WorldWideScience

Sample records for biaxial post-yield behavior

  1. Post-yield crack toughness behavior of polyamide-6/polypropylene grafted maleic anhydride/nanoclay ternary nanocomposites

    International Nuclear Information System (INIS)

    Graphical abstract: The illustrated figure demonstrates the consistent enhancement in non-essential work of fracture (βwp) which has a correspondence to the volumetric energy dissipation mode accompanied with a systematic transition in the nature of the fracture surface morphology. Highlights: ► Post-yield fracture mechanics of ternary nanocomposites are discussed. ► Tripartite-polar-interaction governs macro-structural response of the composites. ► Crack propagation resistance increased fourfold with addition of 6 wt.% of nanoclay. ► Inverse correlation between interphase thickness and non-essential work of fracture. - Abstract: The fracture properties of melt-mixed polyamide-6 (PA-6)/polypropylene grafted maleic anhydride (PP-g-MA)/nanoclay ternary nanocomposites were investigated following essential work of fracture (EWF) approach based on post-yield fracture mechanics principles. Fourier transform infrared (FTIR) spectroscopy studies revealed distinct interactions between optimized impact-modified PA-6 based blend matrix and nanoclay whereas the incorporation of nanoclay leading to enhanced lighter phase-contrast atomic force microscope (AFM) images have indicated enhanced hard-phase fractions. FTIR revealed tripartite interactions between amide functionality, maleic anhydride moiety and hydroxyl group of the three constituents of the nanocomposite. The validity of essential work of fracture (EWF) concept to these ternary nanocomposites has been demonstrated via self-similarity and Hill’s analysis. The EWF (we) showed an increase by ∼35% with the incorporation of 2 wt.% of nanoclay followed by a continuous reduction up to ∼67% in 6 wt.% of nanoclay loaded composite whereas non-EWF (βwp) increased almost consistently with the maximum up to ∼264% in the entire composition range. Thus linear increase in the resistance to crack propagation is attributed to nanoclay induced enhanced micro-fibrillation accompanied with the generation of fracture

  2. Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation

    OpenAIRE

    Zeinali-Davarani, Shahrokh; Chow, Ming-Jay; Turcotte, Raphaël; Zhang, Yanhang

    2013-01-01

    Arteries are composed of multiple constituents that endow the wall with proper structure and function. Many vascular diseases are associated with prominent mechanical and biological alterations in the wall constituents. In this study, planar biaxial tensile test data of elastase-treated porcine aortic tissue (Chow et al. 2012) is re-examined to characterize the altered mechanical behavior at multiple stages of digestion through constitutive modeling. Exponential-based as well as recruitment-b...

  3. Damage and failure behavior of metal matrix composites under biaxial loads

    Science.gov (United States)

    Kirkpatrick, Steven Wayne

    Metal matrix composites (MMCs) are being considered for increased use in structures that require the ductility and damage tolerance of the metal matrix and the enhanced strength and creep resistance at elevated temperatures of high performance fibers. Particularly promising for advanced aerospace engines and airframes are SiC fiber/titanium matrix composites (TMCs). A large program was undertaken in the Air Force to characterize the deformation and failure behaviors of TMCs and to develop computational models that can be used for component design. The effort reported here focused on a SiC SCS-6/Timetal 21S composite under biaxial loading conditions. Biaxial loading conditions are important because multiaxial stresses have been shown to influence the strength and ductility of engineering materials and, in general, structural components are subjected to multiaxial loads. The TMC material response, including stress-strain curves and failure surfaces, was measured using a combination of off-axis uniaxial tension and compression tests and biaxial cruciform tests. The off-axis tests produce combinations of in-plane tension, compression, and shear stresses, the mix of which are controlled by the relative angle between the fiber and specimen axes. The biaxial cruciform tests allowed independent control over the tensile or compressive loads in the fiber and transverse directions. The results of these characterization tests were used to develop a microstructural constitutive model and failure criteria. The basis of the micromechanical constitutive model is a representative unit volume of the MMC with a periodic array of fibers. The representative unit volume is divided into a fiber and three matrix cells for which the microstructural equilibrium and compatibility equations can be analyzed. The resulting constitutive model and associated failure criteria can be used to predict the material behavior under general loading conditions.

  4. Strength Behavior of High Strength R/C Columns under Biaxial Bending-Shear and Varying Axial Load

    OpenAIRE

    MIZOGUCHI, Mitsuo; Arakawa, Takashi; ARAI, Yasuyuki

    1991-01-01

    Twelve short square R/C columns using high-strength concrete were tested to examine the effects of biaxial bending-shear force and varying axial load on the shear and flexural strength behavior. The columns were cyclically deflected either along their transverse principal axis to produce uniaxial bending-shear or along their diagonal to produce biaxial bending-shear. For columns failing in flexure, the experimental results were found to be in close agreement with the computed values given by ...

  5. Measurement and material modeling of biaxial work-hardening behavior for pure titanium sheet

    Science.gov (United States)

    Sumita, Takeshi; Kuwabara, Toshihiko

    2013-12-01

    Biaxial tensile tests of a commercial pure titanium sheet (JIS ♯1) were performed using a servo-controlled multiaxial tube expansion testing machine developed by one of the authors [Kuwabara, T. and Sugawara, F., Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range, Int. J. Plasticity, 45 (2013), 103-118]. Tubular specimens with an inner diameter of 54 mm were fabricated by roller bending and TIG welding the as-received test material with a thickness of 0.5 mm. Several linear stress paths in the first quadrant of the stress space were applied to the tubular specimens to measure the contours of plastic work and the directions of the plastic strain rates for an equivalent plastic strain range of 0.05 ≤ ɛ0p ≤ 0.30. It was found that the shapes of the work contours significantly changed with an increase in ɛ0p and that the Yld2000-2d yield function could reproduce the differential work hardening behavior of the test material by changing the material parameters and the exponent as functions of ɛ0p.

  6. Behavior of annealed type 316 stainless steel under monotonic and cyclic biaxial loading at room temperature

    International Nuclear Information System (INIS)

    This paper addresses the elastic-plastic behavior of type 316 stainless steel, one of the major structural alloys used in liquid-metal fast breeder reactor components. The study was part of a continuing program to develop a structural design technology applicable to advanced reactor systems. Here, behaviour of solution annealed material was examined through biaxial stress experiments conducted at room temperature under radial loadings (√3tau=sigma) in tension-torsion stress space. The effects of both stress limited monotonic loading and strain limited cyclic loading were determined on the size, shape and position of yield loci corresponding to small offset strain (10 microstrain) definition of yield. In the present work, the aim was to determine the extent to which the constitutive laws previously recommended for type 304 stainless steel are applicable to type 316 stainless steel. It was concluded that for the conditions investigated, the inelastic behavior of the two materials are qualitatively similar. Specifically, the von Mises yield criterion provides a reasonable approximation of initial yield behavior and the subsequent hardening behavior, at least under small offset definitions of yield, is to the first order kinematic in nature. (Auth.)

  7. Biaxial Behavior of Ultra-High Performance Concrete and Untreated UHPC Waffle Slab Bridge Deck Design and Testing

    OpenAIRE

    D'Alessandro, Kacie Caple

    2013-01-01

    Ultra-high performance concrete (UHPC) was evaluated as a potential material for future bridge deck designs. Material characterization tests took place to identify potential challenges in mixing, placing, and curing UHPC. Biaxial testing was performed to evaluate behavior of UHPC in combined tension and compression stress states. A UHPC bridge deck was designed to perform similarly to a conventional concrete bridge deck, and a single unit bridge deck section was tested to evaluate the desi...

  8. Fatigue Behavior of Plain Concrete Under Biaxial Compression:Experiments and Theoretical Model

    Institute of Scientific and Technical Information of China (English)

    朱劲松; 宋玉普; 曹伟

    2003-01-01

    The effects of different lateral confinement stress on the fatigue behavior of and cumulative damage to plain concrete are investigated experimentally. Eighty 100 mm×100 mm×100 mm specimens of ordinary strength concrete are tested under constant- or variable-amplitude fatigue loading and lateral confinement pressure in two orthogonal directions. A fatigue equation is developed by modifying the classical Aas-Jakobsen S-N equation for taking into account the effect of the confined stress on fatigue strength of plain concrete. The results of variable-amplitude fatigue tests indicate that the linear damage theory proposed by Palmgren and Miner is unreasonable in the biaxial stress state. A nonlinear cumulative damage model that could model the effects of the magnitude and sequence of variable-amplitude fatigue loading and lateral confinement pressure is proposed on the basis of the evolution laws of the residual strains in the longitudinal direction during fatigue tests. The residual fatigue life predicted by this model is found to be in good agreement with the results of the experimental research.

  9. Behavior of reinforced concrete slabs subjected to combined punching shear and biaxial tension

    International Nuclear Information System (INIS)

    This investigation was a continuing study of peripheral (punching) shear strength of precracked, biaxially tensioned, orthogonally reinforced concrete slabs. This research was motivated by the need to determie the strength of a reinforced concrete containment vessel wall when subjected to combined internal pressure and punching shear loads normal to the wall. The study served to determine the effect of three major variables (shear span, size of loaded area, and reinforcing steel ratio) on punching shear strength of slabs that were precracked in biaxial tension and then held at one of the two tension levels (0 or 0.8f/sub y/) during shear load application

  10. The failure behavior of the cladding with outer surface pre-crack in biaxial stress test

    International Nuclear Information System (INIS)

    Biaxial stress tests using the unirradiated Cold Worked Stress Relieved (CWSR) Zircaloy-4 cladding with an outer surface pre-crack were conducted under room temperature condition. To reproduce the biaxial stress states assumed in RIA conditions, Expansion Due to Compression (EDC) test which induces uniaxial stress states was developed using a tensile test machine. Constant tensile loads, 0, 5.0 and 10.0 kN, were applied to specimens through each test, respectively. All specimens failed in the tests, and the failure morphology was similar to that observed in the PIEs conducted for the pulse irradiation experiments using a high burnup fuel. The longitudinal strain (εtz) at failure clearly increased with increasing tensile loads and the circumferential strain (εtθ) at failure decreased significantly in 5.0 and 10.0 kN tests compared to 0 kN tests. These data obtained in this study are considered as the fundamentals to quantify the failure criteria of claddings in a biaxial stress state. (author)

  11. Biaxial Behavior of Ultra-High Performance Concrete and Untreated UHPC Waffle Slab Bridge Deck Design and Testing

    Science.gov (United States)

    D'Alessandro, Kacie Caple

    Ultra-high performance concrete (UHPC) was evaluated as a potential material for future bridge deck designs. Material characterization tests took place to identify potential challenges in mixing, placing, and curing UHPC. Biaxial testing was performed to evaluate behavior of UHPC in combined tension and compression stress states. A UHPC bridge deck was designed to perform similarly to a conventional concrete bridge deck, and a single unit bridge deck section was tested to evaluate the design methods used for untreated UHPC. Material tests identified challenges with placing UHPC. A specified compressive strength was determined for structural design using untreated UHPC, which was identified as a cost-effective alternative to steam treated UHPC. UHPC was tested in biaxial tension-compression stress states. A biaxial test method was developed for UHPC to directly apply tension and compression. The influence of both curing method and fiber orientation were evaluated. The failure envelope developed for untreated UHPC with random fiber orientation was suggested as a conservative estimate for future analysis of UHPC. Digital image correlation was also evaluated as a means to estimate surface strains of UHPC, and recommendations are provided to improve consistency in future tests using DIC methods. A preliminary bridge deck design was completed for untreated UHPC and using established material models. Prestressing steel was used as primary reinforcement in the transverse direction. Preliminary testing was used to evaluate three different placement scenarios, and results showed that fiber settling was a potential placement problem resulting in reduced tensile strength. The UHPC bridge deck was redesigned to incorporate preliminary test results, and two single unit bridge deck sections were tested to evaluate the incorporated design methods for both upside down and right-side up placement techniques. Test results showed that the applied design methods would be conservative

  12. Deformation and strain hardening behavior of powder metallurgical TRIP steel under quasi-static biaxial-planar loading

    Energy Technology Data Exchange (ETDEWEB)

    Kulawinski, D., E-mail: dirk.kulawinski@iwt.tu-freiberg.de [Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Street 5, 09599 Freiberg (Germany); Ackermann, S. [Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Street 5, 09599 Freiberg (Germany); Seupel, A. [Institute of Mechanics and Fluid Dynamics, Technische Universität Bergakademie Freiberg, Lampadiusstraße 4, 09599 Freiberg (Germany); Lippmann, T.; Henkel, S. [Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Street 5, 09599 Freiberg (Germany); Kuna, M. [Institute of Mechanics and Fluid Dynamics, Technische Universität Bergakademie Freiberg, Lampadiusstraße 4, 09599 Freiberg (Germany); Weidner, A.; Biermann, H. [Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Street 5, 09599 Freiberg (Germany)

    2015-08-26

    The present paper investigates a metastable austenitic stainless steel under different biaxial-planar load paths by using a cruciform specimen geometry. The material behavior was described by stress–strain curves and initial yield surface. Furthermore, the hardening behavior was determined by load sequence tests. To investigate the influence of the stress state on the martensite formation a ferrite sensor as well as electron backscatter diffraction measurements were used. Two cruciform specimen geometries were utilized and compared for the considered load cases. The stress state within the cruciform specimens was evaluated by an elastic unloading procedure with subsequent calculation of the stress components. Isotropic initial yielding and non-isotropic hardening were found. A recommendation for the use of the cruciform specimen geometry with respect to the load case is given.

  13. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  14. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  15. Post-yield thermal design basis for slotted liner

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Acqua, D.; Kaiser, T.M.V. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Noetic Engineering Inc., Edmonton, AB (Canada); Smith, D.T. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Nexen Inc., Calgary, AB (Canada)

    2005-11-01

    Slotted liners are commonly used for sand control in most of the steam assisted gravity drainage (SAGD) wells operating in Western Canada. However, a standard basis for design has not been developed for these liners. It was noted that the installation limits in thermal operations must be more stringent because of residual stresses and deformation on the operating response due to high axial loads induced by confined thermal expansion. For that reason, the structural design of slotted liners for thermal wells must consider many complexities that do not apply to conventional liner design. Temperature changes in frictionally-restrained liners can load the liner beyond the elastic limit, decreasing the axial strength of the liner and promoting strain localization in weaker areas. Inadequate post-yield strength can lead to crippling failure through buckling which can compromise sand control or impair wellbore access. The liners installed in Nexen's thermal wells at Long Lake were designed to provide a localization safety factor of 3. The parameters that control the thermal performance of the slotted liner body include post-yield material properties, slot configuration and geometry. It was concluded that liners with larger wall thicknesses and lower slot densities offer better thermal structural performance. It was noted that higher-density liners can be used if close attention is given to the slot dimensions, particularly length. This measure would minimize flow restriction. 4 refs., 9 figs.

  16. Post-yield and failure properties of cortical bone.

    Science.gov (United States)

    Wolfram, Uwe; Schwiedrzik, Jakob

    2016-01-01

    Ageing and associated skeletal diseases pose a significant challenge for health care systems worldwide. Age-related fractures have a serious impact on personal, social and economic wellbeing. A significant proportion of physiological loading is carried by the cortical shell. Its role in the fracture resistance and strength of whole bones in the ageing skeleton is of utmost importance. Even though a large body of knowledge has been accumulated on this topic on the macroscale, the underlying micromechanical material behaviour and the scale transition of bone's mechanical properties are yet to be uncovered. Therefore, this review aims at providing an overview of the state-of-the-art of the post-yield and failure properties of cortical bone at the extracellular matrix and the tissue level. PMID:27579166

  17. Biaxial creep behavior of ribbed GCFR cladding at 650/sup 0/C in nominally pure helium (99. 99%)

    Energy Technology Data Exchange (ETDEWEB)

    Yaggee, F. L.; Purohit, A.; Grajek, W. J.; Peoppel, R. B.

    1977-11-01

    Biaxial creep-rupture tests were conducted on 12 prototypic GCFR fuel-cladding specimens at 650/sup 0/C and a nominal hoop stress of 241.3 MPa. All test specimens were fabricated from 20% cold-worked Type 316 stainless steel tubes that were ribbed on the outer surface by mechanical grinding or electro-chemical etching. Test variables included specimen length and the presence or absence of weld-reinforcing end collars. Test results have indicated that, compared with data on smooth specimens, ribbing has no detrimental effect on creep-rupture lifetime. Specimens fabricated from tubes ribbed by electrochemical etching exhibit a significantly shorter creep-rupture lifetime and a higher secondary (steady-state) creep rate than specimens fabricated from tubes ribbed by mechanical grinding. Specimen length does not strongly affect creep-rupture lifetime, but the presence of an end collar does exhibit a significant influence on both the axial strain profile and the ratio of maximum diametral strain at the failure site to average diametral strain away from the failure site. The ribs do not inhibit the propagation of fissure or rupture failures.

  18. Biaxial failure criteria and stress-strain response for concrete of containment structure

    International Nuclear Information System (INIS)

    Biaxial failure criteria and stress-strain response for plain concrete of containment structure on nuclear power plants are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f2/f1=-1/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 5660 psi are provided, and the biaxial failure behaviors for three biaxial loading areas are plotted respectively. And, various analytical equations having the reliability are proposed for representations of the biaxial failure criteria and stress-strain response curves of concrete

  19. Comparative Study on Tribological Behavior of Biaxial Glass Fiber/Al2O3/SiC Epoxy Journal Bearing Under Various Test Conditions

    Directory of Open Access Journals (Sweden)

    T. Narendiranath Babu

    2014-08-01

    Full Text Available Composite journal bearings are becoming more popular now a day because they eliminate the possibility of seizure failure to the bearings. The major drawback of the gun metal bearings is the seizure failure. To overcome this problem, the composite journal bearings are widely used by the industries. In this study, the fiber reinforced plastic composed of glass fiber with epoxy resin composite /Al2O3/SiC journal bearing having the composition of 10-20% are tested under various operating conditions and the results are compared with gun metal journal bearing. This study focuses on the dimensional stability, temperature, friction, surface roughness and surface topography behavior of biaxial glass fiber epoxy composite with and without lubrication at different speeds and loads. It has been observed that the friction and temperature increases with increase in load but it’s very less when compared to gun metal bearing. It is found that there is loss in weight due to increase in temperature and friction but the loss in weight is very less which is approximately 1 g. In the earlier research, most of the bearings are tested under very low speed with more catastrophic failure due to various loading conditions. Therefore in this study the composite journal bearing is tested from low speed to high speed with different loading conditions and their effects has been studied. This composite journal will save the significant cost to the industries by reducing the coefficient of friction, temperature, lubrication etc.

  20. Reverse loading tests of steel tube under biaxial stress states

    OpenAIRE

    Yanaga, Daisaku; Kuroda, Kouichi; Yaita, Satoshi; Kuwabara, Toshihiko

    2015-01-01

    Biaxial loading and reverse loading tests were performed using seamless carbon steel tubes. Biaxial stress components in the axial and circumferential directions were applied to the tubular specimens using a servo-controlled multiaxial tube expansion testing machine developed by Kuwabara and Sugawara (2013). The tubular specimens were loaded under linear tensile stress paths. Contours of plastic work were measured in the principal stress space, and the differential hardening (DH) behavior was...

  1. Biaxial dynamic testing of nuclear containment steel

    International Nuclear Information System (INIS)

    A test program has been initiated at the laboratories of the European Union Joint Research Centre of Ispra to investigate combined effects of high strain rates and biaxial stresses. The purpose is to assess the material behavior up to rupture in the special conditions which are produced during an explosion inside a nuclear metal containment. In the paper the main features of the campaign are discussed. (author). 19 refs., 4 figs

  2. Directional Differences in the Biaxial Material Properties of Fascia Lata and the Implications for Fascia Function

    OpenAIRE

    Eng, Carolyn M.; Pancheri, Francesco Q.; Lieberman, Daniel E.; Biewener, Andrew Austin; Dorfmann, Luis

    2014-01-01

    Fascia is a highly organized collagenous tissue that is ubiquitous in the body, but whose function is not well understood. Because fascia has a sheet-like structure attaching to muscles and bones at multiple sites, it is exposed to different states of multi- or biaxial strain. In order to measure how biaxial strain affects fascia material behavior, planar biaxial tests with strain control were performed on longitudinal and transversely oriented samples of goat fascia lata (FL). Cruciform samp...

  3. Biaxial creep deformation behavior of Fe–14Cr–15Ni–Ti modified austenitic stainless steel fuel cladding tube for sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Highlights: • Significant amounts of creep strain is observed in the axial and hoop directions. • Hoop strain is much higher than the axial strain. • Steady state hoop rate is lower than steady state axial rate. • Steady state hoop rate is comparable with creep rate evaluated from uniaxial tests. • Alloy D9 exhibits anisotropy in creep deformation. - Abstract: Twenty percent cold worked Fe–14Cr–15Ni–Ti modified austenitic stainless steel is used as the cladding tube material for the fuel pins of the Prototype Fast Breeder Reactor in India. Biaxial creep properties of the tubes have been studied at 973 K by carrying out creep tests by internally pressurizing the tubes. Hoop and axial components of creep strain were measured and found to be significantly different. For a given gas pressure, steady state hoop rate was higher than the axial rate. Steady state hoop and axial creep rates followed Norton's power law with the same stress exponent n = 7. Steady state hoop rates determined from biaxial creep tests agreed with the steady state creep rates determined from uniaxial creep tests. For a thin walled closed tube under internal pressure, significant axial deformation along with hoop deformation is indicative of anisotropic deformation of the material

  4. Biaxial creep deformation behavior of Fe–14Cr–15Ni–Ti modified austenitic stainless steel fuel cladding tube for sodium cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, M.D., E-mail: mathew@igcar.gov.in [Mechanical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Ravi, S.; Vijayanand, V.D.; Latha, S. [Mechanical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Dasgupta, Arup [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Laha, K. [Mechanical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2014-08-15

    Highlights: • Significant amounts of creep strain is observed in the axial and hoop directions. • Hoop strain is much higher than the axial strain. • Steady state hoop rate is lower than steady state axial rate. • Steady state hoop rate is comparable with creep rate evaluated from uniaxial tests. • Alloy D9 exhibits anisotropy in creep deformation. - Abstract: Twenty percent cold worked Fe–14Cr–15Ni–Ti modified austenitic stainless steel is used as the cladding tube material for the fuel pins of the Prototype Fast Breeder Reactor in India. Biaxial creep properties of the tubes have been studied at 973 K by carrying out creep tests by internally pressurizing the tubes. Hoop and axial components of creep strain were measured and found to be significantly different. For a given gas pressure, steady state hoop rate was higher than the axial rate. Steady state hoop and axial creep rates followed Norton's power law with the same stress exponent n = 7. Steady state hoop rates determined from biaxial creep tests agreed with the steady state creep rates determined from uniaxial creep tests. For a thin walled closed tube under internal pressure, significant axial deformation along with hoop deformation is indicative of anisotropic deformation of the material.

  5. Biaxial creep of zircaloy: Texture and temperature effects

    International Nuclear Information System (INIS)

    Zircaloy is commonly used as a cladding material for nuclear fuel elements. The cladding is subject to time-varying multiaxial stresses in service and the ability to accurately predict cladding behavior is necessary to maintain fuel integrity. This work investigates the biaxial creep behavior of recrystallized zircaloy at three temperatures and with four different crystallographic textures. In addition to measuring the creep behavior, the crystallographic texture is used to independently predict the creep behavior. 48 refs

  6. Singular values, nematic disclinations, and emergent biaxiality

    OpenAIRE

    Dennis, Mark R.; Žumer, Slobodan; Kamien, Randall D.; Čopar, Simon

    2015-01-01

    Both uniaxial and biaxial nematic liquid crystals are defined by orientational ordering of their building blocks. While uniaxial nematics only orient the long molecular axis, biaxial order implies local order along three axes. As the natural degree of biaxiality and the associated frame that can be extracted from the tensorial description of the nematic order vanishes in the uniaxial phase, we extend the nematic director to a full biaxial frame by making use of a singular value decomposition ...

  7. Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens

    Science.gov (United States)

    Dawicke, D. S.; Pollock, W. D.

    1997-01-01

    A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.

  8. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E1, E2 and Poisson's ratios, ν1, ν2, which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E1, E2 and the Poisson's ratios ν1, ν2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  9. Biaxiality of chiral liquid crystals

    International Nuclear Information System (INIS)

    Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Qαβ(χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab

  10. Biaxially oriented film on flexible polymeric substrate

    Science.gov (United States)

    Finkikoglu, Alp T.; Matias, Vladimir

    2009-10-13

    A flexible polymer-based template having a biaxially oriented film grown on the surface of a polymeric substrate. The template having the biaxially oriented film can be used for further epitaxial growth of films of interest for applications such as photovoltaic cells, light emitting diodes, and the like. Methods of forming such a flexible template and providing the polymeric substrate with a biaxially oriented film deposited thereon are also described.

  11. Biaxially textured articles formed by plastic deformation

    Science.gov (United States)

    Goyal, Amit

    2001-01-01

    A method of preparing a biaxially textured article comprises the steps of providing a metal preform, coating or laminating the preform with a metal layer, deforming the layer to a sufficient degree, and rapidly recrystallizing the layer to produce a biaxial texture. A superconducting epitaxial layer may then be deposited on the biaxial texture. In some embodiments the article further comprises buffer layers, electromagnetic devices or electro-optical devices.

  12. Rolling process for producing biaxially textured substrates

    Science.gov (United States)

    Goyal, Amit

    2004-05-25

    A method of preparing a biaxially textured article includes the steps of: rolling a metal preform while applying shear force thereto to form as-rolled biaxially textured substrate having an a rotated cube texture wherein a (100) cube face thereof is parallel to a surface of said substrate, and wherein a [100] direction thereof is at an angle of at least 30.degree. relative to the rolling direction; and depositing onto the surface of the biaxially textured substrate at least one epitaxial layer of another material to form a biaxially textured article.

  13. Evaluation of micro fatigue crack growth under equi-biaxial stress by membranous pressure fatigue test

    International Nuclear Information System (INIS)

    For preventing nuclear power plant (NPP) accidents, NPPs are required to ensure system safety in long term safe operation under aging degradation. Now, fatigue accumulation is one of major ageing phenomena and are evaluated to ensure safety by design fatigue curve that are based on the results of uniaxial fatigue tests. On the other hand, thermal stress that occurs in piping of actual components is not uniaxial but equi-biaxial. For accurate evaluation, it is required to conform real circumstance. In this study, membranous pressure fatigue test was conducted to simulated equi-biaxial stress. Crack initiation and crack growth were examined by replica investigation. Calculation result of equivalent stress intensity factor shows crack growth under equi-biaxial stress is faster than under uniaxial stress. It is concluded that equi-biaxial fatigue behavior should be considered in the evaluation of fatigue crack initiation and crack growth. (author)

  14. Investigation of the Leak Response of a Carbon-Fiber Laminate Loaded in Biaxial Tension

    Science.gov (United States)

    Jackson, Wade C.; Ratcliffe, James G.

    2013-01-01

    Designers of pressurized structures have been reluctant to use composite materials because of concerns over leakage. Biaxial stress states are expected to be the worst-case loading condition for allowing leakage to occur through microcracks. To investigate the leakage behavior under in-plane biaxial loading, a cruciform composite specimen was designed that would have a relatively large test section with a uniform 1:1 biaxial loading ratio. A 7.6-cm-square test section was desired for future investigations of the leakage response as a result of impact damage. Many iterations of the cruciform specimen were evaluated using finite element analysis to reduce stress concentrations and maximize the size of the uniform biaxial strain field. The final design allowed the specimen to go to relatively high biaxial strain levels without incurring damage away from the test section. The specimen was designed and manufactured using carbon/epoxy fabric with a four-ply-thick, quasi-isotropic, central test section. Initial validation and testing were performed on a specimen without impact damage. The specimen was tested to maximum biaxial strains of approximately 4500micro epsilon without apparent damage. A leak measurement system containing a pressurized cavity was clamped to the test section and used to measure the flow rate through the specimen. The leakage behavior of the specimen was investigated for pressure differences up to 172 kPa

  15. Biaxially Stretched Polycarbonate Film For Capacitors

    Science.gov (United States)

    Yen, Shaio-Ping S.; Lowry, Lynn E.; Bankston, Clyde P.

    1992-01-01

    Report describes experiments on effects of biaxial stretching on crystal structures, dielectric properties, and sellected thermal and mechanical properties of biaxially stretched polycarbonate films. Highest stretch ratios produce highest degree of crystallinity, with single crystalline phase and distribution of crystallites more nearly isotropic than uniaxially oriented film. Electrical properties at high temperatures improved.

  16. Biaxial fatigue of metals the present understanding

    CERN Document Server

    Schijve, Jaap

    2016-01-01

    Problems of fatigue under multiaxial fatigue loads have been addressed in a very large number of research publications. The present publication is primarily a survey of biaxial fatigue under constant amplitude loading on metal specimens. It starts with the physical understanding of the fatigue phenomenon under biaxial fatigue loads. Various types of proportional and non-proportional biaxial fatigue loads and biaxial stress distributions in a material are specified. Attention is paid to the fatigue limit, crack nucleation, initial micro crack growth and subsequent macro-crack in different modes of crack growth. The interference between the upper and lower surfaces of a fatigue crack is discussed. Possibilities for predictions of biaxial fatigue properties are analysed with reference to the similarity concept. The significance of the present understanding for structural design problems is considered. The book is completed with a summary of major observations.

  17. Flexural rigidity of biaxially loaded reinforced concrete rectangular column sections

    Science.gov (United States)

    Resheidat, M.; Ghanma, M.; Sutton, C.; Chen, Wai-Fah

    1995-05-01

    An exact analysis is carried out utilizing the parabola-rectangle stress-strain curve for concrete and a typical idealized stress-strain curve for steel to develop the moment-curvature relationship for biaxially loaded reinforced concrete rectangular column sections. Based on that, the flexural rigidity EI of the section is determined at the yield curvature. A computer program is written by FORTRAN 77 to handle the required computations. The influence of material properties, the effect of steel ratios, and the impact of axial loads on the EI estimation were investigated. This study leads to the development of a new equation to estimate the flexural rigidity EI of reinforced concrete biaxially loaded rectangular columns in which these factors were considered. It is shown that the new equation stems from the actual behavior of the column. Therefore, it is recommended for general use in the design of slender columns.

  18. Experimental study on seismic behavior of Z-shaped reinforced concrete columns subjected to biaxial shearing%钢筋混凝土Z形截面双向受剪柱抗震性能试验研究

    Institute of Scientific and Technical Information of China (English)

    崔钦淑; 杨俊杰; 康谷贻

    2013-01-01

    为研究钢筋混凝土Z形截面双向受剪柱的抗震性能,对4个缩尺比为1/2的试件进行拟静力试验,分析不同水平加载方向(加载角α分别取0°、45°、90°、135°)对其抗震性能的影响,研究Z形截面柱的破坏形态,得到试件的荷载-位移滞回曲线、骨架曲线、承载力、位移延性系数、刚度退化和耗能能力等力学性能指标.研究结果表明:试件在水平反复荷载作用下的破坏形态为弯剪破坏、弯曲破坏、剪切黏结破坏和剪切斜压破坏,其中剪切破坏的试件延性较差;双向水平荷载作用方向对Z形截面柱受剪承载力的影响近似符合椭圆规律,在加载角为45°时,试件的耗能能力最强,当加载角为0°和135°时,试件的耗能能力相差不大.提出钢筋混凝土Z形截面柱双向受剪承载力的计算方法,按该方法对本次试验和已有试验共22个试件进行计算,计算结果与试验值吻合较好.%In order to study the seismic performance of Z-shaped reinforced concrete columns subjected to biaxial shearing,quasi-static tests were carried out on four 1/2 scale specimens.The effects of the horizontal loading directions (α =0°,45°,90°,135°) were studied.And the failure characteristics,mechanical behaviors of Z-shaped columns were researched.The loading-displacement hysteretic loops and skeleton curves,load bearing capacity,displacement ductility,rigidity degradation and energy dissipation capacity were analyzed.Test results indicate four types of failure patterns can be seen from the test specimens,including shear-bending failure,bending failure,shearbond failure,shear compression failure,and the shear failure ductility is very poor.It shows that the influences of the lateral bevel loads on the shear strength of Z-shaped RC frame columns can be approximately described by ellipse law.The capacity of energy dissipation is maximized in the case of 45° loading angle,and the variation is small when the

  19. Biaxial loading effects on fracture toughness of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    The preliminary phases of a program to develop and evaluate fracture methodologies for assessing crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels have been completed by the Heavy-Section Steel Technology (HSST) Program. Objectives were to investigate effect of biaxial loading on fracture toughness, quantify this effect through existing stress-based, dual-parameter, fracture-toughness correlations, or propose and verify alternate correlations. A cruciform beam specimen with 2-D, shallow, through-thickness flaw and a special loading fixture was designed and fabricated. Tests were performed using biaxial loading ratios of 0:1 (uniaxial), 0.6:1, and 1:1 (equi-biaxial). Critical fracture-toughness values were calculated for each test. Biaxial loading of 0.6:1 resulted in a reduction in the lower bound fracture toughness of ∼12% as compared to that from the uniaxial tests. The biaxial loading of 1:1 yielded two subsets of toughness values; one agreed well with the uniaxial data, while one was reduced by ∼43% when compared to the uniaxial data. Results were evaluated using J-Q theory and Dodds-Anderson (D-A) micromechanical scaling model. The D-A model predicted no biaxial effect, while the J-Q method gave inconclusive results. When applied to the 1:1 biaxial data, these constraint methodologies failed to predict the observed reduction in fracture toughness obtained in one experiment. A strain-based constraint methodology that considers the relationship between applied biaxial load, the plastic zone width in the crack plane, and fracture toughness was formulated and applied successfully to the data. Evaluation of this dual-parameter strain-based model led to the conclusion that it has the capability of representing fracture behavior of RPV steels in the transition region, including the effects of out-of-plane loading on fracture toughness. This report is designated as HSST Report No. 150

  20. Engineering piezoresistivity using biaxially strained silicon

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Richter, Jacob; Brandbyge, Mads;

    2008-01-01

    piezocoefficient on temperature and dopant density is altered qualitatively for strained silicon. In particular, we find that a vanishing temperature coefficient may result for silicon with grown-in biaxial tensile strain. These results suggest that strained silicon may be used to engineer the iezoresistivity to......We calculate the shear piezocoefficient of p-type silicon with grown-in biaxial strain using a 66 k·p method. We find a significant increase in the value of the shear piezocoefficient for compressive grown-in biaxial strain, while tensile strain decreases the piezocoefficient. The dependence of the...

  1. Biaxial tensile tests of the porcine ascending aorta.

    Science.gov (United States)

    Deplano, Valérie; Boufi, Mourad; Boiron, Olivier; Guivier-Curien, Carine; Alimi, Yves; Bertrand, Eric

    2016-07-01

    One of the aims of this work is to develop an original custom built biaxial set-up to assess mechanical behavior of soft tissues. Stretch controlled biaxial tensile tests are performed and stereoscopic digital image correlation (SDIC) is implemented to measure the 3D components of the generated displacements. Using this experimental device, the main goal is to investigate the mechanical behavior of porcine ascending aorta in the more general context of human ascending aorta pathologies. The results highlight that (i) SDIC arrangement allows accurate assessment of displacements and so stress strain curves, (ii) porcine ascending aorta has a nearly linear and anisotropic mechanical behavior until 30% of strain, (iii) porcine ascending aorta is stiffer in the circumferential direction than in the longitudinal one, (iv) the material coefficient representing the interaction between the two loading directions is thickness dependent, (v) taking into account the variability of the samples the stress values are independent of the stretch rate in the range of values from 10(-3) to 10(-1)s(-1) and finally, (vi) unlike other segments of the aorta, 4-month-old pigs ascending aorta is definitely not a relevant model to investigate the mechanical behavior of the human ascending aorta. PMID:27211783

  2. Phase diagram of colloidal spheres in a biaxial electric or magnetic field

    NARCIS (Netherlands)

    Smallenburg, F.; Dijkstra, M.

    2010-01-01

    Colloidal particles with a dielectric constant mismatch with the surrounding solvent in an external biaxial magnetic or electric field experience an “inverted” dipolar interaction. We determine the phase behavior of such a system using Helmholtz free energy calculations in Monte Carlo simulations fo

  3. Ultrasonic fatigue testing device under biaxial bending

    Directory of Open Access Journals (Sweden)

    C. Brugger

    2016-07-01

    Full Text Available A new fatigue testing device has been developed to test specimens under biaxial loading at 20 kHz. A flat smooth specimen with a disc geometry is placed on a torus frame and cyclically loaded at the center of its upper face. Disc bending generates a biaxial proportional stress state at the center of the lower face. Any positive loading ratio can be applied. A cast aluminum alloy (used to produce cylinder heads has been tested under biaxial bending using this device in order to determine its fatigue strength at 109 cycles under high hydrostatic pressure. Self-heating is moderate but macroscopic fatigue cracks after testing are very long. First results in VHCF regime are consistent with literature results obtained under similar stress state but in HCF regime and at 20 Hz.

  4. Biaxial Fatigue Testing of Thin Films

    International Nuclear Information System (INIS)

    A new experimental setup, which allows for testing in an equi-biaxial loading condition, has been developed and applied to investigate the fatigue behaviour of thin films. A load controlled cycling, performed at room temperature on flat specimens, reproduces the strain amplitude and mean strain in the film corresponding to a thermal cycling in a given temperature range. The setup is based on the ring-on-ring test, which has been successfully used in biaxial fracture testing of glass and ceramics, and includes an optical in-situ failure detection system. The method is validated for specimens consisting in a gold film deposited on a polymer substrate

  5. Towards the biaxial nematic phase via specific intermolecular interactions

    CERN Document Server

    Omnes, L

    2001-01-01

    The work described in this thesis has been focussed on the search of an elusive liquid crystal phase, known as the biaxial nematic phase. Indeed, despite nearly thirty years of intense research, no-one has been able to characterise unambiguously a biaxial nematic phase in a low-molar-mass thermotropic system. Our research is based on the concept of molecular biaxiality as distinct from shape biaxiality. Thus, we are seeking to design palladium complexes where specific intermolecular interactions could exist. Therefore, a few original synthetic strategies were developed to tackle the challenge of discovering the biaxial nematic phase

  6. STUDY ON BIAXIAL BENDING BEHAVIOR OF STEEL-CONCRETE COMPOSITE SHEAR WALLS%双钢板混凝土组合剪力墙双向压弯性能研究

    Institute of Scientific and Technical Information of China (English)

    可飞; 郭全全; 赵唯以; 周耀

    2016-01-01

    Based on the fiber section analysis, a biaxial bending nonlinear analysis program for steel-concrete shear walls was developed.The accuracy of the program was verified by comparisons of the existing experimental results with the finite element analysis results.Based on the nonlinear analysis method, the biaxial bending bearing capacity of steel-concrete shear walls was calculated, and the results indicated that the in-plane bearing capacity of steel-concrete shear walls decreased obviously due to the effects of external bending moment.Only considering the in-plane bearing capacity would overestimate the bearing capacity when steel-concrete shear walls was under biaxial bending state.Besides, the nonlinear analysis program was employed to study the effects of eccentric angle, eccentricity, concrete compressive strengths and steel ratios on the bearing capacity of steel-concrete shear walls.%基于纤维模型法,编制双钢板混凝土组合剪力墙(以下简称组合剪力墙)的双向压弯非线性分析程序,通过与已有试验结果、有限元计算结果的对比,验证分析程序的准确性.基于分析程序重点对组合剪力墙的双向压弯承载力进行数值计算,计算结果表明:面外弯矩的存在将显著降低组合剪力墙的面内承载能力,当组合剪力墙处于双向压弯受力状态时,完全按照面内承载进行设计将严重高估构件的承载能力.同时,利用分析程序对组合剪力墙进行参数分析,讨论荷载偏心角、荷载偏心距、混凝土强度和含钢率对组合剪力墙承载力的影响.

  7. Analysis of Biaxially Stressed Bridge Deck Plates

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Bondum, Tommi Højer

    The ultimate state analysis of bridge deck plates at the intersection zone between main girders and transverse beams is complicated by biaxial membrane stresses, which may be in compression or tension in either direction depending on the bridge configuration and the specific location. This paper ...

  8. Optimal design of biaxial tensile cruciform specimens

    Science.gov (United States)

    Demmerle, S.; Boehler, J. P.

    1993-01-01

    F OR EXPERIMENTAL investigations concerning the mechanical behaviour under biaxial stress states of rolled sheet metals, mostly cruciform flat specimens are used. By means of empirical methods, different specimen geometries have been proposed in the literature. In order to evaluate the suitability of a specimen design, a mathematically well defined criterion is developed, based on the standard deviations of the values of the stresses in the test section. Applied to the finite element method, the criterion is employed to realize the shape optimization of biaxial cruciform specimens for isotropic elastic materials. Furthermore, the performance of the obtained optimized specimen design is investigated in the case of off-axes tests on anisotropic materials. Therefore, for the first time, an original testing device, consisting of hinged fixtures with knife edges at each arm of the specimen, is applied to the biaxial test. The obtained results indicate the decisive superiority of the optimized specimens for the proper performance on isotropic materials, as well as the paramount importance of the proposed off-axes testing technique for biaxial tests on anisotropic materials.

  9. Dynamic biaxial tissue properties of the human cadaver aorta.

    Science.gov (United States)

    Shah, Chirag S; Hardy, Warren N; Mason, Matthew J; Yang, King H; Van Ee, Chris A; Morgan, Richard; Digges, Kennerly

    2006-11-01

    This study focuses on the biaxial mechanical properties of planar aorta tissue at strain rates likely to be experienced during automotive crashes. It also examines the structural response of the whole aorta to longitudinal tension. Twenty-six tissue-level tests were conducted using twelve thoracic aortas harvested from human cadavers. Cruciate samples were excised from the ascending, peri-isthmic, and descending regions. The samples were subjected to equibiaxial stretch at two nominal speed levels using a new biaxial tissue-testing device. Inertia-compensated loads were measured to facilitate calculation of true stress. High-speed videography and regional correlation analysis were used to track ink dots marked on the center of each sample to obtain strain. In a series of component-level tests, the response of the intact thoracic aorta to longitudinal stretch was obtained using seven aorta specimens. The aorta fails within the peri-isthmic region. The aorta fails in the transverse direction, and the intima fails before the media or adventitia. The aorta tissue exhibits nonlinear behavior. The aorta as complete structure can transect completely from 92 N axial load and 0.221 axial strain. Complete transection can be accompanied by intimal tears. These results have application to finite element modeling and the better understanding of traumatic rupture of the aorta. PMID:17311166

  10. Effect of Molecular Flexibility on the Nematic-to-Isotropic Phase Transition for Highly Biaxial Molecular Non-Symmetric Liquid Crystal Dimers

    Directory of Open Access Journals (Sweden)

    María Blanca Ros

    2011-09-01

    Full Text Available In this work, a study of the nematic (N–isotropic (I phase transition has been made in a series of odd non-symmetric liquid crystal dimers, the α-(4-cyanobiphenyl-4’-yloxy-ω-(1-pyrenimine-benzylidene-4’-oxy alkanes, by means of accurate calorimetric and dielectric measurements. These materials are potential candidates to present the elusive biaxial nematic (NB phase, as they exhibit both molecular biaxiality and flexibility. According to the theory, the uniaxial nematic (NU–isotropic (I phase transition is first-order in nature, whereas the NB–I phase transition is second-order. Thus, a fine analysis of the critical behavior of the N–I phase transition would allow us to determine the presence or not of the biaxial nematic phase and understand how the molecular biaxiality and flexibility of these compounds influences the critical behavior of the N–I phase transition.

  11. Biaxial crystal-based optical tweezers

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Maksimyak, Andrew P.; Maksimyak, Peter P.;

    2010-01-01

    We suggest an optical tweezer setup based on an optically biaxial crystal. To control movements of opaque particles, we use shifts. The results of experimental studies are reported which are concerned with this laser tweezer setup. We demonstrate a movement of microparticles of toner using a sing...... singular-optical trap, rotation of particles due to orbital angular momentum of the field, and converging or diverging of two different traps when changing transmission plane of polariser at the input of our polarisation interferometer....

  12. Biaxial testing for fabrics and foils optimizing devices and procedures

    CERN Document Server

    Beccarelli, Paolo

    2015-01-01

    This book offers a well-structured, critical review of current design practice for tensioned membrane structures, including a detailed analysis of the experimental data required and critical issues relating to the lack of a set of design codes and testing procedures. The technical requirements for biaxial testing equipment are analyzed in detail, and aspects that need to be considered when developing biaxial testing procedures are emphasized. The analysis is supported by the results of a round-robin exercise comparing biaxial testing machines that involved four of the main research laboratories in the field. The biaxial testing devices and procedures presently used in Europe are extensively discussed, and information is provided on the design and implementation of a biaxial testing rig for architectural fabrics at Politecnico di Milano, which represents a benchmark in the field. The significance of the most recent developments in biaxial testing is also explored.

  13. Method for making biaxially textured articles by plastic deformation

    Science.gov (United States)

    Goyal, Amit

    2002-01-01

    A method of preparing a biaxially textured article comprises the steps of providing a metal preform, coating or laminating the preform with a metal layer, deforming the layer to a sufficient degree, and rapidly recrystallizing the layer to produce a biaxial texture. A superconducting epitaxial layer may then be deposited on the biaxial texture. In some embodiments the article further comprises buffer layers, electromagnetic devices or electro-optical devices.

  14. Study of the effect of an equi-biaxial loading on the fatigue lifetime of austenitic stainless steel

    International Nuclear Information System (INIS)

    Fatigue lifetime assessment is essential in the design of structures. Under-estimated predictions may result in unnecessary in service inspections. Conversely, over-estimated predictions may have serious consequences on the integrity of structures.In some nuclear power plant components, the fatigue loading may be equi-biaxial because of thermal fatigue. So the potential impact of multiaxial loading on the fatigue life of components is a major concern. Meanwhile, few experimental data are available on austenitic stainless steels. It is essential to improve the fatigue assessment methodologies to take into account the potential equi-biaxial fatigue damage. Hence this requires obtaining experimental data on the considered material with a strain tensor in equi-biaxial tension. The aim of this study is to present the experimental and numerical results obtained with a device 'FABIME2' developed in the LISN in collaboration with EDF and AREVA. The association of the experimental results, obtained on the new experimental fatigue device FABIME2, with the numerical analyses obtained by FEM simulation with Cast3M code, has enabled to define the aggravating effect of the equi-biaxial fatigue loading. However, this effect is covered by the Design fatigue curve defined from the nuclear industry. For the crack propagation, a first simplified approach enables to study the kinetic behavior of crack propagation in equi-biaxial fatigue. (author)

  15. Effects of the biaxial transverse crystal-field on the phase diagrams of a spin-1 nanowire

    Science.gov (United States)

    Magoussi, H.; Zaim, A.; Boughrara, M.; Kerouad, M.

    2016-09-01

    By using the effective field theory based on a probability distribution method, the phase diagrams and the magnetic properties of an Ising nanowire in the presence of the biaxial transverse crystal-field are investigated. The effects of the biaxial transverse crystal field, the interfacial coupling and the exchange interaction in the surface on the phase diagram, the magnetization and the internal energy are examined. Some characteristic phenomena are found such as the tricritical behavior, the critical end point and the re-entrant phenomenon.

  16. Biaxially textured articles formed by power metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  17. Biaxially textured articles formed by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-14

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100} orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Miniature load cell instrumentation for finite deformation biaxial testing of elastomers

    Science.gov (United States)

    Arenz, R. J.; Landel, R. F.; Tsuge, K.

    1974-01-01

    Accuracy of biaxial test equipment to examine the nonlinear mechanical behavior of thin sheet specimens of elastomeric materials has been hampered by lack of precise determination of the force distribution along the sides of the specimen. It has been necessary to use an effective width established by approximate means to obtain the stress from the overall force applied along the edges. To avoid this experimental difficulty, individual miniature proof-ring load cells utilizing semiconductor strain gages have been developed and applied to the support hooks for the thin sheet specimens. Typical results are shown for time-dependent stress distributions for all degrees of biaxiality. An accurate evaluation of the effective specimen width is now possible.

  19. Experimental studies of yield phenomena in biaxially loaded metals

    International Nuclear Information System (INIS)

    Realistic materials properties input represents one of the major limitations in computer stress analysis in the plastic range. Lack of data on the response of many structural materials to multiaxial loading requires modeling plastic behavior. Such models can at best predict the response of a limited class of materials for a limited range of loading. A summary of biaxial plasticity experiments on metals is presented to provide a testing ground for such models and to serve as a reference guide for materials that may be of practical interest. Most of the work has been done on materials assumed to exhibit time-and-pressure-independent plastic flow. Special attention is focused on initial and subsequent yield conditions and stress-strain relations. Some specific examples of material behavior that does not fall within the assumptions of classical plasticity theories are discussed. These include time-dependence as evidenced in creep, cyclic loading and strain-rate effects, pressure dependence, large strain behavior, microstructural changes and failure laws. 15 figures, 277 references

  20. 双轴压缩条件下碎石集料静力剪切特性研究%Static Shear Behavior of Crushed Rock Aggregate Subjected to Biaxial Compression

    Institute of Scientific and Technical Information of China (English)

    王鹏程; 刘建坤; 李旭; 房建宏

    2014-01-01

    基于离散单元法,利用PFC2D内置Fish语言编制碎石集料双轴实验条件,结合计算机语言与PFC2D中Clump命令编制将球形单元转化为随机多边形块体单元的程序。通过对比室内大型三轴试验对数值模型进行参数标定与验证,在此基础上分析3种典型粒径碎石集料的应力-应变特性以及抗剪强度特性。结果表明,围压对集料的应力-应变特性影响明显。对于不同粒径的碎石集料而言,随着围压的增加,偏应力峰值增加而应力比减小;在本文选定的围压范围内碎石集料均呈现出先压缩最终剪胀的特性,围压越大,压缩量大,最终的剪胀越不明显;碎石集料的强度包络线为非线性,相同围压条件下的抗剪强度随着粒径的增大而增加;表征摩擦角随围压的增加而减小,相同围压下,粒径越大,表征摩擦角也越大。%With the discrete element method(DEM ) ,biaxial compressions test conditions for crushed rock aggre-gate were established in the Fish language and the Clump logic commands in PFC 2D were incorporated into the computer language to simulate the crushed rock aggregate of irregular shapes .Compared with large-scale labo-ratory triaxial tests ,the parameters of the numerical model were calibrated and validated .The stress-deforma-tion and shearing strength of the crushed stone aggregate of three typical particle sizes were analyzed .The re-search results demonstrate as follws :The confining pressure influences the stress-strain characteristics of aggre-gate significantly ;for aggregate of different particle sizes ,along with adding of the confining pressure ,the peak deviatoric stress increases while the stress ratio decreases ;within the specified range of confining pressure initial compression and subsequent dilation are observed with the aggregate ,the higher the confining pressure ,the lar-ger the compression and the smaller the dilation ;the shear strength

  1. Tensile Property of Bi-axial Warp Knitted Structure

    Institute of Scientific and Technical Information of China (English)

    沈为

    2003-01-01

    The tensile property of bi-axial warp knitted fabrics is tested and compared with that of the plain weave fabric. The results show that there are obvious differences between the tensile property of a bi-axial warp knitted fabric and that of a plain weave fabric.The former can give fuller play to the property of a high modulus yarn than the latter. The tensile strength of a bi-axial warp knitted fabric is linear with the number of yarns in the direction of force.

  2. Characterization Of Biaxial Strain Of Poly(L-Lactide) Tubes

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Andreasen, Jens Wenzel; Mikkelsen, Lars Pilgaard;

    2016-01-01

    ) biaxial strain process, the mechanical properties of biaxial strained tubes can be further improved. This study investigated these properties in relation to their morphology and crystal orientation. Both processes yield the same mechanical strength and modulus, yet exhibit different crystal orientation......Poly(L-lactide) (PLLA) in its L-form has promising mechanical properties. Being a semi-crystalline polymer, it can be subjected to strain-induced crystallization at temperatures above Tg and can thereby become oriented. Following a simultaneous (SIM) biaxial strain process or a sequential (SEQ...

  3. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    International Nuclear Information System (INIS)

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures

  4. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Hsiao-Ming, E-mail: hmtung2@gmail.com [Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan, ROC (China); Mo, Kun; Stubbins, James F. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801 (United States)

    2014-04-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials’ life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman–Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures.

  5. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    Science.gov (United States)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-04-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials' life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman-Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures.

  6. Characterization of Three-Dimensional Magnetic Alignment for Magnetically Biaxial Particles

    Science.gov (United States)

    Yamaguchi, Masuhiro; Ozawa, Shun; Yamamoto, Isao; Kimura, Tsunehisa

    2013-01-01

    The three-dimensional magnetic alignment (3DMA) is analytically investigated for magnetically biaxial particles with the susceptibility χ1>χ2>χ3 in an amplitude-modulated (AM) elliptic field B= i1Bb1cos ωt + i2Bb2sin ωt as a prototype method for 3DMA. The distribution function and the biaxial ordering matrix are numerically calculated by the Boltzmann distribution and the rotational diffusion equation. The 3DMA attains the optimum performance in the rapid rotation regime (RRR) with the infinity rotation frequency ω while the RRR is effectively available at lower rotation frequencies. The intermediate magnetization axis χ2 is inferior to the easy and hard magnetization axes χ1 and χ3 in the time development and the equilibrium state of alignment. In all the methods for 3DMA, the dynamic and equilibrium behavior in the RRR are universally characterized by the reduced energy α= V(Bb1)2(χ3 - χ1)/(2µ0kBT), the biaxial deviation of susceptibility k = (χ2-χ1)/(χ3-χ1), the field modulation factor q = (b2/b1)2, and the reduced time tr = | α| Dt where D is the rotational diffusion constant.

  7. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  8. Graphene flakes under controlled biaxial deformation

    Science.gov (United States)

    Androulidakis, Charalampos; Koukaras, Emmanuel N.; Parthenios, John; Kalosakas, George; Papagelis, Konstantinos; Galiotis, Costas

    2015-12-01

    Thin membranes, such as monolayer graphene of monoatomic thickness, are bound to exhibit lateral buckling under uniaxial tensile loading that impairs its mechanical behaviour. In this work, we have developed an experimental device to subject 2D materials to controlled equibiaxial strain on supported beams that can be flexed up or down to subject the material to either compression or tension, respectively. Using strain gauges in tandem with Raman spectroscopy measurements, we monitor the G and 2D phonon properties of graphene under biaxial strain and thus extract important information about the uptake of stress under these conditions. The experimental shift over strain for the G and 2D Raman peaks were found to be in the range of 62.3 ± 5 cm-1/%, and 148.2 ± 6 cm-1/%, respectively, for monolayer but also bilayer graphenes. The corresponding Grüneisen parameters for the G and 2D peaks were found to be between 1.97 ± 0.15 and 2.86 ± 0.12, respectively. These values agree reasonably well with those obtained from small-strain bubble-type experiments. The results presented are also backed up by classical and ab initio molecular dynamics simulations and excellent agreement of Γ-E2g shifts with strains and the Grüneisen parameter was observed.

  9. Failure analyses of filament-wound graphite/epoxy cylinders under biaxial loading

    International Nuclear Information System (INIS)

    This paper discusses macroscopic and microscopic failure behavior of filament-wound (90/+/-20)/sub s/ graphite/epoxy thin-wall cylinders subjected to biaxial loading. Experimental results, elastic constants, and strengths are compared with analytical predictions. The Tsai-Wu failure criterion gave reasonable agreement between theoretical and experimental results. Specimens machined from failed cylinders were examined using scanning electron microscopy. Interply and intraply cracking were observed. These microscopic failure mechanisms are not accounted for in any failure criterion available in the literature. 6 references, 8 figures, 2 tables

  10. Polycrystalline ferroelectric or multiferroic oxide articles on biaxially textured substrates and methods for making same

    Science.gov (United States)

    Goyal, Amit; Shin, Junsoo

    2015-03-31

    A polycrystalline ferroelectric and/or multiferroic oxide article includes a substrate having a biaxially textured surface; at least one biaxially textured buffer layer supported by the substrate; and a biaxially textured ferroelectric or multiferroic oxide layer supported by the buffer layer. Methods for making polycrystalline ferroelectric and/or multiferroic oxide articles are also disclosed.

  11. Irreversible magnetic processes under biaxial and uniaxial magnetic anisotropies

    Science.gov (United States)

    Pokharel, S.; Akioya, O.; Alqhtany, N. H.; Dickens, C.; Morgan, W.; Wuttig, M.; Lisfi, A.

    2016-05-01

    Irreversible magnetic processes have been investigated in magnetic systems with two different anisotropy symmetries (uniaxial and biaxial) through angular measurement of the switching field, the irreversible susceptibility and the magnetic viscosity. These two systems consist of two-dimensional cobalt ferrite hetero-structures epitaxially grown on (100) and (110) MgO substrate. It is found that for uniaxial anisotropy the irreversible characteristics of the magnetization are large and display a strong angular dependence, which exhibits its maximum at the easy axis and drops quickly to vanish at the hard axis. However, for biaxial anisotropy the magnetization irreversible characteristics are considerably reduced and are less sensitive to the field angle.

  12. Method for forming biaxially textured articles by powder metallurgy

    Science.gov (United States)

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2002-01-01

    A method of preparing a biaxially textured alloy article comprises the steps of preparing a mixture comprising Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacting the mixture, followed by heat treating and rapidly recrystallizing to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  13. Statics and field-driven dynamics of transverse domain walls in biaxial nanowires under uniform transverse magnetic fields

    Science.gov (United States)

    Lu, Jie

    2016-06-01

    In this work, we report analytical results on transverse domain wall (TDW) statics and field-driven dynamics in quasi-one-dimensional biaxial nanowires under arbitrary uniform transverse magnetic fields (TMFs) based on the Landau-Lifshitz-Gilbert equation. Without axial driving fields, the static TDW should be symmetric about its center while twisted in its azimuthal angle distribution. By decoupling polar and azimuthal degrees of freedom, an approximate solution is provided which reproduces these features to a great extent. When an axial driving field is applied, the dynamical behavior of a TDW is viewed as the response of its static profile to external excitations. By means of the asymptotic expansion method, the TDW velocity in the traveling-wave mode is obtained, which provides the extent and boundary of the "velocity-enhancement" effect of TMFs on TDWs in biaxial nanowires. Finally, numerical simulations are performed and strongly support our analytics.

  14. BEGA-a biaxial excitation Generator for automobiles

    DEFF Research Database (Denmark)

    Scridon, S.; Boldea, Ion; Tutelea, L.;

    2005-01-01

    This paper presents the design and test results for a biaxial excitation generator/motor for automobiles (BEGA), which has a three-phase stator and a salient-pole excited heteropolar rotor with multiple flux barriers filled with low-cost permanent magnets (PMs). For this new generator, the low-vo...

  15. The fine structure of the vortex-beams in the biaxial and biaxially-induced birefringent media caused by the conical diffraction

    CERN Document Server

    Fadeyeva, Tatyana; Anischenko, Pavel; Volyar, Alexander

    2011-01-01

    We consider the paraxial propagation of nondiffracting singular beams inside natural biaxial and biaxially-induced birefringent media in vicinity of one of the optical axes in terms of eigenmode vortex-beams, whose angular momentum does not change upon propagation. We have predicted a series of new optical effects in the natural biaxial crystals such as the stable propagation of vector singular beams bearing the coupled optical vortices with fractional topological charges, the conversion of the zero-order Bessel beam with a uniformly distributed linear polarization into the radially-, azimuthally- and spirally-polarized beams and the conversion of the space-variant linear polarization in the combined beam with coupled vortices. We have revealed that the field structure of the vortex-beams in the biaxially-induced crystals resembles that in the natural biaxial crystals and form the vector structure inherent in the conical diffraction. However, the mode beams in this case do not change the propagation direction...

  16. Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens

    Science.gov (United States)

    Krause, David L.

    2000-01-01

    A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.

  17. Identification du comportement de composites en fatigue bi-axiale

    OpenAIRE

    Busca, Damien

    2014-01-01

    La connaissance du comportement de composites sous un état de contraintes multi-axial reste un enjeu majeur pour l’optimisation du dimensionnement des structures. La machine de fatigue bi-axiale présente au LGP permet de générer un état de contrainte bi-axial par l’utilisation d’éprouvettes cruciformes. La conception des éprouvettes reste un enjeu majeur pour les chercheurs pour répondre aux problèmes spécifiques liés aux matériaux composites. Un nouveau type d’éprouvette cruciforme en compos...

  18. Irreversible magnetic processes under biaxial and uniaxial magnetic anisotropies

    Directory of Open Access Journals (Sweden)

    S. Pokharel

    2016-05-01

    Full Text Available Irreversible magnetic processes have been investigated in magnetic systems with two different anisotropy symmetries (uniaxial and biaxial through angular measurement of the switching field, the irreversible susceptibility and the magnetic viscosity. These two systems consist of two-dimensional cobalt ferrite hetero-structures epitaxially grown on (100 and (110 MgO substrate. It is found that for uniaxial anisotropy the irreversible characteristics of the magnetization are large and display a strong angular dependence, which exhibits its maximum at the easy axis and drops quickly to vanish at the hard axis. However, for biaxial anisotropy the magnetization irreversible characteristics are considerably reduced and are less sensitive to the field angle.

  19. Theory of nine elastic constants of biaxial nematics

    Institute of Scientific and Technical Information of China (English)

    Liu Hong

    2008-01-01

    In this paper, a rotational invariant of interaction energy between two biaxial-shaped molecules is assumed and in the mean field approximation, nine elastic constants for simple distortion patterns in biaxial nematica are derived in terms of the thermal averagewhere D(l)mn is the Wigner rotation matrix.In the lowest order terms, the elastic constants depend on coefficients г,г',λ, order parameters Q0=Q0+Q2vj'j''j(r12) and probability function fk'k'' k (r12), where r12 is the distance between two molecules, andλis proportional to temperature. Q0 and Q2 are parameters related to multiple moments of molecules. Comparing these results with those obtained from Landau-de Gennes theory, we have obtained relationships between coefficients, order parameters used in both theories. In the special case of uniaxial nematics, both results are reduced to a degenerate case where K11=K33.

  20. Biaxial casting method and apparatus for isolating radioactive waste

    International Nuclear Information System (INIS)

    Hazardous radioactive waste is compacted and cast into safely handled monolithic castings having a radiation barrier wall completely enclosing the radioactive waste by centrifugal casting processes in which the barrier wall may be either a pre-formed shell transported to the jobsite or it may be formed by biaxial centrifugal casting and curing of the barrier wall in a mold. When a pre-formed shell is used, means are provided for thickening the radiation barrier if necessary by biaxial casting of additional barrier material inside of the shell. Castable radioactive material is cast inside the barrier wall before removal of the casting mold from the finished cast monolith. The cast monolith is supported for rotation as the mold is removed therefrom so that additional impact resisting and radiation barrier material can also easily be applied to the exterior surface monolith if radiation leakage exceeds tolerance levels. (author) figs

  1. Scaling rules for critical current density in anisotropic biaxial superconductors

    Science.gov (United States)

    Li, Yingxu; Kang, Guozheng; Gao, Yuanwen

    2016-06-01

    Recent researches highlight the additional anisotropic crystallographic axis within the superconducting plane of high temperature superconductors (HTS), demonstrating the superconducting anisotropy of HTS is better understood in the biaxial frame than the previous uniaxial coordinates within the superconducting layer. To quantitatively evaluate the anisotropy of flux pinning and critical current density in HTS, we extend the scaling rule for single-vortex collective pinning in uniaxial superconductors to account for flux-bundle collective pinning in biaxial superconductors. The scaling results show that in a system of random uncorrected point defects, the field dependence of the critical current density is described by a unified function with the scaled magnetic field of the isotropic superconductor. The obtained angular dependence of the critical current density depicts the main features of experimental observations, considering possible corrections due to the strong-pinning interaction.

  2. High magnification crack-tip field characterisation under biaxial conditions

    OpenAIRE

    Moreno, B.(Universidad de Los Andes, Bogota, Colombia); Lopez-Crespo, P; Zapatero, J.

    2013-01-01

    This work presents a novel methodology for characterising fatigue cracks under biaxial conditions. The methodology uses high magnification Digital Image Correlation (DIC) technique for measuring displacement and strain crack-tip fields. By applying micro-speckle pattern on the metal surface it is possible to achieve high magnification for DIC technique. The speckles were created by electro-spray technique. The validity of this novel technique is demonstrated by direct comparison with stan...

  3. Limit load assessment of centre cracked plates under biaxial loading

    International Nuclear Information System (INIS)

    Fitness-for-service of equipment and components containing defects is generally assessed using procedures such as BS 7910, API 579 and R6. There is currently little detailed advice in these procedures on the effects of biaxial and triaxial loading on fracture. This poster shows some theoretical bounding solutions of the plastic limit load for centre cracked plates under a variety of biaxial loading ratios and compares the estimates with those found by numerical methods using finite element (FE) analysis using Abacus CAE modelling software. The limit load of a structure is the maximum load that it can carry before plastic collapse occurs; this is often when the plastic zone has become large enough to spread from the crack tip to a remote boundary. For an elastic-perfectly plastic material, the irreversible deformation will continue at stresses no higher than the yield stress. The model for these limit load solutions is a bi-axially loaded plate of width 2W and height 2H, a centre crack of width 2a, acted on by remotely applied uniform stresses σ2 perpendicular to the crack and Bσ2 parallel to the crack, where B is the biaxial loading ratio, it means the ratio of the parallel to the perpendicular stress. A quarter plate of an elastic-perfectly plastic material has been modelled. The results show that an exact solution has been found for negative and low positive values of B. For B > 1, the lower bound solution is conservative for all values of a/W and B

  4. Identification of material parameters using bi-axial machine

    OpenAIRE

    Flores, Paulo; de Montleau, P.; Mathonet, V.; Moureaux, P. (collab.); Habraken, Anne

    2004-01-01

    Experimental testing equipment is built in order to identify material parameters of complex phenomenological constitutive laws. This equipment consists in a bi-axial test machine able to perform plane strain and simple shear tests separately or simultaneously and a Miyauchi simple shear test device; an optical extensometer is used to identify the strain field. The article focus on the validation of the results of this new equipment by comparing with results obtained by standard machines and/o...

  5. Aspekte der Modellierung des Tragverhaltens von Textilbeton unter biaxialer Beanspruchung

    OpenAIRE

    Beyer, Frank R.; Zastrau, Bernd W.

    2011-01-01

    Zur Bemessung und Simulation von flächigen Textilbetonstrukturen werden Berechnungsmodelle benötigt, die das Materialverhalten unter biaxialer Beanspruchung abbilden können. Für eindimensionale Strukturen existieren einige Modelle, zu deren Weiterentwicklung eine Erweiterung zur Abbildung des biaxialen Materialverhaltens vorgeschlagen wird. In diesem Beitrag werden die notwendigen Erweiterungen und deren Umsetzbarkeit bei der Modellierung diskutiert und bewertet. For design and simulation...

  6. High temperature low cycle biaxial fatigue of two steels

    International Nuclear Information System (INIS)

    Biaxial low cycle fatigue tests at various temperatures and strain rates were performed on 1% Cr-Mo-V steel and AISI 316 stainless steel under combined torsional and axial loads. A correlation for fatigue strength has been derived, and it is also shown that if the Gough ellipse quadrant criterion is rephrased in terms of strain amplitudes, it may be used as a safe design rule for ductile metals in both the low and high cycle fatigue regimes. (author)

  7. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    Directory of Open Access Journals (Sweden)

    Samuel Pichardo

    Full Text Available Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13:135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode. The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d. resonance frequency of the samples was 465.1 (± 1.5 kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  8. Application of magnetomechanical hysteresis modeling of magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    Research was done on the biaxial stress problem accomplished in the first half of the second year. All of the work done was preparatory to magnetic measurements. Issues addressed were: construction of a model for extracting changes in the magnetic properties of a specimen from the readings of an indirect sensor; initial development of a model for how biaxial stress alters the intrinsic magnetic properties of thespecimen; use of finite element stress analysis modeling to determine a detailed shape for the cruciform biaxial stress specimen; and construction of the biaxial stress loading apparatus

  9. Combined loading effects on the fracture mechanics behavior of line pipes

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.E.; Cravero, S.; Ernst, H.A. [Tenaris Group, Campana (Argentina). SIDERCA R and D Center

    2009-12-19

    For certain applications, pipelines may be submitted to biaxial loading situations. In these cases, it is not clear the influence of the biaxial loading on the fracture mechanics behavior of cracked pipelines. For further understanding of biaxial loading effects, this work presents a numerical simulation of ductile tearing in a circumferentially surface cracked pipe under biaxial loading using the computational cell methodology. The model was adjusted with experimental results obtained in laboratory using single edge cracked under tension (SENT) specimens. These specimens appear as the better alternative to conventional fracture specimens to characterize fracture toughness of cracked pipes. The negligible effect of biaxial loadings on resistance curves was demonstrated. To guarantee the similarities of stress and strains fields between SENT specimens and cracked pipes subjected to biaxial loading, a constraint study using the J-Q methodology and the h parameter was used. The constraint study gives information about the characteristics of the crack-tip conditions. (author)

  10. An experimental study of biaxial yield in modified 9Cr-1Mo steel at room temperature

    Science.gov (United States)

    Ellis, J. R.

    1985-01-01

    Described are two biaxial experiments which investigated yield, hardening, and flow behavior in modified 9Cr-1Mo steel at room temperature. The aim of these experiments was to determine whether the procedures recommended in NE Standard F9-5T for inelastic design analysis are applicable for this material in normalized and tempered condition. The first experiment investigated small offset yield behavior subsequent to radial preloads (sq rt of 3 sub sigma 12 = sub sigma 11) in tension-torsion stress space. The second experiment investigated yield behavior subsequent to nonradial preloads and also the time-dependent flow occurring during 0.5 hour periods at constant stress. The results of these experiments were qualitatively similar to those obtained earlier for types 304 and 316 stainless steel. Specifically, the von Mises yield criterion was found to provide a reasonable approximation of initial yield behavior. Although the subsequent yield surfaces suffered considerable distortion from their near-circular form after both radial and nonradial preloads, the hardening behavior was to the first order kinematic in nature. The strain-time data obtained during the 0.5 hr hold periods showed characteristics typical of creep curves. As in the case of earlier experiments, the high initial flow rates diminished more rapidly than would be estimated from elevated temperature data.

  11. Temperature-induced sign reversal of biaxiality observed by conoscopy in some ferroelectric Sm- C* liquid crystals

    OpenAIRE

    Fukuda, Atsuo; VIJ, JAGDISH KUMAR

    2007-01-01

    PUBLISHED Article number 011709 We have studied various ferroelectric liquid crystals to find the average molecular direction of the shortest axis in the perfectly unwound state by using tilted conoscopic measurements. We find that there exist two types of temperature dependencies of the biaxiality. Some materials exhibit increasing biaxiality while others show decreasing biaxiality with increasing temperature. The former shows a temperature-induced sign reversal of biaxiality. Three di...

  12. Experimental realization of biaxial liquid crystal phases in colloidal dispersions of boardlike particles

    NARCIS (Netherlands)

    van den Pol, E; Petukhov, A.V.; Thies-Weesie, D.M.E.; Belov, D.V.; Vroege, G.J.

    2009-01-01

    Biaxial nematic and biaxial smectic phases were found in a colloidal model system of goethite ( -FeOOH) particles with a simple boardlike shape and short-range repulsive interaction. The macroscopic domains were oriented by a magnetic field and their structure was revealed by small angle x-ray scatt

  13. Phase Matching of SHG in Arbitrary Directions of Biaxial Crystals

    Institute of Scientific and Technical Information of China (English)

    YANG Shengli; CHEN Mouzhi

    2002-01-01

    In this paper, propagation and polarization characteristics of optical waves in arbitrary directions in a biaxial crystal are analyzed, and universal relationships of refractive index dependence on their propagation directions and the principal refractive indices for two perpendicular polarization waves propagating in arbitrarily directions are derived from indicatrix equation. By using these relationships, methods of collinear phase matching (PM) of SHG are developed, and general expressions of the collinear PM angle dependent of the principal indices are given for SHG in arbitrarily directions. The expressions may be used to make optimization design of PM by computer for the SHG and to select optimum PM direction and to raise the SHG conversion efficiencies.

  14. High magnification crack-tip field characterisation under biaxial conditions

    Directory of Open Access Journals (Sweden)

    B. Moreno

    2013-07-01

    Full Text Available This work presents a novel methodology for characterising fatigue cracks under biaxial conditions. The methodology uses high magnification Digital Image Correlation (DIC technique for measuring displacement and strain crack-tip fields. By applying micro-speckle pattern on the metal surface it is possible to achieve high magnification for DIC technique. The speckles were created by electro-spray technique. The validity of this novel technique is demonstrated by direct comparison with standard extensometer measurements, under tension-compression and torsion conditions. In order to image the correct region, the notch effect on the fatigue life was also evaluated.

  15. Material Identification Using a Bi-Axial Test Machine

    OpenAIRE

    Flores, Paulo; Moureaux, Pierre; Habraken, Anne

    2005-01-01

    This paper shows the identification of material parameters for a DC06 IF steel sheet of 0.8 mm by mechanical tests. The experimental equipment used consists of a tensile test machine, a bi-axial test machine able to perform plane-strain and simple shear tests separately or simultaneously and an optical strain gauge. Tensile, plane-strain and simple shear tests were performed at 0°, 45° and 90° from the sheet rolling direction in order to identify Hill 1948 and Hosford 1979 yield criteria. ...

  16. Hole doped Dirac states in silicene by biaxial tensile strain

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-03-11

    The effects of biaxial tensile strain on the structure, electronic states, and mechanical properties of silicene are studied by ab-initio calculations. Our results show that up to 5% strain the Dirac cone remains essentially at the Fermi level, while higher strain induces hole doped Dirac states because of weakened Si–Si bonds. We demonstrate that the silicene lattice is stable up to 17% strain. It is noted that the buckling first decreases with the strain (up to 10%) and then increases again, which is accompanied by a band gap variation. We also calculate the Grüneisen parameter and demonstrate a strain dependence similar to that of graphene.

  17. Acoustic emission under biaxial stresses in unflawed 21-6-9 and 304 stainless steel

    International Nuclear Information System (INIS)

    Acoustic emission (AE) testing has been carried out with uniaxial and biaxial (2:1 stress ratio) stressing of smooth samples of 21-6-9 and 304 stainless steel (SS). Uniaxial testing was done with simple tensile and compression samples as well as with the special biaxial specimens. Biaxial tensile stressing was accomplished with a specially designed specimen, which had been used previously to characterize AE in 7075 aluminum under biaxial stressing. Results were obtained for air-melt and for vacuum-melt samples of 21-6-9 SS. The air-melt samples contain considerably more inclusion particles than the vacuum-melt samples. For the 304 SS, as received material was examined. To allow AE correlations with microstructure, extensive characterization of the 21-6-9 microstructure was carried out. Significant differences in AE occur in biaxially stressed specimens as compared to uniaxially stressed samples. 15 figures, 3 tables

  18. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.

    2014-09-01

    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

  19. Powder-in-tube and thick-film methods of fabricating high temperature superconductors having enhanced biaxial texture

    Science.gov (United States)

    Goyal, Amit; Kroeger, Donald M.

    2003-11-11

    A method for forming an electronically active biaxially textured article includes the steps of providing a substrate having a single crystal metal or metal alloy surface, deforming the substrate to form an elongated substrate surface having biaxial texture and depositing an epitaxial electronically active layer on the biaxially textured surface. The method can include at least one annealing step after the deforming step to produce the biaxially textured substrate surface. The invention can be used to form improved biaxially textured articles, such as superconducting wire and tape articles having improved J.sub.c values.

  20. Numerical analysis of soil-rock mixture's meso-mechanics based on biaxial test

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hai-yang; XU Wen-jie; YU Yu-zhen

    2016-01-01

    Soil-rock mixture(S-RM)is a widely distributed geotechnical medium composed of "soil" and "rock block" different both in size and strength. Internal rock blocks form special and variable meso-structural characteristics of S-RM. The objective of this work was to study the control mechanism of meso-structural characteristics on mechanical properties of S-RM. For S-RM containing randomly generated polygonal rock blocks, a series of biaxial tests based on DEM were conducted. On the basis of research on the effects of rock blocks' breakability and sample lateral boundary type (rigid, flexible) on macroscopic mechanical behavior of S-RM, an expanded Mohr-Coulomb criterion in power function form was proposed to represent the strength envelop. At the mesoscopic level, the variations of meso-structure such as rotation of rock block, and the formation mechanism and evolution process of the shear band during tests were investigated. The results show that for S-RM with a high content of rock block, translation, rotating and breakage of rock blocks have crucial effects on mechanical behavior of S-RM. The formation and location of the shear band inside S-RM sample are also controlled by breakability and arrangement of rock blocks.

  1. Practical method for analysis and design of slender reinforced concrete columns subjected to biaxial bending and axial loads

    Science.gov (United States)

    Bouzid, T.; Demagh, K.

    2011-03-01

    Reinforced and concrete-encased composite columns of arbitrarily shaped cross sections subjected to biaxial bending and axial loads are commonly used in many structures. For this purpose, an iterative numerical procedure for the strength analysis and design of short and slender reinforced concrete columns with a square cross section under biaxial bending and an axial load by using an EC2 stress-strain model is presented in this paper. The computational procedure takes into account the nonlinear behavior of the materials (i.e., concrete and reinforcing bars) and includes the second - order effects due to the additional eccentricity of the applied axial load by the Moment Magnification Method. The ability of the proposed method and its formulation has been tested by comparing its results with the experimental ones reported by some authors. This comparison has shown that a good degree of agreement and accuracy between the experimental and theoretical results have been obtained. An average ratio (proposed to test) of 1.06 with a deviation of 9% is achieved.

  2. Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications.

    Science.gov (United States)

    Agishev, Ravil R; Comeron, Adolfo

    2002-12-20

    Results of lidar modeling based on spatial-angular filtering efficiency criteria are presented. Their analysis shows that the low spatial-angular filtering efficiency of traditional visible and near-infrared systems is an important cause of low signal/background-radiation ratio (SBR) at the photodetector input The low SBR may be responsible for considerable measurement errors and ensuing the low accuracy of the retrieval of atmospheric optical parameters. As shown, the most effective protection against sky background radiation for groundbased biaxial lidars is the modifying of their angular field according to a spatial-angular filtering efficiency criterion. Some effective approaches to achieve a high filtering efficiency for the receiving system optimization are discussed. PMID:12510915

  3. Conductive layer for biaxially oriented semiconductor film growth

    Science.gov (United States)

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  4. Biomechanical properties of the transverse carpal ligament under biaxial strain.

    Science.gov (United States)

    Holmes, Michael W R; Howarth, Samuel J; Callaghan, Jack P; Keir, Peter J

    2012-05-01

    The transverse carpal ligament (TCL) influences carpal stability and carpal tunnel mechanics, yet little is known about its mechanical properties. We investigated the tissue properties of TCLs extracted from eight cadaver arms and divided into six tissue samples from the distal radial, distal middle, distal ulnar, proximal radial, proximal middle, and proximal ulnar regions. The 5% and 15% strains were applied biaxially to each sample at rates of 0.1, 0.25, 0.5, and 1%/s. Ligament thickness ranged from 1.22 to 2.90 mm. Samples from the middle of the TCL were thicker proximally than distally (p carpal bone attachments. These properties contribute to the understanding of carpal tunnel mechanics that is critical to understanding disorders of the wrist. PMID:22042748

  5. Electromagnetic biaxial microscanner with mechanical amplification at resonance.

    Science.gov (United States)

    Cho, Ah Ran; Han, Aleum; Ju, Suna; Jeong, Haesoo; Park, Jae-Hyoung; Kim, Inhoi; Bu, Jong-Uk; Ji, Chang-Hyeon

    2015-06-29

    We present the design, fabrication, and measurement results of an electromagnetic biaxial microscanner with mechanical amplification mechanism. A gimbaled scanner with two distinct single-crystal silicon layer thicknesses and integrated copper coils has been fabricated with combination of surface and bulk micromachining processes. A magnet assembly consisting of an array of permanent magnets and a pole piece has been placed under the substrate to provide high strength lateral magnetic field oriented 45° to two perpendicular scanning axes. Micromirror has been supported by additional gimbal to implement a mechanical amplification. A 1.2mm-diameter mirror with aluminum reflective surface has been actuated at 60Hz for vertical scan and at 21kHz for horizontal scan. Maximum scan angle of 36.12° at 21.19kHz and 17.62° at 60Hz have been obtained for horizontal and vertical scans, respectively. PMID:26191691

  6. Electromagnetic biaxial vector scanner using radial magnetic field.

    Science.gov (United States)

    Han, Aleum; Cho, Ah Ran; Ju, Suna; Ahn, Si-Hong; Bu, Jong-Uk; Ji, Chang-Hyeon

    2016-07-11

    We present an electromagnetic biaxial vector-graphic scanning micromirror. In contrast to conventional electromagnetic actuators using linear magnetic field, proposed device utilizes a radial magnetic field and uniquely designed current paths to enable the 2 degree-of-freedom scanning motion. As the radial field is generated by concentrically assembled magnets placed under the scanner die, large driving torque can be generated without the aid of hermetic packaging and relatively small device volume can be achieved. Mechanical half scan angle of 6.43° and 4.20° have been achieved at DC current of 250mA and 350mA for horizontal and vertical scans, respectively. Forced actuation along both scan axes has been realized by feedback control. PMID:27410851

  7. Surface polaritons in symmetry planes of biaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Furs, A N; Galynsky, V M; Barkovsky, L M [Department of Theoretical Physics, Belarussian State University, Fr. Skarina Ave. 4, Minsk 220050 (Belarus)

    2005-09-16

    The problem of the surface polariton existence in symmetry planes of non-magnetic biaxial crystals is studied theoretically. The plane interface of such a crystal and a semi-infinite isotropic medium is considered. With the use of the integral formalism formulated in our earlier work, the dispersion equation is derived for the polaritons under consideration. The existence conditions for the dispersion equation solutions are obtained in the form of algebraic inequalities for principal values of inverse dielectric permittivity tensors. If these conditions are satisfied, then excitation of surface waves is possible along the allowed propagation directions, which constitute sectors in the interface plane. Exact expressions are obtained that determine location of these sectors with respect to the symmetry axes of the crystal.

  8. [Incisions for biaxial and coaxial microincision cataract surgery].

    Science.gov (United States)

    Müller, M; Kohnen, T

    2010-02-01

    Microincision cataract surgery (MICS) represents a new level in the development of cataract surgery. Phacoemulsification with intraocular lens (IOL) implantation via incisions of biaxial approach, with separation of the phaco tip and irrigation (B-MICS). Compared with standard small-incision cataract surgery, the advantages of MICS are less corneal astigmatism and fewer corneal surface irregularities, with favorable implications for visual quality and early rehabilitation. In the effort toward smaller incisions, special interest should be given to wound integrity, especially regarding the risk of endophthalmitis. With limited corneal elastic capacity, irreversible expansion of the incision with tissue laceration may occur. Smaller incisions are superior only if they cause less trauma. This requires an optimized relationship between incision size and manipulation during IOL implantation as well as attention to safety issues. MICS offers a platform for new benchmarks in phacoemulsification. PMID:20107810

  9. An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural-mechanical relationships.

    Science.gov (United States)

    Labus, Kevin M; Puttlitz, Christian M

    2016-09-01

    Computational models of the brain require accurate and robust constitutive models to characterize the mechanical behavior of brain tissue. The anisotropy of white matter has been previously demonstrated; however, there is a lack of data describing the effects of multi-axial loading, even though brain tissue experiences multi-axial stress states. Therefore, a biaxial tensile experiment was designed to more fully characterize the anisotropic behavior of white matter in a quasi-static loading state, and the mechanical data were modeled with an anisotropic hyperelastic continuum model. A probabilistic analysis was used to quantify the uncertainty in model predictions because the mechanical data of brain tissue can show a high degree of variability, and computational studies can benefit from reporting the probability distribution of model responses. The axonal structure in white matter can be heterogeneous and regionally dependent, which can affect computational model predictions. Therefore, corona radiata and corpus callosum regions were tested, and histology and transmission electron microscopy were performed on tested specimens to relate the distribution of axon orientations and the axon volume fraction to the mechanical behavior. These measured properties were implemented into a structural constitutive model. Results demonstrated a significant, but relatively low anisotropic behavior, yet there were no conclusive mechanical differences between the two regions tested. The inclusion of both biaxial and uniaxial tests in model fits improved the accuracy of model predictions. The mechanical anisotropy of individual specimens positively correlated with the measured axon volume fraction, and, accordingly, the structural model exhibited slightly decreased uncertainty in model predictions compared to the model without structural properties. PMID:27214689

  10. DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING

    Data.gov (United States)

    National Aeronautics and Space Administration — DYNAMIC STRAIN MAPPING AND REAL-TIME DAMAGE STATE ESTIMATION UNDER BIAXIAL RANDOM FATIGUE LOADING SUBHASISH MOHANTY*, ADITI CHATTOPADHYAY, JOHN N. RAJADAS, AND...

  11. Maier-Saupe model for a mixture of uniaxial and biaxial molecules

    Science.gov (United States)

    Nascimento, E. S.; Henriques, E. F.; Vieira, A. P.; Salinas, S. R.

    2015-12-01

    We introduce shape variations in a liquid-crystalline system by considering an elementary Maier-Saupe lattice model for a mixture of uniaxial and biaxial molecules. Shape variables are treated in the annealed (thermalized) limit. We analyze the thermodynamic properties of this system in terms of temperature T , concentration c of intrinsically biaxial molecules, and a parameter Δ associated with the degree of biaxiality of the molecules. At the mean-field level, we use standard techniques of statistical mechanics to draw global phase diagrams, which are shown to display a rich structure, including uniaxial and biaxial nematic phases, a reentrant ordered region, and many distinct multicritical points. Also, we use the formalism to write an expansion of the free energy in order to make contact with the Landau-de Gennes theory of nematic phase transitions.

  12. On the sensitivity of directions which support Voigt wave propagation in infiltrated biaxial dielectric materials

    CERN Document Server

    Mackay, Tom G

    2013-01-01

    Voigt wave propagation (VWP) was considered in a porous biaxial dielectric material which was infiltrated with a material of refractive index $n_a$. The infiltrated material was regarded as a homogenized composite material in the long-wavelength regime and its constitutive parameters were estimated using the extended Bruggeman homogenization formalism. In our numerical studies, the directions which support VWP were found to vary by as much as $300^\\circ$ per RIU as the refractive index $n_a$ was varied. The sensitivities achieved were acutely dependent upon the refractive index $n_a$ and the degrees of anisotropy and dissipation of the porous biaxial material. The orientations, shapes and sizes of the particles which constitute the infiltrating material and the porous biaxial material exerted only a secondary influence on the maximum sensitivities achieved. Also, for the parameter ranges considered, the degree of porosity of the biaxial material had little effect on the maximum sensitivities achieved. These n...

  13. Fatigue of Clip connectors for offshore drilling risers under biaxial tension

    Directory of Open Access Journals (Sweden)

    Gaur Vidit

    2014-06-01

    Full Text Available Drilling riser connectors designed by IFPEN undergo cyclic in-phase biaxial tension in their critical area. This type of loading was reproduced on steel tubular specimens loaded in cyclic tension and internal pressure. The fatigue lives were substantially reduced when the load biaxiality was increased from 0 to 0.4 and then further to 1, which was not captured by existing fatigue criteria. A deeper investigation is thus in progress. Emphasis is laid on the separate evaluation of mean stress and biaxiality effects, often treated in the same way in existing criteria. The influence of load biaxiality on the resistance of the steel to fatigue-corrosion in seawater will also be investigated.

  14. Biaxial low-cycle fatigue failure of 316 stainless steel at elevated temperatures

    International Nuclear Information System (INIS)

    High-strain, biaxial fatigue tests between the limiting conditions of uniaxial push-pull and fully reversed pure torsional loading were repeated on two batches of AISI 316 stainless steel, one tested at 4000C, the other at 5500C. An equivalent plastic shear strain range was shown to be superior to the octahedral equivalent strain for correlating biaxial fatigue endurance data. The stable cyclic stress-strain behaviour for any biaxial state is best represented in terms of the maximum shear stress and shear strain. At 5500C dynamic strain aging has a significant effect on both plastic flow and endurance for certain strain rates. Both Stage I and Stage II cracks were identified in the biaxial tests. (author)

  15. Comparative efficiency analysis of different nonlinear modelling strategies to simulate the biaxial response of RC columns

    OpenAIRE

    Hugo Rodrigues; Humberto Varum; Antonio Arede; Anibal Costa

    2012-01-01

    The performance of different nonlinear modelling strategies to simulate the response of RC columns subjected to axial load combined with cyclic biaxial horizontal loading is compared. The models studied are classified into two categories according to the nonlinearity distribution assumed in the elements: lumped-plasticity and distributed inelasticity. For this study, results of tests on 24 columns subjected to cyclic uniaxial and biaxial lateral displacements were numerically reproduced. The ...

  16. Two-Particle Cluster Theory for Biaxial Nematic Phase Based on a Recently Proposed Interaction Potential

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Dong; ZHANG Yan-Jun; SUN Zong-Li

    2006-01-01

    @@ Two-particle cluster theory is applied to study the biaxial nematic phase formed by biaxial molecules interacting with a simplified model proposed by Sonnet et al. [Phys. Rev. E 67 (2003) 061701]. For the temperature dependences of the internal energy per particle and of the order parameters, the two-particle theory yields an improved result compared with mean field theory. Concerning the phase diagram, the two-particle theory gives the numerical result in qualitative agreement with the mean field theory.

  17. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    OpenAIRE

    Tsung Chieh Cheng; Chao Kai Yang; Lin, I.

    2016-01-01

    In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately main...

  18. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  19. Fracture assessment of shallow-flaw cruciform beams tested under uniaxial and biaxial loading conditions

    International Nuclear Information System (INIS)

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate with the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states. (orig.)

  20. Biaxial nematic phases in fluids of hard board-like particles.

    Science.gov (United States)

    Martínez-Ratón, Y; Varga, S; Velasco, E

    2011-08-01

    We use density-functional theory, of the fundamental-measure type, to study the relative stability of the biaxial nematic phase, with respect to non-uniform phases such as smectic and columnar, in fluids made of hard board-like particles with sizes σ(1) > σ(2) > σ(3). A restricted-orientation (Zwanzig) approximation is adopted. Varying the ratio κ(1) = σ(1)/σ(2) while keeping κ(2) = σ(2)/σ(3), we predict phase diagrams for various values of κ(2) which include all the uniform phases: isotropic, uniaxial rod- and plate-like nematics, and biaxial nematic. In addition, spinodal instabilities of the uniform phases with respect to fluctuations of the smectic, columnar and plastic-solid types are obtained. In agreement with recent experiments, we find that the biaxial nematic phase begins to be stable for κ(2)≳ 2.5. Also, as predicted by previous theories and simulations on biaxial hard particles, we obtain a region of biaxiality centred at κ(1)≈κ(2) which widens as κ(2) increases. For κ(2)≳ 5 the region κ(2)≈κ(1) of the packing-fraction vs. κ(1) phase diagrams exhibits interesting topologies which change qualitatively with κ(2). We have found that an increasing biaxial shape anisotropy favours the formation of the biaxial nematic phase. Our study is the first to apply FMT theory to biaxial particles and, therefore, it goes beyond the second-order virial approximation. Our prediction that the phase diagram must be asymmetric in the neighbourhood of κ(1)≈κ(2) is a genuine result of the present approach, which is not accounted for by previous studies based on second-order theories. PMID:21701729

  1. A fast real time measurement system to track in and out of plane optical retardation/ birefringence, true stress, and true strain during biaxial stretching of polymer films

    Science.gov (United States)

    Cakmak, M.; Hassan, M.; Unsal, E.; Martins, C.

    2012-12-01

    An instrumented and highly integrated biaxial stretching system was designed and constructed to obtain true stress, true strain, and optical behavior of polymeric films during biaxial stretching. With programmable drive motors, any form of temporally varying biaxial deformation profiles, including linear, exponential, logarithmic as well as cyclic, can be applied to a square-shaped films. This machine allows the investigation of mechano-optical behavior of films under profiles captured in industrial processes. To overcome the edge effects, the samples are painted with a dot pattern that is imaged using a high speed video capture system. This system accurately determines the locations of the each dot matrix in subsequent images acquired and calculates the true strains in both directions. The in-plane optical retardation is determined using spectral birefringence method that uses polarized white light and optical spectrometer in the optical train. This is carried out automatically at less than 10 nm in retardation resolution with the light beam passing through the symmetry center of the sample. Out of plane retardation is measured with an identical optical train tilted 45° to the plane of the film with its light beam going through the same spot on the sample as 0° beam. The true stress and birefringences are calculated with the determined instantaneous thickness of the film. With this system, the stress optical behavior of PET's is determined up to very large deformation levels at moderate to high deformation rates. Beyond the initial linear stress optical behavior, these films exhibit sudden positive deviation from linearity and this start of nonlinearity was directly associated with the stress induced crystallization.

  2. An experimental study on the biaxial strength of the plain concrete for containment structures

    International Nuclear Information System (INIS)

    In this paper, an experimental study into the biaxial strength of plain concrete for containment structures is represented and technical difficulties encountered in the development of a suitable test setup are discussed. Prior to testing for a 1/8 model of cylindrical specimen(φ150x300) and four 1/4 models of plate specimens(200x200xT(=30, 50, 60, 70)mm) under uniaxial compression, the strength ratios between both specimens with different geometry shapes were found by nonlinear finite element analyses using ABAQUS. From the results three suitable type of considered plate specimens were selected for failure testing under biaxial stress. As initial approach to develop biaxial strength criteria of plain concrete, the various test data were obtained under uniaxial compression, uniaxial tension and biaxial compression. The test data indicate that the strength of concrete under biaxial compression, f1=f2, is 14.7 percent larger than under uniaxial compression and the Poisson's ratio of concrete is 0.155. Teflon employed to eliminate friction between test specimen and loading platens showed and excellent effect under biaxial compression, f1=f2

  3. Phase diagram of the uniaxial and biaxial soft-core Gay-Berne model

    Science.gov (United States)

    Berardi, Roberto; Lintuvuori, Juho S.; Wilson, Mark R.; Zannoni, Claudio

    2011-10-01

    Classical molecular dynamics simulations have been used to explore the phase diagrams for a family of attractive-repulsive soft-core Gay-Berne models [R. Berardi, C. Zannoni, J. S. Lintuvuori, and M. R. Wilson, J. Chem. Phys. 131, 174107 (2009)] and determine the effect of particle softness, i.e., of a moderately repulsive short-range interaction, on the order parameters and phase behaviour of model systems of uniaxial and biaxial ellipsoidal particles. We have found that isotropic, uniaxial, and biaxial nematic and smectic phases are obtained for the model. Extensive calculations of the nematic region of the phase diagram show that endowing mesogenic particles with such soft repulsive interactions affect the stability range of the nematic phases, and in the case of phase biaxiality it also shifts it to lower temperatures. For colloidal particles, stabilised by surface functionalisation, (e.g., with polymer chains), we suggest that it should be possible to tune liquid crystal behaviour to increase the range of stability of uniaxial and biaxial phases (by varying solvent quality). We calculate second virial coefficients and show that they are a useful means of characterising the change in effective softness for such systems. For thermotropic liquid crystals, the introduction of softness in the interactions between mesogens with overall biaxial shape (e.g., through appropriate conformational flexibility) could provide a pathway for the actual chemical synthesis of stable room-temperature biaxial nematics.

  4. DEM Simulation of Biaxial Compression Experiments of Inherently Anisotropic Granular Materials and the Boundary Effects

    Directory of Open Access Journals (Sweden)

    Zhao-Xia Tong

    2013-01-01

    Full Text Available The reliability of discrete element method (DEM numerical simulations is significantly dependent on the particle-scale parameters and boundary conditions. To verify the DEM models, two series of biaxial compression tests on ellipse-shaped steel rods are used. The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary. The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions. The peak friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.

  5. Simulation of Complex Cracking in Plain Weave C/SiC Composite under Biaxial Loading

    Science.gov (United States)

    Cheng, Ron-Bin; Hsu, Su-Yuen

    2012-01-01

    Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.

  6. Growth of inclined fatigue cracks using the biaxial CJP model

    Directory of Open Access Journals (Sweden)

    G. Laboviciute

    2015-07-01

    Full Text Available The CJP model of crack tip stresses is a modified version of the Williams crack tip stress field which takes account of simplified stress distributions that arise from the presence of a zone of plastic deformation associated with the crack flanks and crack tip, and that act on the elastic field responsible for driving crack growth. The elastic stress field responsible for crack growth is therefore controlled by the applied loading and by the induced boundary stresses at the interface with the plastic zone. This meso-scale model of crack tip stresses leads to a modified set of crack tip stress intensity factors that include the resultant influence of plastic wake-induced crack tip shielding, and which therefore have the potential to help resolve some longstanding controversies associated with plasticity-induced closure. A full-field approach has now been developed for stress using photoelasticity and also for displacement using digital image correlation. This paper considers the characterisation of crack growth rate data with the biaxial CJP model, using compact tension specimens that contain inclined cracks at the notch tip with initial angles of 30°, 45° and 60° to the horizontal axis. Significant experimental difficulties are experienced in growing cracks in a biaxial field under uniaxial tensile loading, as the natural tendency of the crack is to turn so that it becomes perpendicular to the maximum principal stress direction. However, crack angle is not an issue in the CJP model which calculates the stress field parallel with, and perpendicular to, the crack plane. These stress components can be rotated into directions comparable with the usual KI and KII directions and used to calculate stress intensity parameters that should be directly comparable with the standard stress intensity formulations. Another difficulty arises, however, in finding published expressions for KI and KII for CT specimens with curved or kinked cracks. The CJP model

  7. Low-cycle fatigue behaviour and microstructure of copper and alpha-brass under biaxial load paths

    Energy Technology Data Exchange (ETDEWEB)

    Henkel, S; Fischer, J; Biermann, H [TU Bergakademie Freiberg, Institute for Materials Engineering, Gustav-Zeuner-Strasse 5, D-09599 Freiberg (Germany); Balogh, L; Ungar, T, E-mail: henkel@ww.tu-freiberg.d [Eoetvoes University, Department of General Physics, PO Box 32, 1518 Budapest (Hungary)

    2010-07-01

    The low-cycle fatigue behaviour of copper and a-brass CuZn30 was investigated in uniaxial and biaxial tests. Planar biaxial fatigue tests were carried out using cruciform samples with proportional stain paths with and without phase shift between the two axes. Microcharacterisation was performed by electron microscopy as well as by high-resolution X-ray line profile analysis. The biaxial cyclic stress-strain curves show good agreement with the uniaxial ones using the von Mises equivalent strain hypothesis. The dislocation densities and microhardness values of the biaxial case, however, show significantly lower values compared to the uniaxial case at equivalent von Mises stresses.

  8. Electret properties of biaxially stretched polypropylene films containing various additives

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbrand, J [Institute for Communications Technology, Darmstadt University of Technology, 64283 Darmstadt (Germany); Behrendt, N [Polymer Engineering, University of Bayreuth, 95447 Bayreuth (Germany); Altstaedt, V [Polymer Engineering, University of Bayreuth, 95447 Bayreuth (Germany); Schmidt, H-W [Macromolecular Chemistry I, University of Bayreuth, 95447 Bayreuth (Germany); Sessler, G M [Institute for Communications Technology, Darmstadt University of Technology, 64283 Darmstadt (Germany)

    2006-02-07

    Isotactic polypropylene (i-PP) films containing additives such as the commercial {alpha} -nucleation agent NA11 and the anorganic filler particles CaCO{sub 3} and Al{sub 2}O{sub 3} were biaxially stretched. As a result, the films assume a cellular morphology with oblong cavities extending in the direction of the film elongation. In the present study, stretched films of 50 {mu}m thickness with additive concentrations of 0.05-10 mass per cent were charged with a corona method to potentials of 400 or 500 V. The stability of the charges was tested isothermally at temperatures of 90 and 120 deg. C and by means of thermally stimulated discharge (TSD) experiments. The isothermal measurements show, for the above additives with concentrations higher than about 0.3%, a reduction of the charge decay with increasing additive concentrations. Compared with reference films of pure PP, the potential decay of the films containing additive concentrations of 10% is significantly reduced. Correspondingly, the TSD measurements indicate a shift of the main discharge peak to higher temperatures up to the melting temperature. Generally, the voiding and thus the stability also increases with the stretching ratio. These improvements of the charge stability are attributed to the barrier effect of the cavities. The results are of interest with respect to the various applications of PP electrets, such as ferroelectret devices and air filters.

  9. Electret properties of biaxially stretched polypropylene films containing various additives

    Science.gov (United States)

    Hillenbrand, J.; Behrendt, N.; Altstädt, V.; Schmidt, H.-W.; Sessler, G. M.

    2006-02-01

    Isotactic polypropylene (i-PP) films containing additives such as the commercial α -nucleation agent NA11 and the anorganic filler particles CaCO3 and Al2O3 were biaxially stretched. As a result, the films assume a cellular morphology with oblong cavities extending in the direction of the film elongation. In the present study, stretched films of 50 µm thickness with additive concentrations of 0.05-10 mass per cent were charged with a corona method to potentials of 400 or 500 V. The stability of the charges was tested isothermally at temperatures of 90 and 120 °C and by means of thermally stimulated discharge (TSD) experiments. The isothermal measurements show, for the above additives with concentrations higher than about 0.3%, a reduction of the charge decay with increasing additive concentrations. Compared with reference films of pure PP, the potential decay of the films containing additive concentrations of 10% is significantly reduced. Correspondingly, the TSD measurements indicate a shift of the main discharge peak to higher temperatures up to the melting temperature. Generally, the voiding and thus the stability also increases with the stretching ratio. These improvements of the charge stability are attributed to the barrier effect of the cavities. The results are of interest with respect to the various applications of PP electrets, such as ferroelectret devices and air filters.

  10. Biaxially textured copper-iron alloys for coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Gallistl, Bernhard; Hassel, Achim Walter [Institute for Chemical Technology of Inorganic Materials, Johannes Kepler University, Altenberger Str. 69, 4040 Linz (Austria); Kirchschlager, Raimund [Institute for Semiconductor and Solid State Physics, Johannes Kepler University, Altenberger Str. 69, 4040 Linz (Austria)

    2012-05-15

    Two copper based biaxially textured alloys containing 0.37 and 0.91 wt.%-Fe have been investigated for the use as substrate material for coated conductors. Average full width at half maximum (FWHM) values of 7.3 (CuFe0.37) and 6.8 (CuFe0.91) for in-plane alignment and 7.2 (CuFe0.37, CuFe0.91) for out-of-plane are achieved. Ultimate tensile strength for the two alloys is found to be much higher compared to the values for Cu and CuFe2.35. Hysteresis losses are dramatically reduced compared to other available substrate materials. Magnetisation data for both alloys obtained at 5 K show an anticipated saturation magnetisation (M{sub s}) <0.35 {mu}Wb m kg{sup -1}, which is less than 1% of pure Ni. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  12. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate

    Science.gov (United States)

    Plechinger, Gerd; Castellanos-Gomez, Andres; Buscema, Michele; van der Zant, Herre S. J.; Steele, Gary A.; Kuc, Agnieszka; Heine, Thomas; Schüller, Christian; Korn, Tobias

    2015-03-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllable biaxial tensile strain by heating the substrate with a focused laser. The effect of this biaxial strain is directly observable in optical spectroscopy as a redshift of the MoS2 photoluminescence. We also demonstrate the potential of this method to engineer more complex strain patterns by employing highly absorptive features on the substrate to achieve non-uniform heat profiles. By comparison of the observed redshift to strain-dependent band structure calculations, we estimate the biaxial strain applied by the silicone-based substrate to be up to 0.2%, corresponding to a band gap modulation of 105 meV per percentage of biaxial tensile strain.

  13. Development of pressurized disc type fatigue testing system for equi-biaxial fatigue

    International Nuclear Information System (INIS)

    A testing method for investigating fatigue strength under equi-biaxial stress/strain condition was developed. In this method, the equi-biaxial stress condition was achieved by applying pressure on the surfaces of a disc-type specimen, for which the disc edge was constrained by supporting jigs. Air pressure was used to apply the cyclic loading and the failure of the specimen was determined by detecting the crack penetration of the specimen thickness. This method allows application of the cyclic equi-biaxial stress without a complex testing apparatus or a complex controlling system such as the testing system using the cruciform or tubular specimens, conventionally used for the fatigue test under the equi-biaxial stress condition. After developing the testing system, the configuration of the disc-type specimen was designed by finite element analysis so that a crack would be initiated at the center of the specimen. Then, carbon steel (SS400 in JIS) specimens were subjected to the fatigue test. The developed system was demonstrated to be able to initiate a fatigue crack at the center of the specimen and to detect the specimen failure successfully. The test results showed that the fatigue lifetime under equi-biaxial stress was longer than that under uniaxial stress for the same Von Mises equivalent strain range. (author)

  14. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry.

    Science.gov (United States)

    Aho, Johnathon M; Qiang, Bo; Wigle, Dennis A; Tschumperlin, Daniel J; Urban, Matthew W

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  15. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal–submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa–submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered

  16. Liquid crystal display modes in a nontilted bent-core biaxial smectic liquid crystal

    Science.gov (United States)

    Nagaraj, Mamatha; Panarin, Y. P.; Vij, J. K.; Keith, C.; Tschierske, C.

    2010-11-01

    Liquid crystal display (LCD) modes associated with the rotation of the secondary director in nontilted, biaxial smectic phase of an achiral bent-core compound are demonstrated. For LCDs, we find that at least four display modes are possible using SmAPA phase of the studied material, in which the minor directors in adjacent layers are aligned antiferroelectrically. The advantages of these modes include low driving field (1-2 V/μm), high contrast ratio 1000:1, relatively fast switching time of 0.5 ms and continuous gray scale. The molecular short axis or the polar axis in a negative dielectric, biaxial material is oriented by the in-plane electric field by a combination dielectric biaxiality and polarity at low electric fields and polarity at higher fields.

  17. Phase Shift of Polarized Light after Transmission through a Biaxial Anisotropic Thin Film

    Science.gov (United States)

    Hou, Yong-Qiang; Li, Xu; He, Kai; Qi, Hong-Ji; Yi, Kui; Shao, Jian-Da

    2013-01-01

    Based on the theoretical analysis of biaxial birefringent thin films with characteristic matrix method, we investigate the phase shift on transmission of a tilted columnar biaxial film at normal and oblique incidence over 300-1200 nm for s- and p-polarized waves. Compared with the simplified calculation method, the interference effects of the birefringent thin film are considered to yield more accurate results. The quarter wavelength phase shift calculated with the characteristic matrix method is consistent with that monitored with in situ measurement by two-angle ellipsometry, which validates our complied program for the calculation of the phase shift of the biaxial anisotropic thin film. Furthermore, the characteristic matrix method can be easily used to obtain continuous adjustable phase retardation at oblique incidence, whereas the simplified calculation method is valid for the case of normal incidence. A greater generality and superiority of the characteristic matrix method is presented.

  18. Phase Shift of Polarized Light after Transmission through a Biaxial Anisotropic Thin Film

    International Nuclear Information System (INIS)

    Based on the theoretical analysis of biaxial birefringent thin films with characteristic matrix method, we investigate the phase shift on transmission of a tilted columnar biaxial film at normal and oblique incidence over 300–1200 nm for s- and p-polarized waves. Compared with the simplified calculation method, the interference effects of the birefringent thin film are considered to yield more accurate results. The quarter wavelength phase shift calculated with the characteristic matrix method is consistent with that monitored with in situ measurement by two-angle ellipsometry, which validates our complied program for the calculation of the phase shift of the biaxial anisotropic thin film. Furthermore, the characteristic matrix method can be easily used to obtain continuous adjustable phase retardation at oblique incidence, whereas the simplified calculation method is valid for the case of normal incidence. A greater generality and superiority of the characteristic matrix method is presented

  19. The elusive thermotropic biaxial nematic phase in rigid bent-core molecules

    Indian Academy of Sciences (India)

    Bharat R Acharya; Andrew Primak; Theo J Dingemans; Edward T Samulski; Satyendra Kumar

    2003-08-01

    The biaxial nematic liquid crystalline phase was predicted several decades ago. Several vigorous attempts to find it in various systems resulted in mis-identifications. The results of X-ray diffraction and optical texture studies of the phases exhibited by rigid bent-core molecules derived from 2,5-bis-(-hydroxyphenyl)-1,3,4-oxadiazole reveal that the biaxial nematic phase is formed by three compounds of this type. X-ray diffraction studies reveal that the nematic phase of these compounds has the achiral symmetry D2h, in which the overall long axes of the molecules are oriented parallel to each other to define the major axis of the biaxial phase. The apex of the bent-cores defines the minor axis of this phase along which the planes containing the bent-cores of neighboring molecules are oriented parallel to each other.

  20. A confocal rheoscope to study bulk or thin-film material under uniaxial or biaxial shear

    CERN Document Server

    Lin, Neil Y C; Cheng, Xiang; Leahy, Brian; Cohen, Itai

    2016-01-01

    We present a new design of a confocal rheoscope that enables us to precisely impose a uniform uniaxial or biaxial shear. The design consists of two precisely-positioned parallel plates. Our design allows us to adjust the gap between the plates to be as small as 2$\\pm$0.1 $\\mu$m, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material 3D structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions.

  1. Spin splitting in bulk wurtzite AlN under biaxial strain

    Science.gov (United States)

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Lee, Meng-En; Wu, C. L.; Wang, W. T.; Chen, Chun-Nan; Hsu, Y. C.

    2012-05-01

    The spin-splitting energies in biaxially strained bulk wurtzite material AlN are calculated using the linear combination of atomic orbital (LCAO) method, and the equi-spin-splitting distributions in k-space near the minimum-spin-splitting (MSS) surfaces are illustrated. These data are compared with those derived analytically by two-band k . p (2KP) model. It is found that the results from these two methods are in good agreement for small k. However, the ellipsoidal MSS surface under biaxial compressive strain does not exist in the 2KP model, because the data points are far from the Γ point. Instead, three basic shapes of the MSS surface occur in the wurtzite Brillouin zone: a hyperboloid of two sheets, a hexagonal cone, and a hyperboloid of one sheet, evaluated from the LCAO method across the range of biaxial strains from compressive to tensile.

  2. STRAIN-CONTROLLED BIAXIAL TENSION OF NATURAL RUBBER: NEW EXPERIMENTAL DATA

    KAUST Repository

    Pancheri, Francesco Q.

    2014-03-01

    We present a new experimental method and provide data showing the response of 40A natural rubber in uniaxial, pure shear, and biaxial tension. Real-time biaxial strain control allows for independent and automatic variation of the velocity of extension and retraction of each actuator to maintain the preselected deformation rate within the gage area of the specimen. Wealso focus on the Valanis-Landel hypothesis that is used to verify and validate the consistency of the data.Weuse a threeterm Ogden model to derive stress-stretch relations to validate the experimental data. The material model parameters are determined using the primary loading path in uniaxial and equibiaxial tension. Excellent agreement is found when the model is used to predict the response in biaxial tension for different maximum in-plane stretches. The application of the Valanis-Landel hypothesis also results in excellent agreement with the theoretical prediction.

  3. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  4. Preliminary results from biaxial shallow-flaw fracture toughness tests on reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Reactor pressure vessel (RPV) operating life can be limited by radiation-induced embrittlement and in this regard a loading condition of particular interest is postulated pressurized-thermal-shock (PTS). The calculated fracture initiation resistance of an RPV is based on the ASME KIc fracture toughness curve, which was developed using specimens with negligible out-of-plane strain (i.e., plane-strain conditions). For the shallow flaws of interest in the PTS analysis and for uniaxial loading, the fracture toughness appears to be considerably greater than KIc. However, PTS loads produce both a significant crack-opening load and a significant positive out-of-plane load along the crack front for both circumferential and axial flaws. Experimental evidence is scarce but seems to indicate that, for conditions prototypic of an RPV, a reduction in fracture toughness takes place associated with out-of-plane biaxial loading when compared with uniaxial loading conditions in shallow-flaw specimens. Additional experimental fracture toughness data under biaxial loading are necessary to evaluate the effect of biaxial loads in an RPV under PTS conditions. The Heavy-Section Steel Technology (HSST) program sponsored by the US Nuclear Regulatory Commission (NRC) is conducting an exploratory, ''proof-of-principle'' series of out-of-plane, biaxial-bending, fracture-toughness tests using specimens with shallow flaws. Cruciform specimens with an approximate cross section of 100 x 100 mm (4 x 4 in.) and with a straight-through, two-dimensional, shallow flaw, are being loaded in bending across two perpendicular planes for biaxial loading. This paper presents the initial test results under uniaxial and biaxial loading and compares the test results with HSST shallow-crack data

  5. The fabrication and high temperature stability of biaxially textured Ni tape by ion beam structure modification method

    International Nuclear Information System (INIS)

    For the conventional rolling assisted biaxially textured metallic substrate (RABiTS) process, a large degree of cold rolling deformation and a subsequent high temperature annealing procedure are required to obtain adequately biaxially textured Ni tape. Recently, we have reported a newly developed process, named as ion beam structure modification (ISM), for fabricating biaxially textured Ni tape by use of low energy argon ion beam bombardment. In this paper, the biaxial texture of ISM processed Ni tape and its thermal stability at high temperatures are investigated. Results show that Ni tape processed under optimum ISM conditions, the (2 0 0) rocking curve FWHM is less than 5.7 deg. , and the (1 1 1) phi-scan FWHM is less than 7.5 deg. . High temperature annealing does not impair the biaxial-texture already developed in ISM processed Ni foils, although ISMs should not be regarded as a complete equilibrium process

  6. Long-term strength of Kh13M2S2 in biaxial stressed state

    International Nuclear Information System (INIS)

    Long-term strength of thin-walled tubular and plane samples of Kh13M2S2 steel at 650 deg C was studied. The tubular samples were loaded with internal gas pressure which resulted in a biaxial stressed state, the plane ones were loaded with uniaxial extension. Statistical processing of the experimental results was carried out, the straight lines of long-term strength with confidence intervals were plotted. Of four studied criteria of the complex stressed state the best coincidence of the experimental results under biaxial and uniaxial load is obtained using the Lebedev criterion

  7. Effective-Field Theory on High Spin Systems with Biaxial Crystal Field

    Institute of Scientific and Technical Information of China (English)

    JIANG Wei; GUO An-Bang; LI Xin; WANG Xi-Kun; BAI Bao-Dong

    2006-01-01

    Based on the effective-field theory with self-spin correlations and the differential operator technique,physical properties of the spin-2 system with biaxial crystal field on the simple cubic, body-centered cubic, as well as faced-centered lattice have been studied. The influences of the external longitudinal magnetic field on the magnetization,internal energy, specific heat, and susceptibility have been discussed in detail. The phenomenon that the magnetization in the ground state shows quantum effects produced by the biaxial transverse crystal field has been found.

  8. Scratch resistance anisotropy in biaxially oriented polypropylene and poly(ethylene terephthalate) films

    International Nuclear Information System (INIS)

    Using a diamond-tipped stylus, scratch tests were conducted on biaxially oriented polypropylene and poly(ethylene terephthalate) films in the two draw directions, i.e., the machine-direction (MD) and the transverse-direction (TD) along which the draw ratios are different. Atomic force microscopy study of those scratches revealed a significant anisotropy in the scratch resistance between the MD and TD for both of the polymer films. We confirmed that the scratch resistance of polymer strands is closely related to the draw ratios, which determine the mechanical strength and optical clarity of biaxially oriented polymer films

  9. Understanding Nonlinear Dielectric Properties in a Biaxially Oriented Poly(vinylidene fluoride) Film at Both Low and High Electric Fields.

    Science.gov (United States)

    Li, Yue; Ho, Janet; Wang, Jianchuan; Li, Zhong-Ming; Zhong, Gan-Ji; Zhu, Lei

    2016-01-13

    Understanding nonlinear dielectric behavior in polar polymers is crucial to their potential application as next generation high energy density and low loss dielectrics. In this work, we studied nonlinear dielectric properties of a biaxially oriented poly(vinylidene fluoride) (BOPVDF) film under both low and high electric fields. For fundamental nonlinear dielectric constants at low fields (measure up to the third harmonics. It was observed that the low-field dielectric nonlinearity for the BOPVDF disappeared above 10 Hz at room temperature, suggesting that the low-field dielectric nonlinearity originated from ionic migration of impurity ions rather than dipolar relaxation of the amorphous segments. Above the coercive field (EC ≈ 70 MV/m), bipolar electric displacement-electric field (D-E) loop tests were used to extract the nonlinear behavior for pure PVDF crystals, which had a clear origin of ferroelectric switching of polar crystalline dipoles and domains and nonpolar-to-polar (α → δ → β) phase transformations. By using HVBDS, it was observed that the ferroelectric switching of polar crystalline dipoles and domains in BOPVDF above the EC always took place between 20 and 500 Hz regardless of a broad range of temperature from -30 to 100 °C. This behavior was drastically different from that of the amorphous PVDF dipoles, which had a strong dependence on frequency over orders of magnitude. PMID:26698912

  10. FAILURE MODE AND CONSTITUTIVE MODEL OF PLAIN HIGH-STRENGTH HIGH-PERFORMANCE CONCRETE UNDER BIAXIAL COMPRESSION AFTER EXPOSURE TO HIGH TEMPERATURES

    Institute of Scientific and Technical Information of China (English)

    Zhenjun He; Yupu Song

    2008-01-01

    An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including α = σ2 : σ3 = 0.00 : -1, -0.20 : -1, -0.30 : -1, -0.40 : -1, -0.50 : -1, -0.75 : -1, -1.00 : -1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm × 100 mm × 100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement.

  11. Electronic and optical properties of kesterite Cu2ZnSnS4 under in-plane biaxial strains: First-principles calculations

    International Nuclear Information System (INIS)

    The electronic structures and optical properties of Cu2ZnSnS4 (CZTS) under in-plane biaxial strain were systematically investigated using first-principles calculations based on generalized gradient approximation and hybrid functional method, respectively. It is found that the fundamental bandgap at the Γ point decreases linearly with increasing tensile biaxial strain perpendicular to c-axis. However, a bandgap maximum occurs as the compressive biaxial strain is 1.5%. Further increase of compressive strain decreases the bandgap. In addition, the optical properties of CZTS under biaxial strain are also calculated, and the variation trend of optical bandgap with biaxial strain is consistent with the fundamental bandgap.

  12. Optimal design and examination study of biaxial tensile specimens for solid propellant%固体推进剂双向拉伸试件优化设计及试验

    Institute of Scientific and Technical Information of China (English)

    贾永刚; 张为华; 张炜

    2011-01-01

    基于Kelly提出的十字形试件,设计了一种新型固体推进剂双向拉伸试件。利用ANSYS有限元软件对试件双向加载过程试验区中引起的应力应变的数值模拟,实现了十字形试件的优化设计,经过优化的试件在满足双轴试验要求方面有了明显的改进。通过对丁羟复合固体推进剂试件双向加载力学行为试验研究,获得不同拉伸速率双向拉伸应力—应变破坏曲线,为推进剂材料破坏分析的经验准则提供判据。结果表明,固体推进剂断裂延伸率的双向弱化效应很明显,双向加载比例为等双拉状态时,其双向断裂延伸率比单向断裂延伸率降低37.5%。%A new-style biaxial tensile specimen of solid propellant is designed,based on the cruciform specimens proposed by Kelly.By using the finite element analysis ANSYS,the stress and displacement of specimens in the test section is simulated and the optimization of the cruciform specimens is realized.The stress and displacement fields in the central test section exhibit an excellent homogeneity and the maximum equivalent Von-Mises stress corresponding to the central part of the test section.In particular,the mechanical behavior of the biaxial tensile for HTPB propellant are tested,and the stress-strain wreck curves of biaxial tension are obtained under different tension speed.These data offer criterion for the wreck analysis of propellant material.The results show that the biaxial weakening of solid propellant is remarkable,and the Von-Mises rupture elongation of biaxial tensile decline about 37.5% to uniaxial tensile while the biaxial loads are equivalent.

  13. Large-deformation properties of wheat dough in uni- and biaxial extension. Part I. Flour dough

    NARCIS (Netherlands)

    Sliwinski, E.L.; Kolster, P.; Vliet, van T.

    2004-01-01

    Rheological and fracture properties of optimally mixed flour doughs from three wheat cultivars which perform differently in cereal products were studied in uniaxial and biaxial extension. Doughs were also tested in small angle sinusoidal oscillation. In accordance with previously published results t

  14. 2D nonlocal versus 3D bifurcation studies for biaxially loaded plates

    DEFF Research Database (Denmark)

    Benallal, A.; Tvergaard, Viggo

    1998-01-01

    The main objective of this work is to analyse how a two-dimensional second gradient plasticity model is able to reproduce the three-dimensional bifurcation behaviour for a biaxially loaded flat plate. While it is found that the simple model used here is able to capture them qualitatively for the ...

  15. The effect of biaxial strain on impurity diffusion in Si and SiGe

    DEFF Research Database (Denmark)

    Larsen, Arne Nylandsted; Zangenberg, Nikolaj; Fage-Pedersen, Jacob

    2005-01-01

    Results from diffusion studies of different impurities in biaxially strained Si and Si"1"-"xGe"x for low x-values will be presented. The structures are all molecular-beam epitaxy (MBE) grown on strain-relaxed Si"1"-"xGe"x layers, and the impurity profiles are introduced during growth. We have in...

  16. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture-toughness

    International Nuclear Information System (INIS)

    Uniaxial tests of single-edged notched bend (SENB) specimens with both deep- and shallow-flaws have shown elevated fracture-toughness for the shallow flaws. The elevation in fracture-toughness for shallow flaws has been shown to be the result of reduced constraint at the crack-tip. Biaxial loading has the potential to increase constraint at the crack-tip and thereby reduce some of the shallow-flaw, fracture-toughness elevation. Biaxial fracture-toughness tests have shown that the shallow-flaw, fracture-toughness elevation is reduced but not eliminated by biaxial loading. Dual-parameter, fracture-toughness correlations have been proposed to reflect the effect of crack-tip constraint on fracture-toughness. Test results from the uniaxial and biaxial tests were analyzed using the dual-parameter technology. Discrepancies between analysis results and cleavage initiation site data from fractographic examinations indicate that the analysis models are in need of further refinement. Addition of a precleavage, ductile-tearing element to the analysis model has the potential to resolve the noted discrepancies

  17. On the sensitivity of directions that support Voigt wave propagation in infiltrated biaxial dielectric materials

    Science.gov (United States)

    Mackay, Tom G.

    2014-01-01

    Voigt wave propagation (VWP) was considered in a porous biaxial dielectric material that was infiltrated with a material of refractive index n. The infiltrated material was regarded as a homogenized composite material in the long wavelength regime, and its constitutive parameters were estimated using the extended Bruggeman homogenization formalism. In our numerical studies, the directions that support VWP were found to vary by as much as 300 deg per RIU as the refractive index n was varied. The sensitivities achieved were acutely dependent upon the refractive index n and the degrees of anisotropy and dissipation of the porous biaxial material. The orientations, shapes, and sizes of the particles that constitute the infiltrating material and the porous biaxial material exerted only a secondary influence on the maximum sensitivities achieved. Also, for the parameter ranges considered, the degree of porosity of the biaxial material had little effect on the maximum sensitivities achieved. These numerical findings bode well for the possible harnessing of VWP for optical sensing applications.

  18. Crack under biaxial loading: Two-parameter description and prediction of crack growth direction

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav

    2014-01-01

    Roč. 31, APR (2014), s. 44-49. ISSN 0213-3725 R&D Projects: GA MŠk(CZ) 7AMB14AT012 Institutional support: RVO:68081723 Keywords : Concrete * T-stress * cracks growth prediction * numerical calculation * biaxial loading Subject RIV: JL - Materials Fatigue, Friction Mechanics

  19. Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems

    Directory of Open Access Journals (Sweden)

    Bandar Mohammed Abdullah Al-Makramani

    2010-12-01

    Full Text Available Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. OBJECTIVES: The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. MATERIAL AND METHODS: Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995 were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M Sdn Bhd, Puchong, Selangor, Malaysia], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany, which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. RESULTS: The mean biaxial flexural strength values were: Turkom-Cera: 506.8±87.01 MPa, In-Ceram: 347.4±28.83 MPa and Vitadur-N: 128.7±12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA at a preset significance level of 5% because of unequal group variances (P<0.001. There was statistically significant difference between the three core ceramics (P<0.05. Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. CONCLUSIONS: Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

  20. Electric field induced biaxiality and the electro-optic effect in a bent-core nematic liquid crystal

    Science.gov (United States)

    Nagaraj, Mamatha; Panarin, Y. P.; Manna, U.; Vij, J. K.; Keith, C.; Tschierske, C.

    2010-01-01

    We report the observation of a biaxial nematic phase in a bent-core molecular system using polarizing microscopy, electro-optics, and dielectric spectroscopy, where we find that the biaxiality exists on a microscopic scale. An application of electric field induces a macroscopic biaxiality and in consequence gives rise to electro-optic switching. This electro-optic effect shows significant potential in applications for displays due to its fast high-contrast response. The observed electro-optic switching is explained in terms of the interaction of the ferroelectric clusters with the electric field.

  1. Monte Carlo simulations of biaxial structure in thin hybrid nematic film based upon spatially anisotropic pair potential

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhi-Dong; Chang Chun-Rui; Ma Dong-Lai

    2009-01-01

    Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model,in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals.We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structarc transition from the biaxial to the bent-director structure,which is similar to the result obtained using the Lebwohl-Lasher model.However,the step-like director's profile,characteristic for the biaxial structure,is spatially asymmetric in the film because the pair potential leads to K1≠K3.We estimate the upper cell thickness to be 69 spin layers,in which the biaxial structure can be found.

  2. Discrete Element Simulations and Experiments on the Deformation of Cohesive Powders in a bi-axial Box

    OpenAIRE

    Imole, O.I.; Kumar, N; Magnanimo, V.; S. Luding

    2012-01-01

    We compare element test experiments and simulations on the deformation of frictional, cohesive particles in a bi-axial box. We show that computer simulations with the Discrete Element Method qualitatively reproduce a uniaxial compression element test in the true bi-axial tester. We highlight the effects of friction and polydispersity on our simulations and present the second stress response namely the deviatoric stress as a function of the deviatoric strain.

  3. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  4. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states

  5. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  6. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates

  7. Evaluation of constraint methodologies applied to a shallow-flaw cruciform bend specimen tested under biaxial loading conditions

    International Nuclear Information System (INIS)

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a prototypic, far-field. out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies. namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness, the conventional maximum principal stress criterion indicated no effect

  8. Preliminary assessment of the effects of biaxial loading on reactor pressure vessel structural-integrity-assessment technology

    International Nuclear Information System (INIS)

    Effects of biaxial loading on shallow-flaw fracture toughness were studied to determine potential impact on structural integrity assessment of a reactor pressure vessel (RPV) under pressurized thermal shock (PTS) transient loading and pressure-temperature (PT) loading produced by reactor heatup and cooldown transients. Biaxial shallow-flaw fracture-toughness tests results were also used to determine the parameter controlling fracture in the transition temperature range, and to develop a related dual-parameter fracture-toughness correlation. Shallow-flaw and biaxial loading effects were found to reduce the conditional probability of crack initiation by a factor of nine when the shallow-flaw fracture-toughness KJc data set, with biaxial-loading effects adjustments, was substituted in place of ASME Code KIc data set in PTS analyses. Biaxial loading was found to reduce the shallow-flaw fracture toughness of RPV steel such that the lower-bound curve was located between ASME KIc and KIR curves. This is relevant to future development of P-T curve analysis procedures. Fracture in shallow-flaw biaxial samples tested in the lower transition temperature range was shown to be strain controlled. A strain-based dual-parameter fracture-toughness correlation was developed and shown to be capable of predicting the effect of crack-tip constraint on fracture toughness for strain-controlled fracture

  9. Structural stability and theoretical strength of Cu crystal under equal biaxial loading

    Indian Academy of Sciences (India)

    Jian-Min Zhang; Zhong-Liang Lin; Yan Zhang; Vincent Ji

    2010-02-01

    Cu has been used extensively to replace Al as interconnects in ULSI and MEMS devices. However, because of the difference in the thermal expansion coefficients between the Cu film and the Si substrate, large biaxial stresses will be generated in the Cu film. Thus, the Cu film becomes unstable and even changes its morphologies which affects the device manufacturing yield and ultimate reliability. The structural stability and theoretical strength of Cu crystal under equal biaxial loading have been investigated by combining the MAEAM with Milstein-modified Born stability criteria. The results indicate that, under sufficient tension, there exists a stress-free BCC phase which is unstable and slips spontaneously to a stress-free metastable BCT phase by consuming internal energy. The stable region ranges from −15.131 GPa to 2.803 GPa in the theoretical strength or from −5.801% to 4.972% in the strain respectively.

  10. Biaxial load effects on the crack border elastic strain energy and strain energy rate

    Science.gov (United States)

    Eftis, J.; Subramonian, N.; Liebowitz, H.

    1977-01-01

    The validity of the singular solution (first term of a series representation) is investigated for the crack tip stress and displacement field in an infinite sheet with a flat line crack with biaxial loads applied to the outer boundaries. It is shown that if one retains the second contribution to the series approximations for stress and displacement in the calculation of the local elastic strain energy density and elastic strain energy rate in the crack border region, both these quantities have significant biaxial load dependency. The value of the J-integral does not depend on the presence of the second term of the series expansion for stress and displacement. Thus J(I) is insensitive to the presence of loads applied parallel to the plane of the crack.

  11. Non-linear Response of Two-way Asymmetric Multistorey Building Under Biaxial Excitation

    Directory of Open Access Journals (Sweden)

    Nishant K. Kumar

    2013-04-01

    Full Text Available Seismic analysis is generally performed by creating a structural model which is excited with forces in two orthogonal directions separately i.e. they are subjected to uniaxial excitation. But an actual earthquake will have its effect in both the directions simultaneously. Limited research has been carried out on effect of such biaxial excitation. This paper deals with the non-linear performance of multi-storey buildings under biaxial excitation using various time-histories. The angle of incidence of earthquake forces will be varying between 0 to 360 degrees. Three building plans, with eccentricity along each of x and z directions in plan and a third with eccentricity in both the orthogonal direction, have been studied.Time history analysis has been carried out using SAP2000 after validating a preliminary model with experimental results available in reference literature.

  12. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  13. Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munho; Mi, Hongyi; Cho, Minkyu; Seo, Jung-Hun; Ma, Zhenqiang, E-mail: mazq@engr.wisc.edu [Department of Electrical and Computer Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Zhou, Weidong [Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States); Gong, Shaoqin [Department of Biomedical Engineering and Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)

    2015-05-25

    A method of creating tunable and programmable biaxial compressive strain in silicon nanomembranes (Si NMs) transferred onto a Kapton{sup ®} HN polyimide film has been demonstrated. The programmable biaxial compressive strain (up to 0.54%) was generated utilizing a unique thermal property exhibited by the Kapton HN film, namely, it shrinks from its original size when exposed to elevated temperatures. The correlation between the strain and the annealing temperature was carefully investigated using Raman spectroscopy and high resolution X-ray diffraction. It was found that various amounts of compressive strains can be obtained by controlling the thermal annealing temperatures. In addition, a numerical model was used to evaluate the strain distribution in the Si NM. This technique provides a viable approach to forming in-plane compressive strain in NMs and offers a practical platform for further studies in strain engineering.

  14. Effect of biaxial loading on the fracture behaviour of a ferritic steel component

    International Nuclear Information System (INIS)

    The effect of biaxial loading on the ductile behaviour of a through-wall crack in a ferritic steel structure under contained yield is of particular interest to the structural integrity argument for reactor pressure vessels. This results from the fact that there are many instances in practice (for example a crack in a circumferential weld), where a significant applied stress is present in the direction parallel to the crack as well as in the perpendicular direction. Two large plate ductile tearing tests have been performed on centre through-crack specimens (75mm by 2m by 2m) manufactured from a ferritic steel. The first test specimen was loaded in uniaxial tension and the second test specimen was loaded biaxially. This paper presents experimental details and results of the two plate tests and describes the analysis work undertaken to interpret the experiments satisfactorily. ((orig.))

  15. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    International Nuclear Information System (INIS)

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute

  16. Biaxially aligned buffer layers of cerium oxide, yttria stabilized zirconia, and their bilayers

    International Nuclear Information System (INIS)

    Biaxially aligned cerium oxide (CeO2) and yttria stabilized zirconia (YSZ) films were deposited on Ni-based metal (Hastelloy C276) substrates held at room temperature using ion beam assisted (IBAD) magnetron deposition with the ion beam directed at 55 degree to the normal of the film plane. In addition, we achieved, room-temperature epitaxial growth of CeO2 by bias sputtering to form biaxially aligned CeO2/YSZ bilayers. The crystalline structure and in-plane orientation of films was investigated by x-ray diffraction techniques. Both the IBAD CeO2 and YSZ films, and the CeO2/YSZ bilayers have a (111) pole in the ion beam direction. copyright 1997 American Institute of Physics

  17. Biaxially aligned buffer layers of cerium oxide, yttria stabilized zirconia, and their bilayers

    Science.gov (United States)

    Gnanarajan, S.; Katsaros, A.; Savvides, N.

    1997-05-01

    Biaxially aligned cerium oxide (CeO2) and yttria stabilized zirconia (YSZ) films were deposited on Ni-based metal (Hastelloy C276) substrates held at room temperature using ion beam assisted (IBAD) magnetron deposition with the ion beam directed at 55° to the normal of the film plane. In addition, we achieved, room-temperature epitaxial growth of CeO2 by bias sputtering to form biaxially aligned CeO2/YSZ bilayers. The crystalline structure and in-plane orientation of films was investigated by x-ray diffraction techniques. Both the IBAD CeO2 and YSZ films, and the CeO2/YSZ bilayers have a (111) pole in the ion beam direction.

  18. Chaos synchronization in bi-axial magnets modeled by Bloch equation

    International Nuclear Information System (INIS)

    In this paper, we show that the bi-axial magnetic material modelled by Bloch equation admits chaotic solutions for a certain set of numerical values assigned to the system of parameters and initial conditions. Using the unidirectional linear and nonlinear feedback schemes, we demonstrate that two such systems can be synchronized together. The chaotic synchronization is discussed in the context of complete synchronization which means that the difference of the states of two relevant systems converge to zero. (author)

  19. Non-proportional tension-shear experiments in a biaxial test facility

    OpenAIRE

    Riel, van, A.C.M.J.; Boogaard, van den, F.E.; Huetink, J.

    2006-01-01

    This paper discusses the results obtained from experiments on DC06 mild steel with a biaxial test facility. The two presented tests are non-proportional tests consisting of a two stage strain path. First the samples are deformed in the tensile direction after which simple shear deformation is applied. In the one case elastic unloading is applied after the tensile deformation, while in the other case the tensile deformation is directly followed by the simple shear deformation. For the test wit...

  20. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.

    LENUS (Irish Health Repository)

    Lyons, Mathew

    2014-06-03

    Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace׳s law showed a circumferential stress in the abdominal wall of approx. 1.1MPa due to an IAP of 11kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress-stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress-stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.

  1. Novel biaxial tensile test for studying aortic failure phenomena at a microscopic level

    Directory of Open Access Journals (Sweden)

    Sugita Shukei

    2013-01-01

    Full Text Available Abstract Background An aortic aneurysm is a local dilation of the aorta, which tends to expand and often results in a fatal rupture. Although larger aneurysms have a greater risk of rupture, some small aneurysms also rupture. Since the mechanism of aortic rupture is not well understood, clarification of the microstructure influencing the failure to rupture is important. Since aortic tissues are stretched biaxially in vivo, we developed a technique to microscopically observe the failure of an aortic rupture during biaxial stretch. Methods A thinly sliced porcine thoracic aortic specimen was adhered to a circular frame and pushed onto a cylinder with a smaller diameter to stretch the specimen biaxially. To induce failure to rupture at the center, the specimen was thinned at the center of the hole as follows: the specimen was frozen while being compressed with metal plates having holes, which were 3 mm in diameter at their centers; the specimen was then sliced at 50-μm intervals and thawed. Results The ratio of the thickness at the center to the peripheral area was 99.5% for uncompressed specimens. The ratio decreased with an increase in the compression ratio εc and was 47.3% for specimens with εc = 40%. All specimens could be stretched until failure to rupture. The probability for crack initiation within the cylinder was εc εc >30%, respectively. Among specimens ruptured within the cylinder, 93% of those obtained from the mid-media showed crack initiation at the thin center area. Conclusions Aortic tissues were successfully stretched biaxially until failure, and their crack initiation points were successfully observed under a microscope. This could be a very useful and powerful method for clarifying the mechanism of aortic rupture. We are planning to use this technique for a detailed investigation of events occurring at the point of failure when the crack initiates in the aortic aneurysm wall.

  2. Calculation of tunnel splitting in a biaxial spin particle with an applied magnetic field

    OpenAIRE

    Shen, SQ; Zhou, B.; Liang, JQ

    2004-01-01

    The level splitting formulae of excited states as well as ground state for a biaxial spin particle in the presence of an applied magnetic field are obtained in a simple way from Schrödinger theory. Considering the boundary condition of the wave function, we obtain the tunneling splitting of the energy levels for half-integral spins as well as for the integral spins. The results obtained are compared with those previously derived by complicated pseudoparticle methods and numerical calculation ...

  3. Fracture Propagation Characteristic and Micromechanism of Rock-Like Specimens under Uniaxial and Biaxial Compression

    OpenAIRE

    Xue-wei Liu; Quan-sheng Liu; Shi-bing Huang; Lai Wei; Guang-feng Lei

    2016-01-01

    This paper presents a set of uniaxial and biaxial compression tests on the rock-like material specimens with different fracture geometries through a rock mechanics servo-controlled testing system (RMT-150C). On the basis of experimental results, the characteristics of fracture propagation under different fracture geometries and loading conditions are firstly obtained. The newly formed fractures are observed propagating from or near the preexisting crack tips for different specimens, while the...

  4. Effect of biaxial versus coaxial microincision cataract surgery on optical quality of the cornea

    Directory of Open Access Journals (Sweden)

    Tamer Fahmy Eliwa

    2015-01-01

    Full Text Available Context: Visual function is determined by a combination of the cornea, which has a larger effect and internal aberrations generated by the intraocular lens and those induced by the surgery. These corneal refractive changes are related to the location and size of the corneal incision. The smaller the incision, the lower the aberrations and the better the optical quality. Aims: To compare the effect of uneventful coaxial versus biaxial microincision cataract surgery (MICS on the corneal aberrations. Settings and Design: Retrospective interventional nonrandomized comparative case study comprised 40 eyes of 36 patients with primary senile cataract. Subjects and Methods: They were divided into two groups: Group I (20 eyes had operated by biaxial MICS and Group II (20 eyes had operated by coaxial MICS. Each group were assessed by corneal topography and wavefront analysis over 6 mm pupil size preoperatively and 1-month postoperatively. Statistical Analysis Used: Statistical analysis was performed using SPSS for Windows (version 17.0.1, SPSS, Inc.. The paired t-test was used to compare the mean values of corneal aberrations preoperatively and 1-month postoperatively in each group. Results: There was a significant increase in trefoil and quatrefoil in biaxial MICS (P = 0.063, 0.032 respectively while other aberrations insignificantly changed. The coaxial MICS showed a significant increase in root mean square (RMS of total high order aberrations (HOAs (P = 0.02 and coma (0.028, but not the others. In comparison to each other, there was the insignificant difference as regards astigmatism, RMS of individual and total HOAs. Conclusions: Coaxial and biaxial MICS are neutral on corneal astigmatism and aberrations.

  5. Effect of Corneal Incision Enlargement on Surgically Induced Astigmatism in Biaxial Microincision Cataract Surgery

    Directory of Open Access Journals (Sweden)

    Mehmet Tetikoğlu

    2016-06-01

    Full Text Available Objectives: To evaluate surgically induced astigmatism (SIA in biaxial microincision cataract surgery with enlargement of one corneal incision during intraocular lens implantation (IOL. Materials and Methods: Data from 683 eyes with cataract that underwent biaxial microincision cataract surgery and IOL were retrospectively analyzed. The operated eyes were divided into 4 groups defined by final corneal incision length after IOL implantation. There were 83 eyes with 1.6 mm corneal incisions (group 1 and 200 eyes in each of the 2, 2.4, and 2.8 mm corneal incision groups (groups 2, 3 and 4, respectively. SIA was assessed using preoperative and postoperative keratometric values at one month. Results: The mean magnitude of SIA was 0.83±0.4 D in group 1, 0.93±0.5 D in group 2, 1.03±0.6 D in group 3 and 1.04±0.7 D in group 4. The SIA showed statistically significant differences between the four groups (p=0.05. Pairwise group comparisons revealed significant differences between groups 1 and 3 and groups 1 and 4 (p=0.005. Conclusion: Biaxial microincision cataract surgery with an incision size of 1.6 mm resulted in the least SIA. Enlargement of the corneal incision beyond 2.0 mm during IOL implantation led to significant increases in SIA. We believe that with the development and dissemination of IOLs which can be inserted through small corneal incisions, biaxial microincision cataract surgery will be the best choice to prevent SIA and increase visual acuity

  6. Investigation of in-plane biaxial low cycle fatigued austenitic stainless steel AISI 321. I. Mechanical testing on the planar biaxial load machine

    International Nuclear Information System (INIS)

    During fatigue loading of structural materials such as stainless steel, changes in the microstructure which affect the mechanical and physical properties occur. Experimental simulation of the loading conditions that induce the changes can be performed by mechanical loading, usually in the form of uniaxial tension-compression cycling. However, real machines and structures are subjected to more complex multiaxial stresses. Fatigue and fracture under multiaxial stresses are one of the most important current topics aimed at ensuring improved reliability of industrial components. The first step towards better understanding of this problem is to subject the materials to biaxial loading. The material examined was low austenitic stainless steel AISI 321 H. A set of the four samples of cruciform geometry was subjected to the biaxial tension-compression fatigue cycling with the frequency of 0.5 Hz at the applied load of 10-17 kN. The samples are intended for the neutron diffraction measurements of the residual stresses and the mechanical characterizations on a dedicated stress-diffractometer

  7. Electrodeposition of biaxially textured nickel substrates for coated conductor by magnetic texturing

    International Nuclear Information System (INIS)

    An innovative method to fabricate biaxially textured nickel substrates applicable to coated conductor is developed. This method used the industrially scalable electrodeposition method combined with external magnetic field. The biaxially textured Ni layer was formed by electrodeposition process under external magnetic field. The electrodeposited Ni substrate has been characterized by means of X-ray diffraction and shows well-developed biaxial texture (Δθ∼7.29 deg., Δphi∼8.14 deg. ). A CeO2 buffer layer was epitaxially grown on the electrodeposited Ni substrates subsequently by thermal evaporation. In addition, a continuous processing of long tape was tried to test the compatibility of electrodeposition with further scale-up. The grown 20 cm-long Ni tape shows good crystallinity but non-uniform texture. Pinhole-free and smooth surface was obtained by additives and electropolishing. The magnetic texturing in the electrodeposition process offers a simple and economical way to quasi-single-crystalline metal substrates suitable for coated conductor

  8. Fabrication and reliable implementation of an ionic polymer-metal composite (IPMC) biaxial bending actuator

    Science.gov (United States)

    Lee, Gil-Yong; Choi, Jung-Oh; Kim, Myeungseon; Ahn, Sung-Hoon

    2011-10-01

    Ionic polymer-metal composites (IPMCs) are one of the most popular types of electro-active polymer actuator, due to their low electric driving potential, large deformation range, and light weight. IPMCs have been used as actuators or sensors in many areas of biomedical and robotic engineering. In this research, IPMCs were studied as a biaxial bending actuator capable of smart and flexible motion. We designed and fabricated this bending actuator and implemented it to have a reliable actuating motion using a systematic approach. The resulting device was bar shaped with a square cross section and had four insulated electrodes on its surface. By applying different voltages to these four electrodes, a biaxial bending motion can be induced. To construct this actuator, several fabrication processes were considered. We modified the Nafion stacking method, and established a complete sequence of actuator fabrication processes. Using these processes, we were able to fabricate an IPMC biaxial bending actuator with both high actuating force and high flexibility. Several experiments were conducted to investigate and verify the performance of the actuator. The IPMC actuator system was modeled from experimentally measured data, and using this actuator model, a closed-loop proportional integral (PI) controller was designed. Reference position tracking performances of open-loop and closed-loop systems were compared. Finally, circular motion tracking performances of the actuator tip were tested under different rotation frequencies and radii of a reference trajectory circle.

  9. Biaxial Texture Evolution in MgO Films Fabricated Using Ion Beam-Assisted Deposition

    Science.gov (United States)

    Xue, Yan; Zhang, Ya-Hui; Zhao, Rui-Peng; Zhang, Fei; Lu, Yu-Ming; Cai, Chuan-Bing; Xiong, Jie; Tao, Bo-Wan

    2016-04-01

    The growth of multifunctional thin films on flexible substrates is important technologically, because flexible electronics require such a platform. In this study, we examined the evolution of biaxial texture in MgO films prepared using ion beam-assisted deposition (IBAD) on a Hastelloy substrate. Texture and microstructure developments were characterized through in situ reflection high-energy electron diffraction monitoring, x-ray diffraction, and atomic force microscopy, which demonstrated that biaxial texture was developed during the nucleation stage (~2.2 nm). The best biaxial texture was obtained with a thickness of approximately 12 nm. As MgO continued to grow, the influence of surface energy was reduced, and film growth was driven by the attempt to minimize volume free-energy density. Thus the MgO grains were subsequently rotated at the (002) direction toward the ion beam. In addition, an approach was developed for accelerating in-plane texture evolution by pre-depositing an amorphous MgO layer before IBAD.

  10. Loading system mechanism for dielectric elastomer generators with equi-biaxial state of deformation

    Science.gov (United States)

    Fontana, M.; Moretti, G.; Lenzo, B.; Vertechy, R.

    2014-03-01

    Dielectric Elastomer Generators (DEGs) are devices that employ a cyclically variable membrane capacitor to produce electricity from oscillating sources of mechanical energy. Capacitance variation is obtained thanks to the use of dielectric and conductive layers that can undergo different states of deformation including: uniform or non-uniform and uni- or multi-axial stretching. Among them, uniform equi-biaxial stretching is reputed as being the most effective state of deformation that maximizes the amount of energy that can be extracted in a cycle by a unit volume of Dielectric Elastomer (DE) material. This paper presents a DEG concept, with linear input motion and tunable impedance, that is based on a mechanical loading system for inducing uniform equi-biaxial states of deformation. The presented system employs two circular DE membrane capacitors that are arranged in an agonist-antagonist configuration. An analytical model of the overall system is developed and used to find the optimal design parameters that make it possible to tune the elastic response of the generator over the range of motion of interest. An apparatus is developed for the equi-biaxial testing of DE membranes and used for the experimental verification of the employed numerical models.

  11. Strain uniformity in biaxial specimens is highly sensitive to attachment details.

    Science.gov (United States)

    Eilaghi, Armin; Flanagan, John G; Brodland, G Wayne; Ethier, C Ross

    2009-09-01

    Biaxial testing has been used widely to characterize the mechanical properties of soft tissues and other flexible materials, but fundamental issues related to specimen design and attachment have remained. Finite element models and experiments were used to investigate how specimen geometry and attachment details affect uniformity of the strain field inside the attachment points. The computational studies confirm that increasing the number of attachment points increases the size of the area that experiences sensibly uniform strain (defined here as the central sample region where the ratio of principal strains E(11)/E(22)talc-sprinkled rubber specimens loaded using wire "rakes." Points on a grid having 12 x 12 bays were tracked, and a detailed strain map was constructed. A finite element model based on the actual geometry of an experiment having an off-pattern rake tine gave strain patterns that matched to within 4.4%. Finally, simulations using nonequibiaxial strains indicated that the strain field uniformity was more sensitive to sample attachment details for the nonequibiaxial case as compared to the equibiaxial case. Specimen design and attachment were found to significantly affect the uniformity of the strain field produced in biaxial tests. Practical guidelines were offered for design and mounting of biaxial test specimens. The issues addressed here are particularly relevant as specimens become smaller in size. PMID:19725692

  12. Flexural strength of dental composite restoratives: comparison of biaxial and three-point bending test.

    Science.gov (United States)

    Chung, S M; Yap, A U J; Chandra, S P; Lim, C T

    2004-11-15

    This study compared two test methods used to evaluate the flexural strength of resin-based dental composites. The two test methods evaluated were the three-point bending test4 and the biaxial flexural test. Materials used in this investigation were from the same manufacturer (3M ESPE) and included microfill (A110), minifill (Z100 and Filtek Z250), polyacid modified (F2000), and flowable [Filtek Flowable (FF)] composites. Flexural strength was determined with the use of both test methods after 1 week of conditioning in water at 37 degrees C. Data were analyzed with the use of an ANOVA/Scheffe test and an independent-samples t test at significance level 0.05. Mean flexural strength (n = 7) ranged from 66.61 to 147.21 and 67.27 to 182.81 MPa for three-point bending and ball-on-three-ball biaxial test methods, respectively. In both test methods, Z100 was significantly stronger than all other composites evaluated. In the three-point bending test, flexural strength of Z250 was significantly higher than A110, F2000 and FF, and FF was significantly stronger than A110 and F2000. The biaxial test method arrived at the same conclusions except that there was no significant difference between Z250 and FF. Pearson's correlation revealed a significantly (p bending test. PMID:15386492

  13. 3D shape identification of parallelepiped flaw by means of biaxial MFLT using neural network

    International Nuclear Information System (INIS)

    In this paper, we attempt to evaluate the three-dimensional shape of a parallelepiped flaw and identify its location, i.e. the horizontal position and the located surface, by means of biaxial Magnetic Flux Leakage Testing (MFLT), employing a Neural Network (NN). The specimen is a magnetic material (SS400) subjected to a magnetic field, and the magnetic flux in the specimen leaks near the flaw. We measure the biaxial Magnetic Flux Leakage (MFL), i.e, the tangential and the normal components of the MFL, along a line parallel to the specimen's surface. We then approximate the measured biaxial MFL distributions by means of elementary functions with a small number of coefficients. The approximation coefficients are extracted as Characteristic Quantities (CQs) of the MFL distribution. The horizontal position of the flaw along the measurement line is characterized by some of these CQs. NN is used to infer the cross section of the flaw, i.e, the width, depth, and located surface of the CQs. By repeating a similar process along several measurement lines parallel to the specimen's surface, we can identify the three-dimensional shape of the flaw, including its location. The NN, trained with several known flaws, was found to be able to evaluate the three-dimensional shape and location of a parallelepiped flaw with a high level of accuracy. (author)

  14. Fabrication and reliable implementation of an ionic polymer–metal composite (IPMC) biaxial bending actuator

    International Nuclear Information System (INIS)

    Ionic polymer–metal composites (IPMCs) are one of the most popular types of electro-active polymer actuator, due to their low electric driving potential, large deformation range, and light weight. IPMCs have been used as actuators or sensors in many areas of biomedical and robotic engineering. In this research, IPMCs were studied as a biaxial bending actuator capable of smart and flexible motion. We designed and fabricated this bending actuator and implemented it to have a reliable actuating motion using a systematic approach. The resulting device was bar shaped with a square cross section and had four insulated electrodes on its surface. By applying different voltages to these four electrodes, a biaxial bending motion can be induced. To construct this actuator, several fabrication processes were considered. We modified the Nafion stacking method, and established a complete sequence of actuator fabrication processes. Using these processes, we were able to fabricate an IPMC biaxial bending actuator with both high actuating force and high flexibility. Several experiments were conducted to investigate and verify the performance of the actuator. The IPMC actuator system was modeled from experimentally measured data, and using this actuator model, a closed-loop proportional integral (PI) controller was designed. Reference position tracking performances of open-loop and closed-loop systems were compared. Finally, circular motion tracking performances of the actuator tip were tested under different rotation frequencies and radii of a reference trajectory circle

  15. Biaxial Texture Evolution in MgO Films Fabricated Using Ion Beam-Assisted Deposition

    Science.gov (United States)

    Xue, Yan; Zhang, Ya-Hui; Zhao, Rui-Peng; Zhang, Fei; Lu, Yu-Ming; Cai, Chuan-Bing; Xiong, Jie; Tao, Bo-Wan

    2016-07-01

    The growth of multifunctional thin films on flexible substrates is important technologically, because flexible electronics require such a platform. In this study, we examined the evolution of biaxial texture in MgO films prepared using ion beam-assisted deposition (IBAD) on a Hastelloy substrate. Texture and microstructure developments were characterized through in situ reflection high-energy electron diffraction monitoring, x-ray diffraction, and atomic force microscopy, which demonstrated that biaxial texture was developed during the nucleation stage (~2.2 nm). The best biaxial texture was obtained with a thickness of approximately 12 nm. As MgO continued to grow, the influence of surface energy was reduced, and film growth was driven by the attempt to minimize volume free-energy density. Thus the MgO grains were subsequently rotated at the (002) direction toward the ion beam. In addition, an approach was developed for accelerating in-plane texture evolution by pre-depositing an amorphous MgO layer before IBAD.

  16. Biaxially aligned YSZ and CeO2 buffer layers on hastelloy prepared by magnetron IBAD

    International Nuclear Information System (INIS)

    Full text: The development of high-current, flexible superconducting YBCO tapes is based on a metal substrates overcoated with a biaxially aligned oxide buffer layer to serve as a template for the epitaxial growth of c-axis oriented Yba2Cu3O7 thin films. A secondary function of the buffer is to act as a diffusion barrier to metal species to prevent them from poisoning the superconducting film. Widely studied oxide buffer layers include yttria-stabilised zirconia (YSZ) and cerium oxide (CeO2) produced by ion-beam-assisted deposition (IBAD). We have combined IBAD with magnetron sputtering to deposit biaxially aligned YSZ and CeO2 on Hastelloy C276 substrates held at room temperature. The ion beam is directed at 55deg to the normal of the film plane. In addition, we achieved room temperature epitaxial growth of CeO2 films on IBAD YSZ films by bias sputtering to form biaxially aligned CeO2/YSZ bilayers. The crystalline quality and inplane orientation of the films (200 nm thick) were investigated by x-ray diffraction techniques including ω and φ scans and pole figures. The IBAD YSZ and CeO2 films have a (111) pole in the ion beam direction with a full width at half maximum, FWHM = 24 - 30 deg; the CeO2/YSZ bilayer is similarly aligned with FWHM = 32 deg

  17. Biaxially aligned template films fabricated by inclined-substrate deposition for YBCO-coated conductor applications.

    Energy Technology Data Exchange (ETDEWEB)

    Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Erck, R. A.; Dorris, S. E.; Miller, D. J.; Balachandran, U.

    2002-08-12

    Inclined substrate deposition (ISD) has the potential for rapid production of high-quality biaxially textured buffer layers, which are important for YBCO-coated conductor applications. We have grown biaxially textured MgO films by ISD at deposition rates of 20-100 {angstrom}/sec. Columnar grains with a roof-tile surface structure were observed in the ISD-MgO films. X-ray pole figure analysis revealed that the (002) planes of the ISD-MgO films are tilted at an angle from the substrate normal. A small {phi}-scan full-width at half maximum (FWHM) of {approx}9{sup o} was observed on MgO films deposited at an inclination angle of 55{sup o}. In-plane texture in the ISD MgO films developed in the first 0.5 {micro}m from the interface, then stabilized with further increases in film thickness. YBCO films deposited by pulsed laser deposition on ISD-MgO buffered Hastelloy C276 substrates were biaxially aligned with the c-axis parallel to the substrate normal. T{sub c} of 91 K with a sharp transition and transport J{sub c} of 5.5 x 10{sup 5} A/cm{sup 2} at 77 K in self-field were measured on a YBCO film that was 0.46-{micro}m thick, 4-mm wide, 10-mm long.

  18. Instability of a Biaxial Nematic Liquid Crystal Formed by Homeotropic Anchoring on Surface Grooves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Dong; XUAN Li

    2011-01-01

    A method used to treat the elastic distortion of a uniaxial nematic liquid crystal induced by homogeneous anchoring on the surface grooves is generalized to biaxial nematic liquid crystals under the homeotropic anchoring condition.Employing some approximations for the elastic constants,we obtain an additional term in the elastic energy per unit area which depends on the angle between the minor director at infinity and the direction of the grooves,with a period of π/2.This leads to instability on the surface grooves so that two states with crossed minor directors are energetically indistinguishable.Our theoretical study explains why the homeotropic alignment method developed for uniaxial liquid crystals loses efficacy for biaxial nematics.In most liquid crystal devices,the liquid crystals are sandwiched between two substrates coated with alignment layers.In the absence of externally applied fields,the orientation of the liquid crystal in the cell is determined by the anchoring condition of the alignment layer.[1-3] One usually distinguishes three main types of liquid crystalline director alignment near solid walls:homeotropic,homogeneous (or planar) and tilted orientations.Here we study the first of these and consider the biaxial nematic phase,which was observed in lyotropic systems as early as 1980[4] and has been confirmed by deuterium NMR spectroscopy.%A method used to treat the elastic distortion of a uniaxial nematic liquid crystal induced by homogeneous anchoring on the surface grooves is generalized to biaxial nematic liquid crystals under the homeotropic anchoring condition. Employing some approximations for the elastic constants, we obtain an additional term in the elastic energy per unit area which depends on the angle between the minor director at infinity and the direction of the grooves, with a period of π/2. This leads to instability on the surface grooves so that two states with crossed minor directors are energetically indistinguishable. Our

  19. In situ biaxial texture analysis of MGO films during growth on amorphous substrates by ion beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, R. T. (Rhett T.); Arendt, P. N. (Paul N.); Atwater, H. A. (Harry A.); Groves, J. R. (James R.)

    2001-01-01

    We used a previously reported kinematical electron scattering model to develop a RHEED based method for performing quantitative analysis of mosaic polycrystalline thin film in-plane and out-of-plain grain orientation distributions. RHEED based biaxial texture measurements are compared to X-Ray and transmission electron microscopy measurements to establish the validity of the RHEED analysis method. In situ RHEED analysis reveals that the out of plane orientation distribution starts out very broad, and then decreases during IBAD MgO growth. Other results included evidence that the in-plane orientation distribution narrows, the grain size increases, and the film roughens as film thickness increases during IBAD MgO growth. Homoepitaxy of MgO improves the biaxial texture of the IBAD layer, making X-ray measurements of IBAD films with an additional homoepitaxial layer not quantitatively representative of the IBAD layer. Systematic offsets between RHEED analysis and X-ray measurements of biaxial texture, coupled with evidence that biaxial texture improves with increasing film thickness, indicate that RHEED is a superior technique for probing surface biaxial texture.

  20. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture toughness

    International Nuclear Information System (INIS)

    A program to develop and evaluate fracture methodologies for the assessment of crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels has been initiated in the Heavy-Section Steel Technology (HSST) Program. Crack-tip constraint is an issue that significantly impacts fracture mechanics technologies employed in safety assessment procedures for commercially licensed nuclear RPVs. The focus of studies described herein is on the evaluation of two stressed-based methodologies for quantifying crack-tip constraint (i.e., J-Q theory and a micromechanical scaling model based on critical stressed volumes) through applications to experimental and fractographic data. Data were utilized from single-edge notch bend (SENB) specimens and HSST-developed cruciform beam specimens that were tested in HSST shallow-crack and biaxial testing programs. Results from applications indicate that both the J-Q methodology and the micromechanical scaling model can be used successfully to interpret experimental data from the shallow- and deep-crack SENB specimen tests. When applied to the uniaxially and biaxially loaded cruciform specimens, the two methodologies showed some promising features, but also raised several questions concerning the interpretation of constraint conditions in the specimen based on near-tip stress fields. Fractographic data taken from the fracture surfaces of the SENB and cruciform specimens are used to assess the relevance of stress-based fracture characterizations to conditions at cleavage initiation sites. Unresolved issues identified from these analyses require resolution as part of a validation process for biaxial loading applications. This report is designated as HSST Report No. 142

  1. A new analytical model about the relationship between nominal failure stresses and porosity for foamed metals under biaxial tension

    International Nuclear Information System (INIS)

    Foamed metals have been widely used as various engineering materials, and their mechanical properties have also been drawing extensive attention. In the present paper, a new mechanical and analytical model is established for these materials with isotropic three-dimensional reticulated structure under biaxial tension, and the mathematical equation about biaxial nominal stresses is deduced for the biaxial tension at the beginning of failure of the porous body. With the relevant experiment, the relation formula is proved to be very effective. Different from the relevant theoretical system of Gibson and Ashby, the present mathematical relationship can be conveniently achieved from directly using the 'beam theory' on this mechanical and analytical model. In addition, this relationship can be further expressed as the mathematical relationship among the nominal failure 'deviatoric stress', the nominal failure 'average stress' and porosity, but the concepts of both the 'deviatoric stress' and the 'average stress' can appear just from the mathematical treatment

  2. Biaxial creep deformation of Zircaloy-4 in the high alpha phase temperature range

    International Nuclear Information System (INIS)

    The ballooning response of Zircaloy-4 fuel tubes during a postulated loss-of-coolant accident may be calculated from a knowledge of the thermal environment of the rods and the creep deformation characteristics of the cladding. In support of such calculations biaxial creep studies have been performed on fuel tubes supplied by Westinghouse, Wolverine and Sandvik of temperatures in the alpha phase range. This paper presents the results of an investigation of their respective creep behaviour which has resulted in the formulation of equations for use in LOCA fuel ballooning codes. (author)

  3. Control of biaxial strain in single-layer Molybdenite using local thermal expansion of the substrate

    OpenAIRE

    Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H. S. J.; Steele, G. A.; Kuc, A.; Heine, T.; Schüller, C; Korn, T.

    2015-01-01

    Single-layer MoS2 is a direct-gap semiconductor whose electronic band structure strongly depends on the strain applied to its crystal lattice. While uniaxial strain can be easily applied in a controlled way, e.g., by bending of a flexible substrate with the atomically thin MoS2 layer on top, experimental realization of biaxial strain is more challenging. Here, we exploit the large mismatch between the thermal expansion coefficients of MoS2 and a silicone-based substrate to apply a controllabl...

  4. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    Science.gov (United States)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the

  5. Biaxial Flexural Strength and Estimation of Size on the Strength Properties of FRP Composites

    Directory of Open Access Journals (Sweden)

    M. N. Saraf

    1990-04-01

    Full Text Available Fibre reinforced plastics (FRP are widely used as structural materials. For designing structural components, a designer is provided with data based on unidirectional testing. But in real structural applications the component is subjected to multiaxial stress throughout the material. Hence a multiaxial test is a better gauge of the behaviour of FRP components in service. In the present paper a ring-on-ring method was adopted which produces biaxial flexural stress on the FRP specimen. Wubull's statistical weakest link theory was applied to standardize the complexity and to assess the reliability of the results.

  6. Biaxial high cycle fatigue: experimental investigation and two-scale damage model

    International Nuclear Information System (INIS)

    This research thesis first describes the multi-axial fatigue phenomenon in the cases of mechanical and complex loadings, discusses multi-axial fatigue criteria, and presents the approach of fatigue by incremental damage mechanics. Then, it reports an experimental investigation of fatigue crack initiation under biaxial polycyclic fatigue in 304L austenitic stainless steel and in titanium alloy. The author presents a probabilistic two-scale damage model, and then reports the assessment of multi-axial fatigue life by means of this model

  7. SPICE compatible analytical electron mobility model for biaxial strained-Si-MOSFETs

    International Nuclear Information System (INIS)

    This paper describes an analytical model for bulk electron mobility in strained-Si layers as a function of strain. Phonon scattering, columbic scattering and surface roughness scattering are included to analyze the full mobility model. Analytical explicit calculations of all of the parameters to accurately estimate the electron mobility have been made. The results predict an increase in the electron mobility with the application of biaxial strain as also predicted from the basic theory of strain physics of metal oxide semiconductor (MOS) devices. The results have also been compared with numerically reported results and show good agreement. (semiconductor devices)

  8. Biaxial nematic phases in fluids of hard board-like particles

    OpenAIRE

    Martinez-Raton, Yuri; Varga, Szabolcs; Velasco, Enrique

    2011-01-01

    We use density-functional theory, of the fundamental-measure type, to study the relative stability of the biaxial nematic phase, with respect to non-uniform phases such as smectic and columnar, in fluids made of hard board-like particles with sizes $\\sigma_1>\\sigma_2>\\sigma_3$. A restricted-orientation (Zwanzig) approximation is adopted. Varying the ratio $\\kappa_1=\\sigma_1/\\sigma_2$ while keeping $\\kappa_2=\\sigma_2/\\sigma_3$, we predict phase diagrams for various values of $\\kappa_2$ which i...

  9. Application of Bi-axial Warp Knitted Structures in Concrete Constructions

    Institute of Scientific and Technical Information of China (English)

    李炜; 陈南梁

    2001-01-01

    The warp knitted bi-axial directionally oriented structure (D. O. S. ) reinforcement substrates applied to building construction are discussed in comparison to woven fabrics. One of usage barriers of reinforced cement with gloss-grid is its sensitivity to alkali existed in the cement which will lead to the reduction of its service-life. The tests show that the treatment by sol-gel method to protect the composite from alkali corrosion is effective. Then two formulae of sol-gel solution are also recommended here for application.

  10. Magnetic response of FeNbCuBSi RQ ribbons to bi-axial strain

    International Nuclear Information System (INIS)

    Nanocrystalline strip samples of the FeNbCuBSi class that are macroscopically heterogeneous due to surface /volume differences have been investigated. This heterogeneity is found to be a general property of the class. It represents a base for mutual force influence between the surface and the majority volume beneath. The bi-axial in-plane stress exerted by the ribbon surfaces on the volume is demonstrated first of all by a magnetoelastic anisotropy. The contribution of the creep-induced anisotropy, which can build up under the surface stress at post-treatment temperature, is also found possible

  11. Collinear Acousto-Optical Transformation of Bessel Light Beams in Biaxial Gyrotropic Crystals

    Science.gov (United States)

    Belyi, V. N.; Kulak, G. V.; Krokh, G. V.; Shakin, O. V.

    2016-05-01

    The collinear acousto-optical transformation of Bessel light beams in biaxial gyrotropic crystals into two annular, internal conical refraction beams with orthogonal elliptical polarization is studied. It is found that the diffraction efficiency is maximal (~50-60%) for low ultrasound intensities and varies slightly with further increases in acoustic power. At high ultrasound intensities, the intensities of the transmitted and diffracted annular beams differ insignificantly. The possible use of this acousto-optical interaction for creating collinear tuneable narrow-band acousto-optical filters at low ultrasonic frequencies is demonstrated.

  12. Electronic and optical properties of kesterite Cu{sub 2}ZnSnS{sub 4} under in-plane biaxial strains: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Ran [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Li, Yong-Feng, E-mail: liyongfeng@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Yao, Bin, E-mail: binyao@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Yang, Gang [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Ding, Zhan-Hui [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); Deng, Rui [School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022 (China); Liu, Lei [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2013-11-08

    The electronic structures and optical properties of Cu{sub 2}ZnSnS{sub 4} (CZTS) under in-plane biaxial strain were systematically investigated using first-principles calculations based on generalized gradient approximation and hybrid functional method, respectively. It is found that the fundamental bandgap at the Γ point decreases linearly with increasing tensile biaxial strain perpendicular to c-axis. However, a bandgap maximum occurs as the compressive biaxial strain is 1.5%. Further increase of compressive strain decreases the bandgap. In addition, the optical properties of CZTS under biaxial strain are also calculated, and the variation trend of optical bandgap with biaxial strain is consistent with the fundamental bandgap.

  13. Upregulation of matrix synthesis in chondrocyte-seeded agarose following sustained bi-axial cyclic loading

    Directory of Open Access Journals (Sweden)

    Belinda Pingguan-Murphy

    2012-08-01

    Full Text Available OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in threedimensional cultures. METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period. RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05. The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05, indicating cell proliferation. CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

  14. Dynamic buckling of columns by biaxial moments and uniform end torque

    Science.gov (United States)

    Leung, A. Y. T.

    2010-05-01

    A new concept of uniform torque is proposed for the dynamic torsional buckling analysis. A dynamic biaxial moments and torque buckling theory is presented for analysis in structural dynamics. Second-order effects of the axial force, biaxial moments and torque are considered. The consistent natural boundary moments and forces are derived to ensure the symmetry of the dynamic stiffness matrix in fulfilling the requirement of the reciprocal theorem and conservation of energy. The exact dynamic stiffness matrix is obtained using power series expansion. The derivatives of the analytical dynamic stiffness matrix with respect to different loading and geometric parameters are derived explicitly for sensitivity and continuation analyses. Generally distributed axial force can be analyzed without difficulty. It is pointed out that non-uniform sections may not be handled by power series due to the convergent problem. Global pictures for all kinds of linear dynamic buckling are given for the first time. The methodology is based on finite element formulation and therefore it can easily be extended to analyze structural frames.

  15. Numerical analysis of branched cracks in bi-axial stress fields

    International Nuclear Information System (INIS)

    The stress corrosion cracks as seen for example in PWR steam generator tubing made of Inconel 600 are usually found to be of highly irregular kinked and branched shapes. Numerical analysis of kinked and branched cracks in bi-axial plane stress fields using methods such as finite or boundary element method may provide useful and cost effective solutions. However, accurate analysis of complex shaped cracks requires very fine meshes and, consequently, excessively high computational efforts. This paper discusses some possible strategies of numerical modeling of kinked and branched cracks in general bi-axial stress field using the general-purpose finite element code ABAQUS. The strategies discussed include J-integral and stress intensity factor solutions with different mesh densities. The accuracy of the numerical results obtained is compared with reference solutions from the literature. The main result of the paper is an optimal numerical strategy, which maximizes the accuracy of the result at as low computational efforts as feasible. The selected optimal strategy is expected to be used in the future simulations of large networks of inter-granular stress corrosion cracks at the grain-size scale using incomplete random tessellation.(author)

  16. Time-evolving collagen-like structural fibers in soft tissues: biaxial loading and spherical inflation

    Science.gov (United States)

    Topol, Heiko; Demirkoparan, Hasan; Pence, Thomas J.; Wineman, Alan

    2016-05-01

    This work considers a previously developed constitutive theory for the time dependent mechanical response of fibrous soft tissue resulting from the time dependent remodeling of a collagen fiber network that is embedded in a ground substance matrix. The matrix is taken to be an incompressible nonlinear elastic solid. The remodeling process consists of the continual dissolution of existing fibers and the creation of new fibers. Motivated by experimental reports on the enzyme degradation of collagen fibers, the remodeling is governed by first order chemical kinetics such that the dissolution rate is dependent upon the fiber stretch. The resulting time dependent mechanical response is sensitive to the natural configuration of the fibers when they are created, and different assumptions on the nature of the fiber's stress free state are considered here. The response under biaxial loading, a type of loading that has particular significance for the characterization of biological materials, is studied. The inflation of a spherical membrane is then analyzed in terms of the equal biaxial stretch that occurs in the membrane approximation. Different assumptions on the natural configuration of the fibers, combined with their time dependent dissolution and reforming, are shown to emulate alternative forms of creep and relaxation response. This formal similarity to viscoelastic phenomena occurs even though the underlying mechanisms are fundamentally different from the mechanism of macromolecular reconfiguration that one typically associates with viscoelastic response.

  17. Electrical Transport in SrTiO3 Under Biaxial Strain

    Science.gov (United States)

    Kajdos, Adam; Jalan, Bharat; Allen, James; Stemmer, Susanne

    2012-02-01

    Mobility engineering with strain is widely used for conventional semiconductors, but has only recently been proposed for complex oxides such as SrTiO3. The conduction band structure of SrTiO3 is complicated with multiple degenerate bands derived from the Ti 3d orbitals. Strain is thus expected to have a significant effect by lifting this degeneracy and altering the occupancy and curvature of the bands. Indeed, a 300% increase in the electron mobility with values exceeding 128,000 cm^2/Vs at 1.8 K was demonstrated in MBE-grown SrTiO3 films subjected to uniaxial compressive strain [1]. For heterostructure engineering, the effect of biaxial strain is relevant. Here, the electron mobilities in SrTiO3 subjected to biaxial strain are investigated through growth of coherent films on lattice-mismatched substrates. Lightly-doped (high-mobility) strained SrTiO3 films below the critical thickness are insulating because of significant surface depletion, which increases with decreasing temperature due to the high dielectric constant of SrTiO3. We show that highly-doped, low-mobility capping layers address this problem, but require a multilayer model to analyze the Hall data in terms of the mobility in the lightly doped layer. [1] B. Jalan et al., Appl. Phys. Lett. 98, 132102 (2011)

  18. Bi-axial fracture strength characteristic of an ultra-thin flash memory chip

    International Nuclear Information System (INIS)

    Recently, ultra-thin chips with thicknesses of under 35 µm have emerged as an option for thinner, high performance electronic devices. For reliable electronic devices and high throughput packaging processes, the mechanical properties of ultra-thin chips need to be accurately understood. In this study, the fracture strength of an ultra-thin flash memory chip was measured using a ball-on-ring (BOR) test. To evaluate and validate the bi-axial strength in the BOR test, a finite element analysis was performed. It was compared with the analytical solution based on Hertzian contact theory. Flash memory chip specimens with different thicknesses were prepared and their bi-axial strengths were tested with respect to various wafer thinning process parameters such as grinding speed and polishing time. Raman spectroscopy was used to characterize the residual stress generated during the wafer thinning process. The surface roughness of the silicon wafer was measured using an atomic force microscope under various wafer thinning conditions. From the study, the fracture strength characteristics of the ultra-thin chip could be established as a function of the wafer thinning parameters. (paper)

  19. Biaxial-Type Concentrated Solar Tracking System with a Fresnel Lens for Solar-Thermal Applications

    Directory of Open Access Journals (Sweden)

    Tsung Chieh Cheng

    2016-04-01

    Full Text Available In this paper, an electromechanical, biaxial-type concentrated solar tracking system was designed for solar-thermal applications. In our tracking system, the sunlight was concentrated by the microstructure of Fresnel lens to the heating head of the Stirling engine and two solar cells were installed to provide the power for tracking system operation. In order to obtain the maximum sun power, the tracking system traces the sun with the altitude-azimuth biaxial tracing method and accurately maintains the sun’s radiation perpendicular to the plane of the heating head. The results indicated that the position of heating head is an important factor for power collection. If the sunlight can be concentrated to completely cover the heating head with small heat loss, we can obtain the maximum temperature of the heating head of the Stirling engine. Therefore, the temperature of heating head can be higher than 1000 °C in our experiment on a sunny day. Moreover, the results also revealed that the temperature decrease of the heating head is less than the power decrease of solar irradiation because of the latent heat of copper and the small heat loss from the heating head.

  20. Estimation of low cycle fatigue life of elbows considering bi-axial stress effect

    International Nuclear Information System (INIS)

    Elbow pipes are commonly used in the piping systems of power plants and chemical plants. The stress states at elbow part are complex and quite different from those of the straight pipes. It is well known that the fatigue lives of metals under simple push-pull conditions were successfully predicted by the Manson's universal slope method. However, it have been pointed out by the several researchers that the low cycle fatigue lives of elbows under combined cyclic bending and inner pressure could not be predicted by the Manson's universal slope method. However, the reasons for this are not made clear. In this work, the low cycle fatigue tests and the finite element analysis of elbows under cyclic bending and inner pressures were carried out. It was found that the bi-axial stress ratio, which is a ratio of hoop stress and axial stress, at elbows are quite high. Considering the bi-axial stress ratio, the revised Manson's universal slope method was proposed in this paper. It was shown that the low cycle fatigue lives of elbows under combined cyclic bending and inner pressure were predicted conservatively by the proposed method. (author)

  1. Can singly charged oxygen vacancies induce ferromagnetism in biaxial strained ZnO?

    Science.gov (United States)

    Gai, Yanqin; Jiang, Jiaping; Wu, Yuxi; Tang, Gang

    2016-04-01

    The electronic and magnetic properties of the singly charged oxygen vacancy ({{V}{{O}}}+) in undoped ZnO under biaxial strains are investigated by density functional theory calculations. A net magnetic moment (MM) of 0.561 μB is obtained for {{V}{{O}}}+ in ZnO under no strains, but the magnetic interaction between them is antiferromagnetic. The formation energy of V O and {{V}{{O}}}+, the MM induced by {{V}{{O}}}+, as well as the coupling type and strength between {{V}{{O}}}+{{s}} vary with the application of biaxial strains. Compressive strains can enhance the concentrations of V O and {{V}{{O}}}+, enlarge the MM, and strengthen the antiferromagnetic interactions between them at lower V O concentrations. However, at higher V O concentrations, the coupling varies from sizable antiferromagnetic to negligible weak ferromagnetic, and then becomes paramagnetic with the increase of compression. Antiferromagnetic results are further confirmed by the local density approximation with Hubbard U (LDA + U) calculations.

  2. Fracture Propagation Characteristic and Micromechanism of Rock-Like Specimens under Uniaxial and Biaxial Compression

    Directory of Open Access Journals (Sweden)

    Xue-wei Liu

    2016-01-01

    Full Text Available This paper presents a set of uniaxial and biaxial compression tests on the rock-like material specimens with different fracture geometries through a rock mechanics servo-controlled testing system (RMT-150C. On the basis of experimental results, the characteristics of fracture propagation under different fracture geometries and loading conditions are firstly obtained. The newly formed fractures are observed propagating from or near the preexisting crack tips for different specimens, while the propagation paths are affected by the loading condition obviously. Then, by adopting acoustic emission (AE location technique, AE event localization characteristics in the process of loading are investigated. The locations of AE events are in good agreement with the macroscopic fracture propagation path. Finally, the micromechanism of macroscopic fracture propagation under uniaxial and biaxial compression conditions is analyzed, and the fracture propagation can be concluded as a result of microdamage accumulation inside the material. The results of this paper are helpful for theory and engineering design of the fractured rock mass.

  3. Inclined-substrate deposition of biaxially aligned template films for YBCO-coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Balachandran, U. (Energy Technology)

    2002-10-15

    Inclined-substrate deposition (ISD) of magnesium oxide (MgO) produces biaxially textured template films at high deposition rates. This process is promising for the fabrication of the second-generation superconducting wires. Biaxially aligned MgO films ({approx}1.5 {mu}m thick) were deposited on polished Hastelloy C276 (HC) substrates by ISD at deposition rates of 20-100 {angstrom}/s. Buffer films were subsequently deposited on these template films, and YBCO films were deposited epitaxially on the substrates by pulsed laser deposition. X-ray pole figure analysis and {psi}- and {omega}-scans were used for texture characterization. Good in- and out-of-plane textures were observed, with MgO(0 0 2) {phi}-scan full-width at half maximum (FWHM) of 9.2{sup o} and {omega}-scan FWHM of 5.4{sup o}, respectively. T{sub c} of 90 K with a sharp transition, and J{sub c} {approx} 2 x 10{sup 5} A/cm{sup 2}, were obtained on a 0.5 {mu}m thick, 0.5 cm wide, and 1 cm long YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) film at 77 K in self-field.

  4. Inclined-substrate deposition of biaxially aligned template films for YBCO-coated conductors

    Science.gov (United States)

    Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Balachandran, U.

    2002-10-01

    Inclined-substrate deposition (ISD) of magnesium oxide (MgO) produces biaxially textured template films at high deposition rates. This process is promising for the fabrication of the second-generation superconducting wires. Biaxially aligned MgO films (≈1.5 μm thick) were deposited on polished Hastelloy C276 (HC) substrates by ISD at deposition rates of 20-100 Å/s. Buffer films were subsequently deposited on these template films, and YBCO films were deposited epitaxially on the substrates by pulsed laser deposition. X-ray pole figure analysis and φ- and ω-scans were used for texture characterization. Good in- and out-of-plane textures were observed, with MgO(0 0 2) φ-scan full-width at half maximum (FWHM) of 9.2° and ω-scan FWHM of 5.4°, respectively. Tc of 90 K with a sharp transition, and Jc≈2×10 5 A/cm 2, were obtained on a 0.5 μm thick, 0.5 cm wide, and 1 cm long YBa 2Cu 3O 7- δ (YBCO) film at 77 K in self-field.

  5. Fatigue life prediction of magnetorheological elastomers subjected to dynamic equi-biaxial cyclic loading

    International Nuclear Information System (INIS)

    Prediction of fatigue life is of great significance in ensuring that dynamically loaded rubber components exhibit safety and reliability in service. In this text, the dynamic equi-biaxial fatigue behaviour of magnetorheological elastomer (MREs) using a bubble inflation method is described. Wöhler (S–N) curves for both isotropic and anisotropic MREs were produced by subjecting the compounds to cycling over a range of stress amplitudes (σa) between 0.75 MPa and 1.4 MPa. Changes in physical properties, including variation in stress–strain relations and complex modulus (E*) during the fatigue process were analysed. It was found that the complex modulus of MRE samples decreased throughout the entire fatigue test and failure took place at a limiting value of approximately 1.228MPa ± 4.38% for isotropic MREs and 1.295 ± 10.33% for anisotropic MREs. It was also determined that a dynamic stored energy criterion can be used as a plausible predictor in determining the fatigue life of MREs. - Highlights: • The first Wöhler curves for MREs subjected to equi-biaxial loading were presented. • Anisotropic MREs exhibited higher fatigue resistance than isotropic MREs. • There is a limiting value of complex modulus (E*) at which fatigue failure will occur. • The dynamic stored energy criterion can be used as a fatigue life predictor

  6. Role of Molecular Structure on X-ray Diffraction in Thermotropic Uniaxial and Biaxial Nematic Liquid Crystal Phases

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena; Kumar, Satyendra; (Kent); (Platypus)

    2009-08-27

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution function is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.

  7. Role of Molecular Structure on X-ray Diffraction in Uniaxial and Biaxial Phases of Thermotropic Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, Bharat R.; Kang, Shin-Woong; Prasad, Veena; Kumar, Satyendra; (Kent); (CLCR); (Platypus)

    2009-04-29

    X-ray diffraction is one of the most definitive methods to determine the structure of condensed matter phases, and it has been applied to unequivocally infer the structures of conventional calamitic and lyotropic liquid crystals. With the advent of bent-core and tetrapodic mesogens and the discovery of the biaxial nematic phase in them, the experimental results require more careful interpretation and analysis. Here, we present ab-initio calculations of X-ray diffraction patterns in the isotropic, uniaxial nematic, and biaxial nematic phases of bent-core mesogens. A simple Meier-Saupe-like molecular distribution function is employed to describe both aligned and unaligned mesophases. The distribution function is decomposed into two, polar and azimuthal, distribution functions to calculate the effect of the evolution of uniaxial and biaxial nematic orientational order. The calculations provide satisfactory semiquantitative interpretations of experimental results. The calculations presented here should provide a pathway to more refined and quantitative analysis of X-ray diffraction data from the biaxial nematic phase.

  8. Growth of Biaxially Textured Yttria-Stabilized Zirconia Thin Films on Si(111) Substrate by Ion Beam Assisted Deposition

    Institute of Scientific and Technical Information of China (English)

    MU Hai-Chuan; REN Cong-Xin; JIANG Bing-Yao; DING Xing-Zhao; YU Yue-Hui; WANG Xi; LIU Xiang-Huai; ZHOU Gui-En; JIA Yun-Bo

    2000-01-01

    The (001) oriented yttria-stabilized zirconia (YSZ) films with in-plane biaxial texture have been deposited on Si(lll ) substrates by ion beam assisted deposition at ambient temperature. The effects of ion/atom arrival rate ratio (R=(Ar+ +O2+)/ZrO2) and incident angle of bombarding ion beam on the film texture development were investigated. It was found that the in-plane biaxial texture of the films was improved gradually with increasing ion/atom arrival rate ratio R up to a critical value 1.9, but it was degraded with the further increase of R. The optimal in-plane biaxial texture, whose full width at half maximum of the (lll) φ-scan spectrum is 14°, can be obtained at R=1.9 and incident angle of 55°. For a fixed R, the optimal crystallinity and in-plane biaxial alignment of the YSZ films did not appear at the same incident angle and showed an opposite variation with the change of the incident angle from 51° to 55°. C-axis lignment (perpendicular to substrate surface) does not show any substantial variation with the change of incident angle within the range of 47° - 56°.

  9. Mechanical response of cross-ply Si3N4/BN fibrous monoliths under uniaxial and biaxial loading

    International Nuclear Information System (INIS)

    Mechanical properties of hot-pressed Si3N4/BN fibrous monoliths (FMs) were evaluated under ambient conditions in four-point and biaxial flexure modes. Effects of cell orientation, 0degree/90degree and ±45degree, on elastic modulus and fracture strength of the FMs were investigated. Fracture surfaces were examined by scanning electron microscopy

  10. Field-induced transformations in the biaxial order of non-tilted phases in a bent-core smectic liquid crystal

    Science.gov (United States)

    Panarin, Y. P.; Nagaraj, Mamatha; Vij, J. K.; Keith, C.; Tschierske, C.

    2010-10-01

    The structural and electro-optic investigations of an achiral bent-core molecule in SmAPA phase, in which the polar directors in the neighboring layers are arranged anti-ferroelectrically, show that it undergoes transformation from one biaxial to another biaxial structure via a quasi-stable uniaxial structure on the application of the electric field. The non-continuous change in biaxiality is explained by an intermediate state in which the secondary directors in the neighboring layers are perpendicular to each other.

  11. Biaxial lidar efficiency rising based on improving of spatial selectivity and stability against background radiation

    Energy Technology Data Exchange (ETDEWEB)

    Agishev, R.R.; Bajazitov, R.A.; Galeyev, M.M. [Kazan State Technical Univ., Tatarstan (Russian Federation). Dept. of Radioelectronic and Quantum Systems

    1996-12-31

    A criterion of spatial-angular efficiency (SAE) of remote electro-optical systems for atmosphere monitoring is formulated. The dependencies of the SAE from normalized range and minimal operating range for different optical receiving schemes of ground-based biaxial lidar are analyzed. It is shown that low SAE of traditional VIS and NIR systems are a main cause of a low signal-to-background-noise ratio at the photodetector input, the considerable measurements errors. and the following low accuracy of atmospheric optical parameters reconstruction. The most effective protection against sky background radiation in such systems consists in forming an angular field according to the introduced SAE criterion. Some approaches to achieve high value of the SAE-parameter for receiving system optimization are discussed.

  12. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

    KAUST Repository

    Majumdar, Apala

    2011-12-01

    We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the threedimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the C 1,α-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some 0 < a < 1, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.

  13. Abrasion resistance of biaxially oriented polypropylene films coated with nanocomposite hard coatings

    Science.gov (United States)

    Wang, Jing; Zhu, Yaofeng; Fu, Yaqin

    2013-11-01

    KMnO4-treated, functionalized, biaxially oriented polypropylene (BOPP) films coated with nano-silica hybrid material were synthesized. The abrasion resistance of the films was examined using a reciprocating fabric abrasion tester. Functional groups were confirmed by Fourier-transform infrared spectroscopy. Contact angle measurements were performed on the BOPP film surface to quantify the effectiveness of the functionalization. Results indicate that the abrasion resistance and roughness of the composite film were significantly affected by the modification of the BOPP film. Water surface contact angle of the modified BOPP films decreased from 90.1° to 71.4°,when KMnO4 concentration increased from 0 M to 0.25 M. Wettability of the BOPP films clearly improved after KMnO4 treatment. Abrasion resistance of the functionalized films coated with hybrid materials improved by 27.4% compared with that of the original film.

  14. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response

    Energy Technology Data Exchange (ETDEWEB)

    Geandier, G. [Departement PMM, Institut Pprime, UPR 3346 CNRS, Universite de Poitiers-ENSMA, SP2MI, Teleport 2, Boulevard Marie et Pierre Curie, BP 30179-86962 Futuroscope Chasseneuil Cedex (France); Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, 91192 Gif sur Yvette (France); LPMTM, UPR 9001 CNRS, Universite Paris-Nord, 93430 Villetaneuse (France); Thiaudiere, D.; Bouaffad, A. [Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, 91192 Gif sur Yvette (France); Randriamazaoro, R. N.; Chiron, R.; Castelnau, O.; Faurie, D. [LPMTM, UPR 9001 CNRS, Universite Paris-Nord, 93430 Villetaneuse (France); Djaziri, S.; Lamongie, B.; Diot, Y.; Le Bourhis, E.; Renault, P. O.; Goudeau, P. [Departement PMM, Institut Pprime, UPR 3346 CNRS, Universite de Poitiers-ENSMA, SP2MI, Teleport 2, Boulevard Marie et Pierre Curie, BP 30179-86962 Futuroscope Chasseneuil Cedex (France); Hild, F. [LMT Cachan, 61 Avenue du President Wilson, 94235 Cachan Cedex (France)

    2010-10-15

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  15. Impacts of virtual substrate doping on high frequency characteristics of biaxially strained Si PMOSFET

    Science.gov (United States)

    Khatami, Mohammad Mahdi; Shalchian, Majid; Kolahdouz, Mohammadreza

    2015-09-01

    Formation of a parasitic channel in biaxially strained Si channel p-MOSFET, degrades performance of the device. In this paper the effect of SiGe (virtual substrate) doping on formation of parasitic channel and high frequency characteristics of the strained MOSFET has been studied. Simulation results, indicate that increasing virtual substrate's doping from e.g. 4 × 1015 cm-3 to 4 × 1017 cm-3 effectively eliminates parasitic channel by reducing hole concentration from 1 × 1017 cm-3 to 1 × 1011 cm-3 in the parasitic channel. This improves MOSFET's characteristics including parasitic capacitances and channel length modulation. Also it has been demonstrated that the highest unity-gain bandwidth might be achieved at doping level of 4 × 1017 cm-3.

  16. Comparison of calculation methods for the tunnel splitting at excited states of biaxial spin models

    Institute of Scientific and Technical Information of China (English)

    Cui Xiao-Bo; Chen Zhi-De

    2004-01-01

    We present the calculation and comparison of tunnel splitting at excited levels of biaxial spin models by various methods, including the generalized instanton method, the generalized path integral method for coherent spin states,the perturbation method, and the exact method by numerical diagonalization of the Hamiltonian. It is found that,for integer spin with spin number around 10, tunnel splitting predicted by the generalized path integral for coherent spin states is about 10-n times of the exact numerical result for the nth excited level, while the ratio of the results of the perturbation method and the exact numerical method diverges in the large spin limit. We thus conclude that the generalized instanton method is the best approximate way for calculating tunnel splitting in spin models.

  17. Measurement of refractive index of biaxial potassium titanyl phosphate crystal plate using reflection spectroscopic ellipsometry technique

    Indian Academy of Sciences (India)

    A K Chaudhary; A Molla; A Asfaw

    2009-10-01

    The paper reports the measurement of refractive indices and anisotropic absorption coefficients of biaxial potassium titanyl phosphate (KTP) crystal in the form of thin plate using reflection ellipsometry technique. This experiment is designed in the Graduate Optics Laboratory of the Addis Ababa University and He–Ne laser ( = 632.8 nm), diode laser ( = 670.0 nm) and temperature-tuned diode laser ( = 804.4 and 808.4 nm), respectively have been employed as source. The experimental data for , are fitted to the Marquardt–Levenberg theoretical model of curve fitting. The obtained experimental data of refractive indices are compared with different existing theoretical and experimental values of KTP crystals and found to be in good agreement with them.

  18. Powder metallurgy for the fabrication of bi-axially textured Ni tapes for YBCO coated conductors

    International Nuclear Information System (INIS)

    Bi-axially textured Ni tapes for YBCO coated conductors were fabricated by forming, sintering, cold rolling and heat treatment of Ni powder compacts. The powder metallurgy process consists of filling of fine Ni powders in a rubber mold, cold isostatical pressing in a water chamber and sintering of the powder compacts. The sintered compacts were cold-rolled and made into tapes with a thickness of 100 micron and then heat-treated at 1000 deg. C for various time periods for the development of the (2 0 0) texture. The (2 0 0) texture of Ni tape was successfully formed through the optimization of the recrystallization heat treatment condition for the cold rolled Ni tapes. The full width half maximum of the Ni tapes was 8-10 deg. and the atomic force microscopy surface roughness was 3-5 nm

  19. Voigt wave investigation in the KGd(WO4)2:Nd biaxial laser crystal

    Science.gov (United States)

    Brenier, Alain

    2015-07-01

    We have investigated the Nd3+-doped KGd(WO4)2 biaxial laser crystal for wave propagation directions in the vicinity of the optical axis at wavelengths tunable around 800 nm. The angular absorption distribution was found to be strongly anisotropic. Increasing absorption, the optical axis splits in two new ones able to propagate unchanged a left or a right circularly polarized light and able to propagate a circularly polarized Voigt wave with a linear spatial dependence. The intensities of the transmitted light in different configurations of polarizations were investigated. The angular displacement of the two optical axes versus the absorbed wavelengths was measured and explained with a single oscillator model. The light energy propagation was found distributed inside a crescent-shaped area.

  20. Development of a synchrotron biaxial tensile device for in situ characterization of thin films mechanical response

    International Nuclear Information System (INIS)

    We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.

  1. Biaxially aligned YBa2Cu3O7-x thin film tapes

    International Nuclear Information System (INIS)

    We report the formation of biaxially oriented films of yttorium-stabilized ZrO2 (YSZ) on a polycrystalline, Ni-based alloy (Hastelloy c276) by Ion-Beam-Assisted Deposition (IBAD), and the subsequent a-b plane aligned YBa2Cu3O7-x (YBCO) films deposited by laser ablation. Jc of 6.0x104A/cm2 (77K, 0 T) and 1.4x104A/cm2 (77K, 0.6 T) were obtained. A new method to prevent intergranular-weak-links has been developed for application of oxide superconducting thin films, for tape-shaped cables, magnets, magnetic shields, microwave devices, etc. (orig.)

  2. Biaxially aligned YBa 2Cu 3O 7-x thin film tapes

    Science.gov (United States)

    Iijima, Yasuhiro; Tanabe, Nobuo; Ikeno, Yoshimitsu; Kohno, Osamu

    1991-12-01

    We report the formation of biaxially oriented films of yttorium-stabilized ZrO 2 (YSZ) on a polycrystalline, Ni-based alloy (Hastelloy c276) by Ion-Beam-Assisted Deposition (IBAD), and the subsequent a-b plane aligned YBa 2Cu 3O 7-x (YBCO) films deposited by laser ablation. Jc of 6.0×10 4 A/cm 2 (77 K, O T) and 1.4×10 4 A/cm 2 (77 K, 0.6 T) were obtained. A new method to prevent intergranular-weak-links has been developed for application of oxide superconducting thin films, for tape-shaped cables, magnets, magnetic shields, microwave devices, etc.

  3. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    International Nuclear Information System (INIS)

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K1 values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  4. Numerical and experimental analysis of the directional stability on crack propagation under biaxial stresses

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez-MartInez, R; Urriolagoitia-Calderon, G; Urriolagoitia-Sosa, G; Hernandez-Gomez, L H [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico); Merchan-Cruz, E A; RodrIguez-Canizo, R G; Sandoval-Pineda, J M, E-mail: rrodriguezm@ipn.m, E-mail: urrio332@hotmail.co, E-mail: guiurri@hotmail.co, E-mail: luishector56@hotmail.co, E-mail: eamerchan@gmail.co, E-mail: ricname@hotmail.co, E-mail: jsandovalp@ipn.m [Instituto Politecnico Nacional Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de IngenierIa Mecanica y Electrica (ESIME). Unidad profesional, AZCAPOTZALCO, Av. de las Granjas No. 682, Col. Sta. Catarina Azcapotzalco, C.P. 02550, Mexico D.F. (Mexico)

    2009-08-01

    In this paper, the case of Single Edge Notch (SEN) specimens subject to opening/compressive loading was analyzed; The loads are applied in several ratios to evaluate the influence of the specimen geometry, and the Stress Intensity Factor (SIF) K{sub 1} values on the directional stability of crack propagation. The main purpose of this work is to evaluate the behaviour of the fracture propagation, when modifying the geometry of the SEN specimen and different relationships of load tension/compression are applied. Additionally, the precision of the numerical and experimental analysis is evaluated to determine its reliability when solving this type of problems. The specimens are subjected to biaxial opening/compression loading; both results (numerical and experimental) are compared in order to evaluate the condition of directional stability on crack propagation. Finally, an apparent transition point related to the length of specimens was identified, in which the behaviour of values of SIF changes for different loading ratios.

  5. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  6. Application of magnetomechanical hysteresis modeling to magnetic techniques for monitoring neutron embrittlement and biaxial stress

    International Nuclear Information System (INIS)

    The objective is to investigate experimentally and theoretically the effects of neutron embrittlement and biaxial stress on magnetic properties in steels, using various magnetic measurement techniques. Interaction between experiment and modeling should suggest efficient magnetic measurement procedures for determining neutron embrittlement biaxial stress. This should ultimately assist in safety monitoring of nuclear power plants and of gas and oil pipelines. In the first six months of this first year study, magnetic measurements were made on steel surveillance specimens from the Indian Point 2 and D.C. Cook 2 reactors. The specimens previously had been characterized by Charpy tests after specified neutron fluences. Measurements now included: (1) hysteresis loop measurement of coercive force, permeability and remanence, (2) Barkhausen noise amplitude; and (3) higher order nonlinear harmonic analysis of a 1 Hz magnetic excitation. Very good correlation of magnetic parameters with fluence and embrittlement was found for specimens from the Indian Point 2 reactor. The D.C. Cook 2 specimens, however showed poor correlation. Possible contributing factors to this are: (1) metallurgical differences between D.C. Cook 2 and Indian Point 2 specimens; (2) statistical variations in embrittlement parameters for individual samples away from the stated men values; and (3) conversion of the D.C. Cook 2 reactor to a low leakage core configuration in the middle of the period of surveillance. Modeling using a magnetomechanical hysteresis model has begun. The modeling will first focus on why Barkhausen noise and nonlinear harmonic amplitudes appear to be better indicators of embrittlement than the hysteresis loop parameters

  7. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    International Nuclear Information System (INIS)

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved

  8. Evaluating the time and temperature dependent biaxial strength of Gore-Select {sup registered} series 57 proton exchange membrane using a pressure loaded blister test

    Energy Technology Data Exchange (ETDEWEB)

    Grohs, Jacob R.; Dillard, David A.; Case, Scott W. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0219 (United States); Li, Yongqiang; Lai, Yeh-Hung; Gittleman, Craig S. [Electrochemical Energy Research Lab, GM R and D, General Motors Corporation, 10 Carriage Street, Honeoye Falls, NY 14472-0603 (United States); Ellis, Michael W. [Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0238 (United States)

    2010-01-15

    Temperature and humidity fluctuations in operating fuel cells impose significant biaxial stresses in the constrained proton exchange membranes (PEMs) of a fuel cell stack. The strength of the PEM, and its ability to withstand cyclic environment-induced stresses, plays an important role in membrane integrity and consequently, fuel cell durability. In this study, a pressure loaded blister test is used to characterize the biaxial strength of Gore-Select {sup registered} series 57 over a range of times and temperatures. Hencky's classical solution for a pressurized circular membrane is used to estimate biaxial strength values from burst pressure measurements. A hereditary integral is employed to construct the linear viscoelastic analog to Hencky's linear elastic exact solution. Biaxial strength master curves are constructed using traditional time-temperature superposition principle techniques and the associated temperature shift factors show good agreement with shift factors obtained from constitutive (stress relaxation) and fracture (knife slit) tests of the material. (author)

  9. Effect of Biaxial Stretching at Temperatures and Strain Histories Comparable to Injection Stretch Blow Moulding on Tensile Modulus for Polyethylene Terephthalate (PET)

    Science.gov (United States)

    Tan, C. W.; Menary, G. H.; Harkin-Jones, E. M. A.; Armstrong, C. G.; Martin, P. J.

    2007-04-01

    This study is particularly relevant to the injection stretch blow moulding (ISBM) process where PET material is typically biaxially stretched to form bottles for the water and carbonated soft drinks industry. The aim of this paper is to investigate the effect of biaxial stretching on the mechanical properties of Polyethylene Terephthalate (PET) using a custom built biaxial testing machine. An initially amorphous PET sample was prepared via injection moulding to form a square sample (76mm × 76mm) suitable for stretching on the machine. This sample was then subjected to a series of biaxial tests (simultaneous and sequential) within a temperature range between 85°C and 110 °C, strain rates in the range of 1s-1 to 32s-1 and stretch ratios in the range of 1.5 to 3. Specimens were subsequently cut from the biaxial stretched sheets and used to measure the tensile modulus. Results showed that there is almost no effect found for strain rate and temperature on modulus development whilst stretch ratio and mode of deformation played the most important role on modulus development on PET under biaxial deformation.

  10. Photoluminescence spectra and biaxial stress effects of yellow 1S excitons in Cu2O thin films recrystallized epitaxially between paired MgO plates

    International Nuclear Information System (INIS)

    We investigated biaxial stress effects on the yellow 1S ortho excitons in Cu2O thin films recrystallized between paired MgO plates by measuring photoluminescence spectra, X-ray diffraction and polarization microscope images. On the MgO (001) surface, we found two kinds of epitaxial growth modes of the Cu2O thin films. In such thin films, the yellow 1S ortho exciton states split into two or three levels depending on the respective epitaxial growth modes due to the different biaxial stresses owing to the lattice mismatches between Cu2O and MgO. By using effective Hamiltonians including such biaxial stress effects, we estimated the strengths of the biaxial stresses from the energy splittings of the 1S ortho excitons and confirmed the two kinds of epitaxial growth modes in our Cu2O thin films. - Highlights: • Two different oriented Cu2O thin films were epitaxially grown between paired MgO (001) plates. • The thin films were applied biaxial stresses due to lattice mismatch between Cu2O and MgO. • The lattice mismatch stresses can change yellow 1S exciton states in Cu2O thin films. • We report the biaxial stress strengths by analyzing splitting energies of the 1S ortho excitons

  11. Annealing induced coherent evolutions of biaxial strain and antiferromagnetic-insulator phase in La0.625Ca0.375MnO3 films

    Science.gov (United States)

    Han, Yunxin; Wu, Wenbin; Jiang, Guoshun; Zhu, Changfei

    2012-09-01

    La0.625Ca0.375MnO3 (LCMO) films with thicknesses between 7 and 54 nm were epitaxially grown on (LaAlO3)0.3(Sr2AlTaO6)0.35 (001) [LSAT (001)] substrates by using pulsed laser deposition. For this epitaxial system, antiferromagnetic-insulator (AFI) state can be controlled by changing the film thickness and annealing time with various epitaxial strain states, although this phenomenon is absent in the relatively thick films or bulk samples. The consistency between magnetization and resistivity data suggests all these interesting transport behaviors are attributed to the fluctuation of AFI volume fractions and their instability. Especially, there are huge low-field magnetoresistance over -54% (32 nm) at 0.1 T and enhanced magnetoresistance over a broad temperature range. Based on these above results, annealing induced coherent evolutions of biaxial strain and AFI phase in LCMO epitaxial films is a consequence of the strain-driven orbital ordered state, and this may make an approach for a possible application of strongly correlated electron devices.

  12. Analysis and optimization of oxide buffer layers related to YBCO films deposited by CSD and MOCVD on biaxially textured NiW substrates

    International Nuclear Information System (INIS)

    The studies based on epitaxial buffer layers of CeO2 and Yttria-stabilised ZrO2 (YSZ) having been deposited on biaxially textured nickel substrates using thermal reactive evaporation and rf sputtering in continuous deposition processes in reel-to-reel systems. Starting from the well known architecture of CeO2/YSZ/CeO2 the thickness of the different buffer layers was varied. Misorientation, porosity and roughness was analyzed and optimized for YBCO deposition by MOCVD und CSD. The grain morphology and the behavior of the grain boundary networks in YBCO coated conductors have been shown to depend on both the YBCO deposition method and the buffers layer. The possibility of using only one and two buffers layer and conductive layers of perovskite type was studied. X-ray-diffraction, SEM and TEM have been used to investigate the microstructure of both the buffer layers and the YBCO films. Optimal growth conditions of YBCO for the different buffer layers have been determined. YBCO films were deposited by CSD, MOCVD and for comparison by high pressure dc sputtering, resulting on CeO2/YSZ/CeO2 buffered substrates Jc values higher than 2 MA/cm2. The resulting superconducting properties were measured by inductive characterization and by Hall probe measurements of the magnetic field due to induced magnetization currents. (orig.)

  13. Investiagation on the finite fatigue strength of materials subjected to biaxial stress as a result of changing temperatures

    International Nuclear Information System (INIS)

    Design specifications for pressure vessels permit the yield point to be exceeded considerably in the case of secondary stress. Pressure components must therefore often be designed for finite fatigue strength. Dimensioning in accordance with the ASME code has hitherto been based on the results of uniaxial mechanical tests at constant temperature, using high safety factors. The author's own tests intend determine to what extent real loads are covered by thermal cycles in a biaxial stress field. At the same time, the limits of use of these materials under complex loads are determined. Therefore, in this research program biaxial cyclic tests were carried out on disks of unalloyed and austenitic materials. Lifetime was determined in dependence of the prevented deformations. The temperature cycles are between a low limiting temperature of 500C and a higher one of 3000C, 4000C or 5000C. (orig./RW) 891 RW/orig.- 892 RKD

  14. Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature

    Science.gov (United States)

    Garcia, V.; Sidis, Y.; Marangolo, M.; Vidal, F.; Eddrief, M.; Bourges, P.; Maccherozzi, F.; Ott, F.; Panaccione, G.; Etgens, V. H.

    2007-09-01

    The α-β magnetostructural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an α-β phase coexistence and, more importantly, for the stabilization of the ferromagnetic α phase at a higher temperature than in the bulk. We explain the premature appearance of the β phase at 275 K and the persistence of the ferromagnetic α phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature.

  15. Biaxial stresses, surface roughness and microstructure in evaporated TiO2 films with different deposition geometries

    International Nuclear Information System (INIS)

    The residual stresses, surface roughness and microstructure in titanium oxide films prepared by electron-beam evaporation and deposited with different geometries were investigated, with particular focus on the in-plane anisotropy of the biaxial stresses and microstructures. Thin films were deposited with various deposition angles on B270 glass substrates and silicon wafers. Two different types of deposition geometries were studied. The residual stress in the thin films was examined by a phase-shifting Twyman-Green interferometer. The optical constants, biaxial stress and surface roughness were found to be related to the evolution of the anisotropic microstructures in the films. The results revealed that the anisotropic stresses that developed in the evaporated titanium oxide films were dependent upon the deposition geometry and microstructure of the films.

  16. Reexamination of the mean-field phase diagram of biaxial nematic liquid crystals: Insights from Monte Carlo studies

    Science.gov (United States)

    Kamala Latha, B.; Jose, Regina; Murthy, K. P. N.; Sastry, V. S. S.

    2015-07-01

    Investigations of the phase diagram of biaxial liquid-crystal systems through analyses of general Hamiltonian models within the simplifications of mean-field theory (MFT), as well as by computer simulations based on microscopic models, are directed toward an appreciation of the role of the underlying molecular-level interactions to facilitate its spontaneous condensation into a nematic phase with biaxial symmetry. Continuing experimental challenges in realizing such a system unambiguously, despite encouraging predictions from MFT, for example, are requiring more versatile simulational methodologies capable of providing insights into possible hindering barriers within the system, typically gleaned through its free-energy dependences on relevant observables as the system is driven through the transitions. The recent paper from this group [Kamala Latha et al., Phys. Rev. E 89, 050501(R) (2014), 10.1103/PhysRevE.89.050501], summarizing the outcome of detailed Monte Carlo simulations carried out employing an entropic sampling technique, suggested a qualitative modification of the MFT phase diagram as the Hamiltonian is asymptotically driven toward the so-called partly repulsive regions. It was argued that the degree of (cross) coupling between the uniaxial and biaxial tensor components of neighboring molecules plays a crucial role in facilitating a ready condensation of the biaxial phase, suggesting that this could be a plausible factor in explaining the experimental difficulties. In this paper, we elaborate this point further, providing additional evidence from curious variations of free-energy profiles with respect to the relevant orientational order parameters, at different temperatures bracketing the phase transitions.

  17. Domain Walls and Anchoring Transitions Mimicking Nematic Biaxiality in the Oxadiazole Bent-Core Liquid Crystal C7

    OpenAIRE

    Kim, Young-Ki; Cukrov, Greta; Xiang, Jie; Shin, Sung-Tae; Lavrentovich, Oleg D.

    2015-01-01

    We investigate the origin of secondary disclinations that were recently described as a new evidence of a biaxial nematic phase in an oxadiazole bent-core thermotropic liquid crystal C7. With an assortment of optical techniques such as polarizing optical microscopy, LC PolScope, and fluorescence confocal polarizing microscopy, we demonstrate that the secondary disclinations represent non-singular domain walls formed in an uniaxial nematic during the surface anchoring transition, in which surfa...

  18. Biaxial bending of slender HSC columns and tubes filled with concrete under short- and long-term loads: I) Theory

    OpenAIRE

    Rodríguez-Gutiérrez, Jose A.; Jose Dario Aristizabal-Ochoa

    2014-01-01

    An analytical method that calculates both the short- and long-term response of slender columns made of high-strength concrete (HSC) and tubes filled with concrete with generalized end conditions and subjected to transverse loads along the span and axial load at the ends (causing a single or double curvature under uniaxial or biaxial bending) is presented. The proposed method, which is an extension of a method previously developed by the authors, is capable of predicting not only the complete ...

  19. Electrically conducting oxide buffer layers on biaxially textured nickel alloy tapes by reel-to-reel MOCVD process

    International Nuclear Information System (INIS)

    Reel-to-reel MOCVD process for continuous growth of electrically conducting buffer layers on biaxially textured Ni5W tapes has been developed. The new buffer layer architechture is presented: 200 nm (La, Ba)2CuO4/40 nm (La, Ba)MnO3/Ni5W. Constituting layers with high structural quality have been grown on moving tapes (in plane FWHM ≤ 60 and out of plane FWHM ≤ 30)

  20. Development of 1366 K (20000F) strain sensor and biaxial strain transducer for use to 1033 K (14000F)

    International Nuclear Information System (INIS)

    The development and evaluation of (a) the Battelle-Columbus Laboratories (BCL) resistance strain gage system for measurement of strains to 1366 K (20000F), and (b) a biaxial strain transducer, utilizing above system, for measurements to 1033 K (14000F) are described. Data are presented which depict pertinent gage and transducer performance characteristics. The paper should be of particular interest to those in need of strain data at temperatures exceeding the limits of commercially available electric resistance strain gages. (orig.)

  1. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics

    OpenAIRE

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-01-01

    Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as ...

  2. Biaxial Q-shearing of 27Al 3QMAS NMR spectra: insight into the structural disorder of framework aluminosilicates

    Czech Academy of Sciences Publication Activity Database

    Kobera, Libor; Brus, Jiří; Klein, Petr; Dědeček, Jiří; Urbanová, Martina

    57-58, February–April (2014), s. 29-38. ISSN 0926-2040 R&D Projects: GA ČR(CZ) GA13-24155S; GA AV ČR IAA400400904 Institutional support: RVO:61389013 ; RVO:61388955 Keywords : 27Al 3QMAS NMR * biaxial shearing * zeolite s Subject RIV: JN - Civil Engineering; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.266, year: 2014

  3. First principles prediction of the electronic structure and carrier mobilities of biaxially strained molybdenum trioxide (MoO3)

    Science.gov (United States)

    Dandogbessi, Bruno S.; Akin-Ojo, Omololu

    2016-08-01

    The electronic band structures of unstrained and biaxially strained MoO3 were determined by first-principles density functional theory calculations. From the band structures, the effects of strain on the charge carrier mobilities were investigated. These mobilities were calculated based on deformation potential theory. First, we found that the electron effective masses of unstrained bulk pristine MoO3 are about three times smaller than the corresponding hole effective masses, and, second, the electron mobility is about ten times the hole mobility, making the compound an electron transport material. Our results also show that, when compressed biaxially, as the strain increases from 0% to 1.5%, the electron (hole) mobility increases by 0% to 53% (0% to 17%). On the other hand, the application of a biaxial tensile strain decreases the electron (hole) mobility by 65% to 0% (90% to 0%), as the tensile strain increases from 0% to 1.5 % . These changes are caused mainly by the fact that the carrier effective masses reduce (increase) upon application of compressive (tensile) strain. Only the acoustic-phonon limited carrier mobilities were computed; hence, the actual mobilities cannot be less than the values obtained in this work.

  4. Three-Dimensional Static and Dynamic Analysis of a Composite Cruciform Structure Subjected to Biaxial Loading: A Discontinuum Approach

    Science.gov (United States)

    Navarro-Zafra, J.; Curiel-Sosa, J. L.; Serna Moreno, M. C.

    2016-04-01

    A three-dimensional structural integrity analysis using the eXtended Finite Element Method (XFEM) is considered for simulating the crack behaviour of a chopped fibre-glass-reinforced polyester (CGRP) cruciform specimen subjected to a quasi-static tensile biaxial loading. This is the first time this problem is accomplished for computing the stress intensity factors (SIFs) produced in the biaxially loaded area of the cruciform specimen. A static crack analysis for the calculation of the mixed-mode SIFs is carried out. SIFs are calculated for infinite plates under biaxial loading as well as for the CGRP cruciform specimens in order to review the possible edge effects. A ratio relating the side of the central zone of the cruciform and the crack length is proposed. Additionally, the initiation and evolution of a three-dimensional crack are successfully simulated. Specific challenges such as the 3D crack initiation, based on a principal stress criterion, and its front propagation, in perpendicular to the principal stress direction, are conveniently addressed. No initial crack location is pre-defined and an unique crack is developed. Finally, computational outputs are compared with theoretical and experimental results validating the analysis.

  5. Collective behaviour and spacing of necks in ductile plates subjected to dynamic biaxial loading

    Science.gov (United States)

    Zaera, R.; Rodríguez-Martínez, J. A.; Vadillo, G.; Fernández-Sáez, J.; Molinari, A.

    2015-12-01

    Diffuse or localized dynamic necking of a sheet metal is a major issue in high speed forming processes, leading to unacceptable thinning and even failure if fully developed, and in the dynamic behaviour of metallic structural elements of small thickness used for energy absorption purposes. This process is frequently related to the collective development of localization bands resulting in a necking pattern which depends on the sheet properties and on the loading conditions. This work investigates the spacing between necking bands in sheets made of a thermoviscoplastic metal and submitted to dynamic biaxial loading. For that task a linear perturbation technique, derived within a 2D framework which specifically accounts for stress triaxiality effects upon strain localization, has been developed. Using this methodology, a dominant instability mode can be identified, whose wavelength is related to the necking-band spacing. Likewise, fully 3D finite element simulations have been performed in order to verify and complement the outcomes of the aforementioned theoretical approach. The effects of loading conditions (loading path and loading rate), and thermal coupling on the stability of the deformation process and on the distance between necking bands are examined. We have shown that the neck spacing increases with the ratio of strains and decreases with the loading rate and the temperature rise.

  6. Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing

    Science.gov (United States)

    Scheidegger, Noemy; Ferris, Mark; Phillips, Nigel

    2014-01-01

    The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL's unique space manufacturing approach that enables performing rapid development cycles for cost-effective products that meet ever-challenging mission requirements: The BSADM is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The tight development schedule, with manufacture of 7 Flight Models within 1.5 year after kick-off, is offset by the risk-reduction of using qualified key component-families from other proven SSTL mechanisms. This allowed focusing the BSADM design activities on the mechanism features that are unique to the BSADM, and having an Engineering Qualification Model (EQM) built 8 months after kick-off. The EQM is currently undergoing a full environmental qualification test campaign. This paper presents the BSADM design approach that enabled meeting such a challenging schedule, its design particularities, and the ongoing verification activities.

  7. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement.

    Science.gov (United States)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300 Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time. PMID:24182144

  8. The effects of surface contamination on the biaxially textured substrate for YBCO thick film deposition

    International Nuclear Information System (INIS)

    The epitaxial growth of YBa2Cu3O7-x (YBCO) films on biaxially textured substrates is one of the most promising technique for the fabrication of high current superconducting tapes operating at high temperature. Ni is very attractive as substrate because it easily develops a/ (100)[001] cubic texture. The low oxidation resistance represents the main drawback of the Ni substrate. In order to better assess the role of oxygen on the Ni substrates, a surface physics technique as Auger spectroscopy has been used. It has allowed to evaluate the amount of impurities for different Ni processing and exposure to the air. The results demonstrate that the surface contamination can be efficiently removed by RF sputtering before buffer layer deposition. This procedure allows to obtain CeO2/Pd/Ni architecture by laser ablation with a good epitaxy both of Pd and CeO2 films. On the contrary, when CeO2 is directly deposited on Ni a low epitaxy is obtained. The Auger analysis confirms that the formation of (111) NiO at the Ni-CeO2 interface hampers the epitaxial growth of the ceria film

  9. Biaxial Dielectrophoresis Force Spectroscopy: A Stoichiometric Approach for Examining Intermolecular Weak Binding Interactions.

    Science.gov (United States)

    Park, In Soo; Kwak, Tae Joon; Lee, Gyudo; Son, Myeonggu; Choi, Jeong Woo; Choi, Seungyeop; Nam, Kihwan; Lee, Sei-Young; Chang, Woo-Jin; Eom, Kilho; Yoon, Dae Sung; Lee, Sangyoup; Bashir, Rashid; Lee, Sang Woo

    2016-04-26

    The direct quantification of weak intermolecular binding interactions is very important for many applications in biology and medicine. Techniques that can be used to investigate such interactions under a controlled environment, while varying different parameters such as loading rate, pulling direction, rupture event measurements, and the use of different functionalized probes, are still lacking. Herein, we demonstrate a biaxial dielectrophoresis force spectroscopy (BDFS) method that can be used to investigate weak unbinding events in a high-throughput manner under controlled environments and by varying the pulling direction (i.e., transverse and/or vertical axes) as well as the loading rate. With the BDFS system, we can quantitatively analyze binding interactions related to hydrogen bonding or ionic attractions between functionalized microbeads and a surface within a microfluidic device. Our BDFS system allowed for the characterization of the number of bonds involved in an interaction, bond affinity, kinetic rates, and energy barrier heights and widths from different regimes of the energy landscape. PMID:27007455

  10. A numerical study of macro-mesoscopic mechanical properties of gangue backfill under biaxial compression

    Institute of Scientific and Technical Information of China (English)

    Huang Zhimin; Ma Zhanguo; Zhang Lei; Gong Peng; Zhang Yankun; Liu Fei

    2016-01-01

    Based on the Particle Flow Code (PFC2D) program, we set up gangue backfill models with different gangue contents and bond strength, and studied the stress–strain behaviours, the pattern of shear band and force chains, motion and fragmentation of particles under biaxial compression. The results show that when the bond strength or contents of gangue are high, the peak strength is high and the phenomena of post-peak softening and fluctuation are obvious. When gangue contents are low, the shape of the shear band is sym-metrical and most strong force chains transfer in soil particles. With an increase in gangue content, the shape of the shear band becomes irregular and the majority of strong force chains turn to transfer in gangue particles gradually, most of which distribute along the axial direction. When the gangue content is higher than 50%, the interconnectivity of strong force chains decreases gradually;at the same time, the strong force chains become tilted and the stability of the system tends to decrease. With an increase in external loading, the coordination numbers of the system increase at first and then decrease and the main pattern of force chains changes into columnar from annular. However, after the forming of the advanta-geous shear band, the force chains external to the shear band maintain their columnar shape while the inner ones bend obviously. As a result, annular force chains form.

  11. Computational analysis of fluid flow within a device for applying biaxial strain to cultured cells.

    Science.gov (United States)

    Lee, Jason; Baker, Aaron B

    2015-05-01

    In vitro systems for applying mechanical strain to cultured cells are commonly used to investigate cellular mechanotransduction pathways in a variety of cell types. These systems often apply mechanical forces to a flexible membrane on which cells are cultured. A consequence of the motion of the membrane in these systems is the generation of flow and the unintended application of shear stress to the cells. We recently described a flexible system for applying mechanical strain to cultured cells, which uses a linear motor to drive a piston array to create biaxial strain within multiwell culture plates. To better understand the fluidic stresses generated by this system and other systems of this type, we created a computational fluid dynamics model to simulate the flow during the mechanical loading cycle. Alterations in the frequency or maximal strain magnitude led to a linear increase in the average fluid velocity within the well and a nonlinear increase in the shear stress at the culture surface over the ranges tested (0.5-2.0 Hz and 1-10% maximal strain). For all cases, the applied shear stresses were relatively low and on the order of millipascal with a dynamic waveform having a primary and secondary peak in the shear stress over a single mechanical strain cycle. These findings should be considered when interpreting experimental results using these devices, particularly in the case when the cell type used is sensitive to low magnitude, oscillatory shear stresses. PMID:25611013

  12. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    Science.gov (United States)

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates. PMID:25145810

  13. Multi-cracking in uniaxial and biaxial fatigue of 304L stainless steel

    International Nuclear Information System (INIS)

    When a mechanical part is subjected to a repeated mechanical stress, it may be damaged after a number of cycles by several cracks initiation and propagation of a main crack. This is the phenomenon of fatigue damage. The thesis deals specifically with possible damage to some components of nuclear plants due to thermal fatigue. Unlike conventional mechanical fatigue damage where a main crack breaks the part, the thermal fatigue damage usually results in the appearance of a surface crack network. Two aspects are discussed in the thesis. The first is the experimental study of fatigue multiple cracking stage also called multi-cracking. Two mechanical test campaigns with multi-cracking detection by digital image correlation were conducted. These campaigns involve uniaxial and equi-biaxial mechanical loads in tension/compression without mean stress. This work allows to monitor and to observe the evolution of different networks of cracks through mechanical solicitations. The second is the numerical simulation of the phenomenon of fatigue damage. Several types of model are used (stochastic, probabilistic, cohesive finite elements). The experimental results have led to identify a multiple crack initiation law in fatigue which is faced with the numerical results. This comparison shows the relevance of the use of an analytical probabilistic model to find statistical results on the density of cracks that can be initiated with thermal and mechanical fatigue loadings. (author)

  14. Transverse-electric/transverse-magnetic polarization converter using 1D finite biaxial photonic crystal.

    Science.gov (United States)

    Ouchani, Noama; Bria, Driss; Djafari-Rouhani, Bahram; Nougaoui, Abdelkarim

    2007-09-01

    We show that by using a one-dimensional anisotropic photonic structure, it is possible to realize optical wave polarization conversion by reflection and transmission processes. Thus a single incident S(P) polarized plane wave can produce a single reflected P(S) polarized wave and a single transmitted P(S) polarized wave. This polarization conversion property can be fulfilled with a simple finite superlattice (SL) constituted of anisotropic dielectric materials. We discuss the appropriate choices of the material and geometrical properties to realize such structures. The transmission and reflection coefficients are calculated in the framework of the Green's function method. The amplitude and the polarization characteristics of reflected and transmitted waves are determined as functions of frequency, wave vector k(parallel) (parallel to the interface), and the orientations of the principal axes of the layers constituting the SL. Specific applications of these results are given for a SL consisting of alternating biaxial anisotropic layers NaNO(2)/SbSI sandwiched between two identical semi-infinite isotropic media. PMID:17767240

  15. Remote monitoring of bi-axial loads on a lifting surface moving unsteadily in water

    International Nuclear Information System (INIS)

    A system of measuring the bi-axial load on a lifting surface (blade) which is freely moving and operates submerged in water at the laboratory scale is described. A blade with a span of 500 mm, a chord of 60 mm and a thickness of 9 mm (15% of the chord) was employed and the lift/drag forces were measured using a bespoke strain-gauge based load cell located at the mid-span of the blade, measuring bending moments in two independent directions. The requirement to move freely dictated that the load cell was encapsulated within the blade, along with signal conditioning circuitry, power supply and a data logger with wireless transmission. Submerged operation in water resulted in very short transmission distances, meaning that data were recorded and subsequently transferred using an aerial placed close to the blade while it was stationary. Assumptions based on Euler–Bernoulli beam bending theory were used to infer the total load from measurements of the bending moment at the mid-span and example data from a freely moving aerofoil on a Darrieus-type tidal energy extraction device are presented. The novelty of this system lies in its combination of free movement, submerged operation and small scale. (paper)

  16. A Parametric Study of Mixing in a Granular Flow a Bi-Axial Spherical Tumbler

    CERN Document Server

    Christov, Ivan C; Ottino, Julio M; Sturman, Rob

    2015-01-01

    We report on a computational parameter space study of mixing protocols for a half-full bi-axial spherical granular tumbler. The quality of mixing is quantified via the intensity of segregation (concentration variance) and computed as a function of three system parameters: angles of rotation about each tumbler axis and the flowing layer depth. Only the symmetric case is considered in which the flowing layer depth is the same for each rotation. We also consider the dependence on $\\bar{R}$, which parametrizes the concentric spheroids ("shells") that comprise the volume of the tumbler. The intensity of segregation is computed over 100 periods of the mixing protocol for each choice of parameters. Each curve is classified via a time constant, $\\tau$, and an asymptotic mixing value, $bias$. We find that most choices of angles and most shells throughout the tumbler volume mix well, with mixing near the center of the tumbler being consistently faster (small $\\tau$) and more complete (small $bias$). We conclude with ex...

  17. MTOR-independent induction of autophagy in trabecular meshwork cells subjected to biaxial stretch.

    Science.gov (United States)

    Porter, Kristine M; Jeyabalan, Nallathambi; Liton, Paloma B

    2014-06-01

    The trabecular meshwork (TM) is part of a complex tissue that controls the exit of aqueous humor from the anterior chamber of the eye, and therefore helps maintaining intraocular pressure (IOP). Because of variations in IOP with changing pressure gradients and fluid movement, the TM and its contained cells undergo morphological deformations, resulting in distention and stretching. It is therefore essential for TM cells to continuously detect and respond to these mechanical forces and adapt their physiology to maintain proper cellular function and protect against mechanical injury. Here we demonstrate the activation of autophagy, a pro-survival pathway responsible for the degradation of long-lived proteins and organelles, in TM cells when subjected to biaxial static stretch (20% elongation), as well as in high-pressure perfused eyes (30mmHg). Morphological and biochemical markers for autophagy found in the stretched cells include elevated LC3-II levels, increased autophagic flux, and the presence of autophagic figures in electron micrographs. Furthermore, our results indicate that the stretch-induced autophagy in TM cells occurs in an MTOR- and BAG3-independent manner. We hypothesize that activation of autophagy is part of the physiological response that allows TM cells to cope and adapt to mechanical forces. PMID:24583119

  18. Biaxial Solar Tracking System Based on the MPPT Approach Integrating ICTs for Photovoltaic Applications

    Directory of Open Access Journals (Sweden)

    Raúl Gregor

    2015-01-01

    Full Text Available The smart grid and distributed generation based on renewable energy applications often involve the use of information and communication technology (ICT coupled with advanced control and monitoring algorithms to improve the efficiency and reliability of the electrical grid and renewable generation systems. Photovoltaic (PV systems have been recently applied with success in the fields of distributed generation due to their lower environmental impact where the electrical energy generation is related to the amount of solar irradiation and thus the angle of incident ray of the sun on the surface of the modules. This paper introduces an integration of ICTs in order to achieve the maximum power point tracking (MPPT using a biaxial solar tracking system for PV power applications. To generate the references for the digital control of azimuth and elevation angles a Global Positioning System (GPS by satellites is used which enables acquiring the geographic coordinates of the sun in real-time. As a total integration of the system a communication platform based on the 802.15.4 protocol for the wireless sensor networks (WSNs is adopted for supervising and monitoring the PV plant. A 2.4 kW prototype system is implemented to validate the proposed control scheme performance.

  19. Particle flow of ceramic breeder pebble beds in bi-axial compression experiments

    International Nuclear Information System (INIS)

    Pebble beds of Tritium breeding ceramic material are investigated within the framework of developing solid breeder blankets for future nuclear fusion power plants. For the thermo-mechanical characterisation of such pebble beds, bed compression experiments are the standard tools. New bi-axial compression experiments on 20 and 30 mm high pebble beds show pebble flow effects much more pronounced than in previous 10 mm beds. Owing to the greater bed height, conditions are reached where the bed fails in cross direction and unhindered flow of the pebbles occurs. The paper presents measurements for the orthosilicate and metatitanate breeder materials that are envisaged to be used in a solid breeder blanket. The data are compared with calculations made with a Drucker-Prager soil model within the finite-element code ABAQUS, calibrated with data from other experiments. It is investigated empirically whether internal bed friction angles can be determined from pebble beds of the considered heights, which would simplify, and broaden the data base for, the calibration of the Drucker-Prager pebble bed models

  20. The effects of surface contamination on the biaxially textured substrate for YBCO thick film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Apicella, M.L.; Boffa, V.; Celentano, G.; Fabbri, F.; Petrisor, T. [ENEA Centro Ricerche Frascati, Rome (Italy)

    1999-04-20

    The epitaxial growth of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} (YBCO) films on biaxially textured substrates is one of the most promising technique for the fabrication of high current superconducting tapes operating at high temperature. Ni is very attractive as substrate because it easily develops a/ (100)[001] cubic texture. The low oxidation resistance represents the main drawback of the Ni substrate. In order to better assess the role of oxygen on the Ni substrates, a surface physics technique as Auger spectroscopy has been used. It has allowed to evaluate the amount of impurities for different Ni processing and exposure to the air. The results demonstrate that the surface contamination can be efficiently removed by RF sputtering before buffer layer deposition. This procedure allows to obtain CeO{sub 2}/Pd/Ni architecture by laser ablation with a good epitaxy both of Pd and CeO{sub 2} films. On the contrary, when CeO{sub 2} is directly deposited on Ni a low epitaxy is obtained. The Auger analysis confirms that the formation of (111) NiO at the Ni-CeO{sub 2} interface hampers the epitaxial growth of the ceria film.

  1. Dependence of electronic properties of germanium on the in-plane biaxial tensile strains

    International Nuclear Information System (INIS)

    The hybrid HSE06 functional with the spin–orbit coupling effects is used to calculate the habituation of the electronic properties of Ge on the (0 0 1), (1 1 1), (1 0 1) in-plane biaxial tensile strains (IPBTSs). Our motivation is to explore the nature of electronic properties of tensile-strained Ge on different substrate orientations. The calculated results demonstrate that one of the most effective and practical approaches for transforming Ge into a direct transition semiconductor is to introduce (0 0 1) IPBTS to Ge. At 2.3% (0 0 1) IPBTS, Ge becomes a direct bandgap semiconductor with 0.53 eV band gap, in good agreement with the previous theoretical and experimental results. We find that the (1 1 1) and (1 0 1) IPBTSs are not efficient since the shear strain and inner displacement of atoms introduced by them quickly decrease the indirect gap of Ge. By investigating the dependence of valence band spin–orbit splitting on strain, we prove that the dependency relationship and the coupled ways between the valence-band states of tensile-strained Ge are closely related to the symmetry of strain tensor, i.e., the symmetry of the substrate orientation. The first- and second-order coefficients describing the dependence of indirect gap, direct gap, the valence band spin–orbit coupling splitting, and heavy-hole–light-hole splitting of Ge on IPBTSs have been obtained by the least squares polynomial fitting. These coefficients are significant to quantitatively modulate the electronic properties of Ge by tensile strain and design tensile-strained Ge devices by semiconductor epitaxial technique

  2. Cyclic plasticity of an austenitic-ferritic stainless steel under biaxial non proportional loading

    International Nuclear Information System (INIS)

    Austenitic-ferritic stainless steels are supplied since about 30 years only, so they are yet not well-known. Their behaviour in cyclic plasticity was studied under uniaxial loading but not under multiaxial loading, whereas only a thorough knowledge of the phenomena influencing the mechanical behaviour of a material enables to simulate and predict accurately its behaviour in a structure. This work aims to study and model the behaviour of a duplex stainless steel under cyclic biaxial loading. A three step method was adopted. A set of tension-torsion tests on tubular specimen was first defined. We studied the equivalence between loading directions, and then the influence of loading path and loading history on the stress response of the material. Results showed that duplex stainless steel shows an extra-hardening under non proportional loading and that its behaviour depends on previous loading. Then, in order to analyse the results obtained during this first experimental stage, the yield surface was measured at different times during cyclic loading of the same kind. A very small plastic strain offset (2*10-5) was used in order not to disturb the yield surface measured. The alteration of isotropic and kinematic hardening variables were deduced from these measures. Finally, three phenomenological constitutive laws were identified with the experimental set. We focused our interest on the simulation of stabilized stress levels and on the simulation of the cyclic hardening/softening behaviour. The comparison between experimental and numerical results enabled the testing of the relevance of these models. (authors)

  3. Biaxial tensile tests identify epidermis and hypodermis as the main structural elements of sweet cherry skin.

    Science.gov (United States)

    Brüggenwirth, Martin; Fricke, Heiko; Knoche, Moritz

    2014-01-01

    The skin of developing soft and fleshy fruit is subjected to considerable growth stress, and failure of the skin is associated with impaired barrier properties in water transport and pathogen defence. The objectives were to establish a standardized, biaxial tensile test of the skin of soft and fleshy fruit and to use it to characterize and quantify mechanical properties of the sweet cherry (Prunus avium) fruit skin as a model. A segment of the exocarp (ES) comprising cuticle, epidermis, hypodermis and adhering flesh was mounted in the elastometer such that the in vivo strain was maintained. The ES was pressurized from the inner surface and the pressure and extent of associated bulging were recorded. Pressure : strain responses were almost linear up to the point of fracture, indicating that the modulus of elasticity was nearly constant. Abrading the cuticle decreased the fracture strain but had no effect on the fracture pressure. When pressure was held constant, bulging of the ES continued to increase. Strain relaxation upon releasing the pressure was complete and depended on time. Strains in longitudinal and latitudinal directions on the bulging ES did not differ significantly. Exocarp segments that released their in vivo strain before the test had higher fracture strains and lower moduli of elasticity. The results demonstrate that the cherry skin is isotropic in the tangential plane and exhibits elastic and viscoelastic behaviour. The epidermis and hypodermis, but not the cuticle, represent the structural 'backbone' in a cherry skin. This test is useful in quantifying the mechanical properties of soft and fleshy fruit of a range of species under standardized conditions. PMID:24876301

  4. Dependence of electronic properties of germanium on the in-plane biaxial tensile strains

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Yu, Z.Y., E-mail: yuzhongyuan30@gmail.com [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Liu, Y.M.; Lu, P.F. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China); Gao, T. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Li, M.; Manzoor, S. [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876 (China)

    2013-10-15

    The hybrid HSE06 functional with the spin–orbit coupling effects is used to calculate the habituation of the electronic properties of Ge on the (0 0 1), (1 1 1), (1 0 1) in-plane biaxial tensile strains (IPBTSs). Our motivation is to explore the nature of electronic properties of tensile-strained Ge on different substrate orientations. The calculated results demonstrate that one of the most effective and practical approaches for transforming Ge into a direct transition semiconductor is to introduce (0 0 1) IPBTS to Ge. At 2.3% (0 0 1) IPBTS, Ge becomes a direct bandgap semiconductor with 0.53 eV band gap, in good agreement with the previous theoretical and experimental results. We find that the (1 1 1) and (1 0 1) IPBTSs are not efficient since the shear strain and inner displacement of atoms introduced by them quickly decrease the indirect gap of Ge. By investigating the dependence of valence band spin–orbit splitting on strain, we prove that the dependency relationship and the coupled ways between the valence-band states of tensile-strained Ge are closely related to the symmetry of strain tensor, i.e., the symmetry of the substrate orientation. The first- and second-order coefficients describing the dependence of indirect gap, direct gap, the valence band spin–orbit coupling splitting, and heavy-hole–light-hole splitting of Ge on IPBTSs have been obtained by the least squares polynomial fitting. These coefficients are significant to quantitatively modulate the electronic properties of Ge by tensile strain and design tensile-strained Ge devices by semiconductor epitaxial technique.

  5. Planar biaxial testing of soft biological tissue using rakes: A critical analysis of protocol and fitting process.

    Science.gov (United States)

    Fehervary, Heleen; Smoljkić, Marija; Vander Sloten, Jos; Famaey, Nele

    2016-08-01

    Mechanical characterization of soft biological tissue is becoming more and more prevalent. Despite the growing use of planar biaxial testing for soft tissue characterization, testing conditions and subsequent data analysis have not been standardized and vary widely. This also influences the quality of the result of the parameter fitting. Moreover, the testing conditions and data analysis are often not or incompletely reported, which impedes the proper comparison of parameters obtained from different studies. With a focus on planar biaxial tests using rakes, this paper investigates varying testing conditions and varying data analysis methods and their effect on the quality of the parameter fitting results. By means of a series of finite element simulations, aspects such as number of rakes, rakes׳ width, loading protocol, constitutive model, material stiffness and anisotropy are evaluated based on the degree of homogeneity of the stress field, and on the correlation between the experimentally obtained stress and the stress derived from the constitutive model. When calculating the aforementioned stresses, different definitions of the section width and deformation gradient are used in literature, each of which are looked into. Apart from this degree of homogeneity and correlation, also the effect on the quality of the parameter fitting result is evaluated. The results show that inhomogeneities can be reduced to a minimum for wise choices of testing conditions and analysis methods, but never completely eliminated. Therefore, a new parameter optimization procedure is proposed that corrects for the inhomogeneities in the stress field and induces significant improvements to the fitting results. Recommendations are made for best practice in rake-based planar biaxial testing of soft biological tissues and subsequent parameter fitting, and guidelines are formulated for reporting thereof in publications. PMID:26854936

  6. Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam.

    Science.gov (United States)

    Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J

    2009-07-01

    Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the

  7. Determination of out-of-plane biaxial stress effects on fracture toughness for shallow surface cracks in reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Pressurized-thermal-shock loading in a reactor pressure vessel (RPV) produces significant positive out-of-plane stresses along the crack front for both circumferential and axial cracks. Experimental evidence, while very limited, seems to indicate that a reduction in toughness is associated with out-of-plane biaxial loading when compared with toughness values obtained under uniaxial conditions. The motivation and objectives of a testing program to determine the effects of out-of-plane biaxial loading on fracture toughness of RPV steels are presented. A cruciform bend specimen that meets specified criteria for the testing program is analyzed using three-dimensional, elastic-plastic, finite-element techniques. These analysis results provide the basis for proposed test conditions that are judged likely to produce a biaxial loading effect in the cruciform bend specimen

  8. Development of a methodology for the assessment of shallow-flaw fracture in nuclear reactor pressure vessels: Generation of biaxial shallow-flaw fracture toughness data

    Energy Technology Data Exchange (ETDEWEB)

    McAfee, W.J.; Bass, B.R.; Bryson, J.W.

    1998-07-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow-surface flaws. Shallow-flaw fracture toughness of RPV material has been shown to be higher than that for deep flaws, because of the relaxation of crack-tip constraint. This report describes the preliminary test results for a series of cruciform specimens with a uniform depth surface flaw. These specimens are all of the same size with the same depth flaw. Temperature and biaxial load ratio are the independent variables. These tests demonstrated that biaxial loading could have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for RPV materials. Through that temperature range, the effect of full biaxial (1:1) loading on uniaxial, shallow-flaw toughness varied from no effect near the lower shelf to a reduction of approximately 58% at higher temperatures.

  9. Stress Ratio Effects on the fatigue Properties of Biaxially Loaded Tubular FRP-Specimens – Experimental Study

    OpenAIRE

    Marques, Jorge Filipe Simões

    2013-01-01

    In this work tubular fiber reinforced specimens are tested for fatigue life. The specimens are biaxially loaded with tension and shear stresses, with a load angle β of 30° and 60° and a load ratio of R=0,1. There are many factors that affect fatigue life of a fiber reinforced material and the main goal of this work is to study the effects of load ratio R by obtaining S-N curves and compare them to the previous works (1). All the other parameters, such as specimen production, fatigue loading f...

  10. Biaxial bending of slender hsc columns and tubes filled with concrete under short- and long-term loads: ii) verification

    OpenAIRE

    Rodríguez-Gutiérrez, Jose A.; ARISTIZABAL-OCHOA, JOSE DARIO

    2014-01-01

    An analytical method that calculates both the short- and long-term response of slender columns made of high-strength concrete (HSC) and of tubes filled with concrete with generalized end conditions that are subjected to transverse loads along the span and to axial loads at the ends (causing single- or double-curvature under uniaxial or biaxial bending) is presented in a companion paper. The columns that can be analyzed with this method include those with solid and hollow rectangular, circular...

  11. Catalytic surface modification of roll-milled poly(ε-caprolactone) biaxially stretched to ultra-thin dimension

    International Nuclear Information System (INIS)

    A novel roll-milling polymer processing technique along with biaxial stretching was used to fabricate 10 μm thick poly(ε-caprolactone) films. A less invasive collagen surface modification was used, involving a reaction between corona-preactivated membranes and ferrous-containing acrylic acid solution at the low temperature of 42 oC. Successful modified films were characterized by Toluidine Blue O assay and X-ray photoelectron spectroscopy. Human umbilical vein endothelial cells also showed both higher proliferation rate and differentiated cobblestone morphology on these collagen-immobilized substrates

  12. Catalytic surface modification of roll-milled poly({epsilon}-caprolactone) biaxially stretched to ultra-thin dimension

    Energy Technology Data Exchange (ETDEWEB)

    Foo, H.L. [Graduate Programme in Bioengineering, National University of Singapore (Singapore); Bionic Materials Technology Group, Biomaterials Center, National Institute for Materials Science (Japan); Taniguchi, A. [Bionic Materials Technology Group, Biomaterials Center, National Institute for Materials Science (Japan); Yu, H. [Graduate Programme in Bioengineering, National University of Singapore (Singapore); Department of Physiology, National University of Singapore (Singapore); Okano, T. [Bionic Materials Technology Group, Biomaterials Center, National Institute for Materials Science (Japan); Institute of Biomedical Engineering, Tokyo Women' s Medical University (Japan); Teoh, S.H. [Graduate Programme in Bioengineering, National University of Singapore (Singapore) and Department of Mechanical Engineering, National University of Singapore (Singapore)]. E-mail: mpetsh@nus.edu.sg

    2007-03-15

    A novel roll-milling polymer processing technique along with biaxial stretching was used to fabricate 10 {mu}m thick poly({epsilon}-caprolactone) films. A less invasive collagen surface modification was used, involving a reaction between corona-preactivated membranes and ferrous-containing acrylic acid solution at the low temperature of 42 {sup o}C. Successful modified films were characterized by Toluidine Blue O assay and X-ray photoelectron spectroscopy. Human umbilical vein endothelial cells also showed both higher proliferation rate and differentiated cobblestone morphology on these collagen-immobilized substrates.

  13. Limit load solution for an edge cracked plate under combined independent bi-axial membrane and bending

    International Nuclear Information System (INIS)

    A limit load solution for an edge cracked plate that includes any combination of biaxial bending and membrane loading is developed in the study. This solution will then be compared to the solution within the Miller Compendium and that obtained from Finite Element (FE) analyses. The solutions applicability to a cylinder will also be considered through the use of FE modeling. Through these comparisons it is hoped that the derived limit load solution can be validated and guidance for its applicability to a cylinder provided

  14. Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature

    OpenAIRE

    Garcia, V.; Sidis, Y.; Marangolo, M.; Vidal, F.; Eddrief, M; Bourges, P.; Maccherozzi, F.; Ott, F.; Panaccione, G.; Etgens, V. H.

    2007-01-01

    The alpha-beta magneto-structural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 K to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more important, for the stabilization of the ferromagnetic alpha-phase at higher temperature than in bulk. We ...

  15. Effectiveness of the modified fatigue criteria for biaxial loading of notched specimen in high-cycle region

    Czech Academy of Sciences Publication Activity Database

    Major, Štěpán; Hubálovský, Š.; Kocour, Vladimír; Valach, Jaroslav

    Vol. 732. Zürich: Trans Tech Publications, 2015 - (Polach, P.), s. 63-70 ISBN 978-3-03835-413-0. ISSN 1660-9336. [EAN 2014. Conference on experimental stress analysis. /52./. Mariánské Lázně (CZ), 02.06.2014-05.06.2014] Institutional support: RVO:68378297 Keywords : notched specimen * multiaxial criteria * biaxial loading * fatigue life * bending-torsion loading * high-cycle loading Subject RIV: JM - Building Engineering http://www.scientific.net/AMM.732.63

  16. Modification of valence-band symmetry and Auger threshold energy in biaxially compressed InAs1-xSbx

    International Nuclear Information System (INIS)

    Strained-layer superlattices (SLS's) with biaxially compressed InAs1-xSbx were characterized using magnetophotoluminescence and compared with unstrained InAs1-xSbx alloys. Holes in the SLS exhibited a decrease in effective mass, approaching that of the electrons. In the two-dimensional limit, a large increase in the Auger threshold energy accompanies this strain-induced change in SLS valence-band symmetry. Correspondingly, the activation energy for nonradiative recombination in the SLS's displayed a marked increase compared with that of the unstrained alloys. Strained-layer superlattices and alloy activation energies are in agreement with estimated Auger threshold energies

  17. Polarization properties of lasing near an optical axis in the KGd(WO4)2:Nd biaxial crystal

    International Nuclear Information System (INIS)

    Fluorescence and stimulated emission were obtained for propagation directions in the vicinity of the optical axis from the biaxial Nd-doped KGd(WO4)2 crystal. We visualized the peculiar role of the optical axis by fluorescence conoscopy. A fourth spectroscopic parameter due to the monoclinic symmetry was exhibited. Intra-laser-cavity conoscopy was performed in conjunction with the lasing in order to indicate the role of the elliptical modes. The lasing efficiency was found to be in agreement with the relative intensity of the left and right circular polarized components of the fluorescence near the optical axis. (letter)

  18. Active-flux based motion sensorless vector control of biaxial excitation generator/motor for automobiles (BEGA)

    DEFF Research Database (Denmark)

    Coroban-Schramel, Vasile; Boldea, Ion; Andreescu, Gheorghe-Daniel;

    2009-01-01

    the active-flux concept the estimated rotor position is given by the sum of the active flux angle and torque angle. The active flux is calculated by subtracting the term Lq i s from the estimated stator flux vector. The experimental results validate the active flux-principle and show good performance......This paper proposes a novel, active-flux based, motion-sensorless vector control structure for biaxial excitation generator for automobiles (BEGA) for wide speed range operation. BEGA is a hybrid excited synchronous machine having permanent magnets on q-axis and a dc excitation on daxis. Using...

  19. Enhanced carrier mobility and direct tunneling probability of biaxially strained Ge{sub 1−x}Sn{sub x} alloys for field-effect transistors applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lei; Liang, Renrong, E-mail: liangrr@tsinghua.edu.cn, E-mail: junxu@tsinghua.edu.cn; Wang, Jing; Xu, Jun, E-mail: liangrr@tsinghua.edu.cn, E-mail: junxu@tsinghua.edu.cn [Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2015-05-14

    The carrier transport and tunneling capabilities of biaxially strained Ge{sub 1−x}Sn{sub x} alloys with (001), (110), and (111) orientations were comprehensively investigated and compared. The electron band structures of biaxially strained Ge{sub 1−x}Sn{sub x} alloys were calculated by the nonlocal empirical pseudopotential method and the modified virtual crystal approximation was adopted in the calculation. The electron and hole effective masses at the band edges were extracted using a parabolic line fit. It is shown that the applied biaxial strain and the high Sn composition are both helpful for the reduction of carrier effective masses, which leads to the enhanced carrier mobility and the boosted direct band-to-band-tunneling probability. Furthermore, the strain induced valance band splitting reduces the hole interband scattering, and the splitting also results in the significantly enhanced direct tunneling rate along the out-of-plane direction compared with that along the in-plane direction. The biaxially strained (111) Ge{sub 1−x}Sn{sub x} alloys exhibit the smallest band gaps compared with (001) and (110) orientations, leading to the highest in-plane and out-of-plane direct tunneling probabilities. The small effective masses on (110) and (111) planes in some strained conditions also contribute to the enhanced carrier mobility and tunneling probability. Therefore, the biaxially strained (110) and (111) Ge{sub 1−x}Sn{sub x} alloys have the potential to outperform the corresponding (001) Ge{sub 1−x}Sn{sub x} devices. It is important to optimize the applied biaxial strain, the Sn composition, and the substrate orientation for the design of high performance Ge{sub 1−x}Sn{sub x} field-effect transistors.

  20. Biaxially oriented CdTe films on glass substrate through nanostructured Ge/CaF2 buffer layers

    Science.gov (United States)

    Lord, R. J.; Su, P.-Y.; Bhat, I.; Zhang, S. B.; Lu, T.-M.; Wang, G.-C.

    2015-09-01

    Heteroepitaxial CdTe films were grown by metal organic chemical vapor deposition on glass substrates through nanostructured Ge/CaF2 buffer layers which were biaxially oriented. It allows us to explore the structural properties of multilayer biaxial semiconductor films which possess small angle grain boundaries and to test the principle of a solar cell made of such low-cost, low-growth-temperature semiconductor films. Through the x-ray diffraction and x-ray pole figure analysis, the heteroepitaxial relationships of the mutilayered films are determined as [111] in the out-of-plane direction and CdTe//Ge//{ }{{{CaF}}2} in the in-plane direction. The I-V curves measured from an ITO/CdS/CdTe/Ge/CaF2/glass solar cell test structure shows a power conversion efficiency of ˜η = 1.26%, illustrating the initial success of such an approach. The observed non-ideal efficiency is believed to be due to a low shunt resistance and high series resistance as well as some residual large-angle grain boundary effects, leaving room for significant further improvement.

  1. BiTEP (biaxially textured electroplating): A novel route for making improved coated conductors, based on a well established technique

    International Nuclear Information System (INIS)

    We present a new technique for the deposition of Ni on cube textured Ni alloy substrates. It is superior to the commonly used PVD and CVD coating methods and easy to scale up from the laboratory to an industrial long length process. The new route, called 'BiTEP' (biaxially textured electroplating), where biaxially textured Ni alloy substrates are electrolytically plated with Ni, is shown to lead to an outstanding transfer of the texture from the substrate to the pure Ni layer. Several platings from 130 nm to 1.5 μm thickness were made on Ni96W4, Ni87Cr6.5W6.5 and Ni90Cr10 substrates, applying different current densities during electroplating, from 0.2 to 2 A dm-2. All investigated samples showed epitaxy between the substrates and the Ni film, independent of the layer thickness, the current density used for electroplating, and the substrate material. In Ni-W substrate tapes a sharp cube recrystallization texture with FWHM (111) of -2 (77 K, self-field) in YBCO. Furthermore, commercially available constantan (Ni 44.4 wt%, Cu 54.19 wt%, the rest: Mn, Fe) from our partner ThyssenKrupp VDM was investigated

  2. First- and second-order phase transitions between quantum and classical regimes for the escape rate of a biaxial spin system

    CERN Document Server

    Kim, G H

    1999-01-01

    The particle Hamiltonian for a biaxial spin system with a transverse or longitudinal magnetic field is investigated. We apply the Hamiltonian to the quantum-classical escape rate transition in small magnets. It is found that the phase boundary separating the first- and second-order transition is greatly influenced by the transverse anisotropy constant as well as the external magnetic field.

  3. Comparison of recent rubber-elasticity theories with biaxial stress-strain data: The slip-link theory of Edwards and Vilgis

    Czech Academy of Sciences Publication Activity Database

    Meissner, Bohumil; Matějka, Libor

    2002-01-01

    Roč. 43, č. 13 (2002), s. 3803-3809. ISSN 0032-3861 R&D Projects: GA ČR GA104/00/1311 Institutional research plan: CEZ:AV0Z4050913 Keywords : theory of rubber elasticity * biaxial deformations * experimental testing Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.838, year: 2002

  4. Effects of Interphase Modification and Biaxial Orientation on Dielectric Properties of Poly(ethylene terephthalate)/Poly(vinylidene fluoride-co-hexafluoropropylene) Multilayer Films.

    Science.gov (United States)

    Yin, Kezhen; Zhou, Zheng; Schuele, Donald E; Wolak, Mason; Zhu, Lei; Baer, Eric

    2016-06-01

    Recently, poly(vinylidene fluoride) (PVDF)-based multilayer films have demonstrated enhanced dielectric properties, combining high energy density and high dielectric breakdown strength from the component polymers. In this work, further enhanced dielectric properties were achieved through interface/interphase modulation and biaxial orientation for the poly(ethylene terephthalate)/poly(methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) [PET/PMMA/P(VDF-HFP)] three-component multilayer films. Because PMMA is miscible with P(VDF-HFP) and compatible with PET, the interfacial adhesion between PET and P(VDF-HFP) layers should be improved. Biaxial stretching of the as-extruded multilayer films induced formation of highly oriented fibrillar crystals in both P(VDF-HFP) and PET, resulting in improved dielectric properties with respect to the unstretched films. First, the parallel orientation of PVDF crystals reduced the dielectric loss from the αc relaxation in α crystals. Second, biaxial stretching constrained the amorphous phase in P(VDF-HFP) and thus the migrational loss from impurity ions was reduced. Third, biaxial stretching induced a significant amount of rigid amorphous phase in PET, further enhancing the breakdown strength of multilayer films. Due to the synergistic effects of improved interfacial adhesion and biaxial orientation, the PET/PMMA/P(VDF-HFP) 65-layer films with 8 vol % PMMA exhibited optimal dielectric properties with an energy density of 17.4 J/cm(3) at breakdown and the lowest dielectric loss. These three-component multilayer films are promising for future high-energy-density film capacitor applications. PMID:27163929

  5. Ion-beam assisted deposition of MgO with in situ RHEED monitoring to control Bi-axial texture

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, P. N. (Paul N.); Foltyn, S. R. (Stephen R.); Jia, Quanxi; DePaula, R. F. (Raymond Felix); Dowden, P. C. (Paul C.); Kung, H. (Harriett); Holesinger, T. G. (Terry G.); Stan, L. (Liliana); Emmert, L. A. (Luke A.); Peterson, E. J. (Eric J.); Groves, J. R. (James R.)

    2001-01-01

    We have studied the growth of magnesium oxide using ion-beam assisted deposition (IBAD) to achieve (100) oriented, bi-axially textured films with low mosaic spread, for film thicknesses of 10 nm on silicon substrates. We have refined the process by using reflected high-energy electron diffraction (RHEED) to monitor the growth of IBAD MgO films and found that the diffracted intensity can be used to determine (and ultimately control) final in-plane texture of the film. Here we present results on our work to develop the use of real-time RHEED monitoring to deposit well-oriented IBAD MgO films. The results have been corroborated with extensive grazing-incidence X-ray diffraction (GID). Results of these analyses have allowed us to deposit films on metallic substrates with in-plane mosaic spread less than 7{sup o}.

  6. Biaxial stress evaluation in GeSn film epitaxially grown on Ge substrate by oil-immersion Raman spectroscopy

    Science.gov (United States)

    Takeuchi, Kazuma; Suda, Kohei; Yokogawa, Ryo; Usuda, Koji; Sawamoto, Naomi; Ogura, Atsushi

    2016-09-01

    GeSn is being paid much attention as a next-generation channel material. In this work, we performed the excitation of forbidden transverse optical (TO) phonons from strained GeSn, as well as longitudinal optical (LO) phonons, under the backscattering geometry from the (001) surface by oil-immersion Raman spectroscopy. Using the obtained LO/TO phonons, we derived the phonon deformation potentials (PDPs), which play an important role in the stress evaluation, of the strained Ge1‑ x Sn x for the first time. The results suggest that PDPs are almost constant for the Ge1‑ x Sn x (x < 0.032). Biaxial stress calculated using the derived PDPs reasonably indicated the isotropic states.

  7. Description of the flow behaviour of a high strength austenitic steel under biaxial loading by a constitutive equation

    International Nuclear Information System (INIS)

    Uniaxial and biaxial tension-torsion tests were carried out on a high strength austenitic steel at room temperature in the strain rate range from 10-5 to 102 s-1. This material shows a strong dependence of strength on strain rate. The yield loci of the combined tests are described by ellipses. The size and the shape of these ellipses are functions of strain and strain rate. The quasi-static and dynamic tension and tension-torsion behaviour of the austenitic steel is described by Perzyna's constitutive equation. There is good agreement between measured and calculated results if a yield criterion as a function of strain and strain rate, and a formula which contains the dependence of flow stress on strain rate based on thermal activation, are included. (orig.)

  8. Self-field ac losses in biaxially aligned Y endash Ba endash Cu endash O tape conductors

    International Nuclear Information System (INIS)

    Self-field ac losses were measured by the conventional ac four-probe method in biaxially aligned Y endash Ba endash Cu endash O tapes using polycrystalline Hastelloy tapes with textured yttria-stabilized-zirconia buffer layers. The ac losses increased in proportion to the fourth power of transport current in the high Jc sample, and agreed well with Norris close-quote equation for thin strip conductors. However, the low Jc sample had rather higher losses than Norris close-quote prediction, suggesting excessive magnetic flux penetration caused by percolated current paths. The results confirmed Norris close-quote prediction of the low ac losses for thin strip conductors, and indicated the importance of removing percolated structures of current paths to avoid higher ac losses than the theoretical predictions based on uniform conductors. copyright 1997 American Institute of Physics

  9. Global limit load solutions for plates with surface cracks under combined biaxial forces and cross-thickness bending

    International Nuclear Information System (INIS)

    Lower bound limit load solutions for surface cracks in plates under combined end force, cross-thickness bending moment and tensile/compressive membrane stress parallel to the crack are derived based on the von Mises yield criterion. From these solutions, particular limit loads for plates with extended surface cracks and through-thickness cracks or uncracked plates under the same loading conditions are obtained. The limit load solutions for surface cracks in plates under combined tension and bending due to Lei and Fox can be reproduced from the solutions in this paper by setting the stress parallel to the crack plane to zero. - Highlights: • Lower bound global limit load solution for rectangular surface cracks in plates. • Combined biaxial stress/force and cross-thickness bending moment. • Solutions based on lower bound limit load theorem and von Mises yield criterion. • Solutions valid for proportional/non-proportional loading

  10. Identification of a Visco-Elastic Model for PET Near Tg Based on Uni and Biaxial Results

    Science.gov (United States)

    Luo, Yun Mei; Chevalier, Luc; Monteiro, Eric

    2011-05-01

    The mechanical response of Polyethylene Terephthalate (PET) in elongation is strongly dependent on temperature, strain and strain rate. Near the glass transition temperature Tg, the stress-strain curve presents a strain softening effect vs strain rate but a strain hardening effect vs strain under conditions of large deformations. The main goal of this work is to propose a viscoelastic model to predict the PET behaviour when subjected to large deformations and to determine the material properties from the experimental data. The viscoelastic model is written in a Leonov like way and the variational formulation is carried out for the numerical simulation using this model. To represent the non-linear effects, an elastic part depending on the elastic equivalent strain and a non-Newtonian viscous part depending on both viscous equivalent strain rate and cumulated viscous strain are tested. The model parameters can then be accurately obtained through the comparison with the experimental uniaxial and biaxial tests.

  11. Study of the growth of biaxially textured CeO2 films during ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Biaxially textured CeO2 films were deposited on Hastelloy C276 substrates at room temperature using ion-beam-assisted e-beam evaporation with the ion beam directed at 55 deg. to the normal of the film plane. The crystalline structure and in-plane orientation of films were investigated by x-ray diffraction 2θ-scan and φ-scan. The orientation of the films was studied as a function of ion-to-atom ratio and film thickness. The ion-to-atom ratio was varied by independently adjusting the deposition rate and the ion current density. Under optimum condition, (200) textured CeO2 films have been successfully grown on Hastelloy C276

  12. Study of the growth of biaxially textured CeO{sub 2} films during ion-beam-assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Su [Department of Metallurgical Engineering, Yonsei University, Seodaemoon Ku, Shinchon Dong 134, Seoul 120-749 (Korea, Republic of); Jo, Sung Jin [Department of Metallurgical Engineering, Yonsei University, Seodaemoon Ku, Shinchon Dong 134, Seoul 120-749 (Korea, Republic of); Jeong, Soon Moon [Department of Metallurgical Engineering, Yonsei University, Seodaemoon Ku, Shinchon Dong 134, Seoul 120-749 (Korea, Republic of); Kim, Woo Jin [Department of Metallurgical Engineering, Yonsei University, Seodaemoon Ku, Shinchon Dong 134, Seoul 120-749 (Korea, Republic of); Baik, Hong Koo [Department of Metallurgical Engineering, Yonsei University, Seodaemoon Ku, Shinchon Dong 134, Seoul 120-749 (Korea, Republic of); Lee, Se Jong [Department of Materials Science and Engineering, Kyungsung University, Busan 608-736 (Korea, Republic of); Song, Kie Moon [Department of Applied Physics, Konkuk University, Chungju 380-701 (Korea, Republic of)

    2005-03-01

    Biaxially textured CeO{sub 2} films were deposited on Hastelloy C276 substrates at room temperature using ion-beam-assisted e-beam evaporation with the ion beam directed at 55 deg. to the normal of the film plane. The crystalline structure and in-plane orientation of films were investigated by x-ray diffraction 2{theta}-scan and {phi}-scan. The orientation of the films was studied as a function of ion-to-atom ratio and film thickness. The ion-to-atom ratio was varied by independently adjusting the deposition rate and the ion current density. Under optimum condition, (200) textured CeO{sub 2} films have been successfully grown on Hastelloy C276.

  13. Study of the growth of biaxially textured CeO2 films during ion-beam-assisted deposition

    Science.gov (United States)

    Kim, Chang Su; Jo, Sung Jin; Jeong, Soon Moon; Kim, Woo Jin; Baik, Hong Koo; Lee, Se Jong; Song, Kie Moon

    2005-03-01

    Biaxially textured CeO2 films were deposited on Hastelloy C276 substrates at room temperature using ion-beam-assisted e-beam evaporation with the ion beam directed at 55° to the normal of the film plane. The crystalline structure and in-plane orientation of films were investigated by x-ray diffraction 2θ-scan and phgr-scan. The orientation of the films was studied as a function of ion-to-atom ratio and film thickness. The ion-to-atom ratio was varied by independently adjusting the deposition rate and the ion current density. Under optimum condition, (200) textured CeO2 films have been successfully grown on Hastelloy C276.

  14. Elastic-plastic behavior of non-woven fibrous mats

    Science.gov (United States)

    Silberstein, Meredith N.; Pai, Chia-Ling; Rutledge, Gregory C.; Boyce, Mary C.

    2012-02-01

    Electrospinning is a novel method for creating non-woven polymer mats that have high surface area and high porosity. These attributes make them ideal candidates for multifunctional composites. Understanding the mechanical properties as a function of fiber properties and mat microstructure can aid in designing these composites. Further, a constitutive model which captures the membrane stress-strain behavior as a function of fiber properties and the geometry of the fibrous network would be a powerful design tool. Here, mats electrospun from amorphous polyamide are used as a model system. The elastic-plastic behavior of single fibers are obtained in tensile tests. Uniaxial monotonic and cyclic tensile tests are conducted on non-woven mats. The mat exhibits elastic-plastic stress-strain behavior. The transverse strain behavior provides important complementary data, showing a negligible initial Poisson's ratio followed by a transverse:axial strain ratio greater than -1:1 after an axial strain of 0.02. A triangulated framework has been developed to emulate the fibrous network structure of the mat. The micromechanically based model incorporates the elastic-plastic behavior of single fibers into a macroscopic membrane model of the mat. This representative volume element based model is shown to capture the uniaxial elastic-plastic response of the mat under monotonic and cyclic loading. The initial modulus and yield stress of the mat are governed by the fiber properties, the network geometry, and the network density. The transverse strain behavior is linked to discrete deformation mechanisms of the fibrous mat structure including fiber alignment, fiber bending, and network consolidation. The model is further validated in comparison to experiments under different constrained axial loading conditions and found to capture the constraint effect on stiffness, yield, post-yield hardening, and post-yield transverse strain behavior. Due to the direct connection between

  15. Polarization Manipulation via Orientation Control in Polycrystalline BiFeO3 Thin Films on Biaxially Textured, Flexible Metallic Tapes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Junsoo [ORNL; Goyal, Amit [ORNL; Jesse, Stephen [ORNL; Heatherly Jr, Lee [ORNL

    2011-01-01

    (111)-, (101)-, and (001)-oriented polycrystalline BiFeO3 films were fabricated on rolling-assisted biaxially textured substrates (RABiTS) with appropriate, buffer layer engineering of heteroepitaxially grown buffer multilayers on RABiTS. The crystallographic orientation and polarization direction were confirmed using X-ray diffraction and piezoresponse force microscopy (PFM), respectively. All the films exhibited excellent ferroelectric properties. Switching spectroscopy PFM demonstrated that the switching polarization in (111)-oriented polycrystalline BiFeO3 films is higher than (101) or (001) oriented films. These high-quality, BiFeO3 films on low-cost, flexible, biaxially textured metallic tapes with controllable orientation and polarization are attractive for application in flexible ferroelectric devices.

  16. Biaxial order and a rotation of the minor director in the nematic phase of an organo-siloxane tetrapode by the electric field

    Science.gov (United States)

    Merkel, K.; Nagaraj, M.; Kocot, A.; Kohlmeier, A.; Mehl, G. H.; Vij, J. K.

    2012-03-01

    Biaxiality in the nematic phase for a liquid crystalline tetrapode made up of organo-siloxanes mesogens is investigated using polarized infrared spectroscopy. An ordering of the minor director for the homeotropically aligned sample is found to depend on the amplitude of the in-plane electric field. On increasing the in-plane electric field, the minor director, lying initially along the rubbing direction, rotates to the direction of the applied field. The scalar order parameters of the second rank tensor are found to depend significantly on the strength of the electric field. A most significant increase is found in the nematic order parameter and in the parameter that characterizes the phase biaxiality.

  17. Effect of biaxial strain and external electric field on electronic properties of MoS2 monolayer: A first-principle study

    Science.gov (United States)

    Nguyen, Chuong V.; Hieu, Nguyen N.

    2016-04-01

    In this work, making use of density functional theory (DFT) computations, we systematically investigate the effect of biaxial strain engineering and external electric field applied perpendicular to the layers on the band gaps and electronic properties of monolayer MoS2. The direct-to-indirect band gaps and semiconductor-to-metal transition are observed in monolayer MoS2 when strain and electric field are applied in our calculation. We show that when the biaxial strain and external electric field are introduced, the electronic properties including band gaps of monolayer MoS2 can be reduced to zero. Our results provide many useful insights for the wide applications of monolayer MoS2 in electronics and optoelectronics.

  18. Nonorthogonal [Formula: see text] tight-binding parameterization of single-layer phosphorene under biaxial strain and application to FETs.

    Science.gov (United States)

    Lee, Jaehyun; Seo, Jumbeom; Oh, Jung Hyun; Shin, Mincheol

    2016-06-17

    This paper presents a new set of [Formula: see text] tight-binding (TB) parameters for single-layer phosphorene within the Naval Research Laboratory (NRL) scheme. For this, we develop the numerical algorithm to find the NRL TB parameters fitted to ab initio results. It is shown that the proposed NRL TB parameters successfully reproduce the band structure of a single-layer phosphorene, and even under biaxial or uniaxial strain, they appropriately describe the effects, such as modification of anisotropic effective masses and band gap. Via the top-of-the-barrier model, we also investigate the performance of single-layer phosphorene FETs under biaxial strain with the NRL TB Hamiltonian and find that the results are well in accordance with those of previous studies. PMID:27159924

  19. Spin-to-orbital angular momentum conversion for Bessel beams propagating along the optical axes of homogeneous uniaxial and biaxial crystals

    International Nuclear Information System (INIS)

    A study is made of the dynamics of the spin-to-orbital angular momentum conversion for zero-order and high order circularly polarized Bessel beams propagating along the optical axes of homogeneous uniaxial and biaxial crystals. Implementation of Bessel beams and a slab of homogeneous uniaxial crystal allow one to realize a highly efficient (about 100%) optical process in which the direct conversion of the optical angular momentum from the spin form to the orbital form takes place. It is shown that only in a biaxial crystal is there freedom from compensation of spin and orbital angular momentum exchanges with matter and, as a result, the optical torque emerges, which influences the plate. (paper)

  20. Nonorthogonal {{sp}}^{3}{{d}}^{5} tight-binding parameterization of single-layer phosphorene under biaxial strain and application to FETs

    Science.gov (United States)

    Lee, Jaehyun; Seo, Jumbeom; Oh, Jung Hyun; Shin, Mincheol

    2016-06-01

    This paper presents a new set of {{sp}}3{{d}}5 tight-binding (TB) parameters for single-layer phosphorene within the Naval Research Laboratory (NRL) scheme. For this, we develop the numerical algorithm to find the NRL TB parameters fitted to ab initio results. It is shown that the proposed NRL TB parameters successfully reproduce the band structure of a single-layer phosphorene, and even under biaxial or uniaxial strain, they appropriately describe the effects, such as modification of anisotropic effective masses and band gap. Via the top-of-the-barrier model, we also investigate the performance of single-layer phosphorene FETs under biaxial strain with the NRL TB Hamiltonian and find that the results are well in accordance with those of previous studies.

  1. High-performance poly-Si thin film transistors with highly biaxially oriented poly-Si thin films using double line beam continuous-wave laser lateral crystallization

    Science.gov (United States)

    Yamano, Masayuki; Kuroki, Shin-Ichiro; Sato, Tadashi; Kotani, Koji

    2014-01-01

    Highly biaxially oriented poly-Si thin films were formed by double-line beam continuous-wave laser lateral crystallization (DLB-CLC). The crystallinities of the DLB-CLC poly-Si thin films were (110), (111), and (211) for the laser scan, transverse, and surface directions, respectively, and an energetically stable Σ3 grain boundary was observed to be dominant. All silicon grains were elongated in the laser scan direction and one-dimensionally very large silicon grains with lengths of more than 100 µm were fabricated. Using these biaxially oriented polycrystalline silicon (poly-Si) films, low-temperature poly-Si TFTs (LTPS-TFTs) were fabricated at low temperatures (≦550 °C) by a metal gate self-aligned process. As a result, a TFT with a high electron field effect mobility of μFE = 450 cm2 V-1 s-1 in a linear region was realized.

  2. High critical current density superconducting tapes by epitaxial deposition of YBa2Cu3Ox thick films on biaxially textured metals

    International Nuclear Information System (INIS)

    A method to obtain long lengths of flexible, biaxially oriented substrates with smooth, chemically compatible surfaces for epitaxial growth of high-temperature superconductors is reported. The technique uses well established, industrially scalable, thermomechanical processes to impart a strong biaxial texture to a base metal. This is followed by vapor deposition of epitaxial buffer layers (metal and/or ceramic) to yield chemically compatible surfaces. Epitaxial YBa2Cu3Ox films grown on such substrates have critical current densities exceeding 105 A/cm2 at 77 K in zero field and have field dependencies similar to epitaxial films on single crystal ceramic substrates. Deposited conductors made using this technique offer a potential route for the fabrication of long lengths of high-Jc wire capable of carrying high currents in high magnetic fields and at elevated temperatures. copyright 1996 American Institute of Physics

  3. Increasing the band gap of FeS{sub 2} by alloying with Zn and applying biaxial strain: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Pin [School of Material Science and Engineering, State Key Laboratory of Solidification Processing, Northwestern Polytechnic University, 127 YouYi Western Road, Xi’an, Shaanxi 710072 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Fan, Xiao-Li, E-mail: xlfan@nwpu.edu.cn [School of Material Science and Engineering, State Key Laboratory of Solidification Processing, Northwestern Polytechnic University, 127 YouYi Western Road, Xi’an, Shaanxi 710072 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Zhang, Han; Fang, Xiaoliang [School of Material Science and Engineering, State Key Laboratory of Solidification Processing, Northwestern Polytechnic University, 127 YouYi Western Road, Xi’an, Shaanxi 710072 (China); Liu, Li-Min, E-mail: limin.liu@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100084 (China); Chengdu Green Energy and Green Manufacturing Technology R& D Center, Chengdu, Sichuan 610207 (China)

    2015-04-25

    Highlights: • The combined effect of doping and biaxial strain on the physical properties of FeS{sub 2} was studied. • The band gap of FeS{sub 2} is widen by ∼0.29 eV under 5% tensile strain with Zn alloying at 6.25% concentration. • Alloying with Zn and biaxial tensile strain effectively improve the electronic and optical properties of FeS{sub 2}. - Abstract: The combined effect of alloying and biaxial strain on atomic structure, as well as electronic and optical properties of FeS{sub 2} was first examined by the first-principles calculation. By allaying with Zn, our results show that the band gap of Fe{sub 1−x}Zn{sub x}S{sub 2} alloy increases firstly and then decreases with increasing Zn concentration, the maximum enlargement of band gap is ∼0.1 eV. The left shift of the absorption threshold enhances the overall optical absorptivity. By imposing biaxial strain on the Zn-doped FeS{sub 2}, the band gap decreases under compressive strain, but increases from 0.95 eV to 1.14 eV under 5% tensile strain. More specially, strain widens the band gap of Zn-doped FeS{sub 2} by ∼0.19 eV, and the overall optical absorptivity is further enhanced by the combination of strain and Zn-doping. With the increase of the band gap by ∼0.29 eV and the high optical absorptivity, FeS{sub 2} is a more promising material for photovoltaic applications.

  4. Increasing the band gap of FeS2 by alloying with Zn and applying biaxial strain: A first-principles study

    International Nuclear Information System (INIS)

    Highlights: • The combined effect of doping and biaxial strain on the physical properties of FeS2 was studied. • The band gap of FeS2 is widen by ∼0.29 eV under 5% tensile strain with Zn alloying at 6.25% concentration. • Alloying with Zn and biaxial tensile strain effectively improve the electronic and optical properties of FeS2. - Abstract: The combined effect of alloying and biaxial strain on atomic structure, as well as electronic and optical properties of FeS2 was first examined by the first-principles calculation. By allaying with Zn, our results show that the band gap of Fe1−xZnxS2 alloy increases firstly and then decreases with increasing Zn concentration, the maximum enlargement of band gap is ∼0.1 eV. The left shift of the absorption threshold enhances the overall optical absorptivity. By imposing biaxial strain on the Zn-doped FeS2, the band gap decreases under compressive strain, but increases from 0.95 eV to 1.14 eV under 5% tensile strain. More specially, strain widens the band gap of Zn-doped FeS2 by ∼0.19 eV, and the overall optical absorptivity is further enhanced by the combination of strain and Zn-doping. With the increase of the band gap by ∼0.29 eV and the high optical absorptivity, FeS2 is a more promising material for photovoltaic applications

  5. The influence of external magnetic fields on phase states and spectra of coupled magnetoelastic waves in a biaxial non-Heisenberg ferromagnetic

    International Nuclear Information System (INIS)

    The spectra of coupled magnetoelastic waves of a biaxial non-Heisenberg ferromagnetic in an external magnetic field have been investigated. It is shown that in such systems there are phase transitions taking place through the changing of the magnitude of the magnetization vector. However, these transitions run through a weak quasiphonon mode. The phase diagrams of the system are constructed for different relations between material constants

  6. The biaxial nonlinear crystal BiB3O6 as a polarization entangled photon source using non-collinear type-II parametric down-conversion

    OpenAIRE

    Halevy, A.; Megidish, E.; Dovrat, L.; Eisenberg, H. S.; De Becker, P; Bohatý, L.

    2011-01-01

    We describe the full characterization of the biaxial nonlinear crystal BiB3O6 (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison t...

  7. A Langevin-elasticity-theory-based constitutive equation for rubberlike networks and its comparison with biaxial stress-strain data. Part I

    Czech Academy of Sciences Publication Activity Database

    Meissner, Bohumil; Matějka, Libor

    2003-01-01

    Roč. 44, č. 16 (2003), s. 4599-4610. ISSN 0032-3861 R&D Projects: GA ČR GA104/00/1311; GA AV ČR IAA4050008 Institutional research plan: CEZ:AV0Z4050913 Keywords : theory of rubber elasticity * biaxial deformations * experimental testing Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.340, year: 2003

  8. Ratchetting behavior of primary heat transport (PHT) piping material SA-333 carbon steel subjected to cyclic loads at room temperature

    International Nuclear Information System (INIS)

    Ratchetting behavior of SA-333 Gr. 6 carbon steel used as primary heat transport (PHT) piping material has been investigated with three constitutive models proposed by Armstrong-Frederick, Chaboche and Ohno-Wang involving different hardening rules. Performance of the above mentioned models have been evaluated for a broad set of uniaxial and biaxial loading histories. The uniaxial ratchetting simulations have been performed for a range of stress ratios (R) by imposing different stress amplitudes and mean stress conditions. Numerical simulations indicated significant ratchetting and opening of hysteresis loop for negative stress ratio with constant mean stress. Application of cyclic stress without mean stress (R = -1.0) has been observed to produce negligible ratchet-strain accumulation in the material. Simulation under the biaxial stress condition was based on modeling of an internally pressurized thin walled pipe subjected to cyclic bending load. Numerical results have been validated with the experiments as per simulation conditions. All three models have been found to predict the observed accumulation of circumferential strain with increasing number of cycles. However, the Armstrong Frederick (A-F) model was found to be inadequate in simulating the ratchetting response for both uniaxial as well as biaxial loading cases. The A-F model actually over-predicted the ratchetting strain in comparison with the experimental strain values. On the other hand, results obtained with the Chaboche and the Ohno-Wang models for both the uniaxial as well as biaxial loading histories have been observed to closely simulate the experimental results. The Ohno-Wang model resulted in better simulation for the presents sets of experimental results in comparison with the Chaboche model. It can be concluded that the Ohno-Wang model suited well compared to the Chaboche model for above sets of uniaxial and biaxial loading histories. (authors)

  9. Interference of wedge-shaped protrusions on the faces of a Griffith crack in biaxial stress. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boulet, J.A.M. [Tennessee Univ., Knoxville, TN (United States)

    1992-04-01

    An initial investigation of the influence of protrusion interference on the fracture toughness required to prevent unstable propagation of a Griffith crack in a brittle material is described. The interference is caused by relative shear displacement of the crack faces when subjected to remote biaxial stress with neither principal stress parallel to the crack. It is shown that for room temperature cracks smaller than about one centimeter in silicon carbide, or about one millimeter in silicon nitride, the presence of interference changes the fracture stress. A mathematical model based on linear elasticity solutions and including multiple interference sites at arbitrarily specified positions on the crack is presented. Computations of the change in required fracture toughness and its dependence on wedge geometry (size and vertex angle), applied stresses (orientation and magnitude), and location of the interference site are discussed. Results indicate that a single interference site has only a slight effect on required toughness. However, the influence of interference increases monotonically with the number of interference sites. The two-dimensional model described herein is not accurate when the interference sites are closely spaced.

  10. Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain

    Science.gov (United States)

    Zhang, Shengli; Xie, Meiqiu; Cai, Bo; Zhang, Haijun; Ma, Yandong; Chen, Zhongfang; Zhu, Zhen; Hu, Ziyu; Zeng, Haibo

    2016-06-01

    A stibarsen [derived from Latin stibium (antimony) and arsenic] or allemontite, is a natural form of arsenic antimonide (SbAs) with the same layered structure as arsenic and antimony. Thus, exploring the two-dimensional SbAs nanosheets is of great importance to gain insights into the properties of group V-V compounds at the atomic scale. Here, we propose a class of two-dimensional V-V honeycomb binary compounds, SbAs monolayers, which can be tuned from semiconductor to topological insulator. By ab initio density functional theory, both α-SbAs and γ-SbAs display a significant direct band gap, while others are indirect semiconductors. Interestingly, in an atomically thin β-SbAs polymorph, spin-orbital coupling is significant, which reduces its band gap by 200 meV. Especially under biaxial tensile strain, the gap of β-SbAs can be closed and reopened with concomitant change of band shapes, which is reminiscent of band inversion known in many topological insulators. In addition, we find that the Z2 topological invariant is 1 for β-SbAs under the tensile strain of 12%, and the nontrivial topological feature of β-SbAs is also confirmed by the gapless edge states which cross linearly at the Γ point. These ultrathin group-V-V semiconductors with outstanding properties are highly favorable for applications in alternative optoelectronic and quantum spin Hall devices.

  11. Microstructural Characterisation of Non-Magnetic Ni-BASED Biaxially Textured Substrates for Hts Coated Conductor Applications

    Science.gov (United States)

    Villa, E.; Tuissi, A.; Tomov, R.; Evetts, J. E.

    For the production of HTS coated conductor devices, NiV and NiCr (Ni-based alloys) are the most important, non-magnetic, high strength and biaxially textured substrates developed from pure Ni. The Ni88V12 and Ni85Cr15 (at. %) alloys have been melted in Plasma Arc Furnace and textured tapes have been prepared, after heavy cold rolling, by recrystallization heat treatment under high vacuum. The suitable working conditions have been found to obtain not only the {100} cube texture but also the correct grain shape and size for the following deposition process. Out of plane orientation of these substrates has been investigated by θ-2θ X-ray diffraction measurements and in plane orientation study has been completed by pole figures. The microstructure has been observed by optical microscopy: it has been carried out on samples obtained after an annealing treatment (Grain Size Adjustment) and on recrystallized samples in different conditions. As preliminary mechanical investigation the microhardness values have been detected for each step of the working procedure. The accuracy of the cubic texture and the grain structure are affected by the processing condition, in particular the temperature of the GSA seems a very important parameter which influences the final characteristics of the tapes.

  12. Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Lacroute, Y.; Markey, L.; Salazar, M.; Vignal, V. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 5209 CNRS, Universite de Bourgogne, 9 Avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2011-05-15

    Research highlights: > Surface strains measured using nanogauge were compared to the texture obtained by EBSD. > Statistics of the principal strain discern the grains according to the Schmid factor. > Strain hotspots were localized near a triple junction of alloy 600 under tensile loading. > Asymetrical profile of the GB strains is a criterion for surface cracking initiation. - Abstract: A key element for analyzing the crack initiation in strained polycrystalline alloys is the local quantification of the surface strain distribution according to the grain texture. Using electron backscattered diffraction, the local microstructure was determined to both localize a triple junction and deduce the local Schmid factors. Kernel average misorientation (KAM) was also used to map the areas of defect concentration. The maximum principal strain and the in-plane shear strain were quantified using the biaxial nanogauge. Distortions of the array of nanodots used as spot markers were analyzed near the triple junction. The crystallographic orientation and the surface strain were then investigated both statistically for each grain and locally at the grain boundaries. The superimposition of microstructure and strain maps allows the high strain gradient (reaching 3-fold the applied strain) to be localized at preferential grain boundaries near the triple junction. The Schmid factors and the KAM were compared to the maximum principal strain and the in-plane shear strain respectively. The polycrystalline deformation was attributable first to the rotation of some grains, followed by the elongation of all grains along their preferential activated slip systems.

  13. The diverse electronic properties of C4N3 monolayer under biaxial compressive strain: a theoretical study

    Science.gov (United States)

    Wu, Haiping; Liu, Yuzhen; Kan, Erjun; Ma, Yanming; Xu, Wenjie; Li, Jie; Yan, Meichen; Lu, Ruifeng; Wei, Jianfeng; Qian, Yan

    2016-07-01

    Because of the observation of half-metallicity in graphitic carbon nitride C4N3 (g-C4N3), extensive research has recently been focused on this compound. Using density-functional calculations, herein diverse electronic properties of g-C4N3 were engineered by applying biaxial compressive strain. The calculated results demonstrate that g-C4N3 preserves ferromagnetic half-metallicity when the strain is lower than  ‑2%, accompanied by a decrease of the half-metallic gap. When the compressive strain ranges from  ‑5 to  ‑3%, the compound turns into nonmagnetic metal. By increasing the strain on the end, it becomes a nonmagnetic semiconductor. Further investigations show that all nonmagnetic semiconductors possess a direct band gap with a value of around 1.6 eV. This fact indicates that g-C4N3 can be applied in spintronic or photovoltaic fields under a strain environment.

  14. Characterisation of the mechanical properties of infarcted myocardium in the rat under biaxial tension and uniaxial compression.

    Science.gov (United States)

    Sirry, Mazin S; Butler, J Ryan; Patnaik, Sourav S; Brazile, Bryn; Bertucci, Robbin; Claude, Andrew; McLaughlin, Ron; Davies, Neil H; Liao, Jun; Franz, Thomas

    2016-10-01

    Understanding the passive mechanical properties of infarcted tissue at different healing stages is essential to explore the emerging biomaterial injection-based therapy for myocardial infarction (MI). Although rats have been widely used as animal models in such investigations, the data in literature that quantify the passive mechanical properties of rat heart infarcts is very limited. MI was induced in rats and hearts were harvested immediately (0 day), 7, 14 and 28 days after infarction onset. Left ventricle anterioapical samples were cut and underwent equibiaxial and non equibiaxial tension followed by uniaxial compression mechanical tests. Histological analysis was conducted to confirm MI and to quantify the size of the induced infarcts. Infarcts maintained anisotropy and the nonlinear biaxial and compressive mechanical behaviour throughout the healing phases with the circumferential direction being stiffer than the longitudinal direction. Mechanical coupling was observed between the two axes in all infarct groups. The 0, 7, 14 and 28 days infarcts showed 438, 693, 1048 and 1218kPa circumferential tensile moduli. The 28 day infarct group showed a significantly higher compressive modulus compared to the other infarct groups (p=0.0060, 0.0293, and 0.0268 for 0, 7 and 14 days groups). Collagen fibres were found to align in a preferred direction for all infarct groups supporting the observed mechanical anisotropy. The presented data are useful for developing material models for healing infarcts and for setting a baseline for future assessment of emerging mechanical-based MI therapies. PMID:27434651

  15. Fabrication of High Current YBa2Cu3O7-y Coated Conductors Using Rolling-Assisted Biaxially Textured Substrates

    International Nuclear Information System (INIS)

    High critical current YBa2Cu3O7-y (referred to as YBCO) coated conductors were fabricated with a layer sequence of YBCO/YSZ/CeO2/Ni. The cube (100) texture in the starting Ni substrates was obtained by cold rolling followed by recrystallization. A thin CeO2 (Cerium Oxide) layer with a thickness of 100-200 was grown epitaxially on the biaxially textured-Ni substrates using an e-beam evaporation technique. This was followed by the growth of a thick (2 film had a dense microstructure. The microstructure of the e-beam YSZ film was porous whereas the sputtered YSZ film was dense. The YBCO films were grown by pulsed laser deposition on both e-beam and sputtered YSZ layers. A transport critical current density of 1 x l06 A/cm2 at 77 K was obtained for 0.8 m thick YBCO Rims on both YSZ surfaces in zero field. To demonstrate the quality and compatibility of the e-beam CeO2 layers; YBCO films were also grown on CeO2-buffered YSZ (100) single crystal substrates using e-beam co-evaporated Y-BaF2-Cu precursors followed by a post-annealing process. A transport critical current density of over 1 x lO6A/cm2 at 77 K was obtained on a 0.3 m thick YBCO film in zero field

  16. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics

    Science.gov (United States)

    Bagheri, Hossein; Aghajani, Farzaneh

    2015-01-01

    Objectives: This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Materials and Methods: Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey’s multiple comparisons post-hoc test (α=0.05). Results: The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Plaser irradiation (Plaser irradiation may lead to substantial strength degradation of zirconia. PMID:27148372

  17. A Study in Three-Dimensional Chaotic Dynamics: Granular Flow and Transport in a Bi-Axial Spherical Tumbler

    CERN Document Server

    Christov, Ivan C; Ottino, Julio M; Sturman, Rob

    2014-01-01

    We study 3D chaotic dynamics through an analysis of transport in a granular flow in a half-full spherical tumbler rotated sequentially about two orthogonal axes (a bi-axial "blinking" tumbler). The flow is essentially quasi-2D in any vertical slice of the sphere during rotation about a single axis, and we provide an explicit exact solution to the model in this case. Hence, the cross-sectional flow can be represented by a twist map, allowing us to express the 3D flow as a linked twist map (LTM). We prove that if the rates of rotation about each axis are equal, then (in the absence of stochasticity) particle trajectories are restricted to 2D surfaces consisting of a portion of a hemispherical shell closed by a "cap"; if the rotation rates are unequal, then particles can leave the surface they start on and traverse a volume of the tumbler. The period-one structures of the governing LTM are examined in detail: analytical expressions are provided for the location of period-one curves, their extent into the bulk of...

  18. Constitutive Mixed Mode Behavior of Cracks in Concrete

    DEFF Research Database (Denmark)

    Jacobsen, Jonas Sejersbøl

    Cracks are a natural part of concrete and concrete structures. The cracks influence the general structural behavior in terms of e.g. the stress distribution and the stiffness. A direct inclusion of the cracks in the design will result in a more precise description of the structural behavior and a...... experimental basis for the interpretation of the mixed mode crack behavior is achieved through the experimental results. Based on an elasto-plastic model a constitutive mixed mode model is formulated. By a direct inclusion of the actual crack topography, the model gives a consistent and purely mechanical based...... interpretation of the crack behavior. A stiff biaxial test set-up is applied to the mixed mode measurements. The relative opening and sliding of the crack is used as the control signals in a new enhanced closed control loop. The opening and the sliding of the crack are measured by clip gauges using a pair of...

  19. Cyclic plasticity of an austenitic-ferritic stainless steel under biaxial non proportional loading; Plasticite cyclique d'un acier inoxydable austeno-ferritique sous chargement biaxial non-proportionnel

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, V

    2001-11-15

    Austenitic-ferritic stainless steels are supplied since about 30 years only, so they are yet not well-known. Their behaviour in cyclic plasticity was studied under uniaxial loading but not under multiaxial loading, whereas only a thorough knowledge of the phenomena influencing the mechanical behaviour of a material enables to simulate and predict accurately its behaviour in a structure. This work aims to study and model the behaviour of a duplex stainless steel under cyclic biaxial loading. A three step method was adopted. A set of tension-torsion tests on tubular specimen was first defined. We studied the equivalence between loading directions, and then the influence of loading path and loading history on the stress response of the material. Results showed that duplex stainless steel shows an extra-hardening under non proportional loading and that its behaviour depends on previous loading. Then, in order to analyse the results obtained during this first experimental stage, the yield surface was measured at different times during cyclic loading of the same kind. A very small plastic strain offset (2*10{sup -5}) was used in order not to disturb the yield surface measured. The alteration of isotropic and kinematic hardening variables were deduced from these measures. Finally, three phenomenological constitutive laws were identified with the experimental set. We focused our interest on the simulation of stabilized stress levels and on the simulation of the cyclic hardening/softening behaviour. The comparison between experimental and numerical results enabled the testing of the relevance of these models. (authors)

  20. Evaluation of biaxial flexural strength and modulus of filled and unfilled adhesive systems = Avaliação da resistência flexural biaxial e módulo de flexão de sistemas adesivos

    Directory of Open Access Journals (Sweden)

    Liberti, Michele Santana

    2009-01-01

    Full Text Available Objetivo: O objetivo deste estudo foi avaliar a resistência flexural e o módulo de flexão de dois sistemas adesivos, através de ensaio de resistência flexural biaxial. Metodologia: Os adesivos (Pentron Clinical Technologies estudados foram: Bond 1 (B1 e NanoBond (NB. Treze discos de cada adesivo foram preparados com dimensões aproximadas de 6,1 mm de diâmetro e 0,6 mm de espessura. Os discos de adesivos foram confeccionados utilizando-se moldes de teflon e fotopolimerizados com aparelho XL 3000 (3M ESPE. Após armazenamento por 10 dias, os discos foram testados em máquina universal de ensaio (Instron 5844, com velocidade de 1,27 mm/min. Os dados foram submetidos à análise de variância (1 fator ao nível de significância de 0,05. Resultados: Os valores médios (±DP de resistência flexural para os adesivos foram (em MPa: B1- 89,7±7,6 e NB- 131,1±9,5. Os valores médios de módulo flexural (±DP foram (em MPa: B1- 1999,9±258,4 e NB- 2314,5±271,0. Conclusão: O adesivo contendo partículas de carga (NB mostrou maiores valores de resistência flexural e módulo de flexão que o adesivo B1

  1. Biaxial bending of slender HSC columns and tubes filled with concrete under short- and long-term loads: I Theory

    Directory of Open Access Journals (Sweden)

    Jose A. Rodríguez-Gutiérrez

    2014-07-01

    Full Text Available An analytical method that calculates both the short- and long-term response of slender columns made of high-strength concrete (HSC and tubes filled with concrete with generalized end conditions and subjected to transverse loads along the span and axial load at the ends (causing a single or double curvature under uniaxial or biaxial bending is presented. The proposed method, which is an extension of a method previously developed by the authors, is capable of predicting not only the complete load-rotation and load-deflection curves (both the ascending and descending parts but also the maximum load capacity. The columns that can be analyzed include solid and hollow (rectangular, circular, oval, C-, T-, L-, or any arbitrary shape cross sections and columns made of circular and rectangular steel tubes filled with HSC. The fiber method is used to calculate the moment-curvature diagrams at different levels of the applied axial load (i.e., the M-P-φ curves, and the Gauss method of integration (for the sum of the contributions of the fibers parallel to the neutral axis is used to calculate the lateral rotations and deflections along the column span. Long-term effects, such as creep and shrinkage of the concrete, are also included. However, the effects of the shear deformations and torsion along the member are not included. The validity of the proposed method is presented in a companion paper and compared against the experimental results for over seventy column specimens reported in the technical literature by different researchers.

  2. Ductile Tearing of Thin Aluminum Plates Under Blast Loading. Predictions with Fully Coupled Models and Biaxial Material Response Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gullerud, Arne S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Haulenbeek, Kimberly K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reu, Phillip L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    The work presented in this report concerns the response and failure of thin 2024- T3 aluminum alloy circular plates to a blast load produced by the detonation of a nearby spherical charge. The plates were fully clamped around the circumference and the explosive charge was located centrally with respect to the plate. The principal objective was to conduct a numerical model validation study by comparing the results of predictions to experimental measurements of plate deformation and failure for charges with masses in the vicinity of the threshold between no tearing and tearing of the plates. Stereo digital image correlation data was acquired for all tests to measure the deflection and strains in the plates. The size of the virtual strain gage in the measurements, however, was relatively large, so the strain measurements have to be interpreted accordingly as lower bounds of the actual strains in the plate and of the severity of the strain gradients. A fully coupled interaction model between the blast and the deflection of the structure was considered. The results of the validation exercise indicated that the model predicted the deflection of the plates reasonably accurately as well as the distribution of strain on the plate. The estimation of the threshold charge based on a critical value of equivalent plastic strain measured in a bulge test, however, was not accurate. This in spite of efforts to determine the failure strain of the aluminum sheet under biaxial stress conditions. Further work is needed to be able to predict plate tearing with some degree of confidence. Given the current technology, at least one test under the actual blast conditions where the plate tears is needed to calibrate the value of equivalent plastic strain when failure occurs in the numerical model. Once that has been determined, the question of the explosive mass value at the threshold could be addressed with more confidence.

  3. Cation ordering and effect of biaxial strain in double perovskite CsRbCaZnCl6

    International Nuclear Information System (INIS)

    Here, we investigate the electronic structure, energetics of cation ordering, and effect of biaxial strain on double perovskite CsRbCaZnCl6 using first-principles calculations based on density functional theory. The two constituents (i.e., CsCaCl3 and RbZnCl3) forming the double perovskite exhibit a stark contrast. While CsCaCl3 is known to exist in a cubic perovskite structure and does not show any epitaxial strain induced phase transitions within an experimentally accessible range of compressive strains, RbZnCl3 is thermodynamically unstable in the perovskite phase and exhibits ultra-sensitive response at small epitaxial strains if constrained in the perovskite phase. We show that combining the two compositions in a double perovskite structure not only improves overall stability but also the strain-polarization coupling of the material. Our calculations predict a ground state with P4/nmm space group for the double perovskite, where A-site cations (i.e., Cs and Rb) are layer-ordered and B-site cations (i.e., Ca and Zn) prefer a rocksalt type ordering. The electronic structure and bandgap in this system are shown to be quite sensitive to the B-site cation ordering and is minimally affected by the ordering of A-site cations. We find that at experimentally accessible compressive strains CsRbCaZnCl6 can be phase transformed from its paraelectric ground state to an antiferroelectric state, where Zn atoms contribute predominantly to the polarization. Furthermore, both energy difference and activation barrier for a transformation between this antiferroelectric state and the corresponding ferroelectric configuration are predicted to be small. The computational approach presented here opens a new pathway towards a rational design of novel double perovskites with improved strain response and functionalities

  4. Analysis of the Elastic Large Deflection Behavior for Metal Plates under Nonuniformly Distributed Lateral Pressure with In-Plane Loads

    Directory of Open Access Journals (Sweden)

    Jeom Kee Paik

    2012-01-01

    Full Text Available The Galerkin method is applied to analyze the elastic large deflection behavior of metal plates subject to a combination of in-plane loads such as biaxial loads, edge shear and biaxial inplane bending moments, and uniformly or nonuniformly distributed lateral pressure loads. The motive of the present study was initiated by the fact that metal plates of ships and ship-shaped offshore structures at sea are often subjected to non-uniformly distributed lateral pressure loads arising from cargo or water pressure, together with inplane axial loads or inplane bending moments, but the current practice of the maritime industry usually applies some simplified design methods assuming that the non-uniform pressure distribution in the plates can be replaced by an equivalence of uniform pressure distribution. Applied examples are presented, demonstrating that the current plate design methods of the maritime industry may be inappropriate when the non-uniformity of lateral pressure loads becomes more significant.

  5. Measurement of Work Hardening Behavior of Pure Titanium Sheet Using A Servo-Controlled Tube Bulge Testing Apparatus

    International Nuclear Information System (INIS)

    Biaxial stress tests of rolled pure titanium sheet (JIS 1, 0.5 mm thick) have been carried out in order to investigate the anisotropic plastic deformation under biaxial tension. Rolled pure titanium sheet was bent and welded to make tubular specimens. Combined tension-internal pressure was applied to the tubular specimens using the servo-controlled tube bulge testing apparatus developed by one of the authors [Kuwabara, T., Yoshida, K., Narihara, K., Takahashi S., Int. J. Plasticity 21 (1), 101-117 (2002)], so that the strain rate ratio, εφ:εθ, in the axial (φ) and circumferential (θ) directions of the specimen was controlled to be constant. Contours of plastic work at different levels of plastic strain and stress paths under constant strain rate ratios have been observed in the first quadrant of stress space. It is found that the test material exhibits significant differential work hardening behavior with the increase of plastic work.

  6. Measurement of Work Hardening Behavior of Pure Titanium Sheet Using A Servo-Controlled Tube Bulge Testing Apparatus

    Science.gov (United States)

    Sumita, Takeshi; Kuwabara, Toshihiko; Hayashida, Yasuhiro

    2011-05-01

    Biaxial stress tests of rolled pure titanium sheet (JIS ♯1, 0.5 mm thick) have been carried out in order to investigate the anisotropic plastic deformation under biaxial tension. Rolled pure titanium sheet was bent and welded to make tubular specimens. Combined tension-internal pressure was applied to the tubular specimens using the servo-controlled tube bulge testing apparatus developed by one of the authors [Kuwabara, T., Yoshida, K., Narihara, K., Takahashi S., Int. J. Plasticity 21 (1), 101-117 (2002)], so that the strain rate ratio, ɛ˙φ:ɛ˙θ, in the axial (φ) and circumferential (θ) directions of the specimen was controlled to be constant. Contours of plastic work at different levels of plastic strain and stress paths under constant strain rate ratios have been observed in the first quadrant of stress space. It is found that the test material exhibits significant differential work hardening behavior with the increase of plastic work.

  7. Twist viscosities and flow alignment of biaxial nematic liquid crystal phases of a soft ellipsoid-string fluid studied by molecular dynamics simulation.

    Science.gov (United States)

    Sarman, Sten; Laaksonen, Aatto

    2012-09-14

    We have calculated the twist viscosity and the alignment angle between the director and the stream lines in shear flow of a liquid crystal model system, which forms biaxial nematic liquid crystals, as functions of the density, from the Green-Kubo relations by equilibrium molecular dynamics simulation and by a nonequilibrium molecular dynamics algorithm, where a torque conjugate to the director angular velocity is applied to rotate the director. The model system consists of a soft ellipsoid-string fluid where the ellipsoids interact according a repulsive version of the Gay-Berne potential. Four different length-to-width-to-breadth ratios have been studied. On compression, this system forms discotic or calamitic uniaxial nematic phases depending on the dimensions of the molecules, and on further compression a biaxial nematic phase is formed. In the uniaxial nematic phase there is one twist viscosity and one alignment angle. In the biaxial nematic phase there are three twist viscosities and three alignment angles corresponding to the rotation around the various directors and the different alignments of the directors relative to the stream lines, respectively. It is found that the smallest twist viscosity arises by rotation around the director formed by the long axes, the second smallest one arises by rotation around the director formed by the normals of the broadsides, and the largest one by rotation around the remaining director. The first twist viscosity is rather independent of the density whereas the last two ones increase strongly with density. One finds that there is one stable director alignment relative to the streamlines, namely where the director formed by the long axes is almost parallel to the stream lines and where the director formed by the normals of the broadsides is almost parallel to the shear plane. The relative magnitudes of the components of the twist viscosities span a fairly wide interval so this model should be useful for parameterisation

  8. Voltage controlled biaxial strain in VO2 films grown on 0.72Pb(Mg1/3Nb2/3)-0.28PbTiO3 crystals and its effect on the transition temperature

    Science.gov (United States)

    Petraru, A.; Soni, R.; Kohlstedt, H.

    2014-09-01

    Vanadium oxide thin films (VO2) were deposited on 0.72Pb(Mg1/3Nb2/3)-0.28PbTiO3 (PMN-PT) crystalline substrates using pulsed laser deposition method. Due to their huge piezoelectric coefficients in the order of 2500 pm/V, the PMN-PT substrates are used to impose additional amount of biaxial strain to the VO2 films by applying an external bias to the substrates. The influence of the biaxial strain on the transition temperature and on the conductive properties of the VO2 films is investigated in this work. Thus, a change in the biaxial strain of -0.8 × 10-3 applied in the (110) plane of the rutile cell of the VO2 lowered the metal-to-insulator transition temperature by 1.35 °C.

  9. Fourier space method for calculating the propagation of laser radiation in biaxial crystals taking into account the angle between the eigenpolarisations

    International Nuclear Information System (INIS)

    We have proposed a technique for calculating the propagation of laser radiation in biaxial optical crystals in arbitrary directions. The technique is based on the use of the Fourier space method and takes into account both diffraction and angle beween the eigenpolarisations of the spatial spectrum components, phase shift differences for them with account for all orders of the spatial dispersion and also the features of the boundary conditions at the input and output facets. Using internal conical refraction as an example, we have compared the results of calculations with experimental data. (nonlinear optical phenomena)

  10. Macroscopic biaxiality and electric-field-induced rotation of the minor director in the nematic phase of a bent-core liquid crystal

    Science.gov (United States)

    Nagaraj, Mamatha; Merkel, K.; Vij, J. K.; Kocot, A.

    2010-09-01

    Biaxiality in the nematic phase has been investigated for the bent-core liquid-crystal para-heptylbenzoate diester, using polarised IR spectroscopy. Anisotropic fluctuations of the nematic director are discussed in terms of the self-assembly of the chiral conformers. The ordering of the minor director for the homeotropicaly aligned sample is found to depend on the rubbing of the substrates of the cell and the amplitude of in-plane electric field. On increasing the in-plane electric field, the rotation of the minor director in the plane of the substrate is observed with an angle of approximately 45°, where initially the minor director is shown to lie along the rubbing direction. It is also shown that on the average the long axis of the molecules is normal to the substrate with surface treatment, with and without rubbing. The electric in-plane field combined with rubbing is shown to induce biaxial order in the nematic phase of a material with negative dielectic anisotropy for the first time.

  11. On the Novel Biaxial Strain Relaxation Mechanism in Epitaxial Composition Graded La1−xSrxMnO3 Thin Film Synthesized by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Yishu Wang

    2015-11-01

    Full Text Available We report on a novel method to fabricate composition gradient, epitaxial La1−xSrxMnO3 thin films with the objective to alleviate biaxial film strain. In this work, epitaxial, composition gradient La1−xSrxMnO3, and pure LaMnO3 and La0.67Sr0.33MnO3 thin films were deposited by radio frequency (RF magnetron sputtering. The crystalline and epitaxy of all films were first studied by symmetric θ–2θ X-ray diffraction (XRD and low angle XRD experiments. Detailed microstructural characterization across the film thickness was conducted by high-resolution transmission electron microscopy and electron diffraction. Four compositional gradient domains were observed in the La1−xSrxMnO3 film ranging from LaMnO3 rich to La0.67Sr0.33MnO3 at the surface. A continuous reduction in the lattice parameter was observed accompanied by a significant reduction in the out-of-plane strain in the film. Fabrication of the composition gradient La1−xSrxMnO3 thin film was found to be a powerful method to relieve biaxial strain under critical thickness. Besides, the coexistence of domains with a composition variance is opening up various new possibilities of designing new nanoscale structures with unusual cross coupled properties.

  12. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch, E-mail: rrodriguezm@ipn.mx, E-mail: urrio332@hotmail.com, E-mail: guiurri@hotmail.com, E-mail: luishector56@hotmail.com, E-mail: romerobeatriz98@hotmail.com, E-mail: napor@hotmail.com [INSTITUTO POLITECNICO NACIONAL Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de Ingenieria Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico)

    2011-07-19

    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E({sigma}{sup 2}{sub x} + {sigma}{sup 2}{sub y}) - {nu}/E({sigma}{sub x}{sigma}{sub y})]dV (1). From equation (1) a mathematical deduction to solve in terms of {theta} of this case was developed employing Genetic Algorithms, where {theta} is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  13. Multi-mode technique for the determination of the biaxial Y{sub 2}SiO{sub 5} permittivity tensor from 300 to 6 K

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, N. C., E-mail: natalia.docarmocarvalho@research.uwa.edu.au; Le Floch, J-M.; Tobar, M. E. [School of Physics, The University of Western Australia, Crawley 6009 (Australia); ARC Centre of Excellence for Engineered Quantum Systems (EQuS), 35 Stirling Hwy, Crawley 6009 (Australia); Krupka, J. [Instytut Mikroelektroniki i Optoelektroniki PW, Koszykowa 75, 00-662 Warsaw (Poland)

    2015-05-11

    The Y{sub 2}SiO{sub 5} (YSO) crystal is a dielectric material with biaxial anisotropy with known values of refractive index at optical frequencies. It is a well-known rare-earth (RE) host material for optical research and more recently has shown promising performance for quantum-engineered devices. In this paper, we report the first microwave characterization of the real permittivity tensor of a bulk YSO sample, as well as an investigation of the temperature dependence of the tensor components from 296 K down to 6 K. Estimated uncertainties were below 0.26%, limited by the precision of machining the cylindrical dielectric. Also, the electrical Q-factors of a few electromagnetic modes were recorded as a way to provide some information about the crystal losses over the temperature range. To solve the tensor components necessary for a biaxial crystal, we developed the multi-mode technique, which uses simultaneous measurement of low order whispering gallery modes. Knowledge of the permittivity tensor offers important data, essential for the design of technologies involving YSO, such as microwave coupling to electron and hyperfine transitions in RE doped samples at low temperatures.

  14. Distribution and viability of fetal and adult human bone marrow stromal cells in a biaxial rotating vessel bioreactor after seeding on polymeric 3D additive manufactured scaffolds

    Directory of Open Access Journals (Sweden)

    Anne eLeferink

    2015-10-01

    Full Text Available One of the conventional approaches in tissue engineering is the use of scaffolds in combination with cells to obtain mechanically stable tissue constructs in vitro prior to implantation. Additive manufacturing by fused deposition modeling is a widely used technique to produce porous scaffolds with defined pore network, geometry, and therewith defined mechanical properties. Bone marrow derived mesenchymal stromal cells (MSCs are promising candidates for tissue engineering based cell therapies due to their multipotent character. One of the hurdles to overcome when combining additive manufactured scaffolds with MSCs is the resulting heterogeneous cell distribution and limited cell proliferation capacity. In this study, we show that the use of a biaxial rotating bioreactor, after static culture of human fetal MSCs (hfMSCs seeded on synthetic polymeric scaffolds, improved the homogeneity of cell and extracellular matrix (ECM distribution and increased the total cell number. Furthermore, we show that the relative mRNA expression levels of indicators for stemness and differentiation are not significantly changed upon this bioreactor culture, whereas static culture shows variations of several indicators for stemness and differentiation. The biaxial rotating bioreactor presented here offers a homogeneous distribution of hfMSCs, enabling studies on MSCs fate in additive manufactured scaffolds without inducing undesired differentiation.

  15. Surface roughness of MgO thin film and its critical thickness for optimal biaxial texturing by ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    We investigated the deposition time dependences of the in-plane grain alignment (Δφ) and the surface roughness (w) of biaxially textured MgO thin films fabricated by ion-beam-assisted deposition (IBAD) and found a strong correlation between them. The time evolution of the surface roughness of IBAD-MgO showed an abrupt increase at the same time corresponding to the beginning of the deterioration in Δφ. The roughness versus thickness profiles obtained under different deposition conditions with different assisting ion-beam currents collapsed to a single curve, even though the deposition rates were significantly different in each condition. This implies that the abrupt increase in roughness occurred at the same thickness--of about 4 nm--irrespective of the deposition rate. The result also indicated that the Δφ deterioration began with the same thickness of about 4 nm. This ''critical'' thickness of about 4 nm might be related to the completion of the crystallization of the film. Further, deposition beyond the critical thickness, therefore, became merely a homoepitaxial deposition under the ''IBAD'' condition, which was far from optimal because of the ion bombardment and low temperature (no-heating), and thus Δφ deteriorated. Based on these considerations, we propose an approach to attain a sharp texture in a IBAD-MgO-based biaxial substrate; moreover, we demonstrated this approach using a two-step deposition process.

  16. Behavior of preloaded RC beams strengthened with CFRP laminates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Eighteen reinforced concrete beams, including 16 beams strengthened with CFRP laminate at different levels of preload and 2 control beams, were tested to investigate the influence ofpreload level on flexural behavior of CFRP-strengthened RC beam. The experimental parameters include rebar ratios, number of plies of CFRP laminates and preload level at the time of strengthening. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the preload level has more influence on the stiffness and deflection of the strengthened beam, bothat post-cracking and post-yielding stage, than that on the yielding and ultimate flexural strength of the strengthened beam. The main failure mode of CFRP-strengthened beam is the intermediate crack-induced debonding of CFRP laminates, provided that the development length of CFRP laminates and shear capacity of the beam are sufficient.

  17. Biaxially textured composite substrates

    Energy Technology Data Exchange (ETDEWEB)

    Groves, James R.; Foltyn, Stephen R.; Arendt, Paul N.

    2005-04-26

    An article including a substrate, a layer of a metal phosphate material such as an aluminum phosphate material upon the surface of the substrate, and a layer of an oriented cubic oxide material having a rock-salt-like structure upon the metal phosphate material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon a layer of a buffer material such as a SrTi.sub.x Ru.sub.1-x O.sub.3 layer.

  18. Investigation of the biaxial stress of Al-doped ZnO thin films on a flexible substrate with RF magnetron sputtering

    Science.gov (United States)

    Huang, Kuo-Ting; Chen, Hsi-Chao; Cheng, Po-Wei; Chang, Jhe-Ming

    2016-01-01

    Transparent conductive Al-doped ZnO (AZO) thin films were deposited onto poly(ethylene terephthalate) (PET) substrate, using the radio frequency (RF) magnetron sputtering method. The residual stress of flexible electronics was investigated by a double beam shadow moiré interferometer with phase shifting interferometry (PSI). Moreover, the biaxial stress of AZO thin films can be graphically represented by using Mohr’s circle of stress. The residual stress of AZO thin films becomes more compressive with the increase in sputtering power. The maximum residual stress is -1115.74 MPa, and the shearing stress is 490.57 MPa at a sputtering power of 200 W. The trends of residual stress were evidenced by the X-ray diffraction (XRD) patterns and optical properties of AZO thin films. According to the evaluation results of the refractive index and the extinction coefficient, the AZO thin films have better quality when the sputtering power less than 100 W.

  19. Effect of biaxial strain induced by piezoelectric PMN-PT on the upconversion photoluminescence of BaTiO₃:Yb/Er thin films.

    Science.gov (United States)

    Wu, Zhenping; Zhang, Yang; Bai, Gongxun; Tang, Weihua; Gao, Ju; Hao, Jianhua

    2014-11-17

    Thin films of Yb3+/Er3+ co-doped BaTiO3 (BTO:Yb/Er) have been epitaxially grown on piezoelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrates. Biaxial strain can be effectively controlled by applying electric field on PMN-PT substrate. A reversible, in situ and dynamic modification of upconversion photoluminescence in BTO:Yb/Er film was observed via converse piezoelectric effect. Detailed analysis and in situ X-ray diffraction indicate that such modulations are possibly due to the change in the lattice deformation of the thin films. This result suggests an alternative method to rationally tune the upconversion emissions via strain engineering. PMID:25402140

  20. Application of a linear elastic - brittle interface model to the crack initiation and propagation at fibre-matrix interface under biaxial transverse loads

    CERN Document Server

    Mantič, V; Blázquez, A; Graciani, E; París, F

    2013-01-01

    The crack onset and propagation at the fibre-matrix interface in a composite under tensile/compressive remote biaxial transverse loads is studied by a new linear elastic - (perfectly) brittle interface model. In this model the interface is represented by a continuous distribution of springs which simulates the presence of a thin elastic layer. The constitutive law for the continuous distribution of normal and tangential of initially linear elastic springs takes into account possible frictionless elastic contact between fibre and matrix once a portion of the interface is broken. A brittle failure criterion is employed for the distribution of springs, which enables the study of crack onset and propagation. This interface failure criterion takes into account the variation of the interface fracture toughness with the fracture mode mixity. The main advantages of the present interface model are its simplicity, robustness and its computational efficiency when the so-called sequentially linear analysis is applied. Mo...

  1. The biaxial nonlinear crystal BiB3O6 as a polarization entangled photon source using non-collinear type-II parametric down-conversion

    CERN Document Server

    Halevy, A; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L

    2011-01-01

    We describe the full characterization of the biaxial nonlinear crystal BiB3O6 (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated beta-BaB2O4 (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by more than three times. Such an improvement is currently required for the generation of multiphoton entangled states.

  2. The biaxial nonlinear crystal BiB₃O₆ as a polarization entangled photon source using non-collinear type-II parametric down-conversion.

    Science.gov (United States)

    Halevy, A; Megidish, E; Dovrat, L; Eisenberg, H S; Becker, P; Bohatý, L

    2011-10-10

    We describe the full characterization of the biaxial nonlinear crystal BiB₃O₆ (BiBO) as a polarization entangled photon source using non-collinear type-II parametric down-conversion. We consider the relevant parameters for crystal design, such as cutting angles, polarization of the photons, effective nonlinearity, spatial and temporal walk-offs, crystal thickness and the effect of the pump laser bandwidth. Experimental results showing entanglement generation with high rates and a comparison to the well investigated β-BaB₂O₄ (BBO) crystal are presented as well. Changing the down-conversion crystal of a polarization entangled photon source from BBO to BiBO enhances the generation rate as if the pump power was increased by 2.5 times. Such an improvement is currently required for the generation of multiphoton entangled states. PMID:21997051

  3. Epitaxial growth of YBa2Cu3O7-δ on Ni89V11 non-magnetic biaxially textured substrate using NiO as buffer layer

    International Nuclear Information System (INIS)

    The superconducting YBa2Cu3O7-δ/CeO2/NiO multilayer structure was grown in situ by pulsed-laser deposition on biaxially textured Ni89V11 non-magnetic alloy. The role of vanadium is to decrease the Curie temperature of Ni and to favour the formation of oriented NiO. The (00l)NiO buffer layer has been formed by the controlled oxidation of the Ni-V substrate under 10 mTorr oxygen pressure and at 700 deg. C. The critical current density of 0.6 MA cm-2, at 77 K and zero magnetic field, was obtained for 0.7 μm thick YBa2Cu3O7-δ films. (author)

  4. Yield Behavior of Solution Treated and Aged Ti-6Al-4V

    Science.gov (United States)

    Ring, Andrew J.; Baker, Eric H.; Salem, Jonathan A.; Thesken, John C.

    2014-01-01

    Post yield uniaxial tension-compression tests were run on a solution treated and aged (STA), titanium 6-percent aluminum 4-percent vanadium (Ti-6Al-4V) alloy to determine the yield behavior on load reversal. The material exhibits plastic behavior almost immediately on load reversal implying a strong Bauschinger effect. The resultant stress-strain data was compared to a 1D mechanics model and a finite element model used to design a composite overwrapped pressure vessel (COPV). Although the models and experimental data compare well for the initial loading and unloading in the tensile regime, agreement is lost in the compressive regime due to the Bauschinger effect and the assumption of perfect plasticity. The test data presented here are being used to develop more accurate cyclic hardening constitutive models for future finite element design analysis of COPVs.

  5. Modeling of delayed strains of concrete under biaxial loadings. Application to the reactor containment of nuclear power plants; Modelisation des deformations differees du beton sous sollicitations biaxiales. application aux enceintes de confinement de batiments reacteurs des centrales nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Benboudjema, F

    2002-12-15

    The prediction of delayed strains is of crucial importance for durability and long-term serviceability of concrete structures (bridges, containment vessels of nuclear power plants, etc.). Indeed, creep and shrinkage cause cracking, losses of pre-stress and redistribution of stresses, and also, rarely, the ruin of the structure. The objective of this work is to develop numerical tools, able to predict the long-term behavior of concrete structures. Thus, a new hydro mechanical model is developed, including the description of drying, shrinkage, creep and cracking phenomena for concrete as a non-saturated porous medium. The modeling of drying shrinkage is based on an unified approach of creep and shrinkage. Basic and drying creep models are based on relevant chemo-physical mechanisms, which occur at different scales of the cement paste. The basic creep is explicitly related to the micro-diffusion of the adsorbed water between inter-hydrates and intra-hydrates and the capillary pores, and the sliding of the C-S-H gel at the nano-porosity level. The drying creep is induced by the micro-diffusion of the adsorbed water at different scales of the porosity, under the simultaneous effects of drying and mechanical loadings. Drying shrinkage is, therefore, assumed to result from the elastic and delayed response of the solid skeleton, submitted to both capillary and disjoining pressures. Furthermore, the cracking behavior of concrete is described by an orthotropic elastoplastic damage model. The coupling between all these phenomena is performed by using effective stresses which account for both external applied stresses and pore pressures. This model has been incorporated into a finite element code. The analysis of the long-term behavior is also performed on concrete specimens and prestressed concrete structures submitted to simultaneous drying and mechanical loadings. (author)

  6. Aggressive Behavior

    Science.gov (United States)

    ... Stages Listen Español Text Size Email Print Share Aggressive Behavior Page Content Article Body My child is sometimes ... type of behavior? The best way to prevent aggressive behavior is to give your child a stable, secure ...

  7. Three-Dimensional Packing Structure and Electronic Properties of Biaxially Oriented Poly(2,5-bis(3-alkylthiophene-2-yl)thieno[3,2- b ]thiophene) Films

    KAUST Repository

    Cho, Eunkyung

    2012-04-11

    We use a systematic approach that combines experimental X-ray diffraction (XRD) and computational modeling based on molecular mechanics and two-dimensional XRD simulations to develop a detailed model of the molecular-scale packing structure of poly(2,5-bis (3-tetradecylthiophene-2-yl) thieno[3,2-b]thiophene) (PBTTT-C 14) films. Both uniaxially and biaxially aligned films are used in this comparison and lead to an improved understanding of the molecular-scale orientation and crystal structure. We then examine how individual polymer components (i.e., conjugated backbone and alkyl side chains) contribute to the complete diffraction pattern, and how modest changes to a particular component orientation (e.g., backbone or side-chain tilt) influence the diffraction pattern. The effects on the polymer crystal structure of varying the alkyl side-chain length from C 12 to C 14 and C 16 are also studied. The accurate determination of the three-dimensional polymer structure allows us to examine the PBTTT electronic band structure and intermolecular electronic couplings (transfer integrals) as a function of alkyl side-chain length. This combination of theoretical and experimental techniques proves to be an important tool to help establish the relationship between the structural and electronic properties of polymer thin films. © 2012 American Chemical Society.

  8. Chemical Solution-Based Epitaxial Oxide Films on Biaxially Textured Ni-W Substrates with Improved Out-of-Plane Texture for YBCO-Coated Conductors

    Science.gov (United States)

    Bhuiyan, M. S.; Paranthaman, M.; Sathyamurthy, S.

    2007-10-01

    Epitaxial films of rare-earth (RE) niobates (where the rare earth includes La, Ce, and Nd) and lanthanum tantalate with pyrochlore structures were grown directly on biaxially textured nickel-3 at.% tungsten (Ni-W) substrates using a chemical solution deposition (CSD) process. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis revealed the surface morphology of the films to be smooth and homogeneous. Detailed X-ray diffraction analysis showed that the films of pyrochlore RE niobate and La-tantalate are highly textured with cube-on-cube epitaxy. The overall texture quality of the films was investigated by measuring the full-width half-maximum (FWHM) of the (004) and (222) rocking curves. We observed a sharper texture for both lanthanum niobate (La3NbO7) and lanthanum tantalate (La3TaO7) films compared to the underlying Ni-W substrate, though they have a larger lattice misfit with the Ni-W substrates. These results were comparable to the texture improvement observed in vacuum-deposited Y2O3 seed layers. Texture improvement in the seed layer is the key towards obtaining YBCO films with a␣higher critical current density. Hence, solution-deposited La3NbO7 and La3TaO7 films can be used as a seed layer towards developing all metalorganic-deposited (MOD) buffer/YBCO architectures.

  9. Highly reinforced, low magnetic and biaxially textured Ni-7 at.%W/Ni-12 at.%W multi-layer substrates developed for coated conductors

    International Nuclear Information System (INIS)

    Mechanically strengthened, highly cube textured Ni-7 at.%W/Ni-12 at.%W multi-layer substrates developed for coated conductors have been prepared by the advanced spark plasma sintering technique. The key innovation for developing this weakly magnetic and reinforced substrate was to use a new powder metallurgy and sintering route to bond multi-layers of Ni7W/Ni12W/Ni7W together in order to get an initial ingot, followed by the optimized cold working and annealing. Particular efforts were made in view of the optimization of the design, pressing as well as the heat treatment processes of the starting ingots to obtain a chemically gradient composite bulk, thus ensuring the subsequent cold deformation. The produced composite substrates have a strong {100} texture on Ni7W outer layers. The percentage of the biaxially orientated grains within a misorientation angle of 10 deg. is as high as 97.5%, while the length percentage of low-angle grain boundaries ranging from 2 deg. to 10 deg. in the composite substrate reaches 87.2%. Moreover, the yield strength σ0.2 of the tape approaches 333 MPa, and the saturation magnetization is substantially reduced by 81.6% at 77 K when compared to that of a commercial used Ni5W substrate

  10. Ion-beam-assisted deposition of biaxially aligned yttria-stabilized zirconia template films on metallic substrates for YBCO-coated conductors

    Science.gov (United States)

    Ma, B.; Li, M.; Fisher, B. L.; Balachandran, U.

    2002-07-01

    Biaxially textured yttria-stabilized zirconia (YSZ) films were grown on mechanically polished Hastelloy C276 (HC) substrates by ion-beam-assisted deposition and electron-beam evaporation. The surface root-mean-square (RMS) roughness of the polished HC substrates was ≈3 nm, as measured by atomic force microscopy (AFM). A water-cooled sample stage was used to hold the substrate temperature below 100 °C during deposition. RMS roughness of ≈3.3 nm was measured on the deposited YSZ films by AFM. X-ray pole figures were conducted for texture analysis; in-plane texture measured from YSZ (111) φ-scan FWHM was 13.2° and out-of-plane texture from the YSZ (002) ω-scan FWHM was 7.7°. An ≈10 nm thick CeO2 buffer layer was deposited on the YSZ film at 800 °C before YBCO films were ablated by pulsed laser deposition at 780 °C in a 250 mTorr flowing oxygen environment. Good in-plane texture with FWHM ≈ 7° was observed in YBCO films. Tc = 90 K, with sharp transition, and transport Jc of ≈2.2 × 106 A cm-2 were observed in a 0.5 μm thick, 5 mm wide, and 1 cm long sample at 77 K in self-field.

  11. Development of biaxially textured buffer layers on rolled-Ni substrates for high current YBa2Cu3O7-y coated conductors

    International Nuclear Information System (INIS)

    This paper describes the development of 3 buffer layer architectures with good biaxial textures on rolled-Ni substrates using vacuum processing techniques. The techniques include pulsed laser ablation, e-beam evaporation, dc and rf magnetron sputtering. The first buffer layer architecture consists of an epitaxial laminate of Ag/Pd(Pt)/Ni. The second buffer layer consists of an epitaxial laminate of CeO2/Pd/Ni. The third alternative buffer layer architecture consists of an epitaxial laminate of YSZ/CeO2/Ni. The cube (100) texture in the Ni was produced by cold rolling followed by recrystallization. Crystallographic orientations of the Pd, Ag, CeO2, and YSZ films grown were all (100). We recently demonstrated a critical- current density of 0.73x106 A/cm2 at 77 K and zero field on 1.4 μm thick YBa2Cu3O7-y (YBCO) film. This film was deposited by pulsed laser ablation on a YBCO/YSZ/CeO2/Ni substrate

  12. Ion-beam-assisted deposition of biaxially aligned yttria-stabilized zirconia template films on metallic substrates for YBCO-coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Ma, B. [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States)]. E-mail: bma@anl.gov; Li, M.; Fisher, B.L.; Balachandran, U. [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States)

    2002-07-01

    Biaxially textured yttria-stabilized zirconia (YSZ) films were grown on mechanically polished Hastelloy C276 (HC) substrates by ion-beam-assisted deposition and electron-beam evaporation. The surface root-mean-square (RMS) roughness of the polished HC substrates was {approx}3 nm, as measured by atomic force microscopy (AFM). A water-cooled sample stage was used to hold the substrate temperature below 100 deg. C during deposition. RMS roughness of {approx}3.3 nm was measured on the deposited YSZ films by AFM. X-ray pole figures were conducted for texture analysis; in-plane texture measured from YSZ (111) {phi}-scan FWHM was 13.2 deg. and out-of-plane texture from the YSZ (002) {omega}-scan FWHM was 7.7 deg. An {approx}10 nm thick CeO{sub 2} buffer layer was deposited on the YSZ film at 800 deg. C before YBCO films were ablated by pulsed laser deposition at 780 deg. C in a 250 mTorr flowing oxygen environment. Good in-plane texture with FWHM {approx}7 deg. was observed in YBCO films. T{sub c} 90 K, with sharp transition, and transport J{sub c} of {approx}2.2x10{sup 6} A cm{sup -2} were observed in a 0.5 {mu}m thick, 5 mm wide, and 1 cm long sample at 77 K in self-field. (author)

  13. Ion-beam-assisted deposition of biaxially aligned yttria-stabilized zirconia template films on metallic substrates for YBCO-coated conductors

    International Nuclear Information System (INIS)

    Biaxially textured yttria-stabilized zirconia (YSZ) films were grown on mechanically polished Hastelloy C276 (HC) substrates by ion-beam-assisted deposition and electron-beam evaporation. The surface root-mean-square (RMS) roughness of the polished HC substrates was ∼3 nm, as measured by atomic force microscopy (AFM). A water-cooled sample stage was used to hold the substrate temperature below 100 deg. C during deposition. RMS roughness of ∼3.3 nm was measured on the deposited YSZ films by AFM. X-ray pole figures were conducted for texture analysis; in-plane texture measured from YSZ (111) φ-scan FWHM was 13.2 deg. and out-of-plane texture from the YSZ (002) ω-scan FWHM was 7.7 deg. An ∼10 nm thick CeO2 buffer layer was deposited on the YSZ film at 800 deg. C before YBCO films were ablated by pulsed laser deposition at 780 deg. C in a 250 mTorr flowing oxygen environment. Good in-plane texture with FWHM ∼7 deg. was observed in YBCO films. Tc 90 K, with sharp transition, and transport Jc of ∼2.2x106 A cm-2 were observed in a 0.5 μm thick, 5 mm wide, and 1 cm long sample at 77 K in self-field. (author)

  14. Modeling of delayed strains of concrete under biaxial loadings. Application to the reactor containment of nuclear power plants

    International Nuclear Information System (INIS)

    The prediction of delayed strains is of crucial importance for durability and long-term serviceability of concrete structures (bridges, containment vessels of nuclear power plants, etc.). Indeed, creep and shrinkage cause cracking, losses of pre-stress and redistribution of stresses, and also, rarely, the ruin of the structure. The objective of this work is to develop numerical tools, able to predict the long-term behavior of concrete structures. Thus, a new hydro mechanical model is developed, including the description of drying, shrinkage, creep and cracking phenomena for concrete as a non-saturated porous medium. The modeling of drying shrinkage is based on an unified approach of creep and shrinkage. Basic and drying creep models are based on relevant chemo-physical mechanisms, which occur at different scales of the cement paste. The basic creep is explicitly related to the micro-diffusion of the adsorbed water between inter-hydrates and intra-hydrates and the capillary pores, and the sliding of the C-S-H gel at the nano-porosity level. The drying creep is induced by the micro-diffusion of the adsorbed water at different scales of the porosity, under the simultaneous effects of drying and mechanical loadings. Drying shrinkage is, therefore, assumed to result from the elastic and delayed response of the solid skeleton, submitted to both capillary and disjoining pressures. Furthermore, the cracking behavior of concrete is described by an orthotropic elastoplastic damage model. The coupling between all these phenomena is performed by using effective stresses which account for both external applied stresses and pore pressures. This model has been incorporated into a finite element code. The analysis of the long-term behavior is also performed on concrete specimens and prestressed concrete structures submitted to simultaneous drying and mechanical loadings. (author)

  15. Behavioral economics

    OpenAIRE

    Berg, Nathan

    1984-01-01

    Economics, like behavioral psychology, is a science of behavior, albeit highly organized human behavior. The value of economic concepts for behavioral psychology rests on (1) their empirical validity when tested in the laboratory with individual subjects and (2) their uniqueness when compared to established behavioral concepts. Several fundamental concepts are introduced and illustrated by reference to experimental data: open and closed economies, elastic and inelastic demand, and substitutio...

  16. On the very long term delayed behavior of concrete

    International Nuclear Information System (INIS)

    The prediction of very long-term deformation of prestressed concrete structures is a major challenge considering the service life of these structures. It is therefore necessary to correctly model the delayed behavior of these structures. Using a review of laboratory tests and observations of the delayed behavior of structures (bridges and nuclear power plants), the main conclusions of this work are the following ones. First, very long term creep in laboratory or of real structures seems to be non asymptotic. In the actual Eurocode-2, creep is calculated by means of an asymptotic hyperbolic function while in the recent Model Code 2010 creep is expressed as a combination of an asymptotic and a logarithmic functions. In the latter case the logarithmic function corresponds to basic creep while drying creep is asymptotic. Secondly, using a long test (3 years) in a laboratory is not enough to assess the long term behaviour of a massive structure. We need physical relations for creep in codes in order to predict the delayed behavior of massive structures. Thirdly, the biaxial creep of nuclear power plant could be modelled but using data of the structure itself. This would allow to predict the delayed behavior of these structures. Further work is needed to improve the prediction in the design phase

  17. In-sodium creep behavior of alloys M-813 and Nimonic PE16

    International Nuclear Information System (INIS)

    The in-sodium biaxial creep deformation of internally pressurized tube specimens of alloys M-813 and Nimonic PE16 was measured at 6500C under constant stress conditions after 4000 hours of sodium exposure. Each alloy had specimens at two different stress levels, viz., 0 and 165 MPa (24,000 psi). The data showed negative diameter changes at zero stress, which were attributed to material densification associated with precipitation. Although material densification was also seen in comparable in-argon experiments, the in-sodium creep strains at 165 MPa and 6500C were much lower than the corresponding in-argon values. The higher creep strains in argon are explained on the basis of two parallel mechanisms involving oxygen, which is present at a low level in sodium (1 ppM) as compared with approximately 1000 ppM in the argon environment. The trends in the current data are consistent with observations by earlier authors. Sodium exposure of Nimonic PE16 also resulted in 4 μm deep intergranular penetration, which did not have any apparent effect on its biaxial creep behavior

  18. Growth of thin Al{sub 2}O{sub 3} films on biaxially oriented polymer films by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vaehae-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Kauppi, Emilia, E-mail: emilia.kauppi@vti.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Sahagian, Khoren, E-mail: khoren@anasysinstruments.com [Anasys Instruments, 121 Gray Avenue, Suite 100, Santa Barbara, CA 93101 (United States); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, P.O. Box 16100, FI-00076 AALTO (Finland); Peresin, Maria Soledad; Sievaenen, Jenni; Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland)

    2012-11-01

    The effects of thin film nucleation and initial growth on roughness, chemistry and thermomechanical properties of polymer film surfaces were studied. Al{sub 2}O{sub 3} was deposited onto commercial biaxially oriented polypropylene and polylactic acid films at 80 Degree-Sign C by using atomic layer deposition technique. Both substrates, especially the more hydrophobic polypropylene, showed initial growth through Al{sub 2}O{sub 3} clusters. There was a faster deposition of Al{sub 2}O{sub 3} on polylactic acid film than on polypropylene at the early stages of the Al{sub 2}O{sub 3} deposition. There were also indications of chemical interactions between polylactic acid and trimethyl aluminum used as a precursor for Al{sub 2}O{sub 3}. Changes in the thermo-mechanical properties of the polymer surfaces with Al{sub 2}O{sub 3} also evidenced the differences between the substrate polymer films. The near surface interphase formed in polylactic acid probably contributed to the strong increase and scattering in the softening temperature during the early thin film growth. - Highlights: Black-Right-Pointing-Pointer Growth of atomic layer deposited Al{sub 2}O{sub 3} at 80 Degree-Sign C was studied on commercial films. Black-Right-Pointing-Pointer Both substrate films showed early Al{sub 2}O{sub 3} growth through clusters. Black-Right-Pointing-Pointer Initial growth rate depends on the nature of the substrate film surface. Black-Right-Pointing-Pointer There were indications of chemical interactions between substrate and precursor. Black-Right-Pointing-Pointer Film thickness and chemical interactions affect thermo-mechanical properties.

  19. Caracterización mecánica de aleaciones Ti-Nb mediante ensayos de flexión biaxial

    Directory of Open Access Journals (Sweden)

    Amigó, V.

    2010-12-01

    Full Text Available Nowadays titanium and titanium alloys are increasingly being used in the industry. Particularly β-Ti alloys that stand out for having great strength properties and low elastic modulus compared to Ti c.p. or Ti-6Al-4V. Among Ti alloys, Ti-Nb alloys with high contents of alloying elements are widely used. In this work Ti-Nb alloys have been obtained using conventional powdermetallurgy. It has been studied the evolution of properties of these alloys as a function of the percentage of niobium. It can be noted the ball on three balls test used in order to characterize the samples.

    En la actualidad, cada vez, son más importantes en la industria las aleaciones de titanio. En especial las aleaciones tipo-β, que destacan por tener buenas propiedades resistentes y bajos módulos elásticos, en comparación con el Ti c.p. o el Ti-6Al-4V. Dentro de estas aleaciones cabe destacar las Ti-Nb con altos contenidos en elementos aleantes. En este trabajo se han obtenido, mediante pulvimetalurgia convencional, una serie de aleaciones Ti-Nb, en el rango del 20-40 % de niobio. Se ha obtenido la evolución de las propiedades de dichas aleaciones en función del porcentaje de niobio, mediante la utilización del ensayo de flexión biaxial con tres apoyos (three ball test.

  20. Elastic modulus, biaxial fracture strength, electrical and thermal transport properties of thermally fatigued hot pressed LAST and LASTT thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, A.Q. [Chemical Engineering and Materials Science Dept., Michigan State University, East Lansing, MI 48824 (United States); Case, E.D., E-mail: casee@egr.msu.edu [Chemical Engineering and Materials Science Dept., Michigan State University, East Lansing, MI 48824 (United States); Ren, F.; Baumann, A.J.; Kleinow, D.C.; Ni, J.E. [Chemical Engineering and Materials Science Dept., Michigan State University, East Lansing, MI 48824 (United States); Hogan, T.P.; D' Angelo, J.; Matchanov, N.A. [Electrical and Computer Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Hendricks, T.J.; Karri, N.K. [Pacific Northwest National Laboratory, Corvallis, OR 97330 (United States); Cauchy, C.; Barnard, J. [Tellurex Corporation, Traverse City, MI 49686 (United States); Kanatzidis, M.G. [Chemistry Department, Northwestern University, Evanston, IL 60208 (United States)

    2012-06-15

    Harvesting of waste heat may lead to macrocrack and/or microcrack damage accumulation in thermoelectrics. No studies in the open literature address the thermal fatigue of any thermoelectric material. This study characterizes the thermal fatigue behavior for two PbTe-based thermoelectric materials, n-type LAST (lead-antimony-silver-tellurium) and p-type LASTT (lead-antimony-silver-tellurium-tin). The mechanical properties (fracture strength, elastic moduli) were evaluated for up to 200 thermal fatigue cycles. In addition, the electrical and thermal transport properties were evaluated for n- and p-type specimens for thermal cycling. The elastic moduli were relatively insensitive to thermal fatigue treatment. The fracture strength, {sigma}{sub f}, of the thermally fatigued LASTT specimens was in a band of from 25 to 40 MPa while {sigma}{sub f} of the thermally fatigued LAST ranged from 15 to 38 MPa. The thermopower and electrical conductivity of LASTT samples showed small deviations from the low temperature trend near 600 K and the data repeated well after the first temperature cycle for all samples. For the n-type LAST samples, the electrical conductivity and thermopower showed larger deviations from the low temperature trend near 500 K with some samples requiring several temperature cycles before showing repeatability in the data, suggesting a possible secondary phase in the samples. - Highlights: Black-Right-Pointing-Pointer Thermoelectric waste heat recovery applications involve thermal fatigue. Black-Right-Pointing-Pointer No thermal fatigue data for thermoelectrics is available in the literature. Black-Right-Pointing-Pointer This study includes thermal fatigue data two PbTe-based thermoelectrics. Black-Right-Pointing-Pointer The fracture strength the thermally fatigued LASTT ranged from 25 to 40 MPa Black-Right-Pointing-Pointer The fracture strength the thermally fatigued LAST ranged from 15 to 38 MPa.

  1. Elastic modulus, biaxial fracture strength, electrical and thermal transport properties of thermally fatigued hot pressed LAST and LASTT thermoelectric materials

    International Nuclear Information System (INIS)

    Harvesting of waste heat may lead to macrocrack and/or microcrack damage accumulation in thermoelectrics. No studies in the open literature address the thermal fatigue of any thermoelectric material. This study characterizes the thermal fatigue behavior for two PbTe-based thermoelectric materials, n-type LAST (lead–antimony–silver–tellurium) and p-type LASTT (lead–antimony–silver–tellurium–tin). The mechanical properties (fracture strength, elastic moduli) were evaluated for up to 200 thermal fatigue cycles. In addition, the electrical and thermal transport properties were evaluated for n- and p-type specimens for thermal cycling. The elastic moduli were relatively insensitive to thermal fatigue treatment. The fracture strength, σf, of the thermally fatigued LASTT specimens was in a band of from 25 to 40 MPa while σf of the thermally fatigued LAST ranged from 15 to 38 MPa. The thermopower and electrical conductivity of LASTT samples showed small deviations from the low temperature trend near 600 K and the data repeated well after the first temperature cycle for all samples. For the n-type LAST samples, the electrical conductivity and thermopower showed larger deviations from the low temperature trend near 500 K with some samples requiring several temperature cycles before showing repeatability in the data, suggesting a possible secondary phase in the samples. - Highlights: ► Thermoelectric waste heat recovery applications involve thermal fatigue. ► No thermal fatigue data for thermoelectrics is available in the literature. ► This study includes thermal fatigue data two PbTe-based thermoelectrics. ► The fracture strength the thermally fatigued LASTT ranged from 25 to 40 MPa ► The fracture strength the thermally fatigued LAST ranged from 15 to 38 MPa.

  2. Withholding Behavior

    Science.gov (United States)

    ... Listen Español Text Size Email Print Share Withholding Behavior Page Content Article Body I got upset at ... a specific fear is the reason behind his behavior, demonstrate clearly in several different ways—through conversation, ...

  3. Behavioralizing Finance

    OpenAIRE

    Shefrin, Hersh

    2010-01-01

    Finance is in the midst of a paradigm shift, from a neoclassical based framework to a psychologically based framework. Behavioral finance is the application of psychology to financial decision making and financial markets. Behavioralizing finance is the process of replacing neoclassical assumptions with behavioral counterparts. This monograph surveys the literature in behavioral finance, and identifies both its strengths and weaknesses. In doing so, it identifies possible directions for behav...

  4. Behavioral toxicology.

    OpenAIRE

    Needleman, H L

    1995-01-01

    The new fields of behavioral toxicology and behavioral teratology investigate the outcome of specific toxic exposures in humans and animals on learning, memory, and behavioral characteristics. Three important classes of behavioral neurotoxicants are metals, solvents, and pesticides. The clearest data on the deleterious effects of prenatal exposure to toxicants comes from the study of two metals, lead and mercury, and from epidemiological investigations of the effects of alcohol taken during p...

  5. Classroom Behavior

    Science.gov (United States)

    Segal, Carmit

    2008-01-01

    This paper investigates the determinants and malleability of noncognitive skills. Using data on boys from the National Education Longitudinal Survey, I focus on youth behavior in the classroom as a measure of noncognitive skills. I find that student behavior during adolescence is persistent. The variation in behavior can be attributed to…

  6. Behaviorally Speaking.

    Science.gov (United States)

    Porter, Elias H.; Dutton, Darell W. J.

    1987-01-01

    Consists of two articles focusing on (1) a modern behavioral model that takes cues from Hippocrates' Four Temperaments and (2) use of a behavioral approach to improve the effectiveness of meetings. Lists positive and negative behaviors within the meeting context. (CH)

  7. Making Behavioral Activation More Behavioral

    Science.gov (United States)

    Kanter, Jonathan W.; Manos, Rachel C.; Busch, Andrew M.; Rusch, Laura C.

    2008-01-01

    Behavioral Activation, an efficacious treatment for depression, presents a behavioral theory of depression--emphasizing the need for clients to contact positive reinforcement--and a set of therapeutic techniques--emphasizing provision of instructions rather than therapeutic provision of reinforcement. An integration of Behavioral Activation with…

  8. Quantitative determination of molecular structure in multilayered thin films of biaxial and lower symmetry from photon spectroscopies. I. Reflection infrared vibrational spectroscopy

    Science.gov (United States)

    Parikh, Atul N.; Allara, David L.

    1992-01-01

    A semitheoretical formalism based on classical electromagnetic wave theory has been developed for application to the quantitative treatment of reflection spectra from multilayered anisotropic films on both metallic and nonmetallic substrates. Both internal and external reflection experiments as well as transmission can be handled. The theory is valid for all wavelengths and is appropriate, therefore, for such experiments as x-ray reflectivity, uv-visible spectroscopic ellipsometry, and infrared reflection spectroscopy. Further, the theory is applicable to multilayered film structures of variable number of layers, each with any degree of anisotropy up to and including full biaxial symmetry. The reflectivities (and transmissivities) are obtained at each frequency by solving the wave propagation equations using a rigorous 4×4 transfer matrix method developed by Yeh in which the optical functions of each medium are described in the form of second rank (3×3) tensors. In order to obtain optical tensors for materials not readily available in single crystal form, a method has been developed to evaluate tensor elements from the complex scalar optical functions (n̂) obtained from the isotropic material with the limitations that the molecular excitations are well characterized and obey photon-dipole selection rules. This method is intended primarily for infrared vibrational spectroscopy and involves quantitative decomposition of the isotropic imaginary optical function (k) spectrum into a sum of contributions from fundamental modes, the assignment of a direction in molecular coordinates to the transition dipole matrix elements for each mode, the appropriate scaling of each k vector component in surface coordinates according to a selected surface orientation of the molecule to give a diagonal im(n̂) tensor, and the calculation of the real(n̂) spectrum tensor elements by the Kramers-Kronig transformation. Tensors for other surface orientations are generated by an

  9. Behavioral Finance

    OpenAIRE

    Hirshleifer, David

    2003-01-01

    Behavioral finance is the study of how psychology affects financial decision making and financial markets. A valuable resource for both academics and practitioners, this authoritative collection brings together the main works in both psychology and finance, dealing with the debate between proponents of the behavioral school and advocates of the efficient market school. The first volume contains works written by leading psychologists that underlie behavioral finance, focusing on general issues...

  10. Behavior modification.

    Science.gov (United States)

    Pelham, W E; Fabiano, G A

    2000-07-01

    Attention deficit/hyperactivity disorder (ADHD) is a chronic and substantially impairing disorder. This means that treatment must also be chronic and substantial. Behavior Modification, and in many cases, the combination of behavior modification and stimulant medication, is a valid, useful treatment for reducing the pervasive impairment experienced by children with ADHD. Based on the research evidence reviewed, behavior modification should be the first line of treatment for children with ADHD. PMID:10944662

  11. Psychological behaviorism and behaviorizing psychology

    OpenAIRE

    Staats, Arthur W.

    1994-01-01

    Paradigmatic or psychological behaviorism (PB), in a four-decade history of development, has been shaped by its goal, the establishment of a behaviorism that can also serve as the approach in psychology (Watson's original goal). In the process, PB has become a new generation of behaviorism with abundant heuristic avenues for development in theory, philosophy, methodology, and research. Psychology has resources, purview and problem areas, and nascent developments of many kinds, gathered in cha...

  12. Coupling behavior of the pH/temperature sensitive hydrogels for the inhomogeneous and homogeneous swelling

    Science.gov (United States)

    Mazaheri, H.; Baghani, M.; Naghdabadi, R.; Sohrabpour, S.

    2016-08-01

    In this work, a model is developed to continuously predict homogeneous and inhomogeneous swelling behavior of pH/temperature sensitive PNIPAM hydrogels. Employing the model, homogeneous swelling of the pH/temperature sensitive hydrogel is investigated for free and biaxial constrained swelling cases. Comparing the model results with the experimental data available in the literature, the validity of the model is confirmed. The model is then employed to investigate inhomogeneous swelling of a spherical shell on a hard core both analytically and numerically for pH or temperature variations. In this regard, numerical tools are developed via preparing a user defined subroutine in ABAQUS software. Then, the complicated problem of contact between the hydrogel shell and a micro-channel with rigid walls is also investigated. Considering the results, we can say that the model is applicable for solving engineering boundary value problem of pH/temperature sensitive hydrogels.

  13. Behaviorally inadequate

    DEFF Research Database (Denmark)

    Kasperbauer, Tyler Joshua

    2014-01-01

    According to situationism in psychology, behavior is primarily influenced by external situational factors rather than internal traits or motivations such as virtues. Environmental ethicists wish to promote pro-environmental behaviors capable of providing adequate protection for the environment, but...... situationist critiques suggest that character traits, and environmental virtues, are not as behaviorally robust as is typically supposed. Their views present a dilemma. Because ethicists cannot rely on virtues to produce pro-environmental behaviors, the only real way of salvaging environmental virtue theory is...... producing positive results. However, because endorsing behaviorally ineffective virtues, for whatever reason, entails that environmental ethicists are abandoning the goal of helping and protecting the environment, environmental ethicists should consider looking elsewhere than virtues and focus instead on...

  14. Behavioral economics and behavioral momentum.

    Science.gov (United States)

    Nevin, J A

    1995-11-01

    Some relations between elasticity of demand and the conditions of reinforcement are reanalyzed in terms of resistance to change, in ways suggested by the metaphor of behavioral momentum; some relations between resistance to change and the conditions of reinforcement are reanalyzed in terms of elasticity of demand, in ways suggested by behavioral economics. In addition, some data on labor supply in relation to variable-ratio schedules and alternative reinforcement are reanalyzed in terms of resistance to change and compared with steady-state resistance data for performance on multiple and concurrent interval schedules. The results of these studies can be summarized by two functions based on the behavioral momentum approach, relating relative behavioral mass to relative reinforcement per response or per unit time. The former is a relation between relative unit price and relative behavioral mass, suggesting the possibility of convergent measurement of a theoretical construct common to both approaches. However, the momentum and economic approaches differ fundamentally on whether it is preferable to construe discriminated operant behavior as selected and strengthened by its consequences or as part of a behavior-consequence bundle that maximizes utility. PMID:16812775

  15. Epitaxial growth of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} on Ni{sub 89}V{sub 11} non-magnetic biaxially textured substrate using NiO as buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Boffa, V. [ENEA, Centro Ricerche Frascati, Via E. Fermi, 45, 00044 Frascati, Rome (Italy). E-mail: boffa at frascati.enea.it; Petrisor, T.; Celentano, G.; Fabbri, F.; Annino, C.; Ciontea, L.; Galluzzi, V.; Gambardella, U.; Grimaldi, G.; Mancini, A. [ENEA, Centro Ricerche Frascati, Via E. Fermi, 45, 00044 Frascati, Rome (Italy); Ceresara, S. [CNR-TEMPE, C.so Promessi Sposi, 29, 22053 Lecco (Italy)

    2000-10-01

    The superconducting YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}/CeO{sub 2}/NiO multilayer structure was grown in situ by pulsed-laser deposition on biaxially textured Ni{sub 89}V{sub 11} non-magnetic alloy. The role of vanadium is to decrease the Curie temperature of Ni and to favour the formation of oriented NiO. The (00l)NiO buffer layer has been formed by the controlled oxidation of the Ni-V substrate under 10 mTorr oxygen pressure and at 700 deg. C. The critical current density of 0.6 MA cm{sup -2}, at 77 K and zero magnetic field, was obtained for 0.7 {mu}m thick YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films. (author)

  16. Study on damage characteristics of marble under biaxial compression%双轴压缩状态下大理岩破坏特性的试验研究

    Institute of Scientific and Technical Information of China (English)

    李昂; 邵国建; 雷冬; 朱义欢

    2012-01-01

    Compression tests were conducted to Jinping marble in uniaxial and biaxial conditions. Based on stress-strain curves of different loading stress path, the characteristics of strain have been analyzed under different stress state while studying the process of cracks from being formed to being expanded which led the sample failure on the surface in the end. From uniaxial experiment results of different scales, the trend of size effect has been proved. It is revealed the failure format and regulation of Jinping marble in biaxial condition. Reference will be provided for practice project of underground curve in excavation.%针对锦屏一级水电工程深部大理岩,分别进行了单、双轴加载下的岩样试验.基于不同加载应力路径下岩样的应力-应变关系曲线,分析了大理岩在不同加载状态下的变形特征,研究了岩样表面裂缝形成、扩展直至破坏的全过程.从不同岩样尺寸的实验结果出发,探讨了尺寸效应对岩石强度的影响趋势,揭示了双轴应力条件下大理岩的破坏形式和破坏规律.所得结论可为实际地下洞室工程中的开挖效应分析提供参考依据.

  17. Behavior Modification

    Science.gov (United States)

    Boardman, Randolph M.

    2010-01-01

    In a perfect world, students would never talk back to school staff and never argue or fight with each other. They would complete all their assigned tasks, and disciplinary actions never would be needed. Unfortunately, people don't live in a perfect world. Student behavior is a daily concern. Teachers continue to refer students to the office as a…

  18. Discounting Behavior

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Lau, Morten;

    2014-01-01

    We re-evaluate the theory, experimental design and econometrics behind claims that individuals exhibit non-constant discounting behavior. Theory points to the importance of controlling for the non-linearity of the utility function of individuals, since the discount rate is defined over time-dated...

  19. Hydrogen and fatigue behavior in a near alpha titanium alloy

    International Nuclear Information System (INIS)

    The beta processed near alpha titanium alloys were developed for high performance applications in gas turbines. The principal requirement was an enhanced temperature capability coupled with competitive fatigue strength at lower temperatures. Paradoxically, these creep resistant alloys can give inferior fatigue performance at near ambient temperatures when the applied cycle has a dwell period at peak stress. This characteristic has obvious implications for components with operating envelopes that include long hold periods at relatively high static stress. Several factors have been implicated in the dwell sensitivity including plastic strain accumulation, biaxial and triaxial stress fields and microstructural condition. One particularly important consideration is hydrogen concentration. It has been argued that the life decrement is due to hydride formation at slip bands or crack tips. The fact that hydrogen diffusion is promoted by stress gradients can account for critical levels for hydride precipitation being reached in material with non-dangerous average concentration levels. The research was carried out on IMI685 (Ti-6Al-5Zr-0.5Mo-0.25Si), a typical representative of this class of material. The alloy was evaluated with an aligned alpha microstructure, since this is considered to be its most susceptible condition. Hydrogen concentrations were varied in the range 20--275 ppm. The research covered both tension and torsion loading modes but attention is given to the former only in this publication. The work clearly demonstrates specific regimes of behavior associated with the various hydrogen contents

  20. Experimental investigation for the Secondary Failure Behavior of Partial Wall-Base Juncture Model in 1/4 PCCV

    International Nuclear Information System (INIS)

    Hyundai Institute of Construction Technology Development (HICTD) has been conducting the project on the research and development of pre-stressed concrete containment vessel (PCCV) that would be sponsored and funded by Korea Atomic Energy Research Institute (KAERI). As a part of this research, an experimental investigation is carried out to examine the secondary failure behavior of PCCV that is expected to occur at the wall-base juncture. The ultimate condition of nuclear power plant containment vessel will be happened under the internal pressure. The internal pressure induces biaxial tensile stress in the containment wall. This research purposes to experimental investigation on the secondary failure. The huge size of PCCV causes to scale down to 1/4 and designed in the partial level. To describe the wall-base juncture, point of inflection which is free flexural point must be the experimental loading point

  1. Modeling of the cold work stress relieved Zircaloy-4 cladding tubes mechanical behavior under PWR operating conditions

    International Nuclear Information System (INIS)

    This paper proposes a damaged viscoplastic model to simulate, for different isotherms (320, 350, 380, 400 and 420 degC), the out-of-flux anisotropic mechanical behavior of cold work stress relieved Zircaloy-4 cladding tubes over the fluence range 0-85.1024 nm-2 (E > 1 MeV). The model, identified from uni and biaxial tests conducted at 350 and 400 degC, is validated from tests performed at 320, 380 and 420 degC. This model is able to simulate strain hardening under internal pressure followed by a stress relaxation period (thermal creep), which is representative of a pellet cladding mechanical interaction occurring during a power transient (class 2 incidental condition). Both the integration of a scalar state variable, characterizing the damage caused by a bombardment with neutrons, and the modification of the static recovery law allowed us to simulate the fast neutron flux effect (irradiation creep). (author)

  2. Fatigue behavior of thin Au and Al films on polycarbonate and polymethylmethacrylate for micro-optical components

    International Nuclear Information System (INIS)

    The thermal and mechanical fatigue behavior of thin metal films on polymer substrates has been investigated and compared for different combinations of materials, which are typical for micro-optical components: gold or aluminum film deposited on PolyCarbonate (PC) or PolyMethylMethAcrylate (PMMA) substrate. Mechanical fatigue testing has been carried out using an experimental setup, which allows for testing in an equi-biaxial loading condition, mimicking the strain state of the film during thermal cycling. Using scanning electron microscopy, fatigue damage morphologies for the different film/substrate combinations have been found to be quite different for both thermal and mechanical cycling. Furthermore, our results indicate a somewhat lower resistance of the films deposited onto PMMA as compared to PC to both thermal and mechanical fatigue. Under mechanical loading, Au/PC specimens show a longer time to failure as compared to the Al/PC specimens

  3. CONSUMER BEHAVIOR

    OpenAIRE

    Ilie BUDICA; Silvia PUIU; Bogdan Andrei BUDICA

    2010-01-01

    The study of consumers helps firms and organizations improve their marketing strategies by understanding issues such as: the psychology of how consumers think, feel, reason, and select between different alternatives; the psychology of how the consumer is influenced by his or her environment; the behavior of consumers while shopping or making other marketing decisions; limitations in consumer knowledge or information processing abilities influence decisions and marke...

  4. Behavioral Economics

    OpenAIRE

    Sendhil Mullainathan; Thaler, Richard H.

    2000-01-01

    Behavioral Economics is the combination of psychology and economics that investigates what happens in markets in which some of the agents display human limitations and complications. We begin with a preliminary question about relevance. Does some combination of market forces, learning and evolution render these human qualities irrelevant? No. Because of limits of arbitrage less than perfect agents survive and influence market outcomes. We then discuss three important ways in which humans devi...

  5. OPEC behavior

    Science.gov (United States)

    Yang, Bo

    This thesis aims to contribute to a further understanding of the real dynamics of OPEC production behavior and its impacts on the world oil market. A literature review in this area shows that the existing studies on OPEC still have some major deficiencies in theoretical interpretation and empirical estimation technique. After a brief background review in chapter 1, chapter 2 tests Griffin's market-sharing cartel model on the post-Griffin time horizon with a simultaneous system of equations, and an innovative hypothesis of OPEC's behavior (Saudi Arabia in particular) is then proposed based on the estimation results. Chapter 3 first provides a conceptual analysis of OPEC behavior under the framework of non-cooperative collusion with imperfect information. An empirical model is then constructed and estimated. The results of the empirical studies in this thesis strongly support the hypothesis that OPEC has operated as a market-sharing cartel since the early 1980s. In addition, the results also provide some support of the theory of non-cooperative collusion under imperfect information. OPEC members collude under normal circumstances and behave competitively at times in response to imperfect market signals of cartel compliance and some internal attributes. Periodic joint competition conduct plays an important role in sustaining the collusion in the long run. Saudi Arabia acts as the leader of the cartel, accommodating intermediate unfavorable market development and punishing others with a tit-for-tat strategy in extreme circumstances.

  6. Voltage controlled biaxial strain in VO{sub 2} films grown on 0.72Pb(Mg{sub 1∕3}Nb{sub 2∕3})-0.28PbTiO{sub 3} crystals and its effect on the transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Petraru, A., E-mail: apt@tf.uni-kiel.de; Soni, R.; Kohlstedt, H. [Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel 24143 (Germany)

    2014-09-01

    Vanadium oxide thin films (VO{sub 2}) were deposited on 0.72Pb(Mg{sub 1∕3}Nb{sub 2∕3})-0.28PbTiO{sub 3} (PMN-PT) crystalline substrates using pulsed laser deposition method. Due to their huge piezoelectric coefficients in the order of 2500 pm/V, the PMN-PT substrates are used to impose additional amount of biaxial strain to the VO{sub 2} films by applying an external bias to the substrates. The influence of the biaxial strain on the transition temperature and on the conductive properties of the VO{sub 2} films is investigated in this work. Thus, a change in the biaxial strain of −0.8 × 10{sup −3} applied in the (110) plane of the rutile cell of the VO{sub 2} lowered the metal-to-insulator transition temperature by 1.35 °C.

  7. CONSUMER BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Ilie BUDICA

    2010-03-01

    Full Text Available The study of consumers helps firms and organizations improve their marketing strategies by understanding issues such as: the psychology of how consumers think, feel, reason, and select between different alternatives; the psychology of how the consumer is influenced by his or her environment; the behavior of consumers while shopping or making other marketing decisions; limitations in consumer knowledge or information processing abilities influence decisions and marketing outcome; how consumer motivation and decision strategies differ between products that differ in their level of importance or interest that they entail for the consumer; and how marketers can adapt and improve their marketing campaigns and marketing strategies to more effectively reach the consumer.

  8. Logical Behaviorism

    OpenAIRE

    Malcolm, Norman; Altuner, Ilyas

    2014-01-01

    The paper deals exclusively with the doctrine called ‘Logical Behaviorism’. Although this position does not vogue it enjoyed in the 1930s and 1940s, it will always possess a compelling attraction for anyone who is perplexed by the psychological concepts, who has become aware of worthlessness of an appeal to introspection as an account of how we learn those concepts, and he has no inclination to identify mind with brain. There, of course, are other forms of behaviorism, and of reductionism, wh...

  9. Behavior Modification is not...

    Science.gov (United States)

    Tawney, James W.; And Others

    1973-01-01

    Identified are misconceptions of behavior modification procedures according to which behavior modification is connected mistakenly with noncontingent reinforcement, partial change of a teacher's behavior, decelerations of inappropriate behaviors only, dependency producing technology, teacher dominated activity, a single type of classroom…

  10. Analytic study of plastic instabilities during tension or compression tests on a metallic plate bi-axially loaded in its plane: symmetric and antisymmetric modes with respect to the median plane

    International Nuclear Information System (INIS)

    This report is a continuation of the thesis [23], devoted to the onset of necking plastic instabilities during tension tests on metallic plates bi-axially loaded in their plane. We are also interested here in compression tests, and in the development of antisymmetric defects with respect to the median plane of the plate. As in the thesis, we search for the dominant mode, i.e. the most unstable pair of wavelengths (λ1, λ2) in the loading plane. An approximate analytical formulation for the growth rate is proposed, especially for plane-strain tests in the absence of viscous effects, and for static tests in tension in the x1 and x2 loading directions. In that latter case, we retrieve published results [14][15]. For plane-strain tests, we show that infinitely dense networks of shear bands inclined at 45 deg. with respect to the loading direction instantaneously occur when heat softening prevails over work-hardening. (author)

  11. Some verbal behavior about verbal behavior

    OpenAIRE

    Salzinger, Kurt

    2003-01-01

    Beginning with behavior analysts' tendency to characterize verbal behavior as “mere” verbal behavior, the author reviews his own attempt to employ it to influence both his staff and policies of our government. He then describes its role in psychopathology, its effect on speakers in healing themselves and on engendering creativity. The paper ends by calling to our attention the role of verbal behavior in the construction of behavior analysis.

  12. The effect of grain and pore sizes on the mechanical behavior of thin Al films deposited under different conditions

    International Nuclear Information System (INIS)

    This paper presents a comprehensive study of the relationships between deposition conditions, microstructure and mechanical behavior in thin aluminum films commonly used in micro and nano-devices. A particular focus is placed on the effect of porosity, which is present in all thin films deposited by evaporation or sputtering techniques. The influences of the deposition temperature on the grain size, pore size and crystallographic texture were characterized by X-ray diffraction and scanning electron microscopy. The mechanical behavior of the films was investigated using four different methods. Each method is suitable for characterizing different properties and for testing the material at different length scales. Nanoindentation was used to study hardness at the level of individual grains; resonant ultrasound spectroscopy was used to measure the elastic moduli and porosity; and bulge and tensile tests were used to study released films under biaxial and uniaxial tensions. Our results demonstrate that even low porosities may have tremendous effects on the mechanical properties and that different methods allow the capture of different aspects of these effects. Therefore, a combination of several methods is required to obtain a comprehensive understanding of the mechanical behavior of a film. It is also shown that porosity with different pore size leads to very different effects on the mechanical behavior

  13. Analytical approach to inelastic failure behavior and seismic response of reinforced concrete shear wall subjected to cyclic and seismic loading

    International Nuclear Information System (INIS)

    Current research activities on seismic behavior of reinforced concrete member subjected to base acceleration have been limited to the shaking table test or equivalent static cyclic test. This is reasonable from the fact that since the strength and stiffness degradation, yielding of reinforcing bar, and closing and opening of existing crack are accompanied by crack generation, reasonable analytical formulation of these phenomenon is rarely successful. At this time, this paper is to present analytical method capable of predicting the inelastic failure behavior of reinforced concrete shear wall subjected to cyclic and seismic loading. The complete analytical procedure on failure behavior was formulated through the nonlinear material models based on biaxial state of stress that represent stress versus strain relationships of concrete and reinforcing bar, and dynamic analysis algorithm with large displacement, respectively. Two dimensional finite element analysis tool was developed for the analytical procedure. The failure behavior and seismic response of shear wall was predicted using the developed analysis tool, and the comparison with reliable test result confirmed the validity and reliability of present study

  14. Modelling for the mechanical behavior of cementitious granular materials

    Science.gov (United States)

    Zhong, Xiaoxiong

    Crack damages due to load application are commonly observed in cementitious granular materials such as concrete, cemented sand, and ceramic materials. Previous analytical models for these types of materials have been developed based on continuum mechanics using a phenomenological approach. However, the theories of continuum mechanics have limitations when used for analyzing fracture mechanism and localized damages at a micro-scale level. Therefore, a microstructural approach is desirable for the analysis of these types of materials. In this dissertation, a contact law was derived for the inter-particle behavior of two particles connected by a cement binder. Microcracking process within binder was fully taken into account by regarding crack length as a basic damage factor. The binder initially contains small-size cracks which propagate and grow under external loading. As a result the binder is weakened with lower strength in shear and tension. Theory of fracture mechanics was employed to model the propagation and growth of these microcracks for both the shear fracture mode and normal fracture mode. The contact law was then incorporated in the analysis for the overall damage behaviors of cementitious granular material using the statistical micromechanics approach and the distinct element method. These overall damage behaviors include the stress-strain relationship, fracture strength, development of damage zone, and fatigue deformation. The micro-parameters affecting these behaviors are mainly the microcrack length and density, binder toughness, and binder elastic constants. In the numerical simulations, the cementitious granular materials were represented by 2-D random assemblies of rods bonded by cement binders with preexisting microcracks. Stress-strain relationships were modeled and validated for the uniaxial tension and compression tests, biaxial tension and compression tests, and double cantilever beam test. Force-deflection relationship and fatigue deformation

  15. Autistic behavior, behavior analysis, and the gene.

    Science.gov (United States)

    Malott, Richard W

    2004-01-01

    This article addresses the meaning of autism, the etiology of autistic behavior and values, the nature-nurture debate, contingencies vs. genes, and resistance to a behavioral analysis of autism. PMID:22477285

  16. Positive Behavior Support and Applied Behavior Analysis

    Science.gov (United States)

    Johnston, J. M.; Foxx, R. M.; Jacobson, J. W.; Green, G.; Mulick, J. A.

    2006-01-01

    This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We…

  17. An all chemical solution deposition approach for the growth of highly textured CeO2 cap layers on La2Zr2O7-buffered long lengths of biaxially textured Ni-W substrates for YBCO-coated conductors

    International Nuclear Information System (INIS)

    A reel-to-reel, dip coating process has been developed to continuously deposit epitaxial La2Zr2O7 (LZO) and CeO2 on 5 m long cube-textured {100} (001)Ni tapes. Recent results for La2Zr2O7 and CeO2 buffer layers deposited on long lengths of Ni substrate for the realization of YBa2Cu3O7-x (YBCO)-coated conductors are presented. The major achievement is the development of a new all chemical solution deposition (CSD) process leading to the formation of highly textured buffer layers at moderate annealing temperatures. Reproducible highly textured, dense and crack-free LZO buffer layers and CeO2 cap layers were obtained for annealing temperatures as low as 900 deg. C in a reducing atmosphere (Ar-5 at.%-H2). The thickness of the LZO buffer layers was determined to be (200 ± 10) nm per single coating; prepared cerium oxide layers showed a thickness of 60 nm ± 10 nm. Pulsed laser deposition (PLD) was used to grow YBCO films on these substrates. A Tc0 of T = 90.5 K and ΔTc = 1.4 K was obtained on PLD-YBCO/CSD-CeO2 /CSD-LZO/Ni-5 at.% W, which shows the outstanding features of this new buffer layer architecture processed by CSD. The large layer thickness combined with low annealing temperatures is the main advantage of this new process for low-cost buffer layer deposition on Ni-RABiTS (rolling-assisted biaxially textured substrates)

  18. Fabrication of High Current YBa2Cu3O(sub>7-y) Coated Conductors Using Rolling-Assisted Biaxially Textured Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Christen, D.K.; Feenstra, R.; Kroeger, D.M.; Lee, D.F.; List, F.A.; Martin, P.M.; Norton, D.P.; Paranthaman, M.; Park, C.; Royal, A.; Specht, E.D.; Verebelyi, D.T.

    1999-06-01

    High critical current YBa2Cu3O7-y (referred to as YBCO) coated conductors were fabricated with a layer sequence of YBCO/YSZ/CeO2/Ni. The cube (100) texture in the starting Ni substrates was obtained by cold rolling followed by recrystallization. A thin CeO2 (Cerium Oxide) layer with a thickness of 100-200 Å was grown epitaxially on the biaxially textured-Ni substrates using an e-beam evaporation technique. This was followed by the growth of a thick (<= 0.77 µm) YSZ (Yttria Stabilized Zirconia) layer using either e-beam evaporation or rf magnetron sputtering. The e-beam CeO2 film had a dense microstructure. The microstructure of the e-beam YSZ film was porous whereas the sputtered YSZ film was dense. The YBCO films were grown by pulsed laser deposition on both e-beam and sputtered YSZ layers. A transport critical current density of ~ 1 x l06 A/cm2 at 77 K was obtained for ~ 0.8 µm thick YBCO Rims on both YSZ surfaces in zero field. To demonstrate the quality and compatibility of the e-beam CeO2 layers; YBCO films were also grown on CeO2-buffered YSZ (100) single crystal substrates using e-beam co-evaporated Y-BaF2-Cu precursors followed by a post-annealing process. A transport critical current density of over 1 x lO6A/cm2 at 77 K was obtained on a ~ 0.3 µm thick YBCO film in zero field.

  19. A three-dimensional model of magneto-mechanical behaviors of martensite reorientation in ferromagnetic shape memory alloys

    Science.gov (United States)

    Chen, Xue; Moumni, Ziad; He, Yongjun; Zhang, Weihong

    2014-03-01

    The large strain in Ferromagnetic Shape Memory Alloys (FSMA) is due to the martensite reorientation driven by mechanical stresses and/or magnetic fields. Although most experiments studying the martensite reorientation in FSMA are under 1D condition (uniaxial stress plus a perpendicular magnetic field), it has been shown that the 2D/3D configurations can improve the working stress and give much flexibility of the material's applications [He, Y.J., Chen, X., Moumni, Z., 2011. Two-dimensional analysis to improve the output stress in ferromagnetic shape memory alloys. Journal of Applied Physics 110, 063905]. To predict the material's behaviors in 3D loading conditions, a constitutive model is developed in this paper, based on the thermodynamics of irreversible processes with internal variables. All the martensite variants are considered in the model and the temperature effect is also taken into account. The model is able to describe all the behaviors of martensite reorientation in FSMA observed in the existing experiments: rotating/non-rotating magnetic-field-induced martensite reorientation, magnetic-field-assisted super-elasticity, super-elasticity under biaxial compressions and temperature-dependence of martensite reorientation. The model is further used to study the nonlinear bending behaviors of FSMA beams and provides some basic guidelines for designing the FSMA-based bending actuators.

  20. The Psyche as Behavior

    Directory of Open Access Journals (Sweden)

    ARTURO CLAVIJO A.

    2013-12-01

    Full Text Available Behaviorism has argued that behavior is the Psyche and the subject matter of psychology. Although, some scientists had done empirical work with objective methods before 1913, the year in which John B. Watson published his manifesto, he was the first one to attempt a systematization of behavior as the Psyche, that is, as psychology’s subject matter. In this text, I outline Watson’s notion of behavior to compare it with two other forms of behaviorism: Skinner’s radical behaviorism and molar behaviorism. The purpose of the paper is to illustrate how the concept of behavior has been and is changing.

  1. Functional microimaging. A hierarchical investigation of bone failure behavior

    International Nuclear Information System (INIS)

    ultrastructure of bone including vascular and cellular structures and to investigate their role in the development of bone microcracks with an unprecedented resolution. The differences in bone mechanical properties observed macroscopically in B6 and C3H were explained, to some extent, by their differences in microstructural architecture and porosity assessed with high-resolution techniques. We conclude that functional microimaging, i.e. the combination of biomechanical testing with non-destructive and high-resolution 3D imaging and visualization are extremely valuable in studying bone failure mechanisms. Functional investigation of microcrack initiation and propagation will lead to a better understanding of the relative contribution of bone mass and bone quality to bone competence, especially in the post-yield failure behavior. (author)

  2. Toward a behavioral ecology of rescue behavior.

    Science.gov (United States)

    Hollis, Karen L; Nowbahari, Elise

    2013-01-01

    Although the study of helping behavior has revolutionized the field of behavioral ecology, scientific examination of rescue behavior remains extremely rare, except perhaps in ants, having been described as early as 1874. Nonetheless, recent work in our laboratories has revealed several new patterns of rescue behavior that appear to be much more complex than previously studied forms. This precisely-directed rescue behavior bears a remarkable resemblance to what has been labeled empathy in rats, and thus raises numerous philosophical and theoretical questions: How should rescue behavior (or empathy) be defined? What distinguishes rescue from other forms of altruism? In what ways is rescue behavior in ants different from, and similar to, rescue in other non-human animals? What selection pressures dictate its appearance? In this paper, we review our own experimental studies of rescue in both laboratory and field, which, taken together, begin to reveal some of the behavioral ecological conditions that likely have given rise to rescue behavior in ants. Against this background, we also address important theoretical questions involving rescue, including those outlined above. In this way, we hope not only to encourage further experimental analysis of rescue behavior, but also to highlight important similarities and differences in very distant taxa. PMID:23864298

  3. Positive Behavior Support and Applied Behavior Analysis

    OpenAIRE

    Johnston, J M; Foxx, Richard M; Jacobson, John W.; Green, Gina; Mulick, James A.

    2006-01-01

    This article reviews the origins and characteristics of the positive behavior support (PBS) movement and examines those features in the context of the field of applied behavior analysis (ABA). We raise a number of concerns about PBS as an approach to delivery of behavioral services and its impact on how ABA is viewed by those in human services. We also consider the features of PBS that have facilitated its broad dissemination and how ABA might benefit from emulating certain practices of the P...

  4. Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation

    Directory of Open Access Journals (Sweden)

    Katonis Pavlos G

    2009-05-01

    Full Text Available Abstract Background Lag screw cut-out failure following fixation of unstable intertrochanteric fractures in osteoporotic bone remains an unsolved challenge. This study tested if resistance to cut-out failure can be improved by using a dual lag screw implant in place of a single lag screw implant. Migration behavior and cut-out resistance of a single and a dual lag screw implant were comparatively evaluated in surrogate specimens using an established laboratory model of hip screw cut-out failure. Methods Five dual lag screw implants (Endovis, Citieffe and five single lag screw implants (DHS, Synthes were tested in the Hip Implant Performance Simulator (HIPS of the Legacy Biomechanics Laboratory. This model simulated osteoporotic bone, an unstable fracture, and biaxial rocking motion representative of hip loading during normal gait. All constructs were loaded up to 20,000 cycles of 1.45 kN peak magnitude under biaxial rocking motion. The migration kinematics was continuously monitored with 6-degrees of freedom motion tracking system and the number of cycles to implant cut-out was recorded. Results The dual lag screw implant exhibited significantly less migration and sustained more loading cycles in comparison to the DHS single lag screw. All DHS constructs failed before 20,000 cycles, on average at 6,638 ± 2,837 cycles either by cut-out or permanent screw bending. At failure, DHS constructs exhibited 10.8 ± 2.3° varus collapse and 15.5 ± 9.5° rotation around the lag screw axis. Four out of five dual screws constructs sustained 20,000 loading cycles. One dual screw specimens sustained cut-out by medial migration of the distal screw after 10,054 cycles. At test end, varus collapse and neck rotation in dual screws implants advanced to 3.7 ± 1.7° and 1.6 ± 1.0°, respectively. Conclusion The single and double lag screw implants demonstrated a significantly different migration resistance in surrogate specimens under gait loading simulation with

  5. Improved textured La2Zr2O7 buffer layers on bi-axially textured Ni–W substrates using CeO2 seed layers for YBa2Cu3O7−x coated conductors

    International Nuclear Information System (INIS)

    La2Zr2O7 (LZO) buffer layers were deposited on bi-axially textured Ni–W substrates with CeO2 seed layer by radio-frequency magnetron sputtering for the large-scale application of YBa2Cu3O7−x (YBCO) coated conductors. The microstructure and surface morphology of LZO buffer layers were studied by X-ray diffraction, optical microscopy, field emission scanning electron microscopy and atomic force microscopy. The influences of substrate temperature and oxygen partial pressure on the microstructure and surface morphology of LZO buffer layers were discussed. It was found that epitaxial LZO films were preferentially c-axis oriented without microcracks, with no degradation of crystallographic texture and with high surface crystallinity. Crack-free and strong c-axis aligned LZO films with no random orientation were obtained at relatively low substrate temperatures of 600–800 °C and in flowing 40 Pa gas mixtures of Ar–O2 with an effective oxygen partial pressure of 0.1–20 Pa. In addition, LZO films grown in low oxygen partial pressure have a smoother surface than films in higher oxygen partial pressure. Then, we fabricated YBCO coated conductors on the high-quality LZO buffer layers by pulsed laser deposition. The critical current density Jc = 2.25 MA/cm2 and critical current Ic = 180 A/cm of 0.8-μm-thick YBCO film at 77 K, self field were obtained. The magnetic field and angular dependences of critical current per width were discussed. Highly textured LZO films grown on CeO2 seed layer were suitable as a buffer layer for the growth of YBCO coated conductors with high currents. - Highlights: • La2Zr2O7 (LZO) films were firstly fabricated by magnetron sputtering. • We firstly used the buffer architecture LZO/CeO2 (seed). • We firstly fabricated YBa2Cu3O7+x films directly on LZO films

  6. Epitaxial growth and characterization of La{sub 2}Zr{sub 2}O{sub 7} multilayers on biaxially textured NiW substrate by chemical solution deposition under highly reducing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mos, R.B.; Petrisor, T.; Gabor, M.S. [Technical University of Cluj-Napoca, Str. Memorandumului, nr. 28, 400114 Cluj-Napoca (Romania); Mancini, A.; Rufoloni, A.; Celentano, G. [ENEA Frascati, Via Enrico Fermi 45, 00044 Frascati, Roma (Italy); Falqui, A.; Genovese, A.; Ruffilli, R. [Istituto Italiano di Tecnologia, I.I.T. — Via Morego 30, 16163 Genova (Italy); Ciontea, L. [Technical University of Cluj-Napoca, Str. Memorandumului, nr. 28, 400114 Cluj-Napoca (Romania); Petrisor, T., E-mail: Traian.Petrisor@phys.utcluj.ro [Technical University of Cluj-Napoca, Str. Memorandumului, nr. 28, 400114 Cluj-Napoca (Romania)

    2013-03-01

    The paper presents the growth and characterization of highly textured La{sub 2}Zr{sub 2}O{sub 7} (LZO) multilayer coatings on Ni–5 at.%W (NiW) biaxially textured substrates by chemical solution deposition (CSD) under highly reducing conditions (Ar + 12%H{sub 2}) in order to protect the metallic substrate from oxidation. The coating solution consists in a stoichiometric mixture of lanthanum and zirconium acetylacetonates dissolved in an excess of propionic acid. The precursor chemistry was studied by means of infrared spectroscopy, thermogravimetric–differential thermal analyses, Raman spectroscopy and X-ray diffraction carried out on the precursor powder. The as-grown multilayer LZO coating exhibits a sharp in-plane and out-of-plane texture, with the full-width-at-half-maximum of the ω-scans and φ-scans of about 7.2° and 8.0°, respectively, close to that of the NiW substrate. The volume fraction of the c-axis oriented grains from the top layer of the coating increases with the number of layers. The LZO coating exhibits a smooth and crack-free surface, appropriate for the further epitaxial growth of a seed layer for the YBa{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) deposition. Transmission Electron Microscopy was used to investigate the microstructure of the CSD LZO thin films deposited on flexible NiW substrates. A high density of nanovoids, with a size ranging between 10 and 30 nm, was observed in the LZO layers. YBCO films epitaxially grown by pulsed laser deposition on the CSD LZO buffer layer exhibit critical current densities, J{sub c}, close to 1.6 MA/cm{sup 2} at 77 K and self-field and zero resistance critical temperature (T{sub c}(R = 0)) of 90.3 K. - Highlights: ► Chemical solution deposition of epitaxial LZO multiple coatings ► Precursor characterization ► The improvement of the epitaxial fraction with the number of the LZO layers ► The LZO coatings are appropriate for further epitaxial deposition of YBCO film.

  7. Computational Analysis of Behavior.

    Science.gov (United States)

    Egnor, S E Roian; Branson, Kristin

    2016-07-01

    In this review, we discuss the emerging field of computational behavioral analysis-the use of modern methods from computer science and engineering to quantitatively measure animal behavior. We discuss aspects of experiment design important to both obtaining biologically relevant behavioral data and enabling the use of machine vision and learning techniques for automation. These two goals are often in conflict. Restraining or restricting the environment of the animal can simplify automatic behavior quantification, but it can also degrade the quality or alter important aspects of behavior. To enable biologists to design experiments to obtain better behavioral measurements, and computer scientists to pinpoint fruitful directions for algorithm improvement, we review known effects of artificial manipulation of the animal on behavior. We also review machine vision and learning techniques for tracking, feature extraction, automated behavior classification, and automated behavior discovery, the assumptions they make, and the types of data they work best with. PMID:27090952

  8. Investigation of hyperelastic models for nonlinear elastic behavior of demineralized and deproteinized bovine cortical femur bone.

    Science.gov (United States)

    Hosseinzadeh, M; Ghoreishi, M; Narooei, K

    2016-06-01

    In this study, the hyperelastic models of demineralized and deproteinized bovine cortical femur bone were investigated and appropriate models were developed. Using uniaxial compression test data, the strain energy versus stretch was calculated and the appropriate hyperelastic strain energy functions were fitted on data in order to calculate the material parameters. To obtain the mechanical behavior in other loading conditions, the hyperelastic strain energy equations were investigated for pure shear and equi-biaxial tension loadings. The results showed the Mooney-Rivlin and Ogden models cannot predict the mechanical response of demineralized and deproteinized bovine cortical femur bone accurately, while the general exponential-exponential and general exponential-power law models have a good agreement with the experimental results. To investigate the sensitivity of the hyperelastic models, a variation of 10% in material parameters was performed and the results indicated an acceptable stability for the general exponential-exponential and general exponential-power law models. Finally, the uniaxial tension and compression of cortical femur bone were studied using the finite element method in VUMAT user subroutine of ABAQUS software and the computed stress-stretch curves were shown a good agreement with the experimental data. PMID:26953961

  9. Behavior Management: Examining the Functions of Behavior

    Science.gov (United States)

    Alstot, Andrew E.; Alstot, Crystal D.

    2015-01-01

    Appropriate student behavior is essential for the success of a physical education lesson. Despite using effective proactive management strategies, teachers may need to also use reactive techniques to reduce problem behaviors by applying suitable consequences. For these consequences to be effective, they must be aligned with the function, or cause,…

  10. Pilot Study for Investigating the Cyclic Behavior of Slit Damper Systems with Recentering Shape Memory Alloy (SMA Bending Bars Used for Seismic Restrainers

    Directory of Open Access Journals (Sweden)

    Junwon Seo

    2015-07-01

    Full Text Available Although the steel slit dampers commonly utilized for aseismic design approach can dissipate considerable energy created by the yielding of base materials, large residual deformation may happen in the entire frame structure. After strong external excitation, repair costs will be incurred in restoring a structure to its original condition and to replace broken components. For this reason, alternative recentering devices characterized by smart structures, which mitigate the damage for such steel energy dissipation slit dampers, are developed in this study. These devices, feasibly functioning as seismic restrainers, can be improved by implementing superelastic shape memory alloy (SMA bending bars in a parallel motion with the steel energy-dissipating damper. The bending bars fabricated with superelastic SMAs provide self-centering forces upon unloading, and accordingly contribute to reducing permanent deformation in the integrated slit damper system. The steel slit dampers combined with the superelastic SMA bending bars are evaluated with respect to inelastic behavior as simulated by refined finite element (FE analyses. The FE slit damper models subjected to cyclic loads are calibrated to existing test results in an effort to predict behavior accurately. The responses of the proposed slit damper systems are compared to those of the conventionally used slit damper systems. From the analysis results, it is concluded that innovative steel slit dampers combined with superelastic SMA bending bars generate remarkable performance improvements in terms of post-yield strength, energy dissipation, and recentering capability.

  11. Moving Forward: Positive Behavior Support and Applied Behavior Analysis

    Science.gov (United States)

    Tincani, Matt

    2007-01-01

    A controversy has emerged about the relationship between positive behavior support and applied behavior analysis. Some behavior analysts suggest that positive behavior support and applied behavior analysis are the same (e.g., Carr & Sidener, 2002). Others argue that positive behavior support is harmful to applied behavior analysis (e.g., Johnston,…

  12. Toddlers and Sexual Behavior

    Science.gov (United States)

    ... Pediatrics Common Questions, Quick Answers Toddlers and Sexual Behavior Donna D'Alessandro, M.D. Lindsay Huth, B. ... problem or sexual abuse. What kind of sexual behaviors are okay? Masturbation in toddlers is usually nothing ...

  13. Child Behavior Disorders

    Science.gov (United States)

    ... misbehave some times. And some may have temporary behavior problems due to stress. For example, the birth ... family may cause a child to act out. Behavior disorders are more serious. They involve a pattern ...

  14. Suicide and suicidal behavior

    Science.gov (United States)

    ... of taking one's own life on purpose. Suicidal behavior is any action that could cause a person ... Suicide and suicidal behaviors usually occur in people with one or more of the following: Bipolar disorder Borderline personality disorder Depression Drug or ...

  15. What determines our behavior

    OpenAIRE

    Marko Radovan

    2001-01-01

    In article Ajzen-Fishbein's attitude-behavior model called 'Theory of reasoned action' and Albert Bandura's Model of reciprocal determinism are presented. Both models are a part of social-cognitive paradigm which characterizes behavior with evaluation of different goals. Ajzen and Fishbein (1973; 1980) proposed that specific behavior are predictable from specific behavioral intentions. These intentions are a function of two components: the attitude toward the act in question a...

  16. Principles of (Behavioral) Economics

    OpenAIRE

    David Laibson; List, John A.

    2015-01-01

    Behavioral economics has become an important and integrated component of modern economics. Behavioral economists embrace the core principles of economics—optimization and equilibrium—and seek to develop and extend those ideas to make them more empirically accurate. Behavioral models assume that economic actors try to pick the best feasible option and those actors sometimes make mistakes. Behavioral ideas should be incorporated throughout the first-year undergraduate course. Instructors should...

  17. Promoting Healthy Dietary Behaviors.

    Science.gov (United States)

    Perry, Cheryl L.; Story, Mary; Lytle, Leslie A.

    This chapter reviews the research on promoting healthy dietary behaviors in all youth, not just those who exhibit problems such as obesity or eating disorders. The first section of this chapter presents a rationale for addressing healthy dietary behavior with children and adolescents, on the basis of the impact of these behaviors on short- and…

  18. Consumer behavior research

    OpenAIRE

    Hašková, Lucie

    2010-01-01

    The major part of this work is a consumer behavior research in process of buying christmas presents. The goal of this work is to describe a consumer behavior of Prague's customers in process of buying christmas presents, also describe a a consumer behavior of different age and social groups, as well as the difference between men and women.

  19. Behavioral Economics and Consumption

    DEFF Research Database (Denmark)

    Reisch, Lucia A.; Sunstein, Cass R.

    2015-01-01

    Behavioral economics explores why people sometimes fail to make rational decisions, and how their behavior departs from the predictions of standard economic models. Insights gained from studies in behavioral economics are used in consumer research and consumer policy to understand and improve...

  20. Behavioral Adaptation and Acceptance

    NARCIS (Netherlands)

    Martens, M.H.; Jenssen, G.D.

    2012-01-01

    One purpose of Intelligent Vehicles is to improve road safety, throughput, and emissions. However, the predicted effects are not always as large as aimed for. Part of this is due to indirect behavioral changes of drivers, also called behavioral adaptation. Behavioral adaptation (BA) refers to uninte

  1. Modelization of ratcheting in biaxial experiments

    International Nuclear Information System (INIS)

    A new unified viscoplastic constitutive equation has been developed in order to interpret ratcheting experiments on mechanical structures of fast reactors. The model is based essentially on a generalized Armstrong Frederick equation for the kinematic variable; the coefficients of the dynamic recovery term in this equation is a function of both instantaneous and accumulated inelastic strain which is allowed to vary in an appropriate manner in order to reproduce the experimental ratcheting rate. The validity of the model is verified by comparing predictions with experimental results for austenitic stainless steel (17-12 SPH) tubular specimens subjected to cyclic torsional loading under constant tensile stress at 6000C

  2. Composite biaxially textured substrates using ultrasonic consolidation

    Science.gov (United States)

    Blue, Craig A; Goyal, Amit

    2013-04-23

    A method of forming a composite sheet includes disposing an untextured metal or alloy first sheet in contact with a second sheet in an aligned opposing position; bonding the first sheet to the second sheet by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form an untextured intermediate composite sheet; and annealing the untextured intermediate composite sheet at a temperature lower than a primary re-crystallization temperature of the second sheet and higher than a primary re-crystallization temperature of the first sheet to convert the untextured first sheet into a cube textured sheet, wherein the cube texture is characterized by a .phi.-scan having a FWHM of no more than 15.degree. in all directions, the second sheet remaining untextured, to form a composite sheet.

  3. Biaxial Bianchi type 9 quantum cosmology

    International Nuclear Information System (INIS)

    We investigate the quantum cosmology of spatially homogeneous models with compact spatial sections admitting a u(2) isometry algebra. The metric ansatz in these models is that of Bianchi type IX with two scale factors set to be equal. We apply the Hartle-Hawking no-boundary path integral prescription and find the semi-classical contributions to the wave function. Exact formulae are obtainable for certain contributions and otherwise the limits of large and small anisotropy (for the pure vacuum case) and large spatial volume or small anisotropy (for the case with a positive cosmological constant) are considered. For the pure vacuum case we find no semiclassical components which would correspond to Lorentzian universes. For the case with a cosmological constant the Hartle-Hawking boundary conditions formally constrain one of the parameters in the Lorentzian solutions to be purely imaginary. Possible interpretations of this imaginary parameter are discussed. 27 refs

  4. Laser Propagation in Biaxial Liquid Crystal Polymers

    OpenAIRE

    Choate, Eric P.; Zhou, Hong

    2011-01-01

    We examine the propagation of a laser beam through a liquid crystal polymer (LCP) layer using the finite-difference time-domain (FDTD) method. Anchoring conditions on supporting glass plates induce an orientational structure in the LCP between the plates. The orientation can deflect energy away from the direction of propagation of the incident beam when the optical axis or major director of a uniaxial medium is neither parallel nor orthogonal to the incident beam. The maximum e...

  5. Biaxially Oriented CdSe Nanorod

    DEFF Research Database (Denmark)

    Breiby, Dag W.; Chin, Patrick T.K.; Andreasen, Jens Wenzel;

    2009-01-01

    The shape, structure, and orientation of rubbing-aligned cadmium selenide (CdSe) nanorods on polymer coated glass substrates have been studied using transmission electron microscopy (TEM) and grazing incidence X-ray scattering combined with computer simulations. The nanorods are found to be of...

  6. Predicting Sustainable Work Behavior

    DEFF Research Database (Denmark)

    Hald, Kim Sundtoft

    2013-01-01

    Sustainable work behavior is an important issue for operations managers – it has implications for most outcomes of OM. This research explores the antecedents of sustainable work behavior. It revisits and extends the sociotechnical model developed by Brown et al. (2000) on predicting safe behavior....... Employee characteristics and general attitudes towards safety and work condition are included in the extended model. A survey was handed out to 654 employees in Chinese factories. This research contributes by demonstrating how employee- characteristics and general attitudes towards safety and work...... condition influence their sustainable work behavior. A new definition of sustainable work behavior is proposed....

  7. Behavioral Immunity in Insects

    Directory of Open Access Journals (Sweden)

    Thierry Lefèvre

    2012-08-01

    Full Text Available Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied.

  8. Cyclic behavior of SS 316 LN with respect to thermal ratcheting of main vessel for SFR

    International Nuclear Information System (INIS)

    One of the innovative features which are considered for the future Sodium cooled Fast breeder Reactor (SFR) in India is the elimination of main vessel cooling circuit. This would bring out significant economic by saving the cost of entire cooling circuit and also by reducing the main vessel diameter. However, the challenging aspect to be addressed is investigation of thermal ratcheting failure near sodium free level. The sodium free level will vary during the various operating conditions depending up on hot and cold pool temperatures. The thermal fluctuations cause high cycle deformation controlled fatigue damage. These high cycle temperature oscillations cause high cycle deformation controlled fatigue on metal surface. Thermal ratcheting of main vessel enhanced by creep effect which cause radial deformations near the sodium free level during Safety Graded Decay Heat Removal (SGDHR). The strain accumulated due to thermal ratcheting can also cause reduction in buckling strength of main vessel. The accumulated deformations can cause concern for the free movement of in-service inspection equipment. Preliminary assessment indicates that there is a need to develop special SS 316 LN with higher nitrogen content and subsequently to demonstrate that the vessel made of this material can provide a sufficient safety margin against ratcheting. This exercise calls for carrying out many simulated experiments, particularly to predict thermal ratcheting. Some of the recent bi-axial tension-torsion experiments to simulate ratcheting for SS316LN and enhanced nitrogen steel (SS316EN) found that the axial strains predicted by enhanced nitrogen SS316EN steel were much higher than the strains predicted for SS316LN steel for the same set of parameters. Hence it is worthwhile to carryout investigations to predict the cyclic behavior of SS 316LN and enhanced nitrogen steel with respect to thermal ratcheting. Some experiments have been conducted for the SFR scale down model of main vessel

  9. Behavioral Law and Economics

    OpenAIRE

    Christine Jolls

    2007-01-01

    Behavioral economics has been a growing force in many fields of applied economics, including public economics, labor economics, health economics, and law and economics. This paper describes and assesses the current state of behavioral law and economics. Law and economics had a critical (though underrecognized) early point of contact with behavioral economics through the foundational debate in both fields over the Coase theorem and the endowment effect. In law and economics today, both the end...

  10. BEHAVIOR THERAPY FOR TRANSSEXUALISM

    OpenAIRE

    Andrade, A. Chitra; Kumaraiah, V.; Mishra, H.; Chatterji, S.; Andrade, Chittaranjan

    1995-01-01

    Transsexualism is a rare disorder, and there is little literature available on its treatment. A case is presented of transsexualism with homosexual orientation in a 24 year old male. Since the disorder appeared to have behavioral antecedents, it was treated with a behavior therapy package comprising relaxation, aversion therapy with aversion relief, modelling, hypnosis, orgasmic reconditioning, behavioral counselling and sex education. Therapy resulted in normalization of gender identity, but...

  11. Culture and Consumer Behavior

    OpenAIRE

    Chiu, Chi-Yue; Kwan, Letty Y.-Y.; Li, Dongmei; Peng, Luluo; Peng, Siqing

    2014-01-01

    Understanding how culture influences consumer behaviors is crucial to success in international marketing. In this monograph, the authors present a conceptual and empirical framework for understanding how culture impacts consumer behaviors, and recommend seven analytical steps for understanding similarities and differences between cultures as well as within-culture variations in consumer behaviors. These analytical steps are: (1) identify the key components of culture; (2) find out and describ...

  12. [Neurobiology of behavioral addictions].

    Science.gov (United States)

    Kiefer, F; Fauth-Bühler, M; Heinz, A; Mann, K

    2013-05-01

    Reward learning represents a crucial mechanism in the acquisition and maintenance of addictive behavior. The underlying neurobiological foundations and associated neurobiological pathways are identified in this review and similarities between substance abuse and behavioral addictions will be discussed. In the second section current neuroimaging findings on neurobiological mechanisms of pathological gambling and computer and internet addiction are discussed. The main focuses are on changes in neurocognitive processes, such as cue reactivity, reward and punishment processing and behavioral control. PMID:23632569

  13. Behavioral Labor Economics

    OpenAIRE

    Berg, Nathan

    2006-01-01

    Behavioral economics has in recent decades emerged as a prominent set of methodological developments that have attracted considerable attention both within and outside the economics profession. The time is therefore auspicious to assess behavioral contributions to particular subfields of economics such as labor economics. With empirical validity among its chief objectives, one might guess that behavioral economics would have made its clearest mark in data-driven subfields such as labor econom...

  14. Online Shopping Behavior

    OpenAIRE

    Shahzad, Hashim

    2015-01-01

    Online shopping is a very much developed phenomena in Scandinavian countries. Different online factors impact online consumers’ behavior differently depending on the environment of different regions. Sweden is one of the developed and technologically advanced countries. To see the impact of different factors on consumers’ online shopping behavior, the purpose of this study is to analyse the factors that influence consumers’ online shopping behavior in Sweden’s context. One of the objectives o...

  15. Contingency and behavior analysis

    OpenAIRE

    Lattal, Kennon A.

    1995-01-01

    The concept of contingency is central to theoretical discussions of learned behavior and in the application of learning research to problems of social significance. This paper reviews three aspects of the contingency concept as it has been developed by behavior analysts. The first is the empirical analysis of contingency through experimental studies of both human and nonhuman behavior. The second is the synthesis of experimental studies in theoretical and conceptual frameworks to yield a more...

  16. On the effect of x-ray irradiation on the deformation and fracture behavior of human cortical bone

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Holly D.; Launey, Maximilien E.; McDowell, Alastair A.; Ager III, Joel W.; Ritchie, Robert O.

    2010-01-10

    In situ mechanical testing coupled with imaging using high-energy synchrotron x-ray diffraction or tomography imaging is gaining in popularity as a technique to investigate micrometer and even sub-micrometer deformation and fracture mechanisms in mineralized tissues, such as bone and teeth. However, the role of the irradiation in affecting the nature and properties of the tissue is not always taken into account. Accordingly, we examine here the effect of x-ray synchrotron-source irradiation on the mechanistic aspects of deformation and fracture in human cortical bone. Specifically, the strength, ductility and fracture resistance (both work-of-fracture and resistance-curve fracture toughness) of human femoral bone in the transverse (breaking) orientation were evaluated following exposures to 0.05, 70, 210 and 630 kGy irradiation. Our results show that the radiation typically used in tomography imaging can have a major and deleterious impact on the strength, post-yield behavior and fracture toughness of cortical bone, with the severity of the effect progressively increasing with higher doses of radiation. Plasticity was essentially suppressed after as little as 70 kGy of radiation; the fracture toughness was decreased by a factor of five after 210 kGy of radiation. Mechanistically, the irradiation was found to alter the salient toughening mechanisms, manifest by the progressive elimination of the bone's capacity for plastic deformation which restricts the intrinsic toughening from the formation 'plastic zones' around crack-like defects. Deep-ultraviolet Raman spectroscopy indicated that this behavior could be related to degradation in the collagen integrity.

  17. Rule-governed behavior and behavioral anthropology.

    Science.gov (United States)

    Malott, R W

    1988-01-01

    According to cultural materialism, cultural practices result from the materialistic outcomes of those practices, not from sociobiological, mentalistic, or mystical predispositions (e.g., Hindus worship cows because, in the long run, that worship results in more food, not less food). However, according to behavior analysis, such materialistic outcomes do not reinforce or punish the cultural practices, because such outcomes are too delayed, too improbable, or individually too small to directly reinforce or punish the cultural practices (e.g., the food increase is too delayed to reinforce the cow worship). Therefore, the molar, materialistic contingencies need the support of molecular, behavioral contingencies. And according to the present theory of rule-governed behavior, the statement of rules describing those molar, materialistic contingencies can establish the needed molecular contingencies. Given the proper behavioral history, such rule statements combine with noncompliance to produce a learned aversive condition (often labeled fear, anxiety, or guilt). The termination of this aversive condition reinforces compliance, just as its presentation punishes noncompliance (e.g., the termination of guilt reinforces the tending to a sick cow). In addition, supernatural rules often supplement these materialistic rules. Furthermore, the production of both materialistic and supernatural rules needs cultural designers who understand the molar, materialistic contingencies. PMID:22478012

  18. Modeling shopping behavior

    OpenAIRE

    SOUBUSTA, Václav

    2012-01-01

    This work deals with modeling agents in multiagent systems, where it will create a java application in program Greenfoot. This application will serve as a simulation of different shopping behavior of customers when choosing a suitable trade for purchase for them. The behavior will be visualized in the program Greenfoot and properly documented on the javadoc level .

  19. Behavior Therapy of Impotence

    Science.gov (United States)

    Dengrove, Edward

    1971-01-01

    Behavior therapy approaches to the treatment of male sexual impotence, specifically premature ejaculation and erective impotence, are discussed. Included in the behavioral therapies are systematic desensitization, active graded therapy, assertive techniques, sexual responses, operant approaches and others. Often marriage counseling is also…

  20. Personalizing Behavior Modification.

    Science.gov (United States)

    White, Debra G.; And Others

    1987-01-01

    Process reinforcement is proposed as a reinforcement method that is more comfortable, personal, comprehensive, and interactive than traditional behavior modification. Process reinforcement strengthens desired behaviors by engaging learners in a one-on-one examination of how they achieved correct responses and by practicing comfortable eye contact…

  1. Stages and Behaviors

    Science.gov (United States)

    ... take behaviors personally. Remain patient and calm. Explore pain as a trigger. Don't argue or try to convince. Accept behaviors as a reality of the disease and try to work through it. ALZConnected ® Connect with our online caregiver community at alzconnected.org From Our Blog Sudden ...

  2. Stress and eating behavior

    OpenAIRE

    Peters, Achim; Langemann, Dirk

    2010-01-01

    How stress, the stress response, and the adaptation of the stress response influence our eating behavior is a central question in brain research and medicine. In this report, we highlight recent advances showing the close links between eating behavior, the stress system, and neurometabolism.

  3. Defining Behavior Modification

    Science.gov (United States)

    Christoplos, Florence; Valletutti, Peter

    1969-01-01

    Discusses the proposition that: "The educational problem involved in behavior modification, in the evaluationand measurement of learning, is the integration and coordination of three types of information affecting the achievement of specific behavioral goals: (1) information about the child, (2) information about the task, and (3) information…

  4. Nascent Leadership Behaviors

    Science.gov (United States)

    Payette, Dennis L.; Libertella, Anthony F.

    2011-01-01

    This paper is a compendium of leadership behaviors that emerging or aspirant leaders could choose to enhance their management and leadership skills. These behaviors were drawn directly from the experience of the authors, both of whom have held senior leadership and management positions in business, law, and higher education. This paper is an…

  5. Zen and Behavior Analysis

    Science.gov (United States)

    Bass, Roger

    2010-01-01

    Zen's challenge for behavior analysis is to explain a repertoire that renders analysis itself meaningless--a result following not from scientific or philosophical arguments but rather from a unique verbal history generated by Zen's methods. Untying Zen's verbal knots suggests how meditation's and koans' effects on verbal behavior contribute to…

  6. Youth Suicidal Behavior

    Science.gov (United States)

    AAS 2011 Youth Suicidal Behavior Fact Sheet 4,822 youth age 15-24 died by suicide. i We want to change that. Su icid eRat ... death in 2011. The 2011 Youth Risk and Behavior Survey found that in the previous 12 months ...

  7. Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging.

    Science.gov (United States)

    Pereira, G K R; Silvestri, T; Camargo, R; Rippe, M P; Amaral, M; Kleverlaan, C J; Valandro, L F

    2016-06-01

    This study aimed to investigate the effects of grinding with diamond burs and low-temperature aging on the mechanical behavior (biaxial flexural strength and structural reliability), surface topography, and phase transformation of a Y-TZP ceramic for monolithic dental restorations. Disc-shaped specimens (Zirlux FC, Ivoclar Vivadent) were manufactured according to ISO 6872 (2008) and divided in accordance with two factors: "grinding - 3 levels" and "LTD - 2 levels". Grinding was performed using a contra-angle handpiece under constant water-cooling with different grit-sizes (extra-fine and coarse diamond burs). LTD was simulated in an autoclave at 134°C, under a pressure of 2 bar, over a period of 20h. Surface topography analysis showed an increase in roughness based on surface treatment grit-size (Coarse>Xfine>Ctrl), LTD did not influence roughness values. Both grinding and LTD promoted an increase in the amount of m-phase, although different susceptibilities to degradation were observed. According to existing literature the increase of m-phase content is a direct indicative of Y-TZP degradation. Weibull analysis showed an increase in characteristic strength after grinding (Coarse=Xfine>Ctrl), while for LTD, distinct effects were observed (Ctrlceramic. PMID:27040197

  8. What determines our behavior

    Directory of Open Access Journals (Sweden)

    Marko Radovan

    2001-06-01

    Full Text Available In article Ajzen-Fishbein's attitude-behavior model called 'Theory of reasoned action' and Albert Bandura's Model of reciprocal determinism are presented. Both models are a part of social-cognitive paradigm which characterizes behavior with evaluation of different goals. Ajzen and Fishbein (1973; 1980 proposed that specific behavior are predictable from specific behavioral intentions. These intentions are a function of two components: the attitude toward the act in question and percieved normative expectations of reference group. On the other hand Bandura (1986; 1997 claims that person's motivation for a specific behavior and direction toward a specific social object respectively, reflects perception of his or hers self-efficacy beliefs. Some of the findings concerning the synthesis of the two models are also reviewed.

  9. Research on Organizational Citizenship Behavior, Trust and Customer Citizenship Behavior

    OpenAIRE

    Gongxing Guo; Xing Zhou

    2013-01-01

    The concept of Customer Citizenship Behavior is evolved from Organizational Citizenship Behavior, and therelationship between them has been researched by few scholars. To examine the effect of OrganizationalCitizenship Behavior on Customer Citizenship Behavior, this research adopted questionnaire investigationmethod to survey 208 consumers. As predicted, the results showed that, organizational citizenship behaviorinfluenced customer citizenship behavior positively; trust acted as a mediator b...

  10. Rule-governed behavior and behavioral anthropology

    OpenAIRE

    Malott, Richard W

    1988-01-01

    According to cultural materialism, cultural practices result from the materialistic outcomes of those practices, not from sociobiological, mentalistic, or mystical predispositions (e.g., Hindus worship cows because, in the long run, that worship results in more food, not less food). However, according to behavior analysis, such materialistic outcomes do not reinforce or punish the cultural practices, because such outcomes are too delayed, too improbable, or individually too small to directly ...

  11. Relationship Quality and the Theory of Planned Behavior Models of Behavioral Intentions and Purchase Behavior

    OpenAIRE

    M. H. DE CANNIÈRE; P. DE PELSMACKER; M. GEUENS

    2008-01-01

    Using real-life purchase behavior data of apparel and survey information, this study compares the Relationship Quality and the Theory of Planned Behavior models. The attitude towards the buying behavior, the subjective norm and perceived behavioral control (antecedents of the buying intention in the Theory of Planned Behavior) are better predictors of behavioral intentions than Relationship Quality. In both models intentions fully mediate the impact of attitudinal antecedents on behavior, bot...

  12. Personality and Prosocial Behavior

    DEFF Research Database (Denmark)

    Hilbig, Benjamin E; Glöckner, Andreas; Zettler, Ingo

    2014-01-01

    Concerning the dispositional determinants of prosocial behavior and cooperation, work based on the classic 5 personality factors, and especially Agreeableness, has turned out somewhat inconsistent. A clearer picture has emerged from consideration of the HEXACO model of personality-though supported......-Humility (and certain aspects of five-factor Agreeableness) account for prosocial behavior-thus explaining previous inconsistencies and providing a more nuanced understanding of the links between basic personality and prosocial or cooperative behavior. (PsycINFO Database Record (c) 2014 APA, all rights reserved)....

  13. On operator strategic behavior

    Science.gov (United States)

    Hancock, P. A.

    1991-01-01

    Deeper and more detailed knowledge as to how human operators such as pilots respond, singly and in groups, to demands on their performance which arise from technical systems will support the manipulation of such systems' design in order to accommodate the foibles of human behavior. Efforts to understand how self-autonomy impacts strategic behavior and such related issues as error generation/recognition/correction are still in their infancy. The present treatment offers both general and aviation-specific definitions of strategic behavior as precursors of prospective investigations.

  14. Invitation to Consumer Behavior Analysis

    Science.gov (United States)

    Foxall, Gordon R.

    2010-01-01

    This article presents an introduction to consumer behavior analysis by describing the Behavioral Perspective Model of consumer choice and showing how research has, first, confirmed this framework and, second, opened up behavior analysis and behavioral economics to the study of consumer behavior in natural settings. It concludes with a discussion…

  15. Comportement des poteaux composites en profils creux en acier remplis de béton Behavior of composite columns in hollow steel section filled with concrete

    Directory of Open Access Journals (Sweden)

    Othmani N.

    2012-09-01

    Full Text Available Le but de cet article, est la determination des rigidites flexionnelles EIx et EIy d’fune section mixte acier beton et plus precisement d’fun poteau en tube d’facier de section rectangulaire, remplie de beton, sollicitee a la flexion bi-axiale (N, Mx et My. L’festimation des rigidites sera faite a partir d’fune approche theorique par une analyse du poteau en elements finis (element barre a 4 degres de liberte, basee sur les conditions d’fequilibres a mi-portee en utilisant la relation moment-courbure (M–Φ de l’felement deforme par application de l’fequation suivante: EI=M/Φ. Le comportement des materiaux est celui comme adopte par les reglements Eurocode 2 et 3, respectivement pour le beton et l’facier. Afin de valider l’fapproche theorique utilisee dans cette etude, deux comparaisons ont ete faites : une premiere permettant de comparer les resultats des rigidites determinees par les relations moments courbures et celles calculees par l’fEurocode 4 et une deuxieme comparaison entre les charges de ruines de deux poteaux de grandeurs natures avec ceux testes au laboratoire [2]. Au vu des resultats obtenus, nous pouvons conclure que l’approche théorique utilisée dans cette étude ainsi que les modèles de comportement des matériaux sont adéquats pour ce genre de problèmes. The purpose of this paper is the determination of flexural stiffness EIx and EIy of a concrete filled rectangular cross section of a composite steel column, under biaxial bending (N, Mx and My. The rigidities will be estimated from a theoretical approach using a finite element analysis (element bar with 4 degrees of freedom, based on the equilibrium conditions at mid-span using the moment-curvature relationships (M–Φ of the deformed element by applying the following equation: EI=M/Φ. The material behavior is the one adopted by Eurocode 2 and 3, respectively, for concrete and steel. To validate the theoretical approach used, two comparisons

  16. Facilitator control as automatic behavior: A verbal behavior analysis

    OpenAIRE

    Hall, Genae A.

    1993-01-01

    Several studies of facilitated communication have demonstrated that the facilitators were controlling and directing the typing, although they appeared to be unaware of doing so. Such results shift the focus of analysis to the facilitator's behavior and raise questions regarding the controlling variables for that behavior. This paper analyzes facilitator behavior as an instance of automatic verbal behavior, from the perspective of Skinner's (1957) book Verbal Behavior. Verbal behavior is autom...

  17. Suicide and suicidal behavior

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001554.htm Suicide and suicidal behavior To use the sharing features on this page, please enable JavaScript. Suicide is the act of taking one's own life ...

  18. Dealing with Oppositional Behaviors

    Science.gov (United States)

    ... ways to manage oppositional behaviors is a daily reality for many people who know FTD first hand. ... been heard. Adjust creatively and laugh Watching a television program I enjoy can be a challenge to ...

  19. Child Behavior Disorders

    Science.gov (United States)

    ... problem, ask for help. Poor choices can become habits. Kids who have behavior problems are at higher risk for school failure, mental health problems, and even suicide. Classes or family therapy ...

  20. Clustering Game Behavior Data

    DEFF Research Database (Denmark)

    Bauckhage, C.; Drachen, Anders; Sifa, Rafet

    2015-01-01

    data scientists and present a review and tutorial focusing on the application of clustering techniques to mine behavioral game data. Several algorithms are reviewed and examples of their application shown. Key topics such as feature normalization are discussed and open problems in the context of game......Recent years have seen a deluge of behavioral data from players hitting the game industry. Reasons for this data surge are many and include the introduction of new business models, technical innovations, the popularity of online games, and the increasing persistence of games. Irrespective of the...... causes, the proliferation of behavioral data poses the problem of how to derive insights therefrom. Behavioral data sets can be large, time-dependent and high-dimensional. Clustering offers a way to explore such data and to discover patterns that can reduce the overall complexity of the data. Clustering...

  1. Network-behavior dynamics

    NARCIS (Netherlands)

    Veenstra, René; Dijkstra, Jan; Steglich, Christian; Van Zalk, Maarten H. W.

    2013-01-01

    Researchers have become increasingly interested in disentangling selection and influence processes. This literature review provides context for the special issue on network-behavior dynamics. It brings together important conceptual, methodological, and empirical contributions focusing on longitudina

  2. Behavioral Law & Economics

    OpenAIRE

    Tomasz Nieborak

    2012-01-01

    Issues concerning the regulation aspects of financial markets are not simple. One of the reasons for this is that a great number of detailed factors have an effect, for example, the trust of the consumers of financial services or their behavior. The paper analyses the most important of them, and issues related to them, from a legal point of view, with the main objective of presenting the basic assumptions of the behavioral Law & Economics theorem. Dynamic development of financial markets and ...

  3. Consumer Buying Behavior

    OpenAIRE

    Irena Vida; Mojca Maher Pirc

    2006-01-01

    The study examines the phenomenon of national identity and economic ethnocentrism in consumer buying behavior. Analysis of data collected from a representative sample of adult Slovenian consumers reveals only moderately expressed ethnocentric tendencies. Similar moderation was revealed in the preferences of Slovenian consumers for patriotic purchasing behavior, whereby the domestic origin of products was more important in the case of nondurable goods and services than in the case of durable g...

  4. Behavioral genetics and taste

    Directory of Open Access Journals (Sweden)

    Bachmanov Alexander A

    2007-09-01

    Full Text Available Abstract This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste.

  5. HIV Behavioral Research Online

    OpenAIRE

    Chiasson, Mary Ann; Parsons, Jeffrey T.; Tesoriero, James M.; Carballo-Dieguez, Alex; Hirshfield, Sabina; Remien, Robert H.

    2006-01-01

    Internet access has caused a global revolution in the way people of all ages and genders interact. Many have turned to the Internet to seek love, companionship, and sex, prompting researchers to move behavioral studies online. The sexual behavior of men who have sex with men (MSM) has been more closely studied than that of any other group online given the abundance of gay-oriented websites and concerns about increasing transmission of HIV and other sexually transmitted infections. Not only do...

  6. SPORT CONSUMER BEHAVIOR

    OpenAIRE

    Iftime Dragoș Adrian

    2015-01-01

    Without any doubt, sport has become a major consumer market, either we discuss about practicing any kind of sport at professional or amateur level, or we are just interested by a competition, sport organization or an athlete as a regular consumer. From this last perspective, we can distinguish between two types of behaviors, respectively the spectator and the supporter or fan. Each of these two typologies has its own characteristics which define, in a significant manner, the consumer behavior...

  7. Zen and Behavior Analysis

    OpenAIRE

    Bass, Roger

    2010-01-01

    Zen's challenge for behavior analysis is to explain a repertoire that renders analysis itself meaningless—a result following not from scientific or philosophical arguments but rather from a unique verbal history generated by Zen's methods. Untying Zen's verbal knots suggests how meditation's and koans' effects on verbal behavior contribute to Enlightenment and Samādhi. The concept of stimulus singularity is introduced to account for why, within Zen's frame of reference, its methods can be stu...

  8. Is Behavioral Economics Doomed?

    OpenAIRE

    David K. Levine

    2013-01-01

    It is fashionable to criticize economic theory for focusing too much on rationality and ignoring the imperfect and emotional way in which real economic decisions are reached. All of us facing the global economic crisis wonder just how rational economic men and women can be. Behavioral economics — an effort to incorporate psychological ideas into economics — has become all the rage. In this book, David K. Levine questions the idea that behavioral economics is the answer to economic problems. H...

  9. Prosocial behavior and gender

    OpenAIRE

    Maria Paz eEspinosa; Jaromir eKovarik

    2015-01-01

    This study revisits different experimental data sets that explore social behavior in economic games and uncovers that many treatment effects may be gender-specific. In general, men and women do not differ in “neutral” baselines. However, we find that social framing tends to reinforce prosocial behavior in women but not men, whereas encouraging reflection decreases the prosociality of males but not females. The treatment effects are sometimes statistically different across genders and sometime...

  10. Behavioral Contract Theory

    OpenAIRE

    Botond Koszegi

    2014-01-01

    This review provides a critical survey of psychology-and-economics ("behavioral-economics") research in contract theory. First, I introduce the theories of individual decision making most frequently used in behavioral contract theory, and formally illustrate some of their implications in contracting settings. Second, I provide a more comprehensive (but informal) survey of the psychology-and-economics work on classical contract-theoretic topics: moral hazard, screening, mechanism design, and i...

  11. Large Fluctuations and Singular Behavior of Nonequilibrium Systems

    OpenAIRE

    Pinna, Daniele; Kent, Andrew D.; Stein, Daniel L.

    2015-01-01

    We present a general geometrical approach to the problem of escape from a metastable state in the presence of noise. The accompanying analysis leads to a simple condition, based on the norm of the drift field, for determining whether caustic singularities alter the escape trajectories when detailed balance is absent. We apply our methods to systems lacking detailed balance, including a nanomagnet with a biaxial magnetic anisotropy and subject to a spin transfer torque. The approach described ...

  12. Youth Risk Behavior Surveillance System

    Science.gov (United States)

    ... NGOs Protective Factors Parent Engagement School Connectedness Positive Parenting Practices Sexual Risk Behaviors Program Evaluation Evaluations of ... including— Behaviors that contribute to unintentional injuries and violence Sexual behaviors related to unintended pregnancy and sexually ...

  13. Biblical behavior modification.

    Science.gov (United States)

    Lasure, L C; Mikulas, W L

    1996-07-01

    Although we may have formalized and systematized the field of behavior modification in the last few decades, people around the world have been using behavioral change strategies throughout history. Premack's (1965) theory of reinforcement is often called "Grandma's rule" because grandmothers have long been using it (e.g. You must finish your vegetables before you may go out and play). Franks (1969, p. 4), in one of the first behavioral texts, gave historical examples from China, Turkey, France, and Italy. Knapp and Shodahl (1974) showed how Benjamin Franklin used behavior modification. And de Silva (1984, 1985) gave examples of behavior modification by the Buddha and other early Buddhists. Conspicuously absent from our literature are examples from the Judeo-Christian tradition. In this paper, we provide a number of behavior modification examples from the Bible (New International Version). Footnotes provide references for many more examples. In the discussion, we explore implications for education and therapy. Examples are grouped by the following categories: operant conditioning, respondent conditioning, modeling, and cognitive interventions. However, the Biblical examples, like contemporary case studies, do not always fall neatly into discrete categories. They often are a combination, particularly operant and respondent conditioning interweaving. PMID:8826763

  14. Behavioral addictions: an overview.

    Science.gov (United States)

    Karim, Reef; Chaudhri, Priya

    2012-01-01

    The legitimacy of nonsubstance addictions has received increased attention from clinicians, researchers and the general population as more and more individuals report symptoms consistent with impairment of impulse control. The clinical presentation of these disorders is varied, as compulsive activities may include: gambling, eating, sex, shopping, use of the Internet or videogames or even exercising, working or falling in love. As such, there is great controversy in diagnosing, treating or even naming these conditions, as many of these behaviors are daily rituals instrumental to our ultimate survival. Historically, the phrase "impulse control disorders" described these conditions but many researchers and clinicians also use the term "behavioral addictions," "process addictions" or "impulsive-compulsive behaviors" to report behavioral pathology. This review summarizes the data of each of these behavioral addictions from epidemiology to neurobiology to treatment options. Research suggests similarities between natural and drug reward processing but clinical evidence supports the utilization of treatment modalities for these behavioral conditions that can sometimes differ from traditional drug treatment. PMID:22641961

  15. Leader Behavior and Subordinate Motivation.

    Science.gov (United States)

    Klimoski, Richard J.; Hayes, Noreen J.

    1980-01-01

    Supervisor behaviors influence effort expenditure, the perception of organizational contingencies, and most facets of job satisfaction. Supervisor behaviors are also related to job performance. (Author)

  16. Human Rights and Behavior Modification

    Science.gov (United States)

    Roos, Philip

    1974-01-01

    Criticisms of behavior modification, which charge that it violates ethical and legal principles, are discussed and reasons are presented to explain behavior modification's susceptibility to attack. (GW)

  17. Empathy, Communication, and Prosocial Behavior.

    Science.gov (United States)

    Stiff, James B.; And Others

    1988-01-01

    Examines the relationships among different dimensions of empathy, communication, and prosocial behavior. Supports an altruistic interpretation of prosocial behavior and suggests that the egoistic model be reformulated. (JK)

  18. Behavioral Indicators and Behaviors Related to Sexting among Undergraduate Students

    Science.gov (United States)

    Hudson, Heather K.; Fetro, Joyce V.; Ogletree, Roberta

    2014-01-01

    Background: Empirical studies on sexting are limited, and many sexting studies only assessed sexting behaviors. Few studies have assessed attitudes, subjective norms, or behavioral intentions related to sexting. Purpose: The purpose of this study was to assess attitudes, subjective norms, behavioral intentions, and behaviors related to sexting…

  19. Escape behaviors in insects.

    Science.gov (United States)

    Card, Gwyneth M

    2012-04-01

    Escape behaviors are, by necessity, fast and robust, making them excellent systems with which to study the neural basis of behavior. This is especially true in insects, which have comparatively tractable nervous systems and members who are amenable to manipulation with genetic tools. Recent technical developments in high-speed video reveal that, despite their short duration, insect escape behaviors are more complex than previously appreciated. For example, before initiating an escape jump, a fly performs sophisticated posture and stimulus-dependent preparatory leg movements that enable it to jump away from a looming threat. This newfound flexibility raises the question of how the nervous system generates a behavior that is both rapid and flexible. Recordings from the cricket nervous system suggest that synchrony between the activity of specific interneuron pairs may provide a rapid cue for the cricket to detect the direction of an approaching predator and thus which direction it should run. Technical advances make possible wireless recording from neurons while locusts escape from a looming threat, enabling, for the first time, a direct correlation between the activity of multiple neurons and the time-course of an insect escape behavior. PMID:22226514

  20. Epilepsy, cognition and behavior.

    Science.gov (United States)

    Gulati, Sheffali; Yoganathan, Sangeetha; Chakrabarty, Biswaroop

    2014-10-01

    Epilepsy is defined as two or more unprovoked seizures. Epileptic patients have intellectual disability and behavioral co-morbidities to the tune of up to 25 and 75% respectively. Various factors like underlying etiology, socioeconomic environment at home, age at onset, seizure semiology, seizure descriptors like duration, severity and frequency, therapy related adverse effects secondary to antiepileptic drugs and epilepsy surgery have been implicated for the causation of cognitive and behavioral impairment in epilepsy. Cognitive epilepsy has emerged as a specific entity. This may manifest as a transient behavioral or cognitive change, insidous onset subacute to chronic encephalopathy or more catastrophic in the form of nonconvulsive status epilepticus. Cognitive impairment seen in epileptic children include difficulties in learning, memory, problem solving as well as concept formation. Anxiety, depression and attention deficit hyperkinetic disorders are the most common psychiatric co-morbidities seen. Investigating a child with epilepsy for cognitive and behavioral impairment is difficult as these tests would require cooperation from the patient's side to a significant extent. A rational approach towards treatment would be judicious selection of antiepileptic drugs, treatment of underlying cause, appropriate management of behavioral co-morbidities including psychopharmacotherapy and a trial of immunotherapy (particularly in cognitive epilepsies), wherever appropriate. PMID:25073691