub qf}) within a limit. Such variation in the value of J{sub i} has been also ascertained using the graph. Experimental SPT data acquired earlier for three materials were then used to get J

  7. Biaxial testing for nuclear grade graphite by ball on three balls assessment

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Yusof Abdullah

    2012-01-01

    Nuclear grade (high-purity) graphite for fuel element and moderator material in Advanced Gas Cooling Reactors (AGR) displays large scatter in strength and a non-linear stress-strain response from the damage accumulation. These responses can be characterized as quasi-brittle behaviour. Current assessments of fracture in core graphite components are based on the linear elastic approximation and thus represent a major assumption. The quasi-brittle behaviour gives challenge to assess the real nuclear graphite component. The selected test method would help to bridge the gap between microscale to macro-scale in real reactor component. The small scale tests presented here can contribute some statistical data to manifests the failure in real component. The evaluation and choice of different solution design of biaxial test will be discussed in this paper. The ball on-three ball test method was used for assessment test follows by numerous of analytical method. The results shown that biaxial strength of the EY9 grade graphite depends on the method used for evaluation. Some of the analytical methods use to calculate biaxial strength were found not to be valid and therefore should not be used to assess the mechanical properties of nuclear graphite. (author)

  8. Anisotropic yield surfaces in bi-axial cyclic plasticity

    International Nuclear Information System (INIS)

    Rider, R.J.; Harvey, S.J.; Breckell, T.H.

    1985-01-01

    Some aspects of the behaviour of yield surfaces and work-hardening surfaces occurring in biaxial cyclic plasticity have been studied experimentally and theoretically. The experimental work consisted of subjecting thin-walled tubular steel specimens to cyclic plastic torsion in the presence of sustained axial loads of various magnitudes. The experimental results show that considerable anisotropy is induced when the cyclic shear strains are dominant. Although the true shapes of yield and work-hardening surfaces can be very complex, a mathematical model is presented which includes both anisotropy and Bauschinger effects. The model is able to qualitatively predict the deformation patterns during a cycle of applied plastic shear strain for a range of sustained axial stresses and also indicate the material response to changes in axial stress. (orig.)

  9. Measurement and Analysis of Ultra-Thin Austenitic Stainless Steel Sheet under Biaxial Tensile Loading and In-Plane Reverse Loading

    Science.gov (United States)

    Murakoso, Satoko; Kuwabara, Toshihiko

    Biaxial tensile tests of austenitic stainless steel sheet (SUS304) 0.2mm thick have been carried out using cruciform specimens. The specimens are loaded under linear stress paths in a servo-controlled biaxial tensile testing machine. Plastic orthotropy remained coaxial with the principal stresses throughout every experiment. The successive contours of plastic work in biaxial stress space changed their shapes progressively, exemplifying differential work hardening. The geometry of the entire family of the work contours and the directions of plastic strain rates have been precisely measured and compared with those calculated using conventional yield functions. Yld2000-2d [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H. and Chu, E., International Journal of Plasticity, Vol. 19, (2003), pp. 1297-1319.] with an exponent of 6 was capable of reproducing the general trends of the work contours and the directions of plastic strain rates with good accuracy. Furthermore, in order to quantitatively evaluate the Bauschinger effect of the test material, in-plane tension/compression tests are conducted. It was found that the non-dimensional (σ /σu) - Δɛ /(σu/ E) curves measured during unloading almost fall on a single curve and are not affected by the amount of pre-strain, where σ is the current stress during unloading, σu is the stress immediately before unloading, Δɛ (< 0) is the total strain increment during unloading.

  10. Biaxial testing for fabrics and foils optimizing devices and procedures

    CERN Document Server

    Beccarelli, Paolo

    2015-01-01

    This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.

  11. Accessible switching of electronic defect type in SrTi O3 via biaxial strain

    Science.gov (United States)

    Chi, Yen-Ting; Youssef, Mostafa; Sun, Lixin; Van Vliet, Krystyn J.; Yildiz, Bilge

    2018-05-01

    Elastic strain is used widely to alter the mobility of free electronic carriers in semiconductors, but a predictive relationship between elastic lattice strain and the extent of charge localization of electronic defects is still underdeveloped. Here we considered SrTi O3 , a prototypical perovskite as a model functional oxide for thin film electronic devices and nonvolatile memories. We assessed the effects of biaxial strain on the stability of electronic defects at finite temperature by combining density functional theory (DFT) and quasiharmonic approximation (QHA) calculations. We constructed a predominance diagram for free electrons and small electron polarons in this material, as a function of biaxial strain and temperature. We found that biaxial tensile strain in SrTi O3 can stabilize the small polaron, leading to a thermally activated and slower electronic transport, consistent with prior experimental observations on SrTi O3 and distinct from our prior theoretical assessment of the response of SrTi O3 to hydrostatic stress. These findings also resolved apparent conflicts between prior atomistic simulations and conductivity experiments for biaxially strained SrTi O3 thin films. Our computational approach can be extended to other functional oxides, and for the case of SrTi O3 our findings provide concrete guidance for conditions under which strain engineering can shift the electronic defect type and concentration to modulate electronic transport in thin films.

  12. Effect of cyclic block loading on character of deformation and strength of structural materials in plane stressed state

    International Nuclear Information System (INIS)

    Kul'chitskij, N.M.; Troshchenko, A.V.; Koval'chuk, B.I.; Khamaza, L.A.; Nikolaev, I.A.

    1982-01-01

    The paper is concerned with choice of conditions for preliminary cyclic block loading, determination of fatigue failure resistance characteristics for various structural materials under regular and selected block loading, investigation of the preliminary cyclic loading effect on regularities of elastoplastic deformation of materials concerned in the biaxial stressed state. Under selected conditions of cyclic block loading the character of damage accumulation is close to the linear law for the materials of high-srength doped steel, and VT6 alloys of concern. These materials in the initial state and after preliminary cyclic loading are anisotropic. Axial direction is characterized by a higher plastic strain resistance for steel and tangential direction - for VT6 alloy. The generalized strain curves for the materials in question are not invariant as to the stressed state type. It is stated that the effect of preliminary unsteady cyclic loading on resistance and general regularities of material deformation in the complex stressed state is insignificant. It is observed that stress-strain properties of the materials tend to vary in the following way: plastic strain resistance of the steel lowers and that of VT6 rises, anisotropy of the materials somehow decreases. The variation in the material anisotropy may be attributed to a decrease in residual stresses resulting from preliminary cyclic loading

  13. Biaxial Loading Tests for steel containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, T. [Nuclear Power Engineering Corp., Tokyo (Japan); Wright, D.J.; Arai, S.

    1999-07-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  14. Biaxial Loading Tests for steel containment vessel

    International Nuclear Information System (INIS)

    Miyagawa, T.; Wright, D.J.; Arai, S.

    1999-01-01

    The Nuclear Power Engineering Corporation (NUPEC) has conducted a 1/10 scale of the steel containment vessel (SCV) test for the understanding of ultimate structural behavior beyond the design pressure condition. Biaxial Loading Tests were supporting tests for the 1/10 scale SCV model to evaluate the method of estimating failure conditions of thin steel plates under biaxial loading conditions. The tentative material models of SGV480 and SPV490 were obtained. And the behavior of SGV480 and SPV490 thin steel plates under biaxial loading conditions could be well simulated by FE-Analyses with the tentative material models and Mises constitutive law. This paper describes the results and the evaluations of these tests. (author)

  15. In-situ neutron diffraction study of Zircaloy 4 subjected to biaxial tension

    Energy Technology Data Exchange (ETDEWEB)

    Gharghouri, M.A. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, ON (Canada); McDonald, D.; Xiao, L. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Zircaloy-4 is widely used as fuel element cladding in nuclear reactors. Pellet-clad interaction (PCI) failure is a concern for many water reactor fuel designs. Extensive work on the mechanism of PCI failure has led to the conclusion that stress corrosion cracking (SCC) induced by iodine vapour in the temperature range relevant to fuel operation is the most probable cause of PCI failure in zirconium alloy fuel element cladding. In-situ neutron diffraction measurements performed on tubular Zircaloy-4 specimens simultaneously pulled in tension and pressurized internally will provide information on the effects of stress biaxiality on the distribution of stresses at the crystal level during loading. (author)

  16. Investigations on the influence of the stress state on fracture-mechanical values

    International Nuclear Information System (INIS)

    Schmidt, P.

    1979-01-01

    Fracture toughness obtained from specimen can be applied to construction elements only when the same stress state exists. In standardised fracture-mechanical tests plain strain is realised. Using the stress intensity factor, a critical crack length or a critical load can be obtained. Above these values a crack propagates in an unstable way. The specimen are tested under uni-axial load. In this paper investigations have been made whether a biaxial load increases the stress state over the plain strain and whether consequently a decrease of the critical fracture toughness and a shift of the temperatures Tsub(g)sub(y) and Tsub(s) results which characterise the fracture behaviour of steel. In order to answer these questions the tests were made which induced due to their geometry an additional nominal stress parallel to the crack front in spite of uni-axial loading. The results were compared with those from specimen without an additional nominal stress and having in their cross section under same test conditions nearly the same plain strain. The fracture toughness of both specimen types were compared at temperatures between 142 K and 252 K and correlated to other material-characterising values. The tests were completed by stress analysis and by comparing the crack opening displacement. Due to the additional stress, Tsub(g)sub(y) was found to be 20 K higher than for the reference specimen. The fracture toughness decreases significantly in certain temperature ranges. The plastic stress concentration factor was comperatively higher and the remaining plastic crack opening decreases up to 25%. (orig.) [de

  17. Biaxiality of chiral liquid crystals

    International Nuclear Information System (INIS)

    Longa, L.; Trebin, H.R.; Fink, W.

    1993-10-01

    Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab

  18. Investigation of in-plane biaxial low cycle fatigued austenitic stainless steel AISI 321. II. Neutron diffraction stress analysis at the IBR-2 pulsed nuclear reactor

    International Nuclear Information System (INIS)

    Taran, Yu.V.; Balagurov, A.M.; Sheverev, S.G.; ); Schreiber, J.; Bomas, H.; Korsunsky, A.M.

    2007-01-01

    The in-plane biaxial low cycle fatigued sample of the cruciform geometry from austenitic stainless steel AISI 321 was investigated on the time-of-flight neutron Fourier stress-diffractometer. The lattice parameters in the austenite matrix and the martensite inclusions created during the fatigue cycling as well as the martensite volume fraction were measured along two mutually perpendicular planar axes of the sample of the cruciform geometry by using the strain neutron scanner. The phase total residual strain components were calculated using the stress equilibrium relations. The separation of the residual stresses into macro- and microstresses was performed using the mixture rule. The measurements of the applied load-phase elastic strain responses were carried out on a uniaxial load machine. The strong difference between the phase elastic moduli was found out

  19. Numerical analysis of interacting cracks in biaxial stress field

    International Nuclear Information System (INIS)

    Kovac, M.; Cizelj, L.

    1999-01-01

    The stress corrosion cracks as seen for example in PWR steam generator tubing made of Inconel 600 usually produce highly irregular kinked and branched crack patterns. Crack initialization and propagation depends on stress state underlying the crack pattern. Numerical analysis (such as finite element method) of interacting kinked and branched cracks can provide accurate solutions. This paper discusses the use of general-purpose finite element code ABAQUS for evaluating stress fields at crack tips of interacting complex cracks. The results obtained showed reasonable agreement with the reference solutions and confirmed use of finite elements in such class of problems.(author)

  20. Fatigue behavior of boxing welded joint under biaxial cyclic loads; 2juku kurikaeshi kajuka ni okeru kakumawashi yosetsu keishu no hiro kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, I.; Takada, A.; Akiyama, S.; Ushijima, M.; Maenaka, H. [Ministry of Transportation, Tokyo (Japan)

    1998-12-31

    Various forces such as gravity, wave induced force, inertial force etc. compositely act on a ship body from various directions. Therefore, while discussing strength or life of structural elements of ship body, it is necessary to understand the effects of the composite force condition. In this study, fatigue tests of boxing welded joint under rectangular biaxial cyclic loads are performed, the following results are obtained. Even under he biaxial cyclic loads, it is the same as the uniaxial test, the cracks occurred at the boxing weld toes propagate almost in the straight y-direction, but no oblique propagation of the cracks caused by the lad in the y-direction occurs. That the crack at initial stage of the crack progress is improved in y-direction can be illustrated by the facts that the residual stress in x-direction near the toes reaches to the yield stress, and the stress concentration in the welded toes is bigger in x-direction than that in y-direction. But as for prediction of the progress route, a further study including amplitude ratio of the biaxial loads, effects of width of test specimen is necessary. 4 refs., 12 figs., 4 tabs.

  1. On the field-induced switching of molecular organization in a biaxial nematic cell and its relaxation

    Science.gov (United States)

    Ricci, Matteo; Berardi, Roberto; Zannoni, Claudio

    2015-08-01

    We investigate the switching of a biaxial nematic filling a flat cell with planar homogeneous anchoring using a coarse-grained molecular dynamics simulation. We have found that an aligning field applied across the film, and acting on specific molecular axes, can drive the reorientation of the secondary biaxial director up to one order of magnitude faster than that for the principal director. While the π/2 switching of the secondary director does not affect the alignment of the long molecular axes, the field-driven reorientation of the principal director proceeds via a concerted rotation of the long and transversal molecular axes. More importantly, while upon switching off a (relatively) weak or intermediate field, the biaxial nematic liquid crystal is always able to relax to the initial surface aligned director state; this is not the case when using fields above a certain threshold. In that case, while the secondary director always recovers the initial state, the principal one remains, occasionally, trapped in a nonuniform director state due to the formation of domain walls.

  2. Development of serial measurement system for three-dimensional stress determination by over-coring the strains on borehole wall

    International Nuclear Information System (INIS)

    Itamoto, Masaharu; Kuwabara, Kazumichi; Tanno, Takeo; Nakayama, Yoshiki; Mizuta, Yoshiaki

    2007-01-01

    In order to determine the three-dimensional stress state in serial order, the authors developed the serial measurement system for three-dimensional stress determination by over-coring the strains on the borehole wall. The serial stress measurements give the value of the stresses with high accuracy and bring the regional stress variations. In this paper, the authors describe the studies through FEM analysis on the effect of over-coring diameter, the influence of strain gauge length and the behavior of strain on the borehole wall, induced by biaxial external loading. We developed the multi-strain gauge mounted packer and examined it by measuring the strains on the borehole wall through biaxial loading test. The Laboratory tests showed its applicability to practical use. (author)

  3. Experimental Studies on Strength Behaviour of Notched Glass/Epoxy Laminated Composites under Uni-axial and Bi-axial Loading

    Science.gov (United States)

    Guptha, V. L. Jagannatha; Sharma, Ramesh S.

    2017-11-01

    The use of FRP composite materials in aerospace, aviation, marine, automotive and civil engineering industry has increased rapidly in recent years due to their high specific strength and stiffness properties. The structural members contrived from such composite materials are generally subjected to complex loading conditions and leads to multi-axial stress conditions at critical surface localities. Presence of notches, much required for joining process of composites, makes it further significant. The current practice of using uni-axial test data alone to validate proposed material models is inadequate leading to evaluation and consideration of bi-axial test data. In order to correlate the bi-axial strengths with the uni-axial strengths of GFRP composite laminates in the presence of a circular notch, bi-axial tests using four servo-hydraulic actuators with four load cells were carried out. To determine the in-plane strength parameters, bi-axial cruciform test specimen model was considered. Three different fibre orientations, namely, 0°, 45°, and 90° are considered with a central circular notch of 10 mm diameter in the present investigation. From the results obtained, it is observed that there is a reduction in strength of 5.36, 2.41 and 13.92% in 0°, 45°, and 90° fibre orientation, respectively, under bi-axial loading condition as compared to that of uni-axial loading in laminated composite.

  4. Biaxial Testing of 2195 Aluminum Lithium Alloy Using Cruciform Specimens

    Science.gov (United States)

    Johnston, W. M.; Pollock, W. D.; Dawicke, D. S.; Wagner, John A. (Technical Monitor)

    2002-01-01

    A cruciform biaxial test specimen was used to test the effect of biaxial load on the yield of aluminum-lithium alloy 2195. Fifteen cruciform specimens were tested from 2 thicknesses of 2195-T8 plate, 0.45 in. and 1.75 in. These results were compared to the results from uniaxial tensile tests of the same alloy, and cruciform biaxial tests of aluminum alloy 2219-T87.

  5. Regional and depth variability of porcine meniscal mechanical properties through biaxial testing.

    Science.gov (United States)

    Kahlon, A; Hurtig, M B; Gordon, K D

    2015-01-01

    The menisci in the knee joint undergo complex loading in-vivo resulting in a multidirectional stress distribution. Extensive mechanical testing has been conducted to investigate the tissue properties of the knee meniscus, but the testing conditions do not replicate this complex loading regime. Biaxial testing involves loading tissue along two different directions simultaneously, which more accurately simulates physiologic loading conditions. The purpose of this study was to report mechanical properties of meniscal tissue resulting from biaxial testing, while simultaneously investigating regional variations in properties. Ten left, fresh porcine joints were obtained, and the medial and lateral menisci were harvested from each joint (twenty menisci total). Each menisci was divided into an anterior, middle and posterior region; and three slices (femoral, deep and tibial layers) were obtained from each region. Biaxial and constrained uniaxial testing was performed on each specimen, and Young's moduli were calculated from the resulting stress strain curves. Results illustrated significant differences in regional mechanical properties, with the medial anterior (Young's modulus (E)=11.14 ± 1.10 MPa), lateral anterior (E=11.54 ± 1.10 MPa) and lateral posterior (E=9.0 ± 1.2 MPa) regions exhibiting the highest properties compared to the medial central (E=5.0 ± 1.22 MPa), medial posterior (E=4.16 ± 1.13 MPa) and lateral central (E=5.6 ± 1.20 MPa) regions. Differences with depth were also significant on the lateral meniscus, with the femoral (E=12.7 ± 1.22 MPa) and tibial (E=8.6 ± 1.22 MPa) layers exhibiting the highest Young's moduli. This data may form the basis for future modeling of meniscal tissue, or may aid in the design of synthetic replacement alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Stick-slip behavior of Indian gabbro as studied using a NIED large-scale biaxial friction apparatus

    Science.gov (United States)

    Togo, Tetsuhiro; Shimamoto, Toshihiko; Yamashita, Futoshi; Fukuyama, Eiichi; Mizoguchi, Kazuo; Urata, Yumi

    2015-04-01

    This paper reports stick-slip behaviors of Indian gabbro as studied using a new large-scale biaxial friction apparatus, built in the National Research Institute for Earth Science and Disaster Prevention (NIED), Tsukuba, Japan. The apparatus consists of the existing shaking table as the shear-loading device up to 3,600 kN, the main frame for holding two large rectangular prismatic specimens with a sliding area of 0.75 m2 and for applying normal stresses σ n up to 1.33 MPa, and a reaction force unit holding the stationary specimen to the ground. The shaking table can produce loading rates v up to 1.0 m/s, accelerations up to 9.4 m/s2, and displacements d up to 0.44 m, using four servocontrolled actuators. We report results from eight preliminary experiments conducted with room humidity on the same gabbro specimens at v = 0.1-100 mm/s and σ n = 0.66-1.33 MPa, and with d of about 0.39 m. The peak and steady-state friction coefficients were about 0.8 and 0.6, respectively, consistent with the Byerlee friction. The axial force drop or shear stress drop during an abrupt slip is linearly proportional to the amount of displacement, and the slope of this relationship determines the stiffness of the apparatus as 1.15 × 108 N/m or 153 MPa/m for the specimens we used. This low stiffness makes fault motion very unstable and the overshooting of shear stress to a negative value was recognized in some violent stick-slip events. An abrupt slip occurred in a constant rise time of 16-18 ms despite wide variation of the stress drop, and an average velocity during an abrupt slip is linearly proportional to the stress drop. The use of a large-scale shaking table has a great potential in increasing the slip rate and total displacement in biaxial friction experiments with large specimens.

  7. Analytical modeling of the effect of crack depth, specimen size, and biaxial stress on the fracture toughness of reactor vessel steels

    International Nuclear Information System (INIS)

    Chao, Yuh-Jin

    1995-01-01

    Fracture, toughness values for A533-B reactor pressure vessel (RPV) steel obtained from test programs at Oak Ridge National Laboratory (ORNL) and University of Kansas (KU) are interpreted using the J-A 2 analytical model. The analytical model is based on the critical stress concept and takes into consideration the constraint effect using the second parameter A 2 in addition to the generally accepted first parameter J which represents the loading level. It is demonstrated that with the constraint level included in the model effects of crack depth (shallow vs deep), specimen size (small vs. large), and loading type (uniaxial vs biaxial) on the fracture toughness from the test programs can be interpreted and predicted

  8. Dynamic strain aging of zircaloy-4 PWR fuel cladding in biaxial stress state

    International Nuclear Information System (INIS)

    Park, Ki Seong; Lee, Byong Whi

    1989-01-01

    The expanding copper mandrel test performed at three strain rates (3.2x10E-5/s,2.0x10E-6/s and 1.2x10E-7/s) over 553-873 K temperature range by varying the heating rates (8-10deg C/s,1-2deg C/s and 0.5deg C/s) in air and in vacuum (5x10E-5 torr). The yield stress peak, the strain rate sensitivity minimum and the activation volume peaks could be explained in terms of the dynamic strain aging. The activation energy for dynamic strain aging obtained from the yield stress peak temperature and strain rate was 196 KJ/mol and this value was in good agreement with the activation energy for oxygen diffusion in α-zirconium and Zircaloy-2 (207-220KJ/mol). Therefore, oxygen atoms are responsible for the dynamic strain aging which appeared between 573K and 673K. The yield stress increase due to the oxidation was obtained by comparing the yield stress in air with that in vacuum and represented by the percentage increase of yield stress (σ y a -σ y v /σ y v ). The slower the strain rate, the greater the percentage increase occurs. In order to estimate the yield stress of PWR fuel cladding material under the service environment, the yield stress in water was obtained by comparing the oxidation rate in air that in water assuming the relationship between the oxygen pick-up amount and the yield stress increase. (Author)

  9. Field-induced optically isotropic state in bent core nematic liquid crystals: unambiguous proof of field-induced optical biaxiality

    International Nuclear Information System (INIS)

    Elamain, Omaima; Komitov, Lachezar; Hegde, Gurumurthy; Fodor-Csorba, Katalin

    2013-01-01

    The behaviour of bent core (BC) nematic liquid crystals was investigated under dc applied electric field. The optically isotropic state of a sample containing BC nematic was observed under application of low dc electric fields. The quality of the dark state when the sample was inserted between two crossed polarizers was found to be superb and it did not change when rotating the sample between the polarizers. The coupling between the net molecular dipole moment and the applied dc electric field was considered as the origin of the out-of-plane switching of the BC molecules resulting in switching from the field-off bright state to the field-on dark state. The field-induced optically isotropic state is an unambiguous proof of the field-induced biaxiality in the BC nematic liquid crystal. A simple model explaining the appearance of the isotropic optical state in BC nematics and the switching of the sample slow axis between three mutually orthogonal directions under dc applied electric field is proposed. (paper)

  10. Thermal fatigue loading for a type 304-L stainless steel used for pressure water reactor: investigations on the effect of a nearly perfect biaxial loading, and on the cumulative fatigue life

    International Nuclear Information System (INIS)

    Fissolo, A.; Gourdin, C.; Bouin, P.; Perez, G.

    2010-01-01

    Fatigue-life curves are used in order to estimate crack-initiation, and also to prevent water leakage on Pressure Water Reactor pipes. Such curves are built exclusively from push-pull tests performed under constant and uniaxial strain or stress-amplitude. However, thermal fatigue corresponds to a nearly perfect biaxial stress state and severe loading fluctuations are observed in operating conditions. In this frame, these two aspects have been successively investigated in this paper: In order to investigate on potential difference between thermal fatigue and mechanical fatigue, tests have been carried out at CEA using thermal fatigue devices. They show that for an identical level of strain-amplitude, the number of cycles required to achieve crack-initiation is significantly lower under thermal fatigue. This enhanced damage results probably from a perfect biaxial state under thermal fatigue. In this frame, application of the multiaxial Zamrik's criterion seems to be very promising. In order to investigate on cumulative damage effect in fatigue, multi-level strain controlled fatigue tests have been performed. Experimental results show that linear Miner's rule is not verified. A loading sequence effect is clearly evidenced. The double linear damage rule ('DLDR') improves significantly predictions of fatigue-life. (authors)

  11. Lightweight, Low-CTE Tubes Made From Biaxially Oriented LCPs

    Science.gov (United States)

    Rubin, Leslie; Federico, Frank; Formato, Richard; Larouco, John; Slager, William

    2004-01-01

    Tubes made from biaxially oriented liquid-crystal polymers (LCPs) have been developed for use as penetrations on cryogenic tanks. ( Penetrations in this context denotes feed lines, vent lines, and sensor tubes, all of which contribute to the undesired conduction of heat into the tanks.) In comparison with corresponding prior cryogenic-tank penetrations made from stainless steels and nickel alloys, the LCP penetrations offer advantages of less weight and less thermal conduction. An additional major advantage of LCP components is that one can tailor their coefficients of thermal expansion (CTEs). The estimated cost of continuous production of LCP tubes of typical sizes is about $1.27/ft ($4.17/m) [based on 1998 prices]. LCP tubes that are compatible with liquid oxygen and that feature tailored biaxial molecular orientation and quasi-isotropic properties (including quasi-isotropic CTE) have been fabricated by a combination of proprietary and patented techniques that involve the use of counterrotating dies (CRDs). Tailoring of the angle of molecular orientation is what makes it possible to tailor the CTE over a wide range to match the CTEs of adjacent penetrations of other tank components; this, in turn, makes it possible to minimize differential-thermal expansion stresses that arise during thermal cycling. The fabrication of biaxially oriented LCP tubes by use of CRDs is not new in itself. The novelty of the present development lies in tailoring the orientations and thus the CTEs and other mechanical properties of the LCPs for the intended cryogenic applications and in modifications of the CRDs for this purpose. The LCP tubes and the 304-stainless-steel tubes that the LCP tubes were intended to supplant were tested with respect to burst strength, permeability, thermal conductivity, and CTE.

  12. Magnetic response of FeNbCuBSi RQ ribbons to bi-axial strain

    Energy Technology Data Exchange (ETDEWEB)

    Butvin, P. E-mail: fyzipbut@nic.savba.sk; Butvinova, B.; Frait, Z.; Sitek, J.; Svec, P

    2000-06-02

    Nanocrystalline strip samples of the FeNbCuBSi class that are macroscopically heterogeneous due to surface /volume differences have been investigated. This heterogeneity is found to be a general property of the class. It represents a base for mutual force influence between the surface and the majority volume beneath. The bi-axial in-plane stress exerted by the ribbon surfaces on the volume is demonstrated first of all by a magnetoelastic anisotropy. The contribution of the creep-induced anisotropy, which can build up under the surface stress at post-treatment temperature, is also found possible.

  13. Magnetic response of FeNbCuBSi RQ ribbons to bi-axial strain

    International Nuclear Information System (INIS)

    Butvin, P.; Butvinova, B.; Frait, Z.; Sitek, J.; Svec, P.

    2000-01-01

    Nanocrystalline strip samples of the FeNbCuBSi class that are macroscopically heterogeneous due to surface /volume differences have been investigated. This heterogeneity is found to be a general property of the class. It represents a base for mutual force influence between the surface and the majority volume beneath. The bi-axial in-plane stress exerted by the ribbon surfaces on the volume is demonstrated first of all by a magnetoelastic anisotropy. The contribution of the creep-induced anisotropy, which can build up under the surface stress at post-treatment temperature, is also found possible

  14. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  15. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    JL Bump; RF Luther

    2006-01-01

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  16. Biaxial magnetic grain alignment

    International Nuclear Information System (INIS)

    Staines, M.; Genoud, J.-Y.; Mawdsley, A.; Manojlovic, V.

    2000-01-01

    Full text: We describe a dynamic magnetic grain alignment technique which can be used to produce YBCO thick films with a high degree of biaxial texture. The technique is, however, generally applicable to preparing ceramics or composite materials from granular materials with orthorhombic or lower crystal symmetry and is therefore not restricted to superconducting applications. Because magnetic alignment is a bulk effect, textured substrates are not required, unlike epitaxial coated tape processes such as RABiTS. We have used the technique to produce thick films of Y-247 on untextured silver substrates. After processing to Y-123 the films show a clear enhancement of critical current density relative to identically prepared untextured or uniaxially textured samples. We describe procedures for preparing materials using magnetic biaxial grain alignment with the emphasis on alignment in epoxy, which can give extremely high texture. X-ray rocking curves with FWHM of as little as 1-2 degrees have been measured

  17. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  18. ANALYSIS OF STRESS-STRAIN STATE OF REINFORCED CONCRETE PLATE AROUND SUPPORT ZONES

    OpenAIRE

    Oleg V. Kabantsev; Kirill O. Pesin; Alexey V. Karlin

    2017-01-01

    Structural analysis of the formation and evolution processes of structural microdestruction with the tran-sition to macrorestriction occurring during plastic deformation of masonry under biaxial stresses. The dependencies that determine the amount of the plastic phase of the deformation of masonry. Identified processes and their corre-sponding strength criteria, which play a key role in the implementation phase of plastic deformation. It is shown that plastic deformation of masonry under biax...

  19. Biaxial potential of surface-stabilized ferroelectric liquid crystals

    Science.gov (United States)

    Kaznacheev, Anatoly; Pozhidaev, Evgeny; Rudyak, Vladimir; Emelyanenko, Alexander V.; Khokhlov, Alexei

    2018-04-01

    A biaxial surface potential Φs of smectic-C* surface-stabilized ferroelectric liquid crystals (SSFLCs) is introduced in this paper to explain the experimentally observed electric-field dependence of polarization P˜cell(E ) , in particular the shape of the static hysteresis loops. Our potential consists of three independent parts. The first nonpolar part Φn describes the deviation of the prime director n (which is the most probable orientation of the long molecular axes) from the easy alignment axis R , which is located in the boundary surface plane. It is introduced in the same manner as the uniaxial Rapini potential. The second part Φp of the potential is a polar term associated with the presence of the polar axis in a FLC. The third part Φm relates to the inherent FLC biaxiality, which has not been taken into consideration previously. The Φm part takes into account the deviations of the secondary director m (which is the most probable orientation of the short molecular axes) from the normal to the boundary surface. The overall surface potential Φs, which is a sum of Φn,Φp , and Φm, allows one to model the conditions when either one, two, or three minima of the SSFLC cell free energy are realized depending on the biaxiality extent. A monodomain or polydomain structure, as well as the bistability or monostability of SSFLC cells, depends on the number of free-energy minima, as confirmed experimentally. In this paper, we analyze the biaxiality impact on the FLC alignment. We also answer the question of whether the bistable or monostable structure can be formed in an SSFLC cell. Our approach is essentially based on a consideration of the biaxial surface potential, while the uniaxial surface potential cannot adequately describe the experimental observations in the FLC.

  20. Biaxial experimental and analytical characterization of a dielectric elastomer

    Science.gov (United States)

    Helal, Alexander; Doumit, Marc; Shaheen, Robert

    2018-01-01

    Electroactive polymers (EAPs) have emerged as a strong contender for use in low-cost efficient actuators in multiple applications especially related to biomimetic and mobile-assistive devices. Dielectric elastomers (DE), a subcategory of these smart materials, have been of particular interest due to their large achievable deformation and favourable mechanical and electro-mechanical properties. Previous work has been completed to understand the behaviour of these materials; however, their properties require further investigation to properly integrate them into real-world applications. In this study, a biaxial tensile experimental evaluation of 3M™ VHB 4905 and VHB 4910 is presented with the purpose of illustrating the elastomers' transversely isotropic mechanical behaviours. These tests were applied to both tapes for equibiaxial stretch rates ranging between 0.025 and 0.300 s-1. Subsequently, a dynamic planar biaxial visco-hyperelastic constitutive relationship was derived from a Kelvin-Voigt rheological model and the general Hooke's law for transversely isotropic materials. The model was then fitted to the experimental data to obtain three general material parameters for either tapes. The model's ability to predict tensile stress response and internal energy dissipation, with respect to experimental data, is evaluated with good agreement. The model's ability to predict variations in mechanical behaviour due to changes in kinematic variables is then illustrated for different conditions.

  1. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  2. Fatigue and creep-fatigue strength of 304 steel under biaxial strain conditions

    International Nuclear Information System (INIS)

    Asayama, Tai; Aoto, Kazumi; Wada, Yusaku

    1990-01-01

    A series of fatigue and creep-fatigue tests were conducted with 304 stainless steel at 550degC under a variety of biaxial strain conditions. Fatigue life under nonproportional loading conditions showed a significant life reduction compared with that of proportional loading, and this life reduction was reasonably estimated by taking into account the strain paths along which the strain history is imposed. Furthermore, a marked life reduction was shown to occur under nonproportional loading by imposing a strain hold period at a peak tensile strain. This life reduction was evaluated by the linear damage rule. It was shown to be possible to estimate the fatigue damage and the creep damage under nonproportional loading by a linear damage rule by estimating a stress relaxation behavior by Mises-type equivalent stress or Huddleston-type equivalent stress. (author)

  3. Study of lattice strain evolution during biaxial deformation of stainless steel using a finite element and fast Fourier transform based multi-scale approach

    International Nuclear Information System (INIS)

    Upadhyay, M.V.; Van Petegem, S.; Panzner, T.; Lebensohn, R.A.; Van Swygenhoven, H.

    2016-01-01

    A multi-scale elastic-plastic finite element and fast Fourier transform based approach is proposed to study lattice strain evolution during uniaxial and biaxial loading of stainless steel cruciform shaped samples. At the macroscale, finite element simulations capture the complex coupling between applied forces in the arms and gauge stresses induced by the cruciform geometry. The predicted gauge stresses are used as macroscopic boundary conditions to drive a mesoscale elasto-viscoplastic fast Fourier transform model, from which lattice strains are calculated for particular grain families. The calculated lattice strain evolution matches well with experimental values from in-situ neutron diffraction measurements and demonstrates that the spread in lattice strain evolution between different grain families decreases with increasing biaxial stress ratio. During equibiaxial loading, the model reveals that the lattice strain evolution in all grain families, and not just the 311 grain family, is representative of the polycrystalline response. A detailed quantitative analysis of the 200 and 220 grain family reveals that the contribution of elastic and plastic anisotropy to the lattice strain evolution significantly depends on the applied stress ratio.

  4. Experimental studies of yield phenomena in biaxially loaded metals

    International Nuclear Information System (INIS)

    Hecker, S.S.

    1976-01-01

    Realistic materials properties input represents one of the major limitations in computer stress analysis in the plastic range. Lack of data on the response of many structural materials to multiaxial loading requires modeling plastic behavior. Such models can at best predict the response of a limited class of materials for a limited range of loading. A summary of biaxial plasticity experiments on metals is presented to provide a testing ground for such models and to serve as a reference guide for materials that may be of practical interest. Most of the work has been done on materials assumed to exhibit time-and-pressure-independent plastic flow. Special attention is focused on initial and subsequent yield conditions and stress-strain relations. Some specific examples of material behavior that does not fall within the assumptions of classical plasticity theories are discussed. These include time-dependence as evidenced in creep, cyclic loading and strain-rate effects, pressure dependence, large strain behavior, microstructural changes and failure laws. 15 figures, 277 references

  5. Implantable biaxial piezoresistive accelerometer for sensorimotor control.

    Science.gov (United States)

    Zou, Qiang; Tan, Wei; Sok Kim, Eun; Singh, Jasspreet; Loeb, Gerald E

    2004-01-01

    This paper describes the design, fabrication and test results of a novel biaxial piezoresistive accelerometer and its incorporation into a miniature neuromuscular stimulator called a BION. Because of its highly symmetric twin mass structure, the X and Z axis acceleration can be measured at the same time and the cross axis sensitivity can be minimized by proper piezoresistor design. The X and Z axis sensitivities of the biaxial accelerometer are 0.10 mV/g/V and 1.40 mV/g/V, respectively, which are further increased to 0.65 mV/g/V and 2.40 mV/g/V, respectively, with extra silicon mass added to the proof mass. The cross-axis sensitivity is less than 3.3% among X, Y and Z-axis. An orientation tracking method for human segments by measuring every joint angle is also discussed in this paper. Joint angles can be obtained by processing the outputs of a pair of biaxial accelerometers (placed very close to the joint axis on the adjacent limb links), without having to integrate acceleration or velocity signals, thereby avoiding errors due to offsets and drift.

  6. Sol-gel deposition of buffer layers on biaxially textured metal substances

    Science.gov (United States)

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  7. Chaos synchronization in bi-axial magnets modeled by Bloch equation

    International Nuclear Information System (INIS)

    Moukam Kakmeni, F.M.; Nguenang, J.P.; Kofane, T.C.

    2005-10-01

    In this paper, we show that the bi-axial magnetic material modelled by Bloch equation admits chaotic solutions for a certain set of numerical values assigned to the system of parameters and initial conditions. Using the unidirectional linear and nonlinear feedback schemes, we demonstrate that two such systems can be synchronized together. The chaotic synchronization is discussed in the context of complete synchronization which means that the difference of the states of two relevant systems converge to zero. (author)

  8. Failure of composite plates under static biaxial planar loading

    Science.gov (United States)

    Waas, Anthony M.; Khamseh, Amir R.

    1992-01-01

    The project involved detailed investigations into the failure mechanisms in composite plates as a function of hole size (holes centrally located in the plates) under static loading. There were two phases to the project, the first dealing with uniaxial loads along the fiber direction, and the second dealing with coplanar biaxial loading. Results for the uniaxial tests have been reported and published previously, thus this report will place emphasis on the second phase of the project, namely the biaxial tests. The composite plates used in the biaxial loading experiments, as well as the uniaxial, were composed of a single ply unidirectional graphite/epoxy prepreg sandwiched between two layers of transparent thermoplastic. This setup enabled us to examine the failure initiation and propagation modes nondestructively, during the test. Currently, similar tests and analysis of results are in progress for graphite/epoxy cruciform shaped flat laminates. The results obtained from these tests will be available at a later time.

  9. Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations

    Directory of Open Access Journals (Sweden)

    Jacques M. Huyghe

    2010-03-01

    Full Text Available The in vivo mechanics of the annulus fibrosus of the intervertebral disc is one of biaxial rather than uniaxial loading. The material properties of the annulus are intimately linked to the osmolarity in the tissue. This paper presents biaxial relaxation experiments of canine annulus fibrosus tissue under stepwise changes of external salt concentration. The force tracings show that stresses are strongly dependent on time, salt concentration and orientation. The force tracing signature of are sponse to a change instrain, is one of a jumpin stress that relaxes partly as the new strain is maintained. The force tracing signature of a stepwise change in salt concentration is a progressive monotonous change in stress towards a new equilibrium value. Although the number of samples does not allow any definitive quantitative conclusions, the trends may shed light on the complex interaction among the directionality of forces, strains and fiber orientation on one hand, and on the other hand, the osmolarity of the tissue. The dual response to a change in strain is understood as an immediate response before fluid flows in or out of the tissue, followed by a progressive readjustment of the fluid content in time because of the gradient in fluid chemical potential between the tissue and the surrounding solution.A mecânica in vivo do anel fibroso do disco intervertebral é baseada em carregamento biaxial ao invés de uniaxial. As propriedades materiais do anel estão intimamente ligadas à osmolaridade no tecido. O artigo apresenta experimentos de relaxação biaxiais do anel fibroso de um tecido canino sob mudanças abruptas na concentração externa de sal. A assinatura da força devido à mudança brusca de salinidade resulta em uma progressiva e monótona mudança na tensão em direção a um novo valor de equilíbrio. Embora o número de amostras não permita nenhuma conclusão quantitativa, as tendências podem abrir uma luz no entendimento das intera

  10. Analysis of rock stress and rock stress measurements with application to Aespoe HRL

    International Nuclear Information System (INIS)

    Lundholm, Beatrice

    2000-11-01

    the opening where no influence from the openings can be expected. Since the magnitudes of the rock stresses differ between overcoring and hydraulic fracturing, some efforts have been made to find possible causes for this. The rock stresses when conducting overcoring gave higher values overall, which could be explained by high Poisson's ratios and a minor influence from the opening as the stress measurements might have been done in the disturbed zone. The high Poisson's ratio may depend on the stress-induced microcracks, which might be initiated during the overcoring of the cell, during the drilling of the pilot borehole, in which the cell is installed, and during biaxial testing. Statistical analysis showed that there is significant differences between the mean values of Poisson's ratio obtained from biaxial tests of cores containing the CSIRO HI-cell and the SSPB-cell. Poisson's ratio is about 0.34 for CSIRO HI-cell while the SSPB-cell gave a Poisson's ratio of 0.23. The analysis also showed that Young's modulus does not differ between the techniques. The modelling in FLAC was made to simulate the overcoring and biaxial testing. The result show that it is possible to obtain extensional strain in the core during overcoring if the major principal stress is perpendicular to the borehole axis. This may lead to microcracking occurring in the core causing high Poisson's ratio, which results in higher stresses. It can also be seen from the simulation of the biaxial testing that extensional strain is achieved even if the hollow core is not damaged during overcoring. The analyses using UDEC was made to study the effect of different properties of a discontinuity, such as the dip angle, Young's modulus, Poisson's ratio, density and the normal and shear stiffness. The analyses showed that an inclined discontinuity affects the stresses especially if sliding occurs. So, the dip angle does not solely, determine the amount of disturbance of the state of stress around a discontinuity

  11. Method for forming biaxially textured articles by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  12. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads

    2008-01-01

    of the piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity...

  13. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture-toughness

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.; Theiss, T.J.; Rao, M.C.

    1993-01-01

    Uniaxial tests of single-edged notched bend (SENB) specimens with both deep- and shallow-flaws have shown elevated fracture-toughness for the shallow flaws. The elevation in fracture-toughness for shallow flaws has been shown to be the result of reduced constraint at the crack-tip. Biaxial loading has the potential to increase constraint at the crack-tip and thereby reduce some of the shallow-flaw, fracture-toughness elevation. Biaxial fracture-toughness tests have shown that the shallow-flaw, fracture-toughness elevation is reduced but not eliminated by biaxial loading. Dual-parameter, fracture-toughness correlations have been proposed to reflect the effect of crack-tip constraint on fracture-toughness. Test results from the uniaxial and biaxial tests were analyzed using the dual-parameter technology. Discrepancies between analysis results and cleavage initiation site data from fractographic examinations indicate that the analysis models are in need of further refinement. Addition of a precleavage, ductile-tearing element to the analysis model has the potential to resolve the noted discrepancies

  14. Apparent Dependence of Rate- and State-Dependent Friction Parameters on Loading Velocity and Cumulative Displacement Inferred from Large-Scale Biaxial Friction Experiments

    Science.gov (United States)

    Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo

    2017-06-01

    We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.

  15. The measurement of residual stresses in claddings

    International Nuclear Information System (INIS)

    Hofer, G.; Bender, N.

    1978-01-01

    The ring core method, a variation of the hole drilling method for the measurement of biaxial residual stresses, has been extended to measure stresses from depths of about 5 to 25mm. It is now possible to measure the stress profiles of clad material. Examples of measured stress profiles are shown and compared with those obtained with a sectioning technique. (author)

  16. An analytical model for the ductile failure of biaxially loaded type 316 stainless steel subjected to thermal transients

    International Nuclear Information System (INIS)

    Dimelfi, R.J.

    1987-01-01

    Failure properties are calculated for the case of biaxially loaded type 316 stainless steel tubes that are heated from 300 K to near melting at various constant rates. The procedure involves combining a steady state plastic-deformation rate law with a strain hardening equation. Integrating under the condition of plastic instability gives the time and plastic strain at which ductile failure occurs for a given load. The result is presented as an analytical expression for equivalent plastic strain as a function of equivalent stress, temperature, heating rate and material constants. At large initial load, ductile fracture is calculated to occur early, at low temperatures, after very little deformation. At very small loads deformation continues for a long time to high temperatures where creep rupture mechanisms limit ductility. In the case of intermediate loads, the plastic strain accumulated before the occurrence of unstable ductile fracture is calculated. Comparison of calculated results is made with existing experimental data from pressurized tubes heated at 5.6 K/s and 111 K/s. When the effect of grain growth on creep ductility is taken into account from recrystallization data, agreement between measured and calculated uniform ductility is excellent. The general reduction in ductility and failure time that is observed at higher heating rate is explained via the model. The model provides an analytical expression for the ductility and failure time during transients for biaxially loaded type 316 stainless steel as a function of the initial temperature and load, as well as the material creep and strain hardening parameters. (orig.)

  17. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

    Science.gov (United States)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias

    2015-03-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  18. The fabrication and high temperature stability of biaxially textured Ni tape by ion beam structure modification method

    International Nuclear Information System (INIS)

    Wu, K.; Wang, S.S.; Meng, J.; Han, Z.

    2004-01-01

    For the conventional rolling assisted biaxially textured metallic substrate (RABiTS) process, a large degree of cold rolling deformation and a subsequent high temperature annealing procedure are required to obtain adequately biaxially textured Ni tape. Recently, we have reported a newly developed process, named as ion beam structure modification (ISM), for fabricating biaxially textured Ni tape by use of low energy argon ion beam bombardment. In this paper, the biaxial texture of ISM processed Ni tape and its thermal stability at high temperatures are investigated. Results show that Ni tape processed under optimum ISM conditions, the (2 0 0) rocking curve FWHM is less than 5.7 deg. , and the (1 1 1) phi-scan FWHM is less than 7.5 deg. . High temperature annealing does not impair the biaxial-texture already developed in ISM processed Ni foils, although ISMs should not be regarded as a complete equilibrium process

  19. Biaxial Mechanical Evaluation of Absorbable and Nonabsorbable Synthetic Surgical Meshes Used for Hernia Repair: Physiological Loads Modify Anisotropy Response.

    Science.gov (United States)

    Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E

    2016-07-01

    The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292.

  20. Bandgap-customizable germanium using lithographically determined biaxial tensile strain for silicon-compatible optoelectronics.

    Science.gov (United States)

    Sukhdeo, David S; Nam, Donguk; Kang, Ju-Hyung; Brongersma, Mark L; Saraswat, Krishna C

    2015-06-29

    Strain engineering has proven to be vital for germanium-based photonics, in particular light emission. However, applying a large permanent biaxial tensile strain to germanium has been a challenge. We present a simple, CMOS-compatible technique to conveniently induce a large, spatially homogenous strain in circular structures patterned within germanium nanomembranes. Our technique works by concentrating and amplifying a pre-existing small strain into a circular region. Biaxial tensile strains as large as 1.11% are observed by Raman spectroscopy and are further confirmed by photoluminescence measurements, which show enhanced and redshifted light emission from the strained germanium. Our technique allows the amount of biaxial strain to be customized lithographically, allowing the bandgaps of different germanium structures to be independently customized in a single mask process.

  1. Preliminary assessment of the effects of biaxial loading on reactor pressure vessel structural-integrity-assessment technology

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; Dickson, T.L.; McAfee, W.J.; Merkle, J.G.

    1996-01-01

    Effects of biaxial loading on shallow-flaw fracture toughness were studied to determine potential impact on structural integrity assessment of a reactor pressure vessel (RPV) under pressurized thermal shock (PTS) transient loading and pressure-temperature (PT) loading produced by reactor heatup and cooldown transients. Biaxial shallow-flaw fracture-toughness tests results were also used to determine the parameter controlling fracture in the transition temperature range, and to develop a related dual-parameter fracture-toughness correlation. Shallow-flaw and biaxial loading effects were found to reduce the conditional probability of crack initiation by a factor of nine when the shallow-flaw fracture-toughness K Jc data set, with biaxial-loading effects adjustments, was substituted in place of ASME Code K Ic data set in PTS analyses. Biaxial loading was found to reduce the shallow-flaw fracture toughness of RPV steel such that the lower-bound curve was located between ASME K Ic and K IR curves. This is relevant to future development of P-T curve analysis procedures. Fracture in shallow-flaw biaxial samples tested in the lower transition temperature range was shown to be strain controlled. A strain-based dual-parameter fracture-toughness correlation was developed and shown to be capable of predicting the effect of crack-tip constraint on fracture toughness for strain-controlled fracture

  2. Effects of repeated biaxial loads on the creep properties of cardinal ligaments.

    Science.gov (United States)

    Baah-Dwomoh, Adwoa; De Vita, Raffaella

    2017-10-01

    The cardinal ligament (CL) is one of the major pelvic ligaments providing structural support to the vagina/cervix/uterus complex. This ligament has been studied mainly with regards to its important function in the treatment of different diseases such as surgical repair for pelvic organ prolapse and radical hysterectomy for cervical cancer. However, the mechanical properties of the CL have not been fully determined, despite the important in vivo supportive role of this ligament within the pelvic floor. To advance our limited knowledge about the elastic and viscoelastic properties of the CL, we conducted three consecutive planar equi-biaxial tests on CL specimens isolated from swine. Specifically, the CL specimens were divided into three groups: specimens in group 1 (n = 7) were loaded equi-biaxially to 1 N, specimens in group 2 (n = 8) were loaded equi-biaxially to 2N, and specimens in group 3 (n = 7) were loaded equi-biaxially to 3N. In each group, the equi-biaxial loads of 1N, 2N, or 3N were applied and kept constant for 1200s three times. The two axial loading directions were selected to be the main in-vivo loading direction of the CL and the direction that is perpendicular to it. Using the digital image correlation (DIC) method, the in-plane Lagrangian strains in these two loading directions were measured throughout the tests. The results showed that CL was elastically anisotropic, as statistical differences were found between the mean strains along the two axial loading directions for specimens in group 1, 2, or 3 when the equi-biaxial load reached 1N, 2N, or 3N, respectively. For specimens in group 1 and 2, no statistical differences were detected in the mean normalized strains (or, equivalently, the increase in strain over time) between the two axial loading directions for each creep test. For specimens in group 3, some differences were noted but, by the end of the 3rd creep test, there were no statistical differences in the mean normalized strains between

  3. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    Science.gov (United States)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  4. Effects of various surface treatments on the biaxial flexural properties of yttria-stabilized zirconia ceramics

    Directory of Open Access Journals (Sweden)

    Teerthesh Jain

    2018-01-01

    Conclusions: Air particle abrasion with CoJet Sand, LTD, and CTs had no negative impact on biaxial flexural strength indeed it increased the biaxial flexural strength. Hence, these surface treatments can be done in routine clinical practice to improve the performance of ceramic restorations.

  5. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  6. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using...... a singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  7. Monitoring Poisson's ratio of glass fiber reinforced composites as damage index using biaxial Fiber Bragg Grating sensors

    OpenAIRE

    Yılmaz, Çağatay; Yilmaz, Cagatay; Akalın, Çağdaş; Akalin, Cagdas; Kocaman, Esat Selim; Suleman, A.; Yıldız, Mehmet; Yildiz, Mehmet

    2016-01-01

    Damage accumulation in Glass Fiber Reinforced Polymer (GFRP) composites is monitored based on Poisson's ratio measurements for three different fiber stacking sequences subjected to both quasi-static and quasi-static cyclic tensile loadings. The sensor systems utilized include a dual-extensometer, a biaxial strain gage and a novel embedded-biaxial Fiber Bragg Grating (FBG) sensor. These sensors are used concurrently to measure biaxial strain whereby the evolution of Poisson's ratio as a functi...

  8. Creep-fatigue life property of FBR high-temperature structural materials under tension-torsion loading and life evaluation method

    International Nuclear Information System (INIS)

    Ogata, Takashi; Nitta, Akito

    1994-01-01

    Creep-fatigue damage in high temperature structural components in a FBR progress under multiaxial stress condition depending on their operating conditions and configuration. Therefore, multiaxial stress effects on creep-fatigue damage evolution must be clarified to make precise creep-fatigue damage evaluation of these components. In this study, creep-fatigue tests in FBR high temperature materials such as SUS304, 316FR stainless steels and a modified 9Cr steel were conducted under biaxial stress subjecting tension-compression and torsion loading, in order to examine biaxial stress effects on failure mechanism and life property, and to discuss creep-fatigue life evaluation methods under biaxial stress. Main results obtained in this study are summarized as follows: 1. The main cracks under cyclic torsion loading propagated by shear mode in three materials. But intergranular failure was occurred in SUS304 and 316FR, and transgranular failure was observed in Mod.9Cr steel. 2. Nonlinear damage accumulation model proposed based on uniaxial creep-fatigue test results was extended to apply for creep-fatigue damage evaluation under biaxial stress state by considering the biaxial stress effects on fatigue and creep damage evolution. 3. It was confirmed that creep-fatigue life under biaxial stress could be predicted by the extended evaluation method with higher accuracy than existing methods. (author)

  9. Biaxial creep behavior of ribbed GCFR cladding at 6500C in nominally pure helium (99.99%)

    International Nuclear Information System (INIS)

    Yaggee, F.L.; Purohit, A.; Grajek, W.J.; Peoppel, R.B.

    1977-11-01

    Biaxial creep-rupture tests were conducted on 12 prototypic GCFR fuel-cladding specimens at 650 0 C and a nominal hoop stress of 241.3 MPa. All test specimens were fabricated from 20% cold-worked Type 316 stainless steel tubes that were ribbed on the outer surface by mechanical grinding or electro-chemical etching. Test variables included specimen length and the presence or absence of weld-reinforcing end collars. Test results have indicated that, compared with data on smooth specimens, ribbing has no detrimental effect on creep-rupture lifetime. Specimens fabricated from tubes ribbed by electrochemical etching exhibit a significantly shorter creep-rupture lifetime and a higher secondary (steady-state) creep rate than specimens fabricated from tubes ribbed by mechanical grinding. Specimen length does not strongly affect creep-rupture lifetime, but the presence of an end collar does exhibit a significant influence on both the axial strain profile and the ratio of maximum diametral strain at the failure site to average diametral strain away from the failure site. The ribs do not inhibit the propagation of fissure or rupture failures

  10. Failure analysis based on microvoid growth for sheet metal during uniaxial and biaxial tensile tests

    International Nuclear Information System (INIS)

    Abbassi, Fethi; Mistou, Sebastien; Zghal, Ali

    2013-01-01

    Highlights: ► Cruciform specimen designed and biaxial tensile test carried out. ► Stereo Correlation Image technique is used for 3D full-filed measurements. ► SEM fractography analysis is used to explain the fracture mechanism. ► Constitutive modeling of the necking phenomenon was developed using GTN model. - Abstract: The aim of the presented investigations is to perform an analysis of fracture and instability during simple and complex load testing by addressing the influence of ductile damage evolution in necking processes. In this context, an improved experimental methodology was developed and successfully used to evaluate localization of deformation during uniaxial and biaxial tensile tests. The biaxial tensile tests are carried out using cruciform specimen loaded using a biaxial testing machine. In this experimental investigation, Stereo-Image Correlation technique has is used to produce the heterogeneous deformations map within the specimen surface. Scanning electron microscope is used to evaluate the fracture mechanism and the micro-voids growth. A finite element model of uniaxial and biaxial tensile tests are developed, where a ductile damage model Gurson–Tvergaard–Needleman (GTN) is used to describe material deformation involving damage evolution. Comparison between the experimental and the simulation results show the accuracy of the finite element model to predict the instability phenomenon. The advanced measurement techniques contribute to understand better the ductile fracture mechanism

  11. Biaxial and antiferroelectric structure of the orthogonal smectic phase of a bent-shaped molecule and helical structure in a chiral mixture system

    Science.gov (United States)

    Kang, Sungmin; Nguyen, Ha; Nakajima, Shunpei; Tokita, Masatoshi; Watanabe, Junji

    2013-05-01

    We examined the biaxial and antiferroelectric properties in the Smectic-APA (Sm-APA) phase of bent-shaped DC-S-8. The biaxiality, which results from the existence of a secondary director, was well established from birefringence observations in the homeotropically aligned Sm-APA. By entering into Sm-APA phase, the birefringence (Δn, difference between two refractive indices of short axes) continuously increased from 0 to 0.02 with decreasing temperature. The antiferroelectric switching and second harmonic generation (SHG) activity on the field-on state were also observed in the Sm-APA phase, and the evaluated spontaneous polarization (PS) value strongly depended on temperature. The temperature dependence of Δn and PS resembles each other and follows Haller's approximation, showing that the biaxiality is due to polar packing in which the molecules are preferentially packed with their bent direction arranged in the same direction, and that the phase transition of Sm-APA to Sm-A is second order. The biaxiality was further examined in chiral Sm-APA*. Doping with chiral components induced the helical twisting of the secondary director in the Sm-APA* phase, which was confirmed by observing the reflection of the circular dichroism (CD) bands in the homeotropically aligned cell. The helical pitch of Sm-APA* is tunable in the range of 300-700 nm wavelength with a variation in the chiral content of 5 to 10 weight (wt)%.

  12. Discrete Element Simulations and Experiments on the Deformation of Cohesive Powders in a Bi-Axial Box

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Kumar, Nishant; Magnanimo, Vanessa; Luding, Stefan

    2012-01-01

    We compare element test experiments and simulations on the deformation of frictional, cohesive particles in a bi-axial box. We show that computer simulations with the Discrete Element Method qualitatively reproduce a uniaxial compression element test in the true bi-axial tester. We highlight the

  13. Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines.

    Science.gov (United States)

    Montalvão, Diogo; Wren, Andrew

    2017-11-01

    The necessity to increase performances in terms of lifetime and security in mechanical components or structures is the motivation for intense research in fatigue. Applications range from aeronautics to medical devices. With the development of new materials, there is no longer a fatigue limit in the classical sense, where it was accepted that the fatigue limit is the stress level such that there is no fracture up to 1E7 cycles. The recent development of ultrasonic testing machines where frequencies can go as high as 20 kHz or over enabled tests to be extended to ranges larger than 1E9 in just a few days. This area of studies is now known as Very High Cycle Fatigue (VHCF). On the other hand, most of the existing test equipment in the market for both classical and VHCF are uniaxial test machines. However, critical components used in Engineering applications are usually subjected to complex multi-axial loading conditions. In this paper, it is presented the methodology to redesigning existing cruciform test specimens that can be used to create an in-plane biaxial state of stress when used in 'uniaxial' VHCF ultrasonic testing machines (in this case, the term 'uniaxial' is used not because of the state of stress created at the centre of the specimen, but because of the direction at which the load is applied). The methodology is explained in such a way that it can be expanded to other existing designs, namely cruciform designs, that are not yet used in VHCF. Also, although the approach is presented in simple and logical terms, it may not be that obvious for those who have a more focused approach on fatigue rather than on modal analysis. It is expected that by contributing to bridging the gap between the sciences of modal analysis and fatigue, this research will help and encourage others exploiting new capabilities in VHCF.

  14. Strain engineering of magnetic state in vacancy-doped phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jie [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Zhang, Chunxiao, E-mail: zhangchunxiao@xtu.edu.cn [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Li, Jin [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Guo, Zhixin [Department of Physics, Xiangtan University, Xiangtan 411105, Hunan (China); Xiao, Huaping, E-mail: hpxiao@xtu.edu.cn [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China); Zhong, Jianxin [Hunan Provincial Key Laboratory of Micro–Nano Energy Materials and Devices, Xiangtan University, Xiangtan 411105, Hunan (China)

    2016-09-23

    Inducing and manipulating the magnetism in two-dimensional materials play an important role for the development of the next-generation spintronics. In this letter, the effects of the biaxial strain on magnetic properties of vacancy-doped phosphorene are investigated using first-principles calculation. We find although only SV956 doping induces magnetism for unstrained phosphorene, the biaxial strain induces nonzero magnetic moment for SV5566 and DVa doped phosphorene. The biaxial strain also modulates the magnetic state for SV956, SV5566 and DVa doped phosphorene. The local magnetic moment derives from the spin polarization of the dangling bonds near the vacancy. The biaxial strain influences the local bonding configuration near the vacancy which determines the presence of dangling bonds, and then modulates the magnetic state. Our findings promise the synergistic effect of strain engineering and vacancy decoration is an effective method for the operation of phosphorene-based spintronic devices. - Highlights: • Investigation of the magnetic moment of vacancy-doped phosphorene by DFT calculation. • The modulation of the magnetic moment by the biaxial strain. • The analysis of the bonding configuration with the biaxial strain. • The analysis of the electronic structures to explain the evolution of the magnetic moment. • The effects of the biaxial strain on the band gap and doping levels.

  15. Biaxial vent extruder

    International Nuclear Information System (INIS)

    Idemoto, A.; Maki, Y.; Oda, N.

    1981-01-01

    A biaxial vent extruder is described for processing of slurry-like waste fluids or radioactive waste fluids which have a hopper cylinger, a solidifying substance port and a solidified substance port. A plurality of vent cylinders each having a vent port are provided with a plunger type scraper. An extruding cylinder having a single opening for a main screw is connected to the assembled vent cylinders. The main screw extends to the upstream end of the extruding cylinder and a sub-screw extends to the extruding cylinder. The screws each having a full flight engaging the other and a set of rings are mounted on the screws near the respective vent port inlets. The screws are rotated in different directions and inwardly with respect to the vent ports. Rotors may be mounted on the screws to break down solid particles

  16. Synthesis, structuring and characterization of rare earth oxide thin films: Modeling of the effects of stress and defects on the phase stability

    International Nuclear Information System (INIS)

    Gaboriaud, R.J.; Paumier, F.; Lacroix, B.

    2014-01-01

    This work studies the effects of the deposition parameters on the microstructure and the related residual stress in a rare earth oxide thin film. This study is focused on the yttrium sesquioxide (Y 2 O 3 ) thin films deposited on Si (100) substrates using the ion beam sputtering technique. This technique allows the control of the microstructure and the related residual stress in the thin films by monitoring the energy of the argon beam used in the deposition process. Measurements of the stresses within the oxide layer were performed by the X-ray diffraction-sin 2 Ψ method. The results show that the classic model of a pure biaxial in-plane model of stress, generally proposed in thin films, is not satisfying. A model that includes a hydrostatic stress due to the crystalline defects generated during the deposition process and a biaxial stress called a fixation stress, gives a good agreement with the experimental results. This modeling of the residual stress, based on nanometer-scale inclusions (point, extended defects) inducing a hydrostatic stress field, leads to a quantitative analysis of the nature and the concentration of the defects. This work shows results that establish a relationship between residual stress, defects and non-equilibrium phase stabilization during growth. - Highlights: • Microstructure of Y 2 O 3 thin films • Measurements of residual stresses in the thin films • Modeling of a triaxial residual stress stateStress-induced stabilization of non-equilibrium phase

  17. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  18. DEM Simulation of Biaxial Compression Experiments of Inherently Anisotropic Granular Materials and the Boundary Effects

    Directory of Open Access Journals (Sweden)

    Zhao-Xia Tong

    2013-01-01

    Full Text Available The reliability of discrete element method (DEM numerical simulations is significantly dependent on the particle-scale parameters and boundary conditions. To verify the DEM models, two series of biaxial compression tests on ellipse-shaped steel rods are used. The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary. The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions. The peak friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.

  19. Characterization Of Biaxial Strain Of Poly(L-Lactide) Tubes

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2016-01-01

    Poly(L-lactide) (PLLA) in its L-form has promising mechanical properties. Being a semi-crystalline polymer, it can be subjected to strain-induced crystallization at temperatures above Tg and can thereby become oriented. Following a simultaneous (SIM) biaxial strain process or a sequential (SEQ...

  20. Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems

    Directory of Open Access Journals (Sweden)

    Bandar Mohammed Abdullah Al-Makramani

    2010-12-01

    Full Text Available Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. OBJECTIVES: The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. MATERIAL AND METHODS: Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995 were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M Sdn Bhd, Puchong, Selangor, Malaysia], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany, which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. RESULTS: The mean biaxial flexural strength values were: Turkom-Cera: 506.8±87.01 MPa, In-Ceram: 347.4±28.83 MPa and Vitadur-N: 128.7±12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA at a preset significance level of 5% because of unequal group variances (P<0.001. There was statistically significant difference between the three core ceramics (P<0.05. Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. CONCLUSIONS: Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

  1. Biaxial creep behavior of ribbed GCFR cladding at 650/sup 0/C in nominally pure helium (99. 99%)

    Energy Technology Data Exchange (ETDEWEB)

    Yaggee, F. L.; Purohit, A.; Grajek, W. J.; Peoppel, R. B.

    1977-11-01

    Biaxial creep-rupture tests were conducted on 12 prototypic GCFR fuel-cladding specimens at 650/sup 0/C and a nominal hoop stress of 241.3 MPa. All test specimens were fabricated from 20% cold-worked Type 316 stainless steel tubes that were ribbed on the outer surface by mechanical grinding or electro-chemical etching. Test variables included specimen length and the presence or absence of weld-reinforcing end collars. Test results have indicated that, compared with data on smooth specimens, ribbing has no detrimental effect on creep-rupture lifetime. Specimens fabricated from tubes ribbed by electrochemical etching exhibit a significantly shorter creep-rupture lifetime and a higher secondary (steady-state) creep rate than specimens fabricated from tubes ribbed by mechanical grinding. Specimen length does not strongly affect creep-rupture lifetime, but the presence of an end collar does exhibit a significant influence on both the axial strain profile and the ratio of maximum diametral strain at the failure site to average diametral strain away from the failure site. The ribs do not inhibit the propagation of fissure or rupture failures.

  2. Shear Piezoelectricity in Poly(vinylidenefluoride-co-trifluoroethylene): Full Piezotensor Coefficients by Molecular Modeling, Biaxial Transverse Response, and Use in Suspended Energy-Harvesting Nanostructures.

    Science.gov (United States)

    Persano, Luana; Catellani, Alessandra; Dagdeviren, Canan; Ma, Yinji; Guo, Xiaogang; Huang, Yonggang; Calzolari, Arrigo; Pisignano, Dario

    2016-09-01

    The intrinsic flexible character of polymeric materials causes remarkable strain deformations along directions perpendicular to the applied stress. The biaxial response in the shear piezoelectricity of polyvinylidenefluoride copolymers is analyzed and their full piezoelectric tensors are provided. The microscopic shear is exploited in single suspended nanowires bent by localized loading to couple flexural deformation and transverse piezoelectric response. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Research on Design and Simulation of Biaxial Tensile-Bending Complex Mechanical Performance Test Apparatus

    Directory of Open Access Journals (Sweden)

    Hailian Li

    2017-09-01

    Full Text Available In order to realize a micro-mechanic performance test of biaxial tensile-bending-combined loading and solve the problem of incompatibility of test apparatus and observation apparatus, novel biaxial-combined tensile-bending micro-mechanical performance test apparatus was designed. The working principle and major functions of key constituent parts of test apparatus, including the servo drive unit, clamping unit and test system, were introduced. Based on the finite element method, biaxial tensile and tension-bending-combined mechanical performances of the test-piece were studied as guidance to learn the distribution of elastic deformation and plastic deformation of all sites of the test-piece and to better plan test regions. Finally, this test apparatus was used to conduct a biaxial tensile test under different pre-bending loading and a tensile test at different rates; the image of the fracture of the test-piece was acquired by a scanning electron microscope and analyzed. It was indicated that as the pre-bending force rises, the elastic deformation phase would gradually shorten and the slope of the elastic deformation phase curve would slightly rise so that a yield limit would appear ahead of time. Bending speed could exert a positive and beneficial influence on tensile strength but weaken fracture elongation. If bending speed is appropriately raised, more ideal anti-tensile strength could be obtained, but fracture elongation would decline.

  4. The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075

    International Nuclear Information System (INIS)

    Robinson, J.S.; Tanner, D.A.; Truman, C.E.; Paradowska, A.M.; Wimpory, R.C.

    2012-01-01

    The most critical stage in the heat treatment of high strength aluminium alloys is the rapid cooling necessary to form a supersaturated solid solution. A disadvantage of quenching is that the thermal gradients can be sufficient to cause inhomogeneous plastic deformation which in turn leads to the development of large residual stresses. Two 215 mm thick rectilinear forgings have been made from 7000 series alloys with widely different quench sensitivity to determine if solute loss in the form of precipitation during quenching can significantly affect residual stress magnitudes. The forgings were heat treated and immersion quenched using cold water to produce large magnitude residual stresses. The through thickness residual stresses were measured by neutron diffraction and incremental deep hole drilling. The distribution of residual stresses was found to be similar for both alloys varying from highly triaxial and tensile in the interior, to a state of biaxial compression in the surface. The 7010 forging exhibited larger tensile stresses in the interior. The microstructural variation from surface to centre for both forgings was determined using optical and transmission electron microscopy. These observations were used to confirm the origin of the hardness variation measured through the forging thickness. When the microstructural changes were accounted for in the through thickness lattice parameter, the residual stresses in the two forgings were found to be very similar. Solute loss in the 7075 forging appeared to have no significant effect on the residual stress magnitudes when compared to 7010. - Highlights: ► Through thickness residual stress measurements made on large Al alloy forgings. ► Residual stress characterised using neutron diffraction and deep hole drilling. ► Biaxial compressive surface and triaxial subsurface residual stresses. ► Quench sensitivity of 7075 promotes significant microstructural differences to 7010. ► When precipitation is

  5. Study of the effect of an equi-biaxial loading on the fatigue lifetime of austenitic stainless steel

    International Nuclear Information System (INIS)

    Bradai, Soumaya

    2014-01-01

    Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures.In some nuclear power plant components, the fatigue loading may be equi-biaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equi-biaxial tension. The aim of this study is to present the experimental and numerical results obtained with a device 'FABIME2' developed in the LISN in collaboration with EDF and AREVA. The association of the experimental results, obtained on the new experimental fatigue device FABIME2, with the numerical analyses obtained by FEM simulation with Cast3M code, has enabled to define the aggravating effect of the equi-biaxial fatigue loading. However, this effect is covered by the Design fatigue curve defined from the nuclear industry. For the crack propagation, a first simplified approach enables to study the kinetic behavior of crack propagation in equi-biaxial fatigue. (author) [fr

  6. Anomalously temperature-independent birefringence in biaxial optical crystals

    International Nuclear Information System (INIS)

    Grechin, Sergei G; Dmitriev, Valentin G; Dyakov, Vladimir A; Pryalkin, Vladimir I

    2000-01-01

    Temperature-independent birefringence in a biaxial crystal was predicted theoretically and observed experimentally for the first time. The width of the plot against temperature (the range corresponding to the temperature independence of the birefringence) at a fundamental radiation wavelength of 632.8 nm in a KTP crystal 5.9 mm long was more than 160 0 C. (letters to the editor)

  7. Non-destructive measurement of residual stresses in U-0.8 wt.% Ti by neutron diffraction

    International Nuclear Information System (INIS)

    Salinas-Rodriguez, A.; Root, J.H.; Holden, T.M.; Macewen, S.R.; Ludtka, G.M.

    1990-01-01

    The macroscopic residual stress distribution in γ-quenched and stress levelled U-0.8wt% Ti alloy tubes was studied using neutron diffraction techniques. Residual strains were evaluated from the difference in d-spacings measured in the tubes and in small reference samples machined from each tube. Residual stresses were calculated with the isotropic bulk value of the elastic constraints for polycrystalline α-U. Quenching from the γ field resulted in a nearly equi-biaxial stress state at every point across the wall thickness of the tube. The magnitude of the radial stress was very small compared with that of the axial and hoop stresses which were compressive at the surfaces and tensile in the interior. Stress levelling relieved almost completely the hoop residual stress without affecting the radial stress. The axial residual stress becomes tensile through the wall thickness and remains constant at about 20% of its magnitude in the as-quenched condition

  8. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  9. Uniaxial and biaxial tensioning effects on thin membrane materials. [large space structures

    Science.gov (United States)

    Hinson, W. F.; Goslee, J. W.

    1980-01-01

    Thin laminated membranes are being considered for various surface applications on future large space structural systems. Some of the thin membranes would be stretched across or between structural members with the requirement that the membrane be maintained within specified limits of smoothness which would be dictated by the particular applications such as antenna reflector requirements. The multiaxial tensile force required to maintain the smoothness in the membrane needs to be determined for use in the structure design. Therefore, several types of thicknesses of thin membrane materials have been subjected to varied levels of uniaxial and biaxial tensile loads. During the biaxial tests, deviations of the material surface smoothness were measured by a noncontacting capacitance probe. Basic materials consisted of composites of vacuum deposited aluminum on Mylar and Kapton ranging in thickness from 0.00025 in (0.000635 cm) to 0.002 in (0.00508 cm). Some of the material was reinforced with Kevlar and Nomex scrim. The uniaxial tests determined the material elongation and tensile forces up to ultimate conditions. Biaxial tests indicated that a relatively smooth material surface could be achieved with tensile force of approximately 1 to 15 Newtons per centimeter, depending upon the material thickness and/or reinforcement.

  10. Reassessment of the role of stress in development of radiation-induced microstructure

    International Nuclear Information System (INIS)

    Garner, F.A.; Wolfer, W.G.; Brager, H.R.

    1978-10-01

    Data are now accumulating which clearly demonstrate that the stress state plays a strong role in the development of void and dislocation microstructure in metals during neutron irradiation. In these experiments the application of a tensile biaxial stress state at constant fluence and temperature has been found to lead to a progressively decreasing metal density with increasing stress. The effect of stress on the concurrent development of voids, Frank interstitial loops and dislocation networks has been studied with transmission electron microscopy. The results of these experiments clearly show that the densities of both Frank loops and voids are enhanced by a tensile stress field, with the relevant operating variable being the hydrostatic stress. More importantly it appears that any anisotropy in the stress field is reflected in a corresponding anisotropy that develops in the number of Frank loops that form on the various (111) planes. The loop density that develops on each plane exhibits a clear and direct dependence on the resolved normal stress component at each plane. Although the data from these experiments have been previously interpreted to support the existence of stress-assisted nucleation mechanisms for both loops and voids, further analysis has shown both of these explanations to be deficient in one or more respects, and both models have been replaced

  11. X-ray diffraction study of stress relaxation in cubic boron nitride films grown with simultaneous medium-energy ion bombardment

    International Nuclear Information System (INIS)

    Abendroth, B.; Gago, R.; Eichhorn, F.; Moeller, W.

    2004-01-01

    Relaxation of the intrinsic stress of cubic boron nitride (cBN) thin films has been studied by x-ray diffraction (XRD) using synchrotron light. The stress relaxation has been attained by simultaneous medium-energy ion bombardment (2-10 keV) during magnetron sputter deposition, and was confirmed macroscopically by substrate curvature measurements. In order to investigate the stress-release mechanisms, XRD measurements were performed in in-plane and out-of-plane geometry. The analysis shows a pronounced biaxial state of compressive stress in the cBN films grown without medium-energy ion bombardment. This stress is partially released during the medium-energy ion bombardment. It is suggested that the main path for stress relaxation is the elimination of strain within the cBN grains due to annealing of interstitials

  12. Experimental Investigation of the Influence of Confining Stress on Hard Rock Fragmentation Using a Conical Pick

    Science.gov (United States)

    Li, Xibing; Wang, Shaofeng; Wang, Shanyong

    2018-01-01

    High geostress is a prominent condition in deep excavations and affects the cuttability of deep hard rock. This study aims to determine the influence of confining stress on hard rock fragmentation as applied by a conical pick. Using a true triaxial test apparatus, static and coupled static and dynamic loadings from pick forces were applied to end faces of cubic rock specimens to break them under biaxial, uniaxial and stress-free confining stress conditions. The cuttability indices (peak pick force, insertion depth and disturbance duration), failure patterns and fragment sizes were measured and compared to estimate the effects of confining stress. The results show that the rock cuttabilities decreased in order from rock breakages under stress-free conditions to uniaxial confining stress and then to biaxial confining stress. Under biaxial confining stress, only flake-shaped fragments were stripped from the rock surfaces under the requirements of large pick forces or disturbance durations. As the level of uniaxial confining stress increased, the peak pick force and the insertion depth initially increased and then decreased, and the failure patterns varied from splitting to partial splitting and then to rock bursts with decreasing average fragment sizes. Rock bursts will occur under elastic compression via ultra-high uniaxial confining stresses. There are two critical uniaxial confining stress levels, namely stress values at which peak pick forces begin to decrease and improve rock cuttability, and those at which rock bursts initially occur and cutting safety decreases. In particular, hard rock is easiest to split safely and efficiently under stress-free conditions. Moreover, coupled static preloading and dynamic disturbance can increase the efficiency of rock fragmentation with increasing preloading levels and disturbance amplitudes. The concluding remarks confirm hard rock cuttability using conical pick, which can improve the applicability of mechanical excavation in

  13. Thermodynamics of diffusion under pressure and stress: Relation to point defect mechanisms

    International Nuclear Information System (INIS)

    Aziz, M.J.

    1997-01-01

    A thermodynamic formalism is developed for illuminating the predominant point defect mechanism of self- and impurity diffusion in silicon and is used to provide a rigorous basis for point defect-based interpretation of diffusion experiments in biaxially strained epitaxial layers in the Si endash Ge system. A specific combination of the hydrostatic and biaxial stress dependences of the diffusivity is ±1 times the atomic volume, depending upon whether the predominant mechanism involves vacancies or interstitials. Experimental results for Sb diffusion in biaxially strained Si endash Ge films and ab initio calculations of the activation volume for Sb diffusion by a vacancy mechanism are in quantitative agreement with no free parameters. Key parameters are identified that must be measured or calculated for a quantitative test of interstitial-based mechanisms. copyright 1997 American Institute of Physics

  14. Pattern zoology in biaxially pre-stretched elastic bilayers: from wrinkles and creases to fracture-like ridges

    Science.gov (United States)

    Al-Rashed, Rashed; Lopez JiméNez, Francisco; Reis, Pedro

    The wrinkling of elastic bilayers under compression has been explored as a method to produce reversible surface topography, with applications ranging from microfluidics to tunable optics. We introduce a new experimental system to study the effects of pre-stretching on the instability patterns that result from the biaxial compression of thin shells bound to an elastic substrate. A pre-stretched substrate is first prepared by pressurizing an initially flat elastomeric disk and bulging it into a nearly hemispherical thick shell. The substrate is then coated with a thin layer of a polymer suspension, which, upon curing, results in a thin shell of nearly constant thickness. Releasing the pre-stretch in the substrate by deflating the system places the outer film in a state of biaxial compression, resulting in a variety of buckling patterns. We explore the parameter space by systematically varying the pre-stretch, the substrate/film stiffness mismatch, and the thickness of the film. This results in a continuous transition between different buckling patterns, from the dimples and wrinkles that are traditionally associated with the buckling of elastic bilayers, to creases and high aspect ratio `fracture-like' ridges, where the pre-stretch plays an essential role.

  15. Monitoring Local Changes in Granite Rock Under Biaxial Test: A Spatiotemporal Imaging Application With Diffuse Waves

    Science.gov (United States)

    Xie, Fan; Ren, Yaqiong; Zhou, Yongsheng; Larose, Eric; Baillet, Laurent

    2018-03-01

    Diffuse acoustic or seismic waves are highly sensitive to detect changes of mechanical properties in heterogeneous geological materials. In particular, thanks to acoustoelasticity, we can quantify stress changes by tracking acoustic or seismic relative velocity changes in the material at test. In this paper, we report on a small-scale laboratory application of an innovative time-lapse tomography technique named Locadiff to image spatiotemporal mechanical changes on a granite sample under biaxial loading, using diffuse waves at ultrasonic frequencies (300 kHz to 900 kHz). We demonstrate the ability of the method to image reversible stress evolution and deformation process, together with the development of reversible and irreversible localized microdamage in the specimen at an early stage. Using full-field infrared thermography, we visualize stress-induced temperature changes and validate stress images obtained from diffuse ultrasound. We demonstrate that the inversion with a good resolution can be achieved with only a limited number of receivers distributed around a single source, all located at the free surface of the specimen. This small-scale experiment is a proof of concept for frictional earthquake-like failure (e.g., stick-slip) research at laboratory scale as well as large-scale seismic applications, potentially including active fault monitoring.

  16. Effects of monoclinic symmetry on the properties of biaxial liquid crystals

    Science.gov (United States)

    Solodkov, Nikita V.; Nagaraj, Mamatha; Jones, J. Cliff

    2018-04-01

    Tilted smectic liquid crystal phases such as the smectic-C phase seen in calamitic liquid crystals are usually treated using the assumption of biaxial orthorhombic symmetry. However, the smectic-C phase has monoclinic symmetry, thereby allowing disassociation of the principal optic and dielectric axes based on symmetry and invariance principles. This is demonstrated here by comparing optical and dielectric measurements for two materials with highly first-order direct transitions from nematic to smectic-C phases. The results show a high difference between the orientations of the principal axes sets, which is interpreted as the existence of two distinct cone angles for optical and dielectric frequencies. Both materials exhibit an increasing degree of monoclinic behavior with decreasing temperature. Due to fast switching speeds, ferroelectric smectic-C* materials are important for fast modulators and LCoS devices, where the dielectric biaxiality influences device operation.

  17. Behavior of annealed type 316 stainless steel under monotonic and cyclic biaxial loading at room temperature

    International Nuclear Information System (INIS)

    Ellis, J.R.; Robinson, D.N.; Pugh, C.E.

    1978-01-01

    This paper addresses the elastic-plastic behavior of type 316 stainless steel, one of the major structural alloys used in liquid-metal fast breeder reactor components. The study was part of a continuing program to develop a structural design technology applicable to advanced reactor systems. Here, behaviour of solution annealed material was examined through biaxial stress experiments conducted at room temperature under radial loadings (√3tau=sigma) in tension-torsion stress space. The effects of both stress limited monotonic loading and strain limited cyclic loading were determined on the size, shape and position of yield loci corresponding to small offset strain (10 microstrain) definition of yield. In the present work, the aim was to determine the extent to which the constitutive laws previously recommended for type 304 stainless steel are applicable to type 316 stainless steel. It was concluded that for the conditions investigated, the inelastic behavior of the two materials are qualitatively similar. Specifically, the von Mises yield criterion provides a reasonable approximation of initial yield behavior and the subsequent hardening behavior, at least under small offset definitions of yield, is to the first order kinematic in nature. (Auth.)

  18. Evaluation of anisotropic effective stress-strain criteria for the biaxial yield and flow of 2024 aluminum tubes

    International Nuclear Information System (INIS)

    Stout, M.G.; Hecker, S.S.; Bourcier, R.

    1983-01-01

    2024 aluminum tubes, heat treated to a T6 and T8 temper, were tested in combinations of tension-internal pressure and tension-torsion loading. Yield loci and flow behavior were determined for both modes of loading and compared to theoretical predictions. Both tempers of 2024 aluminum exhibited crystallographic textures and anisotropic yield and flow. Hill's quadratic yield criterion and the associated flow rule under-estimate balanced biaxial yield and flow, which is consistent with hydraulic bulge data on other face-centered cubic metals. Hill's nonquadratic criterion, which adds one additional parameter, and Bassani's criterion, which adds two parameters, predict the anisotropic yield behavior much more accurately. Predictions of the complete flow behavior, including strain paths, with these anisotropic criteria could be improved markedly by including provisions for planar anisotropy

  19. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali; Levi, Kemal; McGehee, Michae D.; Dauskardt, Reinhold H.

    2012-01-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial

  20. Stresses in sulfuric acid anodized coatings on aluminum

    Science.gov (United States)

    Alwitt, R. S.; Xu, J.; Mcclung, R. C.

    1993-01-01

    Stresses in porous anodic alumina coatings have been measured for specimens stabilized in air at different temperatures and humidities. In ambient atmosphere the stress is tensile after anodic oxidation and is compressive after sealing. Exposure to dry atmosphere causes the stress to change to strongly tensile, up to 110 MPa. The stress increase is proportional to the loss of water from the coating. These changes are reversible with changes in humidity. Similar reversible effects occur upon moderate temperature changes. The biaxial modulus of the coating is about 100 GPa.

  1. Effect of Molecular Flexibility on the Nematic-to-Isotropic Phase Transition for Highly Biaxial Molecular Non-Symmetric Liquid Crystal Dimers

    Science.gov (United States)

    Sebastián, Nerea; López, David Orencio; Diez-Berart, Sergio; de la Fuente, María Rosario; Salud, Josep; Pérez-Jubindo, Miguel Angel; Ros, María Blanca

    2011-01-01

    In this work, a study of the nematic (N)–isotropic (I) phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy)-ω-(1-pyrenimine-benzylidene-4’-oxy) alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB) phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU)–isotropic (I) phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition. PMID:28824100

  2. Biaxially mechanical tuning of 2-D reversible and irreversible surface topologies through simultaneous and sequential wrinkling.

    Science.gov (United States)

    Yin, Jie; Yagüe, Jose Luis; Boyce, Mary C; Gleason, Karen K

    2014-02-26

    Controlled buckling is a facile means of structuring surfaces. The resulting ordered wrinkling topologies provide surface properties and features desired for multifunctional applications. Here, we study the biaxially dynamic tuning of two-dimensional wrinkled micropatterns under cyclic mechanical stretching/releasing/restretching simultaneously or sequentially. A biaxially prestretched PDMS substrate is coated with a stiff polymer deposited by initiated chemical vapor deposition (iCVD). Applying a mechanical release/restretch cycle in two directions loaded simultaneously or sequentially to the wrinkled system results in a variety of dynamic and tunable wrinkled geometries, the evolution of which is investigated using in situ optical profilometry, numerical simulations, and theoretical modeling. Results show that restretching ordered herringbone micropatterns, created through sequential release of biaxial prestrain, leads to reversible and repeatable surface topography. The initial flat surface and the same wrinkled herringbone pattern are obtained alternatively after cyclic release/restretch processes, owing to the highly ordered structure leaving no avenue for trapping irregular topological regions during cycling as further evidenced by the uniformity of strains distributions and negligible residual strain. Conversely, restretching disordered labyrinth micropatterns created through simultaneous release shows an irreversible surface topology whether after sequential or simultaneous restretching due to creation of irregular surface topologies with regions of highly concentrated strain upon formation of the labyrinth which then lead to residual strains and trapped topologies upon cycling; furthermore, these trapped topologies depend upon the subsequent strain histories as well as the cycle. The disordered labyrinth pattern varies after each cyclic release/restretch process, presenting residual shallow patterns instead of achieving a flat state. The ability to

  3. Probing Earth's State of Stress

    Science.gov (United States)

    Delorey, A. A.; Maceira, M.; Johnson, P. A.; Coblentz, D. D.

    2016-12-01

    The state of stress in the Earth's crust is a fundamental physical property that controls both engineered and natural systems. Engineered environments including those for hydrocarbon, geothermal energy, and mineral extraction, as well those for storage of wastewater, carbon dioxide, and nuclear fuel are as important as ever to our economy and environment. Yet, it is at spatial scales relevant to these activities where stress is least understood. Additionally, in engineered environments the rate of change in the stress field can be much higher than that of natural systems. In order to use subsurface resources more safely and effectively, we need to understand stress at the relevant temporal and spatial scales. We will present our latest results characterizing the state of stress in the Earth at scales relevant to engineered environments. Two important components of the state of stress are the orientation and magnitude of the stress tensor, and a measure of how close faults are to failure. The stress tensor at any point in a reservoir or repository has contributions from both far-field tectonic stress and local density heterogeneity. We jointly invert seismic (body and surface waves) and gravity data for a self-consistent model of elastic moduli and density and use the model to calculate the contribution of local heterogeneity to the total stress field. We then combine local and plate-scale contributions, using local indicators for calibration and ground-truth. In addition, we will present results from an analysis of the quantity and pattern of microseismicity as an indicator of critically stressed faults. Faults are triggered by transient stresses only when critically stressed (near failure). We show that tidal stresses can trigger earthquakes in both tectonic and reservoir environments and can reveal both stress and poroelastic conditions.

  4. Effect of metal chloride solutions on coloration and biaxial flexural strength of yttria-stabilized zirconia

    Science.gov (United States)

    Oh, Gye-Jeong; Lee, Kwangmin; Lee, Doh-Jae; Lim, Hyun-Pil; Yun, Kwi-Dug; Ban, Jae-Sam; Lee, Kyung-Ku; Fisher, John G.; Park, Sang-Won

    2012-10-01

    The effect of three kinds of transition metal dopants on the color and biaxial flexural strength of zirconia ceramics for dental applications was evaluated. Presintered zirconia discs were colored through immersion in aqueous chromium, molybdenum and vanadium chloride solutions and then sintered at 1450 °C. The color of the doped specimens was measured using a digital spectrophotometer. For biaxial flexural strength measurements, specimens infiltrated with 0.3 wt% of each aqueous chloride solution were used. Uncolored discs were used as a control. Zirconia specimens infiltrated with chromium, molybdenum and vanadium chloride solutions were dark brown, light yellow and dark yellow, respectively. CIE L*, a*, and b* values of all the chromium-doped specimens and the specimens infiltrated with 0.1 wt% molybdenum chloride solution were in the range of values for natural teeth. The biaxial flexural strengths of the three kinds of metal chloride groups were similar to the uncolored group. These results suggest that chromium and molybdenum dopants can be used as colorants to fabricate tooth colored zirconia ceramic restorations.

  5. Bi-axially crumpled silver thin-film electrodes for dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Low, Sze-Hsien; Lau, Gih-Keong

    2014-01-01

    Metal thin films, which have high conductivity, are much stiffer and may fracture at a much lower strain than dielectric elastomers. In order to fabricate compliant electrodes for use in dielectric elastomer actuators (DEAs), metal thin films have been formed into either zigzag patterns or corrugations, which favour bending and only allow uniaxial DEA deformations. However, biaxially compliant electrodes are desired in order to maximize generated forces of DEA. In this paper, we present crumpled metal thin-film electrodes that are biaxially compliant and have full area coverage over the dielectric elastomer. These crumpled metal thin-film electrodes are more stretchable than flat metal thin films; they remain conductive beyond 110% radial strain. Also, crumpling reduced the stiffening effect of metal thin films on the soft elastomer. As such, DEAs using crumpled metal thin-film electrodes managed to attain relatively high actuated area strains of up to 128% at 1.8 kV (102 Vμm −1 ). (paper)

  6. Test plan for suitability assessment of five overcoring stress measurement techniques

    International Nuclear Information System (INIS)

    Gregory, E.C.; Rundle, T.A.; McCabe, W.M.; Kim, K.

    1982-08-01

    Tests are to be conducted at the Near-Surface Test Facility (NSTF) to assess the suitability of five overcoring techniques for in situ stress determination in a jointed basalt. The overcoring methods to be investigated use the following instrumentation to measure strain relief by overcoring a pilot borehole: USBM borehole deformation gage, CSIRO hollow inclusion stress cell, cast epoxy inclusion, the Lulea triaxial strain cell and the ''doorstopper'' biaxial strain cell. The tests are to provide data regarding the state of stress below the NSTF. This information is to be used in the evaluation of each method of overcoring. During the course of field testing, an attempt is to be made to adapt conventional overcoring techniques and analytical methods to the basalt medium. If overcoring stress determination in basalt is shown suitable, then additional studies will be identified to further adapt a technique for use at depth. In addition to the five overcoring techniques to be tested at the NSTF, stress measurements by Hydrofracturing are to be conducted to provide data for direct comparison with overcoring results. 16 refs., 18 figs

  7. Recent Advances in High Cycle Fatigue

    National Research Council Canada - National Science Library

    Nicholas, Ted

    2003-01-01

    .... In this paper, in addition to developing approaches for predicting fatigue limits under various mean stresses and biaxial stress states, methods are presented for accounting for service-induced damage...

  8. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  9. Stress anisotropy and stress gradient in magnetron sputtered films with different deposition geometries

    International Nuclear Information System (INIS)

    Zhao, Z.B.; Yalisove, S.M.; Bilello, J.C.

    2006-01-01

    Mo films were deposited via magnetron sputtering with two different deposition geometries: dynamic deposition (moving substrate) and static deposition (fixed substrate). The residual stress and structural morphologies of these films were investigated, with particular focus on in-plane anisotropy of the biaxial stress and stress gradient across the film thickness. The results revealed that the Mo films developed distinct states of residual stress, which depended on both deposition geometry and film thickness. With the dynamic geometry, the Mo films generally exhibited anisotropic stress. Both the degree of anisotropy and the magnitude of stress varied as functions of film thickness. The variation of stress was linked to the evolution of anisotropic microstructures in the films. The Mo films from the static geometry developed isotropic residual stress, which was more compressive and noticeably larger in magnitude than that of the Mo films from the dynamic geometry. Aside from these disparities, the two types of Mo films (i.e., anisotropic and isotropic) exhibited notably similar trends of stress variation with film thickness. Depth profiling indicated the presence of large stress gradients for the Mo films, irrespective of the deposition geometries. This observation seems to be consistent with the premise that Mo films develop a zone T structure, which is inherently inhomogeneous along the film thickness. Moreover, the largest stress gradient for both types of deposition geometries arises at roughly the same film depth (∼240 nm from substrate), where the stresses sharply transits from highly compressive to less compressive or even tensile. This appears to correspond to the boundary region that separates two distinct stages of microstructural evolution, a feature unique to zone T-type structure

  10. Multi-cracking in uniaxial and biaxial fatigue of 304L stainless steel

    International Nuclear Information System (INIS)

    Rupil, J.

    2012-01-01

    When a mechanical part is subjected to a repeated mechanical stress, it may be damaged after a number of cycles by several cracks initiation and propagation of a main crack. This is the phenomenon of fatigue damage. The thesis deals specifically with possible damage to some components of nuclear plants due to thermal fatigue. Unlike conventional mechanical fatigue damage where a main crack breaks the part, the thermal fatigue damage usually results in the appearance of a surface crack network. Two aspects are discussed in the thesis. The first is the experimental study of fatigue multiple cracking stage also called multi-cracking. Two mechanical test campaigns with multi-cracking detection by digital image correlation were conducted. These campaigns involve uniaxial and equi-biaxial mechanical loads in tension/compression without mean stress. This work allows to monitor and to observe the evolution of different networks of cracks through mechanical solicitations. The second is the numerical simulation of the phenomenon of fatigue damage. Several types of model are used (stochastic, probabilistic, cohesive finite elements). The experimental results have led to identify a multiple crack initiation law in fatigue which is faced with the numerical results. This comparison shows the relevance of the use of an analytical probabilistic model to find statistical results on the density of cracks that can be initiated with thermal and mechanical fatigue loadings. (author) [fr

  11. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    Science.gov (United States)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the

  12. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  13. A novel constrained H2 optimization algorithm for mechatronics design in flexure-linked biaxial gantry.

    Science.gov (United States)

    Ma, Jun; Chen, Si-Lu; Kamaldin, Nazir; Teo, Chek Sing; Tay, Arthur; Mamun, Abdullah Al; Tan, Kok Kiong

    2017-11-01

    The biaxial gantry is widely used in many industrial processes that require high precision Cartesian motion. The conventional rigid-link version suffers from breaking down of joints if any de-synchronization between the two carriages occurs. To prevent above potential risk, a flexure-linked biaxial gantry is designed to allow a small rotation angle of the cross-arm. Nevertheless, the chattering of control signals and inappropriate design of the flexure joint will possibly induce resonant modes of the end-effector. Thus, in this work, the design requirements in terms of tracking accuracy, biaxial synchronization, and resonant mode suppression are achieved by integrated optimization of the stiffness of flexures and PID controller parameters for a class of point-to-point reference trajectories with same dynamics but different steps. From here, an H 2 optimization problem with defined constraints is formulated, and an efficient iterative solver is proposed by hybridizing direct computation of constrained projection gradient and line search of optimal step. Comparative experimental results obtained on the testbed are presented to verify the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Stabilisation problem in biaxial platform

    Directory of Open Access Journals (Sweden)

    Lindner Tymoteusz

    2016-12-01

    Full Text Available The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  15. Stabilisation problem in biaxial platform

    Science.gov (United States)

    Lindner, Tymoteusz; Rybarczyk, Dominik; Wyrwał, Daniel

    2016-12-01

    The article describes investigation of rolling ball stabilization problem on a biaxial platform. The aim of the control system proposed here is to stabilize ball moving on a plane in equilibrium point. The authors proposed a control algorithm based on cascade PID and they compared it with another control method. The article shows the results of the accuracy of ball stabilization and influence of applied filter on the signal waveform. The application used to detect the ball position measured by digital camera has been written using a cross platform .Net wrapper to the OpenCV image processing library - EmguCV. The authors used the bipolar stepper motor with dedicated electronic controller. The data between the computer and the designed controller are sent with use of the RS232 standard. The control stand is based on ATmega series microcontroller.

  16. Effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics.

    Science.gov (United States)

    Hooshmand, Tabassom; Parvizi, Shaghayegh; Keshvad, Alireza

    2008-07-01

    The purpose of this study was to assess the effect of surface acid etching on the biaxial flexural strength of two hot-pressed glass ceramics reinforced by leucite or lithium disilicate crystals. Forty glass ceramic disks (14-mm diameter, 2-mm thick) consisting of 20 leucite-based ceramic disks (IPS Empress) and 20 lithia disilicate-based ceramic (IPS Empress 2) were produced by hot-pressing technique. All specimens were polished and then cleaned ultrasonically in distilled water. Ten specimens of each ceramic group were then etched with 9% hydrofluoric (HF) acid gel for 2 minutes and cleaned ultrasonically again. The biaxial flexural strength was measured by the piston-on-three-ball test in a universal testing machine. Data based on ten specimens in each group were analyzed by two-way ANOVA (alpha= 0.05). Microstructure of ceramic surfaces before and after acid etching was also examined by a scanning electron microscope. The mean biaxial flexural strength values for each group tested were (in MPa): nonetched IPS Empress = 118.6 +/- 25.5; etched IPS Empress = 102.9 +/- 15.4; nonetched IPS Empress 2 = 283.0 +/- 48.5; and etched IPS Empress 2 = 250.6 +/- 34.6. The results showed that the etching process reduced the biaxial flexural strengths significantly for both ceramic types (p= 0.025). No significant interaction between the ceramic type and etching process was found (p= 0.407). From the results, it was concluded that surface HF acid etching could have a weakening effect on hot-pressed leucite or lithia disilicate-based glass ceramic systems.

  17. Experiment to measure the effects of biaxial strain on the critical current of NbTi superconductor

    International Nuclear Information System (INIS)

    Froelich, K.J.

    1975-01-01

    Twisted multifilament, copper-clad NbTi superconductors have been axially and biaxially strained at 4.2K with a 7.5T background field. A simply-constructed cryogenic loading frame was built and used to strain the conductor. Results on 1.27 mm x 3.13 mm conductor have shown that degradation of less than .3 percent of critical current occurred when the wire was biaxially strained to +3260 μepsilon in the axial direction and -1875 μepsilon in the transverse direction. Degradation approaches 3 percent of critical current at approximately 6000 μepsilon in the axial direction only

  18. Insertion Testing of Polyethylene Glycol Microneedle Array into Cultured Human Skin with Biaxial Tension

    Science.gov (United States)

    Takano, Naoki; Tachikawa, Hiroto; Miyano, Takaya; Nishiyabu, Kazuaki

    Aiming at the practical use of polyethylene glycol (PEG) microneedles for transdermal drug delivery system (DDS), a testing apparatus for their insertion into cultured human skin has been developed. To simulate the variety of conditions of human skin, biaxial tension can be applied to the cultured human skin. An adopted testing scheme to apply and control the biaxial tension is similar to the deep-draw forming technique. An attention was also paid to the short-time setup of small, thin and wet cultured skin. One dimensional array with four needles was inserted and influence of tension was discussed. It was found that tension, deflection of skin during insertion and original curvature of skin are the important parameters for microneedles array design.

  19. Consistent stress-strain ductile fracture model as applied to two grades of beryllium

    International Nuclear Information System (INIS)

    Priddy, T.G.; Benzley, S.E.; Ford, L.M.

    1980-01-01

    Published yield and ultimate biaxial stress and strain data for two grades of beryllium are correlated with a more complete method of characterizing macroscopic strain at fracture initiation in ductile materials. Results are compared with those obtained from an exponential, mean stress dependent, model. Simple statistical methods are employed to illustrate the degree of correlation for each method with the experimental data

  20. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  1. Biaxially textured articles formed by power metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  2. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  3. Biaxial fatigue tests and crack paths for AISI 304L stainless steel

    Directory of Open Access Journals (Sweden)

    V. Chaves

    2014-10-01

    Full Text Available AISI 304L stainless steel specimens have been tested in fatigue. The tests were axial, torsional and in-phase biaxial, all of them under load control and R=-1. The S-N curves were built following the ASTM E739 standard and the method of maximum likelihood proposed by Bettinelli. The fatigue limits of the biaxial tests were represented in axes σ-τ. The elliptical quadrant, appropriate for ductile materials, and the elliptical arc, appropriate for fragile materials, were included in the graph. The experimental values were better fitted with an elliptical quadrant, despite the ratio between the pure torsion and tension fatigue limits, τFL/σFL, is 0.91, close to 1, which is a typical value for fragile materials. The crack direction along the surface has been analyzed by using a microscope, with especial attention to the crack initiation zones. The crack direction during the Stage I has been compared with theoretical models.

  4. Effects of Interphase Modification and Biaxial Orientation on Dielectric Properties of Poly(ethylene terephthalate)/Poly(vinylidene fluoride-co-hexafluoropropylene) Multilayer Films.

    Science.gov (United States)

    Yin, Kezhen; Zhou, Zheng; Schuele, Donald E; Wolak, Mason; Zhu, Lei; Baer, Eric

    2016-06-01

    Recently, poly(vinylidene fluoride) (PVDF)-based multilayer films have demonstrated enhanced dielectric properties, combining high energy density and high dielectric breakdown strength from the component polymers. In this work, further enhanced dielectric properties were achieved through interface/interphase modulation and biaxial orientation for the poly(ethylene terephthalate)/poly(methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) [PET/PMMA/P(VDF-HFP)] three-component multilayer films. Because PMMA is miscible with P(VDF-HFP) and compatible with PET, the interfacial adhesion between PET and P(VDF-HFP) layers should be improved. Biaxial stretching of the as-extruded multilayer films induced formation of highly oriented fibrillar crystals in both P(VDF-HFP) and PET, resulting in improved dielectric properties with respect to the unstretched films. First, the parallel orientation of PVDF crystals reduced the dielectric loss from the αc relaxation in α crystals. Second, biaxial stretching constrained the amorphous phase in P(VDF-HFP) and thus the migrational loss from impurity ions was reduced. Third, biaxial stretching induced a significant amount of rigid amorphous phase in PET, further enhancing the breakdown strength of multilayer films. Due to the synergistic effects of improved interfacial adhesion and biaxial orientation, the PET/PMMA/P(VDF-HFP) 65-layer films with 8 vol % PMMA exhibited optimal dielectric properties with an energy density of 17.4 J/cm(3) at breakdown and the lowest dielectric loss. These three-component multilayer films are promising for future high-energy-density film capacitor applications.

  5. Experimental evidence for stress enhanced swelling

    International Nuclear Information System (INIS)

    Bates, J.F.; Gilbert, E.R.

    1976-01-01

    Experimental evidence is presented which shows that the application of a biaxial stress during irradiation can increase the magnitude of irradiation-induced swelling observed in tubular specimens. It is shown that this increase in swelling is linear below the proportional elastic limit of the material and decreases above this value of stress. In the linear region a relationship is found between total swelling and stress free swelling. The phenomenon of reduced swelling is evaluated on the basis of increased cold work due to pre-irradiation straining. This analysis yields a relationship of dislocation density proportional to stress to the 3.82 power. Additional analyses using dislocation density proportional to sigma 2 (sigma = hoop stress) yield a similar but sharper decrease in swelling after the proportional elastic limit is reached. (Auth.)

  6. Cyclic plasticity of an austenitic-ferritic stainless steel under biaxial non proportional loading; Plasticite cyclique d'un acier inoxydable austeno-ferritique sous chargement biaxial non-proportionnel

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, V

    2001-11-15

    Austenitic-ferritic stainless steels are supplied since about 30 years only, so they are yet not well-known. Their behaviour in cyclic plasticity was studied under uniaxial loading but not under multiaxial loading, whereas only a thorough knowledge of the phenomena influencing the mechanical behaviour of a material enables to simulate and predict accurately its behaviour in a structure. This work aims to study and model the behaviour of a duplex stainless steel under cyclic biaxial loading. A three step method was adopted. A set of tension-torsion tests on tubular specimen was first defined. We studied the equivalence between loading directions, and then the influence of loading path and loading history on the stress response of the material. Results showed that duplex stainless steel shows an extra-hardening under non proportional loading and that its behaviour depends on previous loading. Then, in order to analyse the results obtained during this first experimental stage, the yield surface was measured at different times during cyclic loading of the same kind. A very small plastic strain offset (2*10{sup -5}) was used in order not to disturb the yield surface measured. The alteration of isotropic and kinematic hardening variables were deduced from these measures. Finally, three phenomenological constitutive laws were identified with the experimental set. We focused our interest on the simulation of stabilized stress levels and on the simulation of the cyclic hardening/softening behaviour. The comparison between experimental and numerical results enabled the testing of the relevance of these models. (authors)

  7. Time-dependent strains and stresses in a pumpkin balloon

    Science.gov (United States)

    Gerngross, T.; Xu, Y.; Pellegrino, S.

    This paper presents a study of pumpkin-shaped superpressure balloons consisting of gores made from a thin polymeric film attached to high stiffness meridional tendons This type of design is being used for the NASA ULDB balloons The gore film shows considerable time-dependent stress relaxation whereas the behaviour of the tendons is essentially time-independent Upon inflation and pressurization the instantaneous i e linear-elastic strain and stress distributions in the film show significantly higher values in the meridional direction However over time and due to the biaxial visco-elastic stress relaxation of the the gore material the em hoop strains increase and the em meridional stresses decrease whereas the em remaining strain and stress components remain substantially unchanged These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission both in terms of the material performance and the overall stability of the shape of the balloon An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter 48 gore pumpkin balloon is presented The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature The results show good correlation with a numerical study using the ABAQUS finite-element package that includes a widely used model of

  8. 2D nonlocal versus 3D bifurcation studies for biaxially loaded plates

    DEFF Research Database (Denmark)

    Benallal, A.; Tvergaard, Viggo

    1998-01-01

    The main objective of this work is to analyse how a two-dimensional second gradient plasticity model is able to reproduce the three-dimensional bifurcation behaviour for a biaxially loaded flat plate. While it is found that the simple model used here is able to capture them qualitatively for the ...

  9. The State of Stress Beyond the Borehole

    Science.gov (United States)

    Johnson, P. A.; Coblentz, D. D.; Maceira, M.; Delorey, A. A.; Guyer, R. A.

    2015-12-01

    The state of stress controls all in-situ reservoir activities and yet we lack the quantitative means to measure it. This problem is important in light of the fact that the subsurface provides more than 80 percent of the energy used in the United States and serves as a reservoir for geological carbon sequestration, used fuel disposition, and nuclear waste storage. Adaptive control of subsurface fractures and fluid flow is a crosscutting challenge being addressed by the new Department of Energy SubTER Initiative that has the potential to transform subsurface energy production and waste storage strategies. Our methodology to address the above mentioned matter is based on a novel Advance Multi-Physics Tomographic (AMT) approach for determining the state of stress, thereby facilitating our ability to monitor and control subsurface geomechanical processes. We developed the AMT algorithm for deriving state-of-stress from integrated density and seismic velocity models and demonstrate the feasibility by applying the AMT approach to synthetic data sets to assess accuracy and resolution of the method as a function of the quality and type of geophysical data. With this method we can produce regional- to basin-scale maps of the background state of stress and identify regions where stresses are changing. Our approach is based on our major advances in the joint inversion of gravity and seismic data to obtain the elastic properties for the subsurface; and coupling afterwards the output from this joint-inversion with theoretical model such that strain (and subsequently) stress can be computed. Ultimately we will obtain the differential state of stress over time to identify and monitor critically stressed faults and evolving regions within the reservoir, and relate them to anthropogenic activities such as fluid/gas injection.

  10. An updated stress map of the continental United States reveals heterogeneous intraplate stress

    Science.gov (United States)

    Levandowski, Will; Herrmann, Robert B.; Briggs, Rich; Boyd, Oliver; Gold, Ryan

    2018-06-01

    Knowledge of the state of stress in Earth's crust is key to understanding the forces and processes responsible for earthquakes. Historically, low rates of natural seismicity in the central and eastern United States have complicated efforts to understand intraplate stress, but recent improvements in seismic networks and the spread of human-induced seismicity have greatly improved data coverage. Here, we compile a nationwide stress map based on formal inversions of focal mechanisms that challenges the idea that deformation in continental interiors is driven primarily by broad, uniform stress fields derived from distant plate boundaries. Despite plate-boundary compression, extension dominates roughly half of the continent, and second-order forces related to lithospheric structure appear to control extension directions. We also show that the states of stress in several active eastern United States seismic zones differ significantly from those of surrounding areas and that these anomalies cannot be explained by transient processes, suggesting that earthquakes are focused by persistent, locally derived sources of stress. Such spatially variable intraplate stress appears to justify the current, spatially variable estimates of seismic hazard. Future work to quantify sources of stress, stressing-rate magnitudes and their relationship with strain and earthquake rates could allow prospective mapping of intraplate hazard.

  11. Most effective way to improve the hydrogen storage abilities of Na-decorated BN sheets: applying external biaxial strain and an electric field.

    Science.gov (United States)

    Tang, Chunmei; Zhang, Xue; Zhou, Xiaofeng

    2017-02-15

    Density functional calculations were used to investigate the hydrogen storage abilities of Na-atoms-decorated BN sheets under both external biaxial strain and a vertical electric field. The Na atom generally has the weakest binding strength to a given substrate compared with the other elements in the periodic table [PANS, 2016, 113, 3735]. Consequently, it is understudied in comparison to other elements and there are few reports about the hydrogen storage abilities of Na-decorated nanomaterials. We calculated that the average binding energy (E b ) of Na atoms to the pure BN sheet is 1.08 eV, which is smaller than the cohesive energy of bulk Na (1.11 eV). However, the E b can be increased to 1.15 eV under 15% biaxial strain, and further up to 1.53 eV with the control of both 15% biaxial strain and a 5.14 V nm -1 electric field (E-field). Therefore, the application of biaxial strain and an external upward E-field can prevent clustering of the Na atoms on the surface of a BN sheet, which is crucial for the hydrogen storage. Each Na atom on the surface of a BN sheet can adsorb only one H 2 molecule when no strain or E-field is applied; however, the absorption increases to five H 2 molecules under 15% biaxial strain and six H 2 molecules under both 15% biaxial strain combined with a 5.14 V nm -1 E-field. The average adsorption energies for H 2 of BN-(Na-mH 2 ) (m = 1-6) are within the range of practical applications (0.2-0.6 eV). The hydrogen gravimetric density of the periodic BN-(Na-6H 2 ) 4 structure is 9 wt%, which exceeds the 5.5 wt% value that should be met by 2017 as specified by the US Department of Energy. On the other side, removal of the biaxial strain and E-field can help to desorb the H 2 molecule. These findings suggest a new route to design hydrogen storage materials under near-ambient conditions.

  12. Frictional response of simulated faults to normal stresses perturbations probed with ultrasonic waves

    Science.gov (United States)

    Shreedharan, S.; Riviere, J.; Marone, C.

    2017-12-01

    We report on a suite of laboratory friction experiments conducted on saw-cut Westerly Granite surfaces to probe frictional response to step changes in normal stress and loading rate. The experiments are conducted to illuminate the fundamental processes that yield friction rate and state dependence. We quantify the microphysical frictional response of the simulated fault surfaces to normal stress steps, in the range of 1% - 600% step increases and decreases from a nominal baseline normal stress. We measure directly the fault slip rate and account for changes in slip rate with changes in normal stress and complement mechanical data acquisition by continuously probing the faults with ultrasonic pulses. We conduct the experiments at room temperature and humidity conditions in a servo controlled biaxial testing apparatus in the double direct shear configuration. The samples are sheared over a range of velocities, from 0.02 - 100 μm/s. We report observations of a transient shear stress and friction evolution with step increases and decreases in normal stress. Specifically, we show that, at low shear velocities and small increases in normal stress ( 5% increases), the shear stress evolves immediately with normal stress. We show that the excursions in slip rate resulting from the changes in normal stress must be accounted for in order to predict fault strength evolution. Ultrasonic wave amplitudes which first increase immediately in response to normal stress steps, then decrease approximately linearly to a new steady state value, in part due to changes in fault slip rate. Previous descriptions of frictional state evolution during normal stress perturbations have not adequately accounted for the effect of large slip velocity excursions. Here, we attempt to do so by using the measured ultrasonic amplitudes as a proxy for frictional state during transient shear stress evolution. Our work aims to improve understanding of induced and triggered seismicity with focus on

  13. New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sundell, Per; Yin, Yihao [Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago de Chile (Chile)

    2017-01-11

    We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in https://arxiv.org/abs/1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS{sub 4} region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.

  14. A critical analysis of the Mises stress criterion used in frequency domain fatigue life prediction

    Directory of Open Access Journals (Sweden)

    Adam Niesłony

    2016-10-01

    Full Text Available Multiaxial fatigue failure criteria are formulated in time and frequency domain. The number of frequency domain criteria is rather small and the most popular one is the equivalent von Mises stress criterion. This criterion was elaborated by Preumont and Piefort on the basis of well-known von Mises stress concept, first proposed by Huber in 1907, and well accepted by the scientific community and engineers. It is important to know, that the criterion was developed to determine the yield stress and material effort under static load. Therefore the direct use of equivalent von Mises stress criterion for fatigue life prediction can lead to some incorrectness of theoretical and practical nature. In the present study four aspects were discussed: influence of the value of fatigue strength of tension and torsion, lack of parallelism of the SN curves, abnormal behaviour of the criterion under biaxial tensioncompression and influence of phase shift between particular stress state components. Information contained in this article will help to prevent improper use of this criterion and contributes to its better understanding

  15. Non-monotonic probability of thermal reversal in thin-film biaxial nanomagnets with small energy barriers

    Directory of Open Access Journals (Sweden)

    N. Kani

    2017-05-01

    Full Text Available The goal of this paper is to investigate the short time-scale, thermally-induced probability of magnetization reversal for an biaxial nanomagnet that is characterized with a biaxial magnetic anisotropy. For the first time, we clearly show that for a given energy barrier of the nanomagnet, the magnetization reversal probability of an biaxial nanomagnet exhibits a non-monotonic dependence on its saturation magnetization. Specifically, there are two reasons for this non-monotonic behavior in rectangular thin-film nanomagnets that have a large perpendicular magnetic anisotropy. First, a large perpendicular anisotropy lowers the precessional period of the magnetization making it more likely to precess across the x^=0 plane if the magnetization energy exceeds the energy barrier. Second, the thermal-field torque at a particular energy increases as the magnitude of the perpendicular anisotropy increases during the magnetization precession. This non-monotonic behavior is most noticeable when analyzing the magnetization reversals on time-scales up to several tens of ns. In light of the several proposals of spintronic devices that require data retention on time-scales up to 10’s of ns, understanding the probability of magnetization reversal on the short time-scales is important. As such, the results presented in this paper will be helpful in quantifying the reliability and noise sensitivity of spintronic devices in which thermal noise is inevitably present.

  16. Mechanical properties of biaxially strained poly(L-lactide) tubes: Strain rate and temperature dependence

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard

    2017-01-01

    Poly(l-lactide) (PLLA) is a bioabsorbable polymer with high stiffness and strength compared to the other commercially available bioabsorbable polymers. The properties of PLLA can be improved by straining, causing deformation-mediated molecular orientation. PLLA tubes were biaxially strained above...

  17. Equi-biaxial loading effect on austenitic stainless steel fatigue life

    Directory of Open Access Journals (Sweden)

    C. Gourdin

    2016-10-01

    Full Text Available Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures. In some nuclear power plant components, the fatigue loading may be equibiaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equibiaxial tension. Two calibration tests (with strain gauges and image correlation were used to obtain the relationship between the imposed deflection and the radial strain on the FABIME2 specimen. A numerical study has confirmed this relationship. Biaxial fatigue tests are carried out on two austenitic stainless steels for different values of the maximum deflection, and with a load ratio equal to -1. The interpretation of the experimental results requires the use of an appropriate definition of strain equivalent. In nuclear industry, two kinds of definition are used: von Mises and TRESCA strain equivalent. These results have permitted to estimate the impact of the equibiaxiality on the fatigue life of components

  18. Modeling of CMUTs with Multiple Anisotropic Layers and Residual Stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Thomsen, Erik Vilain

    2014-01-01

    Usually the analytical approach for modeling CMUTs uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. A highly accurate model is developed for analytical characterization of CMUTs taking an arbitrary number of layers...... and residual stress into account. Based on the stress-strain relation of each layer and balancing stress resultants and bending moments, a general multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular...... clamped plate of anisotropic materials with residual bi-axial stress. From the deflection shape the critical stress for buckling is calculated and by using the Rayleigh-Ritz method the natural frequency is estimated....

  19. The impact of hydrofluoric acid etching followed by unfilled resin on the biaxial strength of a glass-ceramic.

    Science.gov (United States)

    Posritong, Sumana; Borges, Alexandre Luiz Souto; Chu, Tien-Min Gabriel; Eckert, George J; Bottino, Marco A; Bottino, Marco C

    2013-11-01

    To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s+60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α=0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. The interaction (etching time vs. surface treatment) was significant for Ra (p=0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60s group (pceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p=0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (pceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. A study of extracellular matrix remodeling in aortic heart valves using a novel biaxial stretch bioreactor.

    Science.gov (United States)

    Lei, Ying; Masjedi, Shirin; Ferdous, Zannatul

    2017-11-01

    In aortic valves, biaxial cyclic stretch is known to modulate cell differentiation, extracellular matrix (ECM) synthesis and organization. We designed a novel bioreactor that can apply independent and precise stretch along radial and circumferential directions in a tissue culture environment. While this bioreactor can be used for either native or engineered tissues, this study determined matrix remodeling and strain distribution of aortic cusps after culturing under biaxial stretch for 14 days. The contents of collagen and glycosaminoglycans were determined using standard biochemical assays and compared with fresh controls. Strain fields in static cusps were more uniform than those in stretched cusps, which indicated degradation of the ECM fibers. The glycosaminoglycan content was significantly elevated in the static control as compared to fresh or stretched cusps, but no difference was observed in collagen content among the groups. The strain profile of freshly isolated fibrosa vs. ventricularis and left, right, and noncoronary cusps were also determined by Digital Image Correlation technique. Distinct strain patterns were observed under stretch on fibrosa and ventricularis sides and among the three cusps. This work highlights the critical role of the anisotropic ECM structure for proper functions of native aortic valves and the beneficial effects of biaxial stretch for maintenance of the native ECM structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Residual stress investigation of copper plate and canister EB-Welds Complementary Results

    International Nuclear Information System (INIS)

    Gripenberg, H.

    2009-03-01

    The residual stresses in copper as induced by EB-welding were studied by specimens where the weld had two configurations: either a linear or a circumferential weld. This report contains the residual stress measurements of two plates, containing linear welds, and the full-scale copper lid specimen to which a hollow cylinder section had been joined by a circumferential EB-weld. The residual stress state of the EB-welded copper specimens was investigated by X-ray diffraction (XRD), hole drilling (HD) ring core (RC) and contour method (CM). Three specimens, canister XK010 and plates X251 and X252, were subjected to a thorough study aiming at quantitative determination of the residual stress state in and around the EB-welds using XRD for surface and HD and RC for spatial stress analysis. The CM maps one stress component over a whole cross section. The surface residual stresses measured by XRD represent the machined condition of the copper material. The XRD study showed that the stress changes towards compression close to the weld in the hollow cylinder, which indicates shrinkage in the hoop direction. According to the same analogy, the shrinkage in the axial direction is much smaller. The HD measurements showed that the stress state in the base material is bi-axial and, in terms of von Mises stress, 50 MPa for the plates and 20 MPa for the cylinder part of the canister. The stress state in the EB-welds of all specimens differs clearly from the stress state in the base material being more tensile, with higher magnitudes of von Mises stress in the plate than in the canister welds. The HD and RC results were obtained using linear elastic theory. The RC measurements showed that the maximum principal stress in the BM is close to zero near the surface and it becomes slightly tensile, 10 MPa, deeper under the surface. Welding pushed the general stress state towards tension with the maximum principal stress reaching 50 MPa, deeper than 5 mm below the surface in the weld. The

  2. Biaxial mechanics and inter-lamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering.

    Science.gov (United States)

    Driscoll, Tristan P; Nakasone, Ryan H; Szczesny, Spencer E; Elliott, Dawn M; Mauck, Robert L

    2013-06-01

    The annulus fibrosus (AF) of the intervertebral disk plays a critical role in vertebral load transmission that is heavily dependent on the microscale structure and composition of the tissue. With degeneration, both structure and composition are compromised, resulting in a loss of AF mechanical function. Numerous tissue engineering strategies have addressed the issue of AF degeneration, but few have focused on recapitulation of AF microstructure and function. One approach that allows for generation of engineered AF with appropriate (+/-)30° lamellar microstructure is the use of aligned electrospun scaffolds seeded with mesenchymal stem cells (MSCs) and assembled into angle-ply laminates (APL). Previous work indicates that opposing lamellar orientation is necessary for development of near native uniaxial tensile properties. However, most native AF tensile loads are applied biaxially, as the disk is subjected to multi-axial loads and is constrained by its attachments to the vertebral bodies. Thus, the objective of this study was to evaluate the biaxial mechanical response of engineered AF bilayers, and to determine the importance of opposing lamellar structure under this loading regime. Opposing bilayers, which replicate native AF structure, showed a significantly higher modulus in both testing directions compared to parallel bilayers, and reached ∼60% of native AF biaxial properties. Associated with this increase in biaxial properties, significantly less shear, and significantly higher stretch in the fiber direction, was observed. These results provide additional insight into native tissue structure-function relationships, as well as new benchmarks for engineering functional AF tissue constructs. Copyright © 2013 Orthopaedic Research Society.

  3. Light propagation in a magneto-optical hyperbolic biaxial crystal

    Science.gov (United States)

    Kuznetsov, Evgeniy V.; Merzlikin, Alexander M.

    2017-12-01

    The light propagation through a magneto-optical hyperbolic biaxial crystal is investigated. Magnetization of the structure results in splitting and reconnection of an isofrequency near the self-intersection point and thus it leads to the disappearance of conical refraction in a crystal. In its turn the isofrequency splitting leads to band gap opening and makes it possible to steer the beam. These effects allow to control the light propagation by means of an external magnetostatic field. The Poynting's vector distribution in the crystal is calculated by means of a Fourier transform in order to demonstrate the aforementioned effects.

  4. On the Landau-de Gennes Elastic Energy of a Q-Tensor Model for Soft Biaxial Nematics

    Science.gov (United States)

    Mucci, Domenico; Nicolodi, Lorenzo

    2017-12-01

    In the Landau-de Gennes theory of liquid crystals, the propensities for alignments of molecules are represented at each point of the fluid by an element Q of the vector space S_0 of 3× 3 real symmetric traceless matrices, or Q-tensors. According to Longa and Trebin (1989), a biaxial nematic system is called soft biaxial if the tensor order parameter Q satisfies the constraint tr(Q^2) = {const}. After the introduction of a Q-tensor model for soft biaxial nematic systems and the description of its geometric structure, we address the question of coercivity for the most common four-elastic-constant form of the Landau-de Gennes elastic free-energy (Iyer et al. 2015) in this model. For a soft biaxial nematic system, the tensor field Q takes values in a four-dimensional sphere S^4_ρ of radius ρ ≤ √{2/3} in the five-dimensional space S_0 with inner product = tr(QP). The rotation group it{SO}(3) acts orthogonally on S_0 by conjugation and hence induces an action on S^4_ρ \\subset {S}_0. This action has generic orbits of codimension one that are diffeomorphic to an eightfold quotient S^3/H of the unit three-sphere S^3, where H={± 1, ± i, ± j, ± k} is the quaternion group, and has two degenerate orbits of codimension two that are diffeomorphic to the projective plane RP^2. Each generic orbit can be interpreted as the order parameter space of a constrained biaxial nematic system and each singular orbit as the order parameter space of a constrained uniaxial nematic system. It turns out that S^4_ρ is a cohomogeneity one manifold, i.e., a manifold with a group action whose orbit space is one-dimensional. Another important geometric feature of the model is that the set Σ _ρ of diagonal Q-tensors of fixed norm ρ is a (geodesic) great circle in S^4_ρ which meets every orbit of S^4_ρ orthogonally and is then a section for S^4_ρ in the sense of the general theory of canonical forms. We compute necessary and sufficient coercivity conditions for the elastic energy by

  5. Correlation of 0.67um scatter with local stress in Ge impacted with the modified Cambridge liquid jet device

    Science.gov (United States)

    Wilson, Michael; Price, D.; Strohecker, Steve

    1994-09-01

    Germanium witness samples were impacted with the NAWCADWAR modified Cambridge liquid jet device introducing varying levels of damage about the center of each sample. Surface damage statistics were collected, scatter measurements were made at 0.67 micrometers and the samples were failed in tension using a bi-axial flexure test setup. The level and character of the damage was correlated with the reflected scatter measurements as a function of local stress and flaw size distribution. Bi-axial flexure data was analyzed to predict fracture stress and the probability of failure of the germanium samples. The mechanical data were then correlated with the scatter data in order to correlate the BRDF with the material failure. The BRDF measurements were taken in several different orientations in order to study the differences in scatter character for the in-plane and out-of-plane conditions.

  6. Scale effect in fatigue resistance under complex stressed state

    International Nuclear Information System (INIS)

    Sosnovskij, L.A.

    1979-01-01

    On the basis the of the fatigue failure statistic theory obtained is the formula for calculated estimation of probabillity of failure under complex stressed state according to partial probabilities of failure under linear stressed state with provision for the scale effect. Also the formula for calculation of equivalent stress is obtained. The verification of both formulae using literary experimental data for plane stressed state torsion has shown that the error of estimations does not exceed 10% for materials with the ultimate strength changing from 61 to 124 kg/mm 2

  7. Energetical and multiscale approaches for the definition of an equivalent stress for magneto-elastic couplings

    International Nuclear Information System (INIS)

    Hubert, Olivier; Daniel, Laurent

    2011-01-01

    A main limitation of most models describing the effect of stress on the magnetic behavior is that they are restricted to uniaxial - tensile or compressive - stress. Nevertheless, stress is multiaxial in most of industrial applications. An idea to overcome the strong limitation of models is to define a fictive uniaxial stress, the equivalent stress, that would change the magnetic behavior in a similar manner than a multiaxial stress. A first definition of equivalent stress, called the deviatoric equivalent stress, is proposed. It is based on an equivalence in magneto-elastic energy. This formulation is first derived for isotropic materials under specific assumptions. An extension to orthotropic media under disoriented magneto-mechanical loading is made. A new equivalent stress expression, called generalized equivalent stress, is then proposed. It is based on an equivalence in magnetization. Inverse identification of equivalent stress is made possible thanks to a strong simplification of the description of the material seen as an assembly of elementary magnetic domains. It is shown that this second proposal is a generalization of the deviatoric expression. Equivalent stress proposals are compared to former proposals and validated using experimental results carried out on an iron-cobalt sheet submitted to biaxial mechanical loading. These results are compared to the predictions obtained thanks to the equivalent stress formulations. The generalized equivalent stress is shown to be a tool able to foresee the magnetic behavior of a large panel of materials submitted to multiaxial stress. - Research highlights: → Classical magneto-elastic models restricted to uniaxial stress. → Stress demonstrated multiaxial in most of industrial applications. → Proposals of deviatoric and generalized equivalent stresses - multidomain modeling. → Experimental validation using iron-cobalt sheet submitted to biaxial loading. → Generalization of former proposals and modeling of

  8. Cyclic plasticity of an austenitic-ferritic stainless steel under biaxial non proportional loading

    International Nuclear Information System (INIS)

    Aubin, V.

    2001-11-01

    Austenitic-ferritic stainless steels are supplied since about 30 years only, so they are yet not well-known. Their behaviour in cyclic plasticity was studied under uniaxial loading but not under multiaxial loading, whereas only a thorough knowledge of the phenomena influencing the mechanical behaviour of a material enables to simulate and predict accurately its behaviour in a structure. This work aims to study and model the behaviour of a duplex stainless steel under cyclic biaxial loading. A three step method was adopted. A set of tension-torsion tests on tubular specimen was first defined. We studied the equivalence between loading directions, and then the influence of loading path and loading history on the stress response of the material. Results showed that duplex stainless steel shows an extra-hardening under non proportional loading and that its behaviour depends on previous loading. Then, in order to analyse the results obtained during this first experimental stage, the yield surface was measured at different times during cyclic loading of the same kind. A very small plastic strain offset (2*10 -5 ) was used in order not to disturb the yield surface measured. The alteration of isotropic and kinematic hardening variables were deduced from these measures. Finally, three phenomenological constitutive laws were identified with the experimental set. We focused our interest on the simulation of stabilized stress levels and on the simulation of the cyclic hardening/softening behaviour. The comparison between experimental and numerical results enabled the testing of the relevance of these models. (authors)

  9. Computer program for stresses and buckling of heated composite-stiffened panels and other structures (BUCLASP 3)

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.

    1974-01-01

    General-purpose program is intended for thermal stress and instability analyses of structures such as axially-stiffened curved panels. Two types of instability analyses can be effected by program: (1) thermal buckling with temperature variation as specified and (2) buckling due to in-plane biaxial loading.

  10. Modeling of biaxial gimbal-less MEMS scanning mirrors

    Science.gov (United States)

    von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang

    2016-03-01

    One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.

  11. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    Science.gov (United States)

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (pstate condition. The distributions of PSD of tremor were symmetrical, regardless of conditions. Tremor is more evident and typical tremor characteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels. Copyright © 2016. Published by Elsevier B.V.

  12. Robust control for a biaxial servo with time delay system based on adaptive tuning technique.

    Science.gov (United States)

    Chen, Tien-Chi; Yu, Chih-Hsien

    2009-07-01

    A robust control method for synchronizing a biaxial servo system motion is proposed in this paper. A new network based cross-coupled control and adaptive tuning techniques are used together to cancel out the skew error. The conventional fixed gain PID cross-coupled controller (CCC) is replaced with the adaptive cross-coupled controller (ACCC) in the proposed control scheme to maintain biaxial servo system synchronization motion. Adaptive-tuning PID (APID) position and velocity controllers provide the necessary control actions to maintain synchronization while following a variable command trajectory. A delay-time compensator (DTC) with an adaptive controller was augmented to set the time delay element, effectively moving it outside the closed loop, enhancing the stability of the robust controlled system. This scheme provides strong robustness with respect to uncertain dynamics and disturbances. The simulation and experimental results reveal that the proposed control structure adapts to a wide range of operating conditions and provides promising results under parameter variations and load changes.

  13. Transient and residual stresses in a pressable glass-ceramic before and after resin-cement coating determined using profilometry.

    LENUS (Irish Health Repository)

    2011-05-01

    The effect of heat-pressing and subsequent pre-cementation (acid-etching) and resin-cementation operative techniques on the development of transient and residual stresses in different thicknesses of a lithium disilicate glass-ceramic were characterised using profilometry prior to biaxial flexure strength (BFS) determination.

  14. Dependence of the optical conductivity on the uniaxial and biaxial strains in black phosphorene

    Science.gov (United States)

    Yang, C. H.; Zhang, J. Y.; Wang, G. X.; Zhang, C.

    2018-06-01

    By using the Kubo formula, the optical conductivity of strained black phosphorene was studied. The anisotropic band dispersion gives rise to an orientation dependent optical conductivity. The energy gap can be tuned by the uniaxial and biaxial strains which can be observed from the interband optical conductivity polarized along the armchair (x ) direction. The preferential conducting direction is along the x direction. The dependence of the intraband optical conductivity along the zigzag (y ) direction on the Fermi energy and strain exhibits increasing or decreasing monotonously. However, along the x direction this dependence is complicated which originates from the carriers' inverse-direction movements obtained by two types of the nearest phosphorus atom interactions. The modification of the biaxial strain on the energy structure and optical-absorption property is more effective. The imaginary part of the total optical conductivity (Im σ ) can be negative around the threshold of the interband optical transition by modifying the chemical potential. Away from this frequency region, Im σ exhibits positive value. It can be used in the application of the surface plasmon propagations in multilayer dielectric structures.

  15. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  16. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  17. An effective uniaxial tensile stress-strain relationship for prestressed concrete

    International Nuclear Information System (INIS)

    Chitnuyanondh, L.; Rizkalla, S.; Murray, D.W.; MacGregor, J.G.

    1979-02-01

    This report evaluates the direct tensile strength and an equivalent uniaxial tensile stress-strain relationship for prestressed concrete using data from specimens tested at the University of Alberta which represent segments from the wall of a containment vessel. The stress-strain relationship, when used in conjunction with the BOSOR5 program, enables prediction of the response of prestressed concrete under any biaxial combination of compressive and/or tensile stresses. Comparisons between the experimental and analytical (BOSOR5) load-strain response of the wall segments are also presented. It is concluded that the BOSOR5 program is able to predict satisfactorily the response of the wall segments and multi-layered shell structures. (author)

  18. A methodology for interpretation of overcoring stress measurements in anisotropic rock

    International Nuclear Information System (INIS)

    Hakala, M.; Sjoeberg, J.

    2006-11-01

    The in situ state of stress is an important parameter for the design of a repository for final disposal of spent nuclear fuel. This report presents work conducted to improve the quality of overcoring stress measurements, focused on the interpretation of overcoring rock stress measurements when accounting for possible anisotropic behavior of the rock. The work comprised: (i) development/upgrading of a computer code for calculating stresses from overcoring strains for anisotropic materials and for a general overcoring probe configuration (up to six strain rosettes with six gauges each), (ii) development of a computer code for determining elastic constants for transversely isotropic rocks from biaxial testing, and (iii) analysis of case studies of selected overcoring measurements in both isotropic and anisotropic rocks from the Posiva and SKB sites in Finland and Sweden, respectively. The work was principally limited to transversely isotropic materials, although the stress calculation code is applicable also to orthotropic materials. The developed computer codes have been geared to work primarily with the Borre and CSIRO HI three-dimensional overcoring measurement probes. Application of the codes to selected case studies, showed that the developed tools were practical and useful for interpreting overcoring stress measurements conducted in anisotropic rock. A quantitative assessment of the effects of anisotropy may thus be obtained, which provides increased reliability in the stress data. Potential gaps in existing data and/or understanding can also be identified. (orig.)

  19. NULIFE - Project CABINET. RPV Assessment under Consideration of Constraint and Warm Pre-Stress Effects

    International Nuclear Information System (INIS)

    Obermeier, F.; Nicak, Tomas; Keim, Elisabeth; Fekete, Tamas; Scibetta, Marc; Planman, Tapio; Laukkanen, Anssi; Carcia, Carlos Cueto-Felgueroso; Sattari-Far, Iradj

    2012-01-01

    At the moment, nuclear power plant regulators do not predominantly consider constraint and biaxial effects in their concepts for failure assessment of nuclear components. The warm pre-stressing (WPS) effect is only partly considered in some assessment procedures and codes. There is also a lack of a harmonized treatment of these effects in the safety assessment of European plants. This paper introduces the project CABINET (Constraint and Biaxial Loading Effects and their Interactions Considering Thermal Transients) which is a collaborative project under the EU's Network of Excellence NULIFE. The overall objective of CABINET is to investigate and understand constraint, biaxial loading and WPS effects in terms of a clearly defined application window, especially in the light of long term operation. The focus lies on already available experimental data and methodologies. The intention is to provide recommendations for a harmonized application of those effects in European nuclear safety assessment. The possibility to include different level of analysis depending on input data and acceptance of National Regulatory Body is also being evaluated. Although the CABINET project is not completed yet, it has been found that it is possible to rationalize the different existing codes. (author)

  20. Influence of reversible epitactical stress on the electronic properties of thin superconducting films

    International Nuclear Information System (INIS)

    Trommler, Sascha

    2014-01-01

    In this thesis new stress techniques are applied on thin superconducting (La,Sr) 2 CuO 4 and BaFe 1.8 Co 0.2 As 2 films. At one hand piezoelectric substrates are applied, which make a biaxial stress of the thin film deposed there possible, whereby the lattice parameters of the substrate are altered by an electric field. At the other hand on the base of flexible substrates by means of a bending experiment a uniaxial lattice deformation of thin film is realized.

  1. Development of a Weibull model of cleavage fracture toughness for shallow flaws in reactor pressure vessel material

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Williams, P.T.; McAfee, W.J.; Pugh, C.E. [Oak Ridge National Lab., Heavy-Section Steel Technology Program, Oak Ridge, TN (United States)

    2001-07-01

    A primary objective of the United States Nuclear Regulatory Commission (USNRC) -sponsored Heavy-Section Steel Technology (HSST) Program is to develop and validate technology applicable to quantitative assessments of fracture prevention margins in nuclear reactor pressure vessels (RPVs) containing flaws and subjected to service-induced material toughness degradation. This paper describes an experimental/analytical program for the development of a Weibull statistical model of cleavage fracture toughness for applications to shallow surface-breaking and embedded flaws in RPV materials subjected to multi-axial loading conditions. The experimental part includes both material characterization testing and larger fracture toughness experiments conducted using a special-purpose cruciform beam specimen developed by Oak Ridge National Laboratory for applying biaxial loads to shallow cracks. Test materials (pressure vessel steels) included plate product forms (conforming to ASTM A533 Grade B Class 1 specifications) and shell segments procured from a pressurized-water reactor vessel intended for a nuclear power plant. Results from tests performed on cruciform specimens demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower-transition temperature region. A local approach methodology based on a three-parameter Weibull model was developed to correlate these experimentally-observed biaxial effects on fracture toughness. The Weibull model, combined with a new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the Weibull stress integral definition, is shown to provide a scaling mechanism between uniaxial and biaxial loading states for 2-dimensional flaws located in the A533-B plate material. The Weibull stress density was introduced as a matrice for identifying regions along a semi-elliptical flaw front that have a higher probability of cleavage initiation. Cumulative

  2. Development of a Weibull model of cleavage fracture toughness for shallow flaws in reactor pressure vessel material

    International Nuclear Information System (INIS)

    Bass, B.R.; Williams, P.T.; McAfee, W.J.; Pugh, C.E.

    2001-01-01

    A primary objective of the United States Nuclear Regulatory Commission (USNRC) -sponsored Heavy-Section Steel Technology (HSST) Program is to develop and validate technology applicable to quantitative assessments of fracture prevention margins in nuclear reactor pressure vessels (RPVs) containing flaws and subjected to service-induced material toughness degradation. This paper describes an experimental/analytical program for the development of a Weibull statistical model of cleavage fracture toughness for applications to shallow surface-breaking and embedded flaws in RPV materials subjected to multi-axial loading conditions. The experimental part includes both material characterization testing and larger fracture toughness experiments conducted using a special-purpose cruciform beam specimen developed by Oak Ridge National Laboratory for applying biaxial loads to shallow cracks. Test materials (pressure vessel steels) included plate product forms (conforming to ASTM A533 Grade B Class 1 specifications) and shell segments procured from a pressurized-water reactor vessel intended for a nuclear power plant. Results from tests performed on cruciform specimens demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower-transition temperature region. A local approach methodology based on a three-parameter Weibull model was developed to correlate these experimentally-observed biaxial effects on fracture toughness. The Weibull model, combined with a new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the Weibull stress integral definition, is shown to provide a scaling mechanism between uniaxial and biaxial loading states for 2-dimensional flaws located in the A533-B plate material. The Weibull stress density was introduced as a matrice for identifying regions along a semi-elliptical flaw front that have a higher probability of cleavage initiation. Cumulative

  3. Elastic stability of biaxially loaded longitudinally stiffened composite structures.

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.

    1973-01-01

    A linear analysis method is presented for the elastic stability of structures of uniform cross section, that may be idealized as an assemblage of laminated plate-strips, flat and curved, and beams. Each plate-strip and beam covers the entire length of the structure and is simply supported on the edges normal to the longitudinal axis. Arbitrary boundary conditions may be specified on any external longitudinal side of plate-strips. The structure or selected plate-strips may be loaded in any desired combination of inplane biaxial loads. The analysis simultaneously considers all modes of instability and is applicable for the buckling of laminated composite structures. Some numerical results are presented to indicate possible applications.

  4. Laser damage metrology in biaxial nonlinear crystals using different test beams

    Science.gov (United States)

    Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille

    2008-01-01

    Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.

  5. [Methods and Applications of Psychological Stress State Assessment].

    Science.gov (United States)

    Li, Xin; Yang, Yadan; Hou, Yongjie; Chen, Zetao

    2015-08-01

    In this paper, the response of individual's physiological system under psychological stress state is discussed, and the theoretical support for psychological stress assessment research is provided. The two methods, i.e., the psychological stress assessment of questionnaire and physiological parameter assessment used for current psychological stress assessment are summarized. Then, the future trend of development of psychological stress assessment research is pointed out. We hope that this work could do and provide further support and help to psychological stress assessment studies.

  6. Modeling of the cold work stress relieved Zircaloy-4 cladding tubes mechanical behavior under PWR operating conditions

    International Nuclear Information System (INIS)

    Richard, F.; Delobelle, P.; Leclercq, S.; Bouffioux, P.; Rousselier, G.

    2003-01-01

    This paper proposes a damaged viscoplastic model to simulate, for different isotherms (320, 350, 380, 400 and 420 degC), the out-of-flux anisotropic mechanical behavior of cold work stress relieved Zircaloy-4 cladding tubes over the fluence range 0-85.1024 nm -2 (E > 1 MeV). The model, identified from uni and biaxial tests conducted at 350 and 400 degC, is validated from tests performed at 320, 380 and 420 degC. This model is able to simulate strain hardening under internal pressure followed by a stress relaxation period (thermal creep), which is representative of a pellet cladding mechanical interaction occurring during a power transient (class 2 incidental condition). Both the integration of a scalar state variable, characterizing the damage caused by a bombardment with neutrons, and the modification of the static recovery law allowed us to simulate the fast neutron flux effect (irradiation creep). (author)

  7. Constitutive relations describing creep deformation for multi-axial time-dependent stress states

    Science.gov (United States)

    McCartney, L. N.

    1981-02-01

    A THEORY of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.

  8. Residual stress analysis on materials with steep stress gradient by using X-ray incidence at higher angles

    International Nuclear Information System (INIS)

    Ohya, Shin-ichi; Yoshioka, Yasuo; Maeno, Shigeki

    1996-01-01

    X-ray stress measurements for isotropic polycrystalline are materials are usually carried out by the sin 2 ψ method under the assumption of no stress gradient in X-ray penetration depth. When a steep stress gradient exists in the vicinity of surface layer, however, non-linear sin 2 ψ relation is observed and the sin 2 ψ method cannot be applied on such cases. Although several X-ray stress analyzers have been developed for materials with steep stress gradient in the surface layer, it is desirable to use diffraction data at higher incident angles of ψ 0 as possible as close on 90 degrees in order to determine the both values of surface stress and stress gradient with high accuracy. In the present study, an X-ray stress analyzer based on Ω geometry was fabricated to enable X-ray incidence at higher angle of ψ 0 . The X-ray detector was positioned on -η side against X-ray incident beam. Both of the residual surface stress and stress gradient were determined by use of the COSψ method on shot-peened steel and silicon nitride specimens. This prototype stress analyzer was found effective to perform a biaxial or triaxial stress analysis. (author)

  9. Stress assessment in piping under synthetic thermal loads emulating turbulent fluid mixing

    Energy Technology Data Exchange (ETDEWEB)

    Costa Garrido, Oriol, E-mail: oriol.costa@ijs.si; El Shawish, Samir, E-mail: samir.elshawish@ijs.si; Cizelj, Leon, E-mail: leon.cizelj@ijs.si

    2015-03-15

    Highlights: • Generation of complex space-continuous and time-dependent temperature fields. • 1D and 3D thermo-mechanical analyses of pipes under complex surface thermal loads. • Surface temperatures and stress fluctuations are highly linearly correlated. • 1D and 3D results agree for a wide range of Fourier and Biot numbers. • Global thermo-mechanical loading promotes non-equibiaxial stress state. - Abstract: Thermal fatigue assessment of pipes due to turbulent fluid mixing in T-junctions is a rather difficult task because of the existing uncertainties and variability of induced thermal stresses. In these cases, thermal stresses arise on three-dimensional pipe structures due to complex thermal loads, known as thermal striping, acting at the fluid-wall interface. A recently developed approach for the generation of space-continuous and time-dependent temperature fields has been employed in this paper to reproduce fluid temperature fields of a case study from the literature. The paper aims to deliver a detailed study of the three-dimensional structural response of piping under the complex thermal loads arising in fluid mixing in T-junctions. Results of three-dimensional thermo-mechanical analyses show that fluctuations of surface temperatures and stresses are highly linearly correlated. Also, surface stress fluctuations, in axial and hoop directions, are almost equi-biaxial. These findings, representative on cross sections away from system boundaries, are moreover supported by the sensitivity analysis of Fourier and Biot numbers and by the comparison with standard one-dimensional analyses. Agreement between one- and three-dimensional results is found for a wide range of studied parameters. The study also comprises the effects of global thermo-mechanical loading on the surface stress state. Implemented mechanical boundary conditions develop more realistic overall system deformation and promote non-equibiaxial stresses.

  10. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain

    2016-01-01

    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated......, and an excellent agreement between the two models is seen with a relative difference of less than 2% for all calculations. The model was also used to extract the cell capacitance, the parasitic capacitance and the residual stress of a pressure sensor composed of a multilayered plate of silicon and silicon oxide...

  11. Active-flux based motion sensorless vector control of biaxial excitation generator/motor for automobiles (BEGA)

    DEFF Research Database (Denmark)

    Coroban-Schramel, Vasile; Boldea, Ion; Andreescu, Gheorghe-Daniel

    2009-01-01

    This paper proposes a novel, active-flux based, motion-sensorless vector control structure for biaxial excitation generator for automobiles (BEGA) for wide speed range operation. BEGA is a hybrid excited synchronous machine having permanent magnets on q-axis and a dc excitation on daxis. Using th...... electrical degrees in less than 2 ms test time....

  12. Development of a hysteresis model for R/C columns subjected to bi-axial lateral loading

    International Nuclear Information System (INIS)

    Dutta, Sekhar Chandra; Chowdhury, Rajib; Roy, Raghupati; Reddy, G. Rami

    2003-01-01

    Recent investigations on dynamic response of reinforced concrete (R/C) structures have confirmed that the R/C structural members undergo much more inelastic deformation in each of the two mutually perpendicular directions under bi-directional seismic loading, than that observed only under unidirectional ground motion. To predict the seismic response of R/C structure with fair accuracy demands, a faithful model that can incorporate the effect of biaxial bending interaction in column. This model should not have high computational demand but should adequately reflect the stiffness degrading and strength deterioration characteristics of R/C structural members. Present study is an effort to develop such a bi-directional hysteresis model accounting the effect of interaction between lateral loadings in two orthogonal directions. The development of the present model is based on the yield surface approach and it can incorporate both strength and stiffness degradation characteristics, which is unavoidable in R/C structures during cyclic loading. The performance of the proposed model/ is demonstrated through the prediction of available experimental results of a reinforced concrete column, subjected to biaxial loading. (author)

  13. STRESS AND STRAIN STATE OF REPAIRING SECTION OF PIPELINE

    Directory of Open Access Journals (Sweden)

    V. V. Nikolaev

    2015-01-01

    Full Text Available Reliability of continuous operation of pipelines is an actual problem. For this reason should be developed an effective warning system of the main pipelines‘  failures and accidents not only in design and operation but also in selected repair. Changing of linear, unloaded by bending position leads to the change of stress and strain state of pipelines. And besides this, the stress and strain state should be determined and controlled in the process of carrying out the repair works. The article presents mathematical model of pipeline’s section straining in viscoelastic setting taking into account soils creep and high-speed stress state of pipeline with the purpose of stresses evaluation and load-supporting capacity of repairing section of pipeline, depending on time.  Stress and strain state analysis of pipeline includes longitudinal and circular stresses calculation  with  account of axis-asymmetrical straining and  was  fulfilled  on  the base of momentless theory of shells. To prove the consistency of data there were compared the calcu- lation results and the solution results by analytical methods for different cases (long pipeline’s section strain only under influence of cross-axis action; long pipeline’s section strain under in- fluence of longitudinal stress; long pipeline’s section strain; which is on the elastic foundation, under influence of cross-axis action. Comparison results shows that the calculation error is not more than 3 %.Analysis of stress-strain state change of pipeline’s section was carried out with development  of  this  model,  which  indicates  the  enlargement  of  span  deflection  in  comparison with problem’s solution in elastic approach. It is also proved, that for consistent assessment of pipeline maintenance conditions, it is necessary to consider the areolas of rheological processes of soils. On the base of complex analysis of pipelines there were determined stresses and time

  14. Stress analysis of two-dimensional cellular materials with thick cell struts

    International Nuclear Information System (INIS)

    Lim, Do Hyung; Kim, Han Sung; Kim, Young Ho; Kim, Yoon Hyuk; Al-Hassani, S.T.S.

    2008-01-01

    Finite element analyses (FEA) were performed to thoroughly validate the collapse criteria of cellular materials presented in our previous companion paper. The maximum stress (von-Mises stress) on the cell strut surface and the plastic collapse stress were computed for two-dimensional (2D) cellular materials with thick cell struts. The results from the FEA were compared with those from theoretical criteria of authors. The FEA results were in good agreement with the theoretical results. The results indicate that when bending moment, axial and shear forces are considered, the maximum stress on the strut surface gives significantly different values in the tensile and compressive parts of the cell wall as well as in the two loading directions. Therefore, for the initial yielding of ductile cellular materials and the fracture of brittle cellular materials, in which the maximum stress on the strut surface is evaluated, it is necessary to consider not only the bending moment but also axial and shear forces. In addition, this study shows that for regular cellular materials with the identical strut geometry for all struts, the initial yielding and the plastic collapse under a biaxial state of stress occur not only in the inclined cell struts but also in the vertical struts. These FEA results support the theoretical conclusion of our previous companion paper that the anisotropic 2D cellular material has a truncated yield surface not only on the compressive quadrant but also on the tensile quadrant

  15. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  16. Active control of residual tool marks for freeform optics functionalization by novel biaxial servo assisted fly cutting.

    Science.gov (United States)

    Zhu, Zhiwei; To, Suet; Zhang, Shaojian

    2015-09-01

    The inherent residual tool marks (RTM) with particular patterns highly affect optical functions of the generated freeform optics in fast tool servo or slow tool servo (FTS/STS) diamond turning. In the present study, a novel biaxial servo assisted fly cutting (BSFC) method is developed for flexible control of the RTM to be a functional micro/nanotexture in freeform optics generation, which is generally hard to achieve in FTS/STS diamond turning. In the BSFC system, biaxial servo motions along the z-axis and side-feeding directions are mainly adopted for primary surface generation and RTM control, respectively. Active control of the RTM from the two aspects, namely, undesired effect elimination or effective functionalization, are experimentally demonstrated by fabricating a typical F-theta freeform surface with scattering homogenization and two functional microstructures with imposition of secondary phase gratings integrating both reflective and diffractive functions.

  17. Biaxial seismic behaviour of reinforced concrete columns =

    Science.gov (United States)

    Rodrigues, Hugo Filipe Pinheiro

    A analise dos efeitos dos sismos mostra que a investigacao em engenharia sismica deve dar especial atencao a avaliacao da vulnerabilidade das construcoes existentes, frequentemente desprovidas de adequada resistencia sismica tal como acontece em edificios de betao armado (BA) de muitas cidades em paises do sul da Europa, entre os quais Portugal. Sendo os pilares elementos estruturais fundamentais na resistencia sismica dos edificios, deve ser dada especial atencao a sua resposta sob acoes ciclicas. Acresce que o sismo e um tipo de acao cujos efeitos nos edificios exige a consideracao de duas componentes horizontais, o que tem exigencias mais severas nos pilares comparativamente a acao unidirecional. Assim, esta tese centra-se na avaliacao da resposta estrutural de pilares de betao armado sujeitos a acoes ciclicas horizontais biaxiais, em tres linhas principais. Em primeiro lugar desenvolveu-se uma campanha de ensaios para o estudo do comportamento ciclico uniaxial e biaxial de pilares de betao armado com esforco axial constante. Para tal foram construidas quatro series de pilares retangulares de betao armado (24 no total) com diferentes caracteristicas geometricas e quantidades de armadura longitudinal, tendo os pilares sido ensaiados para diferentes historias de carga. Os resultados experimentais obtidos sao analisados e discutidos dando particular atencao a evolucao do dano, a degradacao de rigidez e resistencia com o aumento das exigencias de deformacao, a energia dissipada, ao amortecimento viscoso equivalente; por fim e proposto um indice de dano para pilares solicitados biaxialmente. De seguida foram aplicadas diferentes estrategias de modelacao nao-linear para a representacao do comportamento biaxial dos pilares ensaiados, considerando nao-linearidade distribuida ao longo dos elementos ou concentrada nas extremidades dos mesmos. Os resultados obtidos com as varias estrategias de modelacao demonstraram representar adequadamente a resposta em termos das curvas

  18. SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, Amit; Sangwan, S. [UIET, Panjab University, Chandigarh (India); Roy, J. N., E-mail: amit_chaudhry01@yahoo.com [Solar Semiconductro Pvt. Ltd, Hyderabad (India)

    2011-05-15

    This paper describes an analytical model for bulk electron mobility in strained-Si layers as a function of strain. Phonon scattering, columbic scattering and surface roughness scattering are included to analyze the full mobility model. Analytical explicit calculations of all of the parameters to accurately estimate the electron mobility have been made. The results predict an increase in the electron mobility with the application of biaxial strain as also predicted from the basic theory of strain physics of metal oxide semiconductor (MOS) devices. The results have also been compared with numerically reported results and show good agreement. (semiconductor devices)

  19. SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

    International Nuclear Information System (INIS)

    Chaudhry, Amit; Sangwan, S.; Roy, J. N.

    2011-01-01

    This paper describes an analytical model for bulk electron mobility in strained-Si layers as a function of strain. Phonon scattering, columbic scattering and surface roughness scattering are included to analyze the full mobility model. Analytical explicit calculations of all of the parameters to accurately estimate the electron mobility have been made. The results predict an increase in the electron mobility with the application of biaxial strain as also predicted from the basic theory of strain physics of metal oxide semiconductor (MOS) devices. The results have also been compared with numerically reported results and show good agreement. (semiconductor devices)

  20. Assessment of brain activities during an emotional stress state using fMRI

    International Nuclear Information System (INIS)

    Hayashi, Takuto; Mizuno-Matsumoto, Yuko; Kawasaki, Aika; Kato, Makoto; Murata, Tsutomu

    2011-01-01

    We investigated cerebrum activation using functional magnetic resonance imaging during a mental stress state. Thirty-four healthy adults participated. Before the experiment, we assessed their stress states using the Stress Self-rating Scale and divided the participants into Stress and Non-stress groups. The experiment consisted of 6 trials. Each trial consisted of a 20-s block of emotional audio-visual stimuli (4-s stimulation x 5 slides) and a fixation point. These processes were performed 3 times continuously (Relaxed, Pleasant, Unpleasant stimuli) in a random order. These results showed that the Non-stress group indicated activation of the amygdala and hippocampus in the Pleasant and Unpleasant stimuli while the Stress group indicated activation of the hippocampus in Pleasant stimuli, and the amygdala and hippocampus in Unpleasant stimuli. These findings suggested that the mental stress state engages the reduction of emotional processing. Also, the responsiveness of the memory system remained during and after the emotional stress state. (author)

  1. Stress responses during aerobic exercise in relation to motivational dominance and state.

    Science.gov (United States)

    Thatcher, Joanne; Kuroda, Yusuke; Legrand, Fabien D; Thatcher, Rhys

    2011-02-01

    We examined the hypothesis that congruence between motivational dominance and state results in optimal psychological responses and performance during exercise. Twenty participants (10 telic dominant and 10 paratelic dominant) rated their stress at 5 min intervals as they cycled on an ergometer at gas exchange threshold for 30 min in both telic and paratelic state manipulated conditions. Participants then performed a test to exhaustion at a resistance equivalent to 110% of VO(2max). The hypothesized interaction between condition and dominance was significant for internal tension stress, as paratelic dominants were more stressed than telic dominants when exercising in the telic state and telic dominants were more stressed than paratelic dominants when exercising in the paratelic state. Similarly, the condition × dominance interaction for internal stress discrepancy was significant, as paratelic dominants reported greater internal stress discrepancy exercising in the telic compared with the paratelic state. Findings are discussed in relation to the application of reversal theory for understanding stress responses during aerobic exercise.

  2. Effects of Consolidation Stress State on Normally Consolidated Clay

    DEFF Research Database (Denmark)

    Lade, Poul V.

    2000-01-01

    The effect of consolidation stress state on the stress-strain and strength characteristics has been studied from experiments on undisturbed block samples of a natural, normally consolidated clay known as San Francisco Bay Mud. The results of experiments on K0-consolidated, hollow cylinder specimens...... and on isotropically consolidated, cubical specimens, both tested in triaxial compression and extension, clearly showed the influence of the undisturbed fabric as well as the effect of the initial consolidation stress states. While the K0-consolidated specimens appeared to retain their original fabric and exhibit...

  3. PRESENTDAY STRESS STATE OF THE SHANXI TECTONIC BELT

    Directory of Open Access Journals (Sweden)

    Wang Kaiying

    2012-01-01

    Full Text Available The Shanxi tectonic belt is a historically earthquakeabundant area. For the majority of strong earthquakes in this area, the distribution of earthquake foci was controlled by the N–S oriented local structures on the tectonic belt. Studies of the present stress state of the Shanxi tectonic belt can contribute to the understanding of the relationship between strong earthquakes’ occurrence and their structural distribution and also facilitate assessments of regional seismic danger and determination of the regions wherein strong earthquakes may occur in future. Using the Cataclastic Analysis Method (CAM, we performed stress inversion based on the focal mechanism data of earthquakes which took place in the Shanxi tectonic belt from 1967 to 2010. Our results show that orientations of the maximum principal compressive stress axis of the Shanxi tectonic belt might have been variable before and after the 2001 Kunlun MS=8.1 strong earthquake, with two different superior trends of the NW–SE and NE–SW orientation in different periods. When the maximum principal compressive stress axis is oriented in the NE–SW direction, the pattern of the space distribution of the seismic events in the Shanxi tectonic belt shows a trend of their concentration in the N–S oriented tectonic segments. At the same time, the stress state is registered as horizontal shearing and horizontal extension in the N–S and NE–SW oriented local segments in turn. When the maximum principal compressive stress axis is NW–SE oriented, the stress state of the N–S and NE–SW oriented tectonic segments is primarily registered as horizontal shearing. Estimations of plunges of stress axes show that seismicity in the Shanxi belt  corresponds primarily to the activity of lowangle faults, and highangle stress sites are located in the NE–SW oriented extensional tectonic segments of the Shanxi belt. This indicates that the stress change of the Shanxi belt is

  4. GASICA: Generic Automated Stress Induction and Control ApplicationDesign of an application for controlling the stress state

    Directory of Open Access Journals (Sweden)

    Benny Van Der Vijgh

    2014-12-01

    Full Text Available 1.In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope, Bogart, & Bartolome, 1995 and Fairclough, 2009 that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing measurement equipment, making it usable for various paradigms.

  5. GASICA: generic automated stress induction and control application design of an application for controlling the stress state.

    Science.gov (United States)

    van der Vijgh, Benny; Beun, Robbert J; van Rood, Maarten; Werkhoven, Peter

    2014-01-01

    In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices, and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope et al. (1995) and Fairclough (2009) that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing) measurement equipment, making it usable for various paradigms.

  6. Biaxially oriented CdTe films on glass substrate through nanostructured Ge/CaF2 buffer layers

    Science.gov (United States)

    Lord, R. J.; Su, P.-Y.; Bhat, I.; Zhang, S. B.; Lu, T.-M.; Wang, G.-C.

    2015-09-01

    Heteroepitaxial CdTe films were grown by metal organic chemical vapor deposition on glass substrates through nanostructured Ge/CaF2 buffer layers which were biaxially oriented. It allows us to explore the structural properties of multilayer biaxial semiconductor films which possess small angle grain boundaries and to test the principle of a solar cell made of such low-cost, low-growth-temperature semiconductor films. Through the x-ray diffraction and x-ray pole figure analysis, the heteroepitaxial relationships of the mutilayered films are determined as [111] in the out-of-plane direction and CdTe//Ge//{ }{{{CaF}}2} in the in-plane direction. The I-V curves measured from an ITO/CdS/CdTe/Ge/CaF2/glass solar cell test structure shows a power conversion efficiency of ˜η = 1.26%, illustrating the initial success of such an approach. The observed non-ideal efficiency is believed to be due to a low shunt resistance and high series resistance as well as some residual large-angle grain boundary effects, leaving room for significant further improvement.

  7. Biaxial Properties of the Left and Right Pulmonary Arteries in a Monocrotaline Rat Animal Model of Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Pursell, Erica R; Vélez-Rendón, Daniela; Valdez-Jasso, Daniela

    2016-11-01

    In a monocrotaline (MCT) induced-pulmonary arterial hypertension (PAH) rat animal model, the dynamic stress-strain relation was investigated in the circumferential and axial directions using a linear elastic response model within the quasi-linear viscoelasticity theory framework. Right and left pulmonary arterial segments (RPA and LPA) were mechanically tested in a tubular biaxial device at the early stage (1 week post-MCT treatment) and at the advanced stage of the disease (4 weeks post-MCT treatment). The vessels were tested circumferentially at the in vivo axial length with matching in vivo measured pressure ranges. Subsequently, the vessels were tested axially at the mean pulmonary arterial pressure by stretching them from in vivo plus 5% of their length. Parameter estimation showed that the LPA and RPA remodel at different rates: axially, both vessels decreased in Young's modulus at the early stage of the disease, and increased at the advanced disease stage. Circumferentially, the Young's modulus increased in advanced PAH, but it was only significant in the RPA. The damping properties also changed in PAH; in the LPA relaxation times decreased continuously as the disease progressed, while in the RPA they initially increased and then decreased. Our modeling efforts were corroborated by the restructuring organization of the fibers imaged under multiphoton microscopy, where the collagen fibers become strongly aligned to the 45 deg angle in the RPA from an uncrimped and randomly organized state. Additionally, collagen content increased almost 10% in the RPA from the placebo to advanced PAH.

  8. Characterization of mechanical properties of pericardium tissue using planar biaxial tension and flexural deformation.

    Science.gov (United States)

    Murdock, Kyle; Martin, Caitlin; Sun, Wei

    2018-01-01

    Flexure is an important mode of deformation for native and bioprosthetic heart valves. However, mechanical characterization of bioprosthetic leaflet materials has been done primarily through planar tensile testing. In this study, an integrated experimental and computational cantilever beam bending test was performed to characterize the flexural properties of glutaraldehyde-treated bovine and porcine pericardium of different thicknesses. A strain-invariant based structural constitutive model was used to model the pericardial mechanical behavior quantified through the bending tests of this study and the planar biaxial tests previously performed. The model parameters were optimized through an inverse finite element (FE) procedure in order to describe both sets of experimental data. The optimized material properties were implemented in FE simulations of transcatheter aortic valve (TAV) deformation. It was observed that porcine pericardium TAV leaflets experienced significantly more flexure than bovine when subjected to opening pressurization, and that the flexure may be overestimated using a constitutive model derived from purely planar tensile experimental data. Thus, modeling of a combination of flexural and biaxial tensile testing data may be necessary to more accurately describe the mechanical properties of pericardium, and to computationally investigate bioprosthetic leaflet function and design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of insulin pump infusion on comprehensive stress state of ...

    African Journals Online (AJOL)

    Effect of insulin pump infusion on comprehensive stress state of patients with diabetic ketoacidosis. ... Relevant diabetes-associated serum indices, oxidative stress and stress hormone levels were compared between the ... from 32 Countries:.

  10. Examination stress at unified state examination: student destabilization or success factor?

    Directory of Open Access Journals (Sweden)

    Svetlana N. Kostromina

    2017-01-01

    Full Text Available The aim of the research is to clear up the influence of examination stress on the results of completing examination papers by students in the situation of trial General and Unified State Examinations, imitating the real-life environment of unified state certification of schoolchildren. The tasks of the research included determining the dynamics of psychophysiological stress indices at different examination stages, and evaluating additional factors (the subject in which the examination is held, the strategy of solving the variant, success of solving the task etc., influencing the quantity and quality of stress reactions at the examination.The novelty of the research is in the attempt to overcome the problem of confusing the notions of examination stress and examination anxiety, caused by metering the students’ state either before or after the examination. The technology of online monitoring the students’ psychophysiological state is used in the work, which makes it possible to eliminate a number of restrictions occurring during subjective evaluation of the state by the students themselves. Telemetric cardiorhythmography was chosen as the basic method. The method is based on a three-component model of extreme states with consequent domination of one of the three stress-reactive systems. A cardiointervalogramm was being registered in the research process in the online mode and underwent spectral analysis. The following indices of heart rate variability were recorded in order to determine stress reactions: the total power of the spectrum (TP, the spectrum power in low-frequency (LF and high-frequency (HF regions, and a vegetative balance index (relation of the spectrum powers in low-frequency and high-frequency regions (LF/HF. When the total power of the heart rate fell and, at the same time, the vegetative balance index rose, a conclusion was made of there being a stress reaction. Twenty-five students of an illustrious school were examined

  11. Effect of residual stress on the nanoindentation response of (100) copper single crystal

    International Nuclear Information System (INIS)

    Zhu, Li-na; Xu, Bin-shi; Wang, Hai-dou; Wang, Cheng-biao

    2012-01-01

    Experimental measurements were used to investigate the effect of residual stress on the nanoindentation of (100) copper single crystal. Equi-biaxial tensile and compressive stresses were applied to the copper single crystal using a special designed apparatus. It was found that residual stresses greatly affected peak load, curvature of the loading curve, elastically recovered depth, residual depth, indentation work, pile-up amount and contact area. The Suresh and Giannakopoulos and Lee and Kwon methods were used to calculate the residual stresses from load-depth data and morphology observation of nanoindents using atomic force microscopy. Comparison of the obtained results with stress values from strain gage showed that the residual stresses analyzed from the Suresh and Giannakopoulos model agreed well with the applied stresses. -- Highlights: ► Residual stresses greatly affected various nanoindentation parameters. ► The contact area can be accurately measured from AFM observation. ► The residual stresses analyzed from the S and G model agreed well with applied stresses.

  12. Development and evolution of biaxial texture of rolled nickel tapes by ion beam bombardment for high Tc coated conductors

    International Nuclear Information System (INIS)

    Wang, S.S.; Wu, K.; Shi, K.; Liu, Q.; Han, Z.

    2004-01-01

    High quality YBa 2 Cu 3 O 7-x films on metallic substrates with high critical current densities well over 10 6 A/cm 2 can be prepared by the rolling assisted biaxially textured substrates (RABiTS) method. Nickel or its alloys have been used as biaxially textured substrates formed through a specific rolling and high temperature annealing procedures. In this paper, we report a newly developed process for developing biaxial texture in rolled Ni tape by argon ion beam bombardment. It is named the ion-beam structure modification (ISM) process. In the ISM processed Ni foils, X-ray diffraction ω scans showed the full width-half maximum (FWHM) value of the (2 0 0) peak was 5.7 deg. . And the electron back scattering diffraction (EBSP) analysis based on scanning electron microscopy showed good {1 0 0} cubic orientation and the mean grain size was determined as about 25 μm. The texture evolution of rolled Ni foils during ISM process is reported also. For ISM process, local temperature elevation and distribution arises from the ion bombardment, coupled with anisotropic incident ion penetration and propagation as a result of channeling effects in the metal lattice, are expected to play the major roles in the development of grain reorientation in the Ni foil. Due to the simplicity and efficiency of the ISM process, the technique shows a great promise for application in the industrial scale production of long-lengths of superconductor tapes

  13. Development of partial safety factors for the design of partially prestressed rectangular sections in biaxial flexure

    International Nuclear Information System (INIS)

    Chatterjee, Aritra; Bhattacharya, Baidurya; Agrawal, Gunjan; Mondal, Apurba

    2011-01-01

    Partial safety factors (PSFs) used in reliability-based design are intended to account for uncertainties in load, material and mathematical modeling while ensuring that the target reliability is satisfied for the relevant class of structural components in the given load combination and limit state. This paper describes the methodology in detail for developing a set of optimal reliability-based PSFs for the design of rectangular partially prestressed concrete sections subjected to biaxial flexure. The mechanical formulation of the flexural limit state is based on the principle behind prestressed concrete design recommended by IS 1343 and SP16 and failure is defined as tensile cracking of concrete extending beyond the depth of cover. The applied moments are combined according to Wood's criteria. The optimization of the PSFs is based on reliability indices obtained from first order reliability analysis of the structural components; Monte Carlo simulations are performed in each run to determine the capacity statistics and dependence between capacity and applied loads (effected through the axial loads influencing moment capacity corresponding to cracking). Numerical examples involving flexural design of partially prestressed concrete shell elements in nuclear power plant containments under accidental pressure load combination are provided. (author)

  14. Manipulation of strain state in silicon nanoribbons by top-down approach

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Zhiqiang; Zhang, Miao; Xue, Zhongying; Sun, Gaodi; Guo, Qinglei; Chen, Da; Di, Zengfeng, E-mail: zfdi@mail.sim.ac.cn; Wang, Xi [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Huang, Gaoshan; Mei, Yongfeng [Department of Materials Science, Fudan University, Shanghai 200433 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2015-04-27

    Tensile strain is often utilized to enhance the electron mobility and luminescent characteristics of semiconductors. A top-down approach in conjunction with roll-up technology is adopted to produce high tensile strain in Si nanoribbons by patterning and releasing of the bridge-like structures. The tensile strain can be altered between uniaxial state and biaxial state by adjusting the dimensions of the patterns and can be varied controllably up to 3.2% and 0.9% for the uniaxial- and biaxial-strained Si nanoribbons, respectively. Three-dimensional finite element analysis is performed to investigate the mechanism of strain generation during patterning and releasing of the structure. Since the process mainly depends on the geometrical factors, the technique can be readily extended to other types of mechanical, electrical, and optical membranes.

  15. Tuning magnetism by biaxial strain in native ZnO.

    Science.gov (United States)

    Peng, Chengxiao; Wang, Yuanxu; Cheng, Zhenxiang; Zhang, Guangbiao; Wang, Chao; Yang, Gui

    2015-07-07

    Magnetic ZnO, one of the most important diluted magnetic semiconductors (DMS), has attracted great scientific interest because of its possible technological applications in optomagnetic devices. Magnetism in this material is usually delicately tuned by the doping level, dislocations, and local structures. The rational control of magnetism in ZnO is a highly attractive approach for practical applications. Here, the tuning effect of biaxial strain on the d(0) magnetism of native imperfect ZnO is demonstrated through first-principles calculations. Our calculation results show that strain conditions have little effect on the defect formation energy of Zn and O vacancies in ZnO, but they do affect the magnetism significantly. For a cation vacancy, increasing the compressive strain will obviously decrease its magnetic moment, while tensile strain cannot change the moment, which remains constant at 2 μB. For a singly charged anion vacancy, however, the dependence of the magnetic moment on strain is opposite to that of the Zn vacancy. Furthermore, the ferromagnetic state is always present, irrespective of the strain type, for ZnO with two zinc vacancies, 2VZns. A large tensile strain is favorable for improving the Curie temperature and realizing room temperature ferromagnetism for ZnO-based native semiconductors. For ZnO with two singly charged oxygen vacancies, 2Vs, no ferromagnetic ordering can be observed. Our work points the way to the rational design of materials beyond ZnO with novel non-intrinsic functionality by simply tuning the strain in a thin film form.

  16. Effects of core-to-dentin thickness ratio on the biaxial flexural strength, reliability, and fracture mode of bilayered materials of zirconia core (Y-TZP) and veneer indirect composite resins.

    Science.gov (United States)

    Su, Naichuan; Liao, Yunmao; Zhang, Hai; Yue, Li; Lu, Xiaowen; Shen, Jiefei; Wang, Hang

    2017-01-01

    Indirect composite resins (ICR) are promising alternatives as veneering materials for zirconia frameworks. The effects of core-to-dentin thickness ratio (C/Dtr) on the mechanical property of bilayered veneer ICR/yttria-tetragonal zirconia polycrystalline (Y-TZP) core disks have not been previously studied. The purpose of this in vitro study was to assess the effects of C/Dtr on the biaxial flexural strength, reliability, and fracture mode of bilayered veneer ICR/ Y-TZP core disks. A total of 180 bilayered 0.6-mm-thick composite resin disks in core material and C/Dtr of 2:1, 1:1, and 1:2 were tested with either core material placed up or placed down for piston-on-3-ball biaxial flexural strength. The mean biaxial flexural strength, Weibull modulus, and fracture mode were measured to evaluate the variation trend of the biaxial flexural strength, reliability, and fracture mode of the bilayered disks with various C/Dtr. One-way analysis of variance (ANOVA) and chi-square tests were used to evaluate the variation tendency of fracture mode with the C/Dtr or material placed down during testing (α=.05). Light microscopy was used to identify the fracture mode. The mean biaxial flexural strength and reliability improved with the increase in C/Dtr when specimens were tested with the core material either up and down, and depended on the materials that were placed down during testing. The rates of delamination, Hertzian cone cracks, subcritical radial cracks, and number of fracture fragments partially depended on the C/Dtr and the materials that were placed down during testing. The biaxial flexural strength, reliability, and fracture mode in bilayered structures of Y-TZP core and veneer ICR depend on both the C/Dtr and the material that was placed down during testing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Effect of biaxial strain and external electric field on electronic properties of MoS{sub 2} monolayer: A first-principle study

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Chuong V., E-mail: chuongnguyen11@gmail.com [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam); School of Mechanical Engineering, Le Quy Don Technical University, Ha Noi (Viet Nam); Hieu, Nguyen N. [Institute of Research and Development, Duy Tan University, Da Nang (Viet Nam)

    2016-04-01

    In this work, making use of density functional theory (DFT) computations, we systematically investigate the effect of biaxial strain engineering and external electric field applied perpendicular to the layers on the band gaps and electronic properties of monolayer MoS{sub 2}. The direct-to-indirect band gaps and semiconductor-to-metal transition are observed in monolayer MoS{sub 2} when strain and electric field are applied in our calculation. We show that when the biaxial strain and external electric field are introduced, the electronic properties including band gaps of monolayer MoS{sub 2} can be reduced to zero. Our results provide many useful insights for the wide applications of monolayer MoS{sub 2} in electronics and optoelectronics.

  18. Measurements of the state of stress in deep drill holes

    International Nuclear Information System (INIS)

    Vaeaetaeinen, A.; Saerkkae, P.

    1985-05-01

    The state of stress in rock is one of the most important parameters in the safe planning of stable underground openings in rock. At the same time, it is very difficult to be determined from a great distance. The common methods for the determination of state of stress in bedrock are usually not able to do this from a distance over 30 m. This work is a survey on rock stress determination methods usable in deep, over 500 m, drill holes. It also contains a recommendation for a method to determine the state of stress in Lavia test hole. The presented recommendation for the measurement of the state of stress contains an estimation on the working time for the measurement as well as the amount and location of the measuring points. The examination of the methods has been concentrated on three methods, hydraulic fracturing, overcoring by Vattenfall and differential strain analysis. Theoretical background of these methods has been analyzed. A special interest has been laid on the fundamental assumptions of different methods and their influence on the reliability of the results and the interpretation of the state of stress. The comparison of the methods has been made by literature and user interviews. Equipment and personnel needed, and way of measurement are described for the methods. The parameters measured and their possible sources of errors are described, too, as well as the fundamental assumptions and potential difficulties in the measurement. The organizations in Scandinavia performing measurements and their abilities to do measurements and interpretation are presented. Readiness to interpretation in Finland is described shortly

  19. Film stresses and electrode buckling in organic solar cells

    KAUST Repository

    Brand, Vitali

    2012-08-01

    We investigate the film stresses that develop in the polymer films and metal electrodes of poly(3-hexyl thiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic solar cells. A compressive biaxial stress of ∼-36 MPa was measured in PEDOT:PSS while a tensile stress of ∼6 MPa was measured in the BHJ layer. We then analyze the effect of electrode deposition rate on the film stresses in the Al electrode. Compressive stresses of ∼-100 to -145 MPa in the Al electrode lead to a buckling instability resulting in undulating electrode surface topography. The BHJ layer was found to have the lowest cohesion (∼1.5-1.8 J/m 2) among the layers of the solar cell and dependent on the Al electrode deposition rate. The cohesive failure path in the BHJ layer exhibited the same periodicity and orientation of the Al electrode buckling topography. We discuss the implications of the film stresses on damage processes during device fabrication and operation. © 2012 Elsevier B.V. All rights reserved.

  20. Finite element analysis of the biaxial cyclic tensile loading of the elastoplastic plate with the central hole: asymptotic regimes

    Science.gov (United States)

    Turkova, Vera; Stepanova, Larisa

    2018-03-01

    For elastistoplastic structure elements under cyclic loading three types of asymptotic behavior are well known: shakedown, cyclic plasticity or ratcheting. In structure elements operating in real conditions ratcheting must always be excluded since it caused the incremental fracture of structure by means of the accumulation of plastic strains. In the present study results of finite-element (FEM) calculations of the asymptotical behavior of an elastoplastic plate with the central circular and elliptic holes under the biaxial cyclic loading for three different materials are presented. Incremental cyclic loading of the sample with stress concentrator (the central hole) is performed in the multifunctional finite-element package SIMULIA Abaqus. The ranges of loads found for shakedown, cyclic plasticity and ratcheting are presented. The results obtained are generalized and analyzed. Convenient normalization is suggested. The chosen normalization allows us to present all computed results, corresponding to separate materials, within one common curve with minimum scattering of the points. Convenience of the generalized diagram consists in a possibility to find an asymptotical behavior of an inelastic structure for materials for which computer calculations were not made.

  1. Formation of biaxial texture in metal films by selective ion beam etching

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.J. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States); Norton, D.P. [Department of Materials Science and Engineering, University of Florida, 106 Rhines Hall, P.O. Box 116400, Gainesville, FL 32611 (United States)]. E-mail: dnort@mse.ufl.edu; Selvamanickam, Venkat [IGC-SuperPower, LLC, 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2006-05-15

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature.

  2. Formation of biaxial texture in metal films by selective ion beam etching

    International Nuclear Information System (INIS)

    Park, S.J.; Norton, D.P.; Selvamanickam, Venkat

    2006-01-01

    The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature

  3. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of ceramic material are investigated within the framework of developing solid breeder blankets for future fusion power plants. A thermo-mechanical characterisation of such pebble beds is mandatory for understanding the behaviour of pebble beds, and thus the overall blanket, under fusion environment conditions. The mechanical behaviour of pebble beds is typically explored with uni-axial, bi-axial and tri-axial compression experiments. The latter two types of experiment are particularly revealing since they contain explicitly, beyond a compression behaviour of the bed, information on the conditions for pebble flow, i.e. macroscopic relocation, in the pebble bed. (orig.)

  4. Effect of stress-state and spacing on voids in a shear-field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2012-01-01

    in the overall average stress state can be prescribed. This also allows for studies of the effect of different initial void spacing in the two in-plane coordinate directions. The stress states considered are essentially simple shear, with various levels of tensile stresses or compressive stresses superposed, i.......e. low positive stress triaxiality or even negative stress triaxiality. For high aspect ratio unit cells a clear localization band is found inside the cell, which actually represents several parallel bands, due to periodicity. In the materials represented by a low aspect ratio unit cell localization...

  5. Numerical modelling of fracture initiation and propagation in biaxial tests on rock samples

    CSIR Research Space (South Africa)

    Van de Steen, B

    2001-03-01

    Full Text Available and Peirce, 1995). Additional edges can be obtained in the Voronoi tessellation, by connecting the geometric centre of the Voronoi polygons with the vertices of the polygons. These last elements are further referred to as the internal fracture paths, while... samples without flaws therefore display a very brittle behaviour (Napier and Peirce, 1995). To obtain a more plastic behaviour, it may be necessary to adjust the flaw density as well (D0 to D0b, Table 2). The brittleness of the simulated biaxial tests...

  6. Biaxial creep deformation of Zircaloy-4 in the high alpha phase temperature range

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Horwood, R.A.; Healey, T.

    1983-01-01

    The ballooning response of Zircaloy-4 fuel tubes during a postulated loss-of-coolant accident may be calculated from a knowledge of the thermal environment of the rods and the creep deformation characteristics of the cladding. In support of such calculations biaxial creep studies have been performed on fuel tubes supplied by Westinghouse, Wolverine and Sandvik of temperatures in the alpha phase range. This paper presents the results of an investigation of their respective creep behaviour which has resulted in the formulation of equations for use in LOCA fuel ballooning codes. (author)

  7. Mechanical response of cross-ply Si3N4/BN fibrous monoliths under uniaxial and biaxial loading

    International Nuclear Information System (INIS)

    Singh, D.; Cruse, T. A.; Hermanson, D. J.; Goretta, K. C.; Zok, F. W.; McNulty, J. C.

    2000-01-01

    Mechanical properties of hot-pressed Si 3 N 4 /BN fibrous monoliths (FMs) were evaluated under ambient conditions in four-point and biaxial flexure modes. Effects of cell orientation, 0degree/90degree and ±45degree, on elastic modulus and fracture strength of the FMs were investigated. Fracture surfaces were examined by scanning electron microscopy

  8. Elasto-plastic impact of hemispherical shell impacting on hard rigid sphere

    Science.gov (United States)

    Raftopoulos, D. D.; Spicer, A. L.

    1976-01-01

    An analysis of plastic stress waves for cylindrical metallic projectile in impact is extended to an analysis of a hemispherical shell suffereing plastic deformation during the process of impact. It is assumed that the hemispherical shell with a prescribed launch velocity impinges a fixed rigid sphere of diameter equal to the internal diameter of the shell. The dynamic biaxial state of stress present in the shell during deformation is investigated. The analysis is valuable for studying the state of stress during large plastic deformation of a hemispherical shell.

  9. Effect of saliva and blood contamination on the bi-axial flexural strength and setting time of two calcium-silicate based cements: Portland cement and biodentine.

    Science.gov (United States)

    Alhodiry, W; Lyons, M F; Chadwick, R G

    2014-03-01

    This study evaluated the effect of contamination with saliva and blood on the bi-axial flexural strength and setting time of pure gray Portland cement and Biodentine (Septodont, Allington, UK). A one-way ANOVA showed that contamination caused no significant difference between the cements in bi-axial flexural strength (P> 0.05). However there was a significant difference in setting time (PPortland cement taking longer than Biodentine, regardless of the contaminant, and contamination with blood increased the setting time of both materials. Biodentine was similar in strength to Portland cement, but had a shorter setting time for both contaminated and non-contaminated samples.

  10. [Study on the relationship between occupational stress and psychological health state among oil workers].

    Science.gov (United States)

    Liu, Jiwen; Wang, Zhiming; Wang, Mianzhen; Lan, Yajia; Zhan, Chenglie; Zhao, Xiaoguo

    2002-02-01

    To study the relationship between occupational stress and psychological health state among oil workers. 1,230 oil workers in 122 work types of oil industry were selected and written occupational stress questionary(OSQ) and symptom check list (SCL-90). Petroleum workers' psychological health states were poor with increasing occupational stress degree. The scores in physical symptoms(1.87 +/- 0.80, 1.72 +/- 0.70), depression(1.74 +/- 0.76, 1.62 +/- 0.67), horror(1.48 +/- 0.65, 1.39 +/- 0.55) in the high and medium stress group were obviously higher than those in low stress group(1.55 +/- 0.61, 1.43 +/- 0.54, 1.28 +/- 0.46, respectively, P < 0.05). The score of mood state in the high and medium stress group was obviously higher than that in low stress group(P < 0.05). Psychological health states and mood state in the petroleum workers with short service length are significantly poorer than that with long service length(P < 0.01). Occupational stress should affect psychological health state of petroleum workers.

  11. Ab initio study of Co and Ni under uniaxial and biaxial loading and in epitaxial overlayers

    Czech Academy of Sciences Publication Activity Database

    Zelený, Martin; Legut, Dominik; Šob, Mojmír

    2008-01-01

    Roč. 78, č. 22 (2008), 224105/1-224105/11 ISSN 1098-0121 R&D Projects: GA ČR GD106/05/H008; GA AV ČR IAA1041302; GA MŠk OC 147 Institutional research plan: CEZ:AV0Z20410507 Keywords : ab initio calculations * epitaxial overlayers * uniaxial and biaxial loading Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  12. Stress measurements in the Naesliden Mine

    Energy Technology Data Exchange (ETDEWEB)

    Leijon, B. [Univ. of Luleaa, Sweden; Carlsson, H.; Myrvang, A.

    1980-05-15

    Determinations of virgin stresses were performed at an early stage of the Naesliden Project in order to obtain input data for the finite element models of the mine. The Leeman three-dimensional overcoring technique was used at five locations on levels ranging from 210 m to 460 m below surface. Stress data were obtained at four of these locations. The results show an excess of horizontal stresses whilst the vertical stress is in accordance with the gravitational load from the overburden. The major and intermediate principal stresses are sub-horizontal and directed respectively perpendicular and parallel to the schisotsity of the wall rock and the strike of the tabular ore body. The minor principal stress is directed almost vertically. Stresses were also measured close to a stope on 300 m level in the mine. Biaxial and triaxial overcoring measurements were made at eighteen points between 0.25 m and 7.2 m above the roof of the stope. The stresses were found to have magnitudes of about 70 MPa close to the roof and to decrease rapidly with the distance from the roof. Stress measurements were made in connection with slot blastings in the foot wall, the latter measure being made in an attempt to de-stress the roof of stope 3. Two methods were used for stress monitorings, both showing that expected stress changes did not take place. Long-term stress guages have been installed in the ore body in order to monitor expected re-distributions of stresses due to mining. So far, the recorded stress changes are below 5 MPa.

  13. Intradomain Textures in Block Copolymers: Multizone Alignment and Biaxiality

    Science.gov (United States)

    Prasad, Ishan; Seo, Youngmi; Hall, Lisa M.; Grason, Gregory M.

    2017-06-01

    Block copolymer (BCP) melt assembly has been studied for decades, focusing largely on self-organized spatial patterns of periodically ordered segment density. Here, we demonstrate that underlying the well-known composition profiles (i.e., ordered lamella, cylinders, spheres, and networks) are generic and heterogeneous patterns of segment orientation that couple strongly to morphology, even in the absence of specific factors that promote intra or interchain segment alignment. We employ both self-consistent field theory and coarse-grained simulation methods to measure polar and nematic order parameters of segments in a freely jointed chain model of diblock melts. We show that BCP morphologies have a multizone texture, with segments predominantly aligned normal and parallel to interdomain interfaces in the respective brush and interfacial regions of the microdomain. Further, morphologies with anisotropically curved interfaces (i.e., cylinders and networks) exhibit biaxial order that is aligned to the principal curvature axes of the interface.

  14. Computational and experimental investigation of local stress fiber orientation in uniaxially and biaxially constrained microtissues

    NARCIS (Netherlands)

    Obbink - Huizer, C.; Foolen, J.; Oomens, C.W.J.; Borochin, M.A.; Chen, C.S.; Bouten, C.V.C.; Baaijens, F.P.T.

    2014-01-01

    The orientation of cells and associated F-actin stress fibers is essential for proper tissue functioning. We have previously developed a computational model that qualitatively describes stress fiber orientation in response to a range of mechanical stimuli. In this paper, the aim is to quantitatively

  15. Reduction of initial stress stiffening by topology optimization

    DEFF Research Database (Denmark)

    Philippine, M. A.; Sigmund, Ole; Rebeiz, G. M.

    2012-01-01

    Topology optimization is a rigorous method of obtaining non-intuitive designs. We use it to obtain a capacitive RF switch that stiffens little in response to an increase of the in-plane biaxial stresses that typically develop during MEMS fabrication. The actuation voltage is closely related...... level. We include a volume constraint and a compliance constraint. Topology optimized designs are compared to an intuitively-designed RF switch. The switches contain similar features. The compliance constraint is varied such that the topology optimized switch performance approaches the intuitively......-designed one. Finally, the importance of the compliance constraint and of the robust formulation are discussed....

  16. Computer modeling of the stress-strain state of welded construction

    Science.gov (United States)

    Nurguzhin, Marat; Danenova, Gulmira; Akhmetzhanov, Talgat

    2017-11-01

    At the present time the maintenance of the welded construction serviceability over normative service life is provided by the maintenance system on the basis of the guiding documents according to the concept of "fail safe". However, technology factors relating to welding such as high residual stresses and significant plastic strains are not considered in the guiding documents. The design procedure of the stressed-strained state of welded constructions is suggested in the paper. The procedure investigates welded constructions during welding and the external load using the program ANSYS. In this paper, the model of influence of the residual stress strain state on the factor of stress intensity is proposed. The calculation method of the residual stressed-strained state (SSS) taking into account the phase transition is developed by the authors. Melting and hardening of a plate material during heating and cooling is considered. The thermomechanical problem of heating a plate by a stationary heat source is solved. The setup of the heating spot center on distance (190 mm) from the crack top in a direction of its propagation leads to the fact that the value of total factor of stress intensity will considerably decrease under action of the specified residual compressing stresses. It can lower the speed of the crack propagation to zero. The suggested method of survivability maintenance can be applied during operation with the purpose of increasing the service life of metal constructions up to running repair of technological machines.

  17. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.

    2017-07-20

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr-Universität Bochum. Dry samples were subjected to two anisotropic stress states: (a) cell pressure, σ′h, constant and vertical stress, σ′v, increased (stress state GB-I) and (b) σ′v/σ′h equal to 2 (stress state GB-II). The experimental results revealed that the effect of stress state GB-II on the modulus and damping ratio was more significant and obvious than stress state GB-I. The effect of the anisotropic stress state was explained through the impact of confining pressure and anisotropic stress components on the stiffness and damping ratio. The results showed that: (a) G(γ) increased, η(γ) decreased and their strain non-linearity decreased with an increase in the confining pressure component σ′vσ′h; (b) G(γ) decreased, η(γ) increased and their strain non-linearity increased with an increase in the anisotropic stress component, σ′v/σ′h. The analysis of results revealed that reference shear strain was also affected by anisotropic stress state. Therefore, an empirical relationship was developed to predict the reference shear strain, as a function of confining pressure and anisotropic stress components. Additionally, the damping ratio was written as a function of the minimum damping ratio and the reference shear strain.

  18. Experimental study of the flow rules of a 316 stainless steel at high and low stresses

    International Nuclear Information System (INIS)

    Delobelle, P.; Oytana, C.

    1984-01-01

    Creep flow rules of 316L stainless steel are studied in tensile and axial-torsion experiments. Through tensile and biaxial proportional loadings it is shown that at low creep values of epsilonkT/DGb a single kinematical variable: the internal stress takes a part in these laws. This is confirmed in non-proportional experiments. The power law with the power of nsup(*)approx.=2 relates applied and internal stresses. At higher creep rates a second scalar internal variable must be introduced and the power law no longer applies. Limiting functions in steady creep are determined for hardening and recovery. (orig.)

  19. Stress and Strain State Analysis of Defective Pipeline Portion

    Science.gov (United States)

    Burkov, P. V.; Burkova, S. P.; Knaub, S. A.

    2015-09-01

    The paper presents computer simulation results of the pipeline having defects in a welded joint. Autodesk Inventor software is used for simulation of the stress and strain state of the pipeline. Places of the possible failure and stress concentrators are predicted on the defective portion of the pipeline.

  20. Potential drop crack growth monitoring in high temperature biaxial fatigue tests

    International Nuclear Information System (INIS)

    Fitzgerald, B.P.; Krempl, E.

    1993-01-01

    The present work describes a procedure for monitoring crack growth in high temperature, biaxial, low cycle fatigue tests. The reversing DC potential drop equipment monitors smooth, tubular type 304 stainless steel specimens during fatigue testing. Electrical interference from an induction heater is filtered out by an analog filter and by using a long integration time. A Fourier smoothing algorithm and two spline interpolations process the large data set. The experimentally determined electrical potential drop is compared with the theoretical electrostatic potential that is found by solving Laplace's equation for an elliptical crack in a semi-infinite conducting medium. Since agreement between theory and experiment is good, the method can be used to measure crack growth to failure from the threshold of detectability

  1. Defect-dependent elasticity: Nanoindentation as a probe of stress state

    International Nuclear Information System (INIS)

    Jarausch, K. F.; Kiely, J. D.; Houston, J. E.; Russell, P. E.

    2000-01-01

    Using an interfacial force microscope, the measured elastic response of 100-nm-thick Au films was found to be strongly correlated with the films' stress state and thermal history. Large, reversible variations (2x) of indentation modulus were recorded as a function of applied stress. Low-temperature annealing caused permanent changes in the films' measured elastic properties. The measured elastic response was also found to vary in close proximity to grain boundaries in thin films and near surface steps on single-crystal surfaces. These results demonstrate a complex interdependence of stress state, defect structure, and elastic properties in thin metallic films. (c) 2000 Materials Research Society

  2. Modelling of tension stiffening for normal and high strength concrete

    DEFF Research Database (Denmark)

    Christiansen, Morten Bo; Nielsen, Mogens Peter

    1998-01-01

    form the model is extended to apply to biaxial stress fields as well. To determine the biaxial stress field, the theorem of minimum complementary elastic energy is used. The theory has been compared with tests on rods, disks, and beams of both normal and high strength concrete, and very good results...

  3. State of charge estimation for lithium-ion pouch batteries based on stress measurement

    International Nuclear Information System (INIS)

    Dai, Haifeng; Yu, Chenchen; Wei, Xuezhe; Sun, Zechang

    2017-01-01

    State of charge (SOC) estimation is one of the important tasks of battery management system (BMS). Being different from other researches, a novel method of SOC estimation for pouch lithium-ion battery cells based on stress measurement is proposed. With a comprehensive experimental study, we find that, the stress of the battery during charge/discharge is composed of the static stress and the dynamic stress. The static stress, which is the measured stress in equilibrium state, corresponds to SOC, this phenomenon facilitates the design of our stress-based SOC estimation. The dynamic stress, on the other hand, is influenced by multiple factors including charge accumulation or depletion, current and historical operation, thus a multiple regression model of the dynamic stress is established. Based on the relationship between static stress and SOC, as well as the dynamic stress modeling, the SOC estimation method is founded. Experimental results show that the stress-based method performs well with a good accuracy, and this method offers a novel perspective for SOC estimation. - Highlights: • A State of Charge estimator based on stress measurement is proposed. • The stress during charge and discharge is investigated with comprehensive experiments. • Effects of SOC, current, and operation history on battery stress are well studied. • A multiple regression model of the dynamic stress is established.

  4. Experimental study of internal conical refraction in a biaxial crystal with Laguerre–Gauss light beams

    International Nuclear Information System (INIS)

    Peet, V

    2014-01-01

    The effect of internal conical refraction (CR) in a biaxial crystal was studied using Laguerre–Gauss light beams LG 0 ℓ with ℓ=1 and 2, while the lowest-order LG 0 0 beam was used as a reference. The transition from ordinary double refraction to CR was examined. It has been shown that double refraction of an LG 0 ℓ beam forms two focal spots containing ℓ dark stripes. These stripes evolve into ℓ+1 dark rings over an annular focal image when CR is established, and it results in a fine-structure of ℓ+2 bright focal rings with different intensities. In a sharp contrast to the lowest-order reference, the multiring focal structure has a distinct asymmetry with respect to the focal image plane. It has been shown that bright off-axis ‘hot spot’ can be formed on the far-field profiles of outgoing light beams when the biaxial crystal is slightly tilted, and a small angle between the propagation axis of the beam and the optic axis of the crystal arises. These off-axis light structures emerge as either a charge-one optical vortex or a zero-charge spot with annihilated vorticity. Polarization selection reveals J 1 or J 0 Bessel-like profiles of the corresponding ‘hot spots’, and a complex pattern of forked fringes in the dark region near the beam core. (paper)

  5. Stress Exposure, Food Intake, and Emotional State

    Science.gov (United States)

    Ulrich-Lai, Yvonne M.; Fulton, Stephanie; Wilson, Mark; Petrovich, Gorica; Rinaman, Linda

    2016-01-01

    This manuscript summarizes the proceedings of the symposium entitled, “Stress, Palatable Food and Reward”, that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr. Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr. Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr. Mark Wilson describes his group’s research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Lastly, Dr. Gorica Petrovich discusses her research program that is aimed at defining cortical–amygdalar–hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e., fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential, and environmental factors. PMID:26303312

  6. Stress exposure, food intake and emotional state.

    Science.gov (United States)

    Ulrich-Lai, Yvonne M; Fulton, Stephanie; Wilson, Mark; Petrovich, Gorica; Rinaman, Linda

    2015-01-01

    This manuscript summarizes the proceedings of the symposium entitled, "Stress, Palatable Food and Reward", that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr Mark Wilson describes his group's research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Finally, Dr Gorica Petrovich discusses her research program that is aimed at defining cortical-amygdalar-hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e. fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential and environmental factors on these interactions.

  7. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  8. Measured resolved shear stresses and Bishop-Hill stress states in individual grains of austenitic stainless steel

    DEFF Research Database (Denmark)

    Juul, Nicolai Ytterdal; Oddershede, Jette; Beaudoin, Armand

    2017-01-01

    somewhat from the theoretical expectation. These deviations are found to originate from a larger tensile stress component than in the theoretical Bishop-Hill stress states and to be associated also with deviations from axisymmetric plastic strain. This conclusion was supported by finite-element crystal...

  9. Effect of plastic deformation and strain history on X-ray elastic constants

    International Nuclear Information System (INIS)

    Iadicola, Mark A.; Foecke, Tim

    2005-01-01

    The use of X-ray diffraction to measure residual stress in a crystalline material is well known. This method is currently being reapplied to the surface measurement of in situ stresses during biaxial straining of sheet metal specimens. This leads to questions of precision and calibration of the method through plastic deformation. Little is known of the change, with plastic work, in the X-ray elastic constants (XECs) that are required by the technique for stress measurement. Experiments to determine the formability of various materials using this stress measurement technique in conjunction with a typical Marciniak test (with the Raghavan variation of specimen shapes) have been performed assuming a constant value for XECs. New results of calibration experiments are presented which admit the possibility of variation of the XECs with plastic strain history and initial texture of the material. Adjustment of the data from the previously performed formability experiments is shown. Additionally, various phenomena are captured including initial yielding, change of XECs with plastic strain level (both with uniaxial and biaxial strain histories), and some of the effects of texture on the technique. This technique has potential application in verification of the assumptions made during other standard testing methods (in-plane biaxial specimen geometries and bulge testing), verifying stress predictions from finite element analyses (i.e. benchmarking experiments such as BM3), analysis of stress states in localized deformation (yield point effects), and tracking of the effect of prestraining on material formability through the process of multistage forming

  10. Selective buckling via states of self-stress in topological metamaterials.

    Science.gov (United States)

    Paulose, Jayson; Meeussen, Anne S; Vitelli, Vincenzo

    2015-06-23

    States of self-stress--tensions and compressions of structural elements that result in zero net forces--play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices.

  11. Numerical study on core damage and interpretation of in situ state of stress

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [Gridpoint Finland Oy (Finland)

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson`s ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.) 35 refs.

  12. Numerical study on core damage and interpretation of in situ state of stress

    International Nuclear Information System (INIS)

    Hakala, M.

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson's ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.)

  13. Application of laser interferometry for assessment of surface residual stress by determination of stress-free state

    International Nuclear Information System (INIS)

    Kim, Dong Won; Kwon, Dong Il; Lee, Nak Kyu; Choi, Tae Hoon; Na, Kyoung Hoan

    2003-01-01

    The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using Electronic Speckle Pattern Interferometry (ESPI). The residual stress fields in case of both single and film/substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 μm Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the X-Ray Diffractometer (XRD) for the verification of above residual stress results by ESPI

  14. Bi-axial M-. Phi. analyses of RC columns using fiber model and comparison with experimental results. 2 jikumage wo ukeru hashirabuzai no M-. Phi. kankei eno fiber model no tekigosei

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Y.; Tokuyama, S.; Furuichi, K. (Kajima Corp., Tokyo (Japan))

    1991-10-31

    In order to examine the accuracy of a fiber model for analyzing the stability of towers of a cable-stayed bridge subjected to biaxial bending force due to earthquake, experimental results of column test specimens were compared with analytical results. The relation between biaxial bending moment and curvature (M-{Phi}) was measured in biaxial bending model experiment using a reinforcement ratio, axial compressive force and loading pattern as parameters. Since the relation was greatly affected by axial modeling of a reinforcing material, the parameter analysis was conducted by paying particular attention to reinforcement models (bilinear model, cubic one and Ramberg-Osgood one). As a result, the Ramberg-Osgood model was suitable for columns with a large longitudinal reinforcement ratio and large axial tension such as seen in highrise buildings, while the cubic model was more suitable for columns with a small ratio such as seen in cable-stayed bridges. 4 refs., 10 figs., 1 tab.

  15. Mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chaobi; Chen, Jian Yun; Xu, Qiang; Li, Jing [School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian (China)

    2015-08-15

    In order to analyze the mechanical properties of two-way different configurations of prestressed concrete members subjected to axial loading, a finite element model based on the nuclear power plant containments is demonstrated. This model takes into account the influences of different principal stress directions, the uniaxial or biaxial loading, and biaxial loading ratio. The displacement-controlled load is applied to obtain the stress-strain response. The simulated results indicate that the differences of principal stress axes have great effects on the stress-strain response under uniaxial loading. When the specimens are subjected to biaxial loading, the change trend of stress with the increase of loading ratio is obviously different along different layout directions. In addition, correlation experiments and finite element analyses were conducted to verify the validity and reliability of the analysis in this study.

  16. Ferroelectric properties of Pb(Zr,Ti)O3 films under ion-beam induced strain

    Science.gov (United States)

    Lee, Jung-Kun; Nastasi, Michael

    2012-11-01

    The influence of an ion-beam induced biaxial stress on the ferroelectric and dielectric properties of Pb(Zr,Ti)O3 (PZT) films is investigated using the ion beam process as a novel approach to control external stress. Tensile stress is observed to decrease the polarization, permittivity, and ferroelectric fatigue resistance of the PZT films whose structure is monoclinic. However, a compressive stress increases all of them in monoclinic PZT films. The dependence of the permittivity on stress is found not to follow the phenomenological theory relating external forces to intrinsic properties of ferroelectric materials. Changes in the ferroelectric and dielectric properties indicate that the application of a biaxial stress modulates both extrinsic and intrinsic properties of PZT films. Different degrees of dielectric non-linearity suggests the density and mobility of non-180o domain walls, and the domain switching can be controlled by an applied biaxial stress and thereby influence the ferroelectric and dielectric properties.

  17. Stress state evaluation in low carbon and TRIP steels by magnetic permeability

    International Nuclear Information System (INIS)

    Kouli, M.-E.; Giannakis, M

    2016-01-01

    Magnetic permeability is an indicative factor for the steel health monitoring. The measurements of magnetic permeability lead to the evaluation of the stress state of any ferromagnetic steel. The magnetic permeability measurements were conducted on low carbon and TRIP steel samples, which were subjected to both tensile and compressive stresses. The results indicated a direct correlation of the magnetic permeability with the mechanical properties, the stress state and the microstructural features of the examined samples. (paper)

  18. Crystal defects and related stress in Y2O3 thin films: Origin, modeling, and consequence on the stability of the C-type structure

    International Nuclear Information System (INIS)

    Lacroix, Bertrand; Paumier, Fabien; Gaboriaud, Rolly J.

    2011-01-01

    We study the impact that the crystal defects have on the C-type structure of rare earth sesquioxide thin films grown by ion-beam sputtering, through the example of Y 2 O 3 . By monitoring the energy of the argon beam used in the sputter deposition process (between 600 and 1200 eV), we show that it is possible to control the microstructure (defects concentration, stress state and phase) in the oxide layer. Two main types of defects, ascribed to the 'atomic peening effect', are evidenced by high-resolution transmission electron microscopy, Rutherford backscattering spectroscopy, and nuclear reaction analysis experiments: anti-Frenkel pairs, leading to a disorder on the oxygen-vacancy network, and oxygen-vacancy dislocations loops, to accommodate the strong nonstoichiometry. From a macroscopic measurement of the residual stresses in the as-deposited and the annealed layers, through x-ray diffraction and the sin 2 Ψ method, we have modeled the related stress state using an enhanced triaxial stress model. In the as-grown films, we evidence the coexistence of a biaxial and a hydrostatic stress, due to inclusions of atomic size defects. Quantitative information of the concentration and the nature of each type of defect (size effect) have also been determined, in good agreement with experiments. Interestingly, in the most energetic growth conditions corresponding to the highest degree of disorder on the oxygen-vacancy network and to the highest stress field in the film, we demonstrate that it is possible to stabilize an unexpected and metastable non equilibrium fluorite-like phase (X-type).

  19. Stress-induced state transitions in flexible liquid-crystal devices

    International Nuclear Information System (INIS)

    Ho, I-Lin; Chang, Yia-Chung

    2012-01-01

    This work studies the stress-strain dynamics for the transient optoelectronic characteristics of flexible liquid-crystal (LC) devices. Due to the fast response of LC directors, the configuration of the LC is assumed to be in quasi-equilibrium during the process of elastic deformations of the flexible structures. The LC medium hence can be treated effectively as a thin-film layer and can approximately follow the strain-stress mechanism in the solids. Relevant theoretical algorithms are studied in this work, and numerical results present the stress-induced state transitions in the π cell.

  20. Use of variational principles for solution of infinitely redundant continuum problem with special reference to containment vessels

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1982-01-01

    The calculation of time-deepndent stresses in concrete structures operating at elevated temperatures is discussed. The method described is of a direct formulation technique and it is based on the principles of the calculus of variation. The paper mainly deals with the application of the method to a large and infinitely redundant continuum problem. The analytical procedure of the variational principle is also described and the mathematical expressions are developed for uniaxial and biaxial stress problems. The solution for the biaxial state of stress is carried out by a two-dimensional finite element stiffness analysis. A step-by-step method developed by the author using two-dimensional finite element stiffness analysis is also described in APPENDIX 3. Both methods are then applied to a real problem for which experimental data exist from Ref. (1) Predicted analytical values obtained by both methods are compared with experimental results. The method is suitable for predicting the distribution of stress in the end slabs of containment vessels. These slabs are perforated to permit fuel loading by the charging machine. (author)

  1. An interim report on shallow-flaw fracture technology development

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.

    1995-01-01

    Shallow-flaw fracture technology is being developed for application to the safety assessment of radiation-embrittled nuclear reactor pressure vessels (RPVS) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT NDT ) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) a strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness

  2. Effects of hydrostatic pressure and biaxial strains on the elastic and electronic properties of t-C8B2N2

    Science.gov (United States)

    Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Duan, Yifeng; Zhang, Shaobo; Xia, Wangsuo

    2018-04-01

    The effects of hydrostatic pressure and biaxial strains on the elastic and electronic properties of a superhard material t-C8B2N2 have been studied using first-principles calculations. The structure is proven to be mechanically and dynamically stable under the applied external forces. All the elastic constants (except C66) and elastic modulus increase (decrease) with increasing pressure and compressive (tensile) biaxial strain ɛxx. A microscopic model is used to calculate the Vicker's hardness of every single bond as well as the crystal. The hardness of t-C8B2N2 (64.7 GPa) exceeds that of c-BN (62 GPa) and increases obviously by employing pressure and compressive ɛxx. Furthermore, the Debye temperature and anisotropy of sound velocities for t-C8B2N2 have been discussed. t-C8B2N2 undergoes an indirect to direct bandgap transition when ɛxx > 2%; however, the indirect bandgap character of the material remains under pressure.

  3. Simulation of Stress-Strain State of Shovel Rotary Support Kingpin

    Science.gov (United States)

    Khoreshok, A. A.; Buyankin, P. V.; Vorobiev, A. V.; Dronov, A. A.

    2016-04-01

    The article presents the sequence of computational simulation of stress-strain state of shovel’s rotary support. Computation results are analyzed, the kingpin is specified as the most loaded element, maximum stress zones are identified. Kingpin design modification such as enhancement of fillet curvature radius to 25 mm and displacement of eyebolt holes on the diameter of 165 mm are proposed, thus diminishing impact of stress concentrators and improving reliability of the rotary support.

  4. Experimental investigation on transformation, reorientation and plasticity of Ni47Ti44Nb9 SMA under biaxial thermal–mechanical loading

    International Nuclear Information System (INIS)

    Chen, Xiang; Peng, Xianghe; Chen, Bin; Han, Jia; Zeng, Zhongmin; Hu, Ning

    2015-01-01

    The constitutive behavior of shape memory alloy (SMA) Ni 47 Ti 44 Nb 9 specimens subjected to different thermal–mechanical loading histories was investigated experimentally. This involved the application of strain by different proportional or non-proportional paths in the biaxial ϵ−γ plane at −60 °C (M s + 30 °C), the interaction between stress-induced martensitic transformation, reorientation and plastic deformation, temperature-induced reverse martensitic transformation and strain recovery. The results show that the equivalent stress–strain curves, as well as the pure shear and pure tensile curves, depend strongly on the thermal–mechanical loading history. For specimens deformed previously to the same equivalent strains by different paths, the equivalent recovery strains after unloading are similar, as are the spans between the reverse transformation start and final temperatures. The activated martensite variants depend strongly on loading history. The recovery of the axial strain component and that of the shear strain component due to reverse transformation occur synchronously and develop along the shortest path in the ϵ−γ plane. The results may provide some new and useful information on the effects of transformation, plasticity and loading paths for further studies and applications of such materials. (paper)

  5. Electrically conducting oxide buffer layers on biaxially textured nickel alloy tapes by reel-to-reel MOCVD process

    International Nuclear Information System (INIS)

    Stadel, O; Samoilenkov, S V; Muydinov, R Yu; Schmidt, J; Keune, H; Wahl, G; Gorbenko, O Yu; Korsakov, I E; Melnikov, O V; Kaul, A R

    2006-01-01

    Reel-to-reel MOCVD process for continuous growth of electrically conducting buffer layers on biaxially textured Ni5W tapes has been developed. The new buffer layer architechture is presented: 200 nm (La, Ba) 2 CuO 4 /40 nm (La, Ba)MnO 3 /Ni5W. Constituting layers with high structural quality have been grown on moving tapes (in plane FWHM ≤ 6 0 and out of plane FWHM ≤ 3 0 )

  6. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    Science.gov (United States)

    Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.

  7. Off-state stress and pulse response investigation of InAl/Ga HFET

    International Nuclear Information System (INIS)

    Florovic, M.; Hronec, P.; Kovac, J.; Skriniarova, J.; Donoval, D.; Kordos, P.

    2011-01-01

    In this study In 0.18 Al 0.82 N/GaN HFETs were off-state tested under high drain bias, I-V characteristics were measured using standard DC voltage source (drain-source, gate-source). Subsequently drain current responses on pulse gate-source voltage for various drain-source voltages were recorded and analysed. Static performance of InAlN/GaN HFETs with AlN buffer layer prepared at different conditions were analysed before, during and after the off-state stress. The static output I-V characteristics show the maximum drain current I d ≅ 0,44 A/mm for V gs = 6 V, the device has pinch-off at V gs - 4.4 V. The drain and gate currents of the InAlN/GaN HFET were measured continuously during the off-state stress (V ds = 30 V, V gs = -4.4 V), a partial increase of the drain/gate current was observed after this interruption, which indicates on some recovery effect. The devices were characterised in details after the total stress time of 60 min., as well as after 30 min without the stress, the output I-V characteristic show permanent off-state stress degradation. This effect will be studied in details in the next. (authors)

  8. Dual characteristics of yield and ultimate strength as applied to two grades of beryllium

    International Nuclear Information System (INIS)

    Priddy, T.G.; Benzley, S.E.; Johnson, R.L.

    1977-02-01

    Published yield and ultimate biaxial strength data for two grades of beryllium are correlated with the use of a macroscopic failure model. Cross sections of the resulting surfaces in three-dimensional stress space are drawn to illustrate the expected transition from ductile to brittle fracture for triaxial tension states of stress. The usefulness of these models to the prediction of fracture in ductile materials is discussed. 5 tables, 8 figures, 11 references

  9. The role of mechanical boundary conditions in the soft mode dynamics of PbTiO3.

    Science.gov (United States)

    McCash, Kevin; Mani, B K; Chang, C-M; Ponomareva, I

    2014-10-29

    The role of different mechanical boundary conditions in the soft mode dynamics of ferroelectric PbTiO3 is systematically investigated using first-principles-based simulations and analytical model. The change in the soft mode dynamics due to hydrostatic pressure, uniaxial and biaxial stresses and biaxial strains is studied in a wide temperature range. Our computations predict: (i) the existence of Curie-Weiss laws that relate the soft mode frequency to the stress or strain; (ii) a non-trivial temperature evolution of the associated Curie-Weiss constants; (iii) a qualitative difference between the soft mode response to stresses/strains and hydrostatic pressure. The latter finding implies that the Curie-Weiss pressure law commonly used for residual stress estimation may not apply for the cases of uniaxial and biaxial stresses and strains. On the other hand, our systematic study offers a way to eliminate this difficulty through the establishment of Curie-Weiss stress and strain laws. Implications of our predictions for some available experimental data are discussed.

  10. Stress-strain relationship and XRD line broadening in [0001] textured hexagonal polycrystalline materials

    International Nuclear Information System (INIS)

    Yokoyama, Ryouichi

    2011-01-01

    Stress analysis with X-ray diffraction (XRD) for hexagonal polycrystalline materials in the Laue classes 6/mmm and 6/m has been studied on the basis of the crystal symmetry of the constituent crystallites which was proposed by R. Yokoyama and J. Harada ['Re-evaluation of formulae for X-ray stress analysis in polycrystalline specimens with fibre texture', Journal of Applied Crystallography, Vol.42, pp.185-191 (2009)]. The relationship between the stress and strain observable by XRD in a hexagonal polycrystalline material with [0001] fibre texture was formulated in terms of the elastic compliance defined for its single crystal. As a result, it was shown that the average strains obtained in the crystallites for both symmetries of 6/mmm and 6/m are different from each other under the triaxial or biaxial stress field. Then, it turned out that the line width of XRD changes depending on the measurement direction. (author)

  11. Mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the in-plane biaxial strain

    Science.gov (United States)

    Behzad, Somayeh

    2017-11-01

    Recently, a new two-dimensional (2D) material, the 2D BC3 crystal, has been synthesized. Here, the mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the biaxial strain is investigated. The electronic structure calculations showed that the strain-free monolayer and bilayer BC3 are indirect band-gap semiconductors with band gap of 0.62 and 0.29 eV, respectively, where the conduction band minimum (CBM) is at the M point whereas the valence band maximum (VBM) is at the Γ point. The doubly degenerated bands in the monolayer BC3 are splitted in the bilayer BC3 due to the interlayer interactions. Both monolayer and bilayer BC3 remain indirect gap semiconductor under biaxial tensile strain and their band gaps increases with strain. On the other hand, by increasing the magnitude of tensile strain, the optical spectra shift to the lower energies and the static dielectric constant increases. These findings suggest the potential of strain-engineered 2D BC3 in electronic and optoelectronic device applications.

  12. The influence of normal fault on initial state of stress in rock mass

    Directory of Open Access Journals (Sweden)

    Tajduś Antoni

    2016-03-01

    Full Text Available Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  13. The influence of normal fault on initial state of stress in rock mass

    Science.gov (United States)

    Tajduś, Antoni; Cała, Marek; Tajduś, Krzysztof

    2016-03-01

    Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  14. Ratchetting behavior of primary heat transport (PHT) piping material SA-333 carbon steel subjected to cyclic loads at room temperature

    International Nuclear Information System (INIS)

    Kulkarni, S.; Desai, Y.M.; Kant, T.; Reddy, G.R.; Gupta, C.; Chakravarthy, J.K.

    2004-01-01

    Ratchetting behavior of SA-333 Gr. 6 carbon steel used as primary heat transport (PHT) piping material has been investigated with three constitutive models proposed by Armstrong-Frederick, Chaboche and Ohno-Wang involving different hardening rules. Performance of the above mentioned models have been evaluated for a broad set of uniaxial and biaxial loading histories. The uniaxial ratchetting simulations have been performed for a range of stress ratios (R) by imposing different stress amplitudes and mean stress conditions. Numerical simulations indicated significant ratchetting and opening of hysteresis loop for negative stress ratio with constant mean stress. Application of cyclic stress without mean stress (R = -1.0) has been observed to produce negligible ratchet-strain accumulation in the material. Simulation under the biaxial stress condition was based on modeling of an internally pressurized thin walled pipe subjected to cyclic bending load. Numerical results have been validated with the experiments as per simulation conditions. All three models have been found to predict the observed accumulation of circumferential strain with increasing number of cycles. However, the Armstrong Frederick (A-F) model was found to be inadequate in simulating the ratchetting response for both uniaxial as well as biaxial loading cases. The A-F model actually over-predicted the ratchetting strain in comparison with the experimental strain values. On the other hand, results obtained with the Chaboche and the Ohno-Wang models for both the uniaxial as well as biaxial loading histories have been observed to closely simulate the experimental results. The Ohno-Wang model resulted in better simulation for the presents sets of experimental results in comparison with the Chaboche model. It can be concluded that the Ohno-Wang model suited well compared to the Chaboche model for above sets of uniaxial and biaxial loading histories. (authors)

  15. BUCLASP 3: A computer program for stresses and buckling of heated composite stiffened panels and other structures, user's manual

    Science.gov (United States)

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP3 is described. The code is intended for thermal stress and instability analyses of structures such as unidirectionally stiffened panels. There are two types of instability analyses that can be effected by PAINT; (1) thermal buckling, and (2) buckling due to a specified inplane biaxial loading. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plate strip-elements can be analyzed. The two parallel ends of the panel must be simply supported, whereas arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. Any variation in the temperature rise (from ambient) through the cross section of a panel is considered in the analyses but it must be assumed that in the longitudinal direction the temperature field is constant. Load distributions for the externally applied inplane biaxial loads are similar in nature to the permissible temperature field.

  16. Specific strain work as a failure criterion in plane stress state

    International Nuclear Information System (INIS)

    Zuchowski, R.; Zietkowski, L.

    1985-01-01

    An experimental verification of failure criterion based on specific strain work was performed. Thin-walled cylindrical specimens were examined by loading with constant force and constant torque moment, assuming different values for particular tests, at the same time keeping stress intensity constant, and by subjecting to thermal cycling. It was found that the critical value of failure did not depend on axial-to-shearing stresses ratio, i.e., on the type of state of stress. Thereby, the validity of the analysed failure criterion in plane stress was confirmed. Besides, a simple description of damage development in plane stress was suggested. (orig./RF)

  17. Residual stresses in weld-clad reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Bertram, W.

    1975-01-01

    Cladding of low alloy nuclear reactor pressure vessel steel with austenitic stainless steel introduces in heavy section components high residual stresses which may cause microcrack formation in stress relief heat treatment. In this investigation an attempt is made to contribute to the solution of the stress relief cracking problem by determining quantitatively the magnitude and distribution of the residual stresses after cladding and after subsequent stress relief heat treatment. The distribution of residual stresses was determined on the basis of a combined experimental-mathematical procedure. Heavy section plate specimens of low alloy steel as base material were given an austenitic monolayer-cladding using the techniques of strip electrode and plasma hot wire cladding, respectively. A number of plates was stress relief heat treated. Starting from the cladded surface the thickness of the plates was reduced by subsequent removal of layers of material. The elastic strain reaction to the removal of each layer was measured by strain gauges. From the data obtained the biaxial residual stress distribution was computed as a function of thickness using relations which are derived for this particular case. In summary, lower residual stresses are caused by reduced thickness of the components. As the heat input, is decreased at identical base material thickness, the residual stresses are lowered also. The height of the tensile residual stress peak, however, remains approximataly constant. In stress relief annealed condition the residual stresses in the cladding are in tension; in the base material the residual stresses are negligibly small

  18. Biaxial creep deformation of Zircaloy-4 PWR fuel cladding in the alpha,(alpha + beta) and beta phase temperature ranges

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Healey, T.; Horwood, R.A.L.

    1985-01-01

    The biaxial creep behaviour of Zircaloy-4 fuel cladding has been determined at temperatures between 973 - 1073 K in the alpha phase range, in the duplex (alpha + beta) region between 1098 - 1223 K and in the beta phase range between 1323 - 1473 K. This paper presents the creep data together with empirical equations which describe the creep deformation response within each phase region. (author)

  19. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  20. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat

    2015-01-01

    In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under...... the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature...

  1. Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jun Min; Lee, Han Sang; Kim, Yun Jae [Korea Univ., Daejeon (Korea, Republic of)

    2017-08-15

    Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the Mα-tangent method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep.

  2. On the role of the residual stress state in product manufacturing

    NARCIS (Netherlands)

    Zijlstra, G.; Groen, M.; Post, J.; Ocelik, V.; de Hosson, J.Th.M.

    2016-01-01

    This paper concentrates on the effect of the residual stress state during product manufacturing of AISI 420 steel on the final shape of the product. The work includes Finite Element (FE) calculations of the distribution of the residual stresses after metal forming and a heat treatment. The evolution

  3. A multi-axis confocal rheoscope for studying shear flow of structured fluids

    KAUST Repository

    Lin, Neil Y. C.; McCoy, Jonathan H.; Cheng, Xiang; Leahy, Brian; Israelachvili, Jacob N.; Cohen, Itai

    2014-01-01

    of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure

  4. Transactional stress and coping theory in accounting for psychological states measures

    Directory of Open Access Journals (Sweden)

    V. Buško

    2007-08-01

    Full Text Available The paper examines a relative predictive value of some stable individual attributes and the processes of cognitive appraisals and coping with stress in accounting for specific components of anxiety state measures. Self-report instruments for the measurement of selected psychological constructs, i.e. perceived incompetence, externality, stress intensity and duration, situation-specific coping strategies, and the two anxiety state components, were taken in a sample of 449 male military basics trainees, ranging in age from 18-27. Hierarchical multiple regression analyses showed that the set of predictors employed could account for statistically, as well as theoretically and practically a significant part of variance in cognitive anxiety component (45,5%, and in visceral-emotional component (32,2% of the anxiety state. The extent of anxiety reactions assessed by both scales could primarily be explained by general perception of personal incompetence, as a relatively stable dimension of general self-concept. Of the ways of coping examined, reinterpretation of stressful events was the only strategy contributing to low level, whereas passivization, wishful thinking, and seeking social support contributed to higher levels of anxiety measured by both scales. The results give partial support to the basic hypotheses on the mediating role of coping in the relationships among particular components of the stress and coping models.

  5. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  6. Adaptive fuzzy trajectory control for biaxial motion stage system

    Directory of Open Access Journals (Sweden)

    Wei-Lung Mao

    2016-04-01

    Full Text Available Motion control is an essential part of industrial machinery and manufacturing systems. In this article, the adaptive fuzzy controller is proposed for precision trajectory tracking control in biaxial X-Y motion stage system. The theoretical analyses of direct fuzzy control which is insensitive to parameter uncertainties and external load disturbances are derived to demonstrate the feasibility to track the reference trajectories. The Lyapunov stability theorem has been used to testify the asymptotic stability of the whole system, and all the signals are bounded in the closed-loop system. The intelligent position controller combines the merits of the adaptive fuzzy control with robust characteristics and learning ability for periodic command tracking of a servo drive mechanism. The simulation and experimental results on square, triangle, star, and circle reference contours are presented to show that the proposed controller indeed accomplishes the better tracking performances with regard to model uncertainties. It is observed that the convergence of parameters and tracking errors can be faster and smaller compared with the conventional adaptive fuzzy control in terms of average tracking error and tracking error standard deviation.

  7. Experimental research data on stress state of salt rock mass around an underground excavation

    Science.gov (United States)

    Baryshnikov, VD; Baryshnikov, DV

    2018-03-01

    The paper presents the experimental stress state data obtained in surrounding salt rock mass around an excavation in Mir Mine, ALROSA. The deformation characteristics and the values of stresses in the adjacent rock mass are determined. Using the method of drilling a pair of parallel holes in a stressed area, the authors construct linear relationship for the radial displacements of the stress measurement hole boundaries under the short-term loading of the perturbing hole. The resultant elasticity moduli of rocks are comparable with the laboratory core test data. Pre-estimates of actual stresses point at the presence of a plasticity zone in the vicinity of the underground excavation. The stress state behavior at a distance from the excavation boundary disagrees with the Dinnik–Geim hypothesis.

  8. Influence of Health Behaviors and Occupational Stress on Prediabetic State among Male Office Workers.

    Science.gov (United States)

    Ryu, Hosihn; Moon, Jihyeon; Jung, Jiyeon

    2018-06-14

    This study examined the influence of health behaviors and occupational stress on the prediabetic state of male office workers, and identified related risks and influencing factors. The study used a cross-sectional design and performed an integrative analysis on data from regular health checkups, health questionnaires, and a health behavior-related survey of employees of a company, using Spearman’s correlation coefficients and multiple logistic regression analysis. The results showed significant relationships of prediabetic state with health behaviors and occupational stress. Among health behaviors, a diet without vegetables and fruits (Odds Ratio (OR) = 3.74, 95% Confidence Interval (CI) = 1.93⁻7.66) was associated with a high risk of prediabetic state. In the subscales on occupational stress, organizational system in the 4th quartile (OR = 4.83, 95% CI = 2.40⁻9.70) was significantly associated with an increased likelihood of prediabetic state. To identify influencing factors of prediabetic state, the multiple logistic regression was performed using regression models. The results showed that dietary habits (β = 1.20, p = 0.002), total occupational stress score (β = 1.33, p = 0.024), and organizational system (β = 1.13, p = 0.009) were significant influencing factors. The present findings indicate that active interventions are needed at workplace for the systematic and comprehensive management of health behaviors and occupational stress that influence prediabetic state of office workers.

  9. EVALUATION OF STRAIN-STRESS STATE OF THE RAILS IN THE PRODUCTION

    Directory of Open Access Journals (Sweden)

    V. V. Muravev

    2017-01-01

    Full Text Available High values of residual stresses is one of the most common reason of breaking lots of metal constructions, including rails. These stresses can reach values of flow limit, especially in the area of faults. Estimation of residual stresses values allows to get information about technical condition of the rail and also allow to avoid abnormal situations So, the aim of the research is creating the model of stress-strain state of the rail, which was hardened in its top and bottom, and to compare modeling results with experimental measurements of stresses and discrepancy of the housing.For creating the model and making evaluations by finite element method we used a program COMSOL. Forces on the top and bottom of the rail cause tension stresses, forces on the web of the rail cause tensile stresses. We compared calculated values of stresses with discrepancy of the housing. The discrepancy of the housing is informative characteristic for estimating the residual stresses according to standards. For experimental measurements we used an acoustic structuroscope SEMA. This structuroscope uses the acoustoelastic phenomenon for measurements. We made measurements of the five rails.According to the calculation results of the model, critical discrepancy of the housing in 2 mm corresponded to the following values of maximum stresses: –54 MPa in the top of the rail, 86 MPa in the web and –62 MPa in the bottom of the rail. Experimental measurements are the following: from –48 MPa to – 64 MPa in the top of the rail, 54 MPa to 93 MPa in the web of the rail, and –59 MPA to –74 MPa in the bottom of the rail. Absolute error was ±5 MPa.Thus we created the model, which allowed to analyze strain-stress state and compare real values of stresses with discrepancy of the housing. Results of the modeling showed coincidence with structure of distribution of residual stresses in five probes of rails. 

  10. The effect of casting conditions on the biaxial flexural strength of glass-ceramic materials.

    Science.gov (United States)

    Johnson, A; Shareef, M Y; Walsh, J M; Hatton, P V; van Noort, R; Hill, R G

    1998-11-01

    To assess the effect of mould and glass casting temperatures on the biaxial flexural strength (BFS) of two different types of castable glass-ceramic, using existing laboratory equipment and techniques. Two castable glass-ceramic materials were evaluated. One glass (LG3) is based on SiO2-Al2O3-P2O5-CaO-CaF2, and is similar in composition to glasses used in the manufacture of glass-ionomer cements. The other glass (SG3) is based on SiO2-K2O-Na2O-CaO-CaF2, and is a canasite-based material. Both materials were used to produce discs of 12 mm diameter and 2 mm thickness using the same lost-wax casting process as used for metal castings. Mould temperatures of between 500 degrees C and 1000 degrees C and glass casting temperatures of between 1100 degrees C and 1450 degrees C were evaluated. The cast discs were cerammed and the biaxial flexural strength determined with a Lloyd 2000 R tester. A significant difference was found for the BFS in the range of mould temperatures evaluated, with the optimum investment mould temperature being 590 degrees C for LG3 and 610 degrees C for SG3 (p = 0.0002 and p = 0.019, respectively). No significant differences were seen between any of the glass casting temperatures evaluated. The mould temperature for castable glass-ceramic materials produced using the lost-wax casting process can have a significant effect on BFS. The optimum mould temperature may differ slightly depending on the type of material being used. The glass casting temperature of these materials does not appear to have a significant effect on BFS.

  11. Analysis of residual stress state in sheet metal parts processed by single point incremental forming

    Science.gov (United States)

    Maaß, F.; Gies, S.; Dobecki, M.; Brömmelhoff, K.; Tekkaya, A. E.; Reimers, W.

    2018-05-01

    The mechanical properties of formed metal components are highly affected by the prevailing residual stress state. A selective induction of residual compressive stresses in the component, can improve the product properties such as the fatigue strength. By means of single point incremental forming (SPIF), the residual stress state can be influenced by adjusting the process parameters during the manufacturing process. To achieve a fundamental understanding of the residual stress formation caused by the SPIF process, a valid numerical process model is essential. Within the scope of this paper the significance of kinematic hardening effects on the determined residual stress state is presented based on numerical simulations. The effect of the unclamping step after the manufacturing process is also analyzed. An average deviation of the residual stress amplitudes in the clamped and unclamped condition of 18 % reveals, that the unclamping step needs to be considered to reach a high numerical prediction quality.

  12. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics.

    Science.gov (United States)

    Lin, Wei-Shao; Ercoli, Carlo; Feng, Changyong; Morton, Dean

    2012-07-01

    The objective of this study was to compare the effect of veneering porcelain (monolithic or bilayer specimens) and core fabrication technique (heat-pressed or CAD/CAM) on the biaxial flexural strength and Weibull modulus of leucite-reinforced and lithium-disilicate glass ceramics. In addition, the effect of veneering technique (heat-pressed or powder/liquid layering) for zirconia ceramics on the biaxial flexural strength and Weibull modulus was studied. Five ceramic core materials (IPS Empress Esthetic, IPS Empress CAD, IPS e.max Press, IPS e.max CAD, IPS e.max ZirCAD) and three corresponding veneering porcelains (IPS Empress Esthetic Veneer, IPS e.max Ceram, IPS e.max ZirPress) were selected for this study. Each core material group contained three subgroups based on the core material thickness and the presence of corresponding veneering porcelain as follows: 1.5 mm core material only (subgroup 1.5C), 0.8 mm core material only (subgroup 0.8C), and 1.5 mm core/veneer group: 0.8 mm core with 0.7 mm corresponding veneering porcelain with a powder/liquid layering technique (subgroup 0.8C-0.7VL). The ZirCAD group had one additional 1.5 mm core/veneer subgroup with 0.7 mm heat-pressed veneering porcelain (subgroup 0.8C-0.7VP). The biaxial flexural strengths were compared for each subgroup (n = 10) according to ISO standard 6872:2008 with ANOVA and Tukey's post hoc multiple comparison test (p≤ 0.05). The reliability of strength was analyzed with the Weibull distribution. For all core materials, the 1.5 mm core/veneer subgroups (0.8C-0.7VL, 0.8C-0.7VP) had significantly lower mean biaxial flexural strengths (p Empress and e.max groups, regardless of core thickness and fabrication techniques. Comparing fabrication techniques, Empress Esthetic/CAD, e.max Press/CAD had similar biaxial flexural strength (p= 0.28 for Empress pair; p= 0.87 for e.max pair); however, e.max CAD/Press groups had significantly higher flexural strength (p Empress Esthetic/CAD groups. Monolithic core

  13. Modeling of the stress-strain state of the ground mass contaminated with peracetic acid

    Directory of Open Access Journals (Sweden)

    Levenko Anna

    2017-01-01

    Full Text Available None of the methods described previously provides a solution to the problem that deals with the SSS evaluation of the ground mass which is under the influence of chemically active substances and, in particular, under the influence of peracetic acid. The stress-strain state of the ground mass contaminated with peracetic acid was estimated. Stresses occurring in the ground mass in the natural state were determined after the entry of acid into it and after the chemical fixation of it with sodium silicate. All the parameters of the stress-strain state of the ground mass were obtained under a number of physical and mechanical conditions. It was determined that following the work on the silicatization of the ground mass contaminated with peracetic acid the quantity of strain decreased by 26.11 to 48.9%. The comparison of the results of stress calculations indicates the stress reduction in the ground mass in 1.8 – 2.6 times after its fixing.

  14. Equation of limiting plasticity of the metal upon complex stress state

    International Nuclear Information System (INIS)

    Tin'gaev, A.K.

    2002-01-01

    A method for evaluation of the limiting plasticity of the metal in the zones of complex 3D stress state is presented. An analytic equation is derived for limiting plasticity. Parameters of the equation are expresses through the standard characteristics of the mechanical properties determined upon static tension of the smooth sample. Introduced into the obtained analytical equation is a universal fracture constant which indirectly characterizes the state of the material from the point of view of its capacity for elastic overstrain relaxation in the form of plastic flow or fracture. The new equation makes it possible to estimate the limiting plasticity of the metal in a state of complex stress on the basis of traditional characteristics of mechanical properties, which are not difficult to determine [ru

  15. Cellular stress induces a protective sleep-like state in C. elegans.

    Science.gov (United States)

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis.

    Science.gov (United States)

    Deeken, Corey R; Thompson, Dominic M; Castile, Ryan M; Lake, Spencer P

    2014-10-01

    Over the past 60 years, the soft tissue repair market has grown to include over 50 types of hernia repair materials. Surgeons typically implant these materials in the orientation that provides maximum overlap of the mesh over the defect, with little regard for mechanical properties of the mesh material. If the characteristics of the meshes were better understood, an appropriate material could be identified for each patient, and meshes could be placed to optimize integration with neighboring tissue and avoid the mechanical mis-match that can lead to impaired graft fixation. The purpose of this study was to fully characterize and compare the mechanical properties of thirteen types of hernia repair materials via planar biaxial tensile testing. Equibiaxial (i.e., equal simultaneous loading in both directions) and strip biaxial (i.e., loading in one direction with the other direction held fixed) tests were utilized as physiologically relevant loading regimes. After applying a 0.1N pre-load on each arm, samples were subjected to equibiaxial cyclic loading using a triangular waveform to 2.5mm displacement on each arm at 0.1Hz for 10 cycles. Samples were then subjected to two strip biaxial tests (using the same cyclic loading protocol), where extension was applied along a single axis with the other axis held fixed. The thirteen evaluated mesh types exhibited a wide range of mechanical properties. Some were nearly isotropic (C-QUR™, DUALMESH(®), PHYSIOMESH™, and PROCEED(®)), while others were highly anisotropic (Ventralight™ ST, Bard™ Mesh, and Bard™ Soft Mesh). Some displayed nearly linear behavior (Bard™ Mesh), while others were non-linear with a long toe region followed by a sharp rise in tension (INFINIT(®)). These materials are currently utilized in clinical settings as if they are uniform and interchangeable, and clearly this is not the case. The mechanical properties most advantageous for successful hernia repairs are currently only vaguely described

  17. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    Science.gov (United States)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock

  18. Structure/property relations of aluminum under varying rates and stress states

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Matthew T [Los Alamos National Laboratory; Horstemeyer, Mark F [MISSISSIPPI STATE UNIV; Whittington, Wilburn R [MISSISSIPPI STATE UNIV; Solanki, Kiran N [MISSISSIPPI STATE UNIV.

    2010-11-19

    In this work we analyze the plasticity, damage, and fracture characteristics of three different processed aluminum alloys (rolled 5083-H13, cast A356-T6, and extruded 6061-T6) under varying stress states (tension, compression, and torsion) and strain rates (0.001/, 1/s., and 1000/s). The stress state difference had more of a flow stress effect than the applied strain rates for those given in this study (0.001/sec up to 1000/sec). The stress state and strain rate also had a profound effect on the damage evolution of each aluminum alloy. Tension and torsional straining gave much greater damage nucleation rates than compression. Although the damage of all three alloys was found to be void nucleation dominated, the A356-T6 and 5083-H131 aluminum alloys incurred void damage via micron scale particles where the 6061-T6 aluminum alloy incurred void damage from two scales, micron-scale particles and nanoscale precipitates. Having two length scales of particles that participated in the damage evolution made the 6061-T6 incur a strain rate sensitive damage rate that was different than the other two aluminum alloys. Under tension, as the strain rate increased, the 6061-T6 aluminum alloy's void nucleation rate decreased, but the A356-T6 and 5083-H131 aluminum alloys void nucleation rate increased.

  19. Shear flow simulations of biaxial nematic liquid crystals

    Science.gov (United States)

    Sarman, Sten

    1997-08-01

    We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.

  20. Relationship between Organizational Climate, Job Stress and Job Performance Officer at State Education Department

    Science.gov (United States)

    Suandi, Turiman; Ismail, Ismi Arif; Othman, Zulfadli

    2014-01-01

    This research aims at finding out the relationship between Organizational Climate, job stress and job performance among State Education Department (JPN) officers . The focus of the research is to determine the job performance of state education department officers, level of job stress among the officers, level of connection between organizational…

  1. Failure criteria for low-temperature irradiated organic composite insulation systems

    International Nuclear Information System (INIS)

    Schutz, J.B.; Fabian, P.E.

    1997-01-01

    Composite insulation systems in fusion magnet applications are often subjected to conditions of combined through thickness compression and shear at varying stress ratios. Characterization of insulation system strength under these conditions requires unidirectional shear and compression tests, as well as biaxial shear/compression testing to define the systems failure envelope. An appropriate failure criteria would reduce the number of tests required to define this envelope, and would give designers a better estimate of material strengths at intermediate stress ratios. Biaxial shear/compression testing requires the use of metallic sandwich specimens, which are susceptible to activation during irradiation. A reliable failure criteria which eliminates the need for biaxial characterization would also reduce the difficulty and expense involved in radiation effects characterization while still providing a complete failure envelope. Several generalized failure criteria, taken from classical composites analysis, were reformulated for application in the shear/compression quadrant. The maximum stress and Tsai-Hill criteria were found to be inadequate to represent the biaxial failure envelope. The generalized Tsai-Wu tensor quadratic failure criterion was also examined. Application of this criterion requires through thickness tensile strength data. Through thickness tensile strengths of insulation systems have not been routinely characterized, but limited data are available. Utilizing unidirectional through thickness tension, compression, and interlaminar shear strength data, the Tsai-Wu failure criteria was found to agree well with biaxial shear/compression test data

  2. Residual stress state in pipe cut ring specimens for fracture toughness testing

    Energy Technology Data Exchange (ETDEWEB)

    Damjanovic, Darko [J.J. Strossmayer Univ. of Osijek, Slavonski Brod (Croatia). Mechanical Engineering Faculty; Kozak, Drazan [Zagreb Univ. (Croatia). Dept. for Mechanical Design; Marsoner, Stefan [Materials Center, Leoben (Austria).; Gubeljak, Nenad [Maribor Univ. (Slovenia). Chair of Mechanics

    2017-07-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  3. Residual stress state in pipe cut ring specimens for fracture toughness testing

    International Nuclear Information System (INIS)

    Damjanovic, Darko; Kozak, Drazan; Marsoner, Stefan; Gubeljak, Nenad

    2017-01-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  4. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable.

    Science.gov (United States)

    Huang, Yihe; Ellsworth, William L; Beroza, Gregory C

    2017-08-01

    Induced earthquakes currently pose a significant hazard in the central United States, but there is considerable uncertainty about the severity of their ground motions. We measure stress drops of 39 moderate-magnitude induced and tectonic earthquakes in the central United States and eastern North America. Induced earthquakes, more than half of which are shallower than 5 km, show a comparable median stress drop to tectonic earthquakes in the central United States that are dominantly strike-slip but a lower median stress drop than that of tectonic earthquakes in the eastern North America that are dominantly reverse-faulting. This suggests that ground motion prediction equations developed for tectonic earthquakes can be applied to induced earthquakes if the effects of depth and faulting style are properly considered. Our observation leads to the notion that, similar to tectonic earthquakes, induced earthquakes are driven by tectonic stresses.

  5. Stress evaluation of metallic material under steady state based on nonlinear critically refracted longitudinal wave

    Science.gov (United States)

    Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng

    2018-06-01

    This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.

  6. Application of the Raman technique to measure stress states in individual Si particles in a cast Al-Si alloy

    International Nuclear Information System (INIS)

    Harris, Stephen J.; O'Neill, Ann; Boileau, James; Donlon, William; Su, Xuming; Majumdar, B.S.

    2007-01-01

    While Raman spectroscopy is often used to measure stresses, the analyses are almost always limited to cases with simple stress states (uniaxial, equibiaxial). Recently we provided an experimental methodology to determine the full state of stress in Si wafers. Here we extend that methodology to interrogate stress states in Si particles embedded in an Al-Si alloy. Such determinations will ultimately be valuable for predicting ductility of cast Al, since a primary source of damage is cracking of eutectic Si particles. We combine electron back-scattered diffraction with the frequency shift, polarization and intensity of the Raman light to determine stress states. Stress states are measured both in the as-received residually stressed state and under in situ uniaxial loading. Comparison with finite element calculations shows good agreement. As an application of the technique, we show the determination of strength of an individual Si particle and compare the stress evolution with various models

  7. Stress among Secondary School Teachers in Ebonyi State, Nigeria: Suggested Interventions in the Worksite Milieu

    Science.gov (United States)

    Nwimo, Ignatius O.; Onwunaka, Chinagorom

    2015-01-01

    The aim of the study was to determine the level of stress experienced by secondary school teachers in Ebonyi State. The dimensions of stress studied included physical stress, mental stress, emotional stress and social stress. The study adopted the cross-sectional survey design using a sample of 660 (male 259, female 401) teachers randomly drawn…

  8. Comparison of Some Mechanical and Physical Methods for Measurement of Residual Stresses in Brush-Plated Nickel Hardened Gold and Silver Coatings

    Directory of Open Access Journals (Sweden)

    Harri LILLE

    2016-05-01

    Full Text Available Hard gold and silver are applied in coating owing to their high hardness, good wear and corrosion resistance for engineering application (e.g. on generators slip rings, sliding contacts and small machine parts and are typically plated on copper (mostly, brass and bronze. The studied nickel-hardened gold and silver coatings were brush plated on open thin-walled copper ring substrates. Residual stresses in the coatings were calculated from the curvature changes of the substrates. Biaxial intrinsic residual stresses were also determined by nanoindentation testing and by the X-ray technique. The values of the residual stresses represented tensile stresses and when determined by the techniques used they were comparable within a maximum limit of measurement uncertainty. These stresses relax; the dependence of relaxation time was approximated by a linear-fractional function.DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7439

  9. Effect of shallow angles on compressive strength of biaxial and triaxial laminates.

    Science.gov (United States)

    Jia, Hongli; Yang, Hyun-Ik

    2016-01-01

    Biaxial (BX) and triaxial (TX) composite laminates with ±45° angled plies have been widely used in wind turbine blades. As the scale of blades increases, BX and TX laminates with shallow-angled plies (i.e. off-axis ply angle shallow-angled BX and TX laminates are critical considering their locations in a wind turbine blade, and therefore in this study, the uniaxial static compression tests were conducted using BX and TX laminates with angled-plies of ±45°, ±35°, and ±25°, for the purpose of evaluation. On the other hand, Mori-Tanaka mean field homogenization method was employed to predict elastic constants of plies in BX and TX laminates involved in tests; linear regression analyses of experimentally measured ply strengths collected from various sources were then performed to estimate strengths of plies in BX and TX laminates; finally, Tsai-Wu, Hashin, and Puck failure criteria were chosen to predict compressive strengths of BX and TX laminates. Comparison between theoretical predictions and test results were carried out to illustrate the effectiveness of each criterion. The compressive strength of BX laminate decreases as ply angle increases, and the trend was successfully predicted by all three failure criteria. For TX laminates, ±35° angled plies rather than ±45° angled plies led to the lowest laminate compressive strength. Hashin and Puck criteria gave good predictions at certain ply angles for TX laminates, but Tsai-Wu criterion was able to capture the unexpected strength variation of TX laminates with ply angle. It was concluded that the transverse tensile stress in 0° plies of TX laminates, which attains its maximum when the off-axis ply angle is 35°, is the dominant factor in failure determination if using Tsai-Wu criterion. This explains the unexpected strength variation of TX laminates with ply angle, and also indicates that proper selection of ply angle is the key to fully utilizing the advantages of shallow-angled laminates.

  10. From point-wise stress data to a continuous description of the 3D crustal in situ stress state

    Science.gov (United States)

    Heidbach, O.; Ziegler, M.; Reiter, K.; Hergert, T.

    2017-12-01

    The in situ stress is a key parameter for the safe and sustainable management of geo-reservoirs or storage of waste and energy in deep geological repositories. It is also an essential initial condition for thermo-hydro-mechanical (THM) models that investigate man-made induced processes e.g. seismicity due to fluid injection/extraction, reservoir depletion or storage of heat producing high-level radioactive waste. Without a reasonable assumption on the initial stress condition it is not possible to assess if a man-made process is pushing the system into a critical state or not. However, modelling the initial 3D stress state on reservoir scale is challenging since data are hardly available before drilling in the area of interest. This is in particular the case for the stress magnitude data which are a prerequisite for a reliable model calibration. Here, we present a multi-stage 3D geomechani­cal-numerical model approach to estimate for a reservoir-scale volume the 3D in situ stress state. First, we set up a large-scale model which is calibrated by stress data and use the modelled stress field subsequently to calibrate a small-scale model located within the large-scale model. The local model contains a significantly higher resolution representation of the subsurface geometry around boreholes of a projected geothermal power plant. This approach incorporates two models and is an alternative to the required trade-off between resolution, computational cost and calibration data which is inevitable for a single model; an extension to a three-stage approach would be straight forward. We exemplify the two-stage approach for the area around Munich in the German Molasse Basin. The results of the reservoir-scale model are presented in terms of values for slip tendency as a measure for the criticality of fault reactivation. The model results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing

  11. A constitutive framework for modelling thin incompressible viscoelastic materials under plane stress in the finite strain regime

    Science.gov (United States)

    Kroon, M.

    2011-11-01

    Rubbers and soft biological tissues may undergo large deformations and are also viscoelastic. The formulation of constitutive models for these materials poses special challenges. In several applications, especially in biomechanics, these materials are also relatively thin, implying that in-plane stresses dominate and that plane stress may therefore be assumed. In the present paper, a constitutive model for viscoelastic materials in the finite strain regime and under the assumption of plane stress is proposed. It is assumed that the relaxation behaviour in the direction of plane stress can be treated separately, which makes it possible to formulate evolution laws for the plastic strains on explicit form at the same time as incompressibility is fulfilled. Experimental results from biomechanics (dynamic inflation of dog aorta) and rubber mechanics (biaxial stretching of rubber sheets) were used to assess the proposed model. The assessment clearly indicates that the model is fully able to predict the experimental outcome for these types of material.

  12. Research on self-calibration biaxial autocollimator based on ZYNQ

    Science.gov (United States)

    Guo, Pan; Liu, Bingguo; Liu, Guodong; Zhong, Yao; Lu, Binghui

    2018-01-01

    Autocollimators are mainly based on computers or the electronic devices that can be connected to the internet, and its precision, measurement range and resolution are all defective, and external displays are needed to display images in real time. What's more, there is no real-time calibration for autocollimator in the market. In this paper, we propose a biaxial autocollimator based on the ZYNQ embedded platform to solve the above problems. Firstly, the traditional optical system is improved and a light path is added for real-time calibration. Then, in order to improve measurement speed, the embedded platform based on ZYNQ that combines Linux operating system with autocollimator is designed. In this part, image acquisition, image processing, image display and the man-machine interaction interface based on Qt are achieved. Finally, the system realizes two-dimensional small angle measurement. Experimental results showed that the proposed method can improve the angle measurement accuracy. The standard deviation of the close distance (1.5m) is 0.15" in horizontal direction of image and 0.24"in vertical direction, the repeatability of measurement of the long distance (10m) is improved by 0.12 in horizontal direction of image and 0.3 in vertical direction.

  13. Effect of Stress State on Fracture Features

    Science.gov (United States)

    Das, Arpan

    2018-02-01

    Present article comprehensively explores the influence of specimen thickness on the quantitative estimates of different ductile fractographic features in two dimensions, correlating tensile properties of a reactor pressure vessel steel tested under ambient temperature where the initial crystallographic texture, inclusion content, and their distribution are kept unaltered. It has been investigated that the changes in tensile fracture morphology of these steels are directly attributable to the resulting stress-state history under tension for given specimen dimensions.

  14. Relationship of Challenge and Hindrance Stress with Coping Style and Job Satisfaction in Chinese State-Owned Enterprises

    OpenAIRE

    Yamaguchi, Hiroyuki; Zhao, Dong Mei

    2008-01-01

    This study aimed to categorize stresses prevalent in Chinese state-owned enterprises and to investigate the relationships among stresses, coping styles and job satisfaction. Data ( n = 549) were collected from three state-owned enterprises in Cang Zhou, He Bei Province, Mainland China. The result of a factor analysis yielded the following three factors: enterprise stress, interpersonal stress, and challenge stress. In order to test the moderator effect of problem-focused coping and emotion-fo...

  15. In-situ neutron diffraction during biaxial deformation

    International Nuclear Information System (INIS)

    Van Petegem, S.; Wagner, J.; Panzner, T.; Upadhyay, M.V.; Trang, T.T.T.; Van Swygenhoven, H.

    2016-01-01

    A change in strain path may have a significant effect on the mechanical response of metals. In order to understand or even predict the macroscopic behaviour under such conditions a detailed knowledge on the microstructural evolution is crucial. Yet relatively little work has been done to quantify and understand how the inter- and intragranular strains are affected during a change in strain path. In this work we present a new multiaxial deformation rig that allows performing in situ proportional and non-proportional loading under neutron diffraction. We demonstrate the capabilities of this new setup for the case of a 316 L stainless steel. We show that the nature and magnitude of intergranular strain strongly depends on the applied stress state and demonstrate that micro yielding and internal strain recovery are responsible for the observed transient softening during a 90° strain path change. We anticipate that this new characterization method will provide previously inaccessible microstructural data that can serve as input for benchmarking current state-of-the-art crystal plasticity models.

  16. Influence of thyroid states on stress gastric ulcer formation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, D.E.; Walker, C.H.; Mason, G.A.

    1988-01-01

    This study was designed to test the hypothesis that thyroid states may affect the acute development of gastric lesions induced by cold-resistant stress. Normal (euthyroid), hyperthyroid and hypothyroid rats were used. Gastric lesion incidence and severity was significantly increased in hypothyroid rats, whereas in contrast hyperthyroid rats developed significantly less gastric lesions. As anticipated, plasma levels of thyroxin (T/sub 4/) were significantly elevated in hyperthyroid rats, and undetectable in hypothyroid rats. Acute pretreatment with i.p. cimetidine, but not T/sub 4/ 1 h prior to stress completely prevented gastric lesions formation in hypothyroid rats. Finally, binding of /sup 3/H-dihydroalprenolol to ..beta..-adrenergic receptors on brain membranes prepared from frontal cortex was reduced by 20% in hypothyroid rats after 3 h of stress. These and other data contained herein suggest that thyroid hormones contribute to modulate the responsiveness of the gastric mucosa to stress. The increase rate of ulcerogenesis observed in hypothyroid rats appears to be mediated by gastric acid secretion. The central mechanism for this response may involve decreased brain nonadrenergic receptor function.

  17. Influence of thyroid states on stress gastric ulcer formation

    International Nuclear Information System (INIS)

    Hernandez, D.E.; Walker, C.H.; Mason, G.A.

    1988-01-01

    This study was designed to test the hypothesis that thyroid states may affect the acute development of gastric lesions induced by cold-resistant stress. Normal (euthyroid), hyperthyroid and hypothyroid rats were used. Gastric lesion incidence and severity was significantly increased in hypothyroid rats, whereas in contrast hyperthyroid rats developed significantly less gastric lesions. As anticipated, plasma levels of thyroxin (T 4 ) were significantly elevated in hyperthyroid rats, and undetectable in hypothyroid rats. Acute pretreatment with i.p. cimetidine, but not T 4 1 h prior to stress completely prevented gastric lesions formation in hypothyroid rats. Finally, binding of 3 H-dihydroalprenolol to β-adrenergic receptors on brain membranes prepared from frontal cortex was reduced by 20% in hypothyroid rats after 3 h of stress. These and other data contained herein suggest that thyroid hormones contribute to modulate the responsiveness of the gastric mucosa to stress. The increase rate of ulcerogenesis observed in hypothyroid rats appears to be mediated by gastric acid secretion. The central mechanism for this response may involve decreased brain nonadrenergic receptor function

  18. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    International Nuclear Information System (INIS)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-01-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β -SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β -SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni–SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t -test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size. (paper)

  19. Residual stress measurement in a metal microdevice by micro Raman spectroscopy

    Science.gov (United States)

    Song, Chang; Du, Liqun; Qi, Leijie; Li, Yu; Li, Xiaojun; Li, Yuanqi

    2017-10-01

    Large residual stress induced during the electroforming process cannot be ignored to fabricate reliable metal microdevices. Accurate measurement is the basis for studying the residual stress. Influenced by the topological feature size of micron scale in the metal microdevice, residual stress in it can hardly be measured by common methods. In this manuscript, a methodology is proposed to measure the residual stress in the metal microdevice using micro Raman spectroscopy (MRS). To estimate the residual stress in metal materials, micron sized β-SiC particles were mixed in the electroforming solution for codeposition. First, the calculated expression relating the Raman shifts to the induced biaxial stress for β-SiC was derived based on the theory of phonon deformation potentials and Hooke’s law. Corresponding micro electroforming experiments were performed and the residual stress in Ni-SiC composite layer was both measured by x-ray diffraction (XRD) and MRS methods. Then, the validity of the MRS measurements was verified by comparing with the residual stress measured by XRD method. The reliability of the MRS method was further validated by the statistical student’s t-test. The MRS measurements were found to have no systematic error in comparison with the XRD measurements, which confirm that the residual stresses measured by the MRS method are reliable. Besides that, the MRS method, by which the residual stress in a micro inertial switch was measured, has been confirmed to be a convincing experiment tool for estimating the residual stress in metal microdevice with micron order topological feature size.

  20. Failure of Sierra White granite under general states of stress

    Science.gov (United States)

    Ingraham, M. D.; Dewers, T. A.; Lee, M.; Holdman, O.; Cheung, C.; Haimson, B. C.

    2017-12-01

    The effect of the intermediate principal stress on the failure of Sierra White granite was investigated by performing tests under true triaxial states of stress. Tests were performed under constant Lode angle conditions with Lode angles ranging from 0 to 30°, pure shear to axisymmetric compression. Results show that the failure of Sierra White granite is heavily dependent on the intermediate principal stress which became more dramatic as the mean stress increased. An analysis of the shear bands formed at failure was performed using an associated flow rule and the Rudnicki and Rice (1975) localization criteria. The localization analysis showed excellent agreement with experimental results. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  1. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

    KAUST Repository

    Majumdar, Apala

    2011-12-01

    We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the threedimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the C 1,α-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some 0 < a < 1, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.

  2. Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing

    Science.gov (United States)

    Scheidegger, Noemy; Ferris, Mark; Phillips, Nigel

    2014-01-01

    The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL's unique space manufacturing approach that enables performing rapid development cycles for cost-effective products that meet ever-challenging mission requirements: The BSADM is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The tight development schedule, with manufacture of 7 Flight Models within 1.5 year after kick-off, is offset by the risk-reduction of using qualified key component-families from other proven SSTL mechanisms. This allowed focusing the BSADM design activities on the mechanism features that are unique to the BSADM, and having an Engineering Qualification Model (EQM) built 8 months after kick-off. The EQM is currently undergoing a full environmental qualification test campaign. This paper presents the BSADM design approach that enabled meeting such a challenging schedule, its design particularities, and the ongoing verification activities.

  3. Stress analyses of flat plates with attached nozzles. Vol. 2: Experimental stress analyses of a flat plate with one nozzle attached

    International Nuclear Information System (INIS)

    Battiste, R.L.; Peters, W.H.; Ranson, W.F.; Swinson, W.F.

    1975-07-01

    Vol. 1 of this report compares experimental results with theoretical stress distributions for a flat plate with one nozzle configuration and for a flat plate with two closely spaced nozzles attached. This volume contains the complete test results for a flat plate with one nozzle attached that was subjected to 1:1 and 1:2 biaxial planar loadings on the plate, to a thrust loading on the nozzle, and to a moment loading on the nozzle. The plate tested was 36 x 36 x 0.375 in., and the attached nozzle had an outer dia of 2.625 in. and a 0.250-in.-thick wall. The nozzle was located in the center of the plate and was considered to be free of weld distortions and irregularities in the junction area. (U.S.)

  4. Interpreting strain measurements when drilling anisotropic rocks: return of experience from using CSIRO cells in Tournemire argillite

    International Nuclear Information System (INIS)

    Ben Ouanas, Abdelmonem

    2010-01-01

    In Geomechanics, determining the state of stress and the rheology of rock massif can be obtained by measuring the strain response of the ground under the effect of a known stress. A method among others is to use a cell integrated (with strain gauges oriented in different directions) installed in a borehole and secured to the mass through an epoxy glue. This measurement is used, notably, to determine the stress state in situ by the 'overcoring' method and the elastic parameters of the rock from the 'biaxial' test. Between November 2005 and January 2006, a geomechanical testing campaign was conducted in the argillaceous formation of the Tournemire experimental site (Aveyron, France) using CSIRO Hi cells. The strain measurements obtained during overcoring and biaxial tests have shown unusual phenomena, which have made difficult the determination of anisotropic elastic parameters of the rock and the access to the site stress. Therefore, through researches for explanations of the origin of these phenomena, this thesis aimed to improve and contribute to the understanding of the Tournemire argillite behaviour and to upgrade the measurement protocol as well as the interpretation of cells CSIRO's strain. The approach was, firstly, to issue a number of hypotheses to explain certain phenomena observed in literature. In a second step, these hypotheses were tested through analytical and numerical modelling of the biaxial and overcoring tests then through the realization of new experiments in situ within laboratory on argillite, and also on materials tests (cement, sample of glue). It is concluded that the unusual phenomena observed are essentially the result of the conditions for implementing in situ CSIRO's cell. The study particularly focused on the artefacts induced by the visco-plastic behaviour of the epoxy glue when it is incompletely polymerised. The role of damage on the rock generated by drilling operations is also discussed. Some practical recommendations for

  5. Assessment of an improved multiaxial strength theory based on creep-rupture data for Inconel 600

    International Nuclear Information System (INIS)

    Huddleston, R.L.

    1993-01-01

    A new multiaxial strength theory incorporating three independent stress parameters was developed and reported by the author in 1984. It was formally incorporated into ASME Code Case N47-29 in 1990. The new theory provided significantly more accurate stress-rupture life predictions than obtained using the classical theories of von Mises, Tresca, and Rankins (maximum principal stress), for Types 304 and 316 stainless steel tested at 593 and 600 degrees C respectively under different biaxial stress states. Additional results for Inconel 600 specimens tested at 816 degrees C under tension-tension and tension-compression stress states are presented in this paper and show a factor of approximately 2.4 reduction in the scatter of predicted versus observed lives as compared to the classical theories of von Mises and Tresca and a factor of about 5 as compared to the Rankins theory. A key feature of the theory, which incorporates the maximum deviatoric stress, the first invariant of the stress tensor, and the second invariant of the deviatoric stress tensor, is its ability to distinguish between life under tensile versus compressive stress states

  6. The correlation between mechanical stress and magnetic anisotropy in ultrathin films

    International Nuclear Information System (INIS)

    Sander, D.

    1999-01-01

    The impact of stress-driven structural transitions and of film strain on the magnetic properties of nm ferromagnetic films is discussed. The stress-induced bending of film-substrate composites is analysed to derive information on film stress due to lattice mismatch or due to surface-stress effects. The magneto-elastic coupling in epitaxial films is determined directly from the magnetostrictive bending of the substrate. The combination of stress measurements with magnetic investigations by the magneto-optical Kerr effect (MOKE) reveals the modification of the magnetic anisotropy by film stress. Stress-strain relations are derived for various epitaxial orientations to facilitate the analysis of the substrate curvature. Biaxial film stress and magneto-elastic coupling coefficients are measured in epitaxial Fe films in situ on W single-crystal substrates. Tremendous film stress of more than 10 GPa is measured in pseudomorphic Fe layers, and the important role of film stress as a driving force for the formation of misfit distortions and for inducing changes of the growth mode in monolayer thin films is presented. The direct measurement of the magneto-elastic coupling in epitaxial films proves that the magnitude and sign of the magneto-elastic coupling deviate from the respective bulk value. Even a small film strain of order 0.1% is found to induce a significant change of the effective magneto-elastic coupling coefficient. This peculiar behaviour is ascribed to a second-order strain dependence of the magneto-elastic energy density, in contrast to the linear strain dependence that is valid for bulk samples. (author)

  7. Combined loading effects on the fracture mechanics behavior of line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.E.; Cravero, S.; Ernst, H.A. [Tenaris Group, Campana (Argentina). SIDERCA R and D Center

    2009-12-19

    For certain applications, pipelines may be submitted to biaxial loading situations. In these cases, it is not clear the influence of the biaxial loading on the fracture mechanics behavior of cracked pipelines. For further understanding of biaxial loading effects, this work presents a numerical simulation of ductile tearing in a circumferentially surface cracked pipe under biaxial loading using the computational cell methodology. The model was adjusted with experimental results obtained in laboratory using single edge cracked under tension (SENT) specimens. These specimens appear as the better alternative to conventional fracture specimens to characterize fracture toughness of cracked pipes. The negligible effect of biaxial loadings on resistance curves was demonstrated. To guarantee the similarities of stress and strains fields between SENT specimens and cracked pipes subjected to biaxial loading, a constraint study using the J-Q methodology and the h parameter was used. The constraint study gives information about the characteristics of the crack-tip conditions. (author)

  8. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    Science.gov (United States)

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  9. Prediction of stress- and strain-based forming limits of automotive thin sheets by numerical, theoretical and experimental methods

    Science.gov (United States)

    Béres, Gábor; Weltsch, Zoltán; Lukács, Zsolt; Tisza, Miklós

    2018-05-01

    Forming limit is a complex concept of limit values related to the onset of local necking in the sheet metal. In cold sheet metal forming, major and minor limit strains are influenced by the sheet thickness, strain path (deformation history) as well as material parameters and microstructure. Forming Limit Curves are plotted in ɛ1 - ɛ2 coordinate system providing the classic strain-based Forming Limit Diagram (FLD). Using the appropriate constitutive model, the limit strains can be changed into the stress-based Forming Limit Diagram (SFLD), irrespective of the strain path. This study is about the effect of the hardening model parameters on defining of limit stress values during Nakazima tests for automotive dual phase (DP) steels. Five limit strain pairs were specified experimentally with the loading of five different sheet geometries, which performed different strain-paths from pure shear (-2ɛ2=ɛ1) up to biaxial stretching (ɛ2=ɛ1). The former works of Hill, Levy-Tyne and Keeler-Brazier made possible some kind of theoretical strain determination, too. This was followed by the stress calculation based on the experimental and theoretical strain data. Since the n exponent in the Nádai expression is varying with the strain at some DP steels, we applied the least-squares method to fit other hardening model parameters (Ludwik, Voce, Hockett-Sherby) to calculate the stress fields belonging to each limit strains. The results showed that each model parameters could produce some discrepancies between the limit stress states in the range of higher equivalent strains than uniaxial stretching. The calculated hardening models were imported to FE code to extend and validate the results by numerical simulations.

  10. Stress hysteresis and mechanical properties of plasma-enhanced chemical vapor deposited dielectric films

    Science.gov (United States)

    Thurn, Jeremy; Cook, Robert F.; Kamarajugadda, Mallika; Bozeman, Steven P.; Stearns, Laura C.

    2004-02-01

    A comprehensive survey is described of the responses of three plasma-enhanced chemical vapor deposited dielectric film systems to thermal cycling and indentation contact. All three films—silicon oxide, silicon nitride, and silicon oxy-nitride—exhibited significant nonequilibrium permanent changes in film stress on thermal cycling or annealing. The linear relationship between stress and temperature changed after the films were annealed at 300 °C, representing a structural alteration in the film reflecting a change in coefficient of thermal expansion or biaxial modulus. A double-substrate method was used to deduce both thermoelastic properties before and after the anneal of selected films and the results were compared with the modulus deconvoluted from small-scale depth-sensing indentation experiments (nanoindentation). Rutherford backscattering spectrometry and hydrogen forward scattering were used to deduce the composition of the films and it was found that all the films contained significant amounts of hydrogen.

  11. Modeling of residual stress state in turning of 304L

    International Nuclear Information System (INIS)

    Valiorgue, F.; Rech, J.; Bergheau, J.M.

    2010-01-01

    Research presented in this paper aims to link machining parameters to residual stress state and helps understanding mechanisms responsible of machined surface properties modifications. The first presented works are based on an experimental campaign. They reproduce the finishing turning operation of 304L and allow observing the residual stress state evolution at the work piece surface and for an affected depth of 0.2 mm for such processes. Then, the finishing turning operation is simulated numerically in order to realize the same sensitivity study to cutting parameters. This simulation is based on an hybrid approach mixing experimental data and numerical simulation. This method allows getting round the classical difficulties of turning simulation by applying equivalent thermo mechanical loadings onto the work piece surface without modeling the material separation phenomena. Moreover the numerical model uses an hardening law taking into account dynamic recrystallization phenomena. (authors)

  12. Personal determinants of positive states and stress in psychology students

    Directory of Open Access Journals (Sweden)

    G.S. Kozhukhar

    2013-07-01

    Full Text Available We report study results of personality characteristics as predictors of positive states (active, optimistic, emotional, subjective comfort and stress experience in adults with one higher education and ongoing training in Psychology. The respondents were 107 people aged 23 to 52 years. Diagnostic methods we used were: "SMIL" (L. Sobchik, Optimism and Activity Scale (adapted by E. Vodopyanova, C. Izard Differential Emotions Scale (adapted by A. Leonova, Subjective Comfort Scale (adapted by A. Leonova, PSM-25 Scale by Lemyr-Tessier-Fillion. The regression analysis revealed that in subjects ongoing training in Psychology, basic predictor of positive emotions and stress experience is anxiety. Cluster analysis revealed three types of subjects by their positive states experiences, which differ primarily by the level of baseline anxiety and related personality characteristics. The group of risk comprised Psychology students with a tendency to depression and negative emotions and specific personality profile.

  13. Dependence of electronic properties of germanium on the in-plane biaxial tensile strains

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Yu, Z.Y., E-mail: yuzhongyuan30@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Liu, Y.M.; Lu, P.F. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Gao, T. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Li, M.; Manzoor, S. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China)

    2013-10-15

    The hybrid HSE06 functional with the spin–orbit coupling effects is used to calculate the habituation of the electronic properties of Ge on the (0 0 1), (1 1 1), (1 0 1) in-plane biaxial tensile strains (IPBTSs). Our motivation is to explore the nature of electronic properties of tensile-strained Ge on different substrate orientations. The calculated results demonstrate that one of the most effective and practical approaches for transforming Ge into a direct transition semiconductor is to introduce (0 0 1) IPBTS to Ge. At 2.3% (0 0 1) IPBTS, Ge becomes a direct bandgap semiconductor with 0.53 eV band gap, in good agreement with the previous theoretical and experimental results. We find that the (1 1 1) and (1 0 1) IPBTSs are not efficient since the shear strain and inner displacement of atoms introduced by them quickly decrease the indirect gap of Ge. By investigating the dependence of valence band spin–orbit splitting on strain, we prove that the dependency relationship and the coupled ways between the valence-band states of tensile-strained Ge are closely related to the symmetry of strain tensor, i.e., the symmetry of the substrate orientation. The first- and second-order coefficients describing the dependence of indirect gap, direct gap, the valence band spin–orbit coupling splitting, and heavy-hole–light-hole splitting of Ge on IPBTSs have been obtained by the least squares polynomial fitting. These coefficients are significant to quantitatively modulate the electronic properties of Ge by tensile strain and design tensile-strained Ge devices by semiconductor epitaxial technique.

  14. Be Cool with Academic Stress: The Association between Emotional States and Regulatory Strategies among Chinese Adolescents

    Science.gov (United States)

    Sang, Biao; Pan, Tingting; Deng, Xinmei; Zhao, Xu

    2018-01-01

    Numerous studies have suggested that academic stress has negative impact on adolescents' psychological function, few of those studies, however, considered whether and how the impact of stress on adolescents' emotional states is moderated by corresponding regulation. This study aimed to examine the fluctuation of emotional states before and after…

  15. Local Stress States and Microstructural Damage Response Associated with Deformation Twins in Hexagonal Close Packed Metals

    Directory of Open Access Journals (Sweden)

    Indranil Basu

    2017-12-01

    Full Text Available The current work implements a correlative microscopy method utilizing electron back scatter diffraction, focused ion beam and digital image correlation to accurately determine spatially resolved stress profiles in the vicinity of grain/twin boundaries and tensile deformation twin tips in commercially pure titanium. Measured local stress gradients were in good agreement with local misorientation values. The role of dislocation-boundary interactions on the buildup of local stress gradients is elucidated. Stress gradients across the twin-parent interface were compressive in nature with a maximum stress magnitude at the twin boundary. Stress profiles near certain grain boundaries initially display a local stress minimum, followed by a typically observed “one over square root of distance” variation, as was first postulated by Eshelby, Frank and Nabarro. The observed trends allude to local stress relaxation mechanisms very close to the grain boundaries. Stress states in front of twin tips showed tensile stress gradients, whereas the stress state inside the twin underwent a sign reversal. The findings highlight the important role of deformation twins and their corresponding interaction with grain boundaries on damage nucleation in metals.

  16. A review of creep analysis and design under multi-axial stress states

    International Nuclear Information System (INIS)

    Yao, H.-T.; Xuan Fuzhen; Wang Zhengdong; Tu Shantung

    2007-01-01

    The existence of multi-axial states of stress cannot be avoided in elevated temperature components. It is essential to understand the associated failure mechanisms and to predict the lifetime in practice. Although metal creep has been studied for about 100 years, many problems are still unsolved, in particular for those involving multi-axial stresses. In this work, a state-of-the-art review of creep analysis and engineering design is carried out, with particular emphasis on the effect of multi-axial stresses. The existing theories and creep design approaches are grouped into three categories, i.e., the classical plastic theory (CPT) based approach, the cavity growth mechanism (CGM) based approach and the continuum damage mechanics (CDM) based approach. Following above arrangements, the constitutive equations and design criteria are addressed. In the end, challenges on the precise description of the multi-axial creep behavior and then improving the strength criteria in engineering design are presented

  17. Free vibration and biaxial buckling analysis of magneto-electro-elastic microplate resting on visco-Pasternak substrate via modified strain gradient theory

    Science.gov (United States)

    Jamalpoor, A.; Ahmadi-Savadkoohi, A.; Hosseini-Hashemi, Sh

    2016-10-01

    This paper deals with the theoretical analysis of free vibration and biaxial buckling of magneto-electro-elastic (MEE) microplate resting on Kelvin-Voigt visco-Pasternak foundation and subjected to initial external electric and magnetic potentials, using modified strain gradient theory (MSGT). Kirchhoff plate model and Hamilton’s principle are employed to extract the governing equations of motion. Governing equations were analytically solved to obtain clear closed-form expression for complex natural frequencies and buckling loads using Navier’s approach. Numerical results are presented to reveal variations of natural frequency and buckling load ratio of MEE microplate against different amounts of the length scale parameter, initial external electric and magnetic potentials, aspect ratio, damping and transverse and shear stiffness parameters of the visco-Pasternak foundation, length to thickness ratio, microplate thickness and higher modes. Numerical results of this study illustrate that by increasing thickness-to-material length scale parameter ratio, both natural frequency and buckling load ratio predicted by MSGT and modified couple stress theory are reduced because the non-dimensional length scale parameter tends to decrease the stiffness of structures and make them more flexible. In addition, results show that initial external electric and initial external magnetic potentials have no considerable influence on the buckling load ratio and frequency of MEE microplate as the microplate thickness increases.

  18. Mild Social Stress in Mice Produces Opioid-Mediated Analgesia in Visceral but Not Somatic Pain States.

    Science.gov (United States)

    Pitcher, Mark H; Gonzalez-Cano, Rafael; Vincent, Kathleen; Lehmann, Michael; Cobos, Enrique J; Coderre, Terence J; Baeyens, José M; Cervero, Fernando

    2017-06-01

    Visceral pain has a greater emotional component than somatic pain. To determine if the stress-induced analgesic response is differentially expressed in visceral versus somatic pain states, we studied the effects of a mild social stressor in either acute visceral or somatic pain states in mice. We show that the presence of an unfamiliar conspecific mouse (stranger) in an adjacent cubicle of a standard transparent observation box produced elevated plasma corticosterone levels compared with mice tested alone, suggesting that the mere presence of a stranger is stressful. We then observed noxious visceral or somatic stimulation-induced nociceptive behavior in mice tested alone or in mildly stressful conditions (ie, beside an unfamiliar stranger). Compared with mice tested alone, the presence of a stranger produced a dramatic opioid-dependent reduction in pain behavior associated with visceral but not somatic pain. This social stress-induced reduction of visceral pain behavior relied on visual but not auditory/olfactory cues. These findings suggest that visceral pain states may provoke heightened responsiveness to mild stressors, an effect that could interfere with testing outcomes during simultaneous behavioral testing of multiple rodents. In mice, mild social stress due to the presence of an unfamiliar conspecific mouse reduces pain behavior associated with noxious visceral but not somatic stimulation, suggesting that stress responsiveness may be enhanced in visceral pain versus somatic pain states. Published by Elsevier Inc.

  19. FEA stress analysis considering cavity formation of metallic fuel pin under transient state

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun-Woo; Oh, Young-Ryun; Kim, Yun-Jae [Korea University, Seoul (Korea, Republic of)

    2016-05-15

    The aim of this research is to study the stress state of the fuel and the cladding under transient state using the commercial finite element analysis software, ABAQUS v6.13. It is checked out that the gap distance between the fuel and the cladding is a major factor determining FCMI stress. In this regard, initial boundary condition of the fuel pin such as the initial gap distance should be set carefully when the stress analysis of the fuel pin under transient state is conducted. In case of simulating cavity formation, it is confirmed that the new cavity simulation model that elements in cavity region lose their stiffness is valid. There is a great deal of research into SFR, which is one of GEN IV reactors. When it comes to the accidents of SFR, there are two cases of accident process. One of them is In-pin process that molten fuel is discharged into upper plenum. The other is Ex-pin process that the molten fuel is discharged into coolant because of breakage of cladding.

  20. Investigation of smooth specimen scc test procedures; variations in environment, specimen size, stressing frame, and stress state. [for high strength aluminum alloys

    Science.gov (United States)

    Lifka, B. W.; Sprowls, D. O.; Kelsey, R. A.

    1975-01-01

    The variables studied in the stress-corrosion cracking performance of high strength aluminum alloys were: (1) corrosiveness of the environment, (2) specimen size and stiffness of the stressing system, (3) interpretation of transgranular cracking, and (4) interaction of the state of stress and specimen orientation in a product with an anisotropic grain structure. It was shown that the probability of failure and time to fracture for a specimen loaded in direct tension are influenced by corrosion pattern, the stressing assembly stiffness, and the notch tensile strength of the alloy. Results demonstrate that the combination of a normal tension stress and a shear stress acting on the plane of maximum susceptibility in a product with a highly directional grain cause the greatest tendency for stress-corrosion cracking.

  1. Profile of mood states and stress-related biochemical indices in long-term yoga practitioners

    Directory of Open Access Journals (Sweden)

    Sudo Nobuyuki

    2011-06-01

    Full Text Available Abstract Background Previous studies have shown the short-term or intermediate-term practice of yoga to be useful for ameliorating several mental disorders and psychosomatic disorders. However, little is known about the long-term influences of yoga on the mental state or stress-related biochemical indices. If yoga training has a stress-reduction effect and also improves an individual's mental states for a long time, long-term yoga practitioners may have a better mental state and lower stress-related biochemical indices in comparison to non-experienced participants. This study simultaneously examined the differences in mental states and urinary stress-related biochemical indices between long-term yoga practitioners and non-experienced participants. Methods The participants were 38 healthy females with more than 2 years of experience with yoga (long-term yoga group and 37 age-matched healthy females who had not participated in yoga (control group. Their mental states were assessed using the Profile of Mood States (POMS questionnaire. The level of cortisol, 8-hydroxydeoxyguanosine (8-OHdG and biopyrrin in urine were used as stress-related biochemical indices. Results The average self-rated mental disturbance, tension-anxiety, anger-hostility, and fatigue scores of the long-term yoga group were lower than those of the control group. There was a trend toward a higher vigor score in the long-term yoga group than that in the control group. There were no significant differences in the scores for depression and confusion in the POMS between the two groups. The urine 8-OHdG concentration showed a trend toward to being lower in the long-term yoga group in comparison to the control group. There were no significant differences in the levels of urine biopyrrin or cortisol. Conclusions The present findings suggest that long-term yoga training can reduce the scores related to mental health indicators such as self-rated anxiety, anger, and fatigue.

  2. Interpretation of the Haestholmen in situ state of stress based on core damage observations

    International Nuclear Information System (INIS)

    Hakala, M.

    2000-01-01

    At the Haestholmen investigation site, direct in situ stress measurements, overcoring and hydraulic fracturing have been unsuccessful because of ring disking and horizontal hydraulic fracturing. Prior to this study, a detailed study on both core disking and ring disking was made, and based on those results an in situ state of stress interpretation method was developed. In this work this method is applied to the Haestholmen site. The interpretation is based on disk fracture type, spacing and shape. Also, the Hoek-Brown strength envelope and Poisson's ratio of intact rock are needed. The interpretation result is most reliable if both core disking and ring disking information at the same depth levels is available. A detailed core logging showed that ring disking is systematic below the -365 m level in the vertical overcoring stress measurement hole, HH-KR6. On the other hand, no representative core disking exists except for two points in two differently oriented subvertical boreholes HH-KR2 and HHKR7. Because the interpretation has to be based on ring disking only, upper and lower estimates for the vertical stress were set. These were gravitational and 67% of gravitational. Furthermore, the in situ stress state was assumed to be in horizontal and vertical planes, because the disking in vertical borehole HH-KR6 was not inclined. The interpretation resulted in a good estimate for the major horizontal stress but none of the horizontal stress rations ( 0.25, 0.5, 0.75 and 1.0 ) or vertical stress assumptions studied are clearly more probable the others. At the 500 m level the resulting maximum horizontal stress is 41 MPa. If a linear fit through the zero depth and zero stress point is applied, the maximum horizontal stress gradient is 0.0818 z MPa/m with a standard deviation between 5 and 12 per cent. The orientation of the major horizontal stress is 108 with standard deviation of 21 degrees. The interpreted major horizontal stress state also indicated that systematic

  3. Nonintrusive biological signal monitoring in a car to evaluate a driver's stress and health state.

    Science.gov (United States)

    Baek, Hyun Jae; Lee, Haet Bit; Kim, Jung Soo; Choi, Jong Min; Kim, Ko Keun; Park, Kwang Suk

    2009-03-01

    Nonintrusive monitoring of a driver's physiological signals was introduced and evaluated in a car as a test of extending the concept of ubiquitous healthcare to vehicles. Electrocardiogram, photoplethysmogram, galvanic skin response, and respiration were measured in the ubiquitous healthcare car (U-car) using nonintrusively installed sensors on the steering wheel, driver's seat, and seat belt. Measured signals were transmitted to the embedded computer via Bluetooth(R) communication and processed. We collected and analyzed physiological signals during driving in order to estimate a driver's stress state while using this system. In order to compare the effect of stress on physical and mental conditions, two categories of stresses were defined. Experimental results show that a driver's physiological signals were measured with acceptable quality for analysis without interrupting driving, and they were changed meaningfully due to elicited stress. This nonintrusive monitoring can be used to evaluate a driver's state of health and stress.

  4. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Hermsmeyer, S.; Reimann, J.

    2002-01-01

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  5. Probing stress state and phase content in ultra-thin Ta films

    International Nuclear Information System (INIS)

    Whitacre, J.F.; Yalisove, S.M.; Bilello, J.C.; Rek, Z.U.

    1998-01-01

    Ta films 25 angstrom to 200 angstrom in thickness were sputter-deposited using different sputter gas (Ar) pressures and cathode power settings. The average in-plane stresses were determined using double crystal diffraction topography (DCDT). X-ray analysis (using the grazing incidence x-ray scattering (GIXS) geometry) was performed using a synchrotron light source. To study microstructure and phase content, transmission electron microscopy (TEM) and transmission electron diffraction (TED) were used. Well resolved x-ray patterns were collected for all of the films. The DCDT stress data was found to be consistent with stress effects evidence in the GIXS data. In general, residual stress state was not strongly dependent upon Ar pressure. The strongest evidence of amorphous content was found in both x-ray and TED data taken from 25 angstrom thick films deposited using 2mTorr Ar pressure and 460 W cathode power. These results show that it is possible to create and study ultra-thin Ta films which possess a range of residual stresses and phase compositions

  6. Multi-mode technique for the determination of the biaxial Y{sub 2}SiO{sub 5} permittivity tensor from 300 to 6 K

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, N. C., E-mail: natalia.docarmocarvalho@research.uwa.edu.au; Le Floch, J-M.; Tobar, M. E. [School of Physics, The University of Western Australia, Crawley 6009 (Australia); ARC Centre of Excellence for Engineered Quantum Systems (EQuS), 35 Stirling Hwy, Crawley 6009 (Australia); Krupka, J. [Instytut Mikroelektroniki i Optoelektroniki PW, Koszykowa 75, 00-662 Warsaw (Poland)

    2015-05-11

    The Y{sub 2}SiO{sub 5} (YSO) crystal is a dielectric material with biaxial anisotropy with known values of refractive index at optical frequencies. It is a well-known rare-earth (RE) host material for optical research and more recently has shown promising performance for quantum-engineered devices. In this paper, we report the first microwave characterization of the real permittivity tensor of a bulk YSO sample, as well as an investigation of the temperature dependence of the tensor components from 296 K down to 6 K. Estimated uncertainties were below 0.26%, limited by the precision of machining the cylindrical dielectric. Also, the electrical Q-factors of a few electromagnetic modes were recorded as a way to provide some information about the crystal losses over the temperature range. To solve the tensor components necessary for a biaxial crystal, we developed the multi-mode technique, which uses simultaneous measurement of low order whispering gallery modes. Knowledge of the permittivity tensor offers important data, essential for the design of technologies involving YSO, such as microwave coupling to electron and hyperfine transitions in RE doped samples at low temperatures.

  7. Evolution of microstructure and residual stress on L1{sub 0} ordering in FePt thin films with different initial stress states

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.N., E-mail: pmami.hsiao@gmail.com [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Yuan, F.T. [iSentek Ltd., Advanced Sensor Laboratory, New Taipei City 221, Taiwan (China); Chen, S.K. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China); Sun, A.C. [Department of Chemical Engineering and Materials Science, Yuan Ze University, Jungli 320, Taiwan (China); Su, S.H.; Chiu, K.F. [Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan (China)

    2016-01-15

    We have characterized the dependence of microstructure, and internal strain/stress on L1{sub 0} ordering in 40 nm thick FePt films with different initial stresses. The microstructural and crystallographic results indicate that defect annihilation and grain growth induced an increase in tensile stress of ~1 GPa before extensive L1{sub 0} ordering. The induced tensile stress can efficiently facilitate the nucleation of L1{sub 0} phase owing to that the volume expansion of L1{sub 0} ordering and atomic rearrangement neutralizes the tensile stress. If the as-deposited FePt film has a highly compressive state, the induced tensile stress will be canceled out and ordering is retarded, which results in a higher ordering temperature. - Highlights: • Microstructure-stress connection in FePt films was studied. • Initial stress alters microstructure and stress evolution during annealing. • Densification induces tensile stress of ~1 GPa before extensive L1{sub 0} ordering. • Induced tensile stress can efficiently facilitate the nucleation of L1{sub 0} phase. • Compressively initial stress results in a higher ordering temperature .

  8. Baseline and post-stress seasonal changes in immunocompetence and redox state maintenance in the fishing bat Myotis vivesi

    Science.gov (United States)

    Ibáñez-Contreras, Alejandra; Miranda-Labra, Roxana U.; Flores-Martínez, José Juan

    2018-01-01

    Little is known of how the stress response varies when animals confront seasonal life-history processes. Antioxidant defenses and damage caused by oxidative stress and their link with immunocompetence are powerful biomarkers to assess animal´s physiological stress response. The aim of this study was A) to determine redox state and variation in basal (pre-acute stress) immune function during summer, autumn and winter (spring was not assessed due to restrictions in collecting permit) in the fish-eating Myotis (Myotis vivesi; Chiroptera), and B) to determine the effect of acute stress on immunocompetence and redox state during each season. Acute stress was stimulated by restricting animal movement for 6 and 12 h. The magnitude of the cellular immune response was higher during winter whilst that of the humoral response was at its highest during summer. Humoral response increased after 6 h of movement restriction stress and returned to baseline levels after 12 h. Basal redox state was maintained throughout the year, with no significant changes in protein damage, and antioxidant activity was modulated mainly in relation to variation to environment cues, increasing during high temperatures and decreasing during windy nights. Antioxidant activity increased after the 6 h of stressful stimuli especially during summer and autumn, and to a lesser extent in early winter, but redox state did not vary. However, protein damage increased after 12 h of stress during summer. Prolonged stress when the bat is engaged in activities of high energy demand overcame its capacity to maintain homeostasis resulting in oxidative damage. PMID:29293551

  9. Parenting stress as a mediator of parents' negative mood state and behavior problems in children with newly diagnosed cancer.

    Science.gov (United States)

    van der Geest, Ivana M; van den Heuvel-Eibrink, Marry M; Passchier, Jan; van den Hoed-Heerschop, Corry; Pieters, Rob; Darlington, Anne-Sophie E

    2014-07-01

    The aim was to investigate the influence of parents' negative mood state and parenting stress on behavior in children with newly diagnosed cancer. A total of 123 parents (n=58 fathers, n=65 mothers) of 67 children with newly diagnosed cancer completed three questionnaires separately at the same time measuring parents' negative mood state, parenting stress, and child behavior problems. Parents' negative mood state was weakly correlated to more child behavior problems (r=0.31, pparenting stress were strongly correlated to more child behavior problems (r=0.61, pparents' negative mood state and child behavior problems (c=0.29, p=0.02 (fathers); c=0.25, p=0.04 (mothers)) became non-significant after mediating for parenting stress (c'=0.003, p=0.98 (fathers); c'=0.10, p=0.42 (mothers)). The indirect effect of parents' negative mood state and child behavior problems was only significant for fathers (95% CI [0.12; 0.51]), indicating that parenting stress mediates the effect between fathers' negative mood state and child behavior problems. This is the first study to demonstrate the mediational role of parenting stress in fathers of a child with newly diagnosed cancer. Copyright © 2014 John Wiley & Sons, Ltd.

  10. A Discrete Element Method Approach to Progressive Localization of Damage in Granular Rocks and Associated Seismicity

    Science.gov (United States)

    Vora, H.; Morgan, J.

    2017-12-01

    Brittle failure in rock under confined biaxial conditions is accompanied by release of seismic energy, known as acoustic emissions (AE). The objective our study is to understand the influence of elastic properties of rock and its stress state on deformation patterns, and associated seismicity in granular rocks. Discrete Element Modeling is used to simulate biaxial tests on granular rocks of defined grain size distribution. Acoustic Energy and seismic moments are calculated from microfracture events as rock is taken to conditions of failure under different confining pressure states. Dimensionless parameters such as seismic b-value and fractal parameter for deformation, D-value, are used to quantify seismic character and distribution of damage in rock. Initial results suggest that confining pressure has the largest control on distribution of induced microfracturing, while fracture energy and seismic magnitudes are highly sensitive to elastic properties of rock. At low confining pressures, localized deformation (low D-values) and high seismic b-values are observed. Deformation at high confining pressures is distributed in nature (high D-values) and exhibit low seismic b-values as shearing becomes the dominant mode of microfracturing. Seismic b-values and fractal D-values obtained from microfracturing exhibit a linear inverse relationship, similar to trends observed in earthquakes. Mode of microfracturing in our simulations of biaxial compression tests show mechanistic similarities to propagation of fractures and faults in nature.

  11. The study of stress-strain state of stabilized layered soil foundations

    Directory of Open Access Journals (Sweden)

    Sokolov Mikhail V.

    2017-01-01

    Full Text Available Herein presented are the results of modeling and analysis of stress-strain state of layered inhomogeneous foundation soil when it is stabilised by injection to different depths. Produced qualitative and quantitative analysis of the components of the field of isolines of stresses, strains, stress concentration and the difference between the strain at the boundary of different elastic horizontal layers. Recommendations are given for the location of stabilised zones in relation to the border of different elastic layers. In particular, it found that stabilization of soil within the weak layer is inappropriate, since it practically provides no increase in the stability of the soil foundation, and when performing stabilisation of soil foundations, it is recommended to place the lower border of the stabilisation zone below the border of a stronger layer, at this the distribution of stresses and strains occurs more evenly, and load-bearing capacity of this layer is used to the maximum.

  12. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    International Nuclear Information System (INIS)

    Kim, Gyu Jin; Kwak, Hyo Gyoung; Park, Sun Jong

    2016-01-01

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members

  13. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Jin; Kwak, Hyo Gyoung [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sun Jong [Dept. of Structural System and Site Safety Evaluation, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

  14. The Evaluation of the Effect of Strain Limits on the Physical Properties of Magnetorheological Elastomers Subjected to Uniaxial and Biaxial Cyclic Testing.

    OpenAIRE

    Gorman, Dave; Murphy, Niall; Ekins, Ray; Jerrams, Stephen

    2017-01-01

    Magnetorheological Elastomers (MREs) are “smart” materials whose physical properties are altered by the application of magnetic fields. In a previous study by the authors [1], variations in the physical properties of MREs have been evaluated when subjected to a range of magnetic field strengths for both uniaxial and biaxial cyclic tests. By applying the same magnetic field to similar samples, this paper investigates the effect of both the upper strain limit and the strain amplitude on the pro...

  15. Influence of fatigue crack wake length and state of stress on crack closure

    Science.gov (United States)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  16. Parametric peak stress functions of 90o pipe bends with ovality under steady-state creep conditions

    International Nuclear Information System (INIS)

    Yaghi, A.H.; Hyde, T.H.; Becker, A.A.; Sun, W.

    2009-01-01

    Stress-based life prediction techniques are commonly used to estimate the failure life of pressurised pipe-related components, such as welds and bends, under creep conditions. Previous research has shown that reasonable life predictions can be obtained, based on the steady-state peak stresses, compared with the life predictions obtained from creep damage modelling. In this work, a series of parametric steady-state peak rupture stress functions of right-angled pipe bends with ovality are presented, which are based on the results obtained from finite element (FE) analyses, covering a number of material property and geometry parameters in practical ranges. Methods used to determine the stress functions are described. The FE analyses have been performed using axisymmetric models, subjected to internal pressure only, with a Norton creep law. Typical examples of parametric peak stress curve fitting are shown. In particular, the accuracy of the interpolation and extrapolation abilities of the stress functions is assessed. The results show that in most cases the interpolated and extrapolated peak stresses are accurate to within ±3% and ±5%, respectively.

  17. Reactor pressure vessel structural integrity research

    International Nuclear Information System (INIS)

    Pennell, W.E.; Corwin, W.R.

    1994-01-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT NDT ) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties

  18. Diagnostic Inspection of Pipelines for Estimating the State of Stress in Them

    Science.gov (United States)

    Subbotin, V. A.; Kolotilov, Yu. V.; Smirnova, V. Yu.; Ivashko, S. K.

    2017-12-01

    The diagnostic inspection used to estimate the technical state of a pipeline is described. The problems of inspection works are listed, and a functional-structural scheme is developed to estimate the state of stress in a pipeline. Final conclusions regarding the actual loading of a pipeline section are drawn upon a cross analysis of the entire information obtained during pipeline inspection.

  19. Geodynamics and Stress State of the Earth's Crust in the Greater and Lesser Caucasus (Azerbaijan) collision region

    Science.gov (United States)

    Babayev, Gulam; Akhmedova, Elnare; Babayev, Elvin

    2017-04-01

    The current study researches the present-day stress state of the Earth's crust within the territory of Azerbaijan by using the database of the international research project "World Stress Map" (WSM). The present stress state was also assessed by exploring the effects of the contemporary topographic properties of Caucasus in three-dimensional frame. Aiming to explore the relative roles of regional tectonic conditions in the definition of stress state of Greater and Lesser Caucasus, stress distribution model was developed by the earthquake data (1998-2016) and by the standard techniques of stress field calculation. The results show that the stress orientations are influenced also by the combination of topography and crust thickness distribution even at very large depth. Stress data and earthquake focal mechanisms indicate that the stress state of the Earth's crust of the Greater and Lesser Caucasus is characterized by the compression predominantly oriented across the regional strike. The model results suggest that the Lesser Caucasus and Kur depression are rotating coherently, with little or no internal deformation in a counter-clockwise rotation located near the north-eastern corner of the Black Sea. Orientation of stress axes well consistent with earthquake focal mechanisms revealed that within Upper and Lower Crusts, earthquakes are predominantly thrust-faulting with a number of normal-faulting and some strike-slip faulting. The map of the focal mechanisms and stress distribution suggests that the research area is characterized by the thrust of horizontal compression trending north-north-east in the western part of the southern Caucasus. In the western part of Azerbaijan, the compression takes place between the Main Caucasus Fault and the Kur depression, which strikes south along the northern margin of the mountain range. In addition, a clear transition from the left-lateral strike slip to the predominantly right-lateral strike slip is observed in the southern of

  20. Isotropic-nematic transition in shear flow: State selection, coexistence, phase transitions, and critical behavior

    Science.gov (United States)

    Olmsted, Peter D.; Goldbart, Paul M.

    1992-10-01

    Macroscopic fluid motion can have dramatic consequences near the isotropic-nematic transition in fluids of nematogens. We explore some of these consequences using both deterministic and stochastic descriptions involving coupled hydrodynamic equations of motion for the nematic order parameter and fluid velocity fields. By analyzing the deterministic equations of motion we identify the locally stable states of homogeneous nematic order and strain rate, thus determining the homogeneous nonequilibrium steady states which the fluid may adopt. By examining inhomogeneous steady states we construct the analog of a first-order phase boundary, i.e., a line in the nonequilibrium phase diagram spanned by temperature and applied stress, at which nonequilibrium states may coexist, and which terminates in a nonequilibrium analog of a critical point. From an analysis of the nematic order-parameter discontinuity across the coexistence line, along with properties of the interface between homogeneous states, we extract the analog of classical equilibrium critical behavior near the nonequilibrium critical point. We develop a theory of fluctuations about biaxial nonequilibrium steady states by augmenting the deterministic description with noise terms, to simulate the effect of thermal fluctuations. We use this description to discuss the scattering of polarized light by order-parameter fluctuations near the nonequilibrium critical point and also in weak shear flow near the equilibrium phase transition. We find that fluids of nematogens near an appropriate temperature and strain rate exhibit the analog of critical opalescence, the intensity of which is sensitive to the polarizations of the incident and scattered light, and to the precise form of the critical mode.

  1. Evolution of regional stress state based on faulting and folding near the pit river, Shasta county, California

    Science.gov (United States)

    Austin, Lauren Jean

    We investigate the evolution of the regional stress state near the Pit River, northern California, in order to understand the faulting style in a tectonic transition zone and to inform the hazard analysis of Fault 3432 near the Pit 3 Dam. By analyzing faults and folds preserved in and adjacent to a diatomite mine north of the Pit River, we have determined principal stress directions preserved during the past million years. We find that the stress state has evolved from predominantly normal to strike slip and most recently to reverse, which is consistent with regional structures such as the extensional Hat Creek Fault to the south and the compressional folding of Mushroom Rock to the north. South of the Pit River, we still observe normal and strike slip faults, suggesting that changes in stress state are moving from north to south through time.

  2. Evaluation of the state of stress at the Forsmark site. Preliminary site investigation Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, Jonny; Lindfors, Ulf; Perman, Fredrik; Ask, Daniel [SwedPower AB, Stockholm (Sweden)

    2005-09-15

    This report presents an evaluation of the state of stress at the Forsmark site, based on all conducted stress measurements to date at the site, indirect stress estimates, geological and tectonic description of the site, and regional stress data from nearby locations. The work included (i) compilation of measurement results from Forsmark, as well as from nearby (regional) sites/locations, (ii) analysis of confidence intervals for each group of measurement, (iii) assessment of the stress state for the Forsmark site accounting for geological/tectonic evolution at the site, (iv) assessment of stress state for selected nearby (regional) sites/locations, and (v) comparison and combined interpretation of similarities and/or differences in stress state from a regional perspective. The combined assessment of the local (site-scale) and regional stress data for Forsmark showed that the major stress is orientated sub-horizontally and trending NW-SE; however, with significant local variation. A thrust faulting ({sigma}H > {sigma}h > {sigma}v) or possibly strike-slip faulting ({sigma}H > {sigma}v > {sigma}h) stress regime is evident at the Forsmark site. The maximum horizontal stress tends to be higher at the site compared to nearby sites and regional conditions. The site and regional data indicate that the vertical stress seems to be solely due to the overburden pressure. The lack of solid core discing for large portions of the boreholes at Forsmark was used to estimate an upper limit of the maximum horizontal stress magnitude. However, such an estimation is highly uncertain due to e.g. partly unknown mechanism for core discing failure, and unknown effects of the simplifying assumptions made in the analysis. The possible effects of shallow-dipping deformation zones on the stress state, could not be verified from the currently available data. However, the possibility of different stress regimes above and below deformation zones must be considered in future work. Slightly lower

  3. Evaluation of the state of stress at the Forsmark site. Preliminary site investigation Forsmark area - version 1.2

    International Nuclear Information System (INIS)

    Sjoeberg, Jonny; Lindfors, Ulf; Perman, Fredrik; Ask, Daniel

    2005-09-01

    This report presents an evaluation of the state of stress at the Forsmark site, based on all conducted stress measurements to date at the site, indirect stress estimates, geological and tectonic description of the site, and regional stress data from nearby locations. The work included (i) compilation of measurement results from Forsmark, as well as from nearby (regional) sites/locations, (ii) analysis of confidence intervals for each group of measurement, (iii) assessment of the stress state for the Forsmark site accounting for geological/tectonic evolution at the site, (iv) assessment of stress state for selected nearby (regional) sites/locations, and (v) comparison and combined interpretation of similarities and/or differences in stress state from a regional perspective. The combined assessment of the local (site-scale) and regional stress data for Forsmark showed that the major stress is orientated sub-horizontally and trending NW-SE; however, with significant local variation. A thrust faulting (σH > σh > σv) or possibly strike-slip faulting (σH > σv > σh) stress regime is evident at the Forsmark site. The maximum horizontal stress tends to be higher at the site compared to nearby sites and regional conditions. The site and regional data indicate that the vertical stress seems to be solely due to the overburden pressure. The lack of solid core discing for large portions of the boreholes at Forsmark was used to estimate an upper limit of the maximum horizontal stress magnitude. However, such an estimation is highly uncertain due to e.g. partly unknown mechanism for core discing failure, and unknown effects of the simplifying assumptions made in the analysis. The possible effects of shallow-dipping deformation zones on the stress state, could not be verified from the currently available data. However, the possibility of different stress regimes above and below deformation zones must be considered in future work. Slightly lower horizontal stress was found in

  4. An evaluation of the processing conditions, structure, and properties (biaxial flexural strength and antibacterial efficacy) of sintered strontium-zinc-silicate glass ceramics.

    Science.gov (United States)

    Looney, Mark; Shea, Helen O'; Gunn, Lynda; Crowley, Dolores; Boyd, Daniel

    2013-05-01

    The use of artificial bone grafts has increased in order to satisfy a growing demand for bone replacement materials. Initial mechanical stability of synthetic bone grafts is very advantageous for certain clinical applications. Coupled with the advantage of mechanical strength, a material with inherent antibacterial properties would be very beneficial. A series of strontium-doped zinc silicate (Ca-Sr-Na-Zn-Si) glass ceramics have been characterized in terms of their crystalline structure, biaxial flexural strength and antibacterial efficacy based on the identification of optimum sintering conditions. All three glass ceramics, namely, BT110, BT111, and BT112 were found to be fully crystalline, with BT111 and BT112 comprising of biocompatible crystalline phases. The biaxial flexural strengths of the three glass ceramics ranged from 70 to 149 MPa and were shown to be superior to those of clinically established ceramics in dry conditions and following incubation in simulated physiological conditions. The bacteriostatic effect for each glass ceramic was also established, where BT112 showed an inhibitory effect against three of the most common bacteria found at implantation sites, namely, Enterococcus faecalis, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. The results of the evaluation suggest that the materials studied offer advantages over current clinical materials and indicate the potential suitability of the glass ceramics as therapeutic bone grafts.

  5. Modelling of the in situ stress state at Olkiluoto Site, Western Finland

    International Nuclear Information System (INIS)

    Valli, J.; Kuula, H.; Hakala, M.

    2011-06-01

    In order to determine the interaction of in situ stress and geological features at Olkiluoto with the ONKALO area under more specific focus, stress modelling work was launched in 2009. This entailed updating a previously used model geometry to suit current needs whilst also updating interpreted brittle deformation zones according to the data provided by Posiva in the beginning of 2010. The previous model geometry was originally used for seismic and glacial load simulations. Brittle deformation zones were updated in the model according to a new selection criterion which added a number of brittle deformation zones. Changes in the geometry of certain brittle deformation zones were also necessary to better fit the early 2010 interpretations from Posiva. Modelling goals were to clarify the effect of joint parameters on stress magnitude and orientation and which of the major brittle deformation zones detected in the ONKALO region could have potential effects on local in situ stress states. Additional goals included modelling the effect of several optional thrust boundary conditions and an ice-age. Compression from the northwest-southeast was used as the default approach whilst north-south, east-west and northeast-southwest were optional conditions. A simplified glaciation cycle was also simulated. Results were clear in demonstrating the critical effect of joint cohesion and joint friction angle, i.e. shear strength, on stress-geology interaction, essentially in this order of importance. The case that utilised both drillhole core-logging and ONKALO tunnel mapping results did not exhibit much if any stress-geology interactions as BFZ strength parameters were too high in order to allow any interactions to occur. The geometry and orientation of brittle deformation zones was found to be of significant importance; deformation zones with a shallow dip roughly in the direction of applied compression were optimal for causing stress rotations and the increase of stress magnitude

  6. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    Science.gov (United States)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  7. Sectoral contributions to surface water stress in the coterminous United States

    International Nuclear Information System (INIS)

    Averyt, K; Meldrum, J; Caldwell, P; Sun, G; McNulty, S; Huber-Lee, A; Madden, N

    2013-01-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model which considers regional trends in both water supply and demand. A snapshot of contemporary annual water demand is compared against different water supply regimes, including current average supplies, current extreme-year supplies, and projected future average surface water flows under a changing climate. In addition, we investigate the contributions of different water demand sectors to current water stress. On average, water supplies are stressed, meaning that demands for water outstrip natural supplies in over 9% of the 2103 watersheds examined. These watersheds rely on reservoir storage, conveyance systems, and groundwater to meet current water demands. Overall, agriculture is the major demand-side driver of water stress in the US, whereas municipal stress is isolated to southern California. Water stress introduced by cooling water demands for power plants is punctuated across the US, indicating that a single power plant has the potential to stress water supplies at the watershed scale. On the supply side, watersheds in the western US are particularly sensitive to low flow events and projected long-term shifts in flow driven by climate change. The WaSSI results imply that not only are water resources in the southwest in particular at risk, but that there are also potential vulnerabilities to specific sectors, even in the ‘water-rich’ southeast. (letter)

  8. Water stress and social vulnerability in the southern United States, 2010-2040

    Science.gov (United States)

    cassandra Johnson-Gaither; John Schelhas; Wayne Zipperer; Ge Sun; Peter V. Caldwell; Neelam Poudyal

    2014-01-01

    Water scarcities are striking in semiarid, subregions of the Southern United States such as Oklahoma and western Texas (Glennon 2009, Sabo et al. 2010). In Texas, water stress has been a constant concern since the 1950s when the state experienced severe drought conditions (Moore 2005). The nearly 2000-mile Rio Grande River, which forms part of the Texas–Mexico border,...

  9. The contribution of trait negative affect and stress to recall for bodily states.

    Science.gov (United States)

    Ma-Kellams, Christine; Lai, Lei; Taylor, Shelley E; Lerner, Jennifer S

    2016-12-01

    How does trait negative affect shape somatic memory of stressful events? We hypothesized that negative affect would impair accurate recall of one's own heart rate during stressful situations. Two bio-behavioral studies used a new paradigm to test retrospective visceral perception and assessed whether negative affective states experienced during aversive events (i.e., the Trier Stress Task-Time 1) would retrospectively shape recall of past heart rate (Time 2), even when accounting for actual heart rate at the time of each stressful event (Time 1). Results across both studies showed that individual differences in negative affect in response to a stressful task predicted visceral recollections, and those who experienced more negative affect were more inaccurate. Negative affect was associated with a tendency to remember visceral reactions as worse than they actually were. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. State-of-stress in magmatic rift zones: Predicting the role of surface and subsurface topography

    Science.gov (United States)

    Oliva, S. J. C.; Ebinger, C.; Rivalta, E.; Williams, C. A.

    2017-12-01

    Continental rift zones are segmented along their length by large fault systems that form in response to extensional stresses. Volcanoes and crustal magma chambers cause fundamental changes to the density structure, load the plates, and alter the state-of-stress within the crust, which then dictates fracture orientation. In this study, we develop geodynamic models scaled to a structure, petrologic and thermodynamic studies constrain material densities, and seismicity and structural analyses constrain active and time-averaged kinematics. This area is an ideal test area because a 60º stress rotation is observed in time-averaged fault and magma intrusion, and in local seismicity, and because this was the site of a large volume dike intrusion and seismic sequence in 2007. We use physics-based 2D and 3D models (analytical and finite elements) constrained by data from active rift zones to quantify the effects of loading on state-of-stress. By modeling varying geometric arrangements, and density contrasts of topographic and subsurface loads, and with reasonable regional extensional forces, the resulting state-of-stress reveals the favored orientation for new intrusions. Although our models are generalized, they allow us to evaluate whether a magmatic system (surface and subsurface) can explain the observed stress rotation, and enable new intrusions, new faults, or fault reactivation with orientations oblique to the main border faults. Our results will improve our understanding of the different factors at play in these extensional regimes, as well as contribute to a better assessment of the hazards in the area.

  11. The study on stress-strain state of the spring at high temperature using ABAQUS

    Directory of Open Access Journals (Sweden)

    H Sun

    2014-01-01

    Full Text Available Cylindrical helical springs are widely used in the elements of thermal energy devices. It is necessary to guarantee the stability of the stress state of spring in high temperature. Relaxation phenomenon of stress is studied in this paper. Calculations are carried out in the environment of ABAQUS. The verification is taken out using analytical calculations.This paper describes the distribution and character of stress contour lines on the cross section of spring under the condition of instantaneous load, explicates the relaxation law with time. Research object is cylindrical helical spring, that working at high temperature. The purpose of this work is to get the stress relaxation law of spring, and to guarantee the long-term strength.This article presents the basic theory of helical spring. Establishes spring mathematical model of creep under the loads of compression and torsion. The stress formulas of each component in the cross section of spring are given. The calculation process of relaxation is analyzed in the program ABAQUS.In this paper compare the analytical formulas of spring stress with the simulation results, which are created by program ABAQUS.Finite element model for stress creep analysis in the cross section is created, material of spring – stainless steel 10X18N9T, springs are used at the temperature 650℃.At the beginning, stress-stain of spring is in the elastic state. Analyzes the change law of creep stress under the condition of constant load and a fixed compression.When analyzing under the condition of a fixed compression, the stresses are quickly decreased in most area in the cross section of spring, and the point of minimum shear stress gradually moves to the direction of outer diameter, because of this, stresses in a small area near the center increase slowly at first then decrease gradually with time. When analyzing under the condition of constant load, the stresses are quickly decreased in the around area and in creased

  12. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  13. Influence of cold rolling and fatigue on the residual stress state of a metal matrix composite

    International Nuclear Information System (INIS)

    Hanus, E.; Ericsson, T.; Lu, J.; Decomps, F.

    1993-01-01

    The large difference in the coefficient of thermal expansion between the matrix alloy and the particle in a metal matrix composite gives rise to residual stresses in the material. In the present work the effect of cold rolling and four-point bending fatigue on the residual stress state of a silicon carbide particle reinforced aluminium alloy (AA 2014) has been investigated. The three dimensional stress state measured in both phases: matrix and reinforcement, has been determined by using an X-ray diffraction technique. It was found that cold rolling induces surface compressive macrostresses of about -250 MPa, with a penetration depth around 2 mm. The absolute values of the pseudomacrostresses in both phases are significantly reduced due to the single track rolling. Stress relaxation occurs during four-point bending fatigue. (orig.)

  14. Tensile creep of beta phase zircaloy-2

    International Nuclear Information System (INIS)

    Burton, B.; Reynolds, G.L.; Barnes, J.P.

    1977-08-01

    The tensile creep and creep rupture properties of beta-phase zircaloy-2 are studied under vacuum in the temperature and stress range 1300-1550 K and 0.5-2 MN/m 2 . The new results are compared with previously reported uniaxial and biaxial data. A small but systematic difference is noted between the uniaxial and biaxial creep data and reasons for this discrepancy are discussed. (author)

  15. Test Method Variability in Slow Crack Growth Properties of Sealing Glasses

    Science.gov (United States)

    Salem, J. A.; Tandon, R.

    2010-01-01

    The crack growth properties of several sealing glasses were measured by using constant stress rate testing in 2 and 95 percent RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and crack velocities for dry environments are 100x lower than for wet environments. The crack velocity is very sensitive to small changes in RH at low RH. Biaxial and uniaxial stress states produced similar parameters. Confidence intervals on crack growth parameters that were estimated from propagation of errors solutions were comparable to those from Monte Carlo simulation. Use of scratch-like and indentation flaws produced similar crack growth parameters when residual stresses were considered.

  16. Interface states in stressed semiconductor heterojunction with antiferromagnetic ordering

    International Nuclear Information System (INIS)

    Kantser, V.G.

    1995-08-01

    The stressed heterojunctions with antiferromagnetic ordering in which the constituents have opposite band edge symmetry and their gaps have opposite signs have been investigated. The interface states have been shown to appear in these heterojunctions and they are spin-split. As a result if the Fermi level gets into one of the interface bands then it leads to magnetic ordering in the interface plane. That is if the interface magnetization effect can be observed. (author). 14 refs, 2 figs

  17. Family Environments and Children's Executive Function: The Mediating Role of Children's Affective State and Stress.

    Science.gov (United States)

    He, Zhong-Hua; Yin, Wen-Gang

    2016-09-01

    There is increasing evidence that inadequate family environments (family material environment and family psychosocial environment) are not only social problems but also factors contributing to adverse neurocognitive outcomes. In the present study, the authors investigated the relationship among family environments, children's naturalistic affective state, self-reported stress, and executive functions in a sample of 157 Chinese families. These findings revealed that in inadequate family material environments, reduced children's cognitive flexibility is associated with increased naturalistic negative affectivity and self-reported stress. In addition, naturalistic negative affectivity mediated the association between family expressiveness and children's cognitive flexibility. The authors used a structural equation model to examine the mediation model hypothesis, and the results confirmed the mediating roles of naturalistic negative affectivity and self-reported stress between family environments and the cognitive flexibility of Chinese children. These findings indicate the importance of reducing stress and negative emotional state for improving cognitive functions in children of low socioeconomic status.

  18. Investigations into the Surface Strain/Stress State in a Single-Crystal Superalloy via XRD Characterization

    Directory of Open Access Journals (Sweden)

    Haodong Duan

    2018-05-01

    Full Text Available The present study was aimed at determining the surface strain/stress state in an Ni-based single-crystal (SC superalloy that was subjected to two different cooling rates from solid solution temperature through using the X-ray diffraction (XRD method. The normal stresses σ 11 s and σ 22 s were determined, then the Von Mises stresses ( σ V M s were derived from them. Field emission gun scanning electron microscope (FEG-SEM and transmission electron microscope (TEM micrographs were taken to illustrate the strain/stress state change. The precipitation of the secondary γ′ phases in the γ phase and the formation of the dislocation in the interphase upon a slower cooling rate caused the γ phase lattice distortion to increase, so a larger σ V M s of the γ phase was realized in comparison to the faster cooling sample. For both of the two cooling modes, we found that the σ V M s of the γ′ phase increased due to the growth of the γ′ phase during the aging process. Also, the aging process led to pronouncedly anisotropic lattice mismatches in the {331} and {004} planes. In addition, the surface strain/stress states of a cylinder sample and a tetragonal sample were also studied using a faster cooling rate, and σ 11 s and σ 22 s were analyzed to explain the influence of the shape factor on the stress anisotropy in the [001] and [ 1 1 ¯ 0 ] orientations. The strain in the [001] orientation of the γ phase is more sensitive to the shape change.

  19. Stress-free states of continuum dislocation fields : Rotations, grain boundaries, and the Nye dislocation density tensor

    NARCIS (Netherlands)

    Limkumnerd, Surachate; Sethna, James P.

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose

  20. A large-scale perspective on stress-induced alterations in resting-state networks

    Science.gov (United States)

    Maron-Katz, Adi; Vaisvaser, Sharon; Lin, Tamar; Hendler, Talma; Shamir, Ron

    2016-02-01

    Stress is known to induce large-scale neural modulations. However, its neural effect once the stressor is removed and how it relates to subjective experience are not fully understood. Here we used a statistically sound data-driven approach to investigate alterations in large-scale resting-state functional connectivity (rsFC) induced by acute social stress. We compared rsfMRI profiles of 57 healthy male subjects before and after stress induction. Using a parcellation-based univariate statistical analysis, we identified a large-scale rsFC change, involving 490 parcel-pairs. Aiming to characterize this change, we employed statistical enrichment analysis, identifying anatomic structures that were significantly interconnected by these pairs. This analysis revealed strengthening of thalamo-cortical connectivity and weakening of cross-hemispheral parieto-temporal connectivity. These alterations were further found to be associated with change in subjective stress reports. Integrating report-based information on stress sustainment 20 minutes post induction, revealed a single significant rsFC change between the right amygdala and the precuneus, which inversely correlated with the level of subjective recovery. Our study demonstrates the value of enrichment analysis for exploring large-scale network reorganization patterns, and provides new insight on stress-induced neural modulations and their relation to subjective experience.

  1. Self-field ac losses in biaxially aligned Y endash Ba endash Cu endash O tape conductors

    International Nuclear Information System (INIS)

    Iijima, Y.; Hosaka, M.; Sadakata, N.; Saitoh, T.; Kohno, O.; Takeda, K.

    1997-01-01

    Self-field ac losses were measured by the conventional ac four-probe method in biaxially aligned Y endash Ba endash Cu endash O tapes using polycrystalline Hastelloy tapes with textured yttria-stabilized-zirconia buffer layers. The ac losses increased in proportion to the fourth power of transport current in the high J c sample, and agreed well with Norris close-quote equation for thin strip conductors. However, the low J c sample had rather higher losses than Norris close-quote prediction, suggesting excessive magnetic flux penetration caused by percolated current paths. The results confirmed Norris close-quote prediction of the low ac losses for thin strip conductors, and indicated the importance of removing percolated structures of current paths to avoid higher ac losses than the theoretical predictions based on uniform conductors. copyright 1997 American Institute of Physics

  2. Core structure and dynamics of non-Abelian vortices in a biaxial nematic spinor Bose-Einstein condensate

    Science.gov (United States)

    Borgh, Magnus O.; Ruostekoski, Janne

    2016-05-01

    We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.

  3. Practical application of fracture mechanics with consideration of multiaxiality of stress state to degraded nuclear piping

    International Nuclear Information System (INIS)

    Kussmaul, K.; Blind, D.; Herter, K.H.; Eisele, U.; Schuler, X.

    1995-01-01

    Within the scope of a research project nuclear piping components (T-branches and elbows) with dimensions like the primary coolant lines of PWR plants were investigated. In addition to the experimental full scale tests, extensive numerical calculations by means of the finite element method (FEM) as well as fracture mechanics analyses were performed. The applicability of these methods was verified by comparison with the experimental results. The calculation of fracture mechanics parameters as well as the calculated component stress enabled a statement on crack initiation. The failure behavior could be evaluated by means of the multiaxiality of stress state in the ligament (gradient of the quotient of the multiaxiality of stress state q). With respect to practical application on other pressurized components it is shown how to use the procedure (e.g. in a LBB analysis). A quantitative assessment with regard to crack initiation is possible by comparison of the effective crack initiation value J ieff with the calculated component stress. If the multiaxiality of stress state and the q gradient in the ligament of the fracture ligament of the fracture mechanics specimen and the pressurized component to be evaluated is comparable a quantitative assessment is possible as for crack extension and maximum load. If there is no comparability of the gradients a qualitative assessment is possible for the failure behavior

  4. Elastic strain engineering of quantum dot excitonic emission in nanomembranes and optical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fei; Plumhof, Johannes; Rastelli, Armando; Schmidt, Oliver [Institute for Integrative Nanosciences, IFW Dresden (Germany); Singh, Ranber; Zander, Tim; Bester, Gabriel [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2010-07-01

    We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots (QD) embedded in a 200 nm-thick-membrane. Reversible and bi-directional spectral tuning of QD excitonic emission is demonstrated via a simple electro-mechanical device. The most intriguing finding is that biaxial strain is a reliable tool to engineer the QD electronic structure and reach color coincidence between exciton and biexciton emission, providing a vital prerequisite for the generation of polarization entangled photon pairs through a time reordering strategy. The physical origin of this new phenomenon is discussed based on the empirical pseudopotential calculations. With similar technique we study the effect of biaxial stress on single QDs embedded in microring resonators. The microrings can be reversibly stretched or squeezed, resulting in a controllable engineering of both QD emissions and optical modes. Our results open up a new tuning strategy to study cQED with semiconductor quantum dots.

  5. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    Science.gov (United States)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  6. Assessment of Creep Deformation, Damage, and Rupture Life of 304HCu Austenitic Stainless Steel Under Multiaxial State of Stress

    Science.gov (United States)

    Sahoo, K. C.; Goyal, Sunil; Parameswaran, P.; Ravi, S.; Laha, K.

    2018-03-01

    The role of the multiaxial state of stress on creep deformation and rupture behavior of 304HCu austenitic stainless steel was assessed by performing creep rupture tests on both smooth and notched specimens of the steel. The multiaxial state of stress was introduced by incorporating circumferential U-notches of different root radii ranging from 0.25 to 5.00 mm on the smooth specimens of the steel. Creep tests were carried out at 973 K over the stress range of 140 to 220 MPa. In the presence of notch, the creep rupture strength of the steel was found to increase with the associated decrease in rupture ductility. Over the investigated stress range and notch sharpness, the strengthening was found to increase drastically with notch sharpness and tended toward saturation. The fractographic studies revealed the mixed mode of failure consisting of transgranular dimples and intergranular creep cavitation for shallow notches, whereas the failure was predominantly intergranular for relatively sharper notches. Detailed finite element analysis of stress distribution across the notch throat plane on creep exposure was carried out to assess the creep failure of the material in the presence of notch. The reduction in von-Mises stress across the notch throat plane, which was greater for sharper notches, increased the creep rupture strength of the material. The variation in fracture behavior of the material in the presence of notch was elucidated based on the von-Mises, maximum principal, and hydrostatic stresses. Electron backscatter diffraction analysis of creep strain distribution across the notch revealed localized creep straining at the notch root for sharper notches. A master curve for predicting creep rupture life under the multiaxial state of stress was generated considering the representative stress having contributions from both the von-Mises and principal stress components of the stress field in the notch throat plane. Rupture ductility was also predicted based on the

  7. Stress-state monitoring of coal pillars during room and pillar extraction

    Czech Academy of Sciences Publication Activity Database

    Waclawik, Petr; Ptáček, Jiří; Koníček, Petr; Kukutsch, Radovan; Němčík, J.

    2016-01-01

    Roč. 15, č. 2 (2016), s. 49-56 ISSN 2300-3960 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : stress-state monitoring * room and pillar * coal pillar Subject RIV: DH - Mining , incl. Coal Mining http://www.sciencedirect.com/science/article/pii/S2300396016300180

  8. Stress state of thin – walled member of the structure with operation damages under nonuniform loading

    Directory of Open Access Journals (Sweden)

    В.В. Астанін

    2004-01-01

    Full Text Available  The publication is dedicated to determining of stress state in particular the stress concentration factors for thin – walled members of the structures subject to nonuniform tension. A structure member has obtained the operation damage generation by corrosion and other causes.

  9. Foreshocks and Aftershocks Detected from Stick-slip Events on a 3 m Biaxial Apparatus and their Relationship to Quasistatic Nucleation and Wear Processes

    Science.gov (United States)

    Wu, S.; Mclaskey, G.

    2017-12-01

    We investigate foreshocks and aftershocks of dynamic stick-slip events generated on a newly constructed 3 m biaxial friction apparatus at Cornell University (attached figure). In a typical experiment, two rectangular granite blocks are squeezed together under 4 or 7 MPa of normal pressure ( 4 or 7 million N on a 1 m2 fault surface), and then shear stress is increased until the fault slips 10 - 400 microns in a dynamic rupture event similar to a M -2 to M -3 earthquake. Some ruptures nucleate near the north end of the fault, where the shear force is applied, other ruptures nucleate 2 m from the north end of the fault. The samples are instrumented with 16 piezoelectric sensors, 16 eddy current sensors, and 8 strain gage rosettes, evenly placed along the fault to measure vertical ground motion, local slip, and local stress, respectively. We studied sequences of tens of slip events and identified a total of 194 foreshocks and 66 aftershocks located within 6 s time windows around the stick-slip events and analyzed their timing and locations relative to the quasistatic nucleation process. We found that the locations of the foreshocks and aftershocks were distributed all along the length of the fault, with the majority located at the ends of the fault where local normal and shear stress is highest (caused by both edge effects and the finite stiffness of the steel frame surrounding the granite blocks). We also opened the laboratory fault and inspected the fault surface and found increased wear at the sample ends. To explore the foreshocks' and aftershocks' relationship to the nucleation and afterslip, we compared the occurrence of foreshocks to the local slip rate on the laboratory fault closest to each foreshock in space and time. We found that that majority of foreshocks were generated from local slip rates between 1 and 100 microns/s, though we were not able to resolve slip rate lower than about 1 micron/s. Our experiments provide insight into how foreshocks and

  10. Oxidative stress markers in hypertensive states of pregnancy: preterm and term disease.

    Directory of Open Access Journals (Sweden)

    Lesia Olha Kurlak

    2014-08-01

    Full Text Available Discussion continues as to whether de novo hypertension in pregnancy with significant proteinuria (pre-eclampsia; PE and non-proteinuric new hypertension (gestational hypertension; GH are parts of the same disease spectrum or represent different conditions. Non-pregnant hypertension, pregnancy and PE are all associated with oxidative stress. We have established a 6 weeks post-partum clinic for women who experienced a hypertensive pregnancy. We hypothesized that PE and GH could be distinguished by markers of oxidative stress; thiobarbituric acid reactive substances (TBARS and antioxidants (ferric ion reducing ability of plasma; FRAP. Since the severity of PE and GH is greater pre-term, we also compared pre-term and term disease. Fifty-eight women had term PE, 23 pre-term PE, 60 had term GH and 6 pre-term GH, 11 pre-existing (essential hypertension (EH without PE. Limited data were available from normotensive pregnancies (n=7 and non-pregnant controls (n=14. There were no differences in postpartum TBARS or FRAP between hypertensive states; TBARS (P=0.001 and FRAP (P=0.009 were lower in plasma of non-pregnant controls compared to recently-pregnant women. Interestingly FRAP was higher in preterm than term GH (P=0.013. In PE and GH, TBARS correlated with low density lipoprotein (LDL-cholesterol (P=0.036; this association strengthened with inclusion of EH ((P=0.011. The 10 year Framingham index for cardiovascular risk was positively associated with TBARS (P=0.003.Oxidative stress profiles do not differ between hypertensive states but appear to distinguish between recently-pregnant and non-pregnant states. This suggests that pregnancy may alter vascular integrity with changes remaining 6 weeks postpartum. LDL-cholesterol is a known determinant of oxidative stress in cardiovascular disease and we have shown this association to be present in hypertensive pregnancy further emphasizing that such a pregnancy may be revealing a pre-existing cardiovascular

  11. Experimental study on the thermo-mechanical behaviour of stiff clay under non-isotropic stress state

    International Nuclear Information System (INIS)

    Tang, Anh Minh; Cui, Yu-Jun; Li, Xiang-Ling

    2012-01-01

    Document available in extended abstract form only. Stiff clay is usually considered as possible host-rock for geological radioactive waste disposal due to its low permeability and its self-sealing capacity. Boom Clay, for instance, is one of the clays currently considered by the Belgian radioactive waste management agency Ondraf/Niras as a potential host for a geological repository. In order to analyse the performance of this material, it is important to understand its behaviour under the coupled thermo-hydro-mechanical solicitations. In laboratory, several studies have been performed to study the volume change of clay under coupled thermomechanical loading. The results show that heating under drained conditions can induce thermal dilation at low confining stress and thermal contraction at high confining stress. On the other hand, compression tests performed at constant temperature show that the compressibility parameters of soil can be modified by temperature change. These features are now well considered in constitutive laws based on the framework of elasto-plasticity. Under undrained conditions, heating can increase pore-water pressure and this behaviour can be simulated using the theoretical thermo-poro-elastic framework. The temperature effect on the soil behaviour under triaxial compression is also often considered. It is commonly accepted that heating decreases the shear strength of clay but this softening can be hidden by the thermal contraction that occurs during heating which can induce at the same time soil hardening. In spite of these existing works, laboratory tests considering the thermo-mechanical loading path that the soil can be subjected to are still rare. Actually, in the case of geological radioactive waste disposal, after the installation of waste canisters, the soil is expected to be heated under non-isotropic stress state. Most of the existing laboratory works show heating tests in odometer cell or triaxial cell under isotropic stress

  12. Obesity-Associated Oxidative Stress: Strategies Finalized to Improve Redox State

    Directory of Open Access Journals (Sweden)

    Valeria Gasperi

    2013-05-01

    Full Text Available Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance.

  13. Obesity-Associated Oxidative Stress: Strategies Finalized to Improve Redox State

    Science.gov (United States)

    Savini, Isabella; Catani, Maria Valeria; Evangelista, Daniela; Gasperi, Valeria; Avigliano, Luciana

    2013-01-01

    Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance. PMID:23698776

  14. Extracellular redox state: refining the definition of oxidative stress in aging.

    Science.gov (United States)

    Jones, Dean P

    2006-01-01

    Oxidative stress in aging can result from an imbalance of prooxidants and antioxidants with excessive, destructive free radical chemistry. Thiol systems are important in the control of these processes, both by protecting against damage and serving in redox signaling mechanisms to sense danger and repair the damage. Studies by a number of research groups in collaboration with the Emory Clinical Biomarkers Laboratory show that the redox state of the central tissue antioxidant, glutathione (GSH), can be measured in human plasma and provides a quantitative systemic indicator of oxidative stress. Plasma GSH/GSSG redox in humans becomes oxidized with age, in response to chemotherapy, as a consequence of cigarette smoking, and in association with common age-related diseases (e.g., type 2 diabetes, cardiovascular disease). However, the GSH/GSSG redox is not equilibrated with the larger plasma cysteine/cystine (Cys/CySS) pool, and the Cys/CySS redox varies with age in a pattern that is distinct from that of GSH/GSSG redox. Furthermore, in vitro studies show that variation in Cys/CySS redox over the range found in vivo affects signaling pathways, which control cell proliferation and oxidant-induced apoptosis. The results point to the conclusion that free radical scavenging antioxidants are of increased importance when thiol/disulfide redox states are oxidized. Because thiol/disulfide redox states, per se, function in redox signaling and control as well as antioxidant protection, GSH/GSSG and Cys/CySS redox states may provide central parameters to link environmental influences and progression of changes associated with aging.

  15. Occupational Stress and Management Strategies of Secondary School Principals in Cross River State, Nigeria

    Science.gov (United States)

    Anyanwu, Joy; Ezenwaji, Ifeyinwa; Okenjom, Godian; Enyi, Chinwe

    2015-01-01

    The study aimed at finding out sources and symptoms of occupational stress and management strategies of principals in secondary schools in Cross River State, Nigeria. Descriptive survey research design was adopted for the study with a population of 420 principals (304 males and 116 females) in secondary schools in Cross River State, Nigeria. Three…

  16. Numerical Analysis of the Influence of Clearance on Stress State and Contact Pressure in Plain Bearings

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2017-12-01

    Full Text Available In the analysis of plain bearings by finite element method it is important to model as closely to real state the aspects that influence the stress and contact pressure: the loading mode, the properties of the materials, the lubrication system, the clearance between the shaft and the bearing body, the evolution in time of clearance correlated with the wear, etc. In order to study the effect of the clearance on the stress state, a plain bearing with nominal diameter d=40 mm was modeled. The contact pressure and the equivalent stress were computed for six discrete values of clearance, range from c=0 to c=0.3 mm. It has been shown that the increase of clearance generates an increase of the equivalent stress and contact pressure. The growth rate is higher for contact pressure, due to the decrease of the contact surface between the shaft and the bearing body

  17. Study of stress-strain state of pipeline under permafrost conditions

    Science.gov (United States)

    Tarasenko, A. A.; Redutinskiy, M. N.; Chepur, P. V.; Gruchenkova, A. A.

    2018-05-01

    In this paper, the dependences of the stress-strain state and subsidence of pipelines on the dimensions of the subsidence zone are obtained for the sizes of pipes that have become most widespread during the construction of main oil pipelines (530x10, 820x12, 1020x12, 1020x14, 1020x16, 1220x14, 1220x16, 1220x18 mm). True values of stresses in the pipeline wall, as well as the exact location of maximum stresses for the interval of subsidence zones from 5 to 60 meters, are determined. For this purpose, the authors developed a finite element model of the pipeline that takes into account the actual interaction of the pipeline with the subgrade and allows calculating the SSS of the structure for a variable subsidence zone. Based on the obtained dependences for the underground laying of oil pipelines in permafrost areas, it is proposed to artificially limit the zone of possible subsidence by separation supports from the soil with higher building properties and physical-mechanical parameters. This technical solution would significantly reduce costs when constructing new oil pipelines in permafrost areas.

  18. Stress effects in ferroelectric perovskite thin-films

    Science.gov (United States)

    Zednik, Ricardo Johann

    The exciting class of ferroelectric materials presents the engineer with an array of unique properties that offer promise in a variety of applications; these applications include infra-red detectors ("night-vision imaging", pyroelectricity), micro-electro-mechanical-systems (MEMS, piezoelectricity), and non-volatile memory (NVM, ferroelectricity). Realizing these modern devices often requires perovskite-based ferroelectric films thinner than 100 nm. Two such technologically important material systems are (Ba,Sr)TiO3 (BST), for tunable dielectric devices employed in wireless communications, and Pb(Zr,Ti)O3 (PZT), for ferroelectric non-volatile memory (FeRAM). In general, the material behavior is strongly influenced by the mechanical boundary conditions imposed by the substrate and surrounding layers and may vary considerably from the known bulk behavior. A better mechanistic understanding of these effects is essential for harnessing the full potential of ferroelectric thin-films and further optimizing existing devices. Both materials share a common crystal structure and similar properties, but face unique challenges due to the design parameters of these different applications. Tunable devices often require very low dielectric loss as well as large dielectric tunability. Present results show that the dielectric response of BST thin-films can either resemble a dipole-relaxor or follow the accepted empirical Universal Relaxation Law (Curie-von Schweidler), depending on temperature. These behaviors in a single ferroelectric thin-film system are often thought to be mutually exclusive. In state-of-the-art high density FeRAM, the ferroelectric polarization is at least as important as the dielectric response. It was found that these properties are significantly affected by moderate biaxial tensile and compressive stresses which reversibly alter the ferroelastic domain populations of PZT at room temperature. The 90-degree domain wall motion observed by high resolution

  19. Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Koutsokeras, L. E.; Abadias, G.

    2012-01-01

    Low-mobility materials, like transition metal nitrides, usually undergo large residual stress when sputter-deposited as thin films. While the origin of stress development has been an active area of research for high-mobility materials, atomistic processes are less understood for low-mobility systems. In the present work, the contribution of grain boundary to intrinsic stress in reactively magnetron-sputtered ZrN films is evaluated by combining in situ wafer curvature measurements, providing information on the overall biaxial stress, and ex situ x-ray diffraction, giving information on elastic strain (and related stress) inside crystallites. The thermal stress contribution was also determined from the in situ stress evolution during cooling down, after deposition was stopped. The stress data are correlated with variations in film microstructure and growth energetics, in the 0.13-0.42 Pa working pressure range investigated, and discussed based on existing stress models. At low pressure (high energetic bombardment conditions), a large compressive stress is observed due to atomic peening, which induces defects inside crystallites but also promotes incorporation of excess atoms in the grain boundary. Above 0.3-0.4 Pa, the adatom surface mobility is reduced, leading to the build-up of tensile stress resulting from attractive forces between under-dense neighbouring column boundary and possible void formation, while crystallites can still remain under compressive stress.

  20. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    Science.gov (United States)

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  1. Numerical evaluation of state boundary surface through rotation of principal stress axes in sand

    International Nuclear Information System (INIS)

    Sadrnejad, S. A.

    2001-01-01

    In applying shear stress to saturated soil with arbitrary stress paths, the prediction of the exact value of strains is difficult because of mainly its stress path dependent nature. Rotation of the principal stress axes during shearing of the soil is a feature of stress paths associated with many field loading situations. A proper understanding of the effects of principal stress rotation on soil behavior can be provided if the anisotropy existing prior to stress rotation and induced anisotropy due to plastic flow in soil are clearly understood and modeled. A multi laminate based model for soil is developed and used to compute and present the influence of rotation of principal stress axes on the plastic behavior of soil. This is fulfilled by distributing the effects of boundary condition changes into several predefined sampling orientations at one point and summing the micro-results up as the macro-result. The validity of the presented model examined by comparing numerical and test results showing the mentioned aspect. In this paper, the state boundary surface is numerically obtained by a multi laminate based model capable of predicting the behavior of sand under the influences of rotation of the direction of principal stress axes and induced anisotropy. the predicted numerical results are tally in agreement with experiments

  2. Biodegradable multilayer barrier films based on alginate/polyethyleneimine and biaxially oriented poly(lactic acid).

    Science.gov (United States)

    Gu, Chun-Hong; Wang, Jia-Jun; Yu, Yang; Sun, Hui; Shuai, Ning; Wei, Bing

    2013-02-15

    A layer-by-layer (LBL) approach was used to assemble alternating layers of sodium alginate (ALG)/polyethyleneimine (PEI) on biaxially oriented poly(lactic acid) (BOPLA) films in order to produce bio-based all-polymer thin films with low gas permeability. Increasing the depositing of ALG and PEI from 0 to 30 layers results in large thickness variations (from 0 to 3.92 μm). After 30 ALG/PEI layers are deposited, the resulting assembly has an OTR of 1.22 cm(3)/(m(2) day atm). When multiplied by thickness, the resulting oxygen permeability (OP) is found to be less than 3.8×10(-17) cm(3) cm/cm(2) s Pa, which is almost 3 orders of magnitude lower than that of uncoated BOPLA film (1.8×10(-14) cm(3)cm/cm(2) s Pa). At the same time, the resulting multilayer-coated BOPLA films maintain high optical clarity and tensile properties. This unique barrier thin film has become a promising alternative to non-biodegradable synthetic food packaging materials. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Analysis of biaxial strain in InN(0001) epilayers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Dimakis, E.; Domagala, J.; Iliopoulos, E.; Adikimenakis, A.; Georgakilas, A.

    2007-01-01

    The in-plane lattice parameters of InN, GaN and Al 2 O 3 in a InN/GaN/Al 2 O 3 (0001) heterostructure have been measured as a function of temperature in the range of 25-350 C, using high resolution X-ray diffraction. The results reveal that both the GaN and InN crystals follow the in-plane thermal expansion of the Al 2 O 3 substrate's lattice and there is no rearrangement of misfit dislocations at the InN/GaN and GaN/Al 2 O 3 interfaces. It was also found that either compressive or tensile character of residual biaxial strain is possible for the InN films, depending on the two-dimensional (2D) or three-dimensional (3D) growth mode of InN on the GaN(0001) buffer layer. The tensile strain is inherent to the nucleation and coalescence of 3D islands. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Increased component safety through improved methods for residual stress analysis. Subprojects. Consideration of real component geometries (phase 1). Final report

    International Nuclear Information System (INIS)

    Nau, Andreas; Scholtes, B.

    2014-01-01

    Residual stresses can be result in both detrimental as well as beneficial consequences on the component's strength and lifetime. A most detailed knowledge of the residual stress state is a pre-requisite for the assessment of the component's performance. The mechanical methods for residual stress measurements are classified in non-destructive, destructive and semi-destructive methods. The two commonly used (semi-destructive) mechanical methods are the hole drilling and the ring core method. In the context of reactor safety research of the Federal Ministry of Economic Affairs and Energy (BMWi), two fundamental and interacting weak points of the hole drilling as well as of the ring core method are investigated. On the one hand, there are effects concerning geometrical boundary conditions of the components and on the other hand, there are influences of plasticity due to notch effects. Both aspects affect the released strain field, when the material is removed and finally, the calculated residual stresses. The first issue mentioned above is under the responsibility of Institute of Materials Engineering - Metallic Materials (Kassel University) and the last one will be investigated by University of Stuttgart-Otto-Graf-Institut - materials testing institute. Within the framework of this project it could be demonstrated that updated calibration coefficients lead to more reliable residual stress calculation in contrast to existing ones. These findings are valid for points of measurements on components without geometrical boundary effects like edges or shoulders. Reasons are high developed Finite-Element software packages and the opportunity of modelling the point of measurement (hole geometry, layout of the strain gauges) and its vicinity more in detail. Special challenges are multi-axial residual stress depth distributions and the geometry of components composing edges and claddings. Unlike existing analyses considering uni-axial and homogeneous stress states, bi-axial

  5. Probing Stress States in Silicon Nanowires During Electrochemical Lithiation Using In Situ Synchrotron X-Ray Microdiffraction

    Directory of Open Access Journals (Sweden)

    Imran Ali

    2018-04-01

    Full Text Available Silicon is considered as a promising anode material for the next-generation lithium-ion battery (LIB due to its high capacity at nanoscale. However, silicon expands up to 300% during lithiation, which induces high stresses and leads to fractures. To design silicon nanostructures that could minimize fracture, it is important to understand and characterize stress states in the silicon nanostructures during lithiation. Synchrotron X-ray microdiffraction has proven to be effective in revealing insights of mechanical stress and other mechanics considerations in small-scale crystalline structures used in many important technological applications, such as microelectronics, nanotechnology, and energy systems. In the present study, an in situ synchrotron X-ray microdiffraction experiment was conducted to elucidate the mechanical stress states during the first electrochemical cycle of lithiation in single-crystalline silicon nanowires (SiNWs in an LIB test cell. Morphological changes in the SiNWs at different levels of lithiation were also studied using scanning electron microscope (SEM. It was found from SEM observation that lithiation commenced predominantly at the top surface of SiNWs followed by further progression toward the bottom of the SiNWs gradually. The hydrostatic stress of the crystalline core of the SiNWs at different levels of electrochemical lithiation was determined using the in situ synchrotron X-ray microdiffraction technique. We found that the crystalline core of the SiNWs became highly compressive (up to -325.5 MPa once lithiation started. This finding helps unravel insights about mechanical stress states in the SiNWs during the electrochemical lithiation, which could potentially pave the path toward the fracture-free design of silicon nanostructure anode materials in the next-generation LIB.

  6. The Stress-Strain State of Recent Structures in the Northeastern Sector of the Russian Arctic Region

    Science.gov (United States)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.

    2018-03-01

    Complex research to determine the stress-strain state of the Earth's crust and the types of seismotectonic destruction for the northeastern sector of the Russian Arctic was conducted. The principles of regional ranking of neotectonic structures were developed according to the activity of geodynamic processes, and argumentation for their class differentiation is presented. The structural-tectonic position, the parameters of the deep structure, the system of active faults, and the tectonic stress fields, calculated on the basis of both tectonophysical analysis of discontinuous and folded late Cenozoic deformations and seismological data, were analyzed. This complex of investigations made it possible to determine the directions of the main axes of deformations of the stress-strain state of the Earth's crust and to reveal the regularity in the change of tectonic regimes.

  7. A multi-axis confocal rheoscope for studying shear flow of structured fluids

    KAUST Repository

    Lin, Neil Y. C.

    2014-03-01

    We present a new design for a confocal rheoscope that enables uniform uniaxial or biaxial shear. The design consists of two precisely positioned parallel plates with a gap that can be adjusted down to 2 ±0.1 μm, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions. © 2014 AIP Publishing LLC.

  8. Stress state of main stop valve with 500 mm nominal diameter white thermomechanical loading

    International Nuclear Information System (INIS)

    Koklyuev, G.A.; Plotnikov, V.P.

    1987-01-01

    The method of finite elements was applied to calculate the stress-strain state of the main isolation valve case with 500 mm nominal diameter while thermomechanical loading. Maximum stress takes place in the zone of joining nozzles with a spherical case and it attains the value of 138 MPa at working pressure of 12.5 MPa. The stress level in the point of nozzle-case welding is essentially lower than in zones of stres concentration and when excluding water hitting the slot of the lack of fusion in the route of the weld the weld service life is attained during the calculated service life

  9. Reliability assessment of stress concentration performance state for a perforated composite plate under traction

    Directory of Open Access Journals (Sweden)

    Jabbouri A.

    2012-07-01

    Full Text Available Considering a perforated sandwich plate made from two elastic homogenous and isotropic layers, and having a square hole, reliability assessment of stress concentration limit state for which the stress should not exceed a given threshold is performed in this work. Assuming that the plate dimensions and the applied loading are deterministic, focus is done on the square hole centre position and edge length considered to be random variables. The means and the standard deviations of these variables are assumed to be known, but no information is so far available about their densities of probabilities. To assess reliability of the performance state, reliability analysis known methods are applied to a response surface representation of the stress concentration factor of the perforated plate which is obtained through quadratic polynomial regression of finite element results. A parametric study is performed regarding the influence of the distributions of probabilities chosen to model the hole dimensions uncertainties. It is shown that the probability of failure depends largely on the selected densities of probabilities.

  10. RESEARCH OF THE STRESS STATE OF A MODIFIED IN-SITU CONCRETE

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-12-01

    Full Text Available Purpose. The article focuses on investigation of the stress state of a modified in-situ concrete of natural hardening. Methodology. To achieve the aim, the research of the microstructure of the modified cement matrix of concrete, as well as the mechanism of structure formation of modified concrete with natural hardening was conducted; the methods for reliable evaluation of concrete strength were defined. Findings. The development of internal stresses affects the properties of concretedifferently. With an increase in temperature-shrinkage deformations in time and, thus, with increasing structural stresses in the cement sheath around the grains of the filler two opposite processes may develop: zone of plastic flow or cracking. Originality. It was established that the structural features complex of the modified concrete when the load transfer leads to the formation of extensive zones of prefracture which is able to absorb a significant amount of elastic strain energy that provides the design deformation properties of the concrete for special purposes. Ideas about the definition of the criteria of cracking modified concrete, hardening under natural conditions had further development. Practical value. The resulting equations allow to solve the problem about the minimum level of structural stress in monolithic concrete in a saturated large placeholder, as well as to assess the influence of structural stresses on the properties of concrete. In normal concrete with a relatively thin cement sheath at temperature-shrinkage deformations, high tangential and low radial tension occur. In vivo, this stress is higher as a result of higher values of Δε(τ, which is not observed in the modified concrete. In the modified concretes only tangential stresses are the greatest danger to structures. The change of shrinkage stress with time is straightforward. The total temperature-shrinkage deformations have a sawtooth graph. For modified concrete the amplitude is 48

  11. DEPRESSION, ANXIETY, STRESS, AND THEIR ASSOCIATED FACTORS AMONG CORPS MEMBERS SERVING IN KEBBI STATE.

    Science.gov (United States)

    Balami, Ahmed D

    2015-01-01

    Depression, anxiety and stress, are not only health problems by themselves, but also associated with other negative health consequences. The national youth service is usually characterized by a number of new challenges and experiences which may require life style adjustments by the corps member. However, no previous study on psychological factors has been conducted among corps members. This study was conducted to determine the prevalence of depression, anxiety and, stress and their associated factors among corps members serving in Kebbi state. A cross-sectional study was conducted among 264 corps members from four local government areas of the state. Selection of the local government areas and the individual participants was by simple random sampling. Data was collected from May to June 2014 using a self-administered questionnaire. Data analysis used chi-square test to identify the relationship between categorical variables and multivariate logistic regression to identify the independent factors for depression, anxiety and stress each. The response rate was 97%. Most of the respondents were males (63.6%), single (85.5%), and above 20 years of age (71.6%). The overall prevalences of depression, anxiety and stress among the respondents were 36.4%, 54.5% and 18.2% respectively. The independent factors for depression were; being from the North central (OR = 5.99; 95% CI: 2.194-16.354) or South-south; and the perception of earning enough income (OR = 2.987; 95% CI: 1.062-8.400). For anxiety, male gender (OR = 0.411; 95% CI: 0.169-0.999); and being from the North central were significant risk factors (OR = 3.731; 95% CI: 1.450-9.599). Being above 26 years of age was an independent risk factor for stress (OR = 0.083; 95% CI: 0.018-0.381). Also, those who had ever schooled outside their towns of residence were less likely to be stressed compared to those who had never (OR = 0.30; 95% CI: 0.110-0.855). All other factors did not show any significant association with any of

  12. Steady thermal stress and strain rates in a rotating circular cylinder under steady state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.

  13. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form, ...

  14. Effect of surface stress state on dissolution property of Alloy 690 in simulated primary water condition

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Shim, Hee-Sang; Lee, Eun Hee; Seo, Myung Ji; Han, Jung Ho; Hur, Do Haeng

    2014-01-01

    The dissolution control of nickel is important to reduce the radioactive dose rate and deterioration of fuel performance in the operation of nuclear power plants (PWR). The corrosion properties are affected by the metal surface residual stress introduced in manufacture process such as work hardening. This work studied the effect of surface modification on the release rate of Alloy 690, nickel-base alloy for a steam generator tube, in the test condition of simulated primary water chemistry in PWRs. The surface stress modification was applied by the electro-polishing and shot peening method. Shot peening process was applied using ceramic beads with different intensities through the variation of air pressure. The corrosion release tests performed at 330degC with LiOH 2 ppm and H 3 BO 4 1200 ppm, DH(dissolved hydrogen) 35 cc/kg (STP) and about 20 ppb of DO(dissolved oxygen) condition. The corrosion release rate was evaluated by a gravimetric analysis method and the surface analysed by SEM and optical microscope. The surface residual stress was measured by an X-ray diffractometer, and the distribution of stress state was evaluated by a micro-hardness tester. The metal ion release rate of alloy 690 was evaluated from the influence of the stress state on the metal surface. The oxide property and structure was affected by the residual stress in the oxide layer. (author)

  15. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  16. Nutritional mitigation of winter thermal stress in gilthead seabream associated metabolic pathways and potential indicators of nutritional state

    DEFF Research Database (Denmark)

    Richard, Nadege; Silva, Tomé S.; Wulff, Tune

    2016-01-01

    and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional....... A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle...... and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state....

  17. Modeling sintering of multilayers under influence of gravity

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Olevsky, Eugene; Tadesse Molla, Tesfaye

    2013-01-01

    , which describes the combined effect of sintering and gravity of thin multilayers, is derived and later compared with experimental results. It allows for consideration of both uniaxial and biaxial stress states. The model is based on the Skorohod-Olevsky viscous sintering framework, the classical...... laminate theory and the elastic-viscoelastic correspondence principle. The modeling approach is then applied to illustrate the effect of gravity during sintering of thin layers of cerium gadolinium oxide (CGO), and it is found to be significant. © 2012 The American Ceramic Society....

  18. Seismicity and stress state in the South China Sea, Indochina and their vicinity

    Science.gov (United States)

    Zang, Shaoxian; Wu, Zhongliang; Li, Aibing

    1992-02-01

    The distribution of earthquakes from 1973 to 1982 in the South China Sea, Indochina and their vicinity was studied using the data from I. S. C. It was found that the earthquakes are mainly concentrated along the boundaries of plates. Beside, some of shallow eartqhuakes are distributed in west part of Burma and the boundary between Burma and China, a few of earthquakes occurred in South China Sea. The features of Benioff zone along the boundaries between India plate, Philippine Sea plate and Eurasia plate were studied. The plate do not coupled well under the Java trench and the Philippine trench. The subducted India plate under Burmese range, Andaman—Nicobar arc moves NNE. The fault plane solutions of earthquakes were studied using the first motions of P wave. The stress state on subduction zones and within the area were deduced from the fault plane solutions and the fault movement. It was found that the direction of principal compression axis of stress is in the NNE in west part of Burma, in S—N in south and middle part of Bruma and Thailand, and in NNE or S—N in the South China Sea. It was also found that the stress state has close relation with the interaction of plates.

  19. Effect of different pneumoperitoneum pressure on stress state in patients underwent gynecological laparoscopy

    Directory of Open Access Journals (Sweden)

    Ai-Yun Shen

    2016-10-01

    Full Text Available Objective: To observe the effect of different CO2 pneumoperitoneum pressure on the stress state in patients underwent gynecological laparoscopy. Methods: A total of 90 patients who were admitted in our hospital from February, 2015 to October, 2015 for gynecological laparoscopy were included in the study and divided into groups A, B, and C according to different CO2 pneumoperitoneum pressure. The changes of HR, BP, and PetCO2 during the operation process in the three groups were recorded. The changes of stress indicators before operation (T0, 30 min during operation (T1, and 12 h after operation (T2 were compared. Results: The difference of HR, BP, and PetCO2 levels before operation among the three groups was not statistically significant (P>0.05. HR, BP, and PetCO2 levels 30 min after pneumoperitoneum were significantly elevated when compared with before operation (P0.05. PetCO2 level 30 min after pneumoperitoneum in group B was significantly higher than that in group A (P0.05. Conclusions: Low pneumoperitoneum pressure has a small effect on the stress state in patients underwent gynecological laparoscopy, will not affect the surgical operation, and can obtain a preferable muscular relaxation and vision field; therefore, it can be selected in preference.

  20. Distribution and viability of fetal and adult human bone marrow stromal cells in a biaxial rotating vessel bioreactor after seeding on polymeric 3D additive manufactured scaffolds

    Directory of Open Access Journals (Sweden)

    Anne eLeferink

    2015-10-01

    Full Text Available One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow derived mesenchymal stromal cells (MSCs are promising candidates for tissue engineering based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix (ECM distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.

  1. Stress state reconstruction and tectonic evolution of the northern slope of the Baikit anteclise, Siberian Craton, based on 3D seismic data

    Science.gov (United States)

    Moskalenko, A. N.; Khudoley, A. K.; Khusnitdinov, R. R.

    2017-05-01

    In this work, we consider application of an original method for determining the indicators of the tectonic stress fields in the northern Baikit anteclise based on 3D seismic data for further reconstruction of the stress state parameters when analyzing structural maps of seismic horizons and corresponded faults. The stress state parameters are determined by the orientations of the main stress axes and shape of the stress ellipsoid. To calculate the stress state parameters from data on the spatial orientations of faults and slip vectors, we used the algorithms from quasiprimary stress computation methods and cataclastic analysis, implemented in the software products FaultKinWin and StressGeol, respectively. The results of this work show that kinematic characteristics of faults regularly change toward the top of succession and that the stress state parameters are characterized by different values of the Lode-Nadai coefficient. Faults are presented as strike-slip faults with normal or reverse component of displacement. Three stages of formation of the faults are revealed: (1) partial inversion of ancient normal faults, (2) the most intense stage with the predominance of thrust and strike-slip faults at north-northeast orientation of an axis of the main compression, and (3) strike-slip faults at the west-northwest orientation of an axis of the main compression. The second and third stages are pre-Vendian in age and correlate to tectonic events that took place during the evolution of the active southwestern margin of the Siberian Craton.

  2. State anxiety, psychological stress and positive well-being responses to yoga and aerobic exercise in people with schizophrenia: a pilot study.

    Science.gov (United States)

    Vancampfort, Davy; De Hert, Marc; Knapen, Jan; Wampers, Martien; Demunter, Hella; Deckx, Seppe; Maurissen, Katrien; Probst, Michel

    2011-01-01

    Worsening of schizophrenia symptoms is related to stress and anxiety. People with schizophrenia often experience difficulties in coping with stress and possess a limited repertoire of coping strategies. A randomised comparative trial was undertaken in patients with schizophrenia to evaluate changes in state anxiety, psychological stress and subjective well-being after single sessions of yoga and aerobic exercise compared with a control condition. Forty participants performed a single 30-min yoga session, 20-min of aerobic exercise on a bicycle ergometre at self-selected intensity and a 20-min no exercise control condition in random order. After single sessions of yoga and aerobic exercise individuals with schizophrenia or schizoaffective disorder showed significantly decreased state anxiety (p stress (p exercise control condition. Effect sizes ranged from 0.82 for psychological stress after aerobic exercise to 1.01 for state anxiety after yoga. The magnitude of the changes did not differ significantly between yoga and aerobic exercise. People with schizophrenia and physiotherapists can choose either yoga or aerobic exercise in reducing acute stress and anxiety taking into account the personal preference of each individual.

  3. Software for determining the direction of movement, shear and normal stresses of a fault under a determined stress state

    Science.gov (United States)

    Álvarez del Castillo, Alejandra; Alaniz-Álvarez, Susana Alicia; Nieto-Samaniego, Angel Francisco; Xu, Shunshan; Ochoa-González, Gil Humberto; Velasquillo-Martínez, Luis Germán

    2017-07-01

    In the oil, gas and geothermal industry, the extraction or the input of fluids induces changes in the stress field of the reservoir, if the in-situ stress state of a fault plane is sufficiently disturbed, a fault may slip and can trigger fluid leakage or the reservoir might fracture and become damaged. The goal of the SSLIPO 1.0 software is to obtain data that can reduce the risk of affecting the stability of wellbores. The input data are the magnitudes of the three principal stresses and their orientation in geographic coordinates. The output data are the slip direction of a fracture in geographic coordinates, and its normal (σn) and shear (τ) stresses resolved on a single or multiple fracture planes. With this information, it is possible to calculate the slip tendency (τ/σn) and the propensity to open a fracture that is inversely proportional to σn. This software could analyze any compressional stress system, even non-Andersonian. An example is given from an oilfield in southern Mexico, in a region that contains fractures formed in three events of deformation. In the example SSLIPO 1.0 was used to determine in which deformation event the oil migrated. SSLIPO 1.0 is an open code application developed in MATLAB. The URL to obtain the source code and to download SSLIPO 1.0 are: http://www.geociencias.unam.mx/ alaniz/main_code.txt, http://www.geociencias.unam.mx/ alaniz/ SSLIPO_pkg.exe.

  4. Stress among Accounting Educators in the United States.

    Science.gov (United States)

    Seiler, Robert E.; Pearson, Della A.

    1984-01-01

    Stress among accounting educators was investigated and relationships between stress levels and work satisfaction levels, personality traits, and stress-coping techniques were examined. The most important personality charcteristics of higher stress individuals were impatience, assertiveness, workaholism, and idealism. (Author/MLW)

  5. The intersection of stress and reward: BNST modulation of aversive and appetitive states.

    Science.gov (United States)

    Ch'ng, Sarah; Fu, Jingjing; Brown, Robyn M; McDougall, Stuart J; Lawrence, Andrew J

    2018-01-09

    The bed nucleus of the stria terminalis (BNST) is widely acknowledged as a brain structure that regulates stress and anxiety states, as well as aversive and appetitive behaviours. The diverse roles of the BNST are afforded by its highly modular organisation, neurochemical heterogeneity, and complex intrinsic and extrinsic circuitry. There has been growing interest in the BNST in relation to psychopathologies such as anxiety and addiction. Although research on the human BNST is still in its infancy, there have been extensive preclinical studies examining the molecular signature and hodology of the BNST and their involvement in stress and reward seeking behaviour. This review examines the neurochemical phenotype and connectivity of the BNST, as well as electrophysiological correlates of plasticity in the BNST mediated by stress and/or drugs of abuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. On the Novel Biaxial Strain Relaxation Mechanism in Epitaxial Composition Graded La1−xSrxMnO3 Thin Film Synthesized by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Yishu Wang

    2015-11-01

    Full Text Available We report on a novel method to fabricate composition gradient, epitaxial La1−xSrxMnO3 thin films with the objective to alleviate biaxial film strain. In this work, epitaxial, composition gradient La1−xSrxMnO3, and pure LaMnO3 and La0.67Sr0.33MnO3 thin films were deposited by radio frequency (RF magnetron sputtering. The crystalline and epitaxy of all films were first studied by symmetric θ–2θ X-ray diffraction (XRD and low angle XRD experiments. Detailed microstructural characterization across the film thickness was conducted by high-resolution transmission electron microscopy and electron diffraction. Four compositional gradient domains were observed in the La1−xSrxMnO3 film ranging from LaMnO3 rich to La0.67Sr0.33MnO3 at the surface. A continuous reduction in the lattice parameter was observed accompanied by a significant reduction in the out-of-plane strain in the film. Fabrication of the composition gradient La1−xSrxMnO3 thin film was found to be a powerful method to relieve biaxial strain under critical thickness. Besides, the coexistence of domains with a composition variance is opening up various new possibilities of designing new nanoscale structures with unusual cross coupled properties.

  7. Above-bandgap optical properties of biaxially strained GeSn alloys grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Richard D’Costa, Vijay, E-mail: elevrd@nus.edu.sg; Wang, Wei; Zhou, Qian; Yeo, Yee-Chia, E-mail: eleyeoyc@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Soon Tok, Eng [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2014-01-13

    The complex dielectric function of biaxially strained Ge{sub 1−x}Sn{sub x} (0 ≤ x ≤ 0.17) alloys grown on Ge (100) has been determined by spectroscopic ellipsometry from 1.2 to 4.7 eV. The effect of substitutional Sn incorporation and the epitaxial strain on the energy transitions E{sub 1}, E{sub 1} + Δ{sub 1}, E{sub 0}′, and E{sub 2} of GeSn alloys is investigated. Our results indicate that the strained GeSn alloys show Ge-like electronic bandstructure with all the transitions shifted downward due to the alloying of Sn. The strain dependence of E{sub 1} and E{sub 1} + Δ{sub 1} transitions is explained using the deformation potential theory, and values of −5.4 ± 0.4 eV and 3.8 ± 0.5 eV are obtained for the hydrostatic and shear deformation potentials, respectively.

  8. Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects

    International Nuclear Information System (INIS)

    Dorman, M.; Toparli, M.B.; Smyth, N.; Cini, A.; Fitzpatrick, M.E.; Irving, P.E.

    2012-01-01

    Highlights: ► Effect of laser peen intensity on local residual stress fields in 2024 aluminium. ► Peening induces significant changes in surface topography and local hardness. ► Residual stress at peen spot centre in tension, spot overlap in compression. ► Notched fatigue lives increased; crack morphology correlated to residual stress field. ► Large peening power densities can cause fatigue life reduction in notched samples. - Abstract: Laser peening at a range of power densities has been applied to 2 mm-thick sheets of 2024 T351 aluminium. The induced residual stress field was measured using incremental hole drilling and synchrotron X-ray diffraction techniques. Fatigue samples were subjected to identical laser peening treatments followed by scribing at the peen location to introduce stress concentrations, after which they were fatigue tested. The residual stresses were found to be non-biaxial: orthogonal to the peen line they were tensile at the surface, moving into the desired compression with increased depth. Regions of peen spot overlap were associated with large compression strains; the centre of the peen spot remaining tensile. Fatigue lives showed moderate improvement over the life of unpeened samples for 50 μm deep scribes, and slight improvement for samples with 150 μm scribes. Use of the residual stress intensity K resid approach to calculate fatigue life improvement arising from peening was unsuccessful at predicting the relative effects of the different peening treatments. Possible reasons for this are explored.

  9. Regional homogeneity and resting state functional connectivity: associations with exposure to early life stress.

    Science.gov (United States)

    Philip, Noah S; Kuras, Yuliya I; Valentine, Thomas R; Sweet, Lawrence H; Tyrka, Audrey R; Price, Lawrence H; Carpenter, Linda L

    2013-12-30

    Early life stress (ELS) confers risk for psychiatric illness. Previous literature suggests ELS is associated with decreased resting-state functional connectivity (rs-FC) in adulthood, but there are no studies of resting-state neuronal activity in this population. This study investigated whether ELS-exposed individuals demonstrate resting-state activity patterns similar to those found in PTSD. Twenty-seven adults (14 with at least moderate ELS), who were medication-free and without psychiatric or medical illness, underwent MRI scans during two 4-minute rest periods. Resting-state activity was examined using regional homogeneity (ReHo), which estimates regional activation patterns through indices of localized concordance. ReHo values were compared between groups, followed by rs-FC analyses utilizing ReHo-localized areas as seeds to identify other involved regions. Relative to controls, ELS subjects demonstrated diminished ReHo in the inferior parietal lobule (IPL) and superior temporal gyrus (STG). ReHo values were inversely correlated with ELS severity. Secondary analyses revealed decreased rs-FC between the IPL and right precuneus/posterior cingulate, left fusiform gyrus, cerebellum and caudate in ELS subjects. These findings indicate that ELS is associated with altered resting-state activity and connectivity in brain regions involved in trauma-related psychiatric disorders. Future studies are needed to evaluate whether these associations represent potential imaging biomarkers of stress exposure. Published by Elsevier Ireland Ltd.

  10. Evaluation of Biaxial Mechanical Properties of Aortic Media Based on the Lamellar Microstructure

    Directory of Open Access Journals (Sweden)

    Hadi Taghizadeh

    2015-01-01

    Full Text Available Evaluation of the mechanical properties of arterial wall components is necessary for establishing a precise mechanical model applicable in various physiological and pathological conditions, such as remodeling. In this contribution, a new approach for the evaluation of the mechanical properties of aortic media accounting for the lamellar structure is proposed. We assumed aortic media to be composed of two sets of concentric layers, namely sheets of elastin (Layer I and interstitial layers composed of mostly collagen bundles, fine elastic fibers and smooth muscle cells (Layer II. Biaxial mechanical tests were carried out on human thoracic aortic samples, and histological staining was performed to distinguish wall lamellae for determining the dimensions of the layers. A neo-Hookean strain energy function (SEF for Layer I and a four-parameter exponential SEF for Layer II were allocated. Nonlinear regression was used to find the material parameters of the proposed microstructural model based on experimental data. The non-linear behavior of media layers confirmed the higher contribution of elastic tissue in lower strains and the gradual engagement of collagen fibers. The resulting model determines the nonlinear anisotropic behavior of aortic media through the lamellar microstructure and can be assistive in the study of wall remodeling due to alterations in lamellar structure during pathological conditions and aging.

  11. Stress states in the Zagros fold-and-thrust belt from passive margin to collisional tectonic setting

    Science.gov (United States)

    Navabpour, Payman; Barrier, Eric

    2012-12-01

    The present-day Zagros fold-and-thrust belt of SW-Iran corresponds to the former Arabian passive continental margin of the southern Neo-Tethyan basin since the Permian-Triassic rifting, undergoing later collisional deformation in mid-late Cenozoic times. In this paper an overview of brittle tectonics and palaeostress reconstructions of the Zagros fold-and-thrust belt is presented, based on direct stress tensor inversion of fault slip data. The results indicate that, during the Neo-Tethyan oceanic opening, an extensional tectonic regime affectedthe sedimentary cover in Triassic-Jurassic times with an approximately N-S trend of the σ3 axis, oblique to the margin, which was followed by some local changes to a NE-SW trend during Jurassic-Cretaceous times. The stress state significantly changed to thrust setting, with a NE-SW trend of the σ1 axis, and a compressional tectonic regime prevailed during the continental collision and folding of the sedimentary cover in Oligocene-Miocene times. This compression was then followed by a strike-slip stress state with an approximately N-S trend of the σ1 axis, oblique to the belt, during inversion of the inherited extensional basement structures in Pliocene-Recent times. The brittle tectonic reconstructions, therefore, highlighted major changes of the stress state in conjunction with transitions between thin- and thick-skinned structures during different extensional and compressional stages of continental deformation within the oblique divergent and convergent settings, respectively.

  12. The state of stress in British rocks

    International Nuclear Information System (INIS)

    Klein, R.J.; Brown, E.T.

    1983-03-01

    When designing underground works, it is necessary to take account of not only the vertical stresses arising predictably from the weight of the rock overhead, but also horizontal stresses which may vary from one direction to another as a result of past tectonic action. This report discussed the techniques that have been used to measure such stresses. Few determinations have been made in Great Britain, so it has been necessary to augment what little is known by reference to fault systems, relying on correlations between the measured magnitude and direction of maximum horizontal stress with local tectonic history. This has enabled general conclusions to be reached for Great Britain. (author)

  13. Prospective Analysis of Risk Factors Related to Depression and Post Traumatic Stress Disorder in Deployed United States Navy Personnel

    Science.gov (United States)

    2011-03-28

    post traumatic stress disorder ( PTSD ) and depression (MDD) than...United States Several epidemiological studies have been conducted on the prevalence of post traumatic stress disorder ( PTSD ) and major depression in...forms contain the same 4-item screener for post - traumatic stress disorder ( PTSD ). This screener was developed by the National Center for PTSD and

  14. Main results of BN-600 reactor stress-strain state investigations

    International Nuclear Information System (INIS)

    Panov, V.A.

    1983-01-01

    The development of BN-600 fast reactor plant needed the solution of a series of complex engineering problems including ones for confirming integrity of the most vital structural components. The particular attention was given to the main vessel since reactor availability end safe operation of the plant as a whole depend on vessel strength end integrity. The present report deals with the main results of theoretical and experimental investigations of the stress-strain state of BN-600 reactor vessel carried out during design, start-up and initial bringing the reactor to power

  15. Experimental Research of Reliability of Plant Stress State Detection by Laser-Induced Fluorescence Method

    Directory of Open Access Journals (Sweden)

    Yury Fedotov

    2016-01-01

    Full Text Available Experimental laboratory investigations of the laser-induced fluorescence spectra of watercress and lawn grass were conducted. The fluorescence spectra were excited by YAG:Nd laser emitting at 532 nm. It was established that the influence of stress caused by mechanical damage, overwatering, and soil pollution is manifested in changes of the spectra shapes. The mean values and confidence intervals for the ratio of two fluorescence maxima near 685 and 740 nm were estimated. It is presented that the fluorescence ratio could be considered a reliable characteristic of plant stress state.

  16. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  17. Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Irmgard Schuiki

    Full Text Available Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor and mCherry protein driven by a GRP78 promoter (UPR-sensor. Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.

  18. Stress og aldring

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Jørgensen, Martin Balslev; Poulsen, Henrik Enghusen

    2012-01-01

    Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders....... These effects are likely mediated by the secretion of stress hormones. In this short review we focus on biochemical and epidemiological evidence for a link between stress and aging.......Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders...

  19. Epitaxial YBa2Cu3O7 on biaxially textured (001) Ni: An approach to high critical current density superconducting tapes

    International Nuclear Information System (INIS)

    Norton, D.P.; Goyal, A.; Budai, J.D.

    1997-01-01

    In-plane aligned, c-axis oriented YBa 2 Cu 3 O 7 (YBCO) films with superconducting critical current densities, J c , as high as 700,000 amperes per square centimeter at 77 kelvin have been grown on thermo-mechanically, rolled-textured (001) Ni tapes using pulsed-laser deposition. Epitaxial growth of oxide buffer layers directly on biaxially textured Ni, formed by recrystallization of cold-rolled pure Ni, enables the growth of 1.5 micrometer-thick YBCO films with superconducting properties that are comparable to those observed for epitaxial films on single crystal oxide substrates. This result represents a viable approach for producing long-length superconducting tapes for high current, high field applications at 77 kelvin

  20. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.; Kö nig, D.; Santamarina, Carlos; Schanz, T.

    2017-01-01

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr